Science.gov

Sample records for obtaining gamma sources

  1. Gamma source for active interrogation

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2009-09-29

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  2. Gamma source for active interrogation

    SciTech Connect

    Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.

    2012-10-02

    A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.

  3. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  4. Gamma europium- and cobalt-sources

    SciTech Connect

    Klochkov, E.P.; Risovany, V.D.; Ponomarenko, B.V.

    1993-12-31

    The double-purpose control rods of nuclear reactors were made in which the inserts containing cobalt and europium oxide with natural {sup 151}Eu and {sup 153}Eu content were used as an absorbing core. The mass content of europium oxide is to exceed 15% to provide for a necessary reactivity. Cobalt and europium radionuclides were shown to be accumulated during the reactor operation allowing the inserts to be used as gamma sources after unloading of control rods at large commercial plants for radiation processing of different materials. Shape, geometry and composition of inserts were optimized allowing their specific activity to be obtained above 2 x 10 Bq/g (about 60 Ci/g). The spectral activity and radiation resistance of gamma sources were studied.

  5. Multiwavelength observations of unidentified high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with catalogued objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. This two year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x-ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. This second year was devoted to studies of unidentified gamma-ray sources from the first EGRET catalog, similar to previous observations. Efforts have concentrated on the sources at low and intermediate Galactic latitudes, which are the most plausible pulsar candidates.

  6. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H.

    2013-04-19

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  7. Wood-Polymer composites obtained by gamma irradiation

    SciTech Connect

    Gago, J.; Lopez, A.; Rodriguez, J.; Santiago, J.; Acevedo, M.

    2007-10-26

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  8. Multiwavelength observations of unidentified high energy gamma ray sources

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1993-01-01

    As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with cataloged objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. Even a rudimentary understanding of their nature awaits identifications and follow-up work at other wavelengths to tell us what they are. The as yet unidentified sources are potentially the most interesting, since they may represent unrecognized new classes of astronomical objects, such as radio-quiet pulsars or new types of active galactic nuclei (AGN's). This two-year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. According to plan, in the first year concentration was on the identification and study of Geminga. The second year will be devoted to studies of similar unidentified gamma-ray sources which will become available in the first EGRET catalogs. The results obtained so far are presented in the two papers which are reproduced in the Appendix. In these papers, we discuss the pulse profiles of Geminga, the geometry and efficiency of the magnetospheric accelerator, the distance to Geminga, the implications for theories of polar cap heating, the effect of the magnetic field on the surface emission and environment of the neutron star, and possible interpretations of a radio-quiet Geminga. The implications of the other gamma-ray pulsars which were discovered to have high gamma-ray efficiency are also discussed, and the remaining unidentified COS B sources are attributed to a population of efficient gamma-ray sources, some of which may be radio quiet.

  9. Unthermalized positrons in gamma ray burst sources

    NASA Technical Reports Server (NTRS)

    Tkaczyk, W.; Karakula, S.

    1992-01-01

    The spectra of the broadening 0.511 MeV annihilation line produced by high temperatures was calculated in the case of unthermalized plasma; i.e., T sub e(+) is not = T sub e(-). The flattening in the spectrum of the annihilation lines for large differences of electron and positron temperatures is a strong indication that the observed features of the hard tailed spectrum of the gamma bursts can be well described by annihilation of unthermalized positrons. It is proposed that the charge separation occurring in Eddington limited accretion onto a neutron star or the one photon pair production in strong magnetic fields as a mechanism for the production of unthermalized positrons in the sources of gamma bursts. From the best fit of experimental spectra by the model, the parameters of sources for which the regions with different plasma temperatures can exist is evaluated.

  10. Laser Electron Gamma Source. Biennial progress report

    SciTech Connect

    Sandorfi, A.M.; Caracappa, A.; Kuczewski, A.; Kistner, O.C.; Lincoln, F.; Miceli, L.; Thorn, C.E.; Hoblit, S.; Khandaker, M. |

    1994-06-01

    The LEGS facility provides intense, polarized, monochromatic {gamma}-ray beams by Compton backscattering laser light from relativistic electrons circulating in the X-Ray storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. With the start of ring operations at 2.8 GeV, LEGS {gamma}-ray energies now extend to 370 MeV. Considerable progress has been made in the development of a new laser system that will increase the beam energies to 470 MeV, and this system is expected to come into operation before the next biennial report. The total flux is administratively held at 6 {times} 10{sup 6} s{sup {minus}1}. The {gamma}-ray energy is determined, with a resolution of 5.5 MeV, by detecting the scattering electrons in a magnetic spectrometer. This spectrometer can `tag` all {gamma}-rays with energies from 185 MeV up to the Compton edge. The beam spot size at the target position is 8 mm (V) {times} 18 mm (H), FWHM. For a single laser wavelength, the linear polarization of the beam is 98% at the Compton edge and decreases to 50% at about 1/2 the energy of the edge. By choosing the laser wavelengths appropriately the polarization can be maintained above 85% throughout the tagging range. During the last two years, experimental running at LEGS occupied an average of 3000 hours annually. Highlights of some of the programs are discussed below.

  11. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

  12. ASTRONOMY: A New Source of Gamma Rays.

    PubMed

    Fender, R P

    2000-06-30

    Relativistic outflows or "jets" are collimated streams of high-energy electrons that emit synchrotron radiation at radio wavelengths and have bulk velocities that are a substantial fraction of the speed of light. They trace the outflow of enormous amounts of energy and matter from a central supermassive black hole in distant radio galaxies. As Fender explains in this Perspective, much smaller, more local sources may also produce such jets. Data presented by Paredes et al. point toward association of one such source, a relatively faint x-ray binary, with a gamma-ray source. This and similar pairs may contribute substantially to the production of high-energy particles and photons within our galaxy.

  13. Laser Electron Gamma Source Facility biennial progress report, June 1992

    SciTech Connect

    Caracappa, A.; Kuczewski, A.; Kistner, O.C.; Lincoln, F. ); Hoblit, S. . Dept. of Physics); Whisnant, C.S. South Carolina Univ., Columbia, SC . Dept. of Physics)

    1992-01-01

    This report briefly discusses the Laser Electron Gamma Source facility and the following experiments conducted here: polarization in D(gamma, p)n and N-N tensor forces for energies less than 225 Mev; constraints on the nuclear tensor force from D(gamma, p)n for energies less than 315 Mev; the p(gamma, neutral pion) reaction and the E2 excitation of delta resonance; quasi-two- and three-body absorption in helium 3(gamma, N-N); and the delta-nucleon interaction in D(gamma,p-negative pion)p and D(gamma, p-n)neutral pions. (LSP).

  14. Laser Electron Gamma Source Facility biennial progress report, June 1992

    SciTech Connect

    Caracappa, A.; Kuczewski, A.; Kistner, O.C.; Lincoln, F.; Hoblit, S.; Whisnant, C.S. |

    1992-08-01

    This report briefly discusses the Laser Electron Gamma Source facility and the following experiments conducted here: polarization in D(gamma, p)n and N-N tensor forces for energies less than 225 Mev; constraints on the nuclear tensor force from D(gamma, p)n for energies less than 315 Mev; the p(gamma, neutral pion) reaction and the E2 excitation of delta resonance; quasi-two- and three-body absorption in helium 3(gamma, N-N); and the delta-nucleon interaction in D(gamma,p-negative pion)p and D(gamma, p-n)neutral pions. (LSP).

  15. Energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  16. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  17. Fermi Large Area Telescope Bright Gamma-ray Source List

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, Guido; Bastieri, Denis; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bignami, G.F.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  18. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  19. Gamma ray cosmology: The extra galactic gamma spectrum and methods to detect the underlying source

    NASA Technical Reports Server (NTRS)

    Cline, David B.

    1990-01-01

    The possible sources of extragalactic gamma rays and methods to distinguish the different sources are discussed. The sources considered are early universe decays and annihilation of Particles, active galactic nuclei (AGN) sources, and baryon-antibaryon annihilation in a baryon symmetric cosmology. The energy spectrum and possible angular fluctuations due to these sources are described.

  20. GAMMA DOSE RATE NEAR A NEW (252)Cf BRACHYTHERAPY SOURCE

    SciTech Connect

    Fortune, Eugene C; Gauld, Ian C; Wang, C

    2011-01-01

    A new generation of medical grade (252)Cf sources was developed in 2002 at the Oak Ridge National Laboratory. The combination of small size and large activity of (252)Cf makes the new source suitable to be used with the conventional high-dose-rate remote afterloading system for interstitial brachytherapy. A recent in-water calibration experiment showed that the measured gamma dose rates near the new source are slightly greater than the neutron dose rates, contradicting the well established neutron-to-gamma dose ratio of approximately 2:1 at locations near a (252)Cf brachytherapy source. Specifically, the MCNP-predicted gamma dose rate is a factor of two lower than the measured gamma dose rate at the distance of I cm, and the differences between the two results gradually diminish at distances farther away from the source. To resolve this discrepancy, we updated the source gamma spectrum by including in the ORIGEN-S data library the experimentally measured (252)Cf prompt gamma spectrum as well as the true (252)Cf spontaneous fission yield data to explicitly model delayed gamma emissions from fission products. We also investigated the bremsstrahlung X-rays produced by the beta particles emitted from fission product decays. The results show that the discrepancy of gamma dose rates is mainly caused by the omission of the bremsstrahlung X-rays in the MCNP runs. By including the bremsstrahlung X-rays, the MCNP results show that the gamma dose rates near a new (252)Cf source agree well with the measured results and that the gamma dose rates are indeed greater than the neutron dose rates.

  1. COS-B gamma ray sources beyond the predicted diffuse emission

    NASA Technical Reports Server (NTRS)

    Mayer-Hasselwander, H. A.; Simpson, G.

    1990-01-01

    COS-B data were reanalyzed using for background subtraction the modeled galactic diffuse gamma-ray emission based on HI- and CO-line surveys and the gamma-ray data itself. A methodology was developed for this purpose with the following three features: automatic generation of source catalogs using correlation analysis, simulation of trials to derive significance thresholds for source detection, and bootstrap sampling to drive error boxes and confidence intervals for source parameters. The analysis shows that about half of the 2CG sources are explained by concentrations in the distribution of molecular hydrogen. Indication for a few weak new sources is also obtained.

  2. Energy sources in gamma-ray burst models

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    The current status of energy sources in models of gamma-ray bursts is examined. Special emphasis is placed on the thermonuclear flash model which has been the most developed model to date. Although there is no generally accepted model, if the site for the gamma-ray burst is on a strongly magnetized neutron star, the thermonuclear model can qualitatively explain the energetics of some, but probably not all burst events. The critical issues that may differentiate between the possible sources of energy for gamma-ray bursts are listed and briefly discussed.

  3. Radio observations in the fields of COS-B gamma ray sources. IV - First quadrant sources

    NASA Technical Reports Server (NTRS)

    Ozel, M. E.; Schlickeiser, R.; Sieber, W.; Younis, S.

    1988-01-01

    The field of five COS-B gamma-ray sources in the first galactic quadrant have been mapped using the Effelsberg radio telescope at several frequencies. Candidate objects as potential radio counterparts of gamma-ray sources are discussed in the light of current observations; however, mostly being due to the crowded nature of the radio fields, no clear identification has been possible.

  4. COMPACT, TUNABLE COMPTON SCATTERING GAMMA-RAY SOURCES

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Marsh, R A; Messerly, M J; O'Neill, K L; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C J; Vlieks, A E; Jongewaard, E N; Tantawi, S G; Raubenheimer, T O

    2009-08-20

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development at LLNL. High-brightness, relativistic electron bunches produced by the linac interact with a Joule-class, 10 ps laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. The source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented.

  5. Gamma ray bursts from extragalactic sources

    NASA Technical Reports Server (NTRS)

    Hoyle, Fred; Burbidge, Geoffrey

    1992-01-01

    The properties of gamma ray bursts of classical type are found to be explicable in terms of high speed collisions between stars. A model is proposed in which the frequency of such collisions can be calculated. The model is then applied to the nuclei of galaxies in general on the basis that galaxies, or at least some fraction of them, originate in the expulsion of stars from creation centers. Evidence that low level activity of this kind is also taking place at the center of our own Galaxy is discussed. The implications for galactic evolution are discussed and a negative view of black holes is taken.

  6. Laser-Electron-Gamma-Source. Progress report, July 1986

    SciTech Connect

    Dowell, D.H.; Fineman, B.; Giordano, G.; Kistner, OC.; Matone, G.; Sandorfi, A.M.; Schaerf, C.; Thorn, C.E.; Ziegler, W.

    1986-07-01

    When completed, the Laser Electron Gamma Source (LEGS) is expected to provide intense beams of monochromatic and polarized (circular or linear) gamma rays with energies up to 500 MeV. The gamma-ray beams will be produced by Compton backscattering uv laser light from the electrons circulating in a storage ring. Progress with installation of the facility is described, particularly the Ar-ion laser and tagging spectrometer. Tests of the tagging spectrometer coponents is reported, and a second laser is described for higher energy operation. Estimates are given of expected beam parameters. Experimental equipment for the planned research projects to be carried out at the LEGS facility is discussed. (LEW)

  7. Specification of High Activity Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    International Commission on Radiation Units and Measurements, Washington, DC.

    The report is concerned with making recommendations for the specifications of gamma ray sources, which relate to the quantity of radioactive material and the radiation emitted. Primary consideration is given to sources in teletherapy and to a lesser extent those used in industrial radiography and in irradiation units used in industry and research.…

  8. A review of recent results in gamma-ray astronomy obtained from high-altitude balloons

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.

    1994-01-01

    This paper reviews recent results in gamma-ray astronomy obtained from experiments flown on high-altitude balloons. New generation balloon-borne imaging experiments have produced the first gamma-ray maps of the Galactic center (GC) region. Balloon flights of new gamma-ray spectrometers with improved sensitivity have provided important new information on the GC annihilation line. For the first time, the narrow 511 keV line as been resolved (FWHM approx. = 3 keV). A very interesting spectral feature at approximately 170 keV has been attributed to backscattered annihilation, probably from the vicinity of a compact object. New results from the Compton Gamma-Ray Observatory (CGRO)/OSSE and Granat/SIGMA experiments on the annihilation line, when considered together with the recent balloon results, have added greatly to our knowledge and understanding of the origin and distribution of this emission. Balloon-borne instruments have made important measurements of gamma-ray continuum and line emission from SN 1987A. The GRIS spectrometer unambiguously resolved the 847 and 1238 keV line emission from radioactive Co-56 synthesized during the explosion. This data indicated that simple spherically symmetric and homogeneous models did not provide an adequate description of the expanding SN shell.

  9. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  10. A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system.

    SciTech Connect

    Doyle, Barney Lee; King, Michael; Rossi, Paolo; McDaniel, Floyd Del; Morse, Daniel Henry; Antolak, Arlyn J.; Provencio, Paula Polyak; Raber, Thomas N.

    2008-12-01

    Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

  11. GAMSOR: Gamma Source Preparation and DIF3D Flux Solution

    SciTech Connect

    Smith, M. A.; Lee, C. H.; Hill, R. N.

    2016-12-15

    Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problems with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To further

  12. Methods for Obtaining and Determination of Squalene from Natural Sources

    PubMed Central

    Popa, Ovidiu; Băbeanu, Narcisa Elena; Niță, Sultana; Dinu-Pârvu, Cristina Elena

    2015-01-01

    Squalene is a natural dehydrotriterpenic hydrocarbon (C30H50) with six double bonds, known as an intermediate in the biosynthesis of phytosterol or cholesterol in plants or animals. We have briefly reviewed the natural sources for squalene and focused on the main methods and techniques to obtain and to determine it. Some of its applications in different fields of human activity are also mentioned. PMID:25695064

  13. Compact Gamma-Beam Source for Nuclear Security Technologies

    NASA Astrophysics Data System (ADS)

    Gladkikh, P.; Urakawa, J.

    2015-10-01

    A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.

  14. Miniature accelerator-driven gamma source concept.

    SciTech Connect

    Garnett, R. W.; Chan, K. D.; Wangler, Thomas P.,; Wood R. L.; Carlsten, B. E.; Kirbie, H. C.

    2003-01-01

    Recent developments in W-band (-100 GHz) traveling wave tube technology at Los Alarnos may lead to a compact high-power W-band RE source. A conceptual design of a compact 8-MeV electron linac that codd be powered by this source is presented, including electromagnetic structure calculations, proposed rnicrojbbrication and manufacturing methods, supporting calculations to estimate accelerator performance, and gumma production rates based on preliminary target geometries and expected output beam current.

  15. Three precise gamma-ray burst source locations

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.

    1984-01-01

    The precise source regions of three moderately intense gamma ray bursts are derived. These events were observed with the first interplanetary burst sensor network. The optimum locations of the detectors, widely separated throughout the inner solar system, allowed for high accuracy, over-determined source fields of size 0.7 to 7.0 arc-min(2). All three locations are at fairly high galactic latitude in regions of low source confusion; none can be identified with a steady source object. Archived photographs were searched for optical transients that are able to be associated with these source fields; one such association was made.

  16. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Pelling, M. R.; Peterson, L. E.; Lin, R. P.; Anderson, K. A.; Pehl, R. H.; Hurley, K. C.; Vedrenne, G.; Sniel, M.; Durouchoux, P.

    1985-01-01

    An advanced gamma-ray spectrometer that is currently in development is described. It will obtain a sensitivity of 0.0001 ph/sq cm./sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging.

  17. An Optical Survey of Potential Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Carpenter, Lisa R.

    2006-12-01

    The EGRET instrument aboard the Compton Gamma-Ray Observatory detected 271 sources. Several objects were identified as "high-confidence" AGN, quasars, and low-confidence AGN. 170 sources remain unidentified (Hartman et al. 1999). Our project is to conduct an optical survey of unidentified sources, looking for evidence of blazar activity that may have been missed by the initial EGRET survey. The method of identifying sources used by the EGRET survey was to search for radio spectra peaking at 5 GHz. Such a spectrum is evidence of blazar-like activity. However, a study by Mattox et al. (1997); Mattox, Hartman & Reimer (2001) concluded that any gamma-ray source with a flux density less than 500 mJy at 5 GHz would be difficult to positively identify. The method described above neglects the possibility that blazar-like sources may be dim at such low frequencies and peak instead at higher frequencies (at least 200 Ghz). It has been hypothesized that sources that behave in this way could very well be counterparts to gamma-ray blazars (Tornikoski et al. 2002; Bloom et al. 1997, 2000). Our goal is to determine the magnitudes of objects in the optical wavelengths and check for evidence of blazar-like activity.

  18. New activity in the Dorado gamma-ray burst source

    SciTech Connect

    Golenetskii, S.V.; Mazets, E.P.; Aptekar, R.L.

    1982-11-01

    On 1981 December 1 and 1982 January 2 the Cone detectors aboard the Venera 13 and Venera 14 probes recorded ..gamma..-ray transients generated by the same source in Dorado as the notable sequence of events observed 1979 March 5, 6 and April 4, 24.

  19. Preview of the BATSE Earth Occultation Catalog of Low Energy Gamma Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson, C. A.; Fishman, G. J.; McCollough, M. L.; Robinson, C. R.; Sahi, M.; Paciesas, W. S.; Zhang, S. N.

    1999-01-01

    The Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma Ray Observatory (CGRO) has been detecting and monitoring point sources in the high energy sky since 1991. Although BATSE is best known for gamma ray bursts, it also monitors the sky for longer-lived sources of radiation. Using the Earth occultation technique to extract flux information, a catalog is being prepared of about 150 sources potential emission in the large area detectors (20-1000 keV). The catalog will contain light curves, representative spectra, and parametric data for black hole and neutron star binaries, active galaxies, and super-nova remnants. In this preview, we present light curves for persistent and transient sources, and also show examples of what type of information can be obtained from the BATSE Earth occultation database. Options for making the data easily accessible as an "on line" WWW document are being explored.

  20. OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Marsh, R A; Messerly, M J; O'Neill, K L; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C P; Vlieks, A E; Jongewaard, E N; Tantawi, S G; Raubenheimer, T O

    2010-05-18

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.

  1. Selection of putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation.

    PubMed

    Reis, R V; Amorim, E P; Ledo, C A S; Pestana, R K N; Gonçalves, Z S; Borém, A

    2015-05-11

    The aim of this study was to select putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation, with good agronomic traits and short height. A total of 315 buds were irradiated in vitro with gamma rays in doses of 20 Gy and were subcultivated and evaluated in the field over 2 production cycles. The clones were evaluated to select the best 10% of the plants. Cultivation was undertaken at a spacing of 3 x 4 m, and fertilization was carried out according to the technical recommendations for the crop. A total of 111 irradiated plants and 41 controls were evaluated in the field. Among the irradiated plants selected, genotypes that exhibited reduced height were observed. The genotypes Irra 04, Irra 13, Irra 19, and Irra 21 exhibited a height of 3.6 m, which was below the mean value of the controls selected. Other irradiated genotypes selected such as Irra 14 and Irra 16, with a height of 3.65 m, are promising because, in addition to reduced height, they exhibited good bunch weight and shorter period to flowering in relation to the mean value of the controls, which is a significant factor for the next stages in breeding. These results confirm the possibility of inducing mutations in Terra type banana plants to obtain desirable agronomic traits and short height.

  2. High-energy gamma radiation from extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Schlickeiser, R.; Mastichiadis, A.

    1992-01-01

    We propose that the important relationship between 3C 273 and 3C 279, the first two extragalactic sources detected at over 100 MeV energies, is their superluminal nature. In support of this conjecture, we propose a kinematic focusing mechanism, based on Compton scattering of accretion-disk photons by relativistic nonthermal electrons in the jet, that preferentially emits gamma rays in the superluminal direction.

  3. Compact Gamma-ray Source Technology Development Study

    SciTech Connect

    Anderson, S G; Gibson, D J; Rusnak, B

    2009-09-25

    This study focuses on the applicability of current accelerator and laser technologies to the construction of compact, narrow bandwidth, gamma-ray sources for DHS missions in illicit materials detection. It also identifies research and development areas in which advancement will directly benefit these light sources. In particular, we review the physics of Compton scattering based light sources and emphasize the source properties most important to Nuclear Resonance Fluorescence (NRF) applications of interest. The influences of laser and electron beam properties on the light source are examined in order to evaluate the utility of different technologies for this application. Applicable bulk and fiber-based laser systems and laser recirculation technologies are discussed and Radio Frequency (RF) Linear Accelerator (linac) technologies are examined to determine the optimal frequency and pulse formats achievable.

  4. Status of Identification of VHE Gamma-Ray Sources

    SciTech Connect

    Funk, Stefan; /SLAC

    2006-09-28

    With the recent advances made by Cherenkov telescopes such as H.E.S.S. the field of very high-energy (VHE) {gamma}-ray astronomy has recently entered a new era in which for the first time populations of Galactic sources such as e.g. Pulsar wind nebulae (PWNe) or Supernova remnants (SNRs) can be studied. However, while some of the new sources can be associated by positional coincidence as well as by consistent multi-wavelength data to a known counterpart at other wavelengths, most of the sources remain not finally identified. In the following, the population of Galactic H.E.S.S. sources will be used to demonstrate the status of the identifications, to classify them into categories according to this status and to point out outstanding problems.

  5. Strategies for Studying the Sources of Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Norris, J. P.; Hurley, K. C.

    2003-01-01

    The study of gamma ray bursts (GRBs) has rapidly evolved in recent years with the discovery of their cosmological nature and with BATSE, BeppoSAX, HETE and the IPN enabling a wide variety of associated . afterglow measurements. Multiwavelength observations ranging through the radio, optical, soft and hard x-ray, and gamma-ray regimes have exploded the field of GRB interpretation. Also, the Amanda, Milagro and LIGO experiments can search for related neutrino, cosmic-ray photon, and gravitational radiation events, even with the delayed alerts, such as from the IPN. The infrared region, where the optical emissions from sources at the extreme distances may be shifted, will become important but is undersubscribed. The soon-to-be launched Swift mission will greatly broaden the GRB discipline, and a strategy for associated ground-based measurements is outlined. The need for the improved global distribution of all instruments, in particular, robotic infrared detectors, is cited.

  6. Determination of the optimum-size californium-252 neutron source for borehole capture gamma-ray analysis

    USGS Publications Warehouse

    Senftle, F.E.; Macy, R.J.; Mikesell, J.L.

    1979-01-01

    The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.

  7. Selective source blocking for Gamma Knife radiosurgery of trigeminal neuralgia based on analytical dose modelling

    NASA Astrophysics Data System (ADS)

    Li, Kaile; Ma, Lijun

    2004-08-01

    We have developed an automatic critical region shielding (ACRS) algorithm for Gamma Knife radiosurgery of trigeminal neuralgia. The algorithm selectively blocks 201 Gamma Knife sources to minimize the dose to the brainstem while irradiating the root entry area of the trigeminal nerve with 70-90 Gy. An independent dose model was developed to implement the algorithm. The accuracy of the dose model was tested and validated via comparison with the Leksell GammaPlan (LGP) calculations. Agreements of 3% or 3 mm in isodose distributions were found for both single-shot and multiple-shot treatment plans. After the optimized blocking patterns are obtained via the independent dose model, they are imported into the LGP for final dose calculations and treatment planning analyses. We found that the use of a moderate number of source plugs (30-50 plugs) significantly lowered (~40%) the dose to the brainstem for trigeminal neuralgia treatments. Considering the small effort involved in using these plugs, we recommend source blocking for all trigeminal neuralgia treatments with Gamma Knife radiosurgery.

  8. Neutron-capture gamma-ray data for obtaining elemental abundances from planetary spectra.

    SciTech Connect

    Reedy, Robert; Frankle, S. C.

    2001-01-01

    Determination of elemental abundances is a top scientific priority of most planetary missions. Gamma-ray spectroscopy is an excellent method to determine elemental abundances using gamma rays made by nuclear reactions induced by cosmic-ray particles and by the decay of radioactive nuclides [Re73,Re78]. Many important planetary gamma rays are made by neutron-capture reactions. However, much of the data for the energies and intensities of neutron-capture gamma rays in the existing literature [e.g. Lo81] are poor [RF99,RF00]. With gamma-ray spectrometers having recently returned data from Lunar Prospector and NEAR and soon to be launch to Mars, there is a need for good data for neutron-capture gamma rays.

  9. Laser System for Livermore's Mono Energetic Gamma-Ray Source

    SciTech Connect

    Gibson, D; Albert, F; Bayramian, A; Marsh, R; Messerly, M; Ebbers, C; Hartemann, F

    2011-03-14

    A Mono-energetic Gamma-ray (MEGa-ray) source, based on Compton scattering of a high-intensity laser beam off a highly relativistic electron beam, requires highly specialized laser systems. To minimize the bandwidth of the {gamma}-ray beam, the scattering laser must have minimal bandwidth, but also match the electron beam depth of focus in length. This requires a {approx}1 J, 10 ps, fourier-transform-limited laser system. Also required is a high-brightness electron beam, best provided by a photoinjector. This electron source requires a second laser system with stringent requirements on the beam including flat transverse and longitudinal profiles and fast rise times. Furthermore, these systems must be synchronized to each other with ps-scale accuracy. Using a novel hyper-dispersion compressor configuration and advanced fiber amplifiers and diode-pumped Nd:YAG amplifiers, we have designed laser systems that meet these challenges for the X-band photoinjector and Compton-scattering source being built at Lawrence Livermore National Laboratory.

  10. UK audit and analysis of quantitative parameters obtained from gamma camera renography.

    PubMed

    Houston, A S; Whalley, D R; Skrypniuk, J V; Jarritt, P H; Fleming, J S; Cosgriff, P S

    2001-05-01

    The purpose of this study was to perform an audit of quantitative values obtained from gamma camera renography in the UK. Ten patient image sequences representing normal and pathological renal function were obtained from archived studies and distributed to hospitals in the UK. Hospitals were asked to measure five parameters: relative function, renogram time-to-peak (left and right), and whole kidney mean transit time (left and right). Details of methodology, software used and operator experience were requested. This allowed the influence of operational factors on variations in reported values to be examined. A total of 180 responses from 81 hospitals were received. Values reported for the parameters, together with other details supplied, were entered into Excel and SPSS for statistical analysis. Histograms representing the distribution of values were produced for each parameter. The largest variations were found for mean transit time and occasionally for time-to-peak. The effect of factors was assessed using nonparametric statistical tests applied independently to each renogram. For all the parameters, the hospital, UK region, supplier, computer and software version influenced variations in the reported values. Algorithm and site of background region were influencing factors for relative function, the background subtraction method influenced time-to-peak, and curve smoothing influenced mean transit time.

  11. COS-B gamma-ray sources and interstellar gas

    NASA Technical Reports Server (NTRS)

    Pollock, A. M. T.; Bennett, K.; Bignami, G. F.; Bloemen, J. B. G. M.; Buccheri, R.; Caraveo, P. A.; Hermsen, W.; Kanbach, G.; Lebrun, F.; Mayer-Hasselwander, H. A.

    1985-01-01

    Of the gamma-radiation observed above 100 MeV only a few percent is due to the catalogued sources which are viewed against intense background mission from the Galactic plane. There has been considerable recent success in modelling the Galactic plane emission as the interactions of cosmic rays with atomic and molecular interstellar gas; Bloemen, et al., demonstrate that large angular scale features of the observations are well reproduced in this way. By extending the analysis to small angular scales, which of the eCG sources might be due to conventional levels of cosmic rays within clumps of gas are shown and which cannot be so explained. With the use of a more sophisticated model the results presented improve and extend those of an earlier report. So far only the data above 300 MeV is used where the instrument's angular resolution is at its best.

  12. Source Localization using a Directional Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Shoaib

    Orphan radioactive sources pose a threat to safety and security and are a concern for various government institutions and the security agencies. It is becoming important to develop robust techniques to find and localise such sources. In the present work, two complementary methods to localize a source have been developed using a directional gamma survey spectrometer. The instrument used consists of four NaI(Tl) detectors oriented vertically in such a way that the crystals on one side shield the crystals on the other side of this arrangement. In the gross count method, the total counts from all four detectors were recorded and a fit was performed to reconstruct the source positions based on total counts versus position. For near sources (less than 15 m), the accuracy of this method is up to 1 m in the position along the road and in the distance from the road. For farther sources (from 22 m to 32 m), it provides accuracy up to 10 m on both. In the directional method, the relative counts in each crystal as a function of position can be used to measure the angle to the source by forming directional vectors. The survey then returns a field of these vectors, which may be fit to reconstruct the coordinates of the source position. For near sources (less than 15 m), this method gives an accuracy of up to 6 m in position along the road and 4 m in the distance from the road. For farther sources (from 22 m to 32 m), the accuracy in the position along the road is up to 5 m and in the distance from the road reduces up to 25 m. The gross count method provides more accurate and reliable source localization, but it does not provide directional information in real time. For this reason, the directional method is used to provide a direction to the source. Multiple truck-borne surveys were conducted using this instrument driving past Na-22 and Cs-137 sources at speeds of 20 km/h and 40 km/h. The surveys were repeated with the sources placed at different distances from the road. Here

  13. A biotechnological project with a gamma radiation source of 100,000 Ci

    NASA Astrophysics Data System (ADS)

    Lombardo, J. H.; Smolko, E. E.

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The later is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost.

  14. Intense {gamma}-Ray Source in the Giant-Dipole-Resonance Range Driven by 10-TW Laser Pulses

    SciTech Connect

    Giulietti, A.; Gamucci, A.; Gizzi, L. A.; Labate, L.; Bourgeois, N.; Marques, J. R.; Ceccotti, T.; Dobosz, S.; D'Oliveira, P.; Monot, P.; Popescu, H.; Reau, F.; Martin, P.; Galy, J.; Hamilton, D. J.; Giulietti, D.

    2008-09-05

    A {gamma}-ray source with an intense component around the giant dipole resonance for photonuclear absorption has been obtained via bremsstrahlung of electron bunches driven by a 10-TW tabletop laser. 3D particle-in-cell simulation proves the achievement of a nonlinear regime leading to efficient acceleration of several sequential electron bunches per each laser pulse. The rate of the {gamma}-ray yield in the giant dipole resonance region (8gamma}}<17.5 MeV) was measured, through the radio activation of a gold sample, to be 4x10{sup 8} photons per joule of laser energy. This novel all-optical, compact, and efficient electron-{gamma} source is suitable for photonuclear studies and medical uses.

  15. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1974-01-01

    Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.

  16. Experimental study of the possibility of 3D localization of the compact gamma-sources in soft tissues

    NASA Astrophysics Data System (ADS)

    Berdnikova, A. K.; Belyaev, V. N.; Bolozdynya, A. I.; Kantserov, V. A.; Sosnovtsev, V. V.

    2016-02-01

    To determine the depth of the area of radiopharmaceutical accumulation a method of simultaneous recording of two lines of gamma rays of different energies and quantitative comparison of the intensity of these lines on the surface of the patient's body is provided. Since the coefficient of linear absorption of gamma radiation in the medium depends not only on the characteristics of the medium, but also on the gamma radiation energy, the intensity of gammas of different energies is attenuated differently after passing through the same absorber layer (soft tissues). Thus, the quantitative comparison of the relative intensities of gamma lines on the surface of the patient's body allows to determine the depth of area of the accumulation of the radiopharmaceutical. The result is achieved by analyzing the energy spectrum of the source, obtained with a semiconductor spectrometer, by measuring the ratio of areas of the absorption peaks of the radioisotope and defining the depth of gamma source using the calibration dependence between the areas ratio and the medium layer thickness. The most widely used medical radioisotope technetium-99m has two gamma-lines - 140 keV and 18.5keV, which allows one to apply the proposed method to search for the sentinel lymph nodes and non-palpable malignant tumors in the soft tissues.

  17. Drug release assays from new chitosan/pHEMA membranes obtained by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Casimiro, M. H.; Gil, M. H.; Leal, J. P.

    2007-12-01

    With the purpose of obtaining a biocompatible and microbiologically safe matrix that simultaneously could be used as wound dressing material and as a controlled drug release system, membranes with different thickness and different contents in chitosan and hydroxyethyl methacrylate (HEMA) have been prepared by γ irradiation from a 60Co source. Antibiotic release experiments were performed before or after irradiation over amoxicillin loaded chitosan/pHEMA membranes in physiological saline solution, and monitored by UV-Vis spectrometry. Results point out a fast amoxicillin release with similar release profile in all studied membranes. The amount of released drug was shown to be dependent on membranes network crosslinking due composition, radiation and membrane thickness.

  18. UNVEILING THE NATURE OF UNIDENTIFIED GAMMA-RAY SOURCES. I. A NEW METHOD FOR THE ASSOCIATION OF GAMMA-RAY BLAZARS

    SciTech Connect

    D'Abrusco, R.; Paggi, A.; Smith, H. A.; Massaro, F.; Masetti, N.; Giroletti, M.

    2013-06-01

    We present a new method for identifying blazar candidates by examining the locus, i.e., the region occupied by the Fermi {gamma}-ray blazars in the three-dimensional color space defined by the WISE infrared colors. This method is a refinement of our previous approach that made use of the two-dimensional projection of the distribution of WISE {gamma}-ray-emitting blazars (the Strip) in the three WISE color-color planes. In this paper, we define the three-dimensional locus by means of a principal component analysis of the color distribution of a large sample of blazars composed of all the ROMA-BZCAT sources with counterparts in the WISE All-Sky Catalog associated with {gamma}-ray sources in the second Fermi-LAT catalog (2FGL; the WISE Fermi blazars sample, WFB). Our new procedure yields a total completeness of c {sub tot} {approx} 81% and a total efficiency of e {sub tot} {approx} 97%. We also obtain local estimates of the efficiency and completeness as functions of the WISE colors and galactic coordinates of the candidate blazars. The catalog of all WISE candidate blazars associated with the WFB sample is also presented, complemented by archival multi-frequency information for the alternative associations. Finally, we apply the new association procedure to all {gamma}-ray blazars in the 2FGL and provide a catalog containing all the {gamma}-ray candidate blazars selected according to our procedure.

  19. Superluminal cascade spectra of TeV {gamma}-ray sources

    SciTech Connect

    Tomaschitz, Roman . E-mail: tom@geminga.org

    2007-03-15

    Astrophysical radiation sources are scrutinized in search of superluminal {gamma}-rays. The tachyonic spectral densities generated by ultra-relativistic electrons in uniform motion are fitted to the high-energy spectra of Galactic supernova remnants, such as RX J0852.0-4622 and the pulsar wind nebulae in G0.9+0.1 and MSH 15-52. The superluminal spectral maps of the unidentified TeV {gamma}-ray sources HESS J1303-631, TeV J2032+4130 and HESS J1825-137 are inferred from EGRET, HEGRA and HESS data. Tachyonic cascade spectra are quite capable of generating the spectral curvature seen in double-logarithmic plots, as well as the extended spectral plateaus defined by EGRET flux points in the GeV band. The curvature of the TeV spectra is intrinsic, caused by the Boltzmann factor in the source densities. The spectral averaging with thermal and exponentially cut power-law electron densities can be done in closed form, and systematic high- and low-temperature expansions of the superluminal spectral densities are derived. Estimates on the electron/proton populations generating the tachyon flux are obtained from the spectral fits, such as power-law indices, temperature and source counts. The cutoff temperatures of the source densities suggest ultra-high-energy protons in MSH 15-52, HESS J1825-137 and TeV J2032+4130.

  20. GAMMA-RAY COMPTON LIGHT SOURCE DEVELOPMENT AT LLNL

    SciTech Connect

    Hartemann, F V; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Jovanovic, I; Messerly, M J; Pruet, J A; Shverdin, M Y; Tremaine, A M; McNabb, D P; Siders, C W; Barty, C J

    2007-08-15

    A new class of tunable, monochromatic {gamma}-ray sources capable of operating at high peak and average brightness is currently being developed at LLNL for nuclear photoscience and applications. These novel systems are based on Compton scattering of laser photons by a high brightness relativistic electron beam produced by an rf photoinjector. A prototype, capable of producing > 10{sup 8} 0.7 MeV photons in a single shot, with a fractional bandwidth of 1%, and a repetition rate of 10 Hz, is currently under construction at LLNL; this system will be used to perform nuclear resonance fluorescence experiments. A new symmetrized S-band rf gun, using a Mg photocathode, will produce up to 1 nC of charge in an 8 ps bunch, with a normalized emittance modeled at 0.8 mm.mrad; electrons are subsequently accelerated up to 120 MeV to interact with a 500 mJ, 10 ps, 355 nm laser pulse and generate {gamma}-rays. The laser front end is a fiber-based system, using corrugated-fiber Bragg gratings for stretching, and drives both the frequency-quadrupled photocathode illumination laser and the Nd:YAG interaction laser. Two new technologies are used in the laser: a hyper-Michelson temporal pulse stacker capable of producing 8 ps square UV pulses, and a hyper-dispersion compressor for the interaction laser. Other key technologies, basic scaling laws, and recent experimental results will also be presented, along with an overview of future research and development directions.

  1. Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    NASA Technical Reports Server (NTRS)

    Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.

    1972-01-01

    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.

  2. Detection and Location of Gamma-Ray Sources with a Modulating Coded Mask

    SciTech Connect

    Anderson, Dale N.; Stromswold, David C.; Wunschel, Sharon C.; Peurrung, Anthony J.; Hansen, Randy R.

    2006-01-31

    This paper presents methods of detecting and locating a concelaed nuclear gamma-ray source with a coded aperture mask. Energetic gamma rays readily penetrate moderate amounts of shielding material and can be detected at distances of many meters. The detection of high energy gamma-ray sources is vitally important to national security for several reasons, including nuclear materials smuggling interdiction, monitoring weapon components under treaties, and locating nuclear weapons and materials in the possession terrorist organizations.

  3. Fermi LAT detection of a new Gamma-ray Source PKS B1251-713

    NASA Astrophysics Data System (ADS)

    Buson, S.

    2015-10-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed strong gamma-ray emission from a source positionally consistent with the radio source PKS B1251-713 with coordinates RA=193.7496721 deg, Dec=-71.6384544 deg (J2000; Johnston et al. 1995, AJ, 110, 880).

  4. Online Analysis of {gamma}-ray Sources with H.E.S.S

    SciTech Connect

    Fuessling, M.; Dalton, M.; Kerschhaggl, M.; Schwanke, U.; Jung, I.; Stegmann, C.

    2008-12-24

    Some of the {gamma}-ray sources detected by the H.E.S.S. experiment display irregular, often flare-like emission behaviour. A method to detect these outbursts as fast as possible is highly desirable. At H.E.S.S., first results from an offline analysis of pre-calibrated data can be obtained on-site approximately one hour after run end. We present a development and implementation of online analysis software that performs calibration and analysis of data at the time they are being taken allowing for a fast confirmation of observational results and appropriate reaction by the on-site shift crew.

  5. SAS-2 galactic gamma ray results. 2. Localized sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Gamma-ray emission was detected from the radio pulsars PSR1818-04 and PSR1747-46, in addition to the previously reported gamma-ray emission from the Crab and Vela pulsars. Since the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma-ray observations suggest a uniquely gamma-ray phenomenon occurring in a fraction of the radio pulsars. Using distance estimates it is found that PSR1818-04 has a gamma-ray luminosity comparable to that of the Crab pulsar, while the luminosities of PSR1747-46 and the Vela pulsar are approximately an order of magnitude lower. This survey of SAS-2 data for pulsar correlations has also yielded upper limits to gamma-ray luminosity for 71 other radio pulsars.

  6. Arcsec source location measurements in gamma-ray astronomy from a lunar observatory

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.

    1990-01-01

    The physical processes typically used in the detection of high energy gamma-rays do not permit good angular resolution, which makes difficult the unambiguous association of discrete gamma-ray sources with objects emitting at other wavelengths. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For the purpose of discussion, this concept is examined for gamma rays above about 20 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  7. The strongest ever gamma-ray source in the sky: the December 2009 flare of 3C 454.3

    NASA Astrophysics Data System (ADS)

    Pacciani, Luigi; Vittorini, Valerio; Sakamoto, Takanori; Elena, Pian; Fiocchi, Mariateresa; Raiteri, Claudia Maria; Villata, Massimo; Striani, Edoardo; Vercellone, Stefano; D'Ammando, Filippo; Fugazza, Dino; Tiengo, Andrea; Tavani, Marco; Trispec BLAZAR Team; AGILE Collaboration; Swift Collaboration; Gasp-Webt Collaboration; Fabiani, Sergio

    In December 2009 the instruments aboard AGILE satellite detected a giant gamma-ray flare from the flat spectrum radio quasar 3C 454.3, reaching a peak flux of 2000.E-8 ph/cm2/s (E > 100M eV ) for one day, and showing a flux in excess of 800.E-8 ph/cm2/s for almost two weeks. AGILE observed spectral hardening of the source during the major flare. Before, during and after the giant flare, the source were monitored in radio, optical, x-ray, as well as in gamma-ray. The gamma-ray activity is not accompanied by a comparable increase in optical flux, as instead observed in the previous high activity periods of the source. The x-ray flux increased as expected, but started to fade one week earlier than the gamma-ray. We report the measurements obtained with kanata, the GASP-WEBT, REM, GRT, Swift, Rossi, and AGILE. Based the observed variability and spectra, we will discuss on the nature of the high gamma-ray activity, and on the jet physics, focusing on the giant flare, and on the similarities and differences with respect to the high activity periods observed in the last two years for the source.

  8. Primary gamma-rays with E gamma or = to 10(15) eV: Evidence for ultrahigh energy particle acceleration in galactic sources

    NASA Technical Reports Server (NTRS)

    Aharonian, F. A.; Mamidjanian, E. A.; Nikolsky, S. I.; Tukish, E. I.

    1985-01-01

    The recently observed primary ultra high energy gamma-rays (UHEGR) testify to the cosmic ray (CR) acceleration in the Galaxy. The available data may be interpreted as gamma-ray production due to photomeson production in CR sources.

  9. Laser Electron Gamma Source: Biennial progress report, June 1996

    SciTech Connect

    Sandorfi, A.M.

    1996-09-01

    The LEGS facility provides intense, polarized, monochromatic {gamma}-ray beams by Compton backscattering laser light from relativistic electrons circulating in the X-Ray storage ring of the National Synchrotron Light Source at Brookhaven national Laboratory. Since 1990, experiments have concentrated on single polarization observables (polarized beams on unpolarized targets) in nuclear reactions involving the {Delta} resonance. Highlights of the last two years are given. An updated status of LEGS, and recent publications, is available on the WWW via http://WWW.LEGS.BNL.GOV/{approximately}LEGS/. In 1997 a new phase of operations will begin, focusing on double-polarization measurements with circularly polarized photon beams and longitudinally polarized nucleon targets. This work requires the development of (i) a new frozen-spin hydrogen-deuteride target that provides high polarizations for both nuclear species, and (ii) a new large acceptance detector array for measuring total reaction cross sections in both neutral and charged-particle channels. Progress on these instrumentation developments is an ongoing effort of the LEGS Spin Collaboration (LSC) and is discussed in the last section of this report.

  10. Pilot scale-up and shelf stability of hydrogel wound dressings obtained by gamma radiation

    NASA Astrophysics Data System (ADS)

    Soler, Dulce María; Rodríguez, Yanet; Correa, Hector; Moreno, Ailed; Carrizales, Lila

    2012-08-01

    This study is aimed of producing pilot batches of hydrogel wound dressings by gamma radiation and evaluating their shelf stability. Six batches of 3L capacity were prepared based on poly(vinyl pyrrolidone), agar and polyethylene glycol and they were dispensed in polyester trays, covered with polyester films and sealed in two types of materials: polyethylene bags and vacuum polyethylene bags. Dressings were formed in a single step process for the hydrogel formation and sterilization at 25-30 kGy gamma radiation dose in a JS-9500 Gamma Irradiator (Nordion, Canada). The six batches were initially physicochemical characterized in terms of dimensions and appearance, gel fraction, morphology analysis, hydrogel strength, moisture retention capability and swelling capacity. They were kept under two storage conditions: room temperature (T: 30±2 °C/RH: 70± 5%) and refrigerated temperature (T: 5±3 °C) during 24 months and sterility test was performed. The appearance of membranes was transparent, clear, uncut and flexible; the gel fraction of batches was higher than 75% and the hydrogel surface showed a porous structure. There was a slow decrease of the compression rate 20% until 7 h and about 70% at 24 h. Moisture retention capability in 5 h was similar for all the batches, about 40% and 60% at 37 °C and at room temperature respectively. The swelling of hydrogels in acidic media was strong and in alkaline media the weight variation remains almost stable until 24 h and then there is a loss of weight. The six batches remained sterile during the stability study in the conditions tested. The pilot batches were consistent from batch to batch and remained stable during 24 months.

  11. SAS-2 galactic gamma-ray results. 2: Localized sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Gamma ray emission was detected from the radio pulsars PSR 1818-04 and PSR 1747-46, in addition to the previously reported gamma ray emission from the Crab and Vela pulsars. Because the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma ray observations suggest a uniquely gamma ray phenomenon occurring in a fraction of the radio pulsars. PSR 1818-04 has a gamma ray luminosity comparable to that of the Crab pulsar, whereas the luminosities of PSR 1747-46 and the Vela pulsar are approximately an order of magnitude lower. SAS-2 data for pulsar correlations yielded upper limits to gamma ray luminosity for 71 other radio pulsars. For five of the closest pulsars, upper limits for gamma ray luminosity are found to be at least three orders of magnitude lower than that of the Crab pulsar. Gamma ray enhancement near the Milky Way satellite galaxy and the galactic plane in the Cygnus region is also discussed.

  12. A figure of merit for blazar-like source identification in the gamma-ray energy band

    SciTech Connect

    Cavazzuti, Elisabetta; Pittori, Carlotta; Giommi, Paolo; Colafrancesco, Sergio

    2007-07-12

    The microwave to gamma-ray slope {alpha}{mu}{gamma} can be used as a viable figure of merit for blazar-like source identification in gamma-rays. Taking into account the constraints from the observed extragalactic gamma-ray background, one can estimate the maximum duty cycle allowed for a selected sample of low energy peaked (LBL) blazars, in order to be detectable for the nominal sensitivity values of AGILE and GLAST gamma-ray experiments. This work is based on the results of a recently derived blazar radio LogN-LogS obtained by combining several multi-frequency surveys. We present our estimates of duty cycle constraints applied on a sample composed by 146 high latitude and 74 medium latitude LBL blazars from the new WMAP3 yr catalog. Our results can be used as an indicator to identify good gamma-ray blazar candidates: sources with high values of duty cycle can in principle be detectable also in a ''steady'' state by AGILE and GLAST without over-predicting the extragalactic background.

  13. A simplified model of the source channel of the Leksell Gamma Knife®: testing multisource configurations with PENELOPE

    NASA Astrophysics Data System (ADS)

    Al-Dweri, Feras M. O.; Lallena, Antonio M.

    2004-08-01

    A simplification of the source channel geometry of the Leksell Gamma Knife® (GK), recently proposed by the authors and checked for a single source configuration (Al-Dweri F M O, Lallena A M and Vilches M 2004 Phys. Med. Biol. 49 2687-703), has been used to calculate the dose distributions along the x, y and z axes in a water phantom with a diameter of 160 mm, for different configurations of the Gamma Knife, including 201, 150 and 102 unplugged sources. The code PENELOPE (v. 2001) has been used to perform the Monte Carlo simulations. In addition, the output factors for the 14, 8 and 4 mm helmets have been calculated. The results found for the dose profiles show a qualitatively good agreement with previous ones obtained with EGS4 and PENELOPE (v. 2000) codes and with the predictions of GammaPlan®. The output factors obtained with our model agree within the statistical uncertainties with those calculated with the same Monte Carlo codes and with those measured with different techniques. Owing to the accuracy of the results obtained and to the reduction in the computational time with respect to full geometry simulations (larger than a factor 15), this simplified model opens the possibility of using Monte Carlo tools for planning purposes in the Gamma Knife®.

  14. A simplified model of the source channel of the Leksell Gamma Knife: testing multisource configurations with PENELOPE.

    PubMed

    Al-Dweri, Feras M O; Lallena, Antonio M

    2004-08-07

    A simplification of the source channel geometry of the Leksell Gamma Knife (GK), recently proposed by the authors and checked for a single source configuration (Al-Dweri F M O, Lallena A M and Vilches M 2004 Phys. Med. Biol. 49 2687-703), has been used to calculate the dose distributions along the x, y and z axes in a water phantom with a diameter of 160 mm, for different configurations of the Gamma Knife, including 201, 150 and 102 unplugged sources. The code PENELOPE (v. 2001) has been used to perform the Monte Carlo simulations. In addition, the output factors for the 14, 8 and 4 mm helmets have been calculated. The results found for the dose profiles show a qualitatively good agreement with previous ones obtained with EGS4 and PENELOPE (v. 2000) codes and with the predictions of GammaPlan. The output factors obtained with our model agree within the statistical uncertainties with those calculated with the same Monte Carlo codes and with those measured with different techniques. Owing to the accuracy of the results obtained and to the reduction in the computational time with respect to full geometry simulations (larger than a factor 15), this simplified model opens the possibility of using Monte Carlo tools for planning purposes in the Gamma Knife.

  15. Precise source location of the anomalous 1979 March 5 gamma ray transient

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.

    1981-01-01

    Refinements in the source direction analysis of the observations of the unusual gamma ray transient are presented. The final results from the interplanetary gamma ray burst network produce a 0.1 arc sq. min. error box. It is nested inside the initially determined 2 arc sq min. source region. This smaller source location is within both the optical and X-ray contours of N49 although not positioned at either contour center.

  16. The spectroscopy of individual terrestrial gamma-ray flashes: Constraining the source properties

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Briggs, M. S.; Cramer, E. S.; Fitzpatrick, G.; Roberts, O. J.; Stanbro, M.; Connaughton, V.; McBreen, S.; Bhat, P. N.; Dwyer, J. R.

    2016-11-01

    We report on the spectral analysis of individual terrestrial gamma-ray flashes (TGFs) observed with the Fermi Gamma-ray Burst Monitor (GBM). The large GBM TGF sample provides 46 events suitable for individual spectral analysis: sufficiently bright, localized by ground-based radio, and with the gamma rays reaching a detector unobstructed. These TGFs exhibit diverse spectral characteristics that are hidden when using summed analysis methods. We account for the low counts in individual TGFs by using Poisson likelihood, and we also consider instrumental effects. The data are fit with models obtained from Monte Carlo simulations of the large-scale Relativistic Runaway Electron Avalanche (RREA) model, including propagation through the atmosphere. Source altitudes ranging from 11.6 to 20.2 km are simulated. Two beaming geometries were considered: In one, the photons retain the intrinsic distribution from scattering (narrow), and in the other, the photons are smeared into a wider beam (wide). Several TGFs are well fit only by narrow-beam models, while others favor wide-beam models. Large-scale RREA models can accommodate both narrow and wide beams, with narrow beams suggest large-scale RREA in organized electric fields while wide beams may imply converging or diverging electric fields. Wide beams are also consistent with acceleration in the electric fields of lightning leaders, but the TGFs that favor narrow-beam models appear inconsistent with some lightning leader models.

  17. A Device for Search of Gamma-Radiation Intensive Sources at the Radiation Accident Condition

    SciTech Connect

    Batiy, Valeriy; Klyuchnykov, A; Kochnev, N; Rudko, Vladimir; shcherbin, vladimir; Yegorov, V; Schmieman, Eric A.

    2005-08-08

    The procedure designed for measuring angular distributions of gamma radiation and for search of gamma radiation intensive sources is described. It is based on application of the original multidetector device ShD-1, for measuring an angular distribution in a complete solid angle (4 pi). The calibration results and data on the angular distributions of intensity of gamma radiation at the roof of Chornobyl NPP ''Shelter'' are presented.

  18. Spectral evolution of gamma-rays from adiabatically expanding sources in dense clouds

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1985-01-01

    The excess of antiprotons (P) observed in cosmic ray was attributed to their production in supernova (SN) envelopes expanding in dense clouds. While creating P, gamma rays are also produced and these clouds would shine as gamma-ray sources. The evolution of the gamma-ray spectrum is calculated for clouds of r sub H = 10.000 and 100.000/cu cm.

  19. Is the gamma-ray source 3FGL J2212.5+0703 a dark matter subhalo?

    DOE PAGES

    Bertoni, Bridget; Hooper, Dan; Linden, Tim

    2016-05-23

    In a previous study, we pointed out that the gamma-ray source 3FGL J2212.5+0703 shows evidence of being spatially extended. If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo. With this prospect in mind, we scrutinize the gamma-ray emission from this source, finding that it prefers a spatially extended profile over that of a single point-like source with 5.1σ statistical significance. We also use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects. We argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky. In the case of 3FGL J2212.5+0703, we test an alternative model that includes a second gamma-ray point source at the position of the radio source BZQ J2212+0646, and find that the addition of this source alongside a point source at the position of 3FGL J2212.5+0703 yields a fit of comparable quality to that obtained for a single extended source. If 3FGL J2212.5+0703 is a dark matter subhalo, it would imply that dark matter particles have a mass of ~18–33 GeV and an annihilation cross section on the order of σv ~ 10–26 cm(3)/s (for the representative case of annihilations tomore » $$b\\bar{b}$$), similar to the values required to generate the Galactic Center gamma-ray excess.« less

  20. Is the gamma-ray source 3FGL J2212.5+0703 a dark matter subhalo?

    SciTech Connect

    Bertoni, Bridget; Hooper, Dan; Linden, Tim

    2016-05-23

    In a previous study, we pointed out that the gamma-ray source 3FGL J2212.5+0703 shows evidence of being spatially extended. If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo. With this prospect in mind, we scrutinize the gamma-ray emission from this source, finding that it prefers a spatially extended profile over that of a single point-like source with 5.1σ statistical significance. We also use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects. We argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky. In the case of 3FGL J2212.5+0703, we test an alternative model that includes a second gamma-ray point source at the position of the radio source BZQ J2212+0646, and find that the addition of this source alongside a point source at the position of 3FGL J2212.5+0703 yields a fit of comparable quality to that obtained for a single extended source. If 3FGL J2212.5+0703 is a dark matter subhalo, it would imply that dark matter particles have a mass of ~18–33 GeV and an annihilation cross section on the order of σv ~ 10–26 cm(3)/s (for the representative case of annihilations to $b\\bar{b}$), similar to the values required to generate the Galactic Center gamma-ray excess.

  1. Is the gamma-ray source 3FGL J2212.5+0703 a dark matter subhalo?

    NASA Astrophysics Data System (ADS)

    Bertoni, Bridget; Hooper, Dan; Linden, Tim

    2016-05-01

    In a previous paper, we pointed out that the gamma-ray source 3FGL J2212.5+\\linebreak 0703 shows evidence of being spatially extended. If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo. With this prospect in mind, we scrutinize the gamma-ray emission from this source, finding that it prefers a spatially extended profile over that of a single point-like source with 5.1σ statistical significance. We also use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects. We argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky. In the case of 3FGL J2212.5+0703, we test an alternative model that includes a second gamma-ray point source at the position of the radio source BZQ J2212+0646, and find that the addition of this source alongside a point source at the position of 3FGL J2212.5+0703 yields a fit of comparable quality to that obtained for a single extended source. If 3FGL J2212.5+0703 is a dark matter subhalo, it would imply that dark matter particles have a mass of ~18-33 GeV and an annihilation cross section on the order of σ v ~ 10-26 cm3/s (for the representative case of annihilations to bbar b), similar to the values required to generate the Galactic Center gamma-ray excess.

  2. Gamma-ray bursts during neutron star formation. Gamma-ray bursts and transient X-ray sources

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Desai, U. D.; Holt, S. S.

    1973-01-01

    Discussions are presented of the associations between cosmic gamma ray bursts and transient X-ray sources, and the release of gravitational binding energy during the formation of neutron stars. The model for studying the associations is described along with the release of neutrinos during the collapse of white dwarfs.

  3. Signal source separation and decomposition of the EGRET gamma ray data

    NASA Astrophysics Data System (ADS)

    Minor, Christian Parker

    2004-12-01

    In 1998, Dixon and collaborators discovered a statistically significant halo of gamma rays in the EGRET data from periods 1 through 4 that comprise observations of the gamma-ray sky from several distinct gamma-ray source distributions. An intensity map for the gamma-ray halo, however, could not be recovered with available statistical methods. Thus, the comparison and evaluation of, for example, dark matter models with the gamma-ray halo was limited. The dissertation argues that the morphology of gamma rays from a source distribution is distinguishable and can be used as a kind of spatial features signature for describing the source distribution. A new method, referred to as the analysis framework and based on capturing the spatial characteristics typical of gamma-ray source distributions, has been developed for the comparison of astrophysical models of gamma-ray sources with observational data. The method compensates for the difficulties and uncertainties of incorporating measurements into gamma-ray models by forming a model class from the output (e.g., a sky map) of an individual model that can be sampled to form a mean model. The output of the method is a mean model that is an average of typical members of a Besov space whose member functions all share the morphology of the gamma-ray model. The mean model can also be used in traditional hypothesis testing, like that of Mattox, et al. (1996), for the comparison and evaluation of gamma-ray models with the EGRET data. Results from extensive testing of the analysis framework with simulated data are presented. Results of the application of the analysis framework to the galactic diffuse emission model of Hunter, et al. (1997) are also presented .

  4. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1977-01-01

    Gamma-ray and X-ray spectrometers carried in the service modules of the Apollo 15 and Apollo 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristic energy distribution of gamma rays and X-rays emitted from the lunar surface. A large-scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. Analyses of the results have indicated (1) that the Al/Si ratios are highest in the lunar highlands and considerably lower in the maria, and (2) that the Mg/Si concentrations generally show the opposite relationship. The objective of the gamma-ray experiment was to measure the natural and cosmic-ray-induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions. Regions of relatively high natural radioactivity were found in the Mare Imbrium and Oceanus Procellarum regions.

  5. Multi-gamma-source CT imaging system: a feasibility study with the Poisson noise

    NASA Astrophysics Data System (ADS)

    Wi, Sunhee; Cho, Seungryong

    2016-03-01

    This study was performed to test the feasibility of multi-gamma-source CT imaging system. Gamma-source CT employs radioisotopes that emit monochromatic energy gamma-rays. The advantages of gamma-source CT include its immunity to beam hardening artifacts, its capacity of quantitative CT imaging, and its higher performance in low contrast imaging compared to the conventional x-ray CT. Radioisotope should be shielded by use of a pin-hole collimator so as to make a fine focal spot. Due to its low gamma-ray flux in general, the reconstructed image from a single gamma-source CT would suffer from high noise in data. To address this problem, we proposed a multi-gamma source CT imaging system and developed an iterative image reconstruction algorithm accordingly in this work. Conventional imaging model assumes a single linear imaging system typically represented by Mf = g. In a multi-gamma-source CT system however, the inversion problem is not any more based on a single linear system since one cannot separate a detector pixel value into multiple ones that are corresponding to each rays from the sources. Instead, the imaging model can be constructed by a set of linear system models each of which assumes an estimated measurement g. Based on this model, the proposed algorithm has a weighting step which distributes each projection data into multiple estimated measurements. We used two gamma sources at various positions and with varying intensities in this numerical study to demonstrate its feasibility. Therefore, the measured projection data(g) is separated into each estimated projection data(g1, g2) in this study. The proposed imaging protocol is believed to contribute to both medical and industrial applications.

  6. Non-association of a celestial gamma ray source with the new Milky Way satellite galaxy

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.; Thompson, D. J.; Fichtel, C. E.

    1975-01-01

    The newly discovered satellite galaxy located in the Milky Way galactic anti-center region is discussed along with the possibility that a nearby gamma ray source is associated with it. The factors which led to the conclusion that the gamma ray excess is not associated with the galaxy are considered.

  7. Method and System for Gamma-Ray Localization Induced Spacecraft Navigation Using Celestial Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Sheikh, Suneel I. (Inventor); Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor)

    2015-01-01

    A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.

  8. A novel hydrogel of poloxamer 407 and chitosan obtained by gamma irradiation exhibits physicochemical properties for wound management.

    PubMed

    Leyva-Gómez, Gerardo; Santillan-Reyes, Erika; Lima, E; Madrid-Martínez, Abigail; Krötzsch, E; Quintanar-Guerrero, D; Garciadiego-Cázares, David; Martínez-Jiménez, Alejandro; Hernández Morales, M; Ortega-Peña, Silvestre; Contreras-Figueroa, M E; Cortina-Ramírez, G E; Abarca-Buis, René Fernando

    2017-05-01

    Application of polymers cross-linked by gamma irradiation on cutaneous wounds has resulted in the improvement of healing. Chitosan (CH) and poloxamer 407 (P407)-based hydrogels confer different advantages in wound management. To combine the properties of both compounds, a gamma-irradiated mixture of 0.75/25% (w/w) CH and P407, respectively, was obtained (CH-P), and several physical, chemical, and biological analyses were performed. Notably, gamma radiation induced changes in the mixture's thermal behavior, viscosity, and swelling, and exhibited stability at neutral pH. The thermal reversibility provided by P407 and the bacteriostatic effect of CH were maintained. Mice full-thickness wounds treated with CH-P diminished the wound area during the first days. Consequently, with this treatment, increased levels of macrophages, α-SMA, and collagen deposition in wounds were observed, indicating a more mature scar tissue. In conclusion, the new hydrogel CH-P, at physiologic pH, combined the beneficial characteristics of both polymers and produced new properties for wound management.

  9. Verification of source and collimator configuration for Gamma Knife Perfexion using panoramic imaging

    SciTech Connect

    Cho, Young-Bin; Prooijen, Monique van; Jaffray, David A.; Islam, Mohammad K.

    2010-03-15

    Purpose: The new model of stereotactic radiosurgery system, Gamma Knife Perfexion, allows automatic selection of built-in collimation, eliminating the need for the time consuming manual collimator installation required with previous models. However, the configuration of sources and collimators inside the system does not permit easy access for the verification of the selected collimation. While the conventional method of exposing a film at the isocenter is useful for obtaining composite dose information, it is difficult to interpret the data in terms of the integrity of each individual source and corresponding collimation. The primary aim of this study was to develop a method of verifying the geometric configuration of the sources and collimator modules of the Gamma Knife Perfexion. In addition, the method was extended to make dose measurements and verify the accuracy of dose distributions calculated by the mathematical formalism used in the treatment planning system, Leksell Gamma Plan. Methods: A panoramic view of all of 192 cobalt sources was simultaneously acquired by exposing a radiochromic film wrapped around the surface of a cylindrical phantom. The center of the phantom was mounted at the isocenter with its axis aligned along the longitudinal axis of the couch. The sizes and shapes of the source images projected on the phantom surface were compared to those calculated based on the manufacturer's design specifications. The measured dose at various points on the film was also compared to calculations using the algorithm of the planning system. Results: The panoramic images allowed clear identification of each of the 192 sources, verifying source integrity and selected collimator sizes. Dose on the film surface is due to the primary beam as well as phantom scatter and leakage contributions. Therefore, the dose at a point away from the isocenter cannot be determined simply based on the proportionality of collimator output factors; the use of a dose computation

  10. Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Ferrara, E. C.; Harding, A. K.; Hays, E.; Perkins, J. S.; Thompson, D. J.

    2014-01-01

    A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.

  11. X-Ray Observations of Unidentified H.E.S.S. Gamma-Ray Sources

    SciTech Connect

    Funk, S.; /SLAC

    2007-10-10

    In a survey of the inner part of the Galaxy, performed with the H.E.S.S. Instrument (High energy stereoscopic system) in 2004 and 2005, a large number of new unidentified very high energy (VHE) {gamma}-ray sources above an energy of 100 GeV was discovered. Often the {gamma}-ray spectra in these sources reach energies of up to {approx} 10 TeV. These are the highest energy particles ever attributed to single astrophysical objects. While a few of these sources can be identified at other wavebands, most of these sources remain unidentified so far. A positive identification of these new g-ray sources with a counterpart object at other wavebands requires (a) a positional coincidence between the two sources,( b) a viable {gamma}-ray emission mechanism and (c) a consistent multiwavelength behavior of the two sources. X-ray observations with satellites such as XMM-Newton, Chandra or Suzaku provide one of the best channels to studying these enigmatic {gamma}-ray sources at other wavebands, since they combine high angular resolution and sensitivity with the ability to access non-thermal electrons through their synchrotron emission. We therefore have started a dedicated program to investigate VHE {gamma}-ray sources with high-sensitivity X-ray instruments.

  12. New Spherical Gamma-Ray and Neutron Emitting Sources for Testing of Radiation Detection Instruments

    PubMed Central

    Lucas, L.; Pibida, L.

    2009-01-01

    The National Institute of Standards and Technology (NIST) has developed new gamma-ray and neutron emitting sources for testing radiation detection systems. These radioactive sources were developed for testing of detection systems in maritime applications. This required special source characteristics. PMID:27504230

  13. Science of Compact X- and Gamma-ray Sources: MAXI and GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, Dave

    2008-01-01

    MAXI and GLAST will be surveying the sky simultaneously. Compact objects that may show variability will be excellent targets for coordinated multiwavelength studies. Gamma-ray bursts (and afterglows), pulsars, high-mass X-ray binaries, microquasars, and active galactic nuclei are all objects whose X- and gamma-ray relationship can be explored by such observations. Of particular interest will be variable unidentified gamma-ray sources, whose contemporaneous observations by MAXI may prove decisive in identifying the source of the high-energy emission.

  14. Improvement in the practical implementation of neutron source strength calibration using prompt gamma rays.

    PubMed

    Khabaz, Rahim; Rene Vega-Carrillo, Hector

    2013-08-01

    In this study, the neutron emission rate from neutron sources using prompt gamma rays in hydrogen was determined, and several improvements were applied. Using Monte Carlo calculations, the best positions for the source, moderator and detector relative to each other were selected. For (241)Am-Be and (252)Cf sources, the sizes for polyethylene spheres with the highest efficiency were 12- and 10-inch, respectively. In addition, a new shielding cone was designed to account for scattered neutrons and gamma rays. The newly designed shielding cone, which is 45 cm in length, provided suitable attenuation for the source radiation.

  15. Rotating and static sources for gamma knife radiosurgery systems: Monte Carlo studies.

    PubMed

    Cheung, J Y C; Yu, K N

    2006-07-01

    Rotating gamma systems (RGSs), GammaART-6000, and its Chinese equivalents, such as OUR and MASEP, etc., are new radiosurgery systems that use rotating 60Co sources instead of the 201 static sources (Leksell gamma knife, LGK). The rotating sources of RGSs simulate an infinite number of beams and promote extremely high target to surface dose ratios. However, the results of Monte Carlo in this study shows that RGS variants (modeled as having the same latitude angles, source to focus distance, and the distance from the source to the end of the collimator as the LGK) have smaller beam profile penumbra in the z direction, while LGK has smaller penumbra in the x and y directions. The differences are more significant in using larger collimators.

  16. Rotating and static sources for gamma knife radiosurgery systems: Monte Carlo studies

    SciTech Connect

    Cheung, J. Y. C.; Yu, K. N.

    2006-07-15

    Rotating gamma systems (RGSs), GammaART-6000{sup TM}, and its Chinese equivalents, such as OUR and MASEP, etc., are new radiosurgery systems that use rotating {sup 60}Co sources instead of the 201 static sources (Leksell gamma knife, LGK). The rotating sources of RGSs simulate an infinite number of beams and promote extremely high target to surface dose ratios. However, the results of Monte Carlo in this study shows that RGS variants (modeled as having the same latitude angles, source to focus distance, and the distance from the source to the end of the collimator as the LGK) have smaller beam profile penumbra in the z direction, while LGK has smaller penumbra in the x and y directions. The differences are more significant in using larger collimators.

  17. SEARCHING FOR {gamma}-RAY BLAZAR CANDIDATES AMONG THE UNIDENTIFIED INTEGRAL SOURCES

    SciTech Connect

    Massaro, F.; Paggi, A.; D'Abrusco, R.; Tosti, G.

    2012-05-10

    The identification of low-energy counterparts for {gamma}-ray sources is one of the biggest challenges in modern {gamma}-ray astronomy. Recently, we developed and successfully applied a new association method to recognize {gamma}-ray blazar candidates that could be possible counterparts for the unidentified {gamma}-ray sources above 100 MeV in the second Fermi Large Area Telescope Catalog. This method is based on the infrared colors of the recent Wide-Field Infrared Survey Explorer (WISE) all-sky survey. In this Letter, we applied our new association method to the case of unidentified INTEGRAL sources (UISs) listed in the fourth soft gamma-ray source catalog. Only 86 UISs out of the 113 can be analyzed due to the sky coverage of the WISE Preliminary Data Release. Among these 86 UISs, we found that 18 appear to have a {gamma}-ray blazar candidate within their positional error region. Finally, we analyzed Swift archival data available for 10 out of these 18 {gamma}-ray blazar candidates, and we found that 7 out of 10 are clearly detected in soft X-rays and/or in the optical-ultraviolet band. We cannot confirm the associations between the UISs and the selected {gamma}-ray blazar candidates due to the discrepancies between the INTEGRAL and the soft X-ray spectra. However, the discovery of the soft X-ray counterparts for the selected {gamma}-ray blazar candidates adds an important clue to help us understand their origin and to confirm their blazar nature.

  18. Searching for Gamma-Ray Blazar Candidates Among the Unidentified INTEGRAL Sources

    SciTech Connect

    Massaro, F.; Paggi, A.; D'Abrusco, R.; Tosti, G.; /Perugia U.

    2012-04-02

    The identification of low-energy counterparts for {gamma}-ray sources is one of the biggest challenge in modern {gamma}-ray astronomy. Recently, we developed and successfully applied a new association method to recognize {gamma}-ray blazar candidates that could be possible counterparts for the unidentified {gamma}-ray sources above 100 MeV in the second Fermi Large Area Telescope (LAT) catalog (2FGL). This method is based on the Infrared (IR) colors of the recent Wide-Field Infrared Survey Explorer (WISE) all-sky survey. In this letter we applied our new association method to the case of unidentified INTEGRAL sources (UISs) listed in the fourth soft gamma-ray source catalog (4IC). Only 86 UISs out of the 113 can be analyzed, due to the sky coverage of the WISE Preliminary data release. Among these 86 UISs, we found that 18 appear to have a {gamma}-ray blazar candidate within their positional error region. Finally, we analyzed the Swift archival data available for 10 out these 18 {gamma}-ray blazar candidates, and we found that 7 out of 10 are clearly detected in soft X-rays and/or in the optical-ultraviolet band. We cannot confirm the associations between the UISs and the selected {gamma}-ray blazar candidates due to the discrepancies between the INTEGRAL and the soft X-ray spectra. However, the discovery of the soft X-ray counterparts for the selected {gamma}-ray blazar candidates adds an important clue to help understand their origin and to confirm their blazar nature.

  19. Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2016-04-01

    We consider gamma-ray burst (GRB) jets that are choked by extended material as sources of high-energy cosmic neutrinos. We take into account the jet propagation physics both inside the progenitor star and the surrounding dense medium. Radiation constraints, which are relevant for high-energy neutrino production, are considered as well. Efficient shock acceleration of cosmic rays is possible for sufficiently low-power jets and/or jets buried in a dense, extended wind or outer envelope. Such conditions also favor GRB jets to become stalled, and the necessary conditions for stalling are explicitly derived. Such choked jets may explain transrelativistic supernovae (SNe) and low-luminosity (LL) GRBs, giving a unified picture of GRBs and GRB-SNe. Focusing on this unified scenario for GRBs, we calculate the resulting neutrino spectra from choked jets, including the relevant microphysical processes such as multipion production in p p and p γ interactions, as well as the energy losses of mesons and muons. We obtain diffuse neutrino spectra using the latest results for the luminosity function of LL GRBs. Although uncertainties are large, we confirm that LL GRBs can potentially give a significant contribution to the diffuse neutrino flux. Our results are consistent with the present IceCube data and do not violate the stacking limits on classical high-luminosity GRBs. We find that high-energy neutrino production in choked jets is dominated by p γ interactions. These sources are dark in GeV-TeV gamma rays and do not contribute significantly to the Fermi diffuse gamma-ray background. Assuming stalled jets can launch a quasispherical shock in the dense medium, "precursor" TeV neutrinos emerging prior to the shock breakout gamma-ray emission can be used as smoking-gun evidence for a choked jet model for LL GRBs. Our results strengthen the relevance of wide field-of-view sky monitors with better sensitivities in the 1-100 keV range.

  20. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Wehe, David

    2004-09-01

    Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.

  1. Classification and Ranking of Fermi LAT Gamma-ray Sources from the 3FGL Catalog using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, P. M.; Xu, H.; Yu, P. L. H.; Salvetti, D.; Marelli, M.; Falcone, A. D.

    2016-03-01

    We apply a number of statistical and machine learning techniques to classify and rank gamma-ray sources from the Third Fermi Large Area Telescope Source Catalog (3FGL), according to their likelihood of falling into the two major classes of gamma-ray emitters: pulsars (PSR) or active galactic nuclei (AGNs). Using 1904 3FGL sources that have been identified/associated with AGNs (1738) and PSR (166), we train (using 70% of our sample) and test (using 30%) our algorithms and find that the best overall accuracy (>96%) is obtained with the Random Forest (RF) technique, while using a logistic regression (LR) algorithm results in only marginally lower accuracy. We apply the same techniques on a subsample of 142 known gamma-ray pulsars to classify them into two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more, the RF algorithm has the best overall accuracy (∼90%), while a boosted LR analysis comes a close second. We apply our two best models (RF and LR) to the entire 3FGL catalog, providing predictions on the likely nature of unassociated sources, including the likely type of pulsar (YNG or MSP). We also use our predictions to shed light on the possible nature of some gamma-ray sources with known associations (e.g., binaries, supernova remnants/pulsar wind nebulae). Finally, we provide a list of plausible X-ray counterparts for some pulsar candidates, obtained using Swift, Chandra, and XMM. The results of our study will be of interest both for in-depth follow-up searches (e.g., pulsar) at various wavelengths and for broader population studies.

  2. CLASSIFICATION AND RANKING OF FERMI LAT GAMMA-RAY SOURCES FROM THE 3FGL CATALOG USING MACHINE LEARNING TECHNIQUES

    SciTech Connect

    Saz Parkinson, P. M.; Xu, H.; Yu, P. L. H.; Salvetti, D.; Marelli, M.; Falcone, A. D.

    2016-03-20

    We apply a number of statistical and machine learning techniques to classify and rank gamma-ray sources from the Third Fermi Large Area Telescope Source Catalog (3FGL), according to their likelihood of falling into the two major classes of gamma-ray emitters: pulsars (PSR) or active galactic nuclei (AGNs). Using 1904 3FGL sources that have been identified/associated with AGNs (1738) and PSR (166), we train (using 70% of our sample) and test (using 30%) our algorithms and find that the best overall accuracy (>96%) is obtained with the Random Forest (RF) technique, while using a logistic regression (LR) algorithm results in only marginally lower accuracy. We apply the same techniques on a subsample of 142 known gamma-ray pulsars to classify them into two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more, the RF algorithm has the best overall accuracy (∼90%), while a boosted LR analysis comes a close second. We apply our two best models (RF and LR) to the entire 3FGL catalog, providing predictions on the likely nature of unassociated sources, including the likely type of pulsar (YNG or MSP). We also use our predictions to shed light on the possible nature of some gamma-ray sources with known associations (e.g., binaries, supernova remnants/pulsar wind nebulae). Finally, we provide a list of plausible X-ray counterparts for some pulsar candidates, obtained using Swift, Chandra, and XMM. The results of our study will be of interest both for in-depth follow-up searches (e.g., pulsar) at various wavelengths and for broader population studies.

  3. Luminescence sensors on the basis of quartz glasses with localization of gamma-radiation source

    NASA Astrophysics Data System (ADS)

    Yanukovich, Tatjana P.; Poliakov, Alexander V.

    2006-04-01

    Optical fibers as detectors of radiation have a lot of advantages: big length, little diameter, no electrical interference, and an opportunity to measure radiation from the spread source. Optical characteristics of pure silica glasses as a material for optical fibers are very important. Luminescence spectra of high-purity silica glasses made by sol-gel technology have been investigated. Silica glasses are very stable and their characteristics are changed in narrow range. Sol-gel technology was chosen because it allows obtaining samples with different properties during changing technology. In other technologies, uncontrolled admixtures presence leads to big number of luminescence bands appearance. Their analysis is difficult. Luminescence band with energy of 1,9 eV appeared during exposition of glasses to gamma-irradiation. Luminescence intensity dependence on irradiation dose is analyzed. Appearance reasons are investigated. Absorption band with energy 2,0 eV appears in glasses during irradiation due to nonbridging oxygen hole centers (NBOHC:identical to Si- 0upward arrow). The same centers are responsible for luminescence with 1,9 eV. Energetic diagram is proposed. Principle scheme of gamma-irradiation optical fiber sensor is proposed on the basis of optical fiber made by sol-gel technology. Optical fiber is illuminated from the lightsource with energy of 2,0 eV. Luminescence appears at those portions of optical fiber, which are exposed to gamma irradiation. Such luminescence pulses are registered from both sides of optical fiber. Travel time is proportional to the distance from the end of fiber to irradiated portion. Length of pulse is proportional to the length of portion. Thermal annealing of optical fiber is discussed.

  4. POLARIZATION AND VARIATION OF NEAR-INFRARED LIGHT FROM FERMI/LAT {gamma}-RAY SOURCES

    SciTech Connect

    Fujiwara, M.; Matsuoka, Y.; Ienaka, N.

    2012-10-01

    We present the results of our follow-up observation program of {gamma}-ray sources detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. Twenty-six blazars and thirty-nine sources unidentified at other wavelengths were targeted at the Infrared Survey Facility 1.4 m telescope equipped with the SIRIUS/SIRPOL imager and polarimeter. H-band magnitudes of the blazars at the epoch of 2010 December-2011 February are presented, which reveal clear flux variation since the Two Micron All Sky Survey observations and can be useful data for variation analyses of these objects in longer periods. We also find that nearly half of the {gamma}-ray blazars are highly (>10%) polarized in near-infrared wavelengths. Combining the polarization and variation properties, most ({approx}90%) of the blazars are clearly distinguished from all other types of objects at high Galactic latitudes. On the other hand, we find only one highly polarized and/or variable object in the fields of unidentified sources. This object is a counterpart of the optical variable source PQV1 J131553.00-073302.0 and the radio source NVSS J131552-073301 and is a promising candidate of new {gamma}-ray blazars. From the measured polarization and variation statistics, we conclude that most of the Fermi/LAT unidentified sources are not likely similar types of objects to the known {gamma}-ray blazars.

  5. Compact sources as the origin of the soft gamma-ray emission of the Milky Way.

    PubMed

    Lebrun, F; Terrier, R; Bazzano, A; Bélanger, G; Bird, A; Bouchet, L; Dean, A; Del Santo, M; Goldwurm, A; Lund, N; Morand, H; Parmar, A; Paul, J; Roques, J-P; Schönfelder, V; Strong, A W; Ubertini, P; Walter, R; Winkler, C

    2004-03-18

    The Milky Way is known to be an abundant source of gamma-ray photons, now determined to be mainly diffuse in nature and resulting from interstellar processes. In the soft gamma-ray domain, point sources are expected to dominate, but the lack of sensitive high-resolution observations did not allow for a clear estimate of the contribution from such sources. Even the best imaging experiment revealed only a few point sources, accounting for about 50% of the total Galactic flux. Theoretical studies were unable to explain the remaining intense diffuse emission. Investigating the origin of the soft gamma-rays is therefore necessary to determine the dominant particle acceleration processes and to gain insights into the physical and chemical equilibrium of the interstellar medium. Here we report observations in the soft gamma-ray domain that reveal numerous compact sources. We show that these sources account for the entirety of the Milky Way's emission in soft gamma-rays, leaving at most a minor role for diffuse processes.

  6. Summary Comments: Nuclear Physics and Gamma-Ray Sources for Nuclear Security and Nonproliferation

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    The Nuclear Physics and Gamma-ray Sources for Nuclear Security and Nonproliferation (NPNSNP) meeting held in Tokai-mura, Japan from January 28th to 30th, 2014 revealed both the rapid evolution and growth of monoenergetic, laser-Compton, gamma-ray source technology and the emergence of numerous important applications enabled by this technology. More than 500M of large-scale source and development activities were represented at the meeting, including all of the major projects in the United States, Europe and Japan. The meeting was both highly stimulating intellectually and provided an excellent venue for the exploration of new collaborations between groups...

  7. A search for gamma-ray point sources with the Carpet shower array

    NASA Technical Reports Server (NTRS)

    Alexeenko, V. V.; Chudakov, A. E.; Khaerdinov, N. S.; Lidvansky, A. S.; Navarra, G.; Ozrokov, S. S.; Sklyarov, V. V.; Tizengauzen, V. A.

    1985-01-01

    A search for super-high energy gamma-ray point sources has been carried out. The well known source Cyg X-3 was observed first and preliminary results of data analysis are presented. There is not positive excess of showers from the source region, but phase analysis discovers a small pulse at phase 0.6 which corresponds to the integral flux (6 + or - 3) X 10 to the minus 14th power cm-2 sec-1 at E sub gamma 3x10 to the 14th power eV.

  8. Multiwavelength Studies of the Peculiar Gamma-ray Source 3EG J1835+5918

    NASA Technical Reports Server (NTRS)

    Reimer, O.; Brazier, K. T. S.; Carraminana, A.; Kanbach, G.; Nolan, P. L.; Thompson, D. J.

    1999-01-01

    The source 3EG J1835+5918 was discovered early in the CGRO (Compton Gamma Ray Observatory) mission by EGRET as a bright unidentified gamma-ray source outside the galactic plane. Especially remarkable, it has not been possible to identify this object with any known counterpart in any other wavelengths band since then. Analyzing our recent ROSAT HRI observation, for the first time we are able to suggest X-ray counterparts of 3EG J1835+5918. The discovered X-ray sources were subject of deep optical investigations in order to reveal their nature and conclude on the possibility of being counterparts for this peculiar gamma-ray source.

  9. The Structure of the Strongly Lensed Gamma-Ray Source B2 0218+35

    NASA Astrophysics Data System (ADS)

    Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Zitrin, Adi

    2016-04-01

    Strong gravitational lensing is a powerful tool for resolving the high-energy universe. We combine the temporal resolution of Fermi-LAT, the angular resolution of radio telescopes, and the independently and precisely known Hubble constant from the analysis by the Planck collaboration, to resolve the spatial origin of gamma-ray flares in the strongly lensed source B2 0218+35. The lensing model achieves 1 mas spatial resolution of the source at gamma-ray energies. The data imply that the gamma-ray flaring sites are separate from the radio core: the bright gamma-ray flare (MJD: 56160-56280) occurred 51+/- 8 pc from the 15 GHz radio core, toward the central engine. This displacement is significant at the ˜ 3σ level, and is limited primarily by the precision of the Hubble constant. B2 0218+35 is the first source where the position of the gamma-ray emitting region relative to the radio core can be resolved. We discuss the potential of an ensemble of strongly lensed high-energy sources for elucidating the physics of distant variable sources based on data from Chandra and SKA.

  10. BALLERINA-Pirouettes in search of gamma burst sources

    NASA Astrophysics Data System (ADS)

    Brandt, Søren; Lund, Niels

    1999-12-01

    The cosmological origin of gamma-ray bursts (GRBs) has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large variability in properties, which have been indicated by the first handful of events. We are proposing BALLERINA, a small satellite to provide accurate gamma burst positions at a rate an order of magnitude larger than from Beppo-SAX. On the experimental side, it remains a challenge to ensure the earliest detection of the X-ray afterglow. The mission proposed here allows for the first time systematic studies of the soft X-ray emission in the time interval from only a few minutes after the onset of the burst to a few hours later. In addition to positions of GRBs with accuracy better than 1'reported to the ground within a few minutes of the burst, essential for follow-up work, BALLERINA will on its own provide observations in an uncharted region of parameter space. Secondary objectives of the BALLERINA mission includes observations of the earliest phases of the outbursts of X-ray novae and other X-ray transients. BALLERINA is one of four missions currently under study for the Danish Small Satellite Program. The selection will be announced in 1999 for a planned launch in 2002-2003.

  11. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    SciTech Connect

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV flux and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.

  12. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    DOE PAGES

    Furniss, A.; Sutter, P. M.; Primack, J. R.; ...

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV fluxmore » and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.« less

  13. A Comprehensive Approach to Gamma-Ray Source Identification in the GLAST-LAT Era

    SciTech Connect

    Caraveo, Patrizia A.; Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park

    2007-11-13

    Unveiling the nature of a vast number of unidentified sources is the most compelling problem facing today's high-energy (MeV-to-GeV) gamma-ray astronomy. However, unidentified sources are not peculiar to high-energy gamma-ray astronomy, they have been an ever-present phenomenon in astronomy. Indeed, every time a new astronomical window was opened, astronomers found sources they were not able to identify, i.e. to associate with previously known objects. This can happen either because such sources belong to a genuinely new (thus unknown) class or because their positions are not known accurately enough to allow for an unambiguous association between the newly found emitter and a known object. Thus, the lack of identification is frequently ascribed to poor angular resolution. Being unidentified, however, is a 'temporary' status: sooner or later better tools will allow the source identification, i.e. either its classification within a given class of astronomical objects or its recognition as belonging to a new class. Owing to the intrinsic limitations of gamma-ray detection technique, however, the instruments' angular resolution has not yet reached the minimum level required to permit the transition from the unidentified limbo to the paradise of known objects, thus creating a continuing unidentified high-energy gamma-ray source problem. Different approaches towards source identification have been pursued in the past. Here we will review the state of the art as well as the strategies devised for the GLAST era.

  14. Locating and quantifying gas emission sources using remotely obtained concentration data

    NASA Astrophysics Data System (ADS)

    Hirst, Bill; Jonathan, Philip; González del Cueto, Fernando; Randell, David; Kosut, Oliver

    2013-08-01

    We describe a method for detecting, locating and quantifying sources of gas emissions to the atmosphere using remotely obtained gas concentration data; the method is applicable to gases of environmental concern. We demonstrate its performance using methane data collected from aircraft. Atmospheric point concentration measurements are modelled as the sum of a spatially and temporally smooth atmospheric background concentration, augmented by concentrations due to local sources. We model source emission rates with a Gaussian mixture model and use a Markov random field to represent the atmospheric background concentration component of the measurements. A Gaussian plume atmospheric eddy dispersion model represents gas dispersion between sources and measurement locations. Initial point estimates of background concentrations and source emission rates are obtained using mixed ℓ2 - ℓ1 optimisation over a discretised grid of potential source locations. Subsequent reversible jump Markov chain Monte Carlo inference provides estimated values and uncertainties for the number, emission rates and locations of sources unconstrained by a grid. Source area, atmospheric background concentrations and other model parameters, including plume model spreading and Lagrangian turbulence time scale, are also estimated. We investigate the performance of the approach first using a synthetic problem, then apply the method to real airborne data from a 1600 km2 area containing two landfills, then a 225 km2 area containing a gas flare stack.

  15. A magnetoencephalographic study of face processing: M170, Gamma-band oscillations and source localization

    PubMed Central

    Gao, Zaifeng; Goldstein, Abraham; Harpaz, Yuval; Hansel, Myriam; Zion-Golumbic, Elana; Bentin, Shlomo

    2011-01-01

    EEG studies suggested that the N170 ERP and Gamma-band responses to faces reflect early and later stages of a multiple-level face-perception mechanism, respectively. However, these conclusions should be considered cautiously because EEG-recorded Gamma may be contaminated by non-cephalic activity such as microsaccades. Moreover, EEG studies of Gamma cannot easily reveal its intracranial sources. Here we recorded MEG rather than EEG, assessed the sources of the M170 and Gamma oscillations using beamformer, and explored the sensitivity of these neural manifestations to global, featural and configural information in faces. The M170 was larger in response to faces and face components than in response to watches. Scrambling the configuration of the inner components of the face even if presented without the face contour reduced and delayed the M170. The amplitude of MEG Gamma oscillations (30–70 Hz) was higher than baseline during an epoch between 230–570 ms from stimulus onset and was particularly sensitive to the configuration of the stimuli, regardless of their category. However, in the lower part of this frequency range (30–40 Hz) only physiognomic stimuli elevated the MEG above baseline. Both the M170 and Gamma were generated in a posterior-ventral network including the fusiform, inferior-occipital and lingual gyri, all in the right hemisphere. The generation of Gamma involved additional sources in the visual system, bilaterally. We suggest that the evoked M170 manifests a face-perception mechanism based on the global characteristics of face, whereas the induced Gamma oscillations are associated with the integration of visual input into a pre-existent coherent perceptual representation. PMID:22422432

  16. Final SAS-2 gamma-ray results on sources in the galactic anticenter region

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Lamb, R. C.

    1977-01-01

    Final results are presented for SAS-2 observations of high-energy gamma-rays from the galactic anticenter region. Three main gamma-ray features are shown to characterize this region: a localized source associated with the Crab Nebula and its pulsar, another localized source near galactic coordinates 195 deg, +5 deg, and a general enhancement of the diffuse background 10 to 15 deg south of the galactic plane, which is associated with the Gould Belt. For the Crab, it is found that the radiation is mostly pulsed, the pulsed fraction increases with energy, and the intensity of the radiation in the main and interpulse peaks is approximately the same. The other localized source, provisionally designated as gamma 195+5, is found to have a harder spectrum than the Crab but no obvious radio counterpart; emission from an external galaxy is ruled out.

  17. Can Astrophysical Gamma Ray Sources Mimic Dark Matter Annihilation in Galactic Satellites?

    SciTech Connect

    Baltz, Edward A.; Taylor, James E.; Wai, Lawrence L.; /KIPAC, Menlo Park

    2006-11-01

    The nature of the cosmic dark matter is unknown. The most compelling hypothesis is that dark matter consists of weakly interacting massive particles (WIMPs) in the 100 GeV mass range. Such particles would annihilate in the galactic halo, producing high-energy gamma rays which might be detectable in gamma ray telescopes such as the GLAST satellite. We investigate the ability of GLAST to distinguish between the WIMP annihilation spectrum and the spectrum of known astrophysical source classes. Focusing on the emission from the galactic satellite halos predicted by the cold dark matter model, we find that the WIMP gamma-ray spectrum is unique; the separation from known source classes can be done in a convincing way. We discuss the follow-up of possible WIMP sources with Imaging Atmospheric Cerenkov Telescopes. Finally we discuss the impact that Large Hadron Collider data might have on the study of galactic dark matter.

  18. Statistical Measurement of the Gamma-Ray Source-count Distribution as a Function of Energy

    NASA Astrophysics Data System (ADS)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco

    2016-08-01

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of six years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of ˜50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power-law fits the data, with an index of {2.2}-0.3+0.7 in the energy band between 50 and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point-source populations probed by this method can explain {83}-13+7% ({81}-19+52%) of the extragalactic gamma-ray background between 1.04 and 1.99 GeV (50 and 171 GeV). The method has excellent capabilities for constraining the gamma-ray luminosity function and the spectra of unresolved blazars.

  19. Supernova explosion in dense clouds in the galaxy and the COS-B gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1985-01-01

    Supernova (SN) exploding in dense cloudlets produce large fluxes of gamma-rays. They would shine on gamma-ray sources, but their life time is small. Flux distribution of these sources in the Galaxy are calculated and compared with the COS-B catalogue of sources.

  20. Brazilian gamma-neutron dosemeter: response to 241AmBe and 252Cf neutron sources.

    PubMed

    Souto, E B; Campos, L L

    2011-03-01

    With the aim of improving the monitoring of workers potentially exposed to neutron radiation in Brazil, the IPEN/CNEN-SP in association with PRO-RAD designed and developed a passive individual gamma-neutron mixed-field dosemeter calibrated to be used to (241)AmBe sources. To verify the dosimetry system response to different neutron spectra, prototypes were irradiated with a (252)Cf source and evaluated using the dose-calculation algorithm developed for (241)AmBe sources.

  1. Gamma ray sources based on resonant backscattering of laser beams with relativistic heavy ion beams

    SciTech Connect

    Bessonov, E.G.; Kim, Kwang-Je

    1995-04-01

    Resonant backscattering of high-power laser beam with non-fully stripped, ultra-relativistic ion beams in storage rings is studied as a source for {gamma}-ray beams for elementary particle physics experiments. The laser frequency is chosen to be resonant with one of the transition frequencies of the moving ions, and the bandwidth is chosen to cover the full Doppler broadening of the ions in the beam. Due to the resonance, the scattering cross section is enhanced by a large factor compared to the Thomson cross section, of the order 10{sup 8} for some examples considered here. The performance of the LHC as a possible {gamma}-generator or a {gamma} {minus} {gamma} collider is estimated. We study the case where hydrogen-like Pb ions with 2.8 TeV per nucleon are scattered by a train of 1100 {Angstrom}, 20 mg laser pulses with the same pulse time format as the ion beam. A free electron laser can be designed satisfying the requirements. It is estimated that {gamma}-rays of maximum quantum energy of 0.4 give at an average rate of 0.67 10{sup 18} are generated in this scheme. The luminosity of the corresponding {gamma} {minus} {gamma} collider will be about 0.9 10{sup 33} cm{sup {minus}2}s{sup {minus}1}.

  2. 10 CFR 35.600 - Use of a sealed source in a remote afterloader unit, teletherapy unit, or gamma stereotactic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and..., teletherapy unit, or gamma stereotactic radiosurgery unit. A licensee shall use sealed sources in...

  3. 10 CFR 35.600 - Use of a sealed source in a remote afterloader unit, teletherapy unit, or gamma stereotactic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and..., teletherapy unit, or gamma stereotactic radiosurgery unit. A licensee shall use sealed sources in...

  4. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    SciTech Connect

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-22

    Gamma-({gamma}{sup -}) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A {gamma}-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition {gamma}-source assumes placing the Compton interaction point inside a CO{sub 2} laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of {gamma}-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO{sub 2}-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO{sub 2} laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO{sub 2} laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  5. A new population of very high energy gamma-ray sources in the Milky Way.

    PubMed

    Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; de Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van der Walt, D J; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2005-03-25

    Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.

  6. Intense inverse compton {gamma}-ray source from Duke storage ring FEL

    SciTech Connect

    Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    We suggest using FEL intracavity power in the Duke storage ring fortrays production via Inverse Compton Backscattering (ICB). The OK-4 FEL driven by the Duke storage ring will tens of watts of average lasing power in the UV/VUV range. Average intracavity power will be in kilowatt range and can be used to pump ICB source. The {gamma}-rays with maximum energy from 40 MeV to 200 MeV with intensity of 0.1-5 10{sup 10}{gamma} per second can be generated. In this paper we present expected parameters of {gamma}-ray beam parameters including its intensity and distribution. We discuss influence of e-beam parameters on collimated {gamma}-rays spectrum and optimization of photon-electron interaction point.

  7. Fermi-LAT detection of ongoing gamma-ray activity from the new gamma-ray source Fermi J1654-1055 (PMN J1632-1052)

    NASA Astrophysics Data System (ADS)

    Kocevski, D.; Ajello, M.; Buson, S.; Buehler, R.; Giomi, M.

    2016-02-01

    During the week between February 8 and 15, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a new transient source, Fermi J1654-1055.

  8. Observations of discrete gamma ray sources with SAS-2. [compact sources centered on Crab nebula and Vela X supernova remnant

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.

    1974-01-01

    Compact gamma ray sources centered on the Crab nebula and the Vela X supernova remnant are considered. An excess in the galactic radiation was observed in both regions. Data indicate that a large fraction of this flux is pulsed. The excess from the Vela region could reflect either a large-scale galactic feature, such as a superposition of spiral arm segments, or it could be associated with the Vela supernova remnant. Low-energy gamma ray bursts were observed in the SAS-2 anticoincidence shielding.

  9. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    SciTech Connect

    O`Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with {gamma}{gamma} colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered {gamma}-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized {gamma}-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a {gamma}-flux enhancement of approximately 10{sup 3} over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate {gamma}-rays up to 200 MeV in energy with an average flux in excess of 10{sup 7} /s/MeV, using a modest scattering beam of 10-mA average stored current. The {gamma}-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the {gamma}-ray beam. We will discuss the characteristics of the device and its research opportunities.

  10. SWIFT X-RAY TELESCOPE MONITORING OF FERMI-LAT GAMMA-RAY SOURCES OF INTEREST

    SciTech Connect

    Stroh, Michael C.; Falcone, Abe D.

    2013-08-15

    We describe a long-term Swift monitoring program of Fermi gamma-ray sources, particularly the 23 gamma-ray ''sources of interest''.We present a systematic analysis of the Swift X-Ray Telescope light curves and hardness ratios of these sources, and we calculate excess variability. We present data for the time interval of 2004 December 22 through 2012 August 31. We describe the analysis methods used to produce these data products, and we discuss the availability of these data in an online repository, which continues to grow from more data on these sources and from a growing list of additional sources. This database should be of use to the broad astronomical community for long-term studies of the variability of these objects and for inclusion in multiwavelength studies.

  11. Projection of needs for gamma radiation sources and other radioisotopes and assessment of alternatives for providing radiation sources

    SciTech Connect

    Ross, W.A.; Jensen, G.A.; Clark, L.L.; Eakin, D.E.; Jarrett, J.H.; Katayama, Y.B.; McKee, R.W.; Morgan, L.G.; Nealey, S.M.; Platt, A.M.; Tingey, G.L.

    1989-06-01

    Pacific Northwest Laboratory reviewed the projected uses and demands for a variety of nuclear byproducts. Because the major large-scale near-term demand is for gamma irradiation sources, this report concentrates on the needs for gamma sources and evaluates the options for providing the needed material. Projections of possible growth in the irradiation treatment industry indicate that there will be a need for 180 to 320 MCi of /sup 60/Co (including /sup 137/Cs equivalent) in service in the year 2000. The largest current and projected use of gamma irradiation is for the sterilization of medical devices and disposable medical supplies. Currently, 40% of US disposable medical products are treated by irradiation, and within 10 years it is expected that 90% will be treated in this manner. Irradiation treatment of food for destruction of pathogens or parasites, disinfestation, or extension of allowable storage periods is estimated to require an active inventory of 75 MCi of /sup 60/Co-equivalent gamma source in about a decade. 90 refs., 7 figs., 25 tabs.

  12. 3-D localization of gamma ray sources with coded apertures for medical applications

    NASA Astrophysics Data System (ADS)

    Kaissas, I.; Papadimitropoulos, C.; Karafasoulis, K.; Potiriadis, C.; Lambropoulos, C. P.

    2015-09-01

    Several small gamma cameras for radioguided surgery using CdTe or CdZnTe have parallel or pinhole collimators. Coded aperture imaging is a well-known method for gamma ray source directional identification, applied in astrophysics mainly. The increase in efficiency due to the substitution of the collimators by the coded masks renders the method attractive for gamma probes used in radioguided surgery. We have constructed and operationally verified a setup consisting of two CdTe gamma cameras with Modified Uniform Redundant Array (MURA) coded aperture masks of rank 7 and 19 and a video camera. The 3-D position of point-like radioactive sources is estimated via triangulation using decoded images acquired by the gamma cameras. We have also developed code for both fast and detailed simulations and we have verified the agreement between experimental results and simulations. In this paper we present a simulation study for the spatial localization of two point sources using coded aperture masks with rank 7 and 19.

  13. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources

    SciTech Connect

    Hochmuth, Kathrin A.; Sigl, Guenter

    2007-12-15

    Astrophysical {gamma}-ray sources come in a variety of sizes and magnetizations. We deduce general conditions under which {gamma}-ray spectra from such sources would be significantly affected by axion-photon mixing. We show that, depending on strength and coherence of the magnetic field, axion couplings down to {approx}(10{sup 13}GeV){sup -1} can give rise to significant axion-photon conversions in the environment of accreting massive black holes. Resonances can occur between the axion mass term and the plasma frequency term as well as between the plasma frequency term and the vacuum Cotton-Mouton shift. Both resonances and nonresonant transitions could induce detectable features or even strong suppressions in finite energy intervals of {gamma}-ray spectra from active galactic nuclei. Such effects can occur at keV to TeV energies for couplings that are currently allowed by all experimental constraints.

  14. Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

    2011-08-31

    Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).

  15. Single-view 3D reconstruction of correlated gamma-neutron sources

    DOE PAGES

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.

    2017-01-05

    We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less

  16. Spectral study of the HESS J1745-290 gamma-ray source as dark matter signal

    SciTech Connect

    Cembranos, J.A.R.; Gammaldi, V.; Maroto, A.L. E-mail: vivigamm@ucm.es

    2013-04-01

    We study the main spectral features of the gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source during the years 2004, 2005 and 2006. In particular, we show that these data are well fitted as the secondary gamma-rays photons generated from dark matter annihilating into Standard Model particles in combination with a simple power law background. We present explicit analyses for annihilation in a single standard model particle-antiparticle pair. In this case, the best fits are obtained for the uū and d d-bar quark channels and for the W{sup +}W{sup −} and ZZ gauge bosons, with background spectral index compatible with the Fermi-Large Area Telescope (LAT) data from the same region. The fits return a heavy WIMP, with a mass above ∼ 10 TeV, but well below the unitarity limit for thermal relic annihilation.

  17. The Third EGRET Catalog of High-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; Sreekumar, P.; Thompson, D. J.; Jones, B. B.; Lin, Y. C.; Michelson, P. F.; Nolan, P. L.; Tompkins, W. F.; Kanbach, G.; Mayer-Hasselwander, A.; Muecke, A.

    1998-01-01

    The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (Cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog and its supplement, this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E greater than 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower-confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement which do not appear in this catalog.

  18. The Third EGRET Catalog of High-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; Sreekumar, P.; Thompson, D. J.; Jones, B. B.; Lin, Y. C.; Michelson, P. F.; Nolan, P. L.; Tompkins, W. F.; Kanbach, G.; Mayer-Hasselwander, H. A.; Muecke, A.

    1998-01-01

    The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (Cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog (Thompson et al. 1995) and its supplement (Thompson et al. 1996), this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E greater than 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower-confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement which do not appear in this catalog.

  19. Measuring the activity of a 51Cr neutrino source based on the gamma-radiation spectrum

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-01

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of 51Cr is presented.

  20. High-mass microquasars and low-latitude gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Romero, G. E.; Paredes, J. M.

    2005-01-01

    Population studies of unidentified EGRET sources suggest that there exist at least three different populations of galactic gamma-ray sources. One of these populations is formed by young objects distributed along the galactic plane with a strong concentration toward the inner spiral arms of the Galaxy. Variability, spectral and correlation analysis indicate that this population is not homogeneous. In particular, there is a subgroup of sources that display clear variability in their gamma-ray fluxes on timescales from days to months. Following the proposal by Kaufman Bernadó et al. (2002), we suggest that this group of sources might be high-mass microquasars, i.e. accreting black holes or neutron stars with relativistic jets and early-type stellar companions. We present detailed inhomogeneous models for the gamma-ray emission of these systems that include both external and synchrotron self-Compton interactions. We have included effects of interactions between the jet and all external photon fields to which it is exposed: companion star, accretion disk, and hot corona. We make broadband calculations to predict the spectral energy distribution of the emission produced in the inner jet of these objects up to GeV energies. The results and predictions can be tested by present and future gamma-ray instruments like INTEGRAL, AGILE, and GLAST.

  1. Hunting for Point Sources in the Extragalactic Gamma-Ray Sky

    NASA Astrophysics Data System (ADS)

    Mishra Sharma, Siddharth; Lisanti, Mariangela; Necib, Lina; Safdi, Benjamin

    2017-01-01

    In this talk, I will present an analysis of the extragalactic gamma-ray background (EGB) using data from the Fermi Large Area Telescope. The method takes advantage of photon-count statistics to determine the properties of resolved and unresolved gamma-ray sources that contribute to the EGB. I will present the source-count functions, as a function of energy, from 1.89 GeV to 2 TeV, as well as the energy spectra of the different contributing source components, and will discuss how the results are affected by a variety of systematic uncertainties. These results allow us to determine the fraction of point sources, predominantly AGN (blazars), that contribute to the unresolved portion of the EGB. I will also comment on the consequences of these results for future TeV observatories such as the Cherenkov Telescope Array.

  2. A Fieldable-Prototype Large-Area Gamma-ray Imager for Orphan Source Search

    SciTech Connect

    Ziock, Klaus-Peter; Fabris, Lorenzo; Carr, Dennis; Collins, Jeff; Cunningham, Mark F; Habte Ghebretatios, Frezghi; Karnowski, Thomas Paul; Marchant, William

    2008-01-01

    We have constructed a unique instrument for use in the search for orphan sources. The system uses gamma-ray imaging to "see through" the natural background variations that effectively limit the search range of normal devices to ~10 m. The imager is mounted in a 4.9- m-long trailer and can be towed by a large personal vehicle. Source locations are determined both in range and along the direction of travel as the vehicle moves. A fully inertial platform coupled to a Global Positioning System receiver is used to map the gamma-ray images onto overhead geospatial imagery. The resulting images provide precise source locations, allowing rapid follow-up work. The instrument simultaneously searches both sides of the street to a distance of 50 m (100-m swath) for milliCurieclass sources with near-perfect performance.

  3. Spectral and photoelectric characteristics of the gamma irradiated intrinsic oxide-InSe heterostructures obtained under different conditions

    NASA Astrophysics Data System (ADS)

    Sydor, O. M.

    2016-09-01

    The investigations of photoelectric characteristics and photoresponce spectral dependences were carried out for intrinsic oxide-InSe heterostructures (HSs) and their changes induced by bremsstrahlung γ-quanta with an energy of 1-34 MeV at fluences of 1012-1015 cm-2. The thermal oxidation of the p-InSe:Cd substrates was carried out at a temperature of 420 °C. For three selected groups of samples the duration of the process was 15 min, 60 min, and 96 h. At a short-term oxidation (15 and 60 min) a layer of In2O3 appears. The only difference between the samples of these two groups is a higher photosensitivity in the range of energy 1.25-2.8 eV of the HSs obtained after the 60 min oxidation. At the long-term oxidation the photoresponce spectra η(hν) of the obtained HSs are characterized with a sharp short-wavelength decrease at hν≅2.0 eV. It is established that the intrinsic oxide films act as transparent barrier electrodes in the corresponding HSs and are low-sensitive to γ-irradiation in the all range of fluences. The shape of the photoresponce spectra for all the gamma irradiated HSs remains practically the same. However, it was found: (i) some decrease of photosensitivity at the long-wavelength edge, (ii) decreasing the width of η(hν) at half-height, (iii) the appearance of the exciton peak, (iv) the improvement of a slope of the low-energy edge of the photoresponce spectra with increasing irradiation dose whereas at the maximum fluence this parameter decreases, and (v) the slight extension of the spectral sensitivity to the short-wavelength range for the structures obtained after oxidation for 96 h. The photoelectric parameters of the intrinsic oxide-p-InSe HSs, open circuit voltage Voc, short-circuit current Jsc, current SIλmax and voltage SVλmax sensitivities become only improved after irradiation with the fluences 1012-1013 cm-2. At the maximum fluence a small decreasing of the values of Voc and Jsc was detected except for the structures obtained

  4. Interferon Gamma Release Assays for Latent Tuberculosis: What Are the Sources of Variability?

    PubMed Central

    Gaur, Rajiv L.; Pai, Madhukar

    2016-01-01

    Interferon gamma release assays (IGRAs) are blood-based tests intended for diagnosis of latent tuberculosis infection (LTBI). IGRAs offer logistical advantages and are supposed to offer improved specificity over the tuberculin skin test (TST). However, recent serial testing studies of low-risk individuals have revealed higher false conversion rates with IGRAs than with TST. Reproducibility studies have identified various sources of variability that contribute to nonreproducible results. Sources of variability can be broadly classified as preanalytical, analytical, postanalytical, manufacturing, and immunological. In this minireview, we summarize known sources of variability and their impact on IGRA results. We also provide recommendations on how to minimize sources of IGRA variability. PMID:26763969

  5. Analysis of x-ray spectrum obtained in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.; Sunil Sunny, C.

    2006-03-15

    The analysis of the x-ray spectrum obtained in electron cyclotron resonance (ECR) x-ray source is carried out. Assuming single-particle motion, the electron acceleration and its final energy are calculated for TE{sub 111} cylindrical cavity field and uniform external dc magnetic field. In the calculation, initial coordinates of 40 000 electrons were uniformly selected over the central plane of the cavity using random number generator. The final energy of each electron when it hits the wall is stored and the electron energy distribution is obtained. Using the general purpose Monte Carlo N-particle transport code version 4A, the geometry of the ECR x-ray source is modeled. The x-ray energy spectrum is calculated for the geometry model and the numerically calculated electron energy distribution. The calculated x-ray spectrum is compared with the experimentally measured x-ray spectrum.

  6. Mapping Correlation of Two Point Sources in the Gamma-Ray Sky

    SciTech Connect

    Gibson, Alexander

    2015-08-20

    The Fermi Gamma-Ray Space Telescope has been taking data on high energy photons or γ rays since June 11th, 2008, and people have been cataloging and profiling point sources of these γ rays ever since. After roughly one year of being in operation over 1400 sources were cataloged. Now, in 2015 we have 3033 sources cataloged. With the increasing amount of sources it’s important to think about the limitations of likelihood analysis for highly correlated sources. In this paper I will present the problems of using likelihood analysis for sources that are highly correlated as well as show under what circumstances sources can be considered highly correlated. Dark matter over densities may show up as a point source, so it is a necessary step to learn how the two signals will interact to allow for a proper search for dark matter.

  7. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars?

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.

    1994-01-01

    Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.

  8. SAS-2 observations of high energy gamma rays from discrete sources

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Hartman, R. C.; Lamb, R. C.; Thompson, D. J.

    1977-01-01

    The SAS-2 identified six localized high energy (greater than 35 MeV) gamma ray sources. Four of these are the radio pulsars, PSR 0531+21, PSR 0833-45, PSR 1818-04, and PSR 1717-46 discovered in a search of 75 radio pulsars. The fact that only one of these is observed in X-rays, and the significant differences in pulse profiles in the gamma ray and radio observations, leads to the speculation that different mechanisms are involved.

  9. An Analysis of Gamma-ray Burst Time Profiles from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1996-01-01

    This proposal requested funding to measure the durations of gamma-ray bursts (GRB) in the 4B catalog as well as to study the structure of GRB time profiles returned by the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Observatory. The duration (T90) was to be measured using the same techniques and algorithms developed by the principal investigator for the 3B data. The profile structure studies fall into the two categories of variability and fractal analyses.

  10. Constraining Very High-Energy Gamma Ray Sources Using IceCube Neutrino Observations

    NASA Astrophysics Data System (ADS)

    Vance, Gregory; Feintzeig, J.; Karle, A.; IceCube Collaboration

    2014-01-01

    Modern gamma ray astronomy has revealed the most violent, energetic objects in the known universe, from nearby supernova remnants to distant active galactic nuclei. In an effort to discover more about the fundamental nature of such objects, we present searches for astrophysical neutrinos in coincidence with known gamma ray sources. Searches were conducted using data from IceCube Neutrino Observatory, a cubic-kilometer neutrino detector that is sensitive to astrophysical particles with energies above 1 TeV. The detector is situated at the South Pole, and uses more than 5,000 photomultiplier tubes to detect Cherenkov light from the interactions of particles within the ice. Existing models of proton-proton interactions allow us to link gamma ray fluxes to the production of high-energy neutrinos, so neutrino data from IceCube can be used to constrain the mechanisms by which gamma ray sources create such energetic photons. For a few particularly bright sources, such as the blazar Markarian 421, IceCube is beginning to reach the point where actual constraints can be made. As more years of data are analyzed, the limits will improve and stronger constraints will become possible. This work was supported in part by the National Science Foundation's REU Program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  11. EGRET/COMPTEL Observations of an Unusual, Steep-Spectrum Gamma-Ray Source

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Hartman, R. C.; Collmar, W.; Johnson, W. N.

    1999-01-01

    During analysis of sources below the threshold of the third EGRET catalog, we have discovered a source, named GRO J1400-3956 based on the best position, with a remarkably steep spectrum. Archival analysis of COMPTEL data shows that the spectrum must have a strong turn-over in the energy range between COMPTEL and EGRET. The EGRET data show some evidence of time variability, suggesting an AGN, but the spectral change of slope is larger than that seen for most gamma-ray blazars. The sharp cutoff resembles the high-energy spectral breaks seen in some gamma-ray pulsars. There have as yet been no OSSE observations of this source.

  12. A Counterpart Search for a Source of 2.2 MeV Gamma-Rays

    NASA Technical Reports Server (NTRS)

    McConnell, Mark L.

    1999-01-01

    The goal of this project was to search for a counterpart to an apparent point source of 2.2 MeV gamma-rays that had been detected using data from the COMPTEL experiment on Compton Gamma Ray Observatory (CGRO). The source detected by Compton Telescope (COMPTEL) was of marginal significance (less than 4 sigma) and a further confirmation at low energies was highly desired. An observation of this region was Rossi X Ray Timing Explorer (RXTE) performed on 04-Feb-1998. An analysis of the Proportional Counter Array (PCA) data from this observation yielded a negative result. Short discussions of the COMPTEL Source, RXTE Observations, RXTE Analysis results, other observations as well as future work are included.

  13. The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Briggs, Michael S.; Dwyer, Joseph R.; Xiong, Shaolin; Connaughton, Valerie; Fishman, Gerald J.; Lu, Gaopeng; Lyu, Fanchao; Solanki, Rahulkumar

    2014-12-01

    Many details of how thunderstorms generate terrestrial gamma ray flashes (TGFs) and other forms of high-energy radiation remain uncertain, including the basic question of where they are produced. We exploit the association of distinct low-frequency radio emissions with generation of terrestrial gamma ray flashes (TGFs) to directly measure for the first time the TGF source altitude. Analysis of two events reveals source altitudes of 11.8 ± 0.4 km and 11.9 ± 0.9 km. This places the source region in the interior of the thunderstorm between the two main charge layers and implies an intrinsic TGF brightness of approximately 1018 runaway electrons. The electric current in this nontraditional lightning process is found to be strong enough to drive nonlinear effects in the ionosphere, and in one case is comparable to the highest peak current lightning processes on the planet.

  14. Monitoring TeV Gamma-ray Sources for Flaring States with HAWC

    NASA Astrophysics Data System (ADS)

    Wisher, Ian; Weisgarber, Thomas; HAWC Collaboration

    2015-04-01

    The flux of many TeV gamma-ray emitters exhibits time variability. Detection of these flaring states across multiple wavelengths will lead to a better understanding of the acceleration processes occurring in the source. The High-Altitude Water Cherenkov (HAWC) Observatory is an extensive air-shower detector located near Pico de Orizaba in Mexico which is sensitive to TeV gamma rays. Designed as a survey instrument, the HAWC detector has a large field of view and nearly 100% uptime. This makes HAWC an ideal instrument to monitor sources for transient flaring states. We will present a method of monitoring sources using a Bayesian blocks algorithm to detect changes in the flux and report on the sensitivity of the method. We also discuss results from several bright AGN flares which occurred during the construction phase of HAWC.

  15. Constraints on galactic distributions of gamma-ray burst sources from BATSE observations

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Meegan, Charles A.; Pendleton, Geoffrey N.; Fishman, Gerald J.; Wilson, Robert B.; Paciesas, William S.; Brock, Martin N.; Horack, John M.

    1994-01-01

    The paradigm that gamma-ray bursts originate from Galactic sources is studied in detail using the angular and intensity distributions observed by the Burst and Transient Source Experiment (BATSE) on NASA's Compton Gamma Ray Observatory (CGRO). Monte Carlo models of gamma-ray burst spatial distributions and luminosity functions are used to simulate bursts, which are then folded through mathematical models of BATSE selection effects. The observed and computed angular intensity distributions are analyzed using modifications of standard statistical homogeneity and isotropy studies. Analysis of the BATSE angular and intensity distributions greatly constrains the origins and luminosities of burst sources. In particular, it appears that no single population of sources confined to a Galactic disk, halo, or localized spiral arm satisfactorily explains BATSE observations and that effects of the burst luminosity function are secondary when considering such models. One family of models that still satisfies BATSE observations comprises sources located in an extended spherical Galactic corona. Coronal models are limited to small ranges of burst luminosity and core radius, and the allowed parameter space for such models shrinks with each new burst BATSE observes. Multiple-population models of bursts are found to work only if (1) the primary population accounts for the general isotropy and inhomogeneity seen in the BATSE observations and (2) secondary populations either have characteristics similar to the primary population or contain numbers that are small relative to the primary population.

  16. Particle Acceleration Inside Thunderstorms and the Variation in Source Spectra of Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Cramer, Eric; Dwyer, Joseph R.; Briggs, Michael S.; Rassoul, Hamid K.

    2016-03-01

    One of the unresolved questions in the atmospheric sciences is the origin of Terrestrial Gamma-ray Flashes (TGFs). These flashes are short but intense gamma ray bursts emanating from Earth's atmosphere. This phenomenon has been observed by gamma ray detectors on orbiting satellites, e.g. NASA Fermi, intended to study astrophysical phenomena such as Gamma-ray Bursts. TGFs are thought to originate inside thunderstorms where electrons can be accelerated and emit radiation in the multi MeV range due to bremsstrahlung interactions with air molecules. These so called ``runaway electrons'' are seeded from cosmic ray air showers hitting the Earth's atmosphere from (extra) galactic sources. In this work, we present a Monte Carlo model that simulates particle physics inside a thunderstorm region. The subsequent transport of high energy gamma rays through the Earth's atmosphere and up to satellite orbit is also included. We show that by varying both the potential difference and the ambient electric field inside the thundercloud, different electron and photon energy distributions are produced. This effect may be detectable by orbiting spacecraft, and therefore serves as a method to remote sense the electric fields that exist inside thunderstorms.

  17. UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. III. GAMMA-RAY BLAZAR-LIKE COUNTERPARTS AT LOW RADIO FREQUENCIES

    SciTech Connect

    Massaro, F.; Funk, S.; D'Abrusco, R.; Paggi, A.; Giroletti, M.; Masetti, N.; Tosti, G.; Nori, M.

    2013-07-01

    About one-third of the {gamma}-ray sources listed in the second Fermi Large Area Telescope catalog (2FGL) have no firmly established counterpart at lower energies and so are classified as unidentified gamma-ray sources (UGSs). Here, we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with the Westerbork Synthesis Radio Telescope in the northern hemisphere. First, we investigate the low-frequency radio properties of blazars, the largest known population of {gamma}-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO Very Large Array Sky Survey. We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in the literature to look for infrared and optical counterparts of the {gamma}-ray blazar candidates selected using the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research, we identify 23 new {gamma}-ray blazar candidates out of the 32 UGSs investigated. Comparison with previous results on the UGSs is also presented. Finally, we speculate on the advantages of using low-frequency radio observations to associate UGSs and to search for {gamma}-ray pulsar candidates.

  18. Constraints on the Location of the Gamma-Ray Emission Region for the Gamma-Ray-loud Radio Source GB 1310+487

    NASA Astrophysics Data System (ADS)

    Kang, Shi-Ju

    2017-03-01

    We employ a single-zone leptonic jet model, with synchrotron, synchrotron self-Compton, and external Compton (EC) processes, to reproduce the quasi-simultaneous multi-wavelength spectral energy distributions in active and quiescent states of the narrow-line gamma-ray-loud radio source GB 1310+487. In the case of the EC process, the external seed photons from both the broad line region (BLR) and the dust torus are considered by assuming that the gamma-ray emission region is located at the outside boundary of the BLR and inside the dust torus. Comparing the energy density of external photon fields {U}{BLR} obtained by model fitting with that constrained from the BLR observations. We find that the location of the gamma-ray-emitting region of GB 1310+487 can be tightly constrained at the outer edge of the BLR (the dissipation distance of the γ-ray emission region from central black hole {r}{diss}∼ {{a}} {few} {times} {of} {R}{BLR}). The ratio of magnetic energy and emitting-electron energy in the radiation blob ({ε }B={L}B/{L}{{e}}) is gradually increased from Flare 1, to Flare 2, to Post-flare, where the magnetic energy increases and the matter energy decreases. These results suggest that the conversion of the magnetic field and the matter (radiation electrons) energy and the location of the γ-ray emission region (or ambient photon field) may play an important role in different radiation states of GB 1310+487.

  19. Mapping correlation of a simulated dark matter source and a point source in the gamma-ray sky - Oral Presentation

    SciTech Connect

    Gibson, Alexander

    2015-08-23

    In my research, I analyzed how two gamma-ray source models interact with one another when optimizing to fit data. This is important because it becomes hard to distinguish between the two point sources when they are close together or looking at low energy photons. The reason for the first is obvious, the reason why they become harder to distinguish at lower photon energies is the resolving power of the Fermi Gamma-Ray Space Telescope gets worse at lower energies. When the two point sources are highly correlated (hard to distinguish between), we need to change our method of statistical analysis. What I did was show that highly correlated sources have larger uncertainties associated with them, caused by an optimizer not knowing which point source’s parameters to optimize. I also mapped out where their is high correlation for 2 different theoretical mass dark matter point sources so that people analyzing them in the future knew where they had to use more sophisticated statistical analysis.

  20. The Burst and Transient Source Experiment (BATSE) Earth Occultation Catalog of Low-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson, C. A.; Fishman, G. J.; Connaughton, V.; Henze, W.; Paciesas, W. S.; Finger, M. H.; McCollough, M. L.; Sahi, M.; Peterson, B.

    2004-01-01

    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the low-energy gamma-ray sky (approx. 20-1000 keV) between 1991 April and 2000 May (9.1 yr). BATSE monitored the high-energy sky using the Earth occultation technique (EOT) for point sources whose emission extended for times on the order of the CGRO orbital period (approx. 92 min) or greater. Using the EOT to extract flux information, a catalog of sources using data from the BATSE Large Area Detectors has been prepared. The first part of the catalog consists of results from the all-sky monitoring of 58 sources, mostly Galactic, with intrinsic variability on timescales of hours to years. For these sources, we have included tables of flux and spectral data, and outburst times for transients. Light curves (or flux histories) have been placed on the World Wide Web. We then performed a deep sampling of these 58 objects, plus a selection of 121 more objects, combining data from the entire 9.1 yr BATSE data set. Source types considered were primarily accreting binaries, but a small number of representative active galaxies, X-ray-emitting stars, and supernova remnants were also included. The sample represents a compilation of sources monitored and/or discovered with BATSE and other high-energy instruments between 1991 and 2000, known sources taken from the HEAO 1 A-4 and Macomb & Gehrels catalogs. The deep sample results include definite detections of 83 objects and possible detections of 36 additional objects. The definite detections spanned three classes of sources: accreting black hole and neutron star binaries, active galaxies, and Supernova remnants. The average fluxes measured for the fourth class, the X-ray emitting stars, were below the confidence limit for definite detection.

  1. Measurements of gamma-ray dose from a moderated /sup 252/Cf source

    SciTech Connect

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated /sup 252/Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D/sub 2/O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%.

  2. Imaging with INTEGRAL. [instrument for fine spectroscopy of celestial gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Dean, A. J.

    1993-01-01

    The INTEGRAL mission was proposed in response to the ESA M2 call for proposals and is dedicated to the fine spectroscopy and imaging of celestial gamma-ray sources in the energy range 15 keV to 10 MeV. Cosmic gamma-rays are emitted on a wide range of angular scales and structures for a diverse population of astronomical objects. The emission, which includes discrete spectral lines and continuum radiation is derived from point sources, localized regions, as well as a diffuse band along the Galactic plane. Much of the gamma-ray sky is composed from transient phenomena which range from the few second timescale associated with gamma-ray bursts to larger lived events lasting some days or more. These class of events pose the challenge of firstly identification and secondly that of precise positional location of 'random' short lived events which arrive isotropically. In this article the imaging requirements are evaluated in light of current observational astronomical data and practical solutions for the INTEGRAL telescope are discussed. Some of the key problems are highlighted.

  3. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    SciTech Connect

    Hartemann, Fred; Albert, Felicie; Anderson, Scott; Barty, Christopher; Bayramian, Andy; Chu, Tak Sum; Cross, R.; Ebbers, Chris; Gibson, David; Marsh, Roark; McNabb, Dennis; Messerly, Michael; Shverdin, Miroslav; Siders, Craig; Jongewaard, Erik; Raubenheimer, Tor; Tantawi, Sami; Vlieks, Arnold; Semenov, Vladimir; /UC, Berkeley

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.

  4. Final SAS-2 gamma ray results on sources in the galactic anticenter region

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Lamb, R. C.

    1976-01-01

    Analysis of SAS-2 high energy Gamma ray data from the direction of the galactic anticenter shows that this region is characterized by: a diffuse emission from the galactic plane which has a maximum along b=0 deg and an enhancement toward negative latitudes associated with Gould's Belt, a strong point source in the direction of the Crab nebula, and a second intense localized source near galactic coordinates 195 deg, +5 deg. Gamma ray emission from the Crab source is dominated by a pulsed flux from PSR 0531+21. The total flux above 100MeV is 3.7 + or - 0.8 million/sq cm s. The source near 195 deg, + 5 deg has a flux above 100 MeV of 4.3 + or - 0.9 million/sq cm s. Its spectrum appears flatter than that of the Crab. The diffuse galactic plane emission at negative lattitudes shows a general correlation with the local matter distribution associated with Gould's Belt. The calculated Gamma ray intensity agrees well with the SAS-2 observations.

  5. Nonthermal processes around collapsed objects: High energy gamma ray sources in the radio sky

    NASA Technical Reports Server (NTRS)

    Helfand, David J.; Ruderman, Malvin; Applegate, James H.; Becker, Robert H.

    1993-01-01

    In our proposal responding to the initial Guest Observer NRA for the Compton Gamma Ray Observatory, 'Nonthermal Processes Around Collapsed Objects: High Energy Gamma Ray Sources in the Radio Sky', we stated that 'At high energies - the identity of the principal Galactic source population remains unknown' although the 'one certain source of high energy emission is young radio pulsars'. These two statements remain true, although at this writing, eighteen months after the beginning of the Compton allsky survey, much of the gamma-ray data required to greatly extend our knowledge of the Galaxy's high energy emission has been collected. The thrust of the program supported by our grant was to collect and analyze a complementary set of data on the Milky Way at radio wavelengths in order to help identify the dominant Pop 1 component of the Galaxy's gamma ray sources, and to pursue theoretical investigations on the origins and emission mechanisms of young pulsars, the one component of this population identified to date. We summarize here our accomplishments under the grant. In Section 2, we describe our VLA surveys of the Galactic Plane along with the current status of the radio source catalogs derived therefrom; unfortunately, owing to the TDRSS antenna problem and subsequent extension of the Sky Survey, we were not able to carry out a comparison with the EGRET data directly, although everything is now in place to do so as soon as it becomes available. In Section 2, we summarize our progress on the theoretical side, including the substantial completion of a dissertation on pulsar origins and work on the high energy emission mechanisms of isolated pulsars. We list the personnel supported by the grant in section 4 and provide a complete bibliography of publications supported in whole or in part by the grant in the final section.

  6. Optimization and modeling studies for obtaining high injection efficiency at the Advanced Photon Source.

    SciTech Connect

    Emery, L.; APS Operations Division

    2005-01-01

    In recent years, the optics of the Advanced Photon Source storage ring has evolved to a lower equilibrium emittance (2.5 nm-rad) at the cost of stronger sextupoles and stronger nonlinearities, which have reduced the injection efficiency from the virtual 100% of the high emittance mode. Over the years we have developed a series of optimizations, measurements, and modeling studies of the injection process, which allows us to obtain or maintain low injection losses. The above will be described along with the injection configuration.

  7. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    SciTech Connect

    Tuschareon, S. Limkitjaroenporn, P. Kaewkhao, J.

    2014-03-24

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  8. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    NASA Astrophysics Data System (ADS)

    Tuschareon, S.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-03-01

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  9. The BATSE Earth Occultation Catalog of Low Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson-Hodge, C. A.; Fishman, G. J.; Paciesas, W. S.; Zhang, S. N.; Finger, M. H.; Connaughton, V.; Koshut, T. M.; Henze, W.; McCollough, M. L.

    2004-01-01

    The Burst and Transient Source Experiment (BATSE),aboard the COmptOn Gamma Ray Observatory (CGRO), provided a record of the hard X-ray/low energy gamma ray sky between April 1991 and June 2000. During that time, a catalog of known sources was derived from existing catalogs such as HEAO A-4 (Levine et al. 19841, as well as new transient sources discovered with RATSE and other X-ray monitors operating in the CGRO era. The Earth Occultation Technique (Harmon et al. 2001, astro-ph/0109069) was used to monitor a combination of these sources, mostly galactic, totaling about 175 objects. The catalog will present the global properties of these sources and their probability of detection (>lO mCrab, 20-100 keV) with BATSE. Systematic errors due to unknown sources or background components are included. Cursory analyses to search for new transients (35-80 mCrab in the 20-100 keV band) and super-orbital periods in known binary sources are also presented. Whole mission light curves and associated data production/analysis tools are being delivered to the HEASARC for public use.

  10. The BATSE Earth Occultation Catalog of Low Energy Gamma Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; WilsonHodge, C. A.; Fishman, G. J.; Paciesas, W.

    2002-01-01

    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the hard X-ray/low energy gamma ray sky between April 1991 and June 2000. During that time, a catalog of known sources was derived from existing catalogs such as HEAO A-4, as well as new transient sources discovered with BATSE and other X-ray monitors operating in the CGRO era. The Earth Occultation Technique was used to monitor a combination of these sources, mostly galactic, totaling to about 175 objects. The catalog will present the global properties of these sources and their probability of detection (> 10 mCrab, 20-100 keV) with BATSE. Systematic errors due to unknown sources or background components are included. Cursory analyses to search for new transients (35-80 mCrab in the 20-100 keV band) and super-orbital periods in known binary sources are also presented. Whole mission light curves and associated data production/analysis tools are being delivered to the HEASARC for public use.

  11. The BATSE Earth Occultation Catalog of Low Energy Gamma Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson-Hodge, C. A.; Fishman, G. J.; Paciesas, W. S.; Zhang, S. N.; Finger, M. H.; Connaughton, V.; Koshut, T. M.; Henze, W.; McCollough, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the hard X-ray/low energy gamma ray sky between April 1991 and June 2000. During that time, a catalog of known sources was derived from existing catalogs such as HEAO A-4 (Levine et al. 1984), as well as new transient sources discovered with BATSE and other X-ray monitors operating in the CGRO era. The Earth Occultation Technique (Harmon et al. 2001, astro-ph/0109069) was used to monitor a combination of these sources, mostly galactic, totaling to about 175 objects. The catalog will present the global properties of these sources and their probability of detection (greater than 10 mCrab, 20-100 keV) with BATSE. Systematic errors due to unknown sources or background components are included. Cursory analyses to search for new transients (35-80 mCrab in the 20-100 keV band) and super-orbital periods in known binary sources are also presented. Whole mission light curves and associated data production/analysis tools are being delivered to the High Energy Astrophysics Science Archive Research Center (HEASARC) for public use.

  12. Development of a compact 20 MeV gamma-ray source for energy calibration at the Sudbury Neutrino Observatory

    SciTech Connect

    Poon, A.W.P.; Browne, M.C.; Robertson, R.G.H.; Waltham, C.E.; Kherani, N.P.

    1995-12-31

    The Sudbury Neutrino Observatory (SNO) is a real-time neutrino detector under construction near Sudbury, Ontario, Canada. SNO collaboration is developing various calibration sources in order to determine the detector response completely. This paper describes briefly the calibration sources being developed by the collaboration. One of these, a compact {sup 3}H(p,{gamma}){sup 4}He source, which produces 20-MeV {gamma}-rays, is described.

  13. HAWC sensitivity to Galactic TeV gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Hui, Michelle

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a second generation detector of TeV gamma rays based on the water Cherenkov technique. It will comprise an array of 300 water Cherenkov detectors. It is an all-sky surveying instrument with greater than 90% duty cycle, a field of view of 2 sr, and angular resolution of 0.1 degrees for energies above 10 TeV. The HAWC Observatory is currently under construction in Sierra Negra in the state of Puebla, Mexico. The site is at a latitude of 19 degrees North, and an altitude of 4100 m. Ten percent of the array started data taking in September, 2012, and one third of the full array will be operational by Summer 2013. I will present the sensitivity of the HAWC Observatory to known Galactic gamma-ray sources, including the complex Cygnus region, and regions with unidentified source associations.

  14. Locating very high energy gamma ray sources with arc minute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Fegan, D. J.; Harris, K.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.; Lawrence, M. A.; Lang, M. J.

    1992-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of point-like sources were detected by the COS-B satellite, only two were unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of Very High Energy gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arc minute accuracy. This was demonstrated using Cerenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  15. Can Handheld Plastic Detectors Do Both Gamma and Neutron Isotopic Identification with Directional Source Location?

    SciTech Connect

    Robert Hayes

    2008-04-18

    This paper demonstrates, through MCNPX simulations, that a compact hexagonal array of detectors can be utilized to do both gamma isotopic identification (ID) along with neutron identification while simultaneously finding the direction of the source relative to the detector array. The detector array itself is composed of seven borated polyvinyl toluene (PVT) hexagonal light pipes approximately 4 inches long and with a 1.25 inch face-to-face thickness assembled in a tight configuration. The gamma ID capability is realized through judicious windowing algorithms as is the neutron spectral unfolding. By having multiple detectors in different relative positions, directional determination of the source can be realized. By further adding multiplicity counters to the neutron counts, fission events can be measured.

  16. Correlative studies of astrophysical sources of very high and ultra high energy gamma-rays

    NASA Technical Reports Server (NTRS)

    Akerlof, Carl W.

    1993-01-01

    During the period of this contract, June 1, 1991 to November 14, 1992, the major results of our research effort have come from the Whipple air shower experiment in Tucson, AZ. The most notable development has been the discovery of TeV photons from the BL Lac object, Markarian 421. This result depended critically on the identification of Mrk 421 by the EGRET team as a source of GeV gamma rays.

  17. NIR flaring of the Gamma ray source [HB89] 0754+100

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Mayya, D., Y.; Carramiñana, A.; Recillas, E.; Porras, A.

    2010-03-01

    We call attention on our recent observation of the Gamma Ray source [HB89] 0754+100 with the CANICA NIR camera on the 2.1m telescope at the Observatorio Astrofísico Guillermo Haro, located in Cananea, Mexico. We found this BLLac type object, to show fluxes about 2 magnitudes brighter than our previous observation 30 days earlier. Below, we list our photometric results in the H Band for this period.

  18. Laser-Compton Gamma-Ray Source at a Beamline (BL1) in NewSUBARU

    SciTech Connect

    Amano, Sho; Horikawa, Ken; Miyamoto, Shuji; Mochizuki, Takayasu

    2010-06-23

    We have developed a laser-Compton gamma-ray source at beamline (BL1) in NewSUBARU, an electron storage ring operating at electron energies of 0.7-1.5 GeV. Initially, we generated 17-37 MeV gamma rays using a Nd:YVO{sub 4} laser operating at 1.06 {mu}m and 0.53 {mu}m, achieving a luminosity of 6000 photons/(W{center_dot}mA{center_dot}s) and a flux of 5x10{sup 6} photons/s with a laser power of 4 W and a beam current of 200 mA. We then installed a CO{sub 2} laser operating at 10.6 {mu}m, and generated gamma rays in the energy range of 1-4 MeV. In this range, the gamma-ray luminosity is 7300 photons/(W{center_dot}mA{center_dot}s) and the flux is 5.6x10{sup 6} photons/s when operating the laser at 4 W and 200 mA. These performances are in good agreement with calculations. We will next add a Tm-fiber laser operating at 2 {mu}m to generate gamma rays in the energy range of 4-21 MeV, using a laser-focusing design to generate the maximum flux. The luminosity of this stage is calculated to be 6400 photons/(W{center_dot}mA{center_dot}s). Nd:YVO{sub 4}, CO{sub 2}, and Tm-fiber laser are all capable of operating in a high-power regime and can generate kW-level output power. At present, the maximum gamma-ray flux is limited only by the laser power. When operating the laser at 1 kW of output power with a beam current of 200 mA, we expect a flux of up to {approx}10{sup 9} photons/s. At NewSUBARU, up to several dozen MeV gamma-ray sources are capable of generating such high power.

  19. NIR flaring of the Gamma ray source PKS1550-242

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Carramiñana, A.; Recillas, E.; Porras, A.; Mayya, D. Y.; Escobedo, G.

    2010-07-01

    We call attention on our recent observation of the Gamma Ray source 1FGLJ1553.4-2425 also known as PKS1550-242 with the CANICA NIR camera on the 2.1m telescope at the Observatorio Astrofísico Guillermo Haro, located in Cananea, Mexico. On June 16th, 2010 (JD24555363.741), we found this blazar to be in outburst. It showed fluxes about 1.6 magnitudes brighter than our previous NIR photometry. On this date the source was found to have a flux corresponding to H = 14.615 ± 0.04.

  20. Another NIR flare of the Gamma ray source PKS1550-242

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Carraminana, A.; Porras, A.; Recillas, E.; Escobedo, G.

    2011-05-01

    We call attention on our recent observation of the Gamma Ray source 1FGLJ1553.4-2425 also known as PKS1550-242 with the CANICA NIR camera on the 2.1m telescope at the Observatorio Astrofisico Guillermo Haro, located in Cananea, Mexico. On April 26th, 2011 (JD24555677.877), we found this blazar to be in outburst. It showed fluxes about 4.2 magnitudes brighter than our previous NIR photometry. On this date the source was found to have a flux corresponding to H = 14.527 ± 0.05.

  1. Spectral properties of blast-wave models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Rees, M. J.; Papathanassiou, H.

    1994-01-01

    We calculate the spectrum of blast-wave models of gamma-ray burst sources, for various assumptions about the magnetic field density and the relativistic particle acceleration efficiency. For a range of physically plausible models we find that the radiation efficiency is high and leads to nonthermal spectra with breaks at various energies comparable to those observed in the gamma-ray range. Radiation is also predicted at other wavebands, in particular at X-ray, optical/UV, and GeV/TeV energies. We discuss the spectra as a function of duration for three basic types of models, and for cosmological, halo, and galactic disk distances. We also evaluate the gamma-ray fluences and the spectral characteristics for a range of external densities. Impulsive burst models at cosmological distances can satisfy the conventional X-ray paucity constraint S(sub x)/S(sub gamma)less than a few percent over a wide range of durations, but galactic models can do so only for bursts shorter than a few seconds, unless additional assumptions are made. The emissivity is generally larger for bursts in a denser external environment, with the efficiency increasing up to the point where all the energy input is radiated away.

  2. SIX NEW MILLISECOND PULSARS FROM ARECIBO SEARCHES OF FERMI GAMMA-RAY SOURCES

    SciTech Connect

    Cromartie, H. T.; Camilo, F.; Kerr, M.; Deneva, J. S.; Ray, P. S.; Wood, K. S.; Ransom, S. M.; Ferrara, E. C.; Michelson, P. F.

    2016-03-01

    We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) four year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-white dwarf binary with an 83 day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo's large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.

  3. Detection of a flaring low-energy gamma-ray source

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Dipen; Owens, Alan

    1994-01-01

    We report the detection of a flaring gamma-ray source by the University of New Hampshire (UNH) balloon-borne coded aperture gamma-ray telescope (DGT) on 1984 October 2. The source was detected at the significance level of 7.2 sigma over the energy range 160-2000 keV. The intensity in the range (160-200) keV was 1.1 Crab. The best-fit position of the source is given by R.A. = 3h 25.8m and Decl. = 67 deg 653 min and is located in the constellation of Camelopardia. The source was visible within the Field of View (FOV) of the telescope for approximately = 2 hr and exhibited signs of flaring. The derived photon spectrum can be equally fitted by an optically thin bremsstrahlung distribution of kT approximately = 52 keV or a power law of the form, dN(E)/dE = 3.7 x 10(exp -6) (E/400)(exp -4.5) photons/sq cm/keV. We compare its spectral characteristics ad energy output to various types of fast X-ray transients. No measurable flux could be detected from CG 135+1, the COS B source which was in the FOV and therefore, we present 2 sigma upper flux limits on its spectral emission over the energy range 160 keV to 9.3 MeV.

  4. Search on extraterrestrial gamma-ray lines from Southern Hemisphere sources with high energy resolution gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Dacosta, J. M.; Jardim, J. O. D.; Gonzalez-Blanco, F.; Nordemann, D. J. R.; Martin, I. M.; Dutra, S. L. G.; Albernhe, F.; Vedrenne, G.; Boclet, D.; Durouchoux, P.

    1981-07-01

    The scope of the GEL 1 and 2 balloon-borne gamma ray telescope experiments is described. The gamma ray spectrometer to be used on GEL 1 is described. It is designed to study the nature of the Galactic center positron annihilation 511 KeV line. The telescope effect is achieved through the aperture angle formed by the gamma ray spectrometer anticoincidence crystals. The balloon gondola and onboard instrumentation of the balloon are described.

  5. How Far Away Are the Sources of IceCube Neutrinos? Constraints from the Diffuse Teraelectronvolt Gamma-ray Background

    NASA Astrophysics Data System (ADS)

    Chang, Xiao-Chuan; Liu, Ruo-Yu; Wang, Xiang-Yu

    2016-07-01

    The nearly isotropic distribution of teraelectronvolt to petaelectronvolt neutrinos recently detected by the IceCube Collaboration suggests that they come from sources at a distance beyond our Galaxy, but how far away they are is largely unknown because of a lack of any associations with known sources. In this paper, we propose that the cumulative TeV gamma-ray emission accompanying the production of neutrinos can be used to constrain the distance of these neutrino sources, since the opacity of TeV gamma rays due to absorption by the extragalactic background light depends on the distance these TeV gamma rays have traveled. As the diffuse extragalactic TeV background measured by Fermi is much weaker than the expected cumulative flux associated with IceCube neutrinos, the majority of IceCube neutrinos, if their sources are transparent to TeV gamma rays, must come from distances larger than the horizon of TeV gamma rays. We find that above 80% of the IceCube neutrinos should come from sources at redshift z > 0.5. Thus, the chance of finding nearby sources correlated with IceCube neutrinos would be small. We also find that, to explain the flux of neutrinos under the TeV gamma-ray emission constraint, the redshift evolution of neutrino source density must be at least as fast as the cosmic star formation rate.

  6. Time correlations between low and high energy gamma rays from discrete sources

    NASA Technical Reports Server (NTRS)

    Ellsworth, R. W.

    1995-01-01

    Activities covered the following areas: (1) continuing analysis of the Cygnus Experiment data on the shadowing of cosmic rays by the moon and sun, which led to a direct confirmation of the angular resolution of the CYGNUS EAS array; and (2) development of analysis methods for the daily search overlapping with EGRET targets. To date, no steady emission of ultrahigh energy (UHE) gamma rays from any source has been detected by the Cygnus Experiment, but some evidence for sporadic emission had been found. Upper limits on steady fluxes from 49 sources in the northern hemisphere have been published. In addition, a daily search of 51 possible sources over the interval April 1986 to June 1992 found no evidence for emission. From these source lists, four candidates were selected for comparison with EGRET data.

  7. Photo-nuclear astrophysics in NewSUBARU {gamma}-ray source

    SciTech Connect

    Hayakawa, Takehito

    2010-08-12

    A laser Compton scattering (LCS){gamma}-ray source has been installed at an electron storage ring NewSUBARU at SPring-8. We have studied the nuclear physics using this LCS g-ray source. The half-lives of unstable isotopes, {sup 184}Re and {sup 164}Ho{sup m}, produced by photo-induced reactions have been measured. These half-lives are shorter than previous recommended values by 7% and 3%, respectively. These changes of the half-lives affects to evaluation of cross-sections using the activation method. We have discussed a problem of the residual ratio of an isomer in {sup 180}Ta in supernova explosions. The unstable ground state and the metastable isomer are linked by ({gamma}, {gamma}') reactions. We have developed a new time-dependent model to calculate the isomer ratio in supernovae. The solar abundance of {sup 180}Ta is reproduced by the supernova neutrino process with the present calculated isomer ratio.

  8. Stereotactic radiosurgery of the brain using the first United States 201 cobalt-60 source gamma knife

    SciTech Connect

    Lunsford, L.D.; Flickinger, J.; Lindner, G.; Maitz, A.

    1989-02-01

    The first United States 201 cobalt-60 source gamma knife for stereotactic radiosurgery of brain tumors and arteriovenous malformations became operational at the University of Pittsburgh on August 14, 1987. Four and one-half years of intensive planning, regulatory agency review, and analysis of published results preceded the first radiosurgical procedure. Installation of this 18,000-kg device and loading of the 201 cobalt-60 sources posed major challenges in engineering, architecture, and radiophysics. In the first 4 months of operation, we treated 52 patients (29 with arteriovenous malformations, 19 with extra-axial neoplasms of the skull base, and 4 with intra-axial malignant tumors). Most patients either had lesions considered inoperable or had residual lesions after attempted surgical resection. Neither surgical mortality nor significant morbidity was associated with gamma knife radiosurgery. As compared with treatment by conventional intracranial surgery (craniotomy), the average length of stay for radiosurgery was reduced by 4 to 14 days, and hospital charges were reduced by as much as 65%. Based on both the previously published results of treatment of more than 2,000 patients worldwide and on our initial clinical experience, we believe that gamma knife stereotactic radiosurgery is a therapeutically effective and economically sound alternative to more conventional neurosurgical procedures, in selected cases.

  9. Abstracts of papers to be presented at the fifth symposium on x- and gamma-ray sources and applications

    SciTech Connect

    Not Available

    1981-01-01

    The program and abstracts of papers are presented. Topics include radiation sources, radiation detectors, mathematical models and data analysis, gamma-ray spectroscopy, instrumentation, applications of x-ray fluorescence, PIXE, and x-ray absorption. (ACR)

  10. Discovery of new X-ray sources near the unidentified gamma-ray source HESS J1841-055

    NASA Astrophysics Data System (ADS)

    Nobukawa, K. K.; Nobukawa, M.; Tsuru, T. G.; Koyama, K.

    2015-06-01

    HESS J1841-055 is a diffuse unidentified gamma-ray source with the size of ∼1°.3 × 1°. No conclusive counterpart in other wavelengths has so far detected. To search for X-rays responsible for the TeV emission, the Suzaku observations were conducted, which covered a half region of the HESS source. In the soft band (0.5-2.0 keV), we discovered a diffuse emission, Suzaku J1840.2-0552, with the size of ∼10‧ . Since its spectrum was fitted by an optically thin thermal plasma model, Suzaku J1840.2-0552 is likely to be a supernova remnant. We also discovered an extended source, Suzaku J1840.2-0544, in the hard band (2.0-8.0 keV) with an emission line at 6.1 keV. From the spectral feature and large interstellar absorption, this source is likely to be a cluster of galaxies behind the Galactic plane at the red-shift of ∼0.09. The other diffuse source spatially overlaps with the SNR candidate G26.6-0.2, which shows a non-thermal dominant spectrum. Since no other candidate is found in the hard X-ray band, we infer that these largely extended sources could be possible counterparts of HESS J1841-055.

  11. Pipe corrosion and deposit study using neutron- and gamma- radiation sources

    NASA Astrophysics Data System (ADS)

    Balaskó, Márton; Sváb, Erzsébet; Kuba, Attila; Kiss, Zoltán; Rodek, Lajos; Nagy, Antal

    2005-04-01

    The problems of corrosion and deposit are crucial issues in the pipelines of the chemical, nuclear and petrochemical industries. Radiography (neutron, gamma, X-ray) has long been used as a technique for pipe inspection and corrosion monitoring. The 10 MW Budapest research reactor site is a source of various energy neutron (thermal and epithermal) and gamma radiation. The detector system was a Peltier-cooled LLL CCD camera controlled by a PC with Image ProLite software and imaging plate equipment with a BAS 2500 scanner that used AIDA software. The objects inspected were corroded tubes and various kinds of test specimens with a large wall thickness (25 mm) inside and outside steps. In the evaluation part we used tomographic algorithms. A software simulation study was made as well. Fan-beam projections were computed of the given software phantoms and a new discrete tomography method was used to reconstruct the unknown objects from these projections.

  12. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  13. Search for discrete gamma-ray sources emitting at energies greater than 10/sup 15/ eV

    SciTech Connect

    Samorski, M.; Stamm, W.

    1984-02-15

    The data of the extensive air shower experiment at Kiel have been scanned systematically for possible discrete ..gamma..-ray sources in the energy range E>10/sup 15/ eV and in the declination band delta = 25/sup 0/-75/sup 0/. Photon fluxes for celestial positions with the statistically most significant excesses of showers and 3 sigma upper limit photon fluxes for COS B ..gamma..-ray sources visible to the extensive air shower experiment at Kiel are presented.

  14. Discovery of a transient MeV range gamma-ray source

    NASA Technical Reports Server (NTRS)

    Briggs, M. S.; Gruber, D. E.; Matteson, J. L.; Peterson, L. E.

    1995-01-01

    The University of California, San Diego (UCSD)/MIT hard X-ray and gamma-ray instrument on the HEAO 1 surveyed the region near the Galactic center 3 times during its lifetime in 1977-1979. During the 1977 September-October scan, a gamma-ray source was detected south of the Galactic center. The source was below the threshold sensitivity in the spring and fall of 1978. The source was detected with the medium energy phoswich scintillation counters which operated over the 80 keV-2 MeV range, had an area of 42 sq cm each, and a 17 deg FWHM aperture. The error box for the source is centered on l = 2.4 deg, b = -12.2 deg, with a 90% confidence error circle of approximately 3.5 deg radius. The flux in the 333-635 keV range was (1.89 +/- 0.29) x 10(exp -5) photons/(sq cm s keV) and was constant within statistics during the 1 month period the source was in the field of view. The spectrum can be characterized as a Gaussian in the range 300 less than or = E less than or = 650 keV, with a FWHM of 249 +/- 51 keV centered on 461 +/- 22 keV. The flux of this broad Gaussian is (6.6 +/- 1.1) x 10(exp -3) photons/(sq cm s). The source is tentatively identified with the 5.57 hr period low-mass X-ray-emitting binary system 1H 1822-371. Assuming this is correct, the ratio of gamma-ray to X-ray luminosity during the outburst was about 5; at a distance of 8 kpc, the gamma ray luminosity is 4 x 10(exp 37) ergs. The emission may be interpreted as a positron-pair plasma ejected from a compact object, possibly a black hole, and annihilating in a thick accretion disk surrounding the object.

  15. Point-source calibration of a segmented gamma-ray scanner

    SciTech Connect

    Sheppard, G.A.; Piquette, E.C.

    1994-08-01

    For a conventional segmented gamma-ray scanner (SGS) in which the sample is rotated continuously within a fixed detector field of view, the data will not support alternatives to the assumption that the gamma-emitting nuclides and the matrix in which they reside are uniformly distributed. This homogeneity assumption permits the geometry of samples and calibration standards to be approximated by that of a non attenuating line source on the axis of rotation. Other common SGS assumptions are that the detector is perfectly collimated, that its response is flat over its field of view, and that it can be approximated adequately by a line. All of these assumption have led to a preference for homogeneous calibration standards. Preparation and certification of such calibration standards are usually difficult and expensive. Storage and transportation of SGS standards can be inconvenient or even quite troublesome. The authors have proposed and tested an alternative method of SGS calibration that only requires a point-source standard. The proposed technique relies on the empirical determination of a normalized two-dimensional detector response and the measurement of the count rate from a point-source standard located at the response apex. With these data, the system`s response to a distributed, homogeneous samples can be predicted using numerical integration. Typical biases measured using a commercially available SGS calibrated with a point source have been less than 2%.

  16. Is the Stellar System WR 11 a Gamma-Ray Source?

    NASA Astrophysics Data System (ADS)

    Benaglia, Paula

    2016-04-01

    Many early-type stars are in systems; some of them have been indicated as putative high-energy emitters. The radiation would be produced at the region where two stellar winds collide. Compelling evidence of such emission was found only for the colliding-wind binary (CWB) Eta Car, which was associated to a GeV source. Very recently, the closest CWB, WR 11, was proposed as a counterpart of a 6σ emission excess, measured with the Fermi LAT satellite. We sought evidence to support or reject the hypothesis that WR 11 is responsible of the gamma-ray excess. Archive radio interferometric data at 1.4 and 2.5 GHz taken with the Australia Telescope Compact Array along 16 dates were reduced. The sizes of the field-of-view at 2.5 GHz and of the central region of the Fermi LAT excess are alike. We analysed the emission of the WR 11 field, characterised the radio sources detected and derived their spectral indices, to investigate their nature. Eight sources with fluxes above 10 mJy were detected at both frequencies. All but one (WR 11) showed negative spectral indices. Four of them were identified with known objects, including WR 11. A fifth source, labeled here S6, is a promising candidate to produce gamma-ray emission, besides the CWB WR 11.

  17. The GeV-TeV Connection in Galactic gamma-ray Sources

    SciTech Connect

    Funk, S.; Reimer, O.; Torres, Diego F.; Hinton, J.A.; /Leeds U.

    2007-09-28

    Recent observations by atmospheric Cherenkov telescopes such as H.E.S.S. and MAGIC have revealed a large number of new sources of very-high-energy (VHE) gamma-rays above 100 GeV, mostly concentrated along the Galactic plane. At lower energies (100 MeV - 10 GeV) the satellite-based instrument EGRET revealed a population of sources clustering along the Galactic Plane. Given their adjacent energy bands a systematic correlation study between the two source classes seems appropriate. While only a few of the sources connect, both in terms of positional coincidence and spectral consistency, most of the detections occur only in one or the other energy domain. In these cases, for the first time consistent upper limits in the other energy band have been derived. Here, the populations of Galactic sources in both energy domains are characterized on observational as well as on theoretical grounds, followed by an interpretation on their similarities and differences. The observational data at this stage suggest rather different major source populations at GeV and TeV energies. With regards to preparations for the upcoming GLAST mission that will cover the energy range bridging GeV and TeV instruments this paper investigates the connection between the population of sources in these bands and concludes with predictions for commonly observable sources for GLAST-LAT detections.

  18. PROBING THE NATURE OF THE UNIDENTIFIED TeV GAMMA-RAY SOURCE HESS J0632+057 WITH SWIFT

    SciTech Connect

    Falcone, A. D.; Stroh, M.; Grube, J.; Hinton, J.; Skilton, J.; Holder, J.; Maier, G.; Mukherjee, R.

    2010-01-01

    New generation TeV gamma-ray telescopes have discovered many new sources, including several enigmatic unidentified TeV objects. HESS J0632+057 is a particularly interesting unidentified TeV source since: it is a point source, it has a possible hard-spectrum X-ray counterpart and a positionally consistent Be star, it has evidence of long-term very high energy gamma-ray flux variability, and it is postulated to be a newly detected TeV/X-ray binary. We have obtained Swift X-ray telescope observations of this source from MJD 54857 to 54965, in an attempt to ascertain its nature and to investigate the hypothesis that it is a previously unknown X-ray/TeV binary. Variability and spectral properties similar to those of the other three known X-ray/TeV binaries have been observed, with measured flux increases by factors of {approx}3. X-ray variability is present on multiple timescales including days to months; however, no clear signature of periodicity is present on the timescales probed by these data. If binary modulation is present and dominating the measured variability, then the period of the orbit is likely to be {>=}54 days (half of this campaign), or it has a shorter period with a variable degree of flux modulation on successive high states. If the two high states measured to date are due to binary modulation, then the favored period is approximately 35-40 days. More observations are required to determine if this object is truly a binary system and to determine the extent that the measured variability is due to inter-orbit flaring effects or periodic binary modulation.

  19. Einstein observations of the 1978 November 19 gamma ray burst source field

    NASA Technical Reports Server (NTRS)

    Pizzichini, G.; Cline, T. L.; Desai, U. D.; Mushotzky, R.; Teegarden, B. J.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.; Barat, C.; Hurley, K.

    1982-01-01

    It is pointed out that several years after the discovery of cosmic gamma ray bursts (GRB) their sources have not yet been identified, although searches have been conducted in optical, X-ray, and radio wavelengths. The three smallest error boxes are now related to the events of Mar. 5, 1979, Apr. 6, 1979, and Nov. 19, 1978. X-ray observations, with the Imaging Proportional Counter (IPC) of the Einstein Observatory, were made for all three locations. A description is presented of the results of the 8200 second IPC observation of the Nov. 19, 1978 GRB, made on July 1 and 2, 1980. Three sources were detected. However, two of them were outside the GRB error box. The third source is located well inside the burst error box.

  20. Design of a 2 MeV Compton scattering gamma-ray source for DNDO missions

    SciTech Connect

    Hartemann, F V; Albert, F

    2009-08-24

    Nuclear resonance fluorescence-based isotope-specific detection and imaging is a powerful new technology that can enable access to new mission spaces for DNDO. Within this context, the development of advanced mono-energetic gamma ray sources plays an important role in the DNDO R&D portfolio, as it offers a faster, more precise, and safer alternative to conventional Bremsstrahlung sources. In this report, a specific design strategy is presented, along with a series of theoretical and computational tools, with the goal of optimizing source parameters for DNDO applications. In parallel, key technologies are outlined, along with discussions justifying specific choices and contrasting those with other alternatives. Finally, a complete conceptual design is described, and machine parameters are presented in detail.

  1. On the Nature of the Gamma-ray Source 2FGL J1823.8 4312: The Discovery of a New Class of Extragalactic X-ray Sources

    SciTech Connect

    Massaro, Francesco

    2012-08-03

    One of the unsolved mysteries of gamma-ray astronomy concerns the nature of the unidentified gamma-ray sources. Recently, using the Second Fermi LAT source catalog (2FGL) and the Wide-field Infrared Survey Explorer (WISE) archive, we discovered that the WISE counterparts of gamma-ray blazars, a class of active galactic nuclei, delineate a region (the WISE Gamma-ray Strip) in the 3-dimensional infrared color space well separated from the locus of the other astronomical objects. Based on this result, we built an association procedure to recognize if there areWISE blazar candidates within the positional uncertainty region of the unidentified gamma-ray sources. Here we report on our analysis of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus of uncertain type associated with the X-ray source 1RXS J182418.7+430954 according to the 2FGL, to verify whether it is a blazar. Applying our association method we found two sources with IR colors typical of gamma-ray blazars, located within the 99.9% confidence region of 2FGL J1823.8+4312: WISE J182352.33+431452.5 and WISE J182409.25+431404.7. Then we searched in the Chandra, NVSS and SDSS archival observations for their counterparts. We discovered that WISE J182352.33+431452.5, our preferred gamma-ray blazar candidate according to our WISE association procedure, is detected in the optical and in the X-rays but not in the radio, making it extremely unusual if it is a blazar. Given its enigmatic spectral energy distribution, we considered the possibility that it is a 'radio faint blazar' or the prototype of a new class of extragalactic sources, our conclusion is independent of whether WISE J182352.33+431452.5 is the actual counterpart of 2FGL J1823.8+4312.

  2. An upper limit on the cosmic-ray luminosity of individual sources from gamma-ray observations

    SciTech Connect

    Supanitsky, A.D.; Souza, V. de E-mail: vitor@ifsc.usp.br

    2013-12-01

    Different types of extragalactic objects are known to produce TeV gamma-rays. Some of these objects are the most probable candidates to accelerate cosmic rays up to 10{sup 20} eV. It is very well known that gamma-rays can be produced as a result of the cosmic ray propagation through the intergalactic medium. These gamma-rays contribute to the total flux observed in the direction of the source. In this paper we propose a new method to derive an upper limit on the cosmic-ray luminosity of an individual source based on the measured upper limit on the integral flux of GeV-TeV gamma-rays. We show how it is possible to calculate an upper limit on the cosmic-ray luminosity of a particular source and we explore the parameter space in which the current GeV-TeV gamma-ray measurements can offer a useful determination. We study in detail two particular sources, Pictor A and NGC 7469, and we calculate the upper limit on the proton luminosity of each source based on the upper limit on the integral gamma-ray flux measured by the H.E.S.S. telescopes.

  3. DISCOVERY OF A NEW TeV GAMMA-RAY SOURCE: VER J0521+211

    SciTech Connect

    Archambault, S.; Arlen, T.; Aune, T.; Behera, B.; Federici, S.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Bird, R.; Bouvier, A.; Byrum, K.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Cui, W.; Feng, Q.; Finley, J. P.; Errando, M.; Falcone, A. E-mail: errando@astro.columbia.edu E-mail: sfegan@llr.in2p3.fr; Collaboration: VERITAS Collaboration; and others

    2013-10-20

    We report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov Telescope Array. These observations were motivated by the discovery of a cluster of >30 GeV photons in the first year of Fermi Large Area Telescope observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of (1.93 ± 0.13{sub stat} ± 0.78{sub sys}) × 10{sup –11} cm{sup –2} s{sup –1} above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, from optical to TeV, with a peak flux corresponding to ∼0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z = 0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.

  4. A simplified model of the source channel of the Leksell GammaKnife tested with PENELOPE.

    PubMed

    Al-Dweri, Feras M O; Lallena, Antonio M; Vilches, Manuel

    2004-06-21

    Monte Carlo simulations using the code PENELOPE have been performed to test a simplified model of the source channel geometry of the Leksell GammaKnife. The characteristics of the radiation passing through the treatment helmets are analysed in detail. We have found that only primary particles emitted from the source with polar angles smaller than 3 degrees with respect to the beam axis are relevant for the dosimetry of the Gamma Knife. The photon trajectories reaching the output helmet collimators at (x, v, z = 236 mm) show strong correlations between rho = (x2 + y2)(1/2) and their polar angle theta, on one side, and between tan(-1)(y/x) and their azimuthal angle phi, on the other. This enables us to propose a simplified model which treats the full source channel as a mathematical collimator. This simplified model produces doses in good agreement with those found for the full geometry. In the region of maximal dose, the relative differences between both calculations are within 3%, for the 18 and 14 mm helmets, and 10%, for the 8 and 4 mm ones. Besides, the simplified model permits a strong reduction (larger than a factor 15) in the computational time.

  5. X-ray follow-up observations of unidentified VHE {gamma}-ray sources

    SciTech Connect

    Puehlhofer, Gerd

    2008-12-24

    A large fraction of the recently discovered Galactic Very High Energy (VHE) source population remains unidentified to date. VHE {gamma}-ray emission traces high energy particles in these sources, but for example in case of hadronic processes also the gas density at the emission site. Moreover, the particles have sufficiently long lifetimes to be able to escape from their acceleration sites. Therefore, the {gamma}-ray sources or at least the areas of maximum surface brightness are in many cases spatially offset from the actual accelerators. A promising way to identify the objects in which the particles are accelerated seems to be to search for emission signatures of the acceleration process (like emission from shock-heated plasma). Also the particles themselves (through primary or secondary synchrotron emission) can be traced in lower wavebands. Those signatures are best visible in the X-ray band, and current X-ray observatories are well suited to conduct such follow-up observations. Some aspects of the current status of these investigations are reviewed.

  6. Inference of Dim Gamma-Ray Point Sources Using Probabilistic Catalogues

    NASA Astrophysics Data System (ADS)

    Daylan, Tansu; Portillo, Stephen K. N.; Finkbeiner, Douglas P.

    2016-07-01

    Poisson regression of the Fermi-LAT data in the inner Milky Way reveals an extended gamma-ray excess. The anomalous emission falls steeply away from the galactic center and has an energy spectrum that peaks at 1-2 GeV. An important question is whether the signal is coming from a collection of unresolved point sources, possibly recycled pulsars, or constitutes a truly diffuse emission component. Previous analyses have relied on non-Poissonian template fits or wavelet decomposition of the Fermi-LAT data, which find evidence for a population of dim point sources just below the 3FGL flux limit. In order to draw conclusions about a potentially dim population, we propose to sample from the catalog space of point sources, where the model dimensionality, i.e., the number of sources, is unknown. Although being a computationally expensive sampling problem, this approach allows us to infer the number, flux and radial distribution of the point sources consistent with the observed count data. Probabilistic cataloging is specifically useful in the crowded field limit, such as in the galactic disk, where the typical separation between point sources is comparable to the PSF. Using this approach, we recover the results of the deterministic Fermi-LAT 3FGL catalog, as well as sub-detection threshold information and fold the point source parameter degeneracies into the model-choice problem of whether an emission is coming from unresolved MSPs or dark matter annihilation.

  7. Choked Jets and Low-Luminosity Gamma-Ray Bursts as Hidden Neutrino Sources

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2016-03-01

    I will discuss choked gamma-ray burst (GRB) jets as possible sources of very high-energy (VHE) cosmic neutrinos. The jet propagation physics and radiation constraints are taken into account. We find that efficient shock acceleration of cosmic rays inside a high density stellar environment is possible for sufficiently low-powered jets and/or jets buried in an extended optically think envelope. Such conditions are favorable also for the GRB jets to become stalled. Such choked jets may explain transrelativistic SNe or low-luminosity GRBs by launching quasi-spherical shocks that breakout in the optically thick wind. Focusing on this possibility, we calculate the resulting diffuse neutrino spectra using the latest results of the local llGRB rate and luminosity function. We confirm that llGRBs can potentially give a significant contribution to the measured neutrino flux. The results are compatible with the IceCube (IC) data around 10-100 TeV without contradicting other IC limits on classical GRBs. Choked and llGRBs are dark in GeV-TeV gamma rays, and do not contribute significantly to the Fermi diffuse gamma-ray background. Precursor TeV neutrinos emerging prior to the shock breakout emission can be used as smoking gun evidence for a choked jet model for llGRBs.

  8. Gamma-ray constraints on maximum cosmogenic neutrino fluxes and UHECR source evolution models

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.; Kalashev, Oleg; Semikoz, Dmitri V.

    2012-01-01

    The dip model assumes that the ultra-high energy cosmic rays (UHECRs) above 1018 eV consist exclusively of protons and is consistent with the spectrum and composition measure by HiRes. Here we present the range of cosmogenic neutrino fluxes in the dip-model which are compatible with a recent determination of the extragalactic very high energy (VHE) gamma-ray diffuse background derived from 2.5 years of Fermi/LAT data. We show that the largest fluxes predicted in the dip model would be detectable by IceCube in about 10 years of observation and are within the reach of a few years of observation with the ARA project. In the incomplete UHECR model in which protons are assumed to dominate only above 1019 eV, the cosmogenic neutrino fluxes could be a factor of 2 or 3 larger. Any fraction of heavier nuclei in the UHECR at these energies would reduce the maximum cosmogenic neutrino fluxes. We also consider here special evolution models in which the UHECR sources are assumed to have the same evolution of either the star formation rate (SFR), or the gamma-ray burst (GRB) rate, or the active galactic nuclei (AGN) rate in the Universe and found that the last two are disfavored (and in the dip model rejected) by the new VHE gamma-ray background.

  9. A new array for the study of ultra high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Brooke, G.; Lambert, A.; Ogden, P. A.; Patel, M.; Ferrett, J. C.; Reid, R. J. O.; Watson, A. A.; West, A. A.

    1985-01-01

    The design and operation of a 32 x 1 10 to the 15th power sq m array of scintillation detectors for the detection of 10 to the 15th power eV cosmic rays is described with an expected angular resolution of 1 deg, thus improving the present signal/background ratio for gamma ray sources. Data are recorded on a hybrid CAMAC, an in-house system which uses a laser and Pockel-Cell arrangement to routinely calibrate the timing stability of the detectors.

  10. Infrared flaring of the gamma-ray source GB6 B1310+4844

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Porras, A.; Recillas, E.; Carramiñana, A.

    2009-11-01

    We call attention on our recent observation of the source GB6 B1312+4810 with the CANICA NIR camera on the 2.1m telescope at the Observatorio Astrofísico Guillermo Haro, located in Cananea, Mexico. We found this quasar to show fluxes at least 2 magnitudes brighter than 2MASS values, of epoch 1999. Our recent observation on 2009-11-22, UT13:05:30 yields: H = 15.875 ± 0.06 on JD 2455158.044252 The object has been recently reported as an on going Gamma Ray Flaring; ATels 2306 and 2310.

  11. The Multi-Messenger Approach to High Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2006-01-01

    Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1 -10%) of their light cylinder radius. Supporting evidence also comes from the relatively high rate of detection of radio pulsars in young supernova remnants. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude and would make young, radio-quiet gamma-ray pulsars more of a rarity than previously thought. Radio emission at high altitudes will also have enhanced distortions due to aberration, retardation and caustics. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the gamma-ray beams predicted by polar cap, slot gap and outer gap models. From the results of this study one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the gamma-ray pulsar population.

  12. Application of blind source separation to gamma ray spectra acquired by GRaND around Vesta

    NASA Astrophysics Data System (ADS)

    Mizzon, H.; Toplis, M. J.; Forni, O.; Prettyman, T. H.; Raymond, C. A.; Russell, C. T.

    2012-12-01

    The bismuth germinate (BGO) scintillator is one of the sensors of the gamma ray and neutron detector (GRaND)1 on board the Dawn spacecraft, that has spent just over one year in orbit around the asteroid 4-Vesta. The BGO detector is excited by energetic gamma-rays produced by galactic cosmic rays (GCR) or energetic solar particles interacting either with Vesta and/or the Dawn spacecraft. In detail, during periods of quiet solar activity, gamma ray spectra produced by the scintillator can be considered as consisting of three signals: i) a contribution of gamma-rays from Vesta produced by GCR interactions at the asteroid's surface, ii) a contribution from the spacecraft excited by neutrons coming from Vesta, and iii) a contribution of the spacecraft excited by local interaction with galactic cosmic rays. While the first two contributions should be positive functions of the solid angle of Vesta in the field of view during acquisition, the last one should have a negative dependence because Vesta partly shields the spacecraft from GCR. This theoretical mix can be written formally as: S=aΩSV+bΩSSCNV+c(4π-Ω)SSCGCR (1) where S is the series of recorded spectra, Ω is the solid angle, SV is the contribution of gamma rays coming from Vesta, SSCNV is the contribution of gamma rays coming from the spacecraft excited by the neutron coming from Vesta and SSCGCR is the contribution of gamma rays coming from the spacecraft excited by GCR. A blind source separation method called independent component analysis enables separating additive subcomponents supposing the mutual statistical independence of the non-Gaussian source signals2. Applying this method to BGO spectra acquired during the first three months of the low-altitude measurement orbit (LAMO) reveals two main independent components. The first one is dominated by the positron electron annihilation peak and is positively correlated to the solid angle. The second is negatively correlated to the solid angle and displays peaks

  13. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-01

    Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  14. Optimal Design of a Tunable Thomson-Scattering Based Gamma-Ray Source

    SciTech Connect

    Gibson, D J; Anderson, S G; Betts, S M; Hartemann, F V; Jovanovic, I; McNabb, D P; Messerly, M J; Pruet, J A; Shverdin, M Y; Siders, C W; Tremaine, A M; Barty, C J

    2007-06-07

    Thomson-Scattering based systems offer a path to high-brightness high-energy (> 1 MeV) x-ray and {gamma}-ray sources due to their favorable scaling with electron energy. LLNL is currently engaged in an effort to optimize such a device, dubbed the ''Thomson-Radiated Extreme X-Ray'' (T-REX) source, targeting up to 680 keV photon energy. Such a system requires precise design of the interaction between a high-intensity laser pulse and a high-brightness electron beam. Presented here are the optimal design parameters for such an interaction, including factors such as the collision angle, focal spot size, optimal bunch charge, and laser energy. These parameters were chosen based on extensive modeling using PARMELA and in-house, well-benchmarked scattering simulation codes.

  15. Contribution of Point Sources to the Soft Gamma-Ray Galactic Emission

    NASA Astrophysics Data System (ADS)

    Terrier, R.; Lebrun, F.; Bélanger, G.; Goldwurm, A.; Strong, A. W.; Schoenfelder, V.; Bouchet, L.; Roques, J. P.; Parmar, A.

    2004-10-01

    The nature of the soft gamma-ray (20-200 keV) Galactic emission has been a matter of debate for a long time. Previous experiments have tried to sep- arate the point source contribution from the real in- terstellar emission, but with a rather poor spatial res- olution, they concluded that the interstellar emission could be a large fraction of the total Galactic emis- sion. INTEGRAL, having both high resolution and high sensitivity, is well suited to reassess more pre- cisely this problem. Using the INTEGRAL core pro- gram Galactic Center Deep Exposure (GCDE), we estimate the contribution of detected point sources to the total Galactic flux. Key words: Interstellar emission; INTEGRAL; IBIS/ISGRI.

  16. X-band RF Photoinjector for Laser Compton X-ray and Gamma-ray Sources

    SciTech Connect

    Marsh, R. A.; Anderson, G. G.; Anderson, S. G.; Gibson, D. J.; Barty, C. J.

    2015-05-06

    Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications.

  17. Electron Linac design to drive bright Compton back-scattering gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Bacci, A.; Alesini, D.; Antici, P.; Bellaveglia, M.; Boni, R.; Chiadroni, E.; Cianchi, A.; Curatolo, C.; Di Pirro, G.; Esposito, A.; Ferrario, M.; Gallo, A.; Gatti, G.; Ghigo, A.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Petrillo, V.; Pompili, R.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.; Spataro, B.; Tomassini, P.; Vaccarezza, C.

    2013-05-01

    The technological development in the field of high brightness linear accelerators and high energy/high quality lasers enables today designing high brilliance Compton-X and Gamma-photon beams suitable for a wide range of applications in the innovative field of nuclear photonics. The challenging requirements of this kind of source comprise: tunable energy (1-20 MeV), very narrow bandwidth (0.3%), and high spectral density (104 photons/s/eV). We present here a study focused on the design and the optimization of an electron Linac aimed to meet the source specifications of the European Extreme Light Infrastructure—Nuclear Physics project, currently funded and seeking for an innovative machine design in order to outperform state-of-the-art facilities. We show that the phase space density of the electron beam, at the collision point against the laser pulse, is the main quality factor characterizing the Linac.

  18. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    SciTech Connect

    Mihalcea, D.; Jacobson, B.; Murokh, A.; Piot, P.; Ruan, J.

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  19. DEVELOPMENT OF A PRECISION TUNABLE GAMMA-RAY SOURCE DRIVEN BY A COMPACT X-BAND LINAC

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Messerly, M J; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C J; Vlieks, A E; Jongewaard, E N; Tantawi, S G

    2009-04-30

    A precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development at LLNL. High-brightness, relativistic electron bunches produced by the linac interact with a Joule-class, 10 ps laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. The source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented.

  20. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  1. Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Tomić, S. Lj.; Mićić, M. M.; Filipović, J. M.; Suljovrujić, E. H.

    2007-05-01

    The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks.

  2. NIR photometry of the Gamma-Ray source Fermi J1654-1055 and 3FGLJ1037.5-2821

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Recillas, E.; Porras, A.; Chavushyan, V.; Leon-Tavares, J.

    2016-03-01

    Following the reports of flaring in Gamma-rays (Atel #8721 and Atel #8740) of the sources 3FGLJ10378.5-2821 identified with the high redshift (z=1.066) quasar PKSB1035-28 and FermiJ1654-1055 tentatively identified with the radio source PMNJ1632-1052.

  3. A method for the quantitative gamma spectroscopic analysis of an unusually shaped unknown source.

    PubMed

    Kearfott, Kimberlee J; Dewey, Steven C

    2009-02-01

    An unmarked cylindrical device, identified as a ceramic high voltage capacitor, needed its radioactivity assessed so that proper disposal and shipping requirements could be met. Using a high purity germanium detector, naturally occurring 232Th was identified as the source of radioactivity. A series of point source measurements was made along the length of the item's axis using 60Co, having a gamma ray of nearly the same energy as one of the primary 232Th progeny photopeaks. These measurements were then numerically integrated to determine the response of the detector to a line source. A correction for the self shielding of the item was estimated using Monte Carlo simulations. The item was found to contain approximately 1.85 x 10(5) Bq of uniformly distributed 232Th. The overall method has application to any unusually shaped source, with point source measurements performed using an appropriate radionuclide used to establish an overall sensitivity of the detector, including its dead layer, to the radioactivity in a simple geometric representation of the object. An estimation of self shielding from Monte Carlo is then applied to that result.

  4. Tests and consequences of disk plus halo models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Smith, I. A.

    1995-01-01

    The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.

  5. Draft Genome Sequence of Enterotoxigenic Escherichia coli Strain E24377A, Obtained from a Tribal Drinking Water Source in India

    PubMed Central

    Nerkar, Sandeep S.; Khadake, Prashant P.; Akolkar, Dadasaheb B.; Apurwa, Sachin R.; Deshpande, Uday; Khedkar, Smita U.; Stålsby-Lundborg, Cecilia

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease in humans and animals. Its dissemination can occur through water sources contaminated by it. Here, we report for the first time the draft genome sequence of ETEC strain E24377A, obtained from a tribal drinking water source in India. PMID:25838484

  6. In situ gamma spectrometry measurements and Monte Carlo computations for the detection of radioactive sources in scrap metal.

    PubMed

    Clouvas, A; Xanthos, S; Takoudis, G; Potiriadis, C; Silva, J

    2005-02-01

    A very limited number of field experiments have been performed to assess the relative radiation detection sensitivities of commercially available equipment used to detect radioactive sources in recycled metal scrap. Such experiments require the cooperation and commitment of considerable resources on the part of vendors of the radiation detection systems and the cooperation of a steel mill or scrap processing facility. The results will unavoidably be specific to the equipment tested at the time, the characteristics of the scrap metal involved in the tests, and to the specific configurations of the scrap containers. Given these limitations, the use of computer simulation for this purpose would be a desirable alternative. With this in mind, this study sought to determine whether Monte Carlo simulation of photon flux energy distributions resulting from a radiation source in metal scrap would be realistic. In the present work, experimental and simulated photon flux energy distributions in the outer part of a truck due to the presence of embedded radioactive sources in the scrap metal load are compared. The experimental photon fluxes are deduced by in situ gamma spectrometry measurements with portable Ge detector and the calculated ones by Monte Carlo simulations with the MCNP code. The good agreement between simulated and measured photon flux energy distributions indicate that the results obtained by the Monte Carlo simulations are realistic.

  7. Comparative dosimetry of GammaMed Plus high-dose rate 192Ir brachytherapy source

    PubMed Central

    Patel, N. P.; Majumdar, B.; Vijayan, V.

    2010-01-01

    The comparative dosimetry of GammaMed (GM) Plus high-dose rate brachytherapy source was performed by an experiment using 0.1-cc thimble ionization chamber and simulation-based study using EGSnrc code. In-water dose measurements were performed with 0.1-cc chamber to derive the radial dose function (r = 0.8 to 20.0 cm) and anisotropy function (r = 5.0 cm with polar angle from 10° to 170°). The nonuniformity correction factor for 0.1-cc chamber was applied for in-water measurements at shorter distances from the source. The EGSnrc code was used to derive the dose rate constant (Λ), radial dose function gL(r) and anisotropy function F(r, θ) of GM Plus source. The dosimetric data derived using EGSnrc code in our study were in very good agreement relative to published data for GM Plus source. The radial dose function up to 12 cm derived from measured dose using 0.1-cc chamber was in agreement within ±3% of data derived by the simulation study. PMID:20927220

  8. Galactic sources of high energy neutrinos: Expectation from gamma-ray data

    NASA Astrophysics Data System (ADS)

    Sahakyan, N.

    2016-07-01

    The recent results from ground based γ-ray detectors (HESS, MAGIC, VERITAS) provide a population of TeV galactic γ-ray sources which are potential sources of High Energy (HE) neutrinos. Since the γ-rays and ν-s are produced from decays of neutral and charged pions, the flux of TeV γ-rays can be used to estimate the upper limit of ν flux and vice versa; the detectability of ν flux implies a minimum flux of the accompanying γ-rays (assuming the internal and the external absorption of γ-rays is negligible). Using this minimum flux, it is possible to find the sources which can be detected with cubic-kilometer telescopes. I will discuss the possibility to detect HE neutrinos from powerful galactic accelerators, such as Supernova Remnants (SNRs) and Pulsar Wind Nebulae (PWNe) and show that likely only RX J1713.7-3946, RX J0852.0-4622 and Vela X can be detected by current generation of instruments (IceCube and Km3Net). It will be shown also, that galactic binary systems could be promising sources of HE ν-s. In particular, ν-s and γ-rays from Cygnus X-3 will be discussed during recent gamma-ray activity, showing that in the future such kind of activities could produce detectable flux of HE ν-s.

  9. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  10. Observations of the radio emission field around the gamma -ray source 2EG J1834-2138

    NASA Astrophysics Data System (ADS)

    Combi, J. A.; Romero, G. E.

    1998-03-01

    We present results of a study of the radio emission field around the best estimate position of the low-latitude EGRET source 2EG J1834-2138. The identification of this gamma -ray source with the gravitational lensed AGN PKS 1830-211 has been recently proposed by \\cite[Mattox et al. (1997)]{ma97}. Additional support for this identification is provided here. Contamination produced by the diffuse disk emission has been removed from new radio images of the surrounding region of 2EG J1834-2138 allowing a determination of the fine radio structure. Several previously unnoticed supernova remnants have been found within a few degrees from the gamma -ray source. However, the only strong radio source within the 95% source location confidence contour of 2EG J1834-2138 is PKS 1830-211. In addition, both spectrum and variability analysis of the EGRET data support the identification of both sources.

  11. Discovery of a new population of high-energy gamma-ray sources in the Milky Way

    PubMed

    Gehrels; Macomb; Bertsch; Thompson; Hartman

    2000-03-23

    One of the great mysteries of the high-energy gamma-ray sky is the group of approximately 170 unidentified point sources found along the Galactic plane. They are more numerous than all other high-energy gamma-ray sources combined and, despite 20 years of effort, no clear counterparts have been found at other wavelengths. Here we report a new population of such objects. A cluster of approximately 20 faint sources appears north of the Galactic Centre, which is part of a broader class of faint objects at mid-latitudes. In addition, we show in a model-independent way that the mid-latitude sources are distinct from the population of bright unidentified sources along the Galactic plane. The distribution on the sky indicates that the faint mid-latitude sources are associated with the Gould belt of massive stars and gas clouds at approximately 600 light years distance, as has been previously suggested.

  12. Response-surface models for deterministic effects of localized irradiation of the skin by discrete {beta}/{gamma} -emitting sources

    SciTech Connect

    Scott, B.R.

    1995-12-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete {Beta}- and {gamma}-emitting ({Beta}{gamma}E) sources (e.g., {Beta}{gamma}E hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot {Beta}{gamma}E particles are {sup 60}Co- or nuclear fuel-derived particles with diameters > 10 {mu}m and < 3 mm and contain at least 3.7 kBq (0.1 {mu}Ci) of radioactivity. For such {Beta}{gamma}E sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for evaluating the risk of deterministic effects of localized {Beta} irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete {Beta}{gamma}E sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to {Beta} radiation from {Beta}{gamma}E sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects.

  13. Relative effectiveness of structures as protection from gamma radiation from cloud and fallout sources as a function of source energy

    SciTech Connect

    Fingerlos, J.P.

    1984-01-01

    In the event of a release of radioactive material, it is necessary to know the doses the public could receive in order to make decisions that minimize the public's risk. In order to determine what doses the public might receive if they try to evacuate or seek shelter, it is necessary to know how much protection structures such as homes and vehicles provide. This information is well known only for a few gamma ray spectra, such as that from weapon fallout. The research reported here transfers the knowledge gained from the previous weapon-fallout shielding work to realistic protection factors for possible accidental releases whatever the released spectrum might be. Point kernel models were developed for both the fallout and cloud sources. That development included a method of accurately combining buildup factors in multi-region problems over wide ranges of energy and photon mean free path. A generalized method for calculating the effect of ground roughness on the attentuation factor for fallout sources was also developed. The results were reported for the 1-hr weapon fallout, and TMI-2 cloud and fallout spectra, as well as for discrete energies from 15 KeV to 15 MeV. The structures given as examples include small wood frame and large brick houses.

  14. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  15. LASER TECHNOLOGY FOR PRECISION MONOENERGETIC GAMMA-RAY SOURCE R&D AT LLNL

    SciTech Connect

    Shverdin, M Y; Bayramian, A; Albert, F; Anderson, S G; Betts, S M; Chu, T S; Cross, R R; Gibson, D J; Marsh, R; Messerly, M; Phan, H; Prantil, M; Wu, S; Ebbers, C; Scarpetti, R D; Hartemann, F V; Siders, C W; McNabb, D P; Bonanno, R E; Barty, C P

    2010-04-20

    Generation of mono-energetic, high brightness gamma-rays requires state of the art lasers to both produce a low emittance electron beam in the linac and high intensity, narrow linewidth laser photons for scattering with the relativistic electrons. Here, we overview the laser systems for the 3rd generation Monoenergetic Gamma-ray Source (MEGa-ray) currently under construction at Lawrence Livermore National Lab (LLNL). We also describe a method for increasing the efficiency of laser Compton scattering through laser pulse recirculation. The fiber-based photoinjector laser will produce 50 {micro}J temporally and spatially shaped UV pulses at 120 Hz to generate a low emittance electron beam in the X-band RF photoinjector. The interaction laser generates high intensity photons that focus into the interaction region and scatter off the accelerated electrons. This system utilizes chirped pulse amplification and commercial diode pumped solid state Nd:YAG amplifiers to produce 0.5 J, 10 ps, 120 Hz pulses at 1064 nm and up to 0.2 J after frequency doubling. A single passively mode-locked Ytterbium fiber oscillator seeds both laser systems and provides a timing synch with the linac.

  16. Neutrino-Gamma Multi-Messenger Source Detection via the Astrophysical Multi-Messenger Observatory Network

    NASA Astrophysics Data System (ADS)

    Fixelle, Josh; Miles, S.; AMON

    2014-01-01

    The idea of multi-messenger event detection has long been explored in the context of above-threshold analysis performed by the IceCube collaboration using Swift BAT and by the Amanda collaboration using BATSE. While these investigations produced null results, they left the event space of sub-threshold events untouched. This untapped event space, combined with the addition of new observatories for various bands and messenger types, provides the obvious niche for a GBN style network to exist: AMON. We consider Monte-carlo models of pair-wise detection between sub-threshold IceCube neutrino doublets, sub-threshold neutrino-gamma doublets with Swift BAT, and with sub-threshold higher multiplicity neutrino-gamma coincidences with Fermi LAT. Several detection methods were considered and compared to the status quo analyses of neutrino doublets by IceCube, demonstrating significant sensitivity gain. The MC model analysis was followed by an archival doublet analysis between IceCube-40 and Fermi LAT data within their co-temporal window of observation. Several methods for detecting statistical signal excess in the archival analysis were considered, providing an upper limit on source population parameters for the given analysis sensitivity.

  17. Design and Operation of a tunable MeV-level Compton-scattering-based (gamma-ray) source

    SciTech Connect

    Gibson, D J; Albert, F; Anderson, S G; Betts, S M; Messerly, M J; Phan, H H; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C P

    2009-07-07

    A mono-energetic gamma-ray (MEGa-ray) source based on Compton-scattering, targeting nuclear physics applications such as nuclear resonance fluorescence, has been constructed and commissioned at Lawrence Livermore National Laboratory. In this paper, the overall architecture of the system, as well as some of the critical design decisions made in the development of the source, are discussed. The performances of the two laser systems (one for electron production, one for scattering), the electron photoinjector, and the linear accelerator are also detailed, and initial {gamma}-ray results are presented.

  18. Open-source hardware and software and web application for gamma dose rate network operation.

    PubMed

    Luff, R; Zähringer, M; Harms, W; Bleher, M; Prommer, B; Stöhlker, U

    2014-08-01

    The German Federal Office for Radiation Protection operates a network of about 1800 gamma dose rate stations as a part of the national emergency preparedness plan. Each of the six network centres is capable of operating the network alone. Most of the used hardware and software have been developed in-house under open-source license. Short development cycles and close cooperation between developers and users ensure robustness, transparency and fast maintenance procedures, thus avoiding unnecessary complex solutions. This also reduces the overall costs of the network operation. An easy-to-expand web interface has been developed to make the complete system available to other interested network operators in order to increase cooperation between different countries. The interface is also regularly in use for education during scholarships of trainees supported, e.g. by the 'International Atomic Energy Agency' to operate a local area dose rate monitoring test network.

  19. Detection of embedded radiation sources using temporal variation of gamma spectral data.

    SciTech Connect

    Shokair, Isaac R.

    2011-09-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the isotopes present in a measurement. For low energy resolution detectors, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the isotopes present in the measurement. When many isotopes are present it is difficult to make the correct identification and this process often requires many trial solutions by highly skilled spectroscopists. This report investigates the potential of a new analysis method which uses spatial/temporal information from multiple low energy resolution measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other isotopes present. This method is referred to as targeted principal component analysis (TPCA). For radiation portal monitor applications, multiple measurements of gamma spectra are taken at equally spaced time increments as a vehicle passes through the portal and the TPCA method is directly applicable to this type of measurement. In this report we describe the method and investigate its application to the problem of detection of a radioactive localized source that is embedded in a distributed source in the presence of an ambient background. Examples using simulated spectral measurements indicate that this method works very well and has the potential for automated analysis for RPM applications. This method is also expected to work well for isotopic detection in the presence of spectrally and spatially varying backgrounds as a result of vehicle-induced background suppression. Further work is needed to include effects of shielding, to understand detection limits, setting of thresholds, and to estimate false positive probability.

  20. Goddard contributions to the Los Alamos Conference on Transient Cosmic Gamma and X-ray Sources

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conference papers, covering the orgin and instrumentation for measuring the position of cosmic gamma ray bursts, are presented. Summaries cover gamma ray detectors, energy speectra, and the stellar super flare hypothesis.

  1. Runaway breakdown in strong electric field as a source of terrestrial gamma flashes and gamma bursts in lightning leader steps

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Zybin, K. P.; Medvedev, Yu. V.

    2007-01-01

    The new model of lightning step leader is proposed. It includes three main processes developing simultaneously in a strong electric field: conventional breakdown, effect of runaway electrons and runaway breakdown (RB). The theory of RB in strong electric field is developed. Comparison with the existing observational data shows that the model can serve as a background for the explanation of gamma bursts in step leader and TGF.

  2. Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus.

    PubMed

    Portilla-Rivera, O; Torrado, A; Domínguez, J M; Moldes, A B

    2008-09-10

    Lactobacillus pentosus grown on sugars from agricultural residues produces biosurfactants with emulsifying properties that could facilitate the bioremediation of hydrocarbon contaminated sites. The biosurfactans obtained after growing L. pentosus cells on distilled grape marc hydrolyzates gave values of relative emulsion volume (EV) close to 50%, being stable after 72 h when gasoline or kerosene were employed. These EV values were higher than those achieved using commercial surfactin (14.1% for gasoline and 27.2% for kerosene). Moreover, assays carried out with kerosene showed that L. pentosus produced biosurfactants from distilled grape marc hydrolyzates with the highest stabilizing capacity value (ES) to maintain the emulsion (99%) followed by biosurfactants produced from hazelnut shell hydrolyzates (97%). These data are comparable with those obtained using sodium dodecyl sulfate, SDS (87.7%), whereas surfactin only gave an ES value of 65.4%. Consequently, this work shows that utilization of low-cost feedstock agricultural residues as substrates for producing biosurfactants/bioemulsifiers is possible thus removing obstacles for the wide-scale industrial application of biosurfactants/bioemulsifiers.

  3. Measuring the activity of a {sup 51}Cr neutrino source based on the gamma-radiation spectrum

    SciTech Connect

    Gorbachev, V. V. Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-15

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of {sup 51}Cr is presented.

  4. VERITAS 2008-2009 MONITORING OF THE VARIABLE GAMMA-RAY SOURCE M 87

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Arlen, T.; Chow, Y. C.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Boltuch, D.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cogan, P.; Cui, W.; Finley, J. P.; Duke, C.

    2010-06-10

    M 87 is a nearby radio galaxy that is detected at energies ranging from radio to very high energy (VHE) gamma rays. Its proximity and its jet, misaligned from our line of sight, enable detailed morphological studies and extensive modeling at radio, optical, and X-ray energies. Flaring activity was observed at all energies, and multi-wavelength correlations would help clarify the origin of the VHE emission. In this paper, we describe a detailed temporal and spectral analysis of the VERITAS VHE gamma-ray observations of M 87 in 2008 and 2009. In the 2008 observing season, VERITAS detected an excess with a statistical significance of 7.2 standard deviations ({sigma}) from M 87 during a joint multi-wavelength monitoring campaign conducted by three major VHE experiments along with the Chandra X-ray Observatory. In 2008 February, VERITAS observed a VHE flare from M 87 occurring over a 4 day timespan. The peak nightly flux above 250 GeV was (1.14 {+-} 0.26) x 10{sup -11} cm{sup -2} s{sup -1}, which corresponded to 7.7% of the Crab Nebula flux. M 87 was marginally detected before this 4 day flare period, and was not detected afterward. Spectral analysis of the VERITAS observations showed no significant change in the photon index between the flare and pre-flare states. Shortly after the VHE flare seen by VERITAS, the Chandra X-ray Observatory detected the flux from the core of M 87 at a historical maximum, while the flux from the nearby knot HST-1 remained quiescent. Acciari et al. presented the 2008 contemporaneous VHE gamma-ray, Chandra X-ray, and Very Long Baseline Array radio observations which suggest the core as the most likely source of VHE emission, in contrast to the 2005 VHE flare that was simultaneous with an X-ray flare in the HST-1 knot. In 2009, VERITAS continued its monitoring of M 87 and marginally detected a 4.2{sigma} excess corresponding to a flux of {approx}1% of the Crab Nebula. No VHE flaring activity was observed in 2009.

  5. Roselle (Hibiscus sabdariffa) seed oil is a rich source of gamma-tocopherol.

    PubMed

    Mohamed, R; Fernández, J; Pineda, M; Aguilar, M

    2007-04-01

    The antioxidant potential of roselle (Hibiscus sabdariffa L.) extracts was studied. Different plant organs, including seeds, stems, leaves, and sepals, were analyzed with respect to their water-soluble antioxidant capacity, lipid-soluble antioxidant capacity, and tocopherol content, revealing that roselle seeds are a good source of lipid-soluble antioxidants, particularly gamma-tocopherol. Roselle seed oil was extracted and characterized, and its physicochemical parameters are summarized: acidity, 2.24%; peroxide index, 8.63 meq/kg; extinction coefficients at 232 (k(232)) and 270 nm (k(270)), 3.19 and 1.46, respectively; oxidative stability, 15.53 h; refractive index, 1.477; density, 0.92 kg/L; and viscosity, 15.9 cP. Roselle seed oil belongs to the linoleic/oleic category, its most abundant fatty acids being C18:2 (40.1%), C18:1 (28%), C16:0 (20%), C18:0 (5.3%), and C19:1 (1.7%). Sterols include beta-sitosterol (71.9%), campesterol (13.6%), Delta-5-avenasterol (5.9%), cholesterol (1.35%), and clerosterol (0.6%). Total tocopherols were detected at an average concentration of 2000 mg/kg, including alpha-tocopherol (25%), gamma-tocopherol (74.5%), and delta-tocopherol (0.5%). The global characteristics of roselle seed oil suggest that it could have important industrial applications, adding to the traditional use of roselle sepals in the elaboration of karkade tea.

  6. Ultracompact Accelerator Technology for a Next-Generation Gamma-Ray Source

    SciTech Connect

    Marsh, R A; Albert, F; Anderson, S G; Gibson, D J; Wu, S S; Hartemann, F V; Barty, C J

    2012-05-14

    This presentation reported on the technology choices and progress manufacturing and testing the injector and accelerator of the 250 MeV ultra-compact Compton Scattering gamma-ray Source under development at LLNL for homeland security applications. This paper summarizes the status of various facets of current accelerator activities at LLNL. The major components for the X-band test station have been designed, fabricated, and await installation. The XL-4 klystron has been delivered, and will shortly be dressed and installed in the ScandiNova modulator. High power testing of the klystron into RF loads will follow, including adjustment of the modulator for the klystron load as necessary. Assembly of RF transport, test station supports, and accelerator components will follow. Commissioning will focus on processing the RF gun to full operating power, which corresponds to 200 MV/m peak electric field on the cathode surface. Single bunch benchmarking of the Mark 1 design will provide confidence that this first structure operates as designed, and will serve as a solid starting point for subsequent changes, such as a removable photocathode, and the use of various cathode materials for enhanced quantum efficiency. Charge scaling experiments will follow, partly to confirm predictions, as well as to identify important causes of emittance growth, and their scaling with charge. Multi-bunch operation will conclude testing of the Mark 1 RF gun, and allow verification of code predictions, direct measurement of bunch-to-bunch effects, and initial implementation compensation mechanisms. Modeling will continue and focus on supporting the commissioning and experimental program, as well as seeking to improve all facets of linac produced Compton gamma-rays.

  7. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts).

    PubMed

    Rodríguez-León, Ericka; Iñiguez-Palomares, Ramón; Navarro, Rosa Elena; Herrera-Urbina, Ronaldo; Tánori, Judith; Iñiguez-Palomares, Claudia; Maldonado, Amir

    2013-01-01

    We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal.

  8. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts)

    PubMed Central

    2013-01-01

    We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal. PMID:23841946

  9. The influence of the IMRT QA set-up error on the 2D and 3D gamma evaluation method as obtained by using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong-Hyeon; Kim, Dong-Su; Kim, Tae-Ho; Kang, Seong-Hee; Cho, Min-Seok; Suh, Tae Suk

    2015-11-01

    The phantom-alignment error is one of the factors affecting delivery quality assurance (QA) accuracy in intensity-modulated radiation therapy (IMRT). Accordingly, a possibility of inadequate use of spatial information in gamma evaluation may exist for patient-specific IMRT QA. The influence of the phantom-alignment error on gamma evaluation can be demonstrated experimentally by using the gamma passing rate and the gamma value. However, such experimental methods have a limitation regarding the intrinsic verification of the influence of the phantom set-up error because experimentally measuring the phantom-alignment error accurately is impossible. To overcome this limitation, we aimed to verify the effect of the phantom set-up error within the gamma evaluation formula by using a Monte Carlo simulation. Artificial phantom set-up errors were simulated, and the concept of the true point (TP) was used to represent the actual coordinates of the measurement point for the mathematical modeling of these effects on the gamma. Using dose distributions acquired from the Monte Carlo simulation, performed gamma evaluations in 2D and 3D. The results of the gamma evaluations and the dose difference at the TP were classified to verify the degrees of dose reflection at the TP. The 2D and the 3D gamma errors were defined by comparing gamma values between the case of the imposed phantom set-up error and the TP in order to investigate the effect of the set-up error on the gamma value. According to the results for gamma errors, the 3D gamma evaluation reflected the dose at the TP better than the 2D one. Moreover, the gamma passing rates were higher for 3D than for 2D, as is widely known. Thus, the 3D gamma evaluation can increase the precision of patient-specific IMRT QA by applying stringent acceptance criteria and setting a reasonable action level for the 3D gamma passing rate.

  10. FIVE NEW MILLISECOND PULSARS FROM A RADIO SURVEY OF 14 UNIDENTIFIED FERMI-LAT GAMMA-RAY SOURCES

    SciTech Connect

    Kerr, M.; Camilo, F.; Johnson, T. J.; Ferrara, E. C.; Harding, A. K.; Guillemot, L.; Kramer, M.; Hessels, J.; Johnston, S.; Keith, M.; Reynolds, J. E.; Ransom, S. M.; Ray, P. S.; Wood, K. S.; Sarkissian, J. E-mail: fernando@astro.columbia.edu

    2012-03-20

    We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Fermi Large Area Telescope sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR J0101-6422 (P = 2.57 ms, DM = 12 pc cm{sup -3}), we have detected {gamma}-ray pulsations and measured its proper motion. Its {gamma}-ray spectrum (a power law of {Gamma} = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and {gamma}-ray light curves challenge simple geometric models of emission. The high success rate of this survey-enabled by selecting {gamma}-ray sources based on their detailed spectral characteristics-and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.

  11. Five New Millisecond Pulsars from a Radio Survey of 14 Unidentified Fermi-LAT Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Kerr, M.; Camilo, F.; Johnson, T. J.; Ferrara, E. C.; Guillemot, L.; Harding, A. K.; Hessels, J.; Johnson, S.; Keith, M.; Kramer, M.; Ransom, S. M.; Ray, P. S.; Reynolds, J. E.; Sarkissian, J.; Wood, K. S.

    2012-01-01

    We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Ferm;'LAT sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR JOl01-6422 (P=2.57ms, DH=12pc/cubic cm ), we have detected gamma-ray pulsations and measured its proper motion. Its gamma-ray spectrum (a power law of Gamma = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and gamma-ray light curves challenge simple geometric models of emission. The high success rate of this survey -- enabled by selecting gamma-ray sources based on their detailed spectral characteristics -- and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.

  12. Effect of chemical composition on the sintering of mullite powders obtained by {gamma}-Al{sub 2}O{sub 3} and kaolin

    SciTech Connect

    Mariano, W.A.; Kiminami, R.H.G.A.

    1995-09-01

    The effects of different alumina content on sintering behaviour of mullite powder obtained by reaction sintering of a mixture of {gamma}-Al{sub 2}O{sub 3} and kaolin powders have been studied by using scanning electron microscopy, X-ray diffraction and apparent density measurements. Mullitization temperature was not changed with the composition of the samples. The XRD patterns of the powders with 68,0, 71,8 and 76wt% Al{sub 2}O{sub 3}, sintered above 1623K for 360s showed only the mullite phase. The sintered density of the powders increased with Al{sub 2}O{sub 3} content. The microstructural evolution and liquid phase appearance were studied and observed an exaggerated grain growth in the samples with 68,0 and 76MI/o of Al{sub 2}O{sub 3}.

  13. Exploiting PdII and TiIII chemistry to obtain gamma-dioxygenated terpenoids: synthesis of rostratone and novel approaches to aphidicolin and pyripyropene A.

    PubMed

    Justicia, José; Oltra, J Enrique; Cuerva, Juan M

    2005-10-14

    In nature there are several terpenoids with a characteristic gamma-dioxygenated system on the A ring, and many of them show interesting pharmacological properties. We have developed a novel strategy for the synthesis of these terpenoids involving three stages: (a) the selective epoxidation of commercial polyenes, (b) titanium(III)-catalyzed cyclization of the epoxypolyprenes thus obtained, and (c) Pd-mediated remote functionalization of the equatorial methyl group attached at C-4 on ring A of the cyclic terpenoid thus formed. This strategy has proved to be useful for the synthesis of the natural labdane rostratone (1) and related terpenoids, as well as for advanced synthetic approaches toward the pharmacologically active products aphidicolin (2) and pyripyropene A (3).

  14. Application of a Multidimensional Wavelet Denoising Algorithm for the Detection and Characterization of Astrophysical Sources of Gamma Rays

    SciTech Connect

    Digel, S.W.; Zhang, B.; Chiang, J.; Fadili, J.M.; Starck, J.-L.; /Saclay /Stanford U., Statistics Dept.

    2005-12-02

    Zhang, Fadili, & Starck have recently developed a denoising procedure for Poisson data that offers advantages over other methods of intensity estimation in multiple dimensions. Their procedure, which is nonparametric, is based on thresholding wavelet coefficients. The restoration algorithm applied after thresholding provides good conservation of source flux. We present an investigation of the procedure of Zhang et al. for the detection and characterization of astrophysical sources of high-energy gamma rays, using realistic simulated observations with the Large Area Telescope (LAT). The LAT is to be launched in late 2007 on the Gamma-ray Large Area Space Telescope mission. Source detection in the LAT data is complicated by the low fluxes of point sources relative to the diffuse celestial background, the limited angular resolution, and the tremendous variation of that resolution with energy (from tens of degrees at {approx}30 MeV to 0.1{sup o} at 10 GeV). The algorithm is very fast relative to traditional likelihood model fitting, and permits immediate estimation of spectral properties. Astrophysical sources of gamma rays, especially active galaxies, are typically quite variable, and our current work may lead to a reliable method to quickly characterize the flaring properties of newly-detected sources.

  15. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO{sub 2} laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 {angstrom}) x-rays of 10-ps pulse duration, with a flux of {approximately} 10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photons/sec level, after the ongoing ATF CO{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table-top`` LSS of monochromatic gamma radiation may become feasible.

  16. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0{sub 2} laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of {approximately}10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photon/sec level, after the ongoing ATF C0{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table- top`` LSS of monochromatic gamma radiation may become feasible.

  17. Spectral analysis of shielded gamma ray sources using precalculated library data

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas Wesley; Gardner, Robin P.

    2015-11-01

    In this work, an approach has been developed for determining the intensity of a shielded source by first determining the thicknesses of three different shielding materials from a passively collected gamma-ray spectrum by making comparisons with predetermined shielded spectra. These evaluations are dependent on the accuracy and validity of the predetermined library spectra which were created by changing the thicknesses of the three chosen materials lead, aluminum and wood that are used to simulate any actual shielding. Each of the spectra produced was generated using MCNP5 with a sufficiently large number of histories to ensure a low relative error at each channel. The materials were held in the same respective order from source to detector, where each material consisted of three individual thicknesses and a null condition. This then produced two separate data sets of 27 total shielding material situations and subsequent predetermined libraries that were created for each radionuclide source used. The technique used to calculate the thicknesses of the materials implements a Levenberg-Marquardt nonlinear search that employs a tri-linear interpolation with the respective predetermined libraries within each channel for the supplied input unknown spectrum. Given that the nonlinear parameters require an initial guess for the calculations, the approach demonstrates first that when the correct values are input, the correct thicknesses are found. It then demonstrates that when multiple trials of random values are input for each of the nonlinear parameters, the average of the calculated solutions that successfully converges also produced the correct thicknesses. Under situations with sufficient information known about the detection situation at hand, the method was shown to behave in a manner that produces reasonable results and can serve as a good preliminary solution. This technique has the capability to be used in a variety of full spectrum inverse analysis problems

  18. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  19. Investigating the peculiar emission from the new VHE gamma-ray source H1722+119

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; D'Ammando, F.; Berdyugin, A.; Hovatta, T.; Max-Moerbeck, W.; Raiteri, C. M.; Readhead, A. C. S.; Reinthal, R.; Richards, J. L.; Verrecchia, F.; Villata, M.

    2016-07-01

    The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E > 100 GeV) γ-ray band with a statistical significance of 5.9σ. The integral flux above 150 GeV is estimated to be (2.0 ± 0.5) per cent of the Crab nebula flux. We used contemporaneous high energy (HE, 100 MeV < E < 100 GeV) γ-ray observations from Fermi-Large Area Telescope to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z = 0.34 ± 0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the Owens Valley Radio Observatory telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution of H1722+119 shows surprising behaviour in the ˜3 × 1014-1018 Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.

  20. SU-E-I-79: Source Geometry Dependence of Gamma Well-Counter Measurements

    SciTech Connect

    Park, M; Belanger, A; Kijewski, M

    2015-06-15

    Purpose: To determine the effect of liquid sample volume and geometry on counting efficiency in a gamma well-counter, and to assess the relative contributions of sample geometry and self-attenuation. Gamma wellcounters are standard equipment in clinical and preclinical studies, for measuring patient blood radioactivity and quantifying animal tissue uptake for tracer development and other purposes. Accurate measurements are crucial. Methods: Count rates were measured for aqueous solutions of 99m- Tc at four liquid volume values in a 1-cm-diam tube and at six volume values in a 2.2-cm-diam vial. Total activity was constant for all volumes, and data were corrected for decay. Count rates from a point source in air, supported by a filter paper, were measured at seven heights between 1.3 and 5.7 cm from the bottom of a tube. Results: Sample volume effects were larger for the tube than for the vial. For the tube, count efficiency relative to a 1-cc volume ranged from 1.05 at 0.05 cc to 0.84 at 3 cc. For the vial, relative count efficiency ranged from 1.02 at 0.05 cc to 0.87 at 15 cc. For the point source, count efficiency relative to 1.3 cm from the tube bottom ranged from 0.98 at 1.8 cm to 0.34 at 5.7 cm. The relative efficiency of a 3-cc liquid sample in a tube compared to a 1-cc sample is 0.84; the average relative efficiency for the solid sample in air between heights in the tube corresponding to the surfaces of those volumes (1.3 and 4.8 cm) is 0.81, implying that the major contribution to efficiency loss is geometry, rather than attenuation. Conclusion: Volume-dependent correction factors should be used for accurate quantitation radioactive of liquid samples. Solid samples should be positioned at the bottom of the tube for maximum count efficiency.

  1. A search for sources of ultra high energy gamma rays at air shower energies with Ooty EAS array

    NASA Technical Reports Server (NTRS)

    Tonwar, S. C.; Gopalakrishnan, N. V.; Sreekantan, B. V.

    1985-01-01

    A 24 detector extensive air shower array is being operated at Ootacamund (2200 m altitude, 11.4 deg N latitude) in southern India to search for sources of Cosmic gamma rays of energies greater then 5 x 10 to the 13th power eV. The angular resolution of the array has been experimentally estimated to be better than about 2 deg. Since June '84, nearly 2.5 million showers have been collected and their arrival directions determined. These showers are being studied to search for very high energy gamma ray emission from interesting astrophysical objects such as Cygnus X-3, Crab pulsar and Geminga.

  2. The detector response matrices of the burst and transient source experiment (BATSE) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Horack, John M.; Lestrade, John Patrick

    1995-01-01

    The detector response matrices for the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) are described, including their creation and operation in data analysis. These response matrices are a detailed abstract representation of the gamma-ray detectors' operating characteristics that are needed for data analysis. They are constructed from an extensive set of calibration data coupled with a complex geometry electromagnetic cascade Monte Carlo simulation code. The calibration tests and simulation algorithm optimization are described. The characteristics of the BATSE detectors in the spacecraft environment are also described.

  3. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  4. Comparison of EEG and MEG in source localization of induced human gamma-band oscillations during visual stimulus.

    PubMed

    Mideksa, K G; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2015-08-01

    High frequency gamma oscillations are indications of information processing in cortical neuronal networks. Recently, non-invasive detection of these oscillations have become one of the main research areas in magnetoencephalography (MEG) and electroencephalography (EEG) studies. The aim of this study, which is a continuation of our previous MEG study, is to compare the capability of the two modalities (EEG and MEG) in localizing the source of the induced gamma activity due to a visual stimulus, using a spatial filtering technique known as dynamic imaging of coherent sources (DICS). To do this, the brain activity was recorded using simultaneous MEG and EEG measurement and the data were analyzed with respect to time, frequency, and location of the strongest response. The spherical head modeling technique, such as, the three-shell concentric spheres and an overlapping sphere (local sphere) have been used as a forward model to calculate the external electromagnetic potentials and fields recorded by the EEG and MEG, respectively. Our results from the time-frequency analysis, at the sensor level, revealed that the parieto-occipital electrodes and sensors from both modalities showed a clear and sustained gamma-band activity throughout the post-stimulus duration and that both modalities showed similar strongest gamma-band peaks. It was difficult to interpret the spatial pattern of the gamma-band oscillatory response on the scalp, at the sensor level, for both modalities. However, the source analysis result revealed that MEG3 sensor type, which measure the derivative along the longitude, showed the source more focally and close to the visual cortex (cuneus) as compared to that of the EEG.

  5. Hints of the Existence of Axion-Like-Particles From the Gamma-Ray Spectra of Cosmological Sources

    SciTech Connect

    Sanchez-Conde, M.A.; Paneque, D.; Bloom, E.; Prada, F.; Dominguez, A.; /IAA, Granada /Seville U.

    2009-06-23

    Axion Like Particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources, like the possible detection of TeV photons from 3C 66A (a source located at z=0.444) by MAGIC and VERITAS, which should not happen according to conventional models of photon propagation over cosmological distances. Another puzzle is the recent published lower limit to the EBL intensity at 3.6 {micro}m (which is almost twice larger as the previous one), which implies very hard spectra for some detected TeV gamma-ray sources located at z=0.1-0.2. The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like

  6. Possible Class of Nearby Gamma-Ray Burst/Gravitational Wave Sources

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    A possible subclass of gamma-ray bursts - those with few, wide pulses, spectral lags of order one to several seconds, and soft spectra - has been identified. Their Log[N]-Log[Fp] distribution approximates a -3/2 power-law, suggesting homogeneity and relatively nearby sources. These mostly dim bursts account for approximately 50% of the BATSE sample of long bursts near that instrument s trigger threshold, suggesting that this subluminous class constitutes a more common variety than the more familiar burst sources which lie at truly cosmological distances. Theoretical scenarios predicted such a class, motivated by their exemplar GRB 980425 (SN 1998bw) lying at a distance of approximately 38 Mpc. The observations are explained by invoking off-axis viewing of the GRB jet and/or bulk Lorentz factors of order a few. Long-lag bursts show a tendency to concentrate near the Supergalactic Plane with a quadrupole moment of -0.10 plus or minus 0.04, similar to that for SNe type Ib/c within the same volume. The rate of the observed subluminous bursts is of order 1/4 that of SNe Ib/c. Evidence for a sequential relationship between SNe Ib/c and GRBs is critiqued for two cases, as simultaneity of the SN and GRB events may be important for detection of the expected gravitational wave signal; at most, SN to GRB delays appear to be a few days. SN asymmetries and ultrarelativistic GRB jets suggest the possibility of rapid rotation in the pre-collapse objects, a primary condition required for highly nonaxisymmetric SN collapse to produce strong gravitational waves.

  7. Simulations of a spectral gamma-ray logging tool response to a surface source distribution on the borehole wall

    SciTech Connect

    Wilson, R.D.; Conaway, J.G.

    1991-12-01

    We have developed Monte Carlo and discrete ordinates simulation models for the large-detector spectral gamma-ray (SGR) logging tool in use at the Nevada Test Site. Application of the simulation models produced spectra for source layers on the borehole wall, either from potassium-bearing mudcakes or from plate-out of radon daughter products. Simulations show that the shape and magnitude of gamma-ray spectra from sources distributed on the borehole wall depend on radial position with in the air-filled borehole as well as on hole diameter. No such dependence is observed for sources uniformly distributed in the formation. In addition, sources on the borehole wall produce anisotropic angular fluxes at the higher scattered energies and at the source energy. These differences in borehole effects and in angular flux are important to the process of correcting SGR logs for the presence of potassium mudcakes; they also suggest a technique for distinguishing between spectral contributions from formation sources and sources on the borehole wall. These results imply the existence of a standoff effect not present for spectra measured in air-filled boreholes from formation sources. 5 refs., 11 figs.

  8. The design of a source to simulate the gamma-ray spectrum emitted by a radioisotope thermoelectric generator

    NASA Technical Reports Server (NTRS)

    Reier, M.

    1972-01-01

    A simulated source was designed to duplicate the gamma spectrum of a uniform cylindrical 2200-watt Pu02 radioisotope thermoelectric generator containing 81% Pu-238 and 1.2 ppm Pu-236. Gamma rays from the decay of Pu-238, Am-241, Pu-239, and the 0-18(alpha,n)Ne-21 reaction were catalogued in broad energy groups. Two 46- and one 22-mc Th-228 sources provided simulation at various times in the life of the fuel capsule up to 18 years, which covers the time span of an outer planet mission. Emission from Th-228 represents the overwhelming contribution of the gamma spectrum after the first few years. The sources, in the form of 13-inch rods, were placed in a concentric hole in a cylinder of depleted uranium, which provided shielding equivalent to the self-shielding of the fuel capsule. The thickness of the U-238 cylinder (0.55cm) was determined by Monte Carlo calculations to insure that the spectrum emerging from the simulated source matched that of the fuel capsule.

  9. Chandra X-Ray Observations of the Two Brightest Unidentified High Galactic Latitude Fermi-LAT Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Donato, D.; Gehrels, N.; Sokolovsky, K. V.; Giroletti, M.

    2012-01-01

    We present Chandra ACIS-I X-ray observations of 0FGL J1311.9-3419 and 0FGL J1653.4-0200, the two brightest high Galactic latitude (absolute value (beta) >10 deg) gamma-ray sources from the three-month Fermi Large Area Telescope (LAT) bright source list that are still unidentified. Both were also detected previously by EGRET, and despite dedicated multi-wavelength follow-up, they are still not associated with established classes of gamma-ray emitters like pulsars or radio-loud active galactic nuclei. X-ray sources found in the ACIS-I fields of view are cataloged, and their basic properties are determined. These are discussed as candidate counterparts to 0FGL J1311.9-3419 and 0FGL J1653.4-0200, with particular emphasis on the brightest of the 9 and 13 Chandra sources detected within the respective Fermi-LAT 95% confidence regions. Further follow-up studies, including optical photometric and spectroscopic observations, are necessary to identify these X-ray candidate counterparts in order to ultimately reveal the nature of these enigmatic gamma-ray objects.

  10. Search for TeV gamma-ray sources in the galactic plane with the HAWC observatory

    NASA Astrophysics Data System (ADS)

    Zhou, Hao

    Cosmic rays, with an energy density of ˜ 1eVcm--3, play an important role in the evolution of our Galaxy. Very high energy (TeV) gamma rays provide unique information about the acceleration sites of Galactic cosmic rays. The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is an all-sky surveying instrument sensitive to gamma rays from 100,GeV to 100,TeV with a 2steradian instantaneous field of view and a duty cycle of >95%. The array is located in Sierra Negra, Mexico at an elevation of 4,100m and was inaugurated in March 2015. Thanks to its modular design, science operation began in Summer 2013 with one third of the array. Using this data, a survey of the inner Galaxy region of Galactic longitude l ∈ [+15°, +50°] and latitude b ∈ [--4°, +4°] is performed. To address the ambiguities arising from unresolved sources in the data, a maximum likelihood technique is used to identify point source candidates. Ten sources and candidate sources are identified in this analysis. Eight of these are associated with known TeV sources but not all have differential fluxes compatible with previous measurements. Three sources are detected with significances >5sigma after accounting for statistical trials, and are associated with known TeV sources. With data taken with the full array and improved reconstruction algorithms, the significance on the Crab nebula increases from 3.1sigma√day to 5.5sigma√day, which allows more sensitive sky surveys and more precise spectral and morphological analyses on individual sources.

  11. The Tropical Cyclones as the Possible Sources of Gamma Emission in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Klimov, S. I.; Sharkov, E. A.; Zelenyi, L. M.

    2009-12-01

    [*S. I. Klimov*] (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-1100; Fax: +7 (495) 333-1248; e-mail: sklimov@iki.rssi.ru)): E. A. Sharkov (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-1366; Fax: +7 (495) 333-1248; e-mail: e.sharkov@mail.ru): L. M. Zelenyi (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-2588; Fax: +7 (495) 333-3311; e-mail: lzelenyi@iki.rssi.ru ): The tropical cyclones (TC) are the strongest sources of thunderstorm activity (and, correspondingly, electromagnetic activity in the wide frequency range) in the Earth's atmosphere. The area dimensions of active region comprise to 1000 km and they achieve vertical development to 16-20 km with speeds of the displacement of the charged drops of water of up to 30 m/s. In the work are evaluated the physical mechanisms of the possibility of generation by TC of gamma emission (TCGE), which can be fixed from the low-orbital spacecraft of the type of the potential Russian micro-satellite Chibis-M (MS) [Zelenyi, et al, Walter de Gruter, Berlin, New York, p. 443-451, 2005]. The study of the new physical mechanisms of the electrical discharges in the atmosphere is basic scientific task Chibis- M [Angarov et al. Wissenschaft und Technik Verlag, Berlin, 2009, p. 69-72]. Complex of scientific instruments of the Chibis-M (overall mass of 12,5 kg) including the instruments: - X-ray - gamma detector (range of X-ray and gamma emission - 50-500 keV), - UV detector (range UV - emission - 300-450 nm), - radiofrequency analyzer (20 - 50 MHz). - digital camber of optical range (spatial resolution 300 m). - plasma-wave complex (0.1-40 kHz), it can be used also for the TCGE study. Delivery Chibis-M into orbit, close to the ISS orbit is intended to carry out in second-half 2010. Micro-satellite "Chibis-M" now designed in IKI. Total mass "Chibis

  12. VizieR Online Data Catalog: 8yr INTEGRAL/IBIS soft gamma-ray source obs. (Bird+, 2016)

    NASA Astrophysics Data System (ADS)

    Bird, A. J.; Bazzano, A.; Malizia, A.; Fiocchi, M.; Sguera, V.; Bassani, L.; Hill, A. B.; Ubertini, P.; Winkler, C.

    2016-04-01

    Here we report an all-sky soft gamma-ray source catalog based on IBIS observations performed during the first 1000 orbits of INTEGRAL. The database for the construction of the source list consists of all good-quality data available, from the launch in 2002, up to the end of 2010. This corresponds to ~110Ms of scientific public observations, with a concentrated coverage on the Galactic Plane and extragalactic deep exposures. This new catalog includes 939 sources above a 4.5σ significance threshold detected in the 17-100keV energy band, of which 120 sources represent previously undiscovered soft gamma-ray emitters. The source positions are determined, mean fluxes are provided in two main energy bands, and these are both reported together with the overall source exposure. Indicative levels of variability are provided, and outburst times and durations are given for transient sources. A comparison is made with previous IBIS catalogs and catalogs from other similar missions. (2 data files).

  13. High Energy Gamma Rays and Neutrinos from Star-forming Activities in the Galactic and Extragalactic Sources

    NASA Astrophysics Data System (ADS)

    Razzaque, Soebur

    2017-01-01

    The origin of the IceCube astrophysical neutrinos is an outstanding question. Star-forming activities which can accelerate particles to very high energies have been suggested as possible origin of these neutrinos. I will present a scenario where a subset of the neutrino events originate from the Galactic center region and Fermi Bubbles, resulting from star-forming activities. Multi-messenger signal in high energy gamma rays and neutrinos can probe this scenario. I will also present an analysis of the statistical association of the star-forming sources in our Galaxy and outside, with astrophysical neutrinos, as well as expected neutrino signal from these sources by fitting gamma-ray data.

  14. Experimental results on gamma-ray sources at E sub 0 = 10(13) - 10(14) eV

    NASA Technical Reports Server (NTRS)

    Morello, C.; Navarra, G.; Periale, L.; Vallania, P.

    1985-01-01

    The detection of very high energy gamma ray sources has been reported in the last few years by means of extensive air shower observations. The Plateau Rosa array for the registration of the arrival directions of extensive air showers has been operating since 1980 and first results on Cygnus X-3 have been reported. Here, the status of observations of Cygnus X-3 and of the Crab Pulsar are reported.

  15. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  16. Application of standard and advanced open source GIS software functionality for analysis of coordinates obtained by GNSS measurements

    NASA Astrophysics Data System (ADS)

    Ilieva, Tamara

    2016-04-01

    Currently there is wide variety of GNSS measurements used in the geodetic practice. The coordinates obtained by static, kinematic or precise point positioning GNSS measurements could be analyzed by using the standard functionality of any GIS software, but the open source ones give to the users an opportunity to make themselves advanced functionality. There is an option the coordinates obtained by measurements to be stored in spatial geodatabase and information for the precision and time of measurement to be added. The data could be visualized in different coordinate systems and projections and analyzed by applying different types of spatial analysis. The process also could be automated in high degree. An example with test data is prepared. It includes automated loading of files with coordinates obtained by GNSS measurements and additional information for the precision and the time of measurements. Standard and advanced open source GIS software functionality is used for automation of the analysis process. Also, graph theory is implemented for making time series of the data stored in the spatial geodatabase.

  17. Analysis of sewage sludge using an experimental prompt gamma neutron activation analysis (pgnaa) set-up with an am-be source

    NASA Astrophysics Data System (ADS)

    Idiri, Z.; Redjem, F.; Beloudah, N.

    2016-09-01

    An experimental PGNAA set-up using a 1 Ci Am-Be source has been developed and used for analysis of bulk sewage sludge samples issued from a wastewater treatment plant situated in an industrial area of Algiers. The sample dimensions were optimized using thermal neutron flux calculations carried out with the MCNP5 Monte Carlo Code. A methodology is then proposed to perform quantitative analysis using the absolute method. For this, average thermal neutron flux inside the sludge samples is deduced using average thermal neutron flux in reference water samples and thermal flux measurements with the aid of a 3He neutron detector. The average absolute gamma detection efficiency is determined using the prompt gammas emitted by chlorine dissolved in a water sample. The gamma detection efficiency is normalized for sludge samples using gamma attenuation factors calculated with the MCNP5 code for water and sludge. Wet and dehydrated sludge samples were analyzed. Nutritive elements (Ca, N, P, K) and heavy metals elements like Cr and Mn were determined. For some elements, the PGNAA values were compared to those obtained using Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma (ICP) methods. Good agreement is observed between the different values. Heavy element concentrations are very high compared to normal values; this is related to the fact that the wastewater treatment plant is treating not only domestic but also industrial wastewater that is probably rejected by industries without removal of pollutant elements. The detection limits for almost all elements of interest are sufficiently low for the method to be well suited for such analysis.

  18. THE ROLE OF INVERSE COMPTON SCATTERING IN SOLAR CORONAL HARD X-RAY AND {gamma}-RAY SOURCES

    SciTech Connect

    Chen Bin; Bastian, T. S.

    2012-05-01

    Coronal hard X-ray (HXR) and continuum {gamma}-ray sources associated with the impulsive phase of solar flares have been the subject of renewed interest in recent years. They have been interpreted in terms of thin-target, non-thermal bremsstrahlung emission. This interpretation has led to rather extreme physical requirements in some cases. For example, in one case, essentially all of the electrons in the source must be accelerated to non-thermal energies to account for the coronal HXR source. In other cases, the extremely hard photon spectra of the coronal continuum {gamma}-ray emission suggest that the low-energy cutoff of the electron energy distribution lies in the MeV energy range. Here, we consider the role of inverse Compton scattering (ICS) as an alternate emission mechanism in both the ultra- and mildly relativistic regimes. It is known that relativistic electrons are produced during powerful flares; these are capable of upscattering soft photospheric photons to HXR and {gamma}-ray energies. Previously overlooked is the fact that mildly relativistic electrons, generally produced in much greater numbers in flares of all sizes, can upscatter extreme-ultraviolet/soft X-ray photons to HXR energies. We also explore ICS on anisotropic electron distributions and show that the resulting emission can be significantly enhanced over an isotropic electron distribution for favorable viewing geometries. We briefly review results from bremsstrahlung emission and reconsider circumstances under which non-thermal bremsstrahlung or ICS would be favored. Finally, we consider a selection of coronal HXR and {gamma}-ray events and find that in some cases the ICS is a viable alternative emission mechanism.

  19. Source of heterogeneity in secreted interferon-gamma. A study on products of translation in vitro.

    PubMed Central

    Bulleid, N J; Curling, E; Freedman, R B; Jenkins, N

    1990-01-01

    A cDNA clone coding for human interferon-gamma (IFN-gamma) was subcloned into a transcription-translation vector. When the mRNA transcribed in vitro was added to a rabbit reticulocyte-lysate system, two polypeptides were synthesized: one corresponding in Mr to pre-IFN-gamma (18,000) and one with a lower Mr (12,000) which corresponds to a polypeptide arising from incorrect initiation of translation. When microsomal vesicles isolated from dog pancreas or Chinese-hamster ovary (CHO) cells were added to the translation system, translocation of the pre-IFN-gamma occurred, as judged by protection from exogenous proteinases. The resultant changes in the Mr of the translation products were indicative of signal-peptide cleavage and heterogeneous core glycosylation. When translation products were treated with N-glycanase, the higher-Mr products were no longer observed, consistent with removal of all oligosaccharide side chains, leaving a single core polypeptide. Glycosylation of the synthesized protein yielded both singly and doubly glycosylated products compatible with the glycosylation variants seen in secreted IFN-gamma. Quantitative differences were seen in the relative amounts of singly and doubly glycosylated products synthesized by dog pancreatic compared with CHO-derived microsomes. These data indicate that the relative amounts of IFN-gamma glycosylation variants are determined at an early stage in protein synthesis and that product variants may occur when IFN-gamma is expressed in cells derived from different tissues. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2114101

  20. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  1. Radiation reaction in the interaction of ultraintense laser with matter and gamma ray source

    NASA Astrophysics Data System (ADS)

    Ong, J. F.; Teo, W. R.; Moritaka, Toseo; Takabe, H.

    2016-05-01

    Radiation reaction (RR) force plays an important role in gamma ray production in the interaction of ultraintense laser with relativistic counterpropagating electron at intensity 1022 W/cm2 and beyond. The relationship between emission spectrum and initial kinetic energy of electron at such intensities is yet to be clear experimentally. On the other hand, the energy from both the relativistic electron beam and laser pulse may be converted into the gamma rays. Therefore, the conversion efficiency of energy purely from laser pulse into gamma rays is of great interest. We present simulation results of an electron dynamics in strong laser field by taking into account the RR effects. We investigated how the RR effects influence the emission spectrum and photon number distribution for different laser condition. We showed that the peaks of emission spectra are suppressed if higher initial kinetic energy of electron interacts with long laser pulse duration. We then list the conversion efficiencies of laser pulse energy into gamma ray. We note that an electron with energy of 40 MeV would convert up to 80% of the total of electromagnetic work and initial kinetic energy of electron when interacting with 10 fs laser pulse at intensity 2 ×1023 W/cm2. For a bunch of electron with charge 1 nC would emit around 0.1 J of energy into gamma ray emission.

  2. Vasorelaxant activity of extracts obtained from Apium graveolens: Possible source for vasorelaxant molecules isolation with potential antihypertensive effect

    PubMed Central

    Jorge, Vergara-Galicia; Ángel, Jimenez-Ramirez Luis; Adrián, Tun-Suarez; Francisco, Aguirre-Crespo; Anuar, Salazar-Gómez; Samuel, Estrada-Soto; Ángel, Sierra-Ovando; Emmanuel, Hernandez-Nuñez

    2013-01-01

    Objective To investigate vasorelaxant effect of organic extracts from Apium graveolens (A. graveolens) which is a part of a group of plants subjected to pharmacological and phytochemical study with the purpose of offering it as an ideal source for obtaining lead compounds for designing new therapeutic agents with potential vasorelaxant and antihypertensive effects. Methods An ex vivo method was employed to assess the vasorelaxant activity. This consisted of using rat aortic rings with and without endothelium precontracted with norepinephrine. Results All extracts caused concentration-dependent relaxation in precontracted aortic rings with and without endothelium; the most active extracts were Dichloromethane and Ethyl Acetate extracts from A. graveolens. These results suggested that secondary metabolites responsible for the vasorelaxant activity belong to a group of compounds of medium polarity. Also, our evidence showed that effect induced by dichloromethane and ethyl acetate extracts from A. graveolens is mediated probably by calcium antagonism. Conclusions A. graveolens represents an ideal source for obtaining lead compounds for designing new therapeutic agents with potential vasorelaxant and antihypertensive effects. PMID:24075341

  3. Monte Carlo analysis of the influence of germanium dead layer thickness on the HPGe gamma detector experimental efficiency measured by use of extended sources.

    PubMed

    Chham, E; García, F Piñero; El Bardouni, T; Ferro-García, M Angeles; Azahra, M; Benaalilou, K; Krikiz, M; Elyaakoubi, H; El Bakkali, J; Kaddour, M

    2014-09-22

    We have carried out a study to figure out the influence of crystal inactive-layer thickness on gamma spectra measured by an HPGe detector. The thickness of this dead layer (DL) is not known (no information about it was delivered by the manufacturer) due to the existence of a transition zone where photons are increasingly absorbed. To perform this analyses a virtual model of a Canberra HPGe detector was produced with the aid of MCNPX 2.7 code. The main objective of this work is to produce an optimal modeling for our GPGe detector. To this end, the study included the analysis of the total inactive germanium layer thickness and the active volume that are needed in order to obtain the smallest discrepancy between calculated and experimental efficiencies. Calculations and measurements were performed for all of the radionuclides included in a standard calibration gamma cocktail solution. Different geometry sources were used: a Marinelli and two other new sources represented as S(1) and S(2). The former was used for the determination of the active volume, whereas the two latter were used for the determination of the face and lateral DL, respectively. The model was validated by comparing calculated and experimental full energy peak efficiencies in the 50-1900keV energy range. the results show that the insertion of the DL parameter in the modeling is absolutely essential to reproduce the experimental results, and that the thickness of this DL varies from one position to the other on the detector surface.

  4. On the potential of atmospheric Cherenkov telescope arrays for resolving TeV gamma-ray sources in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Ambrogi, L.; De Oña Wilhelmi, E.; Aharonian, F.

    2016-07-01

    The potential of an array of imaging atmospheric Cherenkov telescopes to detect gamma-ray sources in complex regions has been investigated. The basic characteristics of the gamma-ray instrument have been parameterized using simple analytic representations. In addition to the ideal (Gaussian form) point spread function (PSF), the impact of more realistic non-Gaussian PSFs with tails has been considered. Simulations of isolated point-like and extended sources have been used as a benchmark to test and understand the response of the instrument. The capability of the instrument to resolve multiple sources has been analyzed and the corresponding instrument sensitivities calculated. The results are of particular interest for weak gamma-ray emitters located in crowded regions of the Galactic plane, where the chance of clustering of two or more gamma-ray sources within 1 deg is high.

  5. Inferring the spatial and energy distribution of gamma-ray burst sources. 1: Methodology

    NASA Technical Reports Server (NTRS)

    Loredo, Thomas J.; Wasserman, Ira M.

    1995-01-01

    We describe Bayesian methods for analyzing the distribution of gamma-ray burst peak photon fluxes and directions. These methods fit the differential distribution, and have the following advantages over rival methods: (1) they do not destroy information by binning or averaging the data (as do, say, chi squared, the averaged value of V/V(sub max), and angular moment analyses); (2) they straightforwardly handle uncertainties in the measured quantities; (3) they analyze the strength and direction information jointly; (4) they use information available about nondetections; and (5) they automatically identify and account for biases and selection effects given a precise description of the experiment. In these methods, the most important information needed about the instrument threshold is not its value at the times of burst triggers, as is used in the average value of V/V(sub max) analyses, but rather the value of the threshold at times when no trigger occurred. We show that this information can be summarized as an average detection efficiency that is similar to the product of the exposure and efficiency reported in the First Burst and Transient Source Experiment (BATSE) Burst (1B) Catalog, but significantly different from it at low fluxes. We also quantify an important bias that results from estimating the peak flux by scanning the burst to find the peak number of counts in a window of specified duration, as was done for the 1B Catalog. When the duration of the peak of the light curve is longer than the window duration, a simple flux estimate based on the peak counts significantly overestimates the peak flux in a nonlinear fashion that distorts the shape of the log(N)-log(P) distribution. This distortion also corrupts analyses of the V/V(sub max) distribution that use ratios of counts above background to estimate V/V(sub max). The Bayesian calculation specifies how to account for this bias. Implementation of the Bayesian approach requires some changes in the way burst

  6. The Fermi All-Sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in our Galaxy

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Scargle, J. D; Thompson, D. J.; Troja, E.

    2013-01-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  7. THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Antolini, E.; Bonamente, E.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bregeon, J.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P. E-mail: allafort@stanford.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS and others

    2013-07-01

    In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign and show that, despite their low latitudes, most of them are likely of extragalactic origin.

  8. A Search for the X-ray Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin; Swartz, Douglas A.; Carraminana, Alberto; Carrasco, Luis; Kaplan, David L.; Becker, Werner; Elsner, Ronald F.; Kanbach, Gottfried; ODell, Stephen L.; Tennant, Allyn F.

    2006-01-01

    We report observations with the Chandra X-ray Observatory of a field in the gamma-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars: None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017-if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification

  9. Measurement of the ambient gamma dose equivalent and kerma from the small 252Cf source at 1 meter and the small 60Co source at 2 meters

    SciTech Connect

    Carl, W. F.

    2015-07-30

    NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.

  10. Statistical data evaluation in mobile gamma spectrometry: an optimization of on-line search strategies in the scenario of lost point sources.

    PubMed

    Hjerpe, T; Finck, R R; Samuelsson, C

    2001-06-01

    There is a potential risk that hazardous radioactive sources could enter the environment, e.g., via satellite debris, smuggled radioactive goods, or lost metal scrap. From a radiation protection point of view there is a need for rapid and reliable methods for locating and identifying sources. The methods could also be used to locate hot spots after radioactive fallout. Carborne and airborne gamma spectrometry systems are suitable for the task. This work focuses on a situation where the radionuclide to search for is known, which is not an unlikely scenario. The possibility that the source is located near a road can be high, and thus motivating a carborne spectrometer system. The main object is to optimize on-line statistical methods in order to achieve a high probability for locating the point source and still have reasonably few false alarms caused by variations in the natural background radiation. Data were obtained from a carborne 3-L NaI(Tl) detector and two point sources located at various distances from the road. The nuclides used were 137Cs and 131I. Spectra were measured stationary on the road. From these measurements we have reconstructed counts in spectral windows applicable to different speed and sampling times; the time 3 s and speeds 32 and 54 km h(-1) are used in this work. The maximum distance a source can be located from the road and still be detected is estimated with four different statistical analysis methods. This distance is called the critical distance, CD. The method is applied on gross counts in the full energy peak spectral window. For each method alarm levels have been calculated from background data obtained in Scania (Skåne), in the south of Sweden. The results show large differences in CD. With the best approach, the two sources could be detected from about 180 m (137Cs, 6 GBq) and 170 m (131I, 4.5 GBq).

  11. PSR J2030+364I: Radio Discovery and Gamma-ray Study of a Middle-aged Pulsar in the Now Identified Fermi-LAT Source 1FGL J2030.0+3641

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Johnston, S.; Romani, R. W.; Parent, D.; Decesar, M. E.; Harding, A. K.; Donato, D.; SazParkinson, P. M.; Ferrara, E. C.; Freire, P. C. C.; Guillemot, L; Keith, M.; Kramer, M.; Wood, K. S.

    2011-01-01

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with IFGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.28, spin-down luminosity of 3 x 10(exp 34) erg/s, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1 % that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc/cu cm. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive - PSR J2030+364 I would have been found blindly in gamma rays if only > or approx. 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  12. PSR J2030+3641: RADIO DISCOVERY AND GAMMA-RAY STUDY OF A MIDDLE-AGED PULSAR IN THE NOW IDENTIFIED FERMI-LAT SOURCE 1FGL J2030.0+3641

    SciTech Connect

    Camilo, F.; Kerr, M.; Romani, R. W.; Ray, P. S.; Wood, K. S.; Ransom, S. M.; Johnston, S.; Keith, M.; Parent, D.; DeCesar, M. E.; Harding, A. K.; Ferrara, E. C.; Donato, D.; Saz Parkinson, P. M.; Freire, P. C. C.; Guillemot, L.; Kramer, M. E-mail: kerrm@stanford.edu

    2012-02-10

    In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi Large Area Telescope (LAT) sources, we have discovered the middle-aged pulsar J2030+3641 associated with 1FGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times which spans the entire Fermi mission. With a rotation period of 0.2 s, a spin-down luminosity of 3 Multiplication-Sign 10{sup 34} erg s{sup -1}, and a characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1% that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc cm{sup -3}. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive-PSR J2030+3641 would have been found blindly in gamma rays if only {approx}> 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.

  13. Computer program calculates gamma ray source strengths of materials exposed to neutron fluxes

    NASA Technical Reports Server (NTRS)

    Heiser, P. C.; Ricks, L. O.

    1968-01-01

    Computer program contains an input library of nuclear data for 44 elements and their isotopes to determine the induced radioactivity for gamma emitters. Minimum input requires the irradiation history of the element, a four-energy-group neutron flux, specification of an alloy composition by elements, and selection of the output.

  14. COS-B observations of localised sources of gamma-ray emission

    NASA Technical Reports Server (NTRS)

    Mayer-Hasselwander, H.

    1976-01-01

    In October 1975 the high energy gamma ray flux from the Vela pulsar was measured by COS-B to be 1.6 to 2.1 times higher than the flux measured by SAS-2 in 1973. The existence is confirmed of a second region of enhanced radiation in the galactic anticenter in addition to that from the Crab pulsar.

  15. A new design methodology of obtaining wide band high gain broadband parametric source for infrared wavelength applications

    NASA Astrophysics Data System (ADS)

    Maji, Partha Sona; Roy Chaudhuri, Partha

    2016-03-01

    In this article, we have presented a new design methodology of obtaining wide band parametric sources based on highly nonlinear chalcogenide material of As2S3. The dispersion profile of the photonic crystal fiber (PCF) has been engineered wisely by reducing the diameter of the second air-hole ring to have a favorable higher order dispersion parameter. The parametric gain dependence upon fiber length, pump power, and different pumping wavelengths has been investigated in detail. Based upon the nonlinear four wave mixing phenomenon, we are able to achieve a wideband parametric amplifier with peak gain of 29 dB with FWHM of ≈2000 nm around the IR wavelength by proper tailoring of the dispersion profile of the PCF with a continuous wave Erbium (Er3+)-doped ZBLAN fiber laser emitting at 2.8 μm as the pump source with an average power of 5 W. The new design methodology will unleash a new dimension to the chalcogenide material based investigation for wavelength translation around IR wavelength band.

  16. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.

    PubMed

    Fantidis, J G; Nicolaou, G E; Potolias, C; Vordos, N; Bandekas, D V

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources ((241)Am/Be, (252)Cf, (241)Am/B, and DT neutron generator). Among the different systems the (252)Cf neutron based PGNAA system has the best performance.

  17. MAGIC reveals a complex morphology within the unidentified gamma-ray source HESS J1857+026

    NASA Astrophysics Data System (ADS)

    MAGIC Collaboration; Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Carreto Fidalgo, D.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; Delgado Mendez, C.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Farina, E.; Ferenc, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hayashida, M.; Herrera, J.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Klepser, S.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Nowak, N.; de Oña Wilhelmi, E.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Partini, S.; Persic, M.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saggion, A.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Strzys, M.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zandanel, F.; Zanin, R.

    2014-11-01

    Aims: HESS J1857+026 is an extended TeV gamma-ray source that was discovered by H.E.S.S. as part of its Galactic plane survey. Given its broadband spectral energy distribution and its spatial coincidence with the young energetic pulsar PSR J1856+0245, the source has been put forward as a pulsar wind nebula (PWN) candidate. MAGIC has performed follow-up observations aimed at mapping the source down to energies approaching 100 GeV in order to better understand its complex morphology. Methods: HESS J1857+026 was observed by MAGIC in 2010, yielding 29 h of good quality stereoscopic data that allowed us to map the source region in two separate ranges of energy. Results: We detected very-high-energy gamma-ray emission from HESS J1857+026 with a significance of 12σ above 150 GeV. The differential energy spectrum between 100 GeV and 13 TeV is described well by a power law function dN/dE = N0(E/1TeV)-Γ with N0 = (5.37 ± 0.44stat ± 1.5sys) × 10-12 (TeV-1 cm-2 s-1) and Γ = 2.16 ± 0.07stat ± 0.15sys, which bridges the gap between the GeV emission measured by Fermi-LAT and the multi-TeV emission measured by H.E.S.S.. In addition, we present a detailed analysis of the energy-dependent morphology of this region. We couple these results with archival multiwavelength data and outline evidence in favor of a two-source scenario, whereby one source is associated with a PWN, while the other could be linked with a molecular cloud complex containing an Hii region and a possible gas cavity.

  18. A simplified model of the source channel of the Leksell GammaKnife® tested with PENELOPE

    NASA Astrophysics Data System (ADS)

    Al-Dweri, Feras M. O.; Lallena, Antonio M.; Vilches, Manuel

    2004-06-01

    Monte Carlo simulations using the code PENELOPE have been performed to test a simplified model of the source channel geometry of the Leksell GammaKnife®. The characteristics of the radiation passing through the treatment helmets are analysed in detail. We have found that only primary particles emitted from the source with polar angles smaller than 3° with respect to the beam axis are relevant for the dosimetry of the Gamma Knife. The photon trajectories reaching the output helmet collimators at (x, y, z = 236 mm) show strong correlations between rgr = (x2 + y2)1/2 and their polar angle thgr, on one side, and between tan-1(y/x) and their azimuthal angle phgr, on the other. This enables us to propose a simplified model which treats the full source channel as a mathematical collimator. This simplified model produces doses in good agreement with those found for the full geometry. In the region of maximal dose, the relative differences between both calculations are within 3%, for the 18 and 14 mm helmets, and 10%, for the 8 and 4 mm ones. Besides, the simplified model permits a strong reduction (larger than a factor 15) in the computational time.

  19. The Figaro experiment for the observation of time marked sources in the low energy gamma-ray range

    NASA Technical Reports Server (NTRS)

    Agnetta, G.; Agrinier, B.; Chabaud, J. P.; Costa, E.; Diraffaele, R.; Frabel, P.; Gerardi, G.; Gouiffes, C.; Landrea, M. F.; Mandrou, P.

    1985-01-01

    The only two firmly identified galactic gamma-ray sources in the second COS B catalogue are the pulsars PSR 0531+21 (Crab) and PSR 0833-45 (Vela). In the region between 100 keV and 10 MeV the detailed shape of the emission is particularly important, since one expects a turn-off which is related to geometry of the source. A marginal evidence of such a turn-off just below 1 MeV has been reported for the Vela pulsar. In order to study sources with a well marked time signature in this energy band, the FIGARO - French Italian Gamma Ray Observatory was designed. The first version was launched in November 1983 from the Sao Manuel base (Brazil), and was destroyed in a free fall following a balloon burst at an altitude of 50 mbar. A brief description is given of the new improved version of the experiment, FIGARO 2, which is nearly completed and whose launch is scheduled before summer 1986.

  20. Source of slow polarized positrons using the brilliant gamma beam at ELI-NP. Converter design and simulations

    NASA Astrophysics Data System (ADS)

    Djourelov, Nikolay; Oprisa, Andreea; Leca, Victor

    2016-01-01

    Simulations of slow positron (es+) source based on interaction of a circularly polarized gamma beam with a W converter were performed. The aim of the study was to propose a converter geometry and to determine the expected slow positron beam intensity and its spot size, and the degree of positron spin polarization, as well. The Monte Carlo simulations by means of GEANT4 were used to estimate the fast positron production and the moderation efficiency of the converter working as a self-moderator, as well. Finite element analysis by means of COMSOL Multiphysics was applied to calculate the fraction of extracted moderated positrons from the converter cells and the quality of the beam formation by focusing. Using the low energy (<3.5 MeV) gamma beam at ELI-NP with intensity of 2.4×1010γ/s the production of a slow positron beam with intensity of 1-2×106 es+/s is predicted. For the optimized converter geometry and in case of 100% circular polarization of the gammas the degree of spin polarization of the slow positron beam is expected to be 33%.

  1. Identification and control of spacecraft radiation sources of interference to X-ray and gamma-ray experiments

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Trombka, J. I.

    1972-01-01

    Apollo 15 and 16 will carry instruments for the purpose of measuring X-ray and gamma ray fluxes from the lunar surface and in cis-lunar space. The intensity levels expected are low over most of the energy range of interest, requiring that background contributions be minimized. The radiation sources on Apollo determined and their interference with these instruments evaluated. The results were used as a basis for dealing with this problem and for recommendations applicable to future manned and unmanned missions.

  2. GALAXY MERGERS AS A SOURCE OF COSMIC RAYS, NEUTRINOS, AND GAMMA RAYS

    SciTech Connect

    Kashiyama, Kazumi; Mészáros, Peter

    2014-07-20

    We investigate the shock acceleration of particles in massive galaxy mergers or collisions, and show that cosmic rays (CRs) can be accelerated up to the second knee energy ∼0.1-1 EeV and possibly beyond, with a hard spectral index of Γ ≈ 2. Such CRs lose their energy via hadronuclear interactions within a dynamical timescale of the merger shock, producing gamma rays and neutrinos as a by-product. If ∼10% of the shock dissipated energy goes into CR acceleration, some local merging galaxies will produce gamma-ray counterparts detectable by the Cherenkov Telescope Array. Also, based on the concordance cosmology, where a good fraction of the massive galaxies experience a major merger in a cosmological timescale, the neutrino counterparts can constitute ∼20%-60% of the isotropic background detected by IceCube.

  3. Analysis of Multi-band Photometry of Violently Variable Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Kadowaki, Jennifer; Malkan, M. A.

    2013-01-01

    We studied the relationship between rapid variations in the jet intensities and changes in accretion disk activity of blazar subtype, Flat Spectrum Radio Quasar (FSRQ). Fifteen known FSRQs were specifically chosen for their prominent big blue bumps with redshifts near z=1, in order for the rest-frame UV to be redshifted into the blue-band pass. Flux changes for these 15 FSRQs were monitored for 15 observational nights in BVRI-bands and 20 nights in JHK-bands over a 12 month period using NASA's Fermi Gamma-ray Space Telescope, Lick Observatory's Nickel Telescope, and Kitt Peak National Observatory's 2.1 m Telescope. With 6.3’ x 6.3’ field of view for Nickel’s Direct Imaging Camera and 20’ x 20’ for Flamingos IR Imaging Spectrometer, approximately a half dozen, bright and non-variable stars were available to compare the concurrent changes in each of the quasar’s brightness. This process of differential photometry yielded photometric measurements of quasar brightness with 1-2% level precision. Light curves were then created for these 15 monitored quasars in optical, infrared, and gamma-ray energy bands. Dominating the redder emission spectrum due to non-thermal, synchrotron radiation and compton scattering of gamma-rays off high energy electrons, jet activity was compared to bluer spectral regions having strong accretion disk component with rest frame of approximately 2000 Angstroms. Most of the targeted FSRQs varied significantly over the 12 month monitoring period, with varying levels of fluctuations for each observed wavelength. Some correlations between gamma-ray and optical wavelengths were also present, which will be further discussed in the poster.

  4. COS-B observations of localized sources of gamma-ray emission

    NASA Technical Reports Server (NTRS)

    1977-01-01

    In October 1975, the high-energy gamma-ray flux from the Vela pulsar measured by COS-B was found to be 1.6 to 2.1 times higher than the flux measured by SAS-2 in 1973. This factor is too large to be accounted for by error in the COS-B calibration or analysis. This is supported by a comparison of the COS-B measurement of the narrow-line component from the galactic center region with the flux derived from the measurements of SAS-2; the COS-B flux comes out about 15 percent lower than the SAS-2 figure. It is interesting to note that a glitch in the pulsar period took place about 1 month prior to the COS-B observation; the previous glitch occurred about 1.5 years before the SAS-2 observation. The increased rotational energy loss after the glitch cannot simply explain the increased gamma-ray luminosity. If the two phenomena are related, the gamma-ray emission, absorption, or beaming process must be extremely sensitive to changes in rotational parameters. The existence is confirmed of a second region of enhanced radiation in the galactic anticenter in addition to that from the Crab pulsar.

  5. Radio Follow-up on All Unassociated Gamma-Ray Sources from the Third Fermi Large Area Telescope Source Catalog

    NASA Astrophysics Data System (ADS)

    Schinzel, Frank K.; Petrov, Leonid; Taylor, Gregory B.; Edwards, Philip G.

    2017-04-01

    The third Fermi Large Area Telescope γ-ray source catalog (3FGL) contains over 1000 objects for which there is no known counterpart at other wavelengths. The physical origin of the γ-ray emission from those objects is unknown. Such objects are commonly referred to as unassociated and mostly do not exhibit significant γ-ray flux variability. We performed a survey of all unassociated γ-ray sources found in 3FGL using the Australia Telescope Compact Array and Very Large Array in the range 4.0–10.0 GHz. We found 2097 radio candidates for association with γ-ray sources. The follow-up with very long baseline interferometry for a subset of those candidates yielded 142 new associations with active galactic nuclei that are γ-ray sources, provided alternative associations for seven objects, and improved positions for another 144 known associations to the milliarcsecond level of accuracy. In addition, for 245 unassociated γ-ray sources we did not find a single compact radio source above 2 mJy within 3σ of their γ-ray localization. A significant fraction of these empty fields, 39%, are located away from the Galactic plane. We also found 36 extended radio sources that are candidates for association with a corresponding γ-ray object, 19 of which are most likely supernova remnants or H ii regions, whereas 17 could be radio galaxies.

  6. Dependence of the Number of Counts in Terrestrial Gamma-ray Flashes on the Source-to-satellite Radial Distance

    NASA Astrophysics Data System (ADS)

    Celestin, S. J.; Xu, W.; Pasko, V. P.

    2013-12-01

    Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from the Earth's atmosphere in association with thunderstorm activity. TGFs were serendipitously discovered by BATSE detector aboard the Compton Gamma-Ray Observatory originally launched to perform observations of celestial gamma-ray sources [Fishman et al., Science, 264, 1313, 1994]. These events have also been detected by the RHESSI satellite [Smith et al., Science, 307, 1085, 2005], the AGILE satellite [Marisaldi et al., JGR, 115, A00E13, 2010], and the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010]. Moreover, measurements have shown that TGFs are correlated with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., JGR, 116, A03316, 2011]. Photon spectra corresponding to model of relativistic runaway electron avalanches (RREAs) usually provide a good agreement with integrated satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. However, it has been shown that high-potential +IC lightning leaders could produce energetic electrons in sufficient number, with consistent energy distributions and altitudes to explain TGF characteristics [e.g., Xu et al., GRL, 39, L08801, 2012]. Recently, work based on offline search of TGFs has unveiled new important information [Gjesteland et al., GRL, 39, L05102, 2012; Briggs et al., JGR, 118, 3805, 2013] and substantial effort has been made to gain knowledge on the statistical properties of the TGF sources using satellite observations of the TGF fluence distributions [Collier et al., JGR, 116 A010320, 2011; Gjesteland et al., JGR, 116, A11313, 2011; Carlson et al., JGR, 117, A01314, 2012; Østgaard et al., JGR, 117, A03327, 2012]. In this work, we simulate TGFs as the result of energetic electrons produced during negative corona flashes of stepping negative leaders in high-potential +IC lightning and large-scale RREAs in thunderstorms

  7. Neutron stars as sources of gamma-ray bursts: Constraints from X-ray observations of source locations

    NASA Technical Reports Server (NTRS)

    Pizzichini, G.; Cline, T. L.; Desai, U.; Teegarden, B. J.; Hurley, K.; Niel, M.; Vedrenne, G.; Evans, W. D.; Fenimore, E. E.; Klebesadel, R. W.

    1982-01-01

    Results for three burst locations observed with the imaging proportional counter of the Einstein Observatory are given. The observations are used to determine temperature and accretion constraints for the burst source.

  8. Reconstruction of the activity of point sources for the accurate characterization of nuclear waste drums by segmented gamma scanning.

    PubMed

    Krings, Thomas; Mauerhofer, Eric

    2011-06-01

    This work improves the reliability and accuracy in the reconstruction of the total isotope activity content in heterogeneous nuclear waste drums containing point sources. The method is based on χ(2)-fits of the angular dependent count rate distribution measured during a drum rotation in segmented gamma scanning. A new description of the analytical calculation of the angular count rate distribution is introduced based on a more precise model of the collimated detector. The new description is validated and compared to the old description using MCNP5 simulations of angular dependent count rate distributions of Co-60 and Cs-137 point sources. It is shown that the new model describes the angular dependent count rate distribution significantly more accurate compared to the old model. Hence, the reconstruction of the activity is more accurate and the errors are considerably reduced that lead to more reliable results. Furthermore, the results are compared to the conventional reconstruction method assuming a homogeneous matrix and activity distribution.

  9. Sisal fibers: surface chemical modification using reagent obtained from a renewable source; characterization of hemicellulose and lignin as model study.

    PubMed

    Megiatto, Jackson D; Hoareau, William; Gardrat, Christian; Frollini, Elisabete; Castellan, Alain

    2007-10-17

    Sisal fibers have one of the greatest potentials among other lignocellulosic fibers to reinforce polymer matrices in composites. Sisal fibers have been modified to improve their compatibility with phenolic polymer matrices using furfuryl alcohol (FA) and polyfurfuryl alcohols (PFA) that can be obtained from renewable sources. The modification corresponded first to oxidation with ClO 2, which reacts mainly with guaiacyl and syringyl units of lignin, generating o- and p-quinones and muconic derivatives, followed by reaction with FA or PFA. The FA and PFA modified fibers presented a thin similar layer, indicating the polymer character of the coating. The untreated and treated sisal fibers were characterized by (13)C CP-MAS NMR spectrometry, thermal analysis, and scanning electron microscopy. Furthermore, for a better understanding of the reactions involved in the FA and PFA modifications, the sisal lignin previously extracted was also submitted to those reactions and characterized. The characterization of isolated lignin and hemicellulose provides some information on the chemical structure of the main constitutive macrocomponents of sisal fibers, such information being scarce in the literature.

  10. Obtaining oblique technique source-to-skin distances for irregular field (Clarkson) calculations: The Mayo Off-axis Distance Indicator

    SciTech Connect

    Lajoie, W.N. )

    1988-09-01

    Significant dose inhomogeneities may exist between the supraclavicular fossa (SCF) and the internal mammary chain (IMC) regions in the irregular L-shaped (hockey stick) field associated with breast cancer treatments. This dose inhomogeneity exists, in part, because of a positive air gap in the SCF and a negative air gap in the IMC locations. Independent of treatment technique, (i.e., whether anterior-posterior (AP) or oblique fields are used), accurate source-to-skin distance (SSD) values for the SCF, IMC, and axilla are necessary when doing an irregular field (Clarkson) dose calculation. However, when an oblique technique is used to treat the hockey stick field, obtaining non-central-axis SSDs is not as straightforward as when an AP technique is employed. The Mayo Off-axis Distance Indicator was constructed to slide into the blocking tray slot of the simulator or treatment machine. This mechanical measuring device provides quick and accurate SSD measurements for non-central-axis points under either AP or, more importantly, oblique treatment conditions.

  11. A Multi-Wavelength Search for a Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Weisskopf, Martin C.; Arzoumanian, Zaven; Lorimer, Duncan; Camilo, Fernando; Elsner, Ronald F.; Kanbach, Gottfried; Reimer, Olaf; Swartz, Douglas A.; Tennant, Allyn F.

    2004-01-01

    In search of the counterpart to the brightest unidentified gamma-ray source 3EG J2020+4017 (2CG078+2) we report on new X-ray and radio observations of the gamma-Cygni field with the Chandra X-ray Observatory and with the Green Bank Telescope (GBT). We also report on reanalysis of archival ROSAT data. With Chandra it became possible for the first time to measure the position of the putative gamma-ray counterpart RX J2020.2+4026 with sub-arcsec accuracy and to deduce its X-ray spectra1 characteristics. These observations demonstrate that RX J2020.2+4026 is associated with a K field star and therefore is unlikely to be the counterpart of the bright gamma-ray source 2CG078+2 in the SNR G78.2+2.1 as had been previously suggested.

  12. Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts (REDACTED)

    DTIC Science & Technology

    2015-05-08

    Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts...Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts...D000AH-0180.000) │ i Results in Brief Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for

  13. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  14. THREE YEARS OF FERMI GBM EARTH OCCULTATION MONITORING: OBSERVATIONS OF HARD X-RAY/SOFT GAMMA-RAY SOURCES

    SciTech Connect

    Wilson-Hodge, Colleen A.; Jenke, Peter; Case, Gary L.; Cherry, Michael L.; Rodi, James; Camero-Arranz, Ascension; Chaplin, Vandiver; Bhat, Narayan; Briggs, Michael S.; Connaughton, Valerie; Preece, Robert; Beklen, Elif; Finger, Mark; Paciesas, William S.; Greiner, Jochen; Meegan, Charles A.; Von Kienlin, Andreas; Kippen, R. Marc

    2012-08-01

    The Gamma-ray Burst Monitor (GBM) on board Fermi has been providing continuous data to the astronomical community since 2008 August 12. In this paper, we present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. From this catalog, we detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, and 2 other sources, plus the Crab Nebula, and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky-monitors below 100 keV and is the only all-sky monitor above 100 keV. Up-to-date light curves for all of the catalog sources can be found online.

  15. BLAZARS AS ULTRA-HIGH-ENERGY COSMIC-RAY SOURCES: IMPLICATIONS FOR TeV GAMMA-RAY OBSERVATIONS

    SciTech Connect

    Murase, Kohta; Dermer, Charles D.; Takami, Hajime; Migliori, Giulia

    2012-04-10

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 10{sup 19} eV, so {approx}> 10{sup 20} eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the {gamma}-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV {gamma}-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and {approx}>TeV photons from more distant radio-loud AGNs.

  16. Statistical properties of the time histories of cosmic gamma-ray bursts detected by the BATSE experiment of the Compton gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    Sagdeev, Roald

    1995-01-01

    The main scientific objectives of the project were: (1) Calculation of average time history for different subsets of BATSE gamma-ray bursts; (2) Comparison of averaged parameters and averaged time history for different Burst And Transient Source Experiments (BASTE) Gamma Ray Bursts (GRB's) sets; (3) Comparison of results obtained with BATSE data with those obtained with APEX experiment at PHOBOS mission; and (4) Use the results of (1)-(3) to compare current models of gamma-ray bursts sources.

  17. X-shooter spectroscopy of the puzzling gamma-ray source 3FGL1603.9-4903/PMN J1603-4904

    NASA Astrophysics Data System (ADS)

    Goldoni, P.; Pita, S.; Boisson, C.; Müller, C.; Dauser, T.; Jung, I.; Krauss, F.; Lenain, J.-P.; Sol, H.

    2016-08-01

    The Fermi/LAT instrument has detected about two thousand extragalactic high energy (E > 100 MeV) gamma-ray sources. 3FGL 1603.9-4903 is a very hard and bright one and it is associated to the radio source PMN J1603-4904. Its nature is not yet clear as it could be either a very peculiar BL Lac or a compact symmetric object radio source which are considered as the early stage of a radio galaxy. The latter, if confirmed, would be the first detection in gamma-rays for this class of objects. A redshift z=0.18 +/- 0.01 has recently been claimed on the basis of the detection of a single X-ray line at 5.44 +/- 0.05 keV which has been interpreted as a 6.4 keV (rest frame) fluorescent line. We observed PMN J1603-4904 with the UV-NIR VLT/X-shooter spectrograph for two hours. We extracted spectra in the visible and NIR range that we calibrated in flux and corrected for telluric absorption. We systematically searched for absorption and emission features. The source was detected starting from ~ 6300 Ang down to 24000 Ang with an intensity similar to that of its 2MASS counterpart and a mostly featureless spectrum. The continuum lacks absorption features and thus is non-stellar in origin and most likely non-thermal. In addition to this spectrum, we detected three emission lines that we interpret as the Halpha-[NII] complex, the [SII] 6716,6731 doublet and the [SIII] 9530 line; we obtain a redshift estimate of z= 0.2321 +/- 0.0004. The line ratios suggest that a LINER/Seyfert nucleus powers the emission. This new redshift measurement implies that the X-ray line previously detected should be interpreted as a 6.7 keV line which is very peculiar but not impossible for this kind of source.

  18. High energy gamma rays from nebulae associated with extragalactic microquasars and ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshiyuki; Lee, Shiu-Hang; Tanaka, Yasuyuki T.; Kobayashi, Shogo B.

    2017-04-01

    In the extragalactic sky, microquasars and ultra-luminous X-ray sources (ULXs) are known as energetic compact objects locating at off-nucleus positions in galaxies. Some of these objects are associated with expanding bubbles with a velocity of 80-250 km s - 1. We investigate the shock acceleration of particles in those expanding nebulae. The nebulae having fast expansion velocity ≳ 120km s - 1 are able to accelerate cosmic rays up to ∼100 TeV. If 10% of the shock kinetic energy goes into particle acceleration, powerful nebulae such as the microquasar S26 in NGC 7793 would emit gamma rays up to several tens TeV with a photon index of ∼2. These nebulae will be good targets for future Cherenkov Telescope Array observations given its sensitivity and angular resolution. They would also contribute to ∼7% of the unresolved cosmic gamma-ray background radiation at ≥ 0.1 GeV. In contrast, particle acceleration in slowly expanding nebulae ≲ 120km s - 1 would be less efficient due to ion-neutral collisions and result in softer spectra at ≳ 10 GeV.

  19. Search for ultra high energy gamma-rays from various sources

    NASA Technical Reports Server (NTRS)

    Dzikowski, T.; Gawin, J.; Grochalska, B.; Korejwo, J.; Wdowczyk, J.

    1985-01-01

    The hypothesis that there exists an excess of showers from the Galactic plane on the level 1 to 2% at energies just above 10 to the 16th power eV is explored. The excess shower from the Galactic plane seems to be very similar in properties to excess showers from the point sources/flat spectrum, deficit of low energy muons. Those facts suggest that the excess from the Galactic plane are probably due to summing up of the contribution from individual point sources. That in turn suggest that those sources are rather numerous.

  20. Quality controls for gamma cameras and PET cameras: development of a free open-source ImageJ program

    NASA Astrophysics Data System (ADS)

    Carlier, Thomas; Ferrer, Ludovic; Berruchon, Jean B.; Cuissard, Regis; Martineau, Adeline; Loonis, Pierre; Couturier, Olivier

    2005-04-01

    Acquisition data and treatments for quality controls of gamma cameras and Positron Emission Tomography (PET) cameras are commonly performed with dedicated program packages, which are running only on manufactured computers and differ from each other, depending on camera company and program versions. The aim of this work was to develop a free open-source program (written in JAVA language) to analyze data for quality control of gamma cameras and PET cameras. The program is based on the free application software ImageJ and can be easily loaded on any computer operating system (OS) and thus on any type of computer in every nuclear medicine department. Based on standard parameters of quality control, this program includes 1) for gamma camera: a rotation center control (extracted from the American Association of Physics in Medicine, AAPM, norms) and two uniformity controls (extracted from the Institute of Physics and Engineering in Medicine, IPEM, and National Electronic Manufacturers Association, NEMA, norms). 2) For PET systems, three quality controls recently defined by the French Medical Physicist Society (SFPM), i.e. spatial resolution and uniformity in a reconstructed slice and scatter fraction, are included. The determination of spatial resolution (thanks to the Point Spread Function, PSF, acquisition) allows to compute the Modulation Transfer Function (MTF) in both modalities of cameras. All the control functions are included in a tool box which is a free ImageJ plugin and could be soon downloaded from Internet. Besides, this program offers the possibility to save on HTML format the uniformity quality control results and a warning can be set to automatically inform users in case of abnormal results. The architecture of the program allows users to easily add any other specific quality control program. Finally, this toolkit is an easy and robust tool to perform quality control on gamma cameras and PET cameras based on standard computation parameters, is free, run on

  1. Detection of point sources with spark chamber gamma-ray telescopes

    NASA Technical Reports Server (NTRS)

    Mattox, J. R.

    1991-01-01

    The sensitivity of cross correlation and maximum likelihood, two methods under consideration by the EGRET team for detecting point sources, is analyzed numerically. Cross correlation is found to be 9 +/- 2 percent more sensitive than maximum likelihood.

  2. Acceleration efficiency in nonthermal sources and the soft gamma rays from NGC 4151 observed by OSSE and SIGMA

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Lightman, Alan P.; Maciolek-Niedzwiecki, Andrzej

    1993-01-01

    We show that the recent observations of the Seyfert galaxy NGC 4151 in hard X-rays and soft gamma rays by the OSSE and SIGMA detectors on board CGRO and GRANAT, respectively, are well explained by a nonthermal model with acceleration of relativistic electrons at an efficiency of less than 50 percent and with the remaining power dissipated thermally in the source (the standard nonthermal e(+/-) pair model assumed 100 percent efficiency). Such an acceleration efficiency is generally expected on physical grounds. The resulting model unifies previously proposed purely thermal and purely nonthermal models. The pure nonthermal model for NGC 4151 appears to be ruled out. The pure thermal model gives a worse fit to the data than our hybrid nonthermal/thermal model.

  3. WHAT IS THE REDSHIFT OF THE GAMMA-RAY BL LAC SOURCE S4 0954+65?

    SciTech Connect

    Landoni, M.; Falomo, R.; Treves, A.; Scarpa, R.; Payá, D. Reverte

    2015-12-15

    High signal-to-noise ratio spectroscopic observations of the BL Lac object S4 0954+65 at the alleged redshift z = 0.367 are presented. This source was detected at gamma frequencies by the MAGIC (TeV) and FERMI (GeV) telescopes during a remarkable outburst that occurred in 2015 February, making the determination of its distance particularly relevant for our understanding of the properties of the extragalactic background light. Contrary to previous reports on the redshift, we found that the optical spectrum is featureless at an equivalent width limit of ∼0.1 Å. A critical analysis of the existing observations indicates that the redshift is still unknown. Based on the new data we estimate a lower limit to the redshift at z ≥ 0.45.

  4. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    DOEpatents

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  5. Recent status on cobalt-60 gamma ray radiation sources production and its application in China

    NASA Astrophysics Data System (ADS)

    Zhijian, Cao; Yunjiang, Song; Chunchua, Zhang; Maoling, Li

    1993-07-01

    This paper describes the recent status on Co-60 γ ray radiation sources production and its application in China. At present, the production capacity of Co-60 γ ray radiation sources in China is about 11.1 PBq(0.3 MCi) per year, 5 years later, it can increase to 37 PBq(1 MCi) per year. The standard dimension of Co-60 γ ray radiation sources is φ 15×90 mm, the radioactivity of each sources is 370TBq - 740TBq(1000-2000 Ci). There are over 150 Co-60 γ ray radiation facilities with total design capacity of over 370 PBq(10 MCi) and practical capacity of about 92.5 PBq(2.5 MCi) in operation. The number of Co-60 γ ray radiation facilities with practical capacity of over 3.7 PBq(0.1 MCi) is 14. The main applications of the Co-60 γ ray sources are radiation crosslinking application, radiation sterilization of disposable medical supplies and food irradiation. The prospect of Co-60 γ ray radiation sources production and its application in China is good.

  6. Gamma ray generator

    SciTech Connect

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  7. Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, Southern Italy).

    PubMed

    Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; De Rosa, Rosanna; Scarciglia, Fabio; Buttafuoco, Gabriele

    2016-05-01

    The study, which represents an innovative scientific strategy to approach the study of natural radioactivity in terms of spatial and temporal variability, was aimed to characterize the background levels of natural radionuclides in soil and rock in the urban and peri-urban soil of a southern Italy area; to quantify their variations due to radionuclide bearing minerals and soil properties, taking into account nature and extent of seasonality influence. Its main novelty is taking into account the effect of climate in controlling natural gamma radioactivity as well as analysing soil radioactivity in terms of soil properties and pedogenetic processes. In different bedrocks and soils, activities of natural radionuclides ((238)U, (232)Th (4) K) and total radioactivity were measured at 181 locations by means of scintillation γ-ray spectrometry. In addition, selected rocks samples were collected and analysed, using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS) and an X-Ray Powder Diffraction (XRPD), to assess the main sources of radionuclides. The natural-gamma background is intimately related to differing petrologic features of crystalline source rocks and to peculiar pedogenetic features and processes. The radioactivity survey was conducted during two different seasons with marked changes in the main climatic characteristics, namely dry summer and moist winter, to evaluate possible effects of seasonal climatic variations and soil properties on radioactivity measurements. Seasonal variations of radionuclides activities show their peak values in summer. The activities of (238)U, (232)Th and (4) K exhibit a positive correlation with the air temperature and are negatively correlated with precipitations.

  8. Observation of the TeV Gamma-Ray Source MGRO J1908+06 with ARGO-YBJ

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Bleve, C.; Bolognino, I.; Branchini, P.; Budano, A.; Calabrese Melcarne, A. K.; Camarri, P.; Cao, Z.; Cardarelli, R.; Catalanotti, S.; Cattaneo, C.; Chen, S. Z.; Chen, T. L.; Chen, Y.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Alí Staiti, G.; Danzengluobu; Dattoli, M.; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Ding, X. H.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Galeazzi, F.; Giroletti, E.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Huang, Q.; Iacovacci, M.; Iuppa, R.; James, I.; Jia, H. Y.; Labaciren; Li, H. J.; Li, J. Y.; Li, X. X.; Liguori, G.; Liu, C.; Liu, C. Q.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Martello, D.; Mastroianni, S.; Montini, P.; Ning, C. C.; Pagliaro, A.; Panareo, M.; Panico, B.; Perrone, L.; Pistilli, P.; Qu, X. B.; Ruggieri, F.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Stanescu, C.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, B.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xu, B.; Xue, L.; Yan, Y. X.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, Jilong; Zhang, Jianli; Zhang, L.; Zhang, P.; Zhang, X. Y.; Zhang, Y.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; Zizzi, G.; Argo-YBJ Collaboration

    2012-12-01

    The extended gamma-ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for ~4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parameterizing the source shape with a two-dimensional Gauss function, we estimate an extension of σext = 0fdg49 ± 0fdg22, which is consistent with a previous measurement by the Cherenkov Array H.E.S.S. The observed energy spectrum is dN/dE = 6.1 ± 1.4 × 10-13 (E/4 TeV)-2.54 ± 0.36 photons cm-2 s-1 TeV-1, in the energy range of ~1-20 TeV. The measured gamma-ray flux is consistent with the results of the Milagro detector, but is ~2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ and recorded in four years of data support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity over 1 TeV ~ 1.8 times the luminosity of the Crab Nebula.

  9. Observations of the unidentified gamma-ray source TeV J2032+4130 by Veritas

    SciTech Connect

    Aliu, E.; Errando, M.; Aune, T.; Behera, B.; Chen, X.; Federici, S.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Cardenzana, J. V.; Ciupik, L.; Connolly, M. P.; Cui, W.; Duke, C.; Dumm, J.; Falcone, A. E-mail: gareth.hughes@desy.de; and others

    2014-03-01

    TeV J2032+4130 was the first unidentified source discovered at very high energies (VHEs; E > 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130 based on 48.2 hr of data taken from 2009 to 2012 by the Very Energetic Radiation Imaging Telescope Array System experiment. The source is detected at 8.7 standard deviations (σ) and is found to be extended and asymmetric with a width of 9.'5 ± 1.'2 along the major axis and 4.'0 ± 0.'5 along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 ± 0.14{sub stat} ± 0.21{sub sys} and a normalization of (9.5 ± 1.6{sub stat} ± 2.2{sub sys}) × 10{sup –13} TeV{sup –1} cm{sup –2} s{sup –1} at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula interpretation.

  10. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    SciTech Connect

    Puehlhofer, Gerd

    2009-05-11

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula.Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population.Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  11. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  12. Analysis of gamma radiation from a radon source: Indications of a solar influence

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Steinitz, G.; Fischbach, E.; Javorsek, D.; Jenkins, J. H.

    2012-08-01

    This article presents an analysis of about 29,000 measurements of gamma radiation associated with the decay of radon in a sealed container at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between 28 January 2007 and 10 May 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of periodicities, including two at approximately 11.2 year-1 and 12.5 year-1. We have previously found these oscillations in nuclear-decay data acquired at the Brookhaven National Laboratory and at the Physiklisch-Technische Bundesanstalt, and we have suggested that these oscillations are attributable to some form of solar radiation that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. This may be a systematic effect but, if it is not, this property should help narrow the theoretical options for the mechanism responsible for decay-rate variability.

  13. SUZAKU X-RAY FOLLOW-UP OBSERVATIONS OF SEVEN UNASSOCIATED FERMI-LAT GAMMA-RAY SOURCES AT HIGH GALACTIC LATITUDES

    SciTech Connect

    Takahashi, Y.; Kataoka, J.; Nakamori, T.; Maeda, K.; Makiya, R.; Totani, T.; Cheung, C. C.; Stawarz, L.; Guillemot, L.; Freire, P. C. C.; Cognard, I.

    2012-03-01

    We report on our second-year campaign of X-ray follow-up observations of unidentified Fermi Large Area Telescope (LAT) {gamma}-ray sources at high Galactic latitudes (|b| > 10 Degree-Sign ) using the X-ray Imaging Spectrometer on board the Suzaku X-ray Observatory. In this second year of the project, seven new targets were selected from the First Fermi-LAT Catalog, and studied with 20-40 ks effective Suzaku exposures. We detected an X-ray point source coincident with the position of the recently discovered millisecond pulsar (MSP) PSR J2302+4442 within the 95% confidence error circle of 1FGL J2302.8+4443. The X-ray spectrum of the detected counterpart was well fit by a blackbody model with temperature of kT {approx_equal} 0.3 keV, consistent with an origin of the observed X-ray photons from the surface of a rotating magnetized neutron star. For four other targets that were also recently identified with a normal pulsar (1FGL J0106.7+4853) and MSPs (1FGL J1312.6+0048, J1902.0-5110, and J2043.2+1709), only upper limits in the 0.5-10 keV band were obtained at the flux levels of {approx_equal} 10{sup -14} erg cm{sup -2} s{sup -1}. A weak X-ray source was found in the field of 1FGL J1739.4+8717, but its association with the variable {gamma}-ray emitter could not be confirmed with the available Suzaku data alone. For the remaining Fermi-LAT object 1FGL J1743.8-7620 no X-ray source was detected within the LAT 95% error ellipse. We briefly discuss the general properties of the observed high Galactic-latitude Fermi-LAT objects by comparing their multiwavelength properties with those of known blazars and MSPs.

  14. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    PubMed

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-03-01

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in  125I and  103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as  125I and  103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for  103Pd and 10 cm for  125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for  192Ir and less than 1.2% for  137Cs between the three codes. PACS number(s): 87.56.bg.

  15. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    PubMed

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-03-08

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.

  16. Possible Nuclear Safeguards Applications: Workshop on Next-Generation Laser Compton Gamma Source

    SciTech Connect

    Durham, J. Matthew

    2016-11-17

    These are a set of slides for the development of a next-generation photon source white paper. The following topics are covered in these slides: Nuclear Safeguards; The Nuclear Fuel Cycle; Precise isotopic determination via NRF; UF6 Enrichment Assay; and Non-Destructive Assay of Spent Nuclear Fuel. In summary: A way to non-destructively measure precise isotopics of ~kg and larger samples has multiple uses in nuclear safeguards; Ideally this is a compact, fieldable device that can be used by international inspectors. Must be rugged and reliable; A next-generation source can be used as a testing ground for these techniques as technology develops.

  17. A Possible X-Ray and Radio Counterpart of the High-Energy Gamma-Ray Source 3EG J2227+6122

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Gotthelf, E. V.; Helfand, D. J.; Leighly, K. M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    The identity of the persistent EGRET sources in the Galactic plane is largely a mystery. For one of these, 3EG J2227+6122, our complete census of X-ray and radio sources in its error circle reveals a remarkable superposition of an incomplete radio shell with a flat radio spectrum, and a compact, power-law X-ray source with photon index Gamma = 1.5 and with no obvious optical counterpart. The radio shell is polarized at a level of approx. = 25%. The anomalous properties of the radio source prevent us from deriving a completely satisfactory theory as to its nature. Nevertheless, using data from ROSAT, ASCA, the VLA, and optical imaging and spectroscopy, we argue that the X-ray source may be a young pulsar with an associated wind-blown bubble or bow shock nebula, and an example of the class of radio-quiet pulsars which are hypothesized to comprise the majority of EGRET sources in the Galaxy. The distance to this source can be estimated from its X-ray absorption as 3 kpc. At this distance, the X-ray and gamma-ray luminosities would be approx. = 1.7 x 10(exp 33) and approx. = 3.7 x 10(exp 35) erg/s, respectively, which would require an energetic pulsar to power them. If, on the contrary, this X-ray source is not the counterpart of 3EG J2227+6122, then by process of elimination the X-ray luminosity of the latter must be less than 10(exp -4) of its gamma-ray luminosity, a condition not satisfied by any established class of gamma-ray source counterpart. This would require the existence of at least a quantitatively new type of EGRET source, as has been suggested in studies of other EGRET fields.

  18. A Near-Surface Burst EMP Driver Package for Prompt Gamma-Induced Sources

    DTIC Science & Technology

    1980-09-01

    is x = z/(p 2 + z2)1/2 then the probability density function (pdf), which describes an iso - tropic source angular distribution, is p(x) = 1/2, -1 4 x 1...CENTINELA AND TEALS EGG WASHINGTON ANALYTICAL ALEXANDRIA, VA 22303 ATTN JOHN B. SINGLETARY SERVICES CENTER, INC. ATTN CTOC 6/110 P.O. BOX 10218 GENERAL

  19. Alignment of leading-edge and peak-picking time of arrival methods to obtain accurate source locations

    SciTech Connect

    Roussel-Dupre, R.; Symbalisty, E.; Fox, C.; and Vanderlinde, O.

    2009-08-01

    The location of a radiating source can be determined by time-tagging the arrival of the radiated signal at a network of spatially distributed sensors. The accuracy of this approach depends strongly on the particular time-tagging algorithm employed at each of the sensors. If different techniques are used across the network, then the time tags must be referenced to a common fiducial for maximum location accuracy. In this report we derive the time corrections needed to temporally align leading-edge, time-tagging techniques with peak-picking algorithms. We focus on broadband radio frequency (RF) sources, an ionospheric propagation channel, and narrowband receivers, but the final results can be generalized to apply to any source, propagation environment, and sensor. Our analytic results are checked against numerical simulations for a number of representative cases and agree with the specific leading-edge algorithm studied independently by Kim and Eng (1995) and Pongratz (2005 and 2007).

  20. Measurements and analysis of bremsstrahlung x-ray spectrum obtained in NANOGAN electron cyclotron resonance ion source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.; Rodrigues, G.; Kanjilal, D.; Roy, A.

    2008-02-15

    From the ECR plasma, hot electrons leak across the magnetic lines of force and by striking the plasma chamber produce bremsstrahlung x-rays. The wall bremsstrahlung gives information on the confinement status of hot electron. In our studies, experimental measurements are carried out in NANOGAN electron cyclotron resonance (ECR) ion source for the wall bremsstrahlung x-rays and the results are presented. While optimizing a particular charge state in ECR ion source, experimental parameters are adjusted to get a maximum current. The wall bremsstrahlung components are studied in these cases for understanding the hot electron confinement conditions.

  1. Genetic diversity demonstrated by pulsed field gel electrophoresis of Salmonella enterica isolates obtained from diverse sources in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the genetic diversity of Salmonella isolates recovered from a variety of sources using pulsed-field gel electrophoresis (PFGE) to assess their possible relatedness. Salmonella was isolated from ca. 52% of samples from a pepper var. Bell production system. A to...

  2. The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.

    2016-01-01

    The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.

  3. Radioactive preparations with high specific activity and gamma-sources on their base

    SciTech Connect

    Chesanov, V.V.; Demchenko, N.F.; Karasev, V.T.

    1993-12-31

    According to expert`s estimations, the following radionuclides and specific activities will be in great demand in the future: cobalt 60 (400-500Ci/g), iridium 192 (500-800 Ci/g), ytterbium 169 (800-1000 Ci/g), thullium 170 (700-800 Ci/g), selenium 75 (500-800 Ci/g), antimony 124 (30-40 Ci/g), and gadolinium 153 (not less than 50 Ci/g). In addition, the Phosphorus 33 radionuclide preparations with specific activity more than 100,000 Ci/g applied in biochemical investigations are in considerable demand. This paper discusses the investigations and developmental results performed with the preparation and sources of the mentioned radionuclides. Applications are also discussed. All medical and industrial sources are safe and reliable and do not contaminate the environment. Due to ISO 2919-80 classification they are assigned to special form substances.

  4. Novae. Fermi establishes classical novae as a distinct class of gamma-ray sources.

    PubMed

    2014-08-01

    A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in γ rays and stood in contrast to the first γ-ray-detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft-spectrum transient γ-ray sources detected over 2- to 3-week durations. The γ-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic γ-ray sources.

  5. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  6. Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation analysis (PGNAA) is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV, and D-T wi...

  7. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  8. Ammonia excitation imaging of shocked gas towards the W28 gamma-ray source HESS J1801-233

    NASA Astrophysics Data System (ADS)

    Maxted, Nigel I.; de Wilt, Phoebe; Rowell, Gavin P.; Nicholas, Brent P.; Burton, Michael. G.; Walsh, Andrew; Fukui, Yasuo; Kawamura, Akiko

    2016-10-01

    We present 12 mm Mopra observations of the dense (>103 cm-3) molecular gas towards the north-east of the W28 supernova remnant (SNR). This cloud is spatially well matched to the TeV gamma-ray source HESS J1801-233 and is known to be an SNR-molecular cloud interaction region. Shock-disruption is evident from broad NH3 (1,1) spectral linewidths in regions towards the W28 SNR, while strong detections of spatially extended NH3 (3,3), NH3(4,4) and NH3(6,6) inversion emission towards the cloud strengthen the case for the existence of high temperatures within the cloud. Velocity dispersion measurements and NH3(n,n)/(1,1) ratio maps, where n = 2, 3, 4 and 6, indicate that the source of disruption is from the side of the cloud nearest to the W28 SNR, suggesting that it is the source of cloud-disruption. Towards part of the cloud, the ratio of ortho to para-NH3 is observed to exceed 2, suggesting gas-phase NH3 enrichment due to NH3 liberation from dust-grain mantles. The measured NH3 abundance with respect to H2 is ˜(1.2 ± 0.5) × 10-9, which is not high, as might be expected for a hot, dense molecular cloud enriched by sublimated grain-surface molecules. The results are suggestive of NH3 sublimation and destruction in this molecular cloud, which is likely to be interacting with the W28 SNR shock.

  9. Radionuclide preparations with high specific activity and gamma-sources on their basis

    SciTech Connect

    Chesanov, V.V.; Demchenko, N.F.; Karasev, V.I.

    1993-12-31

    According to expert`s estimations, the following radionuclides and specific activities will be in great demand in the future: cobalt 60 (400-500Ci/g), iridium 192 (500-800 Ci/g), ytterbium 169 (800-1000 Ci/g), thulium 170 (700-800 Ci/g), selenium 75 (500-800 Ci/g), antimony 124 (30-40 Ci/g), and gadolinium 153 (not less than 50 Ci/g). In addition, the Phosphorus 33 radionuclide preparations with specific activity more than 100,000 Ci/g applied in biochemical investigations are in considerable demand. This paper discusses the investigations and developmental results performed with the preparation and sources of the mentioned radionuclides. The research reactors utilized are also described.

  10. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-01

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (lsim10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ~1046-1048 erg s-1 depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ~4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L jet, kin/L disk > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (lsim 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  11. Neutron and gamma-ray shielding requirements for a below-ground neutrino detector system at the Rutherford Laboratory Spallation Neutron Source

    SciTech Connect

    Gabriel, T.A.; Lillie, R.A.; Childs, R.L.; Wilczynski, J.; Zeitnitz, B.

    1983-03-01

    The neutron and gamma-ray shielding requirements for a proposed neutrino system below the target station at the Rutherford Laboratory Spallation Neutron Source (SNS) are studied. The present shield below the station consists of 2 meters of iron and 1 meter of concrete, below which is chalk (CaCO/sub 3/). An underground bunker housing the neutrino detector system would require additional shielding consisting of 6 meters of the chalk plus approx. 3 meters of iron to reduce the number of high-energy (> approx. 7 MeV) neutrons and gamma rays entering the detector system to an acceptable level of approx. 1 per day.

  12. Seasonal Variations of the Ionosphere Scintillations Parameters Obtained from the Long Observations of the Power Cosmic Radio Sources at the Decameter Wave Range

    NASA Astrophysics Data System (ADS)

    Lytvynenko, O. A.; Panishko, S. K.

    Observations of the four power cosmic radio sources were carried out on the radio telescope (RT) URAN-4 during 1987-1990 and 1998-2007 at the frequencies 20 and 25 MHz. Effects of ionosphere and in particular existence of intensity fluctuations on the cosmic radio sources records, or scintillations, are essential at the decameter wave range. Long series of the ionosphere scintillations parameters such as indices, periods and spectrum slopes were obtained after observation data proceeding. Behavior of the seasonal variations was investigated on this data. Obtained dependencies were compared with the indices of the solar and geomagnetic activity.

  13. Maximum Likelihood Expectation-Maximization Algorithms Applied to Localization and Identification of Radioactive Sources with Recent Coded Mask Gamma Cameras

    SciTech Connect

    Lemaire, H.; Barat, E.; Carrel, F.; Dautremer, T.; Dubos, S.; Limousin, O.; Montagu, T.; Normand, S.; Schoepff, V.; Amgarou, K.; Menaa, N.; Angelique, J.-C.; Patoz, A.

    2015-07-01

    In this work, we tested Maximum likelihood expectation-maximization (MLEM) algorithms optimized for gamma imaging applications on two recent coded mask gamma cameras. We respectively took advantage of the characteristics of the GAMPIX and Caliste HD-based gamma cameras: noise reduction thanks to mask/anti-mask procedure but limited energy resolution for GAMPIX, high energy resolution for Caliste HD. One of our short-term perspectives is the test of MAPEM algorithms integrating specific prior values for the data to reconstruct adapted to the gamma imaging topic. (authors)

  14. The Effect of Gamma-ray Detector Energy Resolution on the Ability to Identify Radioactive Sources

    SciTech Connect

    Nelson, K E; Gosnell, T B; Knapp, D A

    2009-03-05

    This report describes the results of an initial study on radiation detector spectral resolution, along with the underlying methodology used. The study was done as part of an ongoing effort in Detection Modeling and Operational Analysis (DMOA) for the DNDO System Architecture Directorate. The study objective was to assess the impact of energy resolution on radionuclide identification capability, measured by the ability to reliably discriminate between spectra associated with 'threats' (defined as fissile materials) and radioactive 'non-threats' that might be present in the normal stream of commerce. Although numerous factors must be considered in deciding which detector technology is appropriate for a specific application, spectral resolution is a critical one for homeland security applications in which a broad range of non-threat sources are present and very low false-alarm rates are required. In this study, we have proposed a metric for quantifying discrimination capability, and have shown how this metric depends on resolution. In future work we will consider other important factors, such as efficiency and volume, and the relative frequency of spectra known to be discrimination challenges in practical applications.

  15. The impact of cobalt-60 source age on biologically effective dose in high-dose functional Gamma Knife radiosurgery.

    PubMed

    Kann, Benjamin H; Yu, James B; Stahl, John M; Bond, James E; Loiselle, Christopher; Chiang, Veronica L; Bindra, Ranjit S; Gerrard, Jason L; Carlson, David J

    2016-12-01

    OBJECTIVE Functional Gamma Knife radiosurgery (GKRS) procedures have been increasingly used for treating patients with tremor, trigeminal neuralgia (TN), and refractory obsessive-compulsive disorder. Although its rates of toxicity are low, GKRS has been associated with some, if low, risks for serious sequelae, including hemiparesis and even death. Anecdotal reports have suggested that even with a standardized prescription dose, rates of functional GKRS toxicity increase after replacement of an old cobalt-60 source with a new source. Dose rate changes over the course of the useful lifespan of cobalt-60 are not routinely considered in the study of patients treated with functional GKRS, but these changes may be associated with significant variation in the biologically effective dose (BED) delivered to neural tissue. METHODS The authors constructed a linear-quadratic model of BED in functional GKRS with a dose-protraction factor to correct for intrafraction DNA-damage repair and used standard single-fraction doses for trigeminal nerve ablation for TN (85 Gy), thalamotomy for tremor (130 Gy), and capsulotomy for obsessive-compulsive disorder (180 Gy). Dose rate and treatment time for functional GKRS involving 4-mm collimators were derived from calibrations in the authors' department and from the cobalt-60 decay rate. Biologically plausible values for the ratio for radiosensitivity to fraction size (α/β) and double-strand break (DSB) DNA repair halftimes (τ) were estimated from published experimental data. The biphasic characteristics of DSB repair in normal tissue were accounted for in deriving an effective τ1 halftime (fast repair) and τ2 halftime (slow repair). A sensitivity analysis was performed with a range of plausible parameter values. RESULTS After replacement of the cobalt-60 source, the functional GKRS dose rate rose from 1.48 to 2.99 Gy/min, treatment time fell, and estimated BED increased. Assuming the most biologically plausible parameters, source

  16. DESIGN OF A 250 MeV, X-BAND PHOTOINJECTOR LINAC FOR A PRECISION COMPTON-SCATTERING BASED GAMMA-RAY SOURCE

    SciTech Connect

    Anderson, S G; Albert, F; Gibson, D J; McNabb, D; Messerly, M; Rusnak, B; Shverdin, M; Hartemann, F V; Siders, C W; Barty, C J; Tantawi, S; Vlieks, A

    2009-05-07

    We present a compact, X-band, high-brightness accelerator design suitable for driving a precision gamma-ray source. Future applications of gamma-rays generated by Compton-scattering of laser and relativistic electron beams place stringent demands on the brightness and stability of the incident electron beam. This design identifies the beam parameters required for gamma-ray production, including position, and pointing stability. The design uses an emittance compensated, 11.4 GHz photo-gun and linac to generate 400 pC, 1-2 mm-mrad electron bunches at up to 250 MeV and 120 Hz repetition rate. The effects of jitter in the RF power system are analyzed as well as structure and optic misalignments. Finally, strategies for the mitigation of on-axis Bremsstrahlung noise are discussed.

  17. A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni.

    PubMed

    Lopes, Sheila Mara Sanches; Krausová, Gabriela; Carneiro, José Walter Pedroza; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; de Oliveira, Arildo José Braz

    2017-06-15

    Fructan-type inulin and fructo-oligosaccharides (FOS) are reserve polysaccharides that offer an interesting combination of nutritional and technological properties for food industry. Stevia rebaudiana is used commercially in the sweetener industry due to the high content of steviol glycosides in its leaves. With the proposal of using industrial waste, the objective of the present study was to isolate, characterize and evaluate the prebiotic activity of inulin and FOS from S. rebaudiana stems. The chemical characterization of the samples by GC-MS, NMR and off-line ESI-MS showed that it was possible to obtain inulin molecules from the S. rebaudiana stems with a degree of polymerization (DP) of 12, and FOS with a DP<6. The in vitro prebiotic assay of these molecules indicates a strain specificity in fermentation capacity of fructans as substrate. FOS molecules with a low DP are preferably fermented by beneficial microbiota than inulin molecules with higher DP.

  18. Chandra observations of the HII complex G5.89-0.39 and TeV gamma-ray source HESSJ1800-240B

    NASA Astrophysics Data System (ADS)

    Hampton, E. J.; Rowell, G.; Hofmann, W.; Horns, D.; Uchiyama, Y.; Wagner, S.

    2016-09-01

    We present the results of our investigation, using a Chandra X-ray observation, into the stellar population of the massive star formation region G5.89-0.39, and its potential connection to the coincident TeV gamma-ray source HESSJ1800-240B. G5.89-0.39 comprises two separate HII regions G5.89-0.39A and G5.89-0.39B (an ultra-compact HII region). We identified 159 individual X-ray point sources in our observation using the source detection algorithm wavdetect. 35 X-ray sources are associated with the HII complex G5.89-0.39. The 35 X-ray sources represent an average unabsorbed luminosity (0.3-10 keV) of ∼1030.5erg /s, typical of B7-B5 type stars. The potential ionising source of G5.89-0.39B known as Feldt's star is possibly identified in our observation with an unabsorbed X-ray luminosity suggestive of a B7-B5 star. The stacked energy spectra of these sources is well-fitted with a single thermal plasma APEC model with kT ∼ 5 keV, and column density NH = 2.6 ×1022cm-2 (AV ∼ 10). The residual (source-subtracted) X-ray emission towards G5.89-0.39A and B is about 30% and 25% larger than their respective stacked source luminosities. Assuming this residual emission is from unresolved stellar sources, the total B-type-equivalent stellar content in G5.89-0.39A and B would be 75 stars, consistent with an earlier estimate of the total stellar mass of hot stars in G5.89-0.39. We have also looked at the variability of the 35 X-ray sources in G5.89-0.39. Ten of these sources are flagged as being variable. Further studies are needed to determine the exact causes of the variability, however the variability could point towards pre-main sequence stars. Such a stellar population could provide sufficient kinetic energy to account for a part of the GeV to TeV gamma-ray emission in the source HESSJ1800-240B. However, future arc-minute angular resolution gamma-ray imaging will be needed to disentangle the potential gamma-ray components powered by G5.89-0.39 from those powered by the

  19. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  20. Search for the Identification of 3EG J1835+5918: Evidence for a New Type of High-Energy Gamma-Ray Source

    NASA Technical Reports Server (NTRS)

    Mirabal, N.; Halpern, Jules P.; Eracleous, M.; Becker, R. H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    The EGRET source 3EG J1835+5918 is the brightest and most accurately positioned of the as-yet unidentified high-energy gamma-ray sources at high Galactic latitude (l, b = 89 deg, 25 deg). We present a multiwavelength study of the region around it, including X-ray, radio, and optical imaging surveys, as well as optical spectroscopic classification of most of the active objects in this area. Identifications are made of all but one of the ROSAT and ASCA sources in this region to a flux limit of approximately 5 x 10(exp -14) erg/sq cm s, which is 10(exp -4) of the gamma-ray flux. The identified X-ray sources in or near the EGRET error ellipse are radio-quiet QSOs, a galaxy cluster, and coronal emitting stars. We also find eight quasars using purely optical color selection, and we have monitored the entire field for variable optical objects on short and long time scales without any notable discoveries. The radio sources inside the error ellipse are all fainter than 4 mJy at 1.4 GHz. There are no flat-spectrum radio sources in the vicinity; the brightest neighboring radio sources are steep-spectrum radio galaxies or quasars. Since no blazar-like or pulsar-like candidate has been found as a result of these searches, 3EG J1835+5918 must be lacking one or more of the physically essential attributes of these known classes of gamma-ray emitters. If it is an AGN it lacks the beamed emission radio of blazars by at least a factor of 100 relative to identified EGRET blazars. If it is an isolated neutron star, it lacks the steady thermal X-rays from a cooling surface and the magnetospheric non-thermal X-ray emission that is characteristic of all EGRET pulsars. If a pulsar, 3EG J1835+5918 must be either older or more distant than Geminga, and probably an even more efficient or beamed gamma-ray engine. One intermittent ROSA T source falls on a blank optical field to a limit of B greater than 23.4, V greater than 23.3, and R greater than 22.5. In view of this conspicuous absence, RX

  1. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  2. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    PubMed

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts.

  3. Correlation of lithium levels between drinking water obtained from different sources and scalp hair samples of adult male subjects.

    PubMed

    Baloch, Shahnawaz; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Talpur, Farah Naz; Arain, Muhammad Balal

    2016-10-18

    There is some evidence that natural levels of lithium (Li) in drinking water may have a protective effect on neurological health. In present study, we evaluate the Li levels in drinking water of different origin and bottled mineral water. To evaluate the association between lithium levels in drinking water with human health, the scalp hair samples of male subjects (25-45 years) consumed drinking water obtained from ground water (GW), municipal treated water (MTW) and bottled mineral water (BMW) from rural and urban areas of Sindh, Pakistan were selected. The water samples were pre-concentrated five to tenfold at 60 °C using temperature-controlled electric hot plate. While scalp hair samples were oxidized by acid in a microwave oven, prior to determined by flame atomic absorption spectrometry. The Li content in different types of drinking water, GW, MTW and BMW was found in the range of 5.12-22.6, 4.2-16.7 and 0.0-16.3 µg/L, respectively. It was observed that Li concentration in the scalp hair samples of adult males consuming ground water was found to be higher, ranged as 292-393 μg/kg, than those who are drinking municipal treated and bottle mineral water (212-268 and 145-208 μg/kg), respectively.

  4. Simultaneous concentration of platelets and marrow cells: a simple and useful technique to obtain source cells and growth factors for regenerative medicine.

    PubMed

    Nishimoto, Soh; Oyama, Tomoki; Matsuda, Ken

    2007-01-01

    Platelet-rich plasma (PRP) has attracted attention as a safe and cost-effective source of growth factors that stimulate cells to regenerate tissue. Bone marrow aspirate was processed with the same protocol to obtain PRP from peripheral blood. This concentrate contained condensed nucleated bone marrow cells, which are useful for regenerative medicine, as well as condensed platelets. In PRP derived from bone marrow aspirate, the density of platelets and levels of growth factors (platelet-derived growth factor and transforming growth factor-beta) were the same as in PRP derived from peripheral blood. Condensation of nucleated cells, especially small-sized cells, was confirmed. With a simple and cost-effective technique, source cells and growth factors can be obtained at the same time. This simultaneous concentration of platelets and bone marrow cells has great potential as a source of materials for regenerative medicine.

  5. Identification of the TeV gamma-ray source ARGO J2031+4157 with the Cygnus Cocoon

    SciTech Connect

    Bartoli, B.; Catalanotti, S.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Bernardini, P.; D'Amone, A.; De Mitri, I.; Bi, X. J.; Cao, Z.; Chen, S. Z.; Branchini, P.; Budano, A.; Camarri, P.; Cardarelli, R.; Di Sciascio, G.; Chen, T. L.; Danzengluobu; Creti, P.; Cui, S. W.; Dai, B. Z.; Collaboration: ARGO-YBJ Collaboration; and others

    2014-08-01

    The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by Fermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from 2007 November to 2013 January, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of 10° × 10°, finding a source extension σ{sub ext}= 1.°8 ± 0.°5. The observed differential energy spectrum is dN/dE = (2.5 ± 0.4) × 10{sup –11}(E/1 TeV){sup –2.6±0.3} photons cm{sup –2} s{sup –1} TeV{sup –1}, in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by Fermi-LAT and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with supernova remnants (SNRs) indicates that the particle acceleration inside a superbubble is similar to that in an SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.

  6. Soviet-French working group interpretation of the scientific information during the search for celestial sources of gamma pulses, abstract of reports, 24-30 March 1977

    NASA Technical Reports Server (NTRS)

    Estulin, I. V.

    1977-01-01

    The progress made and techniques used by the Soviet-French group in the study of gamma and X ray pulses are described in abstracts of 16 reports. Experiments included calibration and operation of various recording instruments designed for measurements involving these pulses, specifically the location of sources of such pulses in outer space. Space vehicles are utilized in conjunction with ground equipment to accomplish these tests.

  7. Production altitude and time delays of the terrestrial gamma flashes: Revisiting the Burst and Transient Source Experiment spectra

    NASA Astrophysics Data System (ADS)

    Østgaard, N.; Gjesteland, T.; Stadsnes, J.; Connell, P. H.; Carlson, B.

    2008-02-01

    On the basis of the RHESSI results it has been suggested that terrestrial gamma flashes (TGFs) are produced at very low altitudes. On the other hand some of the Burst and Transient Source Experiment (BATSE) spectra show unabsorbed fluxes of X rays in the 25-50 keV energy range, indicating a higher production altitude. To investigate this, we have developed a Monte Carlo code for X-ray propagation through the atmosphere. The most important features seen in the modeled spectra are (1) a low-energy cutoff which moves to lower energies as TGFs are produced at higher altitudes, (2) a high-energy cutoff which moves to lower energies as TGFs are observed at larger zenith angles, and (3) time delays are observed for TGFs produced at <=20 km (and some at 30 km) altitude when observed at larger zenith angle than the half-angle defining the initial isotropic X-ray beam. This is a pure Compton effect. The model results and an optimization procedure are used to estimate production altitudes of the BATSE TGFs. The main findings are (1) half or more of the BATSE TGFs are produced at low altitudes, <=20 km, (2) a significant portion of the BATSE TGFs are produced at higher altitudes, 30 km to 40 km, (3) for the TGFs produced at <=20 km (and some at 30 km) altitudes the dispersion signatures can be explained as a pure Compton effect, and (4) the softening of the BATSE spectra for increasing zenith angles and the time dispersions both indicate that the initial TGF distribution is beamed.

  8. Large area self-powered gamma ray detector. Phase 2, Development of a source position monitor for use on industrial radiographic units

    SciTech Connect

    LeVert, F.E.

    1994-01-01

    The purpose of this research was to develop a large area self-powered gamma detector (LASPGD) capable of detecting the movement of sealed radiation sources into and out of industrial radiographic units and to construct a prototype source position monitor (SPM) for these units utilizing the LASPGD. Prototype isotropic and directional LASPGDs, with solid and inert gas dielectrics, were developed and extensively tested using calibrated gamma sources (i.e., Cs-137, and Co-60). The sensitivities of the isotropic detectors, with inert gas dielectrics, were found to be approximately a factor of ten greater than those measured for the solid dielectric LASPGDs. Directionally sensitive self-powered detectors were found to exhibit a forward-to-back hemispherical sensitivity ratio of approximately 2 to 1. Industrial radiographic units containing Ir-192 sources with different activities were used to test the performance of the SPM. The SPM, which utilized a gas dielectric LASPGD, performed as designed. That is, the current generated in the LASPGD was converted to a voltage, amplified and used to control the on/off state of an incandescent lamp. The incandescent lamp, which functions as the source/out warning indicator, flashes at a rate of one flash per second when the source is in use (i.e. out of its shield).

  9. On the determination of the cosmic infrared background radiation from the high-energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Slavin, Jonathan

    1994-01-01

    In a recent paper Stecker, De Jager, & Salamon have suggested using the observed approximately MeV to TeV spectra of extragalactic gamma-ray sources as probes of the local density of the cosmic infrared background radiation (CIBR) and have subsequently claimed a first possible measurement of the CIBR from the analysis of the gamma-ray spectrum of Mrk 421 (De Jager, Stecker, & Salamon). The CIBR from normal galaxies consists of two components: a stellar emission component (CIBRs), and a thermal dust emission component (CIBRd). Photons with energies in the approximately 0.1-2 TeV range interact primarily with the CIBRs, whereas interactions with CIBRd dominate the absorption of photons in the approximately 2-100 TeV energy range. SDS 92 and DSS94 considered only the interaction of the gamma-rays with the dust emission component of the CIBR. We present here an improved analysis of the absorption of extragalactic TeV gamma rays by the CIBR, taking the dual nature of its origin into account. Applying the analysis to the observed gamma-ray spectrum of Mrk 421, a BL Lac object at z = 0.031, we find agreement with DSS94 tentative evidence for absorption by the CINRs. Our analysis therefore limits the detection of the CIBR to the approximately 15-40 micron wavelength regime which, considering the uncertainties in the highest energy (greater than 4 TeV) data and ion the possibility of absorption inside the source, many turn out to be an upper limit on its energy density. At shorter wavelengths (lambda approximately = 1-15 microns), where the gamma-ray interactions are dominated by the CIBRs, our analysis definitely yields only an upper limit on the energy density of the CIBR. In contrast, DSS94 have claimed a possible first measurement of the CIBR over the entire 1-120 micron wavelength region. The upper limit on the CIBRs and tentative detection of the CIBRd are consistent with normal galaxies contributing most of the energy to the CIBR, and constrain the contribution of

  10. Survey of candidate gamma-ray sources at TeV energies using a high-resolution Cerenkov imaging system - 1988-1991

    NASA Technical Reports Server (NTRS)

    Reynolds, P. T.; Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Fegan, D. J.; Hillas, A. M.; Lamb, R. C.; Lang, M. J.; Lawrence, M. A.; Lewis, D. A.

    1993-01-01

    The steady TeV gamma-ray emission from the Crab Nebula has been used to optimize the sensitivity of the Whipple Observatory atmospheric Cerenkov imaging telescope. Using this method, which is of order 20 times more sensitive than the standard method using a simple non-imaging detector, it is possible to detect the Crab Nebula at a significance level in excess of 6 standard deviations (6 sigma) in under 1 hr on source (with a corresponding time observing a background comparison region); a source one-tenth the strength of the Crab Nebula can be detected at the 4 sigma level after 40 hr on the source (and 40 hr on a background region). A variety of sources have been monitored using this technique over the period 1988-1991, but none were detected apart from the Crab Nebula. Upper limits are presented which in many instances are a factor of 10 below the flux of the Crab Nebula. These upper limits assume steady emission from the source and cannot rule out sporadic gamma-ray emission with short duty cycles.

  11. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    PubMed

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  12. Induction of peroxisomal proliferator-activated receptor gamma and peroxisomal proliferator-activated receptor gamma coactivator 1 by unsaturated fatty acids, retinoic acid, and carotenoids in preadipocytes obtained from bovine white adipose tissue1,2.

    PubMed

    García-Rojas, P; Antaramian, A; González-Dávalos, L; Villarroya, F; Shimada, A; Varela-Echavarría, A; Mora, O

    2010-05-01

    The importance of dietary fat components, such as fatty acids, in the expression of multiple genes is clear. In the case of beef cattle, fat in the form of fatty acids (saturated or unsaturated), vitamin A (mainly retinoic acid), or carotenoids (beta-carotene and lutein) is obtained from dietary feed or pasture. The aim of this work was to study the effect of fatty acids (phytanic and pristanic acids), vitamin A (all-trans and 9-cis retinoic acid), and carotenoids (beta-carotene and lutein) on the expression of PPARgamma and its coactivator PGC-1alpha during differentiation of bovine white adipose tissue. Samples were collected at slaughter from subcutaneous adipose tissue and processed in a solution containing type II collagenase for 2 h at 37 degrees C. Cells were resuspended in basal medium, Dulbecco's modified Eagle's medium containing 5% fetal bovine serum, plated on 24-well culture plates at a density of 1 x 10(4) cells/cm(2), and incubated at 37 degrees C in a 5% CO(2) atmosphere. Preadipocyte differentiation after reaching confluence was induced by various treatments: rosiglitazone (20 microM); unsaturated fatty acids: phytanic acid (25, 50, 100 microM) and pristanic acid (25, 50, 100 microM); retinoids: 9-cis retinoic acid (0.5, 0.75, 1 microM) and all-trans retinoic acid (0.5, 0.75, 1 microM); and carotenoids: beta-carotene (10, 20, 30 microM) and lutein (10, 20, 30 microM). Expression of PPARgamma and PGC-1alpha was measured in differentiated cells. Phytanic acid, all-trans retinoic acid, and 9-cis retinoic acid were the best activators of PPARgamma expression, and the combination of 9-cis and all-trans retinoic acid was the best activator of PGC-1alpha expression (P < 0.05). Therefore, these are powerful agents for the promotion of bovine adipogenesis and constitute promising compounds to be used in bovine fattening.

  13. TOWARD IDENTIFYING THE UNASSOCIATED GAMMA-RAY SOURCE 1FGL J1311.7-3429 WITH X-RAY AND OPTICAL OBSERVATIONS

    SciTech Connect

    Kataoka, J.; Takahashi, Y.; Maeda, K.; Yatsu, Y.; Kawai, N.; Urata, Y.; Tsai, A.; Cheung, C. C.; Totani, T.; Makiya, R.; Hanayama, H.; Miyaji, T.

    2012-10-01

    We present deep optical and X-ray follow-up observations of the bright unassociated Fermi-LAT gamma-ray source 1FGL J1311.7-3429. The source was already known as an unidentified EGRET source (3EG J1314-3431, EGR J1314-3417), hence its nature has remained uncertain for the past two decades. For the putative counterpart, we detected a quasi-sinusoidal optical modulation of {Delta}m {approx} 2 mag with a period of {approx_equal}1.5 hr in the Rc, r', and g' bands. Moreover, we found that the amplitude of the modulation and peak intensity changed by {approx}>1 mag and {approx}0.5 mag, respectively, over our total six nights of observations from 2012 March to May. Combined with Swift UVOT data, the optical-UV spectrum is consistent with a blackbody temperature, kT {approx_equal} 1 eV and the emission volume radius R{sub bb} {approx_equal} 1.5 Multiplication-Sign 10{sup 4} d{sub kpc} km (d{sub kpc} is the distance to the source in units of 1 kpc). In contrast, deep Suzaku observations conducted in 2009 and 2011 revealed strong X-ray flares with a light curve characterized with a power spectrum density of P(f) {proportional_to} f {sup -2.0{+-}0.4}, but the folded X-ray light curves suggest an orbital modulation also in X-rays. Together with the non-detection of a radio counterpart, and significant curved spectrum and non-detection of variability in gamma-rays, the source may be the second 'radio-quiet' gamma-ray emitting millisecond pulsar candidate after 1FGL J2339.7-0531, although the origin of flaring X-ray and optical variability remains an open question.

  14. Gamma II

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, M.; Cline, J.; Owen, L.; Boehme, J.; Rottler, L.; Whitworth, C.; Clavier, D.

    2011-05-01

    GAMMA II is the Guide Star Automatic Measuring MAchine relocated from STScI to the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). GAMMA II is a multi-channel laser-scanning microdensitometer that was used to measure POSS and SERC plates to create the Guide Star Catalog and the Digital Sky Survey. The microdensitometer is designed with submicron accuracy in x and y measurements using a HP 5507 laser interferometer, 15 micron sampling, and the capability to measure plates as large as 0.5-m across. GAMMA II is a vital instrument for the success of digitizing the direct, objective prism, and spectra photographic plate collections in APDA for research. We plan several targeted projects. One is a collaboration with Drs. P.D. Hemenway and R. L. Duncombe who plan to scan 1000 plates of 34 minor planets to identify systematic errors in the Fundamental System of celestial coordinates. Another is a collaboration with Dr. R. Hudec (Astronomical Institute, Academy of Sciences of the Czech Republic) who is working within the Gaia Variability Unit CU7 to digitize objective prism spectra on the Henize plates and Burrell-Schmidt plates located in APDA. These low dispersion spectral plates provide optical counterparts of celestial high-energy sources and cataclysmic variables enabling the simulation of Gaia BP/RP outputs. The astronomical community is invited to explore the more than 140,000 plates from 20 observatories now archived in APDA, and use GAMMA II. The process of relocating GAMMA to APDA, re-commissioning, and starting up the production scan programs will be described. Also, we will present planned research and future upgrades to GAMMA II.

  15. Multiwavelength Opportunities and Challenges in the Era of Fermi Gamma-ray Space Telescope Public Data

    NASA Astrophysics Data System (ADS)

    Thompson, David John; Fermi Large Area Telescope Collaboration

    2010-01-01

    The gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers both opportunities and challenges for multiwavelength and multi-messenger studies. Gamma-ray bursts, pulsars, binary sources, flaring Active Galactic Nuclei, and Galactic transient sources are all phenomena that can best be studied with a wide variety of instruments simultaneously or contemporaneously. Identification of newly-discovered gamma-ray sources is largely a multiwavelength effort. From the gamma-ray side, a principal challenge is the latency from the time of an astrophysical event to the recognition of this event in the data. Obtaining quick and complete multiwavelength coverage of gamma-ray sources can be difficult both in terms of logistics and in terms of generating scientific interest. The Fermi LAT team continues to welcome cooperative efforts aimed at maximizing the scientific return from the mission through multiwavelength studies.

  16. Gamma response study of radiation sensitive MOSFETs for their use as gamma radiation sensor

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Aggarwal, Bharti; Singh, Arvind; Kumar, A. Vinod; Topkar, Anita

    2016-05-01

    Continuous monitoring of gamma dose is important in various fields like radiation therapy, space-related research, nuclear energy programs and high energy physics experiment facilities. The present work is focused on utilization of radiation-sensitive Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) to monitor gamma radiation doses. Static characterization of these detectors was performed to check their expected current-voltage relationship. Threshold voltage and transconductance per unit gate to source voltage (K factor) were calculated from the experimental data. The detector was exposed to gamma radiation in both, with and without gate bias voltage conditions, and change in threshold voltage was monitored at different gamma doses. The experimental data was fitted to obtain equation for dependence of threshold voltage on gamma dose. More than ten times increase in sensitivity was observed in biased condition (+3 V) compared to the unbiased case.

  17. Monte Carlo simulation of the Leksell Gamma Knife®: I. Source modelling and calculations in homogeneous media

    NASA Astrophysics Data System (ADS)

    Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Timmerman, Robert; Randall, Marcus; DesRosiers, Paul

    2002-06-01

    The Monte Carlo code PENELOPE has been used to simulate photon flux from the Leksell Gamma Knife®, a precision method for treating intracranial lesions. Radiation from a single 60Co assembly traversing the collimator system was simulated, and phase space distributions at the output surface of the helmet for photons and electrons were calculated. The characteristics describing the emitted final beam were used to build a two-stage Monte Carlo simulation of irradiation of a target. A dose field inside a standard spherical polystyrene phantom, usually used for Gamma Knife® dosimetry, has been computed and compared with experimental results, with calculations performed by other authors with the use of the EGS4 Monte Carlo code, and data provided by the treatment planning system Gamma Plan®. Good agreement was found between these data and results of simulations in homogeneous media. Owing to this established accuracy, PENELOPE is suitable for simulating problems relevant to stereotactic radiosurgery.

  18. Development of NANA: A Fast-Scintillator, Coincidence Gamma-ray Array for Radioactive Source Characterisation and Absolute Activity Measurements at the UK National Physical Laboratory

    NASA Astrophysics Data System (ADS)

    Regan, P. H.; Shearman, R.; Judge, S. M.; Lorusso, G.; Main, P.; Bell, S.; Collins, S. M.; Ivanov, P.; Jerome, S. M.; Keightley, J. D.; Larijani, C.; Lotay, G.; Pearce, A. K.

    2015-06-01

    A multi-detector modular coincidence gamma-ray spectrometer is being designed and constructed for use at the UK's National Physical Laboratory (NPL) for use in direct measurement and metrological standardisation of nuclear decay activities. In its first generation, the NPL National Nuclear Array (NANA) will consist of twelve individual halide scintillation detectors placed in a high-efficiency geometry around a well-defined central point source position. This brief conference paper provides details of the measured detector module and coincidence energy and timing responses for the LaBr3(Ce) detectors which will be used in the NANA array. Preliminary GEANT4 simulations of the array's full energy peak efficiency and expected gamma-ray coincidence response are also presented.

  19. Generation and characterization of chicken-sourced single-chain variable fragments (scFvs) against porcine interferon-gamma (pIFN-γ).

    PubMed

    Chen, Hong-Xiu; He, Fan; Sun, Yuan; Luo, Yuzi; Qiu, Hua-Ji; Zhang, Xiao-Ying; Sutton, Brian J

    2015-01-01

    Development of chicken-sourced antibodies offers an alternative strategy for the development of highly specific antibodies against mammalian proteins with conserved epitopes due to the phylogenetic distance between avian and mammalian species. In this study, the single-chain variable fragments (scFvs) against porcine interferon-gamma was screened and characterized from a hyperimmunized chicken phage display library. The expressed soluble scFvs exhibited highly specific recognition of porcine interferon-gamma in ELISA, Western blot, and immunofluorescence staining assays. Results of the current study indicate that it is possible to develop scFv IgY antibodies to a mammalian interferon by using Biopanning technology. Furthermore, it also confirms that monoclonal avian IgY antibody technique could be applied as a promising tool to produce immunoglobulin molecules with high specificity and affinity towards conserved mammalian epitopes or antigens.

  20. Search for the Identification of 3EG J1835+5918: Evidence for a New Type of High-Energy Gamma-Ray Source?

    NASA Technical Reports Server (NTRS)

    Mirabal, N.; Halpern, Jules P.; Eracleous, M.; Becker, R. H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    Most of the EGRET high-energy gamma-ray sources remain unidentified. It is highly likely that many of these are fainter blazars or pulsars, but there may also be new types of sources to be discovered. We have focussed our search for novel gamma-ray sources on 3EG 1835+5918, which is the brightest and most accurately positioned of the unidentified EGRET sources at high Galactic latitude (l, b = 89 deg, 25 deg). In this talk, we will summarize the results of X-ray, radio, and optical surveys of this location. In particular, we have made complete optical identifications of all of the ROSAT and ASCA sources in this region to a flux limit of approximately 1 x 10(exp -13) ergs/sq cm s. All of the X-ray sources within the EGRET error circle are radio-quiet quasars or coronally emitting stars. Previous radio pulsar searches have been unsuccessful. We set an upper limit of 3.8 mJy (at 1.4 GHz) on any possible radio counterpart to 3EG 1835+5918. We also find several quasars and white dwarfs using optical color selection, and we have monitored the entire field for variable optical objects on short and long time scales. Since no blazar-like or pulsar-like candidate has been found as a result of these searches, we assert that 3EG 1835+5918 must be lacking in one or more of the physically essential attributes of those classes of gamma-ray emitters. In particular, its radio flux is at least two orders of magnitude fainter than any of the securely identified EGRET blazars, and its soft X-ray flux is at least 30 times fainter than that of Geminga and other EGRET pulsars. If it is an AGN it lacks the beamed radio emission of blazars. If it is an isolated neutron star, it lacks both the thermal X-rays from a cooling surface and the magnetospheric non-thermal X-ray emission that is characteristic of all EGRET pulsars. As such, it is more problematic physically than Geminga, which is an ordinary pulsar that only lacks radio emission. As a pulsar, 3EG 1835+5918 would have to be either

  1. Possible production of high-energy gamma rays from proton acceleration in the extragalactic radio source markarian 501

    PubMed

    Mannheim

    1998-01-30

    The active galaxy Markarian 501 was discovered with air-Cerenkov telescopes at photon energies of 10 tera-electron volts. Such high energies may indicate that the gamma rays from Markarian 501 are due to the acceleration of protons rather than electrons. Furthermore, the observed absence of gamma ray attenuation due to electron-positron pair production in collisions with cosmic infrared photons implies a limit of 2 to 4 nanowatts per square meter per steradian for the energy flux of an extragalactic infrared radiation background at a wavelength of 25 micrometers. This limit provides important clues about the epoch of galaxy formation.

  2. Boron Nitride Obtained from Molecular Precursors: Aminoboranes Used as a BN Source for Coatings, Matrix, and Si 3N 4-BN Composite Ceramic Preparation

    NASA Astrophysics Data System (ADS)

    Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.

    1997-10-01

    Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.

  3. Discovery of the VHE gamma-ray source HESS J1832-093 in the vicinity of SNR G22.7-0.2

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Clapson, A.-C.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-01-01

    The region around the supernova remnant (SNR) W41 contains several TeV sources and has prompted the HESS Collaboration to perform deep observations of this field of view. This resulted in the discovery of the new very high energy (VHE) source HESS J1832-093, at the position {RA=18^h 32^m 50^s ± 3^s_{stat} ± 2^s_{syst}}, {Dec=-9*deg;22'36" ± 32"}_{stat} ± 20^' '}_{syst} (J2000)}, spatially coincident with a part of the radio shell of the neighbouring remnant G22.7-0.2. The photon spectrum is well described by a power law of index Γ = 2.6 ± 0.3stat ± 0.1syst and a normalization at 1 TeV of Φ _0=(4.8 ± 0.8_stat± 1.0_syst) × 10^{-13} cm ^{-2} s^{-1} TeV^{-1}. The location of the gamma-ray emission on the edge of the SNR rim first suggested a signature of escaping cosmic rays illuminating a nearby molecular cloud. Then a dedicated XMM-Newton observation led to the discovery of a new X-ray point source spatially coincident with the TeV excess. Two other scenarios were hence proposed to identify the nature of HESS J1832-093. Gamma-rays from inverse Compton radiation in the framework of a pulsar wind nebula scenario or the possibility of gamma-ray production within a binary system are therefore also considered. Deeper multiwavelength observations will help to shed new light on this intriguing VHE source.

  4. EGRET gamma-ray source 2EG J0809+5117, a quasar with redshift of 1.14?

    NASA Astrophysics Data System (ADS)

    Wu, X.-B.; Li, Q.-B.; Zhao, Y.-H.; Cao, L.

    1997-11-01

    The low dispersion (400Å/mm) spectrum of the optical counterpart of a flat-spectrum radio source 87GB 080315.5+512613, which is one of two possible radio counterparts of 2EG J0809+5117, was obtained recently. The optical counterpart, which is 2.02'' away from 87GB 080315.5+512613 and 19.3' away from 2EG J0809+5117, was identified as a quasar with redshift of 1.14. We noted that Mattox et al. (1997ApJ...481...95M) suggested the other radio counterpart 87GB 080459.4+495915 (OJ 508), which is 87.1' away from 2EG J0809+5117, is the more potential identification, though it was previously suggested to be the identification (with low confidence) of another nearby EGRET source 2EG J0807+4849. Our observation suggests that it is quite possible that 87GB 080315.5+512613 is the identification of 2EG J0809+5117 rather than 87GB 080459.4+495915. But we still can not exclude the possibility of 87GB 080459.4+495915 at present. Moreover, in order to determine whether or not 87GB 080315.5+512613 is a blazar type quasar, the optical polarization and variability measures of its optical counterpart are strongly encouraged.

  5. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources.

    PubMed

    Cho, Sang Hyun; Jones, Bernard L; Krishnan, Sunil

    2009-08-21

    The preferential accumulation of gold nanoparticles within tumors and the increased photoelectric absorption due to the high atomic number of gold cooperatively account for the possibility of significant tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Among the many conceivable ways to implement GNRT clinically, a brachytherapy approach using low-energy gamma-/x-ray sources (i.e. E(avg) < 100 keV) appears to be highly feasible and promising, because it may easily fulfill some of the technical and clinical requirements for GNRT. Therefore, the current study investigated the dosimetric feasibility of implementing GNRT using the following sources: (125)I, 50 kVp and (169)Yb. Specifically, Monte Carlo (MC) calculations were performed to determine the macroscopic dose enhancement factors (MDEF), defined as the ratio of the average dose in the tumor region with and without the presence of gold nanoparticles during the irradiation of the tumor, and the photo/Auger electron spectra within a tumor loaded with gold nanoparticles. The current study suggests that a significant tumor dose enhancement (e.g. >40%) could be achievable using (125)I, 50 kVp and (169)Yb sources and gold nanoparticles. When calculated at 1.0 cm from the center of the source within a tumor loaded with 18 mg Au g(-1), macroscopic dose enhancement was 116, 92 and 108% for (125)I, 50 kVp and (169)Yb, respectively. For a tumor loaded with 7 mg Au g(-1), it was 68, 57 and 44% at 1 cm from the center of the source for (125)I, 50 kVp and (169)Yb, respectively. The estimated MDEF values for (169)Yb were remarkably larger than those for (192)Ir, on average by up to about 70 and 30%, for 18 mg Au and 7 mg Au cases, respectively. The current MC study also shows a remarkable change in the photoelectron fluence and spectrum (e.g. more than two orders of magnitude) and a significant production (e.g. comparable to the number of photoelectrons) of the Auger electrons within the tumor

  6. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources

    NASA Astrophysics Data System (ADS)

    Cho, Sang Hyun; Jones, Bernard L.; Krishnan, Sunil

    2009-08-01

    The preferential accumulation of gold nanoparticles within tumors and the increased photoelectric absorption due to the high atomic number of gold cooperatively account for the possibility of significant tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Among the many conceivable ways to implement GNRT clinically, a brachytherapy approach using low-energy gamma-/x-ray sources (i.e. Eavg < 100 keV) appears to be highly feasible and promising, because it may easily fulfill some of the technical and clinical requirements for GNRT. Therefore, the current study investigated the dosimetric feasibility of implementing GNRT using the following sources: 125I, 50 kVp and 169Yb. Specifically, Monte Carlo (MC) calculations were performed to determine the macroscopic dose enhancement factors (MDEF), defined as the ratio of the average dose in the tumor region with and without the presence of gold nanoparticles during the irradiation of the tumor, and the photo/Auger electron spectra within a tumor loaded with gold nanoparticles. The current study suggests that a significant tumor dose enhancement (e.g. >40%) could be achievable using 125I, 50 kVp and 169Yb sources and gold nanoparticles. When calculated at 1.0 cm from the center of the source within a tumor loaded with 18 mg Au g-1, macroscopic dose enhancement was 116, 92 and 108% for 125I, 50 kVp and 169Yb, respectively. For a tumor loaded with 7 mg Au g-1, it was 68, 57 and 44% at 1 cm from the center of the source for 125I, 50 kVp and 169Yb, respectively. The estimated MDEF values for 169Yb were remarkably larger than those for 192Ir, on average by up to about 70 and 30%, for 18 mg Au and 7 mg Au cases, respectively. The current MC study also shows a remarkable change in the photoelectron fluence and spectrum (e.g. more than two orders of magnitude) and a significant production (e.g. comparable to the number of photoelectrons) of the Auger electrons within the tumor region due to the presence

  7. Fermentation Results and Chemical Composition of Agricultural Distillates Obtained from Rye and Barley Grains and the Corresponding Malts as a Source of Amylolytic Enzymes and Starch.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Strąk, Ewelina

    2016-10-01

    The objective of this study was to determine the efficiency of rye and barley starch hydrolysis in mashing processes using cereal malts as a source of amylolytic enzymes and starch, and to establish the volatile profile of the obtained agricultural distillates. In addition, the effects of the pretreatment method of unmalted cereal grains on the physicochemical composition of the prepared mashes, fermentation results, and the composition of the obtained distillates were investigated. The raw materials used were unmalted rye and barley grains, as well as the corresponding malts. All experiments were first performed on a semi-technical scale, and then verified under industrial conditions in a Polish distillery. The fermentable sugars present in sweet mashes mostly consisted of maltose, followed by glucose and maltotriose. Pressure-thermal treatment of unmalted cereals, and especially rye grains, resulted in higher ethanol content in mashes in comparison with samples subjected to pressureless liberation of starch. All agricultural distillates originating from mashes containing rye and barley grains and the corresponding malts were characterized by low concentrations of undesirable compounds, such as acetaldehyde and methanol. The distillates obtained under industrial conditions contained lower concentrations of higher alcohols (apart from 1-propanol) than those obtained on a semi-technical scale.

  8. Reevaluation of the prospect of observing neutrinos from Galactic sources in the light of recent results in gamma ray and neutrino astronomy

    NASA Astrophysics Data System (ADS)

    Gonzalez-Garcia, M. C.; Halzen, F.; Niro, V.

    2014-05-01

    In light of the recent IceCube evidence for a flux of extraterrestrial neutrinos, we revisit the prospect of observing the sources of the Galactic cosmic rays. In particular, we update the predictions for the neutrino flux expected from sources in the nearby star-forming region in Cygnus taking into account recent TeV gamma ray measurements of their spectra. We consider the three Milagro sources: MGRO J2019+37, MGRO J1908+06 and MGRO J2031+41 and calculate the attainable confidence level limits and statistical significance as a function of the exposure time. We also evaluate the prospects for a kilometer-scale detector in the Mediterranean to observe and elucidate the origin of the cosmic neutrino flux measured by IceCube.

  9. Source spectra of the gravity waves obtained from momentum flux and kinetic energy over Indian region: Comparison between observations and model results

    NASA Astrophysics Data System (ADS)

    Pramitha, M.; Venkat Ratnam, M.; Krishna Murthy, B. V.; Vijaya Bhaskar Rao, S.

    2017-02-01

    Using 8 years (May 2006 to March 2014) of high resolution and high accuracy GPS radiosonde observations available from a tropical station Gadanki (13.5°N, 79.2°E), India, we have investigated the climatology of gravity wave energy and zonal momentum fluxes in the lower stratosphere. We also obtained best fit spectrum model for the gravity waves (GWs) for this tropical station. In general, strong annual variation in the energy and momentum flux with maximum during Indian summer monsoon is observed in the lower stratospheric region (18-25 km). By considering different source spectra, we have applied Gravitywave Regional or Global RAy Tracer (GROGRAT) model run on monthly basis using the source spectrum values at different altitudes on the ERA-Interim background fields to obtain the kinetic energy and zonal momentum fluxes for each of the spectra considered. These simulated fluxes are compared with the observed fluxes to arrive at the best fit spectrum model. It is found that the spectrum which represents the convection transient mountain mechanism that is purely anti-symmetric and anisotropic in nature is the best fit model for Gadanki location. This information would be useful in parameterization of the GWs in numerical models over Indian region.

  10. Cryopreserved CD90+ cells obtained from mobilized peripheral blood in sheep: a new source of mesenchymal stem cells for preclinical applications.

    PubMed

    Landa-Solís, Carlos; Granados-Montiel, Julio; Olivos-Meza, Anell; Ortega-Sánchez, Carmina; Cruz-Lemini, Mónica; Hernández-Flores, Cecilia; Chang-González, María Eugenia; García, Ricardo Gómez; Olivos-Díaz, Brenda; Velasquillo-Martínez, María Cristina; Pineda, Carlos; Ibarra, Clemente

    2016-03-01

    Mobilized peripheral blood (MPB) bone marrow cells possess the potential to differentiate into a variety of mesenchymal tissue types and offer a source of easy access for obtaining stem cells for the development of experimental models with applications in tissue engineering. In the present work, we aimed to isolate by magnetic activated cell sorting CD90+ cells from MPB by means of the administration of Granulocyte-Colony Stimulating Factor and to evaluate cell proliferation capacity, after thawing of the in vitro culture of this population of mesenchymal stem cells (MSCs) in sheep. We obtained a median of 8.2 ± 0.6 million of CD90+ cells from the 20-mL MPB sample. After thawing, at day 15 under in vitro culture, the mean CD90+ cells determined by flow cytometry was 92.92 ± 1.29 % and cell duplication time determined by crystal violet staining was 47.59 h. This study describes for the first time the isolation, characterization, and post-in vitro culture thawing of CD90+ MSCs from mobilized peripheral blood in sheep. This population can be considered as a source of MSCs for experimental models in tissue engineering research.

  11. OBSERVATION OF TeV GAMMA RAYS FROM THE UNIDENTIFIED SOURCE HESS J1841-055 WITH THE ARGO-YBJ EXPERIMENT

    SciTech Connect

    Bartoli, B.; Catalanotti, S.; Bernardini, P.; D'Amone, A.; Bi, X. J.; Cao, Z.; Chen, S. Z.; Chen, Y.; Bolognino, I.; Branchini, P.; Budano, A.; Calabrese Melcarne, A. K.; Cardarelli, R.; Cattaneo, C.; Chen, T. L.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Ali Staiti, G.; Collaboration: ARGO-YBJ Collaboration; and others

    2013-04-20

    We report the observation of a very high energy {gamma}-ray source whose position is coincident with HESS J1841-055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from 2007 November to 2012 July. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function, we estimate an extension {sigma}=(0.40{sup +0.32}{sub -0.22}){sup o}, which is consistent with the HESS measurement. The observed energy spectrum is dN/dE = (9.0 {+-} 1.6) Multiplication-Sign 10{sup -13}(E/5 TeV){sup -2.32{+-}0.23} photons cm{sup -2} s{sup -1} TeV{sup -1}, in the energy range 0.9-50 TeV. The integral {gamma}-ray flux above 1 TeV is 1.3 {+-} 0.4 Crab, which is 3.2 {+-} 1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ and possible counterparts at other wavelengths are discussed.

  12. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  13. A Multiwavelength Search for a Counterpart of the Brightest Unidentified Gamma-Ray Source 3EG J2020+4017 (2CG 078+2)

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Weisskopf, Martin C.; Arzoumanian, Zaven; Lorimer, Duncan; Camilo, Fernando; Elsner, Ronald F.; Kanbach, Gottfried; Reimer, Olaf; Swartz, Douglas A.; Tennant, Allyn F.

    2004-01-01

    In search of the counterpart to the brightest unidentified gamma-ray source, 3EG J2020+4017 (2CG 078+2), we report on new X-ray and radio observations of the gamma Cygni field with the Chandra X-Ray Observatory and with the Green Bank Telescope (GBT). We also report on reanalysis of archival ROSAT data. With Chandra it became possible for the first time to measure the position of the putative gamma-ray counterpart, RX J2020.2+4026, with subarcsecond accuracy and to deduce its X-ray spectral characteristics. These observations demonstrate that RX J2020.2+4026 is associated with a K field star and therefore is unlikely to be the counterpart of the bright gamma-ray source 2CG 078+2 in the SNR G78.2+2.1 as had been previously suggested. The Chandra observation detected 37 additional X-ray sources, which were correlated with catalogs of optical and infrared data. Subsequent GBT radio observations covered the complete 99% EGRET likelihood contour of 3EG J2020+4017 with a sensitivity limit of L(sub 820) approximately 0.1 mJy kpc(exp 2), which is lower than most of the recent deep radio search limits. If there is a pulsar operating in 3EG J2020+40 17, this sensitivity limit suggests that either the pulsar does not produce significant amounts of radio emission or that its geometry is such that the radio beam does not intersect with the line of sight. Finally, reanalysis of archival ROSAT data leads to a flux upper limit of fx(0.1 - 2.4 keV) less than 1.8 x 10(exp -13) ergs s(exp -1) cm(exp -2) for a putative pointlike X-ray source located within the 68% confidence contour of 3EG J2020+4017. Adopting the supernova remnant age of 5400 yr and assuming a spin-down to X-ray energy conversion factor of 10(exp 14), this upper limit constrains the parameters of a putative neutron star as a counterpart for 3EG J2020+4017 to be P is approximately greater than 160 (d 1.5 kpc)(exp -1) ms, P is approximately greater than 5 x 10(exp -13) ((d 1.5 kpc)(exp -1)) s s(exp -1), and B

  14. A Multi-Wavelength Search for a Counterpart of the Unidentified Gamma-ray source 3EG J2020+4017 (2CG078+2)

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Weisskopf, Martin C.; Arzoumanian, Zaven; Lorimer, Duncan; Camilo, Fernando; Elsner, Ronald F.; Kanbach, Gottfried; Reimer, Olaf; Swartz, Douglas A.; Tennant, Allyn F.

    2004-01-01

    In search of the counterpart to the brightest unidentified gamma-ray source 3EG J2020+4017 (2CG078+2) we report on new X-ray and radio observations of the gamma-Cygni field with the Chandra X-ray Observatory and with the Green Bank Telescope (GBT). We also report on reanalysis of archival ROSAT data. With Chandra it became possible for the first time to measure the position of the putative gamma-ray counterpart RX J2020.2+4026 with sub-arcsec accuracy and to deduce its X-ray spectral characteristics. These observations demonstrate that RX J2020.2+4026 is associated with a K field star and therefore is unlikely to be the counterpart of the bright gamma-ray source 2CG078+2 in the SNR G78.2+2.1 as had been previously suggested. The Chandra observation detected 37 additional X-ray sources which were correlated with catalogs of optical and infrared data. Subsequent GBT radio observations covered the complete 99% EGRET likelihood contour of 3EG J2020+4017 with a sensitivity limit of L(sub 820) approx. 0.1 mJy kpc(exp 2) which is lower than most of the recent deep radio search limits. If there is a pulsar operating in 3EG J2020+4017, this sensitivity limit suggests that the pulsar either does not produce significant amounts of radio emission or that its geometry is such that the radio beam does not intersect with the line of sight. Finally, reanalysis of archival ROSAT data leads to a flux upper limit of f(sub x)(0.1-2.4 keV) < 1.8 x 10(exp -13) erg/s/sq cm for a putative point-like X-ray source located within the 68% confidence contour of 3EG J2020+4017. Adopting the SNR age of 5400 yrs and assuming a spin-down to X-ray energy conversion factor of 10(exp -3) this upper limit constraints the parameters of a putative neutron star as a counterpart for 3EG J2020+4017 to be P > or approx. 160/(d/1.5 kpc) ms, P > or approx. 5 x 10(exp -13)/(d/1.5kpc) s s1 and B > or approx. 9 x 10(exp 12)/(d/1.5 kpc) G.

  15. Observations of Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2004-01-01

    Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emit&ng hundreds of predominantly soft (kT=30 kev), short (0.1-100 ms long) events. Their quiescent source x-ray light ewes exhibit puhlions rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10^14- 10^l5 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence were obtained in 1998 for two of these sources. I will discuss here the history of Soft Gamma Repeaters, and their spectral, timing and flux characteristics both in the persistent and their burst emission.

  16. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  17. INTEGRAL SPI All-Sky View in Soft Gamma Rays: A Study of Point-Source and Galactic Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Bouchet, L.; Jourdain, E.; Roques, J.-P.; Strong, A.; Diehl, R.; Lebrun, F.; Terrier, R.

    2008-06-01

    We have processed the data accumulated with the INTEGRAL SPI instrument over 4 years (~51 Ms) to study the morphology of the Galactic "diffuse" emission in the 20 keV to 8 MeV energy range. To achieve this, we simultaneously derived an all-sky census of emitting sources and images of the Galactic ridge (GR) emission. In the central radian, the resolved point-source emission amounts to 88%, 91%, and 68% of the total in the 25-50, 50-100, and 100-300 keV domains, respectively. We compare the spatial distribution of the GR emission with the distributions obtained from CO and near-IR maps and quantify our results through latitude and longitude profiles. Below 50 keV, the SPI data are better traced by the latter, supporting a stellar origin for this emission. Furthermore, we find that the GR emission spectrum follows a power law with a photon index ~1.55 above 50 keV, while an additional component is required below that energy. This component shows a cutoff around 30 keV, reinforcing a stellar origin, as proposed by Krivonos et al. The component of the diffuse emission due to e± annihilations is extracted simultaneously, leading to the determination of the related parameters (positronium flux and fraction). Specific discussion is devoted to the annihilation-line distribution, since significant emission is detected over a region as large as ~80° × ~10°, potentially associated with the disk or halo surrounding the central regions of our Galaxy. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic, and Poland, and with the participation of Russia and the US.

  18. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  19. Angular and Energy Characteristics of Gamma Field at the New Safe Confinement Construction Sit

    SciTech Connect

    Batiy, Valeriy; Glebkin, S; Pavlovskiy, L; Pravdyvyi, O; Rudko, Vladimir; Shcherbin, Vladimir; Stojanov, O; Schmieman, Eric A.

    2005-08-08

    To results of measurements of angular y and energy distribution of gamma-radiation at the cites of New Safe Confinement erection. The data analysis permitted to identify the main sources of gamma-radiation and to systematize the obtained results.

  20. Modifications of a method for low energy gamma-ray incident angle reconstruction in the GAMMA-400 gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Leonov, A. A.; Galper, A. M.; Topchiev, N. P.; Bonvicini, V.; Adriani, O.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bobkov, S. G.; Boezio, M.; Dalkarov, O. D.; Egorov, A. E.; Glushkov, N. A.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kheymits, M. D.; Korepanov, V. E.; Longo, F.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Moskalenko, I. V.; Naumov, P. Yu; Picozza, P.; Runtso, M. F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Yurkin, Yu T.; Zverev, V. G.

    2017-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the gamma-ray fluxes in the energy range from ∼20 MeV to ∼1 TeV, performing a sensitive search for high-energy gamma-ray emission when annihilating or decaying dark matter particles. Such measurements will be also associated with the following scientific goals: searching for new and studying known Galactic and extragalactic discrete high-energy gamma-ray sources (supernova remnants, pulsars, accreting objects, microquasars, active galactic nuclei, blazars, quasars). It will be possible to study their structure with high angular resolution and measuring their energy spectra and luminosity with high-energy resolution; identify discrete gamma-ray sources with known sources in other energy ranges. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolutions for gamma rays above 10 GeV. The gamma-ray telescope angular and energy resolutions for the main aperture at 100-GeV gamma rays are ∼0.01% and ∼1%, respectively. The motivation of presented results is to improve physical characteristics of the GAMMA-400 gamma-ray telescope in the energy range of ∼20-100 MeV, most unexplored range today. Such observations are crucial today for a number of high-priority problems faced by modern astrophysics and fundamental physics, including the origin of chemical elements and cosmic rays, the nature of dark matter, and the applicability range of the fundamental laws of physics. To improve the reconstruction accuracy of incident angle for low-energy gamma rays the special analysis of topology of pair-conversion events in thin layers of converter performed. Choosing the pair-conversion events with more precise vertical localization allows us to obtain significantly better angular resolution in comparison with previous and current space and ground-based experiments. For 50-MeV gamma rays the GAMMA-400 gamma-ray telescope angular resolution is better than 50.

  1. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing

    PubMed Central

    Wang, Yun; Butler, Robert R.; Reddy, N. Rukma; Skinner, Guy E.; Larkin, John W.

    2015-01-01

    Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance. PMID:26519392

  2. Taenia saginata metacestode antigenic fractions obtained by ion-exchange chromatography: potential source of immunodominant markers applicable in the immunodiagnosis of human neurocysticercosis.

    PubMed

    Nunes, Daniela da Silva; Gonzaga, Henrique Tomaz; Ribeiro, Vanessa da Silva; da Cunha, Jair Pereira; Costa-Cruz, Julia Maria

    2013-05-01

    The aim of this study was to fractionate and partially characterize fractions obtained from the total saline extract (SE) of Taenia saginata metacestodes after ion-exchange procedure in carboxymethyl sepharose (CM) and diethylaminoethyl sepharose (DEAE) resins, as a source of antigenic markers applicable in the immunodiagnosis of neurocysticercosis (NCC). For IgG detection by enzyme-linked immunosorbent assay (ELISA) and immunoblotting, 140 serum samples were analyzed: 45 from patients with NCC (G1), 50 from patients with other parasitic infections (G2), and 45 from healthy individuals. Sensitivity (Se), specificity (Sp), area under curve (AUC), and likelihood ratios (LR) were calculated. CM S2 and DEAE S2 fractions provided high diagnostic values (Se 88.8% and 93.4%; Sp 93.7% and 92.6%; AUC 0.965 and 0.987; LR+ 14.07 and 12.67; LR- 0.11 and 0.07, respectively). In conclusion, CM S2 and DEAE S2 fractions are important sources of specific peptides, with high efficiency to diagnose NCC.

  3. On background radiation gradients--the use of airborne surveys when searching for orphan sources using mobile gamma-ray spectrometry.

    PubMed

    Kock, Peder; Rääf, Christopher; Samuelsson, Christer

    2014-02-01

    Systematic background radiation variations can lead to both false positives and failures to detect an orphan source when searching using car-borne mobile gamma-ray spectrometry. The stochastic variation at each point is well described by Poisson statistics, but when moving in a background radiation gradient the mean count rate will continually change, leading to inaccurate background estimations. Airborne gamma spectrometry (AGS) surveys conducted on the national level, usually in connection to mineral exploration, exist in many countries. These data hold information about the background radiation gradients which could be used at the ground level. This article describes a method that aims to incorporate the systematic as well as stochastic variations of the background radiation. We introduce a weighted moving average where the weights are calculated from existing AGS data, supplied by the Geological Survey of Sweden. To test the method we chose an area with strong background gradients, especially in the thorium component. Within the area we identified two roads which pass through the high-variability locations. The proposed method is compared with an unweighted moving average. The results show that the weighting reduces the excess false positives in the positive background gradients without introducing an excess of failures to detect a source during passage in negative gradients.

  4. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  5. High intensity laser interactions with underdense plasma: a source of energetic electrons, ions, neutrons and gamma-rays

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    2002-11-01

    With the rapid advances in laser technology, laser beams are now available that can be routinely focused to intensities approaching 10^20 Wcm-2. At these intensities all matter becomes ionised on a time scale close to the period of the laser. The subsequent interaction is therefore characterised by the interaction of an intense laser beam with a highly dissociated medium (plasma). The interaction is particularly interesting since at these intensities, the normalised momentum of the electrons in the laser field is given by a_0=0.89× I(10^18 Wcm-2× λ^2(μ m)). Hence the quiver velocity of the plasma electrons in the electric field of the laser beam becomes relativistic. The interaction of the laser beam with a plasma at such elevated intensities is highly non-linear, and can lead to a whole host of interesting phenomena. These include relativistic self-focusing, harmonic generation, and Raman type parametric instabilities. These processes are of interest, not only from a scientific perspective, but also a technological one, with the prospect that such an interaction can provide useful sources of energetic particles. In this context, plasma wave generation by laser beam self-modulation, proton acceleration by Coulomb explosions and thermonuclear fusion neutron generation by extreme heating of intense laser beams will be discussed. Recent highlights of this research include the detection of protons of energies in excess of 1 MeV, the heating of an underdense deuterium plasma to temperatures in excess of 1 keV, resulting in the detection in excess of 10^6 fusion neutrons; and the detection of electrons accelerated to greater than 200 MeV due to the generation of relativistically steepened plasma waves. The latter measurement is particularly noteworthy since it is obtained with a 1 J, 10 Hz laser system, (Salle Jaune, LOA).

  6. Enhancing the quality of radiographic images acquired with point-like gamma-ray sources through correction of the beam divergence and attenuation

    NASA Astrophysics Data System (ADS)

    Silvani, M. I.; Almeida, G. L.; Lopes, R. T.

    2014-11-01

    Radiographic images acquired with point-like gamma-ray sources exhibit a desirable low penumbra effects specially when positioned far away from the set object-detector. Such an arrangement frequently is not affordable due to the limited flux provided by a distant source. A closer source, however, has two main drawbacks, namely the degradation of the spatial resolution - as actual sources are only approximately punctual - and the non-homogeneity of the beam hitting the detector, which creates a false attenuation map of the object being inspected. This non-homogeneity is caused by the beam divergence itself and by the different thicknesses traversed the beam even if the object were an homogeneous flat plate. In this work, radiographic images of objects with different geometries, such as flat plates and pipes have undergone a correction of beam divergence and attenuation addressing the experimental verification of the capability and soundness of an algorithm formerly developed to generate and process synthetic images. The impact of other parameters, including source-detector gap, attenuation coefficient, ratio defective-to-main hull thickness and counting statistics have been assessed for specifically tailored test-objects aiming at the evaluation of the ability of the proposed method to deal with different boundary conditions. All experiments have been carried out with an X-ray sensitive Imaging Plate and reactor-produced 198Au and 165Dy sources. The results have been compared with other technique showing a better capability to correct the attenuation map of inspected objects unveiling their inner structure otherwise concealed by the poor contrast caused by the beam divergence and attenuation, in particular for those regions far apart from the vertical of the source.

  7. Enhancing the quality of radiographic images acquired with point-like gamma-ray sources through correction of the beam divergence and attenuation

    SciTech Connect

    Silvani, M. I.; Almeida, G. L.; Lopes, R. T.

    2014-11-11

    Radiographic images acquired with point-like gamma-ray sources exhibit a desirable low penumbra effects specially when positioned far away from the set object-detector. Such an arrangement frequently is not affordable due to the limited flux provided by a distant source. A closer source, however, has two main drawbacks, namely the degradation of the spatial resolution - as actual sources are only approximately punctual - and the non-homogeneity of the beam hitting the detector, which creates a false attenuation map of the object being inspected. This non-homogeneity is caused by the beam divergence itself and by the different thicknesses traversed the beam even if the object were an homogeneous flat plate. In this work, radiographic images of objects with different geometries, such as flat plates and pipes have undergone a correction of beam divergence and attenuation addressing the experimental verification of the capability and soundness of an algorithm formerly developed to generate and process synthetic images. The impact of other parameters, including source-detector gap, attenuation coefficient, ratio defective-to-main hull thickness and counting statistics have been assessed for specifically tailored test-objects aiming at the evaluation of the ability of the proposed method to deal with different boundary conditions. All experiments have been carried out with an X-ray sensitive Imaging Plate and reactor-produced {sup 198}Au and {sup 165}Dy sources. The results have been compared with other technique showing a better capability to correct the attenuation map of inspected objects unveiling their inner structure otherwise concealed by the poor contrast caused by the beam divergence and attenuation, in particular for those regions far apart from the vertical of the source.

  8. The GAMMA-400 gamma-ray telescope angular resolution

    NASA Astrophysics Data System (ADS)

    Kheymits, Maxim; Leonov, Alexey

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be realized by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Search for signatures of dark matter, surveying the celestial sphere in order to study point and extended sources of gamma-rays, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, study of gamma-ray bursts and gamma-ray emission from the Sun. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution nearby 1% and angular resolution better than 0.02 deg. The methods, developed to reconstruct the direction of incident gamma photon, are presented in this paper. The main point concerns with the space topology of high energy gamma photon interaction in the matter of GAMMA-400. Multiple secondary particles, generated inside gamma-ray telescope, produce significant problems to restore the direction of initial gamma photon. Also back-splash particles, i.e., charged particles and gamma photons generated in calorimeter and moved upward, mask the initial tracks of electron/positron pair from conversion of incident gamma photon. The processed methods allow us to reconstruct the direction of electromagnetic shower axis and extract the electron/positron trace. As a result, the direction of incident gamma photon with the energy of 100 GeV is calculated with an accuracy of more than 0.02 deg.

  9. Gamma radiation shielding analysis of lead-flyash concretes.

    PubMed

    Singh, Kanwaldeep; Singh, Sukhpal; Dhaliwal, A S; Singh, Gurmel

    2014-11-04

    Six samples of lead-flyash concrete were prepared with lead as an admixture and by varying flyash content - 0%, 20%, 30%, 40%, 50% and 60% (by weight) by replacing cement and keeping constant w/c ratio. Different gamma radiation interaction parameters used for radiation shielding design were computed theoretically and measured experimentally at 662keV, 1173keV and 1332keV gamma radiation energy using narrow transmission geometry. The obtained results were compared with ordinary-flyash concretes. The radiation exposure rate of gamma radiation sources used was determined with and without lead-flyash concretes.

  10. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  11. The Burst and Transient Source Experiment(BATSE)Earth Occultation Catalog of Low-Energy Gamma-Ray Sources. Short title: BATSE Earth Occultation Catalog v2.0

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson, C. A.; Fishman, G. J.; Connaughton, V.; Henze, W.; Paciesas, W. S.; Finger, M. H.; McCollough, M. L.; Sahi, M.; Peterson, B.

    2003-01-01

    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the low-energy gamma-ray sky (approx. 20-1000 keV) between 1991 April and 2000 May (9.1y). BATSE monitored the high energy sky using the Earth occultation technique (EOT) for point sources whose emission extended for times on the order of the CGRO orbital period (approx. 92m) or greater. Using the EOT to extract flux - 2 - information, a catalog of sources using data from the BATSE large area detectors has been prepared. The first part of the catalog consists of results from the all-sky monitoring of 58 sources, mostly Galactic, with intrinsic variability on timescales of hours to years. For these sources, we have included tables of flux and spectral data, and outburst times for transients. Light curves (or flux histories) covering the entire nine mission are being placed on the world wide web. We then performed a deep-sampling of these 58 objects, plus a selection of 121 more objects, combining data from the entire 9.ly BATSE dataset. Source types considered were primarily accreting binaries, but a small number of representative active galaxies, X-ray-emitting stars, and supernova remnants were also included. The sample represents a compilation of sources monitored and/or discovered with BATSE and other high energy instruments between 1991 and 2000, known sources taken from the HEAO 1 A-4 (Levine et al. 1984) and Macomb and Gehrels (1999) catalogs. The deep sample results include definite detections of 82 objects and possible detections of 36 additional objects. The definite detections spanned three classes of sources: accreting black hole and neutron star binaries, active galaxies and supernova remnants. The average fluxes measured for the fourth class, the X-ray emitting stars, were below the confidence limit for definite detection. Flux data for the deep sample are presented in four energy bands: 20-40, 40-70, 70-160, and 160-430 keV. The

  12. NDA via gamma-ray active and passive computed tomography

    SciTech Connect

    Decman, D.J.; Martz, H.E.; Roberson, G.P.; Johansson, E.

    1996-10-01

    Gamma-ray-based computed tomography (CT) requires that two different measurements be made on a closed waste container. [MAR92 and ROB94] When the results from these two measurements are combined, it becomes possible to identify and quantify all detectable gamma-ray emitting radioisotopes within a container. All measurements are made in a tomographic manner, i.e., the container is moved sequentially through well- known and accurately reproducible translation, rotation, and elevation positions in order to obtain gamma-ray data that is reconstructed by computer into images that represent waste contents. [ROB94] The two measurements modes are called active (A) and passive (P) CT. In the ACT mode, a collimated gamma-ray source external to the waste container emits multiple, mono-energetic gamma rays that pass through the container and are detected on the opposite side. The attenuated gamma-rays transmitted are measured as a function of both energy and position of the container. Thus, container contents are `mapped` via the measured amount of attenuation suffered at each gamma-ray energy. In effect, a three dimensional (3D) image of gamma- ray attenuation versus waste content is obtained. In the PCT measurement mode, the external radioactive source is shuttered turned- off, and the waste container, is moved through similar positions used for the ACT measurements. However, this time the radiation detectors record any gamma-rays emitted by radioactive sources on the inside of the waste container. Thus, internal radioactive content is mapped or 3D-imaged in the same tomographic manner as the attenuating matrix materials were in the ACT measurement mode.

  13. XMM-Newton Observations Reveal the X-ray Counterpart of the Very-high-energy gamma-ray Source HESS J1640-465

    SciTech Connect

    Funk, S.; Hinton, J.A.; Puhlhofer, G.; Aharonian, F.A.; Hofmann, W.; Reimer, O.; Wagner, S.; Funk, S.; Hinton, J.A.; Puehlhofer, G.; Aharonian, F.A.; Hofmann, W.; Reimer, O.; Wagner, S.

    2007-03-05

    We present X-ray observations of the as of yet unidentified very high-energy (VHE) {gamma}-ray source HESS J1640-465 with the aim of establishing a counterpart of this source in the keV energy range, and identifying the mechanism responsible for the VHE emission. The 21.8 ksec XMM-Newton observation of HESS J1640-465 in September 2005 represents a significant improvement in sensitivity and angular resolution over previous ASCA studies in this region. These new data show a hard-spectrum X-ray emitting object at the centroid of the H.E.S.S. source, within the shell of the radio Supernova Remnant (SNR) G338.3-0.0. This object is consistent with the position and flux previously measured by both ASCA and Swift-XRT but is now shown to be significantly extended. We argue that this object is very likely the counterpart to HESS J1640-465 and that both objects may represent the Pulsar Wind Nebula of an as of yet undiscovered pulsar associated with G338.3-0.0.

  14. Relative effectiveness of structures as protection from gamma radiation from cloud and fallout sources as a function of source energy. Doctoral thesis

    SciTech Connect

    Fingerlos, J.P.

    1984-01-01

    Point kernel models were developed for both fallout and cloud sources. That development included a method of accurately combining buildup factors in multi-region problems over wide ranges of energy and photon mean free path, and a method for calculating the effect of ground roughness on the attenuation factor for fallout sources. The results were reported for six spectra as well as discrete energies from 15 keV to 15 MeV. The structures used as examples include small wood frame and large brick houses. The results show that the protection provided by houses for the PWR-2 event is approximately equal to that for the 1-hr weapon fallout. However there are significant differences for other spectra, such as that from Three Mile Island. The effects of varying building size are reported as well as the relative importance of both cloud and fallout sources that infiltrate structures. A listing of computer program CLOUD is provided.

  15. Neutron and Gamma Ray Pulse Shape Discrimination with Polyvinyltoluene

    SciTech Connect

    Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.; McDonald, Benjamin S.

    2012-03-01

    The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to an un-moderated 252Cf source shielded with 5.08 cm of lead.

  16. Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster: application in amperometric biosensors for methamidophos pesticide detection.

    PubMed

    de Oliveira Marques, Paulo Roberto Brasil; Nunes, Gilvanda Silva; dos Santos, Teresa Cristina Rodrigues; Andreescu, Silvana; Marty, Jean-Louis

    2004-11-01

    Genetically modified acetylcholinesterase (AChE) from Drosophila melanogaster (dm) and from commercial sources, Electric eel (ee), Bovine erythrocites (be) and Human erythrocites (he), were investigated as biological receptors for the detection of methamidophos pesticide based on inhibition studies. Most engineered variant of AChE from dm showed enhanced sensitivity toward methamidophos pesticide. Among 24 dmAChE variants tested, 12 presented a sensitivity comparable to the commercially available eeAChE, but higher than AChEs from be and he. Four were found more sensitive and six others were insensitive to methamidophos insecticide. The D375G,Y370F,Y374A,F376L mutant was the most sensitive, with a ki value of 2.2 X 10(6) mol(-1) L min(-1), three orders of magnitude higher than eeAChE (1.1 X 10(3) mol(-1) L min(-1)). The sensor constructed with genetically modified enzyme showed better characteristics with respect to detection limit and sensitivity compared with those using commercial eeAChE. Differential pulse polarography and chronoamperometry were used as electrochemical techniques to characterize the AChE biosensors. The lower detection limit of 1 ppb was obtained with D375G,Y370F,Y374A,F376L mutant of dmAChE, compared to 90 ppb for the commercial eeAChE. This study may stimulate scientists to develop more sensitive and selective procedures for organophosphorus insecticides detection by using engineered variant of dmAChE.

  17. 6-7 Mev Characteristic Gamma-Ray Source Using A Plasma Opening Switch And A Marx Bank

    DTIC Science & Technology

    2011-06-01

    CH2) lined outer conductor surface bombarding the center conductor. The Figure 1. Thick target yield for the 19F(p,αγ)16O reaction on a PTFE...produced by various (p,n) and (d,n) reactions in the PTFE target. The source of the ions is either (or both) the injected plasma or the anode plasma...created on the electron-heated surface of the CH2. The plasma gun PTFE insulation is not the primary proton source. Impurities from residual water

  18. Gamma-ray burst observations

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.

    1993-01-01

    The most important observational characteristics of gamma-ray bursts are reviewed, with emphasis on X-ray and gamma-ray data. The observations are used to derive some basic properties of the sources. The sources are found to be isotropically distributed; the burster population is limited in space, and the edge of the distribution is visible.

  19. Polarized gamma-rays with laser-Compton backscattering

    SciTech Connect

    Ohgaki, H.; Noguchi, T.; Sugiyama, S.

    1995-12-31

    Polarized gamma-rays were generated through laser-Compton backscattering (LCS) of a conventional Nd:YAG laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. We measured the energy, the energy spread, and the yield of the gamma-rays to characterize our gamma-ray source. The gamma-ray energy can be varied by changing the energy of the electrons circulating the storage ring. In our case, the energy of electrons in the storage ring were varied its energy from 200 to 750 MeV. Consequently, we observed gamma-ray energies of 1 to 10 MeV with 1064 run laser photons. Furthermore, the gamma-ray energy was extended to 20 MeV by using the 2nd harmonic of the Nd:YAG laser. This shows a good agreement with theoretical calculation. The gamma-ray energy spread was also measured to be 1% FWHM for -1 MeV gamma-rays and to be 4% FWHM for 10 MeV gamma-rays with a narrow collimator that defined the scattering cone. The gamma-ray yield was 47.2 photons/mA/W/s. This value is consistent with a rough estimation of 59.5 photons/mA/W/s derived from theory. Furthermore, we tried to use these gamma-rays for a nuclear fluorescence experiment. If we use a polarized laser beam, we can easily obtain polarized gamma-rays. Elastically scattered photons from {sup 208} Pb were clearly measured with the linearly polarized gamma-rays, and we could assign the parity of J=1 states in the nucleus. We should emphasize that the polarized gamma-ray from LCS is quit useful in this field, because we can use highly, almost completely, polarized gamma-rays. We also use the LCS gamma-rays to measure the photon absorption coefficients. In near future, we will try to generate a circular polarized gamma-ray. We also have a plan to use an FEL, because it can produce intense laser photons in the same geometric configuration as the LCS facility.

  20. Study of influence of plastic scintillators thicknesses to detect Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources

    SciTech Connect

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Pereira, Maria da Conceicao Costa; Santos, Brianna B. dos; Correa, Eduardo de L.; Santos, Lucas Rodrigues dos; Lopes, Anderson Figueredo; Silva, Alexandre F.P. da; Santos, Diogo F. dos; Camilo, Douglas de S.; Purgato, Rafael T.; Aredes, Vitor O.G.

    2015-07-01

    The Nuclear and Energy Research Institute - IPEN, offers post-graduate programs, namely: Nuclear Technology - Applications (TNA), Nuclear Technology - Materials (TNM), Nuclear Technology - Reactors (TNR). The Institute programs mission is to form expert technicians, physicists and engineers with a strong knowledge in their discipline to work in the nuclear area. The course: 'Theoretical Fundamentals and Practices of the Instrumentation used in Nuclear Data Acquisition' covers the use of laboratory nuclear instrumentation and the accomplishment of experiments to obtain nuclear parameters. One of these experimental exercises is object of this work: 'Study of influence of plastic scintillators to detect Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources'. The use of scintillators plastic for the detection has the advantage of low cost, high mechanical strength, is not hygroscopic and can be manufactured in large volumes. This work aims to present the analysis of relative efficiency of detection of plastic scintillators of various thicknesses for beta particles and gamma radiation by the spectrum of {sup 137}Cs and {sup 90}Sr. Due to lack of resolution of the detectors plastic scintillators we worked with relative efficiency. The evaluation was done by reading deposited energy, using the software MAESTRO, for each detector thickness. For beta particles was observed an ideal thickness around 3 mm and the better photon efficiency was observed with increasing the thickness of the detector. The present experiment does not intend to establish a new technique for this subject: it solely aims student's practical exercises in nuclear properties of elements and detectors being part of the nuclear experimental course. (authors)

  1. Gamma ray lines from buried supernovae

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Meyer, P.

    1982-01-01

    An investigation is conducted concerning the possibility that supernovae (SN), located in dense interstellar clouds, might become the sources of gamma ray lines. The SN progenitor, in such a case, has to be an O or B star so that its evolutionary lifetime is short, and an explosion inside the cloud is still possible. It is shown that, in principle, a measurement of the abundances in the ejecta is possible. Attention is given to the characteristics of a model, the expected luminosity of gamma-ray lines, and the study of specific numerical examples for testing the feasibility of the considered mechanism. On the basis of the obtained results, it is concluded that gamma-ray line production by collisional excitation in confined supernovae remnants may be quite important.

  2. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  3. Gamma irradiation effects in W films

    SciTech Connect

    Claro, Luiz H.; Santos, Ingrid A.; Silva, Cassia F.

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  4. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Döpp, A.; Guillaume, E.; Thaury, C.; Lifschitz, A.; Sylla, F.; Goddet, J.-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P.; Conejero, E.; Ruiz, C.; Ta Phuoc, K.; Malka, V.

    2016-09-01

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  5. A MULTI-WAVELENGTH INVESTIGATION OF THE UNIDENTIFIED GAMMA-RAY SOURCE HESS J1708-410

    SciTech Connect

    Van Etten, Adam; Funk, Stefan; Hinton, Jim E-mail: sfunk@stanford.ed

    2009-12-20

    We report on recent XMM-Newton observations, archival radio continuum and CO data, and spectral energy distribution (SED) modeling of the unidentified Galactic plane source HESS J1708-410. No significant extended X-ray emission is observed, and we place an upper limit of 3.2 x 10{sup -13} erg cm{sup -2} s{sup -1} in the 2-4 keV range for the region of TeV emission. Molonglo Galactic Plane Survey data are used to place an upper limit of 0.27 Jy at 843 MHz for the source, with a 2.4 GHz limit of 0.4 Jy from the Parkes survey of the southern Galactic plane. {sup 12}CO (J 1 -> 0) data of this region indicates a plausible distance of 3 kpc for HESS J1708-410. SED modeling of both the HESS detection and flux upper limits offer useful constraints on the emission mechanisms, magnetic field, injection spectrum, and ambient medium surrounding this source.

  6. A Multi-Wavelength Investigation of the Unidentified Gamma-Ray Source HESS J1708-410

    SciTech Connect

    Van Etten, Adam; Funk, Stefan; Hinton, Jim; /Leeds U.

    2009-12-16

    We report on recent XMM-Newton observations, archival radio continuum and CO data, and SED modeling of the unidentified Galactic plane source HESS J1708-410. No significant extended X-ray emission is observed, and we place an upper limit of 3.2 x 10{sup -13} erg cm{sup -2} s{sup -1} in the 2-4 keV range for the region of TeV emission. Molonglo Galactic Plane Survey data is used to place an upper limit of 0.27 Jy at 843 MHz for the source, with a 2.4 GHz limit of 0.4 Jy from the Parkes survey of the southern Galactic plane. {sup 12}CO (J 1 {yields} 0) data of this region indicates a plausible distance of 3 kpc for HESS J1708-410. SED modeling of both the H.E.S.S. detection and flux upper limits offer useful constraints on the emission mechanisms, magnetic field, injection spectrum, and ambient medium surrounding this source.

  7. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    NASA Astrophysics Data System (ADS)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as

  8. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D/sub 2/O-moderated /sup 252/Cf source

    SciTech Connect

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li/sub 2/B/sub 4/O/sub 7/, alone or in combination with CaSO/sub 4/, (69%), /sup 7/LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from /sup 252/Cf moderated by 15-cm of D/sub 2/O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a /sup 238/PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li/sub 2/B/sub 4/O/sub 7/ type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, /sup 7/LiF, and film. 12 refs., 1 fig., 5 tabs.

  9. Searching the Gamma-Ray Sky for Counterparts to Gravitational Wave Sources: /Fermi GBM and LAT Observations of LVT151012 and GW151226

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; Burns, E.; Goldstein, A.; Connaughton, V.; Wilson-Hodge, C. A.; Jenke, P.; Blackburn, L.; Briggs, M. S.; Broida, J.; Camp, J.; Christensen, N.; Hui, C. M.; Littenberg, T.; Shawhan, P.; Singer, L.; Veitch, J.; Bhat, P. N.; Cleveland, W.; Fitzpatrick, G.; Gibby, M. H.; von Kienlin, A.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O. J.; Stanbro, M.; Veres, P.; Zhang, B.-B.; Fermi LAT Collaboration; Ackermann, M.; Albert, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bregeon, J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chiang, J.; Ciprini, S.; Costanza, F.; Cuoco, A.; Cutini, S.; D’Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Gill, R.; Giroletti, M.; Glanzman, T.; Granot, J.; Green, D.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Jogler, T.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kocevski, D.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Malyshev, D.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Simone, D.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Vianello, G.; Wood, K. S.; Wood, M.

    2017-01-01

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds across large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.

  10. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  11. Blazars as Ultra-high-energy Cosmic-ray Sources: Implications for TeV Gamma-Ray Observations

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Dermer, Charles D.; Takami, Hajime; Migliori, Giulia

    2012-04-01

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 1019 eV, so >~ 1020 eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the γ-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV γ-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and gsimTeV photons from more distant radio-loud AGNs.

  12. Gamma greenhouse: A chronic facility for crops improvement and agrobiotechnology

    NASA Astrophysics Data System (ADS)

    Azhar, M.; Ahsanulkhaliqin, A. W.

    2014-02-01

    Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, 60Co and 137Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for 60Co and 30.1 years for 137Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the gamma greenhouse mainly

  13. Gamma greenhouse: A chronic facility for crops improvement and agrobiotechnology

    SciTech Connect

    Azhar, M. Ahsanulkhaliqin, A. W.

    2014-02-12

    Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, {sup 60}Co and {sup 137}Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for {sup 60}Co and 30.1 years for {sup 137}Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the

  14. Neutron and Gamma Radiation Measurements and Calculations up to 1.1 Kilometers from a Fission Source.

    DTIC Science & Technology

    1981-01-26

    gold foils to determine thermal neutron flux and sulfur pellets to determine the > 3 MeV neutron fluence. DREO also uses an NE 213 spectrometer...These data can be used to obtain a good approximation to the total neutron spectrum from thermal energies to nu 10 MeV. A bare boron trifluoride...detector is senstive to thermal and near- thermal (epithermal) neutrons. The cadmium covered detector is sensitive only to the epithermal neutrons. The

  15. NuSTAR Discovery Of A Young, Energetic Pulsar Associated with the Luminous Gamma-Ray Source HESS J1640-465

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Tomsick, J. A.; Halpern, J. P.; Gelfand, J. D.; Harrison, F. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, J. C.; Kaspi, V. M.; Stern, D. K.; Zhang, W. W.

    2014-01-01

    We report the discovery of a 206 ms pulsar associated with the TeV gamme-ray source HESS J1640-465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640-4631 lies within the shelltype supernova remnant (SNR) G338.3-0.0, and coincides with an X-ray point source and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative P = 9.758(44) × 10(exp -13), yielding a spin-down luminosity E = 4.4 × 10(exp 36) erg s(exp -1), characteristic age tau(sub c) if and only if P/2 P = 3350 yr, and surface dipole magnetic field strength B(sub s) = 1.4×10(exp 13) G. For the measured distance of 12 kpc to G338.3-0.0, the 0.2-10 TeV luminosity of HESS J1640-465 is 6% of the pulsar's present E. The Fermi source 1FHL J1640.5-4634 is marginally coincident with PSR J1640-4631, but we find no gamma-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data. The pulsar energetics support an evolutionary PWN model for the broadband spectrum of HESS J1640-465, provided that the pulsar's braking index is n approximately equal to 2, and that its initial spin period was P(sub 0) approximately 15 ms.

  16. Gamma ray observations of the Crab pulsar - Past, present, future

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1992-01-01

    The paper describes some of the high-energy observations of the Crab-Nebula pulsar, PSR0531+22. The pulse profiles of the Crab pulsar obtained in balloon-borne observations in 1967 and 1980 are presented. At present, gamma-ray scintillation detectors aboard the Gamma Ray Observatory (GRO) form the basis of the Burst and Transient Source Experiment (BATSE). The pulsar, which is observed daily by the BATSE, is used by all four GRO/BATSE detectors as a calibration source since it emits a steady, strong, well-known spectrum of gamma rays over the entire energy range to which detectors are sensitive. The paper presents an example of a pulse profile obtained with the BATSE.

  17. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  18. Effect of UV and gamma radiation on Rn222 permeation through polyvinyl chloride (PVC). Application to the packaging of radium sources for the purpose of storage

    NASA Astrophysics Data System (ADS)

    Tomasella, E.; Labed, V.; Klein, D.; Robé, M. C.; Cetier, Ph.; Chambaudet, A.

    1995-11-01

    Mining of uranium and thorium, as well as the use of radioactive sources in radiotherapy, have caused, during the 20th century, the production of waste with a varying concentration in long-lived radionucleides (particularly radium). This waste cannot be stored in traditional storage sites which will return to the public domain after 300 years, due to, on the one hand, the radium period (1620 years) and, on the other hand, the build-up of radon, its gaseous daughter. One solution, in order to optimize the packaging and storage of such products, could be to use successive barriers, made of polymer membranes, intended to limit radon emission. Laboratory tests have shown that polyvinyl chloride (PVC) greatly reduces radon emission from a radium source. However one should take into account the damage of the polymer in time, due to radioactive waste storage itself over long periods of time. Therefore, in order to check the durability of such barriers, PVC samples have been subjected to different accelerated ageing processes by exposure to ultra-violet (UV) radiations or gamma rays. We have determined the effect of such radiation of the samples using two approaches: — demonstration of structural changes using analytical method (Infra-red with Fourier Transform or IRTF), — study of variations in the radon permeation factor. In the first analysis, it seems that the UV irradiation, causes structural changes in the PVC as a function of the irradiation length of time. This leads first to an increase in the efficiency of the polymer as a "radon barrier", i.e. a reduction in its permeation factor (2.41 × 10 -12m 2s -1 for a non exposed membrane, against 3.30 × 10 -13m 2.s -1 for a membrane exposed during 284 hours, with an exposure rate of 62.5 W.m -2, thus a reduction by a factor 10 of the radon emission) then to a long-term weakness. The gamma irradiation (dose rate: 1.05 kGy.h -1, dose: 0.71 MGy) also causes a reduction in the permeation factor of PVC, but only by a

  19. Monte Carlo models and analysis of galactic disk gamma-ray burst distributions

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon

    1989-01-01

    Gamma-ray bursts are transient astronomical phenomena which have no quiescent counterparts in any region of the electromagnetic spectrum. Although temporal and spectral properties indicate that these events are likely energetic, their unknown spatial distribution complicates astrophysical interpretation. Monte Carlo samples of gamma-ray burst sources are created which belong to Galactic disk populations. Spatial analysis techniques are used to compare these samples to the observed distribution. From this, both quantitative and qualitative conclusions are drawn concerning allowed luminosity and spatial distributions of the actual sample. Although the Burst and Transient Source Experiment (BATSE) experiment on Gamma Ray Observatory (GRO) will significantly improve knowledge of the gamma-ray burst source spatial characteristics within only a few months of launch, the analysis techniques described herein will not be superceded. Rather, they may be used with BATSE results to obtain detailed information about both the luminosity and spatial distributions of the sources.

  20. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  1. Compton MeV Gamma-ray Source on Texas Petawatt Laser-Driven GeV Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph M.; Tsai, Hai-En; Zgadzaj, Rafal; Wang, Xiaoming; Chang, Vincent; Fazel, Neil; Henderson, Watson; Downer, M. C.; Texas Petawatt Laser Team

    2015-11-01

    Compton Backscatter (CBS) from laser wakefield accelerated (LWFA) electron bunches is a promising compact, femtosecond (fs) source of tunable high-energy photons. CBS x-rays have been produced from LWFAs using two methods: (1) retro-reflection of the LWFA drive pulse via an in-line plasma mirror (PM); (2) scattering of a counter-propagating secondary pulse split from the drive pulse. Previously MeV photons were only demonstrated by the latter method, but the former method is self-aligning. Here, using the Texas Petawatt (TPW) laser and a self-aligned near-retro-reflecting PM, we generate bright CBS γ-rays with central energies higher than 10 MeV. The 100 μm focus of TPW delivers 100 J in 100 fs pulses, with intensity 6x1018 W/cm2 (a0 =1.5), to the entrance of a 6-cm long Helium gas cell. A thin, plastic PM immediately following the gas cell exit retro-reflects the LWFA driving pulse into the oncoming 0.5 - 2 GeV electron beam to produce a directional beam of γ-rays without significant bremsstrahlung background. A Pb-filter pack on a thick, pixelated, CsI(Tl) scintillator is used to estimate the spectrum via differential transmission and to observe the beam profile. Recorded beam profiles indicate a low divergence. Department of Physics, The University of Texas at Austin

  2. Lunar based gamma ray astronomy

    NASA Astrophysics Data System (ADS)

    Haymes, R. C.

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed.

  3. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  4. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  5. Dibasic calcium phosphate dihydrate, USP material compatibility with gamma radiation

    NASA Astrophysics Data System (ADS)

    Betancourt Quiles, Maritza

    Gamma radiation is a commonly used method to reduce the microbial bioburden in compatible materials when it is applied at appropriate dose levels. Gamma irradiation kills bacteria and mold by breaking down the organism’s DNA and inhibiting cell division. The purpose of this study is to determine the radiation dosage to be used to treat Dibasic Calcium Phosphate Dihydrate, USP (DCPD) and to evaluate its physicochemical effects if any, on this material. This material will be submitted to various doses of gamma radiation that were selected based on literature review and existing regulations that demonstrate that this method is effective to reduce or eliminate microbial bioburden in natural source and synthetic materials. Analytical testing was conducted to the DCPD exposed material in order to demonstrate that gamma radiation does not alter the physicochemical properties and material still acceptable for use in the manufacture of pharmaceutical products. The results obtained through this study were satisfactory and demonstrated that the gamma irradiation dosages from 5 to 30 kGy can be applied to DCPD without altering its physicochemical properties. These are supported by the Assay test data evaluation of lots tested before and after gamma irradiation implementation that show no significant statistical difference between irradiated and non irradiated assay results. The results of this study represent an achievement for the industry since they provide as an alternative the use of Gamma irradiation technology to control the microbial growth in DCPD.

  6. Comparison of Noise Source Localization Data with Flow Field Data Obtained in Cold Supersonic Jets and Implications Regarding Broadband Shock Noise

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy

    2013-01-01

    Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.

  7. On the origin and nature of the grating interferometric dark-field contrast obtained with low-brilliance x-ray sources

    NASA Astrophysics Data System (ADS)

    Koenig, Thomas; Zuber, Marcus; Trimborn, Barbara; Farago, Tomas; Meyer, Pascal; Kunka, Danays; Albrecht, Frederic; Kreuer, Sascha; Volk, Thomas; Fiederle, Michael; Baumbach, Tilo

    2016-05-01

    The x-ray dark-field contrast accessible via grating interferometry is sensitive to features at length scales well below what is resolvable by a detector system. It is commonly explained as arising from small-angle x-ray scattering (SAXS), and can be implemented both at synchrotron beamlines and with low-brilliance sources such as x-ray tubes. Here, we demonstrate that for tube based setups the underlying process of image formation can be fundamentally different. For focal spots or detector pixels that comprise multiple grating periods, we show that dark-field images contain a strong artificial and system-specific component not arising from SAXS. Based on experiments carried out with a nanofocus x-ray tube and the example of an excised rat lung, we demonstrate that the dark-field contrast observed for porous media transforms into a differential phase contrast for large geometric magnifications. Using a photon counting detector with an adjustable point spread function, we confirm that a dark-field image can indeed be formed by an intra-pixel differential phase contrast that cannot be resolved as such due to a dephasing between the periodicities of the absorption grating and the Talbot carpet. Our findings are further corroborated by a link between the strength of this pseudo-dark-field contrast and our x-ray tube’s focal spot size in a three-grating setup. These results must not be ignored when measurements are intended to be reproducible across systems.

  8. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    NASA Astrophysics Data System (ADS)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  9. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Burst and Transient Source Experiment on the Gamma Ray Observatory and to collection, analysis, and interpretation of data from the MSFC Very Low Frequency transient monitoring program were performed. The results are summarized and relevant references are included.

  10. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1992-01-01

    Miscellaneous tasks related to mission operations and data analysis for the Burst and Transient Source Experiment on the Gamma Ray Observatory, to collection, analysis, and interpretation of data from the Marshall Space Flight Center Very Low Frequency transient monitoring program, and to compilation and analysis of induced radioactivity data were performed. The results are summarized and relevant references are included.

  11. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  12. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the

  13. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  14. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  15. Optical anemometry based on the temporal cross-correlation of angle-of-arrival fluctuations obtained from spatially separated light sources.

    PubMed

    Tichkule, Shiril; Muschinski, Andreas

    2012-07-20

    The temporal cross-correlation function of the angle-of-arrival (AOA) fluctuations of two optical waves propagating through atmospheric turbulence carries information regarding the average wind velocity transverse to the propagation path. We present and discuss two estimators for the retrieval of the path-averaged beam-transverse horizontal wind velocity, v(t). Both methods retrieve v(t) from the temporal cross-correlation function of AOA fluctuations obtained from two closely spaced light-emitting diodes (LEDs). The first method relies on the time delay of the peak (TDP) of the cross-correlation function, and the second method exploits its slope at zero lag (SZL). Over a 9 h period during which v(t) varied between -1.3 ms(-1) and 2.0 ms(-1), the maximum rms difference between optically retrieved and in situ measured 10 s estimates of v(t) was found to be 0.18 ms(-1) for the TDP estimator and 0.23 ms(-1) for the SZL estimator. Applicability and limitations of these two optical wind retrieval techniques are discussed.

  16. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers.

    PubMed

    Taylor, Luke R; Feng, Yan; Calia, Domenico Bonaccini

    2010-04-12

    We demonstrate the cascaded coherent collinear combination of a seed-split triplet of 1178nm high-power narrow-band (sub-1.5MHz) SBS-suppressed CW Raman fibre amplifiers via nested free-space constructive quasi-Mach-Zehnder interferometry, after analysing the combination of the first two amplifiers in detail. Near-unity combination and cascaded-combination efficiencies are obtained at all power levels up to a maximum P(1178) > 60W. Frequency doubling of this cascaded-combined output in an external resonant cavity yields P(589) > 50W with peak conversion efficiency eta(589) ~85%. We observe no significant differences between the SHG of a single, combined pair or triplet of amplifiers. Although the system represents a successful power scalability demonstrator for fibre-based Na-D(2a)-tuned mesospheric laser-guide-star systems, we emphasise its inherent wavelength versatility and consider its spectroscopic and near-diffraction-limited qualities equally well suited to other applications.

  17. Cell-free supernatants obtained from fermentation of cheese whey hydrolyzates and phenylpyruvic acid by Lactobacillus plantarum as a source of antimicrobial compounds, bacteriocins, and natural aromas.

    PubMed

    Rodríguez-Pazo, Noelia; Vázquez-Araújo, Laura; Pérez-Rodríguez, Noelia; Cortés-Diéguez, Sandra; Domínguez, José Manuel

    2013-10-01

    Cheese whey hydrolyzates supplemented with phenylpyruvic acid (PPA) and commercial nutrients can be efficiently metabolized by Lactobacillus plantarum CECT-221 to biosynthesize some compounds with attractive applications in the food market. The main metabolites of cell-free extracts were antimicrobial compounds such as phenyllactic acid (PLA) and lactic acid (LA). The production of PLA by L. plantarum CECT-221 was evaluated in the Man-Rogosa-Sharpe broth supplemented with two biosynthetic precursors: phenylalanine or PPA. Using 30.5 mM PPA, the microorganism increased sevenfold the concentration of PLA producing 16.4 mM PLA in 46 h. A concentration of 40 mM PPA was a threshold to avoid substrate inhibition. The biosynthesis of whey hydrolyzates as a carbon source was enhanced by fed-batch fermentation of PPA; the average productivity of PLA increased up to 45.4 ± 3.02 mM after 120 h with a product yield of 0.244 mM mM(-1); meanwhile, LA reached 26.1 ± 1.3 g L(-1) with a product yield of 0.72 g g(-1). Cell-free fed-batch extracts charged in wells showed bacteriocin activity with halos of 7.49 ± 1.44 mm in plates inoculated with Carnobacterium piscicola and antimicrobial activity against Staphylococcus aureus (11.54 ± 1.14 mm), Pseudomonas aeruginosa (10.17 ± 2.46 mm), Listeria monocytogenes (7.75 ± 1.31 mm), and Salmonella enterica (3.60 ± 1.52 mm). Additionally, the analysis of the volatile composition of the headspace of this cell-free extract revealed that L. plantarum is a potential producer for natural aromas, such as acetophenone, with high price in the market. This is the first report of PLA production from cheese whey and PPA. The extracts showed bacteriocin activity and potential to be applied as an antimicrobial in the elaboration of safer foods.

  18. Gamma rays and the origin of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    de Ona Wilhelmi, Emma

    2015-08-01

    Cosmic rays (CRs) are highly energetic nuclei (plus a small fraction of electrons) which fill the Galaxy and carry on average as much energy per unit volume as the energy density of starlight, the interstellar magnetic fields, or the kinetic energy density of interstellar gas. The CR spectrum extends as a featureless power-law up to ~2 PeV (the 'knee') and it is believed to be the result of acceleration of those CRs in Galactic Sources and later diffusion and convection in galactic magnetic fields. Those energetic CRs can interact with the surrounding medium via proton-proton collision resulting in secondary gamma-ray photons, observed from 100 MeV to a few tens of TeV. The results obtained by the current Cherenkov telescopes and gamma-ray satellites with the support of X-ray observations have discovered and identified more than 50 Galactic gamma-ray sources. Among them, the number of Supernova remnants (SNRs) and very-high-energy hard-spectrum sources (natural candidates to originate CRs) are steadily increasing. We expect to increase by a factor 10 at least this population of source with the future CTA experiment. I will review our current knowledge of Galactic gamma-ray sources and their connection with energetic CRs and the scientific prospects for CTA in this field. Those observations, together with a strong multi-wavelenght support from radio to hard X-rays, will finally allow us to establish the origin of the Galactic CRs.

  19. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  20. SU-E-T-212: Comparison of TG-43 Dosimetric Parameters of Low and High Energy Brachytherapy Sources Obtained by MCNP Code Versions of 4C, X and 5

    SciTech Connect

    Zehtabian, M; Zaker, N; Sina, S; Meigooni, A Soleimani

    2015-06-15

    Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 which is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.

  1. Medium energy gamma ray astronomy with transpacific balloon flights

    NASA Technical Reports Server (NTRS)

    Zych, A. D.; Jennings, M. C.; White, R. S.; Dayton, B.

    1981-01-01

    Transpacific balloon flights with the University of California, Riverside (UCR) double scatter telescope are discussed. With flight durations from 5 days up to perhaps 15 days the long observation times necessary for medium energy (1-30 MeV) gamma ray astronomy can be obtained. These flights would be made under the auspices of the Joint U.S.-Japan Balloon Flight Program at NASA. It is proposed that flights can provide at least 30 hours of observation time per flight for many discrete source candidates and 120 hours for detecting low intensity cosmic gamma ray bursts.

  2. Investigations on neutron-induced prompt gamma ray analysis of bulk samples.

    PubMed

    Dokhale, P A; Csikai, J; Oláh, L

    2001-06-01

    A systematic investigation was carried out for the improvement of the prompt gamma interrogation method used for contraband detection by the pulsed fast/thermal neutron analysis (PFTNA) technique. Optimizations of source detector shielding and geometry, role of the type and dimension of the gamma detector, attenuation of neutrons and gamma rays in bulky samples were also studied. Results obtained for both the shielding materials and elemental content of cocaine simulants have been compared with the values calculated by the MCNP-4A code.

  3. New data on ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) partial photoneutron reactions

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stepanov, M. E.

    2013-11-15

    Systematic discrepancies between the results of various experiments devoted to determining cross sections for total and partial photoneutron reactions are analyzed by using objective criteria of reliability of data in terms of the transitional photoneutron-multiplicity function F{sub i} = {sigma}({gamma}, in)/{sigma}({gamma}, xn), whose values for i = 1, 2, 3, ... cannot exceed by definition 1.00, 0.50, 0.33, ..., respectively. It was found that the majority of experimental data on the cross sections obtained for ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) reactions with the aid of methods of photoneutron multiplicity sorting do not meet objective criteria (in particular, F{sub 2} > 0.50 for a vast body of data). New data on the cross sections for partial reactions on {sup 181}Ta and {sup 208}Pb nuclei were obtained within a new experimental-theoretical method that was proposed for the evaluation of cross sections for partial reactions and in which the experimental neutron yield cross section {sigma}{sup expt}({gamma}, xn) = {sigma}({gamma}, n) + 2{sigma}({gamma}, 2n) + 3{sigma}({gamma}, 3n) + ..., which is free from problems associated with determining neutron multiplicities, is used simultaneously with the functions F{sub i}{sup theor} calculated within a combined model of photonuclear reactions.

  4. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  5. On the capacity of MISO FSO systems over gamma-gamma and misalignment fading channels.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2015-08-24

    In this work, the ergodic capacity performance for multiple-input/single-output (MISO) free-space optical (FSO) communications system with equal gain combining (EGC) reception is analyzed over gamma-gamma and misalignment fading channels, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.). Novel and analytical closed-form ergodic capacity expression is obtained in terms of H-Fox function by using the well-known inequality between arithmetic and geometric mean of positive random variables (RV) in order to obtain an approximate closed-form expression of the distribution of the sum of M gamma-gamma with pointing errors variates. In addition, we present an asymptotic ergodic capacity expression at high signal-to-noise ratio (SNR) for the ergodic capacity of MISO FSO systems. It can be concluded that the use of MISO technique can significantly reduce the effect of the atmospheric turbulence as well as pointing errors and, hence, provide significant capacity gain over the direct path link (DL). The impact of pointing errors on the MISO FSO system is also analyzed, which only depends on the number of laser sources and pointing error parameters. Moreover, it can be also concluded that the ergodic capacity performance is dramatically reduced as a consequence of the severity of pointing error effects. Simulation results are further demonstrated to confirm the analytical results.

  6. Calibration and performance of the UCR double Compton gamma ray telescope

    SciTech Connect

    Ait-Ouamer, F.; Kerrick, A.D.; Sarmouk, A.; O'Neill, T.J.; Sweeney, W.E.; Tumer, O.T.; Zych, A.D.; White, R.S. . Inst. of Geophysics and Planetary Physics)

    1990-04-01

    Results of the field calibration and performance of the UCR double Compton gamma-ray telescope are presented. The telescope is a balloon-borne instrument with an upper array of 16 plastic scintillator bars and a lower one of 16 NaI({ital Tl}) bars. The telescope is sensitive to celestial gamma-rays from 1 to 30 MeV. The data were collected on Feb. 14, 1988 prior to the launch in Alice Springs, Australia to observe SN 1987A. Radioactive sources were used to calibrate the energy deposits in the scintillators. Each bar was analyzed laterally using pulse height or timing to obtain the positions of the gamma-ray interactions. Double scatter events from a {sup 24}Na source simulating a celestial source were studied to obtain the general performance of the telescope and to develop imaging techniques, later used with the flight data.

  7. Obtaining and Investigating Unconventional Sources of Radioactivity

    ERIC Educational Resources Information Center

    Lapp, David R.

    2010-01-01

    This paper provides examples of naturally radioactive items that are likely to be found in most communities. Additionally, there is information provided on how to acquire many of these items inexpensively. I have found that the presence of these materials in the classroom is not only useful for teaching about nuclear radiation and debunking the…

  8. Differential absorbed dose distributions in lineal energy for neutrons and gamma rays at the mono-energetic neutron calibration facility.

    PubMed

    Takada, M; Baba, M; Yamaguchi, H; Fujitaka, K

    2005-01-01

    Absorbed dose distributions in lineal energy for neutrons and gamma rays of mono-energetic neutron sources from 140 keV to 15 MeV were measured in the Fast Neutron Laboratory at Tohoku University. By using both a tissue-equivalent plastic walled counter and a graphite-walled low-pressure proportional counter, absorbed dose distributions in lineal energy for neutrons were obtained separately from those for gamma rays. This method needs no knowledge of energy spectra and dose distributions for gamma rays. The gamma-ray contribution in this neutron calibration field >1 MeV neutron was <3%, while for <550 keV it was >40%. The measured neutron absolute absorbed doses per unit neutron fluence agreed with the LA150 evaluated kerma factors. By using this method, absorbed dose distributions in lineal energy for neutrons and gamma rays in an unknown neutron field can be obtained separately.

  9. Effects of Culture Conditions and Tuberculin Source on Interferon-gamma production in Whole Blood Cultures from Mycobacterium bovis Infected Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The BOVIGAM® interferon (IFN) - gamma assay constitutes an ante-mortem, in vitro laboratory-based tuberculosis test and is used complementary to the tuberculin skin test. The assay is performed in two stages: firstly, whole blood is cultured with antigens stimulating blood leucocytes to produce IFN...

  10. Effects of Culture Conditions and Tuberculin Source on Interferon-gamma Production in Whole Blood Cultures from Mycobacterium bovis Infected Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The BOVIGAM® interferon (IFN) - gamma assay constitutes an ante-mortem, in vitro laboratory-based tuberculosis test and is used complementary to the tuberculin skin test. The assay is performed in two stages: firstly, whole blood is cultured with antigens stimulating blood leucocytes to produce IFN-...

  11. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  12. Light collection optimization in scintillator-based gamma-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Hull, G.; Du, S.; Niedermayr, T.; Payne, S.; Cherepy, N.; Drobshoff, A.; Fabris, L.

    2008-04-01

    Scintillator-based gamma-ray detectors are being actively pursued for homeland security applications. A key property of such detectors is their energy resolution which enables faster detection and more precise identification of gamma-ray sources. In order to obtain the best energy resolution with a given scintillator material, it is crucial to collect the largest fraction possible of the light emitted after gamma-ray absorption. Different techniques to maximize the light collection efficiency were investigated and tested experimentally. In particular, the effect of the scintillator geometry has been simulated with Detect2000. Also, a number of wrapping materials have been tested for their reflectivity and their performance in terms of improving the energy resolution in a BGO-based gamma-ray detector. The best results were obtained with a tapered cylinder geometry and the GORE DRP tape.

  13. Investigation of the initial and volume recombination losses in gamma versatile cylindrical ionization chamber VGIC developed for gamma ray dosimetry

    SciTech Connect

    Fares, M.; Mameri, S.; Abdlani, I.; Negara, K.

    2015-07-01

    A versatile Gamma ionization chambers are used for flow control in systems with gamma nuclear reactors and reprocessing plants in and monitoring atmosphere around these facilities, this in order to protect staff. In the Laboratory Detection and Measures (LDM) Division for Study and Development of Nuclear Instrumentation (DSDNI) of CRNB, we designed, developed and characterized a versatile gamma ionization chamber (VGIC) to study experimentally its characteristics according to the geometry of the electrodes, the volume and pressure of the filler gas for the design of a gamma sealed chamber. The tests were conducted under the IEC (International Electro-technical Commission). In this paper, we present the results obtained in the various nuclear tests for characterization and calibration that we have made on the ionization chamber gamma VGIC prototype developed at our Department. To do this, three irradiators were operated at the Laboratory Calibration (SSDL) of the Department of Medical Physics Nuclear Research Center of Algiers (CRNA). Irradiator intensive gamma ({sup 60}Co: 1.25 MeV), one medium intensity gamma ({sup 137}Cs: 0.662 MeV) and 3rd low intensity ({sup 60}Co). Saturation curves and linearity were identified and the operating range and the sensitivity of the chamber have been deducted. The (I,V) characteristics of the chamber filled, with argon gas at 3 bar (0.3 M pa) pressure, for gamma ray irradiator sources were studied. To do so, the chamber was irradiated with gamma rays using different numbers of gamma sources (i.e. Up to 5). The plateau region is reached above 200 V and the detector operating voltage is found to be 600 V. It is observed that in the plateau region the slope is constant with an increase in the exposure rate. The (1/I, 1/V) and (I, l/V{sup 2}) characteristic curves reveal the presence of the initial and volume recombination losses. The volume recombination losses are found to be smaller than the initial recombination losses. Finally

  14. Cosmological Distance Scale to Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Azzam, W. J.; Linder, E. V.; Petrosian, V.

    1993-05-01

    The source counts or the so-called log N -- log S relations are the primary data that constrain the spatial distribution of sources with unknown distances, such as gamma-ray bursts. In order to test galactic, halo, and cosmological models for gamma-ray bursts we compare theoretical characteristics of the log N -- log S relations to those obtained from data gathered by the BATSE instrument on board the Compton Observatory (GRO) and other instruments. We use a new and statistically correct method, that takes proper account of the variable nature of the triggering threshold, to analyze the data. Constraints on models obtained by this comparison will be presented. This work is supported by NASA grants NAGW 2290, NAG5 2036, and NAG5 1578.

  15. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  16. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  17. Neutron counting and gamma spectroscopy with PVT detectors.

    SciTech Connect

    Mitchell, Dean James; Brusseau, Charles A.

    2011-06-01

    Radiation portals normally incorporate a dedicated neutron counter and a gamma-ray detector with at least some spectroscopic capability. This paper describes the design and presents characterization data for a detection system called PVT-NG, which uses large polyvinyl toluene (PVT) detectors to monitor both types of radiation. The detector material is surrounded by polyvinyl chloride (PVC), which emits high-energy gamma rays following neutron capture reactions. Assessments based on high-energy gamma rays are well suited for the detection of neutron sources, particularly in border security applications, because few isotopes in the normal stream of commerce have significant gamma ray yields above 3 MeV. Therefore, an increased count rate for high-energy gamma rays is a strong indicator for the presence of a neutron source. The sensitivity of the PVT-NG sensor to bare {sup 252}Cf is 1.9 counts per second per nanogram (cps/ng) and the sensitivity for {sup 252}Cf surrounded by 2.5 cm of polyethylene is 2.3 cps/ng. The PVT-NG sensor is a proof-of-principal sensor that was not fully optimized. The neutron detector sensitivity could be improved, for instance, by using additional moderator. The PVT-NG detectors and associated electronics are designed to provide improved resolution, gain stability, and performance at high-count rates relative to PVT detectors in typical radiation portals. As well as addressing the needs for neutron detection, these characteristics are also desirable for analysis of the gamma-ray spectra. Accurate isotope identification results were obtained despite the common impression that the absence of photopeaks makes data collected by PVT detectors unsuitable for spectroscopic analysis. The PVT detectors in the PVT-NG unit are used for both gamma-ray and neutron detection, so the sensitive volume exceeds the volume of the detection elements in portals that use dedicated components to detect each type of radiation.

  18. Exploring the association of Fermi sources with young stellar objects

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Paredes, J. M.; Romero, G. E.

    2011-11-01

    Massive protostars have associated bipolar outflows which can produce strong shocks when interact with the surrounding medium. In these conditions particle acceleration at relativistic velocities can occur leading to gamma ray emission, as some theoretical models predict. To identify young stellar objects (YSO) that may emit gamma rays we have crossed the Fermi First Year Catalog with some catalogs of known YSOs, and we have conducted Montecarlo simulations to find the probability of chance coincidence. With this crossing we obtained a list of YSOs spatially coincident with Fermi sources that may show gamma ray emission. Our results indicate that about 70% of the candidates should be gamma-ray sources with a confidence of 5 sigma. We have studied the coincidences one by one to check the viability of these YSOs as potential counterparts of Fermi sources and plan further detailed observations of few of them.

  19. Effect of gamma radiation on honey quality control

    NASA Astrophysics Data System (ADS)

    Bera, A.; Almeida-Muradian, L. B.; Sabato, S. F.

    2009-07-01

    Honey is one of the most complex substances produced by bees, mainly from the nectar of flowers. Gamma radiation is a technique that can be used to decrease the number of microbiological problems associated with food and increase the shelf life of certain products. The objective of this study was to verify the effect of gamma radiation with source of cobalto-60 (10 kGy) on some parameters used in honey quality control. Seven samples of pure honey were obtained from local markets in Sao Paulo, Brazil, in 2007. The methods used are in accordance with Brazilian Regulations. The physicochemical parameters analyzed were: moisture, HMF, free acidity, pH, sugars and ash. The results showed that gamma radiation, in the dose mentioned above, did not cause significant physicochemical alterations.

  20. The Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, Dave; McEnery, Julie

    2011-01-01

    This slide presentation reviews the Gamma Ray Astronomy as enhanced by the Fermi Gamma Ray Space Telescope and Radio Astronomy as a synergistic relationship. Gamma rays often represent a significant part of the energy budget of a source; therefore, gamma-ray studies can be critical to understanding physical processes in such sources. Radio observations offer timing and spatial resolutions vastly superior to anything possible with gamma-ray telescopes; therefore radio is often the key to understanding source structure. Gamma-ray and radio observations can complement each other, making a great team. It reviews the Fermi Guest Investigator (GI) program, and calls for more cooperative work that involves Fermi and the Very Long Baseline Array (VLBA), a system of ten radio telescopes.

  1. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  2. The Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-01-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  3. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  4. Study of silicon PIN diode responses to low energy gamma-rays

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Jeon, H. B.; Kang, K. H.; Park, H.

    2016-11-01

    Low energy gamma-ray detectors play an important role in diagnosis in nuclear medicine, in detection of gamma-ray bursts for gravitational wave research and in detection of underground nuclear tests. The silicon positive-intrinsic-negative (PIN) diode detector is useful for detection of low energy gamma radiation without using a scintillator because it generates a high signal in a small active volume, has a fast response time and has good intrinsic energy resolution. We measured the detector responses, energy resolutions and signal-to-noise ratios for various gamma energies by using manufactured silicon PIN diode and photodiodes. Radioactive gamma sources, 241Am, 133Ba, and 57Co, providing gamma-rays with energies between 14.4 keV and 136.5 keV are used for the measurements. The energy resolution and the signal-to-noise ratio for 14.4 keV gamma-ray are measured to be 17.1 % and 12.8 for a 500 μm thick silicon diode. The energy resolutions measured at the FWHM for 59.5 keV and 122.1 keV gamma-rays by using the silicon diode are better by up to two times compared to those obtained using the NaI:Tl or the BGO scintillator with a photomultiplier tube. The dependence of detection speeds of the signals on the diode's thickness is also measured.

  5. Gamma watermarking

    SciTech Connect

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  6. 10 CFR 35.635 - Full calibration measurements on gamma stereotactic radiosurgery units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... percent from the output obtained at the last full calibration corrected mathematically for radioactive decay; (ii) Following replacement of the sources or following reinstallation of the gamma stereotactic... month for cobalt-60 and at intervals consistent with 1 percent physical decay for all...

  7. 10 CFR 35.635 - Full calibration measurements on gamma stereotactic radiosurgery units.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... percent from the output obtained at the last full calibration corrected mathematically for radioactive decay; (ii) Following replacement of the sources or following reinstallation of the gamma stereotactic... month for cobalt-60 and at intervals consistent with 1 percent physical decay for all...

  8. 10 CFR 35.635 - Full calibration measurements on gamma stereotactic radiosurgery units.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... percent from the output obtained at the last full calibration corrected mathematically for radioactive decay; (ii) Following replacement of the sources or following reinstallation of the gamma stereotactic... month for cobalt-60 and at intervals consistent with 1 percent physical decay for all...

  9. 10 CFR 35.635 - Full calibration measurements on gamma stereotactic radiosurgery units.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... percent from the output obtained at the last full calibration corrected mathematically for radioactive decay; (ii) Following replacement of the sources or following reinstallation of the gamma stereotactic... month for cobalt-60 and at intervals consistent with 1 percent physical decay for all...

  10. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  11. Sources and temporal variations of constrained PMF factors obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Sofowote, Uwayemi M.; Su, Yushan; Dabek-Zlotorzynska, Ewa; Rastogi, Ankit K.; Brook, Jeff; Hopke, Philip K.

    2015-05-01

    The Canadian National Air Pollution Surveillance (NAPS) network operates five fine particulate matter (PM2.5) speciation sites in Ontario. Data from 2005 to 2010 from these sites were subjected to constrained positive matrix factorization (PMF) to obtain factors of particulate matter pollution. Eight factors were found to be common across the sites. These constrained factors were particulate sulfate and nitrate, aged combustion aerosols, biomass/wood combustion, non-ferrous metal smelting, crustal matter, steel works, and road salt. Other factors found at these sites were largely related to local sources in their respective neighbourhoods. Diagnostic results from constraining the PMF factors could be used to select the appropriate post-PMF analyses as they reveal the factors that were expected to have regional or local sources. Interpretation of the spatial trends of factors was guided by the extent of similarity of target ratios across the five sites as determined by their coefficient of variation (C.V.). On average, particulate sulfate had PM2.5 mass contributions that ranged from 7% (Wallaceburg) to 36% (Simcoe) and nitrate species ranged from 7% (Simcoe) to 23% (Windsor). A clear low rural - high urban divide for particulate nitrate was also observed. These non-uniform impacts across the sites indicate that a single representative location is not suitable for studying PM2.5 in Ontario. Temporal variations showed greater abundance of particulate sulfate in the summer and particulate nitrate in the winter respectively. Yearly median values of the sulfate factor that is largely energy-related have been declining for most sites since peaking in 2007. A trajectory ensemble model, simplified quantitative transport bias analysis (sQTBA) was used to identify potential source regions of the constrained sulfate and nitrate factors while radial plots of the conditional probability function (CPF) were used to explore the more locally-sourced factors. The US Midwest, east

  12. Search for Spatially Extended Fermi-LAT Sources Using Two Years of Data

    SciTech Connect

    Lande, Joshua; Ackermann, Markus; Allafort, Alice; Ballet, Jean; Bechtol, Keith; Burnett, Toby; Cohen-Tanugi, Johann; Drlica-Wagner, Alex; Funk, Stefan; Giordano, Francesco; Grondin, Marie-Helene; Kerr, Matthew; Lemoine-Goumard, Marianne

    2012-07-13

    Spatial extension is an important characteristic for correctly associating {gamma}-ray-emitting sources with their counterparts at other wavelengths and for obtaining an unbiased model of their spectra. We present a new method for quantifying the spatial extension of sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi). We perform a series of Monte Carlo simulations to validate this tool and calculate the LAT threshold for detecting the spatial extension of sources. We then test all sources in the second Fermi -LAT catalog (2FGL) for extension. We report the detection of seven new spatially extended sources.

  13. Multi-particle inspection using associated particle sources

    DOEpatents

    Bingham, Philip R.; Mihalczo, John T.; Mullens, James A.; McConchie, Seth M.; Hausladen, Paul A.

    2016-02-16

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing combined neutron and gamma ray radiography. For example, one exemplary system comprises: a neutron source; a set of alpha particle detectors configured to detect alpha particles associated with neutrons generated by the neutron source; neutron detectors positioned to detect at least some of the neutrons generated by the neutron source; a gamma ray source; a set of verification gamma ray detectors configured to detect verification gamma rays associated with gamma rays generated by the gamma ray source; a set of gamma ray detectors configured to detect gamma rays generated by the gamma ray source; and an interrogation region located between the neutron source, the gamma ray source, the neutron detectors, and the gamma ray detectors.

  14. Exploring the association of Fermi sources with Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Paredes, J. M.; Romero, G. E.

    2011-02-01

    Massive protostars have associated bipolar outflows which can produce strong shocks when interact with the surrounding medium. Some theoretical models predict that particle acceleration at relativistic velocities can occur leading to gamma ray emission. In order to identify young stellar objects (YSO) that might emit gamma rays, we have crossed the Fermi First Year Catalog with catalogs of known YSOs, obtaining a set of candidates by spatial correlation. We have conducted Montecarlo simulations to find the probability of chance coincidence. Our results indicate that ~70% of the candidates should be gamma-ray sources with a confidence of ~5σ.

  15. Study of different filtering techniques applied to spectra from airborne gamma spectrometry

    SciTech Connect

    Wilhelm, Emilien; Gutierrez, Sebastien; Reboli, Anne; Menard, Stephanie; Nourreddine, Abdel-Mjid; Arbor, Nicolas

    2015-07-01

    One of the features of spectra obtained by airborne gamma spectrometry is low counting statistics due to the short acquisition time (1 s) and the large source-detector distance (40 m). It leads to considerable uncertainty in radionuclide identification and determination of their respective activities from the windows method recommended by the IAEA, especially for low-level radioactivity. The present work compares the results obtained with filters in terms of errors of the filtered spectra with the window method and over the whole gamma energy range. The results are used to determine which filtering technique is the most suitable in combination with some method for total stripping of the spectrum. (authors)

  16. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; Fradkin, M. I.; Kachanov, V. A.; Kaplin, V. A.; Kheymits, M. D.; Leoniv, A. A.; Longo, F.; Maestro, P.; Marrocchesi, P.; Mazets, E. P.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I.; Naumov, P. Yu.; Papini, P.

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  17. Search for TeV Gamma-Ray Emission from Point-like Sources in the Inner Galactic Plane with a Partial Configuration of the HAWC Observatory

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Becerril Reyes, A. D.; Belmont, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutińo de León, S.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Enriquez-Rivera, O.; Fiorino, D. W.; Fraija, N.; Garfias, F.; González, M. M.; Goodman, J. A.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hüntemeyer, P.; Hui, C. M.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longo, M.; Raya, G. Luis; Malone, K.; Marinelli, A.; Marinelli, S. S.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Patricelli, B.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Ren, Z.; Rivière, C.; Rosa-González, D.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Sinnis, G.; Smith, A. J.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Vrabel, K.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2016-01-01

    A survey of the inner Galaxy region of Galactic longitude l\\in [+15^\\circ ,+50^\\circ ] and latitude b\\in [-4^\\circ ,+4^\\circ ] is performed using one-third of the High Altitude Water Cherenkov Observatory, operated during its construction phase. To address the ambiguities arising from unresolved sources in the data, we use a maximum likelihood technique to identify point source candidates. Ten sources and candidate sources are identified in this analysis. Eight of these are associated with known TeV sources but not all have differential fluxes that are compatible with previous measurements. Three sources are detected with significances >5 σ after accounting for statistical trials, and are associated with known TeV sources.

  18. Gamma Processes

    DTIC Science & Technology

    1986-01-01

    E[exp{-Bn Xn 1 U-Y nU-X vi ] - EeUY )Ee (v+Bu)X1 (2.4) where, in the last step, we have dropped the indices n and n-1 because of stationarity and...1967). "Some Problems of Statistical Inference Relating to Double-Gamma Distribution," Trabajos de Estadistica , 18, 67-87. Hugus, D. K. (1982

  19. GAMCIT: A gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Grunsfeld, John M.; Warneke, Brett A.

    1992-01-01

    The origin of celestial gamma ray bursts remains one of the great mysteries of modern astrophysics. The GAMCIT Get-Away-Special payload is designed to provide new and unique data in the search for the sources of gamma ray bursts. GAMCIT consists of three gamma ray detectors, an optical CCD camera, and an intelligent electronics system. This paper describes the major components of the system, including the electronics and structural designs.

  20. Porosity measurement of solid pharmaceutical dosage forms by gamma-ray transmission.

    PubMed

    de Oliveira, José Martins; Andréo Filho, Newton; Chaud, Marco Vinícius; Angiolucci, Tatiana; Aranha, Norberto; Martins, Antonio César Germano

    2010-12-01

    The aim of the present work is the determination of porosity in tablets by using the gamma-ray transmission technique. Tablet dissolution depends on some inherent characteristics of the manufacturing process, such as compression force, tablet volume, density and porosity, nature of excipients, preparation methods and its physical-chemical properties. Porosity is a measure of empty spaces in a material and can be determined by various techniques. In this paper, we propose the use of a gamma-ray transmission technique to obtain the porosity of experimental formulation of tablets. The results of porosity were compared with those obtained by using conventional methodology (density and mercury intrusion). The experimental setup for gamma-ray transmission consists of a gamma-ray source of (241)Am (photons of 59.6 keV and an activity of 3.7 × 10(9)Bq), an NaI(Tl) scintillation detector, collimators and a standard gamma-ray spectrometry electronics. Our results suggest that the gamma-ray transmission technique is a powerful tool for non-destructive porosity quantification of solid pharmaceutical forms and presents smaller errors than those obtained with conventional methodologies.