NASA Astrophysics Data System (ADS)
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
the progress in experimental studies of artificial Abelian and non-Abelian gauge fields in recent years has been simply spectacular. Multiple leading groups are working on this subject and have already obtained a lot of seminal results. The papers in the special issue are ordered according to the date of acceptance. The issue opens with a review article by Zhou et al [1] on unconventional states of bosons with synthetic spin-orbit coupling. Next, the paper by Maldonado-Mundo et al [2] studies ultracold Fermi gases with artificial Rashba spin-orbit coupling in a 2D gas. Anderson and Charles [3], in contrast, discuss a three-dimensional spin-orbit coupling in a trap. Orth et al [4] investigate correlated topological phases and exotic magnetism with ultracold fermions, again in the presence of artificial gauge fields. The paper of Nascimbène [5] does not address the synthetic gauge fields directly, but describes an experimental proposal for realizing one-dimensional topological superfluids with ultracold atomic gases; obviously, this problem is well situated in the general and growing field of topological superfluids, in particular those realized in the presence of non-Abelian gauge fields/spin-orbit coupling. Graß et al [6] consider in their paper fractional quantum Hall states of a Bose gas with spin-orbit coupling induced by a laser. Particular attention is drawn here to the possibility of realizing states with non-Abelian anyonic excitations. Zheng et al [7] study properties of Bose gases with Raman-induced spin-orbit coupling. Kiffner et al [8] in their paper touch on another kind of system, namely ultracold Rydberg atoms. In particular they study the generation of Abelian and non-Abelian gauge fields in dipole-dipole interacting Rydberg atoms. The behaviour of fermions in synthetic non-Abelian gauge potentials is discussed by Shenoy and Vyasanakere [9]. The paper starts with the study of Rashbon condensates (i.e. Bose condensates in the presence of Rashba
NASA Astrophysics Data System (ADS)
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
interesting and related effect, which arises from the interplay between strong magnetic field and lattice potentials, is the famous Hofstadter butterfly: the energy spectrum of a single particle moving on a lattice and subjected to a strong magnetic field displays a beautiful fractal structure as a function of the magnetic flux penetrating each elementary plaquette of the lattice. When the effects of interparticle interactions become dominant, two-dimensional gases of electrons exhibit even more exotic behaviour leading to the fractional quantum Hall effect. In certain conditions such a strongly interacting electron gas may form a highly correlated state of matter, the prototypical example being the celebrated Laughlin quantum liquid. Even more fascinating is the behaviour of bulk excitations (quasi-hole and quasi-particles): they are neither fermionic nor bosonic, but rather behave as anyons with fractional statistics intermediate between the two. Moreover, for some specific filling factors (ratio between the electronic density and the flux density), these anyons are proven to have an internal structure (several components) and non-Abelian braiding properties. Many of the above statements concern theoretical predictions—they have never been observed in condensed matter systems. For instance, the fractional values of the Hall conductance is seen as a direct consequence of the fractional statistics, but to date direct observation of anyons has not been possible in two-dimensional semiconductors. Realizing these predictions in experiments with atoms, ions, photons etc, which potentially allow the experimentalist to perform measurements complementary to those made in condensed matter systems, is thus highly desirable! Non-Abelian gauge fields couple the motional states of the particles to their internal degrees of freedom (such as hyperfine states for atoms or ions, electronic spins for electrons, etc). In this sense external non-Abelian fields extend the concept of spin
Trapped fermions in a synthetic non-Abelian gauge field
Ghosh, Sudeep Kumar; Vyasanakere, Jayantha P.; Shenoy, Vijay B.
2011-11-15
On increasing the coupling strength ({lambda}) of a non-Abelian gauge field that induces a generalized Rashba spin-orbit interaction, the topology of the Fermi surface of a homogeneous gas of noninteracting fermions of density {rho}{approx}k{sub F}{sup 3} undergoes a change at a critical value, {lambda}{sub T}{approx_equal}k{sub F}[Phys. Rev. B 84, 014512 (2011)]. In this paper we analyze how this phenomenon affects the size and shape of a cloud of spin-(1/2) fermions trapped in a harmonic potential such as those used in cold atom experiments. We develop an adiabatic formulation, including the concomitant Pancharatnam-Berry phase effects, for the one-particle states in the presence of a trapping potential and the gauge field, obtaining approximate analytical formulas for the energy levels for some high symmetry gauge field configurations of interest. An analysis based on the local density approximation reveals that, for a given number of particles, the cloud shrinks in a characteristic fashion with increasing {lambda}. We explain the physical origins of this effect by a study of the stress tensor of the system. For an isotropic harmonic trap, the local density approximation predicts a spherical cloud even for anisotropic gauge field configurations. We show, via a calculation of the cloud shape using exact eigenstates, that for certain gauge field configurations there is a systematic and observable anisotropy in the cloud shape that increases with increasing gauge coupling {lambda}. The reasons for this anisotropy are explained using the analytical energy levels obtained via the adiabatic approximation. These results should be useful in the design of cold atom experiments with fermions in non-Abelian gauge fields. An important spin-off of our adiabatic formulation is that it reveals exciting possibilities for the cold-atom realization of interesting condensed matter Hamiltonians by using a non-Abelian gauge field in conjunction with another potential. In particular
Non-Abelian gauge field theory in scale relativity
Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry
2006-03-15
Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description.
Vortex states in a non-Abelian magnetic field
NASA Astrophysics Data System (ADS)
Nikolić, Predrag
2016-08-01
A type-II superconductor survives in an external magnetic field by admitting an Abrikosov lattice of quantized vortices. This is an imprint of the Aharonov-Bohm effect created by the Abelian U(1) gauge field. The simplest non-Abelian analog of such a gauge field, which belongs to the SU(2) symmetry group, can be found in topological insulators. Here we discover a superconducting ground state with a lattice of SU(2) vortices in a simple two-dimensional model that presents an SU(2) "magnetic" field (invariant under time reversal) to attractively interacting fermions. The model directly captures the correlated topological insulator quantum well, and approximates one channel for instabilities on the Kondo topological insulator surface. Due to its simplicity, the model might become amenable to cold atom simulations in the foreseeable future. The vitality of low-energy vortex states born out of SU(2) magnetic fields is promising for the creation of incompressible vortex liquids with non-Abelian fractional excitations.
Non-Abelian Aharonov-Bohm effect with the time-dependent gauge fields
NASA Astrophysics Data System (ADS)
Hosseini Mansoori, Seyed Ali; Mirza, Behrouz
2016-04-01
We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of SU (N) generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.
Conformal field theory approach to Abelian and non-Abelian quantum Hall quasielectrons.
Hansson, T H; Hermanns, M; Regnault, N; Viefers, S
2009-04-24
The quasiparticles in quantum Hall liquids carry fractional charge and obey fractional quantum statistics. Of particular recent interest are those with non-Abelian statistics, since their braiding properties could, in principle, be used for robust coding of quantum information. There is already a good theoretical understanding of quasiholes in both Abelian and non-Abelian quantum Hall states. Here we develop conformal field theory methods that allow for an equally precise description of quasielectrons and explicitly construct two- and four-quasielectron excitations of the non-Abelian Moore-Read state.
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.; Gitman, D. M.
1993-05-01
We obtain explict expressions of all types of Green's functions in the Furry picture of the electroweak theory with a free, non-Abelian external field, by solving the corresponding one-particle equations. We also give the expressions for the matrix elements of simple processes in an external field.
The primordial curvature perturbation from vector fields of general non-Abelian groups
Karciauskas, Mindaugas
2012-01-01
We consider the generation of primordial curvature perturbation by general non-Abelian vector fields without committing to a particular group. Self-interactions of non-Abelian fields make the field perturbation non-Gaussian. We calculate the bispectrum of the field perturbation using the in-in formalism at tree level. The bispectrum is dominated by the classical evolution of fields outside the horizon. In view of this we show that the dominant contribution can be obtained from the homogeneous classical equation of motion. Then we calculate the power spectrum of the curvature perturbation. The anisotropy in spectrum is suppressed by the number of fields. This makes it possible for vector fields to be responsible for the total curvature perturbation in the Universe without violating observational bounds on statistical anisotropy. The bispectrum of the curvature perturbation is also anisotropic. Finally we give an example of the end-of-inflation scenario in which the curvature perturbation is generated by vector gauge fields through varying gauge coupling constant(s), which in covariant derivatives couples the Higgs field to the vector fields. We find that reasonably large gauge groups may result in the observable anisotropy in the power spectrum of the curvature perturbation.
Quasi-abelian and fully non-abelian gauge field copies: A classification
NASA Astrophysics Data System (ADS)
Doria, Francisco Antonio
1981-12-01
We show that a theorem by S. Solomon on quasi-abelian gauge fields extends to a full classification of ambiguous potentials for any general non-abelian field which exhibits this phenomenon. A characterization for such fields is given, as well as a criterion that distinguishes in a straightforward manner between potentials that are at least locally gauge-equivalent to a fixed canonical potential and those which are not equivalent to that potential anywhere inside a neighborhood of space-time. Our results are obtained for R4 with an arbitrary non-degenerate metric, but can be easily extended to any space-time. Three examples (due to S. Deser and F. Wilczek, S. Coleman, and T. T. Wu and C. N. Yang) are discussed in order to clarify our analysis.
BCS-BEC crossover induced by a synthetic non-Abelian gauge field
NASA Astrophysics Data System (ADS)
Vyasanakere, Jayantha P.; Zhang, Shizhong; Shenoy, Vijay B.
2011-07-01
We investigate the ground state of interacting spin-(1)/(2) fermions in three dimensions at a finite density (ρ˜kF3) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector λ≡(λx,λy,λz), whose magnitude λ determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (kF|as|≲1), the ground state in the absence of the gauge field (λ=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (λ=0). For large gauge couplings (λ/kF≫1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)—we call these bosons “rashbons.” In the absence of interactions (as=0-), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling λT. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of λ near λT. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.
NASA Astrophysics Data System (ADS)
Markov, Yuri A.; Markova, Margaret A.; Shishmarev, Alexey A.
2010-10-01
Based on the most general principles of reality, gauge and reparametrization invariance, a problem of constructing the action describing dynamics of a classical color-charged particle interacting with background non-Abelian gauge and fermion fields is considered. The cases of the linear and quadratic dependence of a Lagrangian on background Grassmann fermion field are discussed. It is shown that in both cases in general there exists an infinite number of interaction terms, which should be included in the Lagrangian in question. Employing a simple iteration scheme, examples of the construction of the first few gauge-covariant currents and sources induced by a moving particle with non-Abelian charge are given. It is found that these quantities, by a suitable choice of parameters, exactly reproduce additional currents and sources previously obtained in Markov and Markova (2007 Nucl. Phys. A 784 443) on the basis of heuristic considerations.
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan
2014-08-01
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.
Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan
2014-08-08
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms
Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan
2014-01-01
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877
Confining and repulsive potentials from effective non-Abelian gauge fields in graphene bilayers
NASA Astrophysics Data System (ADS)
González, J.
2016-10-01
We investigate the effect of shear and strain in graphene bilayers, under conditions where the distortion of the lattice gives rise to a smooth one-dimensional modulation in the stacking sequence of the bilayer. We show that strain and shear produce characteristic Moiré patterns which can have the same visual appearance on a large scale, but representing graphene bilayers with quite different electronic properties. The different features in the low-energy electronic bands can be ascribed to the effect of a fictitious non-Abelian gauge field mimicking the smooth modulation of the stacking order. Strained and sheared bilayers show a complementary behavior, which can be understood from the fact that the non-Abelian gauge field acts as a repulsive interaction in the former, expelling the electron density away from the stacking domain walls, while behaving as a confining interaction leading to localization of the electronic states in the sheared bilayers. In this latter case, the presence of the effective gauge field explains the development of almost flat low-energy bands, resembling the form of the zeroth Landau level characteristic of a Dirac fermion field. The estimate of the gauge field strength in those systems gives a magnitude of the order of several tens of tesla, implying a robust phenomenology that should be susceptible of being observed in suitably distorted bilayer samples.
Non-perturbative particle production mechanism in time-dependent strong non-Abelian fields
Levai, Peter; Skokov, Vladimir V.
2011-04-26
Non-perturbative production of quark-antiquarks is investigated in the early stage of heavy-ion collisions. The time-dependent study is based on a kinetic description of the fermion-pair production in strong non-Abelian fields. We introduce time-dependent chromo-electric external field with a pulse-like time evolution to simulate the overlap of two colliding heavy ions. We have found that the small inverse duration time of the field pulse determines the efficiency of the quark-pair production. The expected suppression for heavy quark production, as follows from the Schwinger formula for a constant field, is not seen, but an enhanced heavy quark production appears at ultrarelativistic energies. We convert our pulse duration time-dependent results into collisional energy dependence and introduce energy and flavour-dependent string tensions, which can be used in string based model calculations at RHIC and LHC energies.
Quantum phase transition of ultracold bosons in the presence of a non-Abelian synthetic gauge field
Grass, T.; Saha, K.; Sengupta, K.; Lewenstein, M.
2011-11-15
We study the Mott phases and the superfluid-insulator transition of two-component ultracold bosons on a square optical lattice in the presence of a non-Abelian synthetic gauge field, which renders a SU(2)-hopping matrix for the bosons. Using a resummed hopping expansion, we calculate the excitation spectra in the Mott insulating phases and demonstrate that the superfluid-insulator phase boundary displays a nonmonotonic dependence on the gauge-field strength. We also compute the momentum distribution of the bosons in the presence of the non-Abelian field and show that they develop peaks at nonzero momenta as the superfluid-insulator transition point is approached from the Mott side. Finally, we study the superfluid phases near the transition and discuss the induced spatial pattern of the superfluid density due to the presence of the non-Abelian gauge potential.
Fields in nonaffine bundles. IV. Harmonious non-Abelian currents in string defects
NASA Astrophysics Data System (ADS)
Carter, Brandon
2010-11-01
This article continues the study of the category of harmonious field models that was recently introduced as a kinetically nonlinear generalization of the well-known harmonic category of multiscalar fields over a supporting brane world sheet in a target space with a curved Riemannian metric. Like the perfectly harmonious case of which a familiar example is provided by ordinary barotropic perfect fluids, another important subcategory is the simply harmonious case, for which it is shown that as well as “wiggle” modes of the underlying brane world sheet, and sound type longitudinal modes, there will also be transverse shake modes that propagate at the speed of light. Models of this type are shown to arise from a non-Abelian generalization of the Witten mechanism for conducting string formation by ordinary scalar fields with a suitable quartic self-coupling term in the action.
NASA Astrophysics Data System (ADS)
Vyasanakere, Jayanth P.; Shenoy, Vijay B.
2013-03-01
A non-Abelian gauge field that induces a spin-orbit coupling on the motion of fermions engenders a BCS-BEC crossover even for weakly attracting fermions. The transition temperature at large spin-orbit coupling is known to be determined by the mass of the emergent boson - the rashbon. We obtain the transition temperature of the system as a function of the spin-orbit coupling by constructing and studying a Gaussian fluctuation (Nozieres-Schmitt-Rink) theory. These results will help guide the upcoming experiments on spin-orbit coupled fermions. In addition, this work suggests a route to enhance the transition temperature of a weakly attracting fermionic system by tuning the spin-orbit coupling. Work supported by CSIR, DST, DAE India
Natural inflation on a steep potential with classical non-Abelian gauge fields.
Adshead, Peter; Wyman, Mark
2012-06-29
We propose a model for inflation consisting of an axionic scalar field coupled to a set of three non-Abelian gauge fields. Our model's novel requirement is that the gauge fields begin inflation with a rotationally invariant vacuum expectation value (VEV) that is preserved through identification of SU(2) gauge invariance with rotations in three dimensions. The gauge VEV interacts with the background value of the axion, leading to an attractor solution that exhibits slow roll inflation even when the axion decay constant has a natural value (
Quantum magnetism of spinor bosons in optical lattices with synthetic non-Abelian gauge fields
NASA Astrophysics Data System (ADS)
Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming
2015-10-01
We study quantum magnetism of interacting spinor bosons at integer fillings hopping in a square lattice in the presence of non-Abelian gauge fields. In the strong-coupling limit, this leads to the rotated ferromagnetic Heisenberg model, which is a new class of quantum spin model. We introduce Wilson loops to characterize frustrations and gauge equivalent classes. For a special equivalent class, we identify a spin-orbital entangled commensurate ground state. It supports not only commensurate magnons, but also a gapped elementary excitation: incommensurate magnons with two gap minima continuously tuned by the spin-orbit coupling (SOC) strength. At low temperatures, these magnons lead to dramatic effects in many physical quantities such as density of states, specific heat, magnetization, uniform susceptibility, staggered susceptibility, and various spin-correlation functions. The commensurate magnons lead to a pinned central peak in the angle-resolved light or atom Bragg spectroscopy. However, the incommensurate magnons split it into two located at their two gap minima. At high temperatures, the transverse spin-structure factors depend on the SOC strength explicitly. The whole set of Wilson loops can be mapped out by measuring the specific heat at the corresponding orders in the high-temperature expansion. We argue that one gauge may be realized in current experiments and other gauges may also be realized in future experiments. The results achieved along the exact solvable line sets up the stage to investigate dramatic effects when tuning away from it by various means. We sketch the crucial roles to be played by these magnons at other equivalent classes, with spin anisotropic interactions and in the presence of finite magnetic fields. Various experimental detections of these phenomena are discussed.
Kosterlitz-Thouless--type transition in two-dimensional non-Abelian field theory
Ito, K.R. )
1990-06-11
A renormalization-group recursion formula in a two-dimensional O({ital N})-invariant model is described by an integral kernel {ital K}{sub {ital N}}, a probability density exhibiting perturbative asymptotic freedom for all {ital N}{gt}1. The {ital K}{sub {ital N}}'s are qualitatively the same for all {ital N}{gt}1 and thus there may be Kosterlitz-Thouless--type transitions in some non-Abelian systems. In fact, we establish that the correlation functions of the O(4) {sigma} model are bounded from below by ones of a random-coupling {ital XY} model in which the strong-coupling regions percolate over {ital Z}{sup 2} as the original coupling constant becomes large.
Abelian and non-Abelian bosonization: The operator solution of the WZW. sigma. model
do Amaral, R.L.P.G. ); Stephany Ruiz, J.E. )
1991-03-15
The complete equivalence between the Abelian and the non-Abelian bosonization formalisms for the treatment of SU({ital N}) fermions in two dimensions is analyzed and the operator solution of the Wess-Zumino-Witten nonlinear {sigma} model, written in terms of the scalar fields of the non-Abelian construction, is obtained. The importance of the order and disorder operators is stressed. In particular, they are used to show that an adequate reinterpretation of Mandelstam's formula gives the fermion representation in the non-Abelian bosonization formalism.
Properties of Non-Abelian Fractional Quantum Hall States at Filling ν=k/r
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei; Haldane, F. D. M.
2008-12-01
We compute the physical properties of non-Abelian fractional quantum Hall (FQH) states described by Jack polynomials at general filling ν=k/r. For r=2, these states are the Zk Read-Rezayi parafermions, whereas for r>2 they represent new FQH states. The r=k+1 states, multiplied by a Vandermonde determinant, are a non-Abelian alternative construction of states at fermionic filling 2/5,3/7,4/9,…. We obtain the thermal Hall coefficient, the quantum dimensions, the electron scaling exponent, and the non-Abelian quasihole propagator. The properties of the r>2 Jack polynomials indicate they are correlators of fields of nonunitary conformal field theories (CFT), but the CFT-FQH connection fails when invoked to compute physical properties such as the quasihole propagator. The quasihole wave function, written as a coherent state representation of Jack polynomials, has an identical structure for all non-Abelian states.
Anomalous lepton moment in a non-Abelian gauge model in an intense electromagnetic field
NASA Astrophysics Data System (ADS)
Obukhov, I. A.; Peres-Fernandes, V. K.; Rodionov, V. N.; Khalilov, V. R.
1983-01-01
The effect of an external electromagnetic field on the magnitude of the anomalous magnetic moment (AMM) of a lepton in the Weinberg model (1967) is investigated using the method of analytic continuation, previously applied to problems in quantum electrodynamics with an external field. The behavior of the AMM is studied as a function of the value of the dynamic parameter X=poH/mHo.
The furry picture for the standard electroweak theory with a free non-Abelian external field
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.
1992-10-01
We describe the Furry representation formalism for Rξ-gauging of a spontaneously broken SU(2)×U(1) electroweak theory. We obtain the generating functional for mean values of physical quantities and the generating functional for probability amplitudes of processes.
Confinement Driven by Scalar Field in 4d Non Abelian Gauge Theories
Chabab, Mohamed
2007-01-12
We review some of the most recent work on confinement in 4d gauge theories with a massive scalar field (dilaton). Emphasis is put on the derivation of confining analytical solutions to the Coulomb problem versus dilaton effective couplings to gauge terms. It is shown that these effective theories can be relevant to model quark confinement and may shed some light on confinement mechanism. Moreover, the study of interquark potential, derived from Dick Model, in the heavy meson sector proves that phenomenological investigation of tmechanism is more than justified and deserves more efforts.
Gravitating non-Abelian cosmic strings
NASA Astrophysics Data System (ADS)
de Pádua Santos, Antônio; Bezerra de Mello, Eugênio R.
2015-08-01
In this paper, we study regular cosmic string solutions of the non-Abelian Higgs model coupled with gravity. In order to develop this analysis, we constructed a set of coupled non-linear differential equations. Because there is no closed solution for this set of equations, we solve it numerically. The solutions we are interested in asymptote to a flat spacetime with a planar angle deficit. The model under consideration presents two bosonic sectors, besides the non-Abelian gauge field. The two bosonic sectors may present a direct coupling, so we investigate the relevance of this coupling on the system, specifically in the linear energy density of the string and on the planar angle deficit. We also analyze the behaviors of these quantities as a function of the energy scale where the gauge symmetry is spontaneously broken.
Non-Abelian discrete gauge theory
NASA Astrophysics Data System (ADS)
Lee, Kai-Ming
Gauge theory with a finite gauge group (or with a gauge group that has disconnected components) is systematically studied, with emphasis on the case of a non-Abelian gauge group. An operator formalism is developed, and an order parameter is constructed that can distinguish the various phases of a gauge theory. The non-Abelian Aharonov-Bohm interactions and holonomy interactions among cosmic string loops, vortices, and charged particles are analyzed; the detection of Cheshire charge and the transfer of charge between particles and string loops (or vortex pairs) are described. Non-Abelian gauge theory on a surface with non-trivial topology is also discussed. Interactions of vortices with "handles" on the surface are discussed in detail. The electric charge of the mouth of a "wormhole" and the magnetic flux "linked" by the wormhole are shown to be non-commuting observables. This observation is used to analyze the color electric field that results when a colored object traverses a wormhole.
Non-Abelian Discrete Gauge Theory.
NASA Astrophysics Data System (ADS)
Lee, Kai-Ming
Gauge theory with a finite gauge group (or with a gauge group that has disconnected components) is systematically studied, with emphasis on the case of a non-Abelian gauge group. An operator formalism is developed, and an order parameter is constructed that can distinguish the various phases of a gauge theory. The non-Abelian Aharonov-Bohm interactions and holonomy interactions among cosmic string loops, vortices, and charged particles are analyzed; the detection of Cheshire charge and the transfer of charge between particles and string loops (or vortex pairs) are described. Non-Abelian gauge theory on a surface with non-trivial topology is also discussed. Interactions of vortices with "handles" on the surface are discussed in detail. The electric charge of the mouth of a "wormhole" and the magnetic flux "linked" by the wormhole are shown to be non-commuting observables. This observation is used to analyze the color electric field that results when a colored object traverses a wormhole.
Geometry and energy of non-Abelian vortices
Manton, Nicholas S.; Rink, Norman A.
2011-04-15
We study pure Yang-Mills theory on {Sigma}xS{sup 2}, where {Sigma} is a compact Riemann surface, and invariance is assumed under rotations of S{sup 2}. It is well known that the self-duality equations in this setup reduce to vortex equations on {Sigma}. If the Yang-Mills gauge group is SU(2), the Bogomolny vortex equations of the Abelian Higgs model are obtained. For larger gauge groups, one generally finds vortex equations involving several matrix-valued Higgs fields. Here we focus on Yang-Mills theory with gauge group SU(N)/Z{sub N} and a special reduction which yields only one non-Abelian Higgs field. One of the new features of this reduction is the fact that while the instanton number of the theory in four dimensions is generally fractional with denominator N, we still obtain an integral vortex number in the reduced theory. We clarify the relation between these two topological charges at a bundle geometric level. Another striking feature is the emergence of nontrivial lower and upper bounds for the energy of the reduced theory on {Sigma}. These bounds are proportional to the area of {Sigma}. We give special solutions of the theory on {Sigma} by embedding solutions of the Abelian Higgs model into the non-Abelian theory, and we relate our work to the language of quiver bundles, which has recently proved fruitful in the study of dimensional reduction of Yang-Mills theory.
Ultracold atoms in U(2) non-Abelian gauge potentials preserving the Landau levels
Burrello, Michele; Trombettoni, Andrea
2011-10-15
We study ultracold atoms subjected to U(2) non-Abelian potentials: we consider gauge potentials having, in the Abelian limit, degenerate Landau levels and we then investigate the effect of general homogeneous non-Abelian terms. The conditions under which the structure of degenerate Landau levels is preserved are classified and discussed. The typical gauge potentials preserving the Landau levels are characterized by a fictitious magnetic field and by an effective spin-orbit interaction (e.g., obtained through the rotation of two-dimensional atomic gases coupled with a tripod scheme). The single-particle energy spectrum can be analytically determined for a class of gauge potentials, whose physical implementation is discussed. The corresponding Landau levels are deformed by the non-Abelian contribution of the potential and their spin degeneracy is split. The related deformed quantum Hall states for fermions and bosons (in the presence of strong intraspecies interaction) are determined far from and at the degeneracy points of the Landau levels, where non-Abelian states appear. We present a discussion of the effect of the angular momentum, as well as results for U(3) gauge potentials.
Anisotropic inflation with non-abelian gauge kinetic function
Murata, Keiju; Soda, Jiro E-mail: jiro@tap.scphys.kyoto-u.ac.jp
2011-06-01
We study an anisotropic inflation model with a gauge kinetic function for a non-abelian gauge field. We find that, in contrast to abelian models, the anisotropy can be either a prolate or an oblate type, which could lead to a different prediction from abelian models for the statistical anisotropy in the power spectrum of cosmological fluctuations. During a reheating phase, we find chaotic behaviour of the non-abelian gauge field which is caused by the nonlinear self-coupling of the gauge field. We compute a Lyapunov exponent of the chaos which turns out to be uncorrelated with the anisotropy.
Generalized Kitaev models and extrinsic non-Abelian twist defects.
Barkeshli, Maissam; Jiang, Hong-Chen; Thomale, Ronny; Qi, Xiao-Liang
2015-01-16
We present a wide class of partially integrable lattice models with two-spin interactions which generalize the Kitaev honeycomb model. These models have a conserved quantity associated with each plaquette, conserved large loop operators on the torus, and topological degeneracy. We introduce a "slave-genon" approach which generalizes the Majorana fermion approach in the Kitaev model. The Hilbert space of our spin model can be embedded in an enlarged Hilbert space of non-Abelian twist defects, referred to as genons. In the enlarged Hilbert space, the spin model is exactly reformulated as a model of non-Abelian genons coupled to a discrete gauge field. We discuss in detail a particular Z_{3} generalization, and we show that in a certain limit the model is analytically tractable and produces a non-Abelian topological phase with chiral parafermion edge states. PMID:25635553
Generalized Kitaev Models and Extrinsic Non-Abelian Twist Defects
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Jiang, Hong-Chen; Thomale, Ronny; Qi, Xiao-Liang
2015-01-01
We present a wide class of partially integrable lattice models with two-spin interactions which generalize the Kitaev honeycomb model. These models have a conserved quantity associated with each plaquette, conserved large loop operators on the torus, and topological degeneracy. We introduce a "slave-genon" approach which generalizes the Majorana fermion approach in the Kitaev model. The Hilbert space of our spin model can be embedded in an enlarged Hilbert space of non-Abelian twist defects, referred to as genons. In the enlarged Hilbert space, the spin model is exactly reformulated as a model of non-Abelian genons coupled to a discrete gauge field. We discuss in detail a particular Z3 generalization, and we show that in a certain limit the model is analytically tractable and produces a non-Abelian topological phase with chiral parafermion edge states.
Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics
Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto
2011-04-01
We discuss statistics of vortices having zero-energy non-Abelian Majorana fermions inside them. Considering the system of multiple non-Abelian vortices, we derive a non-Abelian statistics that differs from the previously derived non-Abelian statistics. The non-Abelian statistics presented here is given by a tensor product of two different groups, namely the non-Abelian statistics obeyed by the Abelian Majorana fermions and the Coxeter group. The Coxeter group is a symmetric group related to the symmetry of polytopes in a high-dimensional space. As the simplest example, we consider the case in which a vortex contains three Majorana fermions that are mixed with each other under the SO(3) transformations. We concretely present the representation of the Coxeter group in our case and its geometrical expressions in the high-dimensional Hilbert space constructed from non-Abelian Majorana fermions.
Model Wavefunctions For Non-Abelian Quasiparticles
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei; Haldane, F. D. M.
2008-03-01
We present model wavefunctions for quasiparticle (as opposed to quasihole)excitations of the Zk parafermion sequence (Laughlin/Moore-Read/Read-Rezayi) of Fractional Quantum Hall states. These states satisfy two generalized clustering conditions: they vanish when either a cluster of k+2 electrons is put together, or when two clusters of k+1 electrons are formed at different positions. For Abelian Fractional Quantum Hall states (k=1), our construction reproduces the Jain quasielectron wavefunction, and elucidates the difference between the Jain and Laughlin quasiparticle constructions. For two (or more) quasiparticles, our states differ from those constructed using Jain's method. By adding our quasiparticles to the Laughlin state, we obtain a hierarchy scheme which gives rise to a non-abelian ν=2 5 FQH state.
Non-Abelian dynamics in the resonant decay of the Higgs after inflation
Enqvist, Kari; Nurmi, Sami; Rusak, Stanislav E-mail: sami.nurmi@helsinki.fi
2014-10-01
We study the resonant decay of the Higgs condensate into weak gauge bosons after inflation and estimate the corrections arising from the non-Abelian self-interactions of the gauge fields. We find that non-Abelian interaction terms induce an effective mass which tends to shut down the resonance. For the broad resonance relevant for the Standard Model Higgs the produced gauge particles backreact on the dynamics of the Higgs condensate before the non-Abelian terms grow large. The non-Abelian terms can however significantly affect the final stages of the resonance after the backreaction. In the narrow resonance regime, which may be important for extensions of the Standard Model, the non-Abelian terms affect already the linear stage and terminate the resonance before the Higgs condensate is affected by the backreaction of decay products.
Non-Abelian black holes in D=5 maximal gauged supergravity
Cvetic, M.; Lue, H.; Pope, C. N.
2010-02-15
We investigate static non-Abelian black hole solutions of anti-de Sitter (AdS) Einstein-Yang-Mills-dilaton gravity, which is obtained as a consistent truncation of five-dimensional maximal gauged supergravity. If the dilaton is (consistently) set to zero, the remaining equations of motion, with a spherically-symmetric ansatz, may be derived from a superpotential. The associated first-order equations admit an explicit solution supported by a non-Abelian SU(2) gauge potential, which has a logarithmically growing mass term. In an extremal limit the horizon geometry becomes AdS{sub 2}xS{sup 3}. If the dilaton is also excited, the equations of motion cannot easily be solved explicitly, but we obtain the asymptotic form of the more general non-Abelian black holes in this case. An alternative consistent truncation, in which the Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This allows us to construct explicit wormhole solutions (neutral spherically-symmetric domain walls). These solutions may be generalized to dimensions other than five.
Non-Abelian Braiding of Light.
Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio
2016-08-12
Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light. PMID:27563965
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio
2016-08-01
Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light.
Non-Abelian quantum holonomy of hydrogenlike atoms
Mousolou, Vahid Azimi; Canali, Carlo M.; Sjoeqvist, Erik
2011-09-15
We study the Uhlmann holonomy [Rep. Math. Phys. 24, 229 (1986)] of quantum states for hydrogenlike atoms where the intrinsic spin and orbital angular momentum are coupled by the spin-orbit interaction and are subject to a slowly varying magnetic field. We show that the holonomy for the orbital angular momentum and spin subsystems is non-Abelian while the holonomy of the whole system is Abelian. Quantum entanglement in the states of the whole system is crucially related to the non-Abelian gauge structure of the subsystems. We analyze the phase of the Wilson loop variable associated with the Uhlmann holonomy and find a relation between the phase of the whole system and corresponding marginal phases. Based on the results for the model system, we provide evidence that the phase of the Wilson loop variable and the mixed-state geometric phase [E. Sjoeqvist et al., Phys. Rev. Lett. 85, 2845 (2000).] are generally inequivalent.
Designer non-Abelian anyon platforms: from Majorana to Fibonacci
NASA Astrophysics Data System (ADS)
Alicea, Jason; Stern, Ady
2015-12-01
The emergence of non-Abelian anyons from large collections of interacting elementary particles is a conceptually beautiful phenomenon with important ramifications for fault-tolerant quantum computing. Over the last few decades the field has evolved from a highly theoretical subject to an active experimental area, particularly following proposals for trapping non-Abelian anyons in ‘engineered’ structures built from well-understood components. In this short overview we briefly tour the impressive progress that has taken place in the quest for the simplest type of non-Abelian anyon—defects binding Majorana zero modes—and then turn to similar strategies for pursuing more exotic excitations. Specifically, we describe how interfacing simple quantum Hall systems with conventional superconductors yields ‘parafermionic’ generalizations of Majorana modes and even Fibonacci anyons—the latter enabling fully fault tolerant universal quantum computation. We structure our treatment in a manner that unifies these topics in a coherent way. The ideas synthesized here spotlight largely uncharted experimental territory in the field of quantum Hall physics that appears ripe for discovery.
Non-abelian black holes and black strings in higher dimensions
Hartmann, Betti
2009-05-01
We review the properties of static, higher dimensional black hole solutions in theories where non-abelian gauge fields are minimally coupled to gravity. It is shown that black holes with hyperspherically symmetric horizon topology do not exist in d>4, but that hyperspherically symmetric black holes can be constructed numerically in generalized Einstein-Yang-Mills models. 5-dimensional black strings with horizon topology S{sup 2}xS{sup 1} are also discussed. These are so-called undeformed and deformed non-abelian black strings, which are translationally invariant and correspond to 4-dimensional non-abelian black holes trivially extended into one extra dimensions. The fact that black strings can be deformed, i.e. axially symmetric for constant values of the extra coordinate is a new feature as compared to black string solutions of Einstein (-Maxwell) theory. It is argued that these non-abelian black strings are thermodynamically unstable.
Non-Abelian strings and axions
Gorsky, A.; Shifman, M.; Yung, A.
2006-06-15
We address two distinct but related issues: (i) the impact of (two-dimensional) axions in a two-dimensional theory known to model confinement, the CP(N-1) model; (ii) bulk axions in four-dimensional Yang-Mills theory supporting non-Abelian strings. In the first case n, n kinks play the role of 'quarks'. They are known to be confined. We show that introduction of axions leads to deconfinement (at very large distances). This is akin to the phenomenon of wall liberation in four-dimensional Yang-Mills theory. In the second case we demonstrate that the bulk axion does not liberate confined (anti)monopoles, in contradistinction with the two-dimensional model. A novel physical effect which we observe is the axion radiation caused by monopole-antimonopole pairs attached to the non-Abelian strings.
NASA Astrophysics Data System (ADS)
Ortín, Tomás; Ramírez, Pedro F.
2016-09-01
We construct a supersymmetric black ring solution of SU (2) N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM) theory by adding a distorted BPST instanton to an Abelian black ring solution of the same theory. The change cannot be observed from spatial infinity: neither the mass, nor the angular momenta or the values of the scalars at infinity differ from those of the Abelian ring. The entropy is, however, sensitive to the presence of the non-Abelian instanton, and it is smaller than that of the Abelian ring, in analogy to what happens in the supersymmetric colored black holes recently constructed in the same theory and in N = 2, d = 4 SEYM. By taking the limit in which the two angular momenta become equal we derive a non-Abelian generalization of the BMPV rotating black-hole solution.
Manifestation of a non-Abelian Berry phase in a p -type semiconductor system
NASA Astrophysics Data System (ADS)
Li, T.; Yeoh, L. A.; Srinavasan, A.; Klochan, O.; Ritchie, D. A.; Simmons, M. Y.; Sushkov, O. P.; Hamilton, A. R.
2016-05-01
Gauge theories, while describing fundamental interactions in nature, also emerge in a wide variety of physical systems. Abelian gauge fields have been predicted and observed in a number of novel quantum many-body systems, topological insulators, ultracold atoms, and many others. However, the non-Abelian gauge field, while playing the most fundamental role in particle physics, up to now has remained a purely theoretical construction in many-body physics. In this paper, we report an observation of a non-Abelian gauge field in a spin-orbit coupled quantum system. The gauge field manifests itself in quantum magnetic oscillations of a hole doped two-dimensional (2D) GaAs heterostructure. Transport measurements were performed in tilted magnetic fields, where the effect of the emergent non-Abelian gauge field was controlled by the components of the magnetic field in the 2D plane.
Non-Abelian discrete gauge symmetries in F-theory
NASA Astrophysics Data System (ADS)
Grimm, Thomas W.; Pugh, Tom G.; Regalado, Diego
2016-02-01
The presence of non-Abelian discrete gauge symmetries in four-dimensional F-theory compactifications is investigated. Such symmetries are shown to arise from seven-brane configurations in genuine F-theory settings without a weak string coupling description. Gauge fields on mutually non-local seven-branes are argued to gauge both R-R and NS-NS two-form bulk axions. The gauging is completed into a generalisation of the Heisenberg group with either additional seven-brane gauge fields or R-R bulk gauge fields. The former case relies on having seven-brane fluxes, while the latter case requires torsion cohomology and is analysed in detail through the M-theory dual. Remarkably, the M-theory reduction yields an Abelian theory that becomes non-Abelian when translated into the correct duality frame to perform the F-theory limit. The reduction shows that the gauge coupling function depends on the gauged scalars and transforms non-trivially as required for the groups encountered. This field dependence agrees with the expectations for the kinetic mixing of seven-branes and is unchanged if the gaugings are absent.
Fermion structure of non-Abelian vortices in high density QCD
Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto
2010-05-15
We study the internal structure of a non-Abelian vortex in color superconductivity with respect to quark degrees of freedom. Stable non-Abelian vortices appear in the color-flavor-locked phase whose symmetry SU(3){sub c+L+R} is further broken to SU(2){sub c+L+R} x U(1){sub c+L+R} at the vortex cores. Microscopic structure of vortices at scales shorter than the coherence length can be analyzed by the Bogoliubov-de Gennes equation (rather than the Ginzburg-Landau equation). We obtain quark spectra from the Bogoliubov-de Gennes equation by treating the diquark gap having the vortex configuration as a background field. We find that there are massless modes (zero modes) well-localized around a vortex, in the triplet and singlet states of the unbroken symmetry SU(2){sub c+L+R} x U(1){sub c+L+R}. The velocities v{sub i} of the massless modes (i=t, s for triplet and singlet) change at finite chemical potential {mu}{ne}0, and decrease as {mu} becomes large. Therefore, low energy excitations in the vicinity of the vortices are effectively described by 1+1 dimensional massless fermions whose velocities are reduced v{sub i}<1.
Non abelian hydrodynamics and heavy ion collisions
NASA Astrophysics Data System (ADS)
Calzetta, E.
2014-01-01
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Non abelian hydrodynamics and heavy ion collisions
Calzetta, E.
2014-01-14
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Non-Abelian geometric phase and long-range atomic forces
NASA Technical Reports Server (NTRS)
Zygelman, B.
1990-01-01
It is shown how gauge fields, or geometric phases, manifest as observable effects in both bound and free diatom systems. It is shown that, in addition to altering energy splittings in bound systems, geometric phases induce transitions in levels separated by a finite-energy gap. An example is given where the non-Abelian gauge field couples nondegenerate electronic levels in a diatom. This gauge-field coupling gives rise to an observable effect. It is shown that when the diatom is 'pulled apart', the non-Abelian geometric phase manifests as a long-range atomic force.
Matrix product states and the non-Abelian rotor model
NASA Astrophysics Data System (ADS)
Milsted, Ashley
2016-04-01
We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.
Controlling and probing non-abelian emergent gauge potentials in spinor Bose-Fermi mixtures
Phuc, Nguyen Thanh; Tatara, Gen; Kawaguchi, Yuki; Ueda, Masahito
2015-01-01
Gauge fields, typified by the electromagnetic field, often appear as emergent phenomena due to geometrical properties of a curved Hilbert subspace, and provide a key mechanism for understanding such exotic phenomena as the anomalous and topological Hall effects. Non-abelian gauge potentials serve as a source of non-singular magnetic monopoles. Here we show that unlike conventional solid materials, the non-abelianness of emergent gauge potentials in spinor Bose-Fermi atomic mixtures can be continuously varied by changing the relative particle-number densities of bosons and fermions. The non-abelian feature is captured by an explicit dependence of the measurable spin current density of fermions in the mixture on the variable coupling constant. Spinor mixtures also provide us with a method to coherently and spontaneously generate a pure spin current without relying on the spin Hall effect. Such a spin current is expected to have potential applications in the new generation of atomtronic devices. PMID:26330292
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
Non-Abelian vortices with a twist
NASA Astrophysics Data System (ADS)
Forgács, Péter; Lukács, Árpád; Schaposnik, Fidel A.
2015-06-01
Non-Abelian flux-tube (string) solutions carrying global currents are found in the bosonic sector of four-dimensional N =2 supersymmetric gauge theories. The specific model considered here possesses U(2 ) local×SU(2 ) global symmetry, with two scalar doublets in the fundamental representation of SU(2). We construct string solutions that are stationary and translationally symmetric along the x3 direction, and they are characterized by a matrix phase between the two doublets, referred to as "twist." Consequently, twisted strings have nonzero (global) charge, momentum, and in some cases even angular momentum per unit length. The planar cross section of a twisted string corresponds to a rotationally symmetric, charged non-Abelian vortex, satisfying first-order Bogomolny-type equations and second-order Gauss constraints. Interestingly, depending on the nature of the matrix phase, some of these solutions even break cylindrical symmetry in R3. Although twisted vortices have higher energy than the untwisted ones, they are expected to be linearly stable since one can keep their charge (or twist) fixed with respect to small perturbations.
On non-abelian T-dual geometries with Ramond fluxes
NASA Astrophysics Data System (ADS)
Sfetsos, Konstadinos; Thompson, Daniel C.
2011-05-01
We show how to implement T-duality along non-abelian isometries in backgrounds with non-vanishing Ramond fields. When the dimension of the isometry group is odd (even) the duality swaps (preserves) the chirality of the theory. In certain cases a non-abelian duality can result in a massive type-IIA background. We provide two examples by dualising SU(2) isometry subgroups in AdS×S and AdS×S×T. The resultant dual geometries inherit the original AdS factors but have transverse spaces with reduced isometry and preserve only half of the original supersymmetry. The non-abelian dual of AdS×S has an M-theory lift which is related to the gravity duals of N=2 superconformal theories. We comment on a possible interpretation of this as a high spin limit.
Non-Abelian topological insulators from an array of quantum wires
NASA Astrophysics Data System (ADS)
Sagi, Eran; Oreg, Yuval
2014-11-01
We suggest a construction of a large class of topological states using an array of quantum wires. First, we show how to construct a Chern insulator using an array of alternating wires that contain electrons and holes, correlated with an alternating magnetic field. This is supported by semiclassical arguments and a full quantum-mechanical treatment of an analogous tight-binding model. We then show how electron-electron interactions can stabilize fractional Chern insulators (Abelian and non-Abelian). In particular, we construct a non-Abelian Z3 parafermion state. Our construction is generalized to wires with alternating spin-orbit couplings, which give rise to integer and fractional (Abelian and non-Abelian) topological insulators. The states we construct are effectively two dimensional, and are therefore less sensitive to disorder than one-dimensional systems. The possibility of experimental realization of our construction is addressed.
Non-Abelian gerbes and enhanced Leibniz algebras
NASA Astrophysics Data System (ADS)
Strobl, Thomas
2016-07-01
We present the most general gauge-invariant action functional for coupled 1- and 2-form gauge fields with kinetic terms in generic dimensions, i.e., dropping eventual contributions that can be added in particular space-time dimensions only such as higher Chern-Simons terms. After appropriate field redefinitions it coincides with a truncation of the Samtleben-Szegin-Wimmer action. In the process one sees explicitly how the existence of a gauge-invariant functional enforces that the most general semistrict Lie 2-algebra describing the bundle of a non-Abelian gerbe gets reduced to a very particular structure, which, after the field redefinition, can be identified with the one of an enhanced Leibniz algebra. This is the first step towards a systematic construction of such functionals for higher gauge theories, with kinetic terms for a tower of gauge fields up to some highest form degree p , solved here for p =2 .
Cold Atoms in Non-Abelian Gauge Potentials: From the Hofstadter Moth to Lattice Gauge Theory
Osterloh, K.; Baig, M.; Santos, L.; Zoller, P.; Lewenstein, M.
2005-07-01
We demonstrate how to create artificial external non-Abelian gauge potentials acting on cold atoms in optical lattices. The method employs atoms with k internal states, and laser assisted state sensitive tunneling, described by unitary kxk matrices. The single-particle dynamics in the case of intense U(2) vector potentials lead to a generalized Hofstadter butterfly spectrum which shows a complex mothlike structure. We discuss the possibility to realize non-Abelian interferometry (Aharonov-Bohm effect) and to study many-body dynamics of ultracold matter in external lattice gauge fields.
The existence of self-dual vortices in a non-Abelian {Phi}{sup 2} Chern-Simons theory
Chen Shouxin; Wang Ying
2010-09-15
Applying the dynamic shooting method, we proved the existence of nontopological radially symmetric n-vortex solutions to the self-dual equation in non-Abelian Chern-Simons gauge theory with a {Phi}{sup 2}-type potential. Moreover, we obtained all possible radially symmetric nontopological bare (or 0-vortex) solutions in the non-Abelian Chern-Simons model. Meanwhile, we established the asymptotic behavior for the solutions as |x|{yields}{infinity}.
Non-Abelian Effects on D-Branes
Russo, Jorge G.
2008-07-28
We review different non-Abelian configurations of D-branes. We then extend the Myers dielectric effect to configurations with angular momentum. The resulting time-dependent N D0-brane bound states can be interpreted as describing rotating fuzzy ellipsoids. A similar solution exists also in the presence of a RR magnetic field, that we study in detail. We show that, for any finite N, above a certain critical angular momentum it is energetically more favorable for the bound state system to dissociate into an Abelian configuration of N D0-branes moving independently. We further study D-string configurations representing fuzzy funnels deformed by the magnetic field and by the rotational motion.
Non-Abelian duality and confinement: From N=2 to N=1 supersymmetric QCD
Shifman, M.; Yung, A.
2011-05-15
Recently, we discovered and discussed non-Abelian duality in the quark vacua of N=2 super-Yang-Mills theory with the U(N) gauge group and N{sub f} flavors (N{sub f}>N). Both theories from the dual pair support non-Abelian strings, which confine monopoles. Now we introduce an N=2-breaking deformation, a mass term {mu}A{sup 2} for the adjoint fields. Starting from a small deformation, we eventually make it large, which enforces complete decoupling of the adjoint fields. We show that the above non-Abelian duality fully survives in the limit of N=1 supersymmetric QCD (SQCD), albeit some technicalities change. For instance, non-Abelian strings which used to be Bogomol'nyi-Prasad-Sommerfield saturated in the N=2 limit, cease to be saturated in N=1 SQCD. Our duality is a distant relative of Seiberg's duality in N=1 SQCD. Both share some common features, but have many drastic distinctions. This is due to the fact that Seiberg's duality apply to the monopole rather than quark vacua. More specifically, in our theory we deal with N
Non-Abelian topological spin liquids from arrays of quantum wires or spin chains
NASA Astrophysics Data System (ADS)
Huang, Po-Hao; Chen, Jyong-Hao; Gomes, Pedro R. S.; Neupert, Titus; Chamon, Claudio; Mudry, Christopher
2016-05-01
We construct two-dimensional non-Abelian topologically ordered states by strongly coupling arrays of one-dimensional quantum wires via interactions. In our scheme, all charge degrees of freedom are gapped, so the construction can use either quantum wires or quantum spin chains as building blocks, with the same end result. The construction gaps the degrees of freedom in the bulk, while leaving decoupled states at the edges that are described by conformal field theories (CFT) in (1 +1 ) -dimensional space and time. We consider both the cases where time-reversal symmetry (TRS) is present or absent. When TRS is absent, the edge states are chiral and stable. We prescribe, in particular, how to arrive at all the edge states described by the unitary CFT minimal models with central charges c <1 . These non-Abelian spin liquid states have vanishing quantum Hall conductivities, but nonzero thermal ones. When TRS is present, we describe scenarios where the bulk state can be a non-Abelian, nonchiral, and gapped quantum spin liquid, or a gapless one. In the former case, we find that the edge states are also gapped. The paper provides a brief review of non-Abelian bosonization and affine current algebras, with the purpose of being self-contained. To illustrate the methods in a warm-up exercise, we recover the tenfold way classification of two-dimensional noninteracting topological insulators using the Majorana representation that naturally arises within non-Abelian bosonization. Within this scheme, the classification reduces to counting the number of null singular values of a mass matrix, with gapless edge modes present when left and right null eigenvectors exist.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Vishwanath, Ashvin
2013-04-01
We use entanglement entropy signatures to establish non-Abelian topological order in projected Chern-insulator wave functions. The simplest instance is obtained by Gutzwiller projecting a filled band with Chern number C=2, whose wave function may also be viewed as the square of the Slater determinant of a band insulator. We demonstrate that this wave function is captured by the SU(2)2 Chern-Simons theory coupled to fermions. This is established most persuasively by calculating the modular S-matrix from the candidate ground-state wave functions, following a recent entanglement-entropy-based approach. This directly demonstrates the peculiar non-Abelian braiding statistics of Majorana fermion quasiparticles in this state. We also provide microscopic evidence for the field theoretic generalization, that the Nth power of a Chern number C Slater determinant realizes the topological order of the SU(N)C Chern-Simons theory coupled to fermions, by studying the SU(2)3 (Read-Rezayi-type state) and the SU(3)2 wave functions. An advantage of our projected Chern-insulator wave functions is the relative ease with which physical properties, such as entanglement entropy and modular S-matrix, can be numerically calculated using Monte Carlo techniques.
Fast non-Abelian geometric gates via transitionless quantum driving
Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan
2015-01-01
A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580
Fast non-Abelian geometric gates via transitionless quantum driving.
Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan
2015-12-21
A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.
Non-Abelian strings in high-density QCD: Zero modes and interactions
Nakano, Eiji; Nitta, Muneto; Matsuura, Taeko
2008-08-15
The most fundamental strings in high-density color superconductivity are the non-Abelian semisuperfluid strings which have color-gauge flux tubes but behave as superfluid vortices in the energetic point of view. We show that in addition to the usual translational zero modes, these vortices have normalizable orientational zero modes in the internal space, associated with the color-flavor locking symmetry broken in the presence of the strings. The interaction among two parallel non-Abelian semisuperfluid strings is derived for general relative orientational zero modes to show the universal repulsion. This implies that the previously known superfluid vortices, formed by spontaneously broken U(1){sub B}, are unstable to decay. Moreover, our result proves the stability of color superconductors in the presence of external color-gauge fields.
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2014-12-01
We propose a general framework of nonlinear optics induced by non-Abelian Berry curvature in time-reversal-invariant (TRI) insulators. We find that the third-order response of a TRI insulator under optical and terahertz light fields is directly related to the integration of the non-Abelian Berry curvature over the Brillouin zone. We apply the result to insulators with rotational symmetry near the band edge. Under resonant excitations, the optical susceptibility is proportional to the flux of the Berry curvature through the iso-energy surface, which is equal to the Chern number of the surface times 2 π . For the III-V compound semiconductors, microscopic calculations based on the six-band model give a third-order susceptibility with the Chern number of the iso-energy surface equal to 3.
Particle coupled to a heat bath in non-Abelian gauge potentials
NASA Astrophysics Data System (ADS)
Guingarey, Issoufou; Avossevou, Gabriel Y. H.
2015-12-01
We derive the quantum Langevin equation (QLE) for a harmonically single trapped cold atom subjected to artificial non-Abelian gauge potentials and linearly coupled to a heat bath. The independent-oscillator (IO) and the momentum-momenta coupling models are studied. In each case, the non-Abelian effect on the QLE is pointed out for a U(2 ) gauge transformation. For the IO model, only the generalized Lorentz force is modified by the appearance of an additive term. For the momentum-momenta coupling model, the generalized Lorentz force as well as the friction force are subjected to modifications. The dependence of the system on the magnetic field is explicit even if the gauge potential is uniform in space.
Particle coupled to a heat bath in non-Abelian gauge potentials.
Guingarey, Issoufou; Avossevou, Gabriel Y H
2015-12-01
We derive the quantum Langevin equation (QLE) for a harmonically single trapped cold atom subjected to artificial non-Abelian gauge potentials and linearly coupled to a heat bath. The independent-oscillator (IO) and the momentum-momenta coupling models are studied. In each case, the non-Abelian effect on the QLE is pointed out for a U(2) gauge transformation. For the IO model, only the generalized Lorentz force is modified by the appearance of an additive term. For the momentum-momenta coupling model, the generalized Lorentz force as well as the friction force are subjected to modifications. The dependence of the system on the magnetic field is explicit even if the gauge potential is uniform in space. PMID:26764665
Scaling and non-Abelian signature in fractional quantum Hall quasiparticle tunneling amplitude
NASA Astrophysics Data System (ADS)
Hu, Zi-Xiang; Lee, Ki H.; Rezayi, Edward H.; Wan, Xin; Yang, Kun
2011-03-01
We study the scaling behavior in the tunneling amplitude when quasiparticles tunnel along a straight path between the two edges of a fractional quantum Hall annulus. Such scaling behavior originates from the propagation and tunneling of charged quasielectrons and quasiholes in an effective field analysis. In the limit when the annulus deforms continuously into a quasi-one-dimensional (1D) ring, we conjecture the exact functional form of the tunneling amplitude for several cases, which reproduces the numerical results in finite systems exactly. The results for Abelian quasiparticle tunneling is consistent with the scaling analysis; this allows for the extraction of the conformal dimensions of the quasiparticles. We analyze the scaling behavior of both Abelian and non-Abelian quasiparticles in the Read-Rezayi { Z}_k -parafermion states. Interestingly, the non-Abelian quasiparticle tunneling amplitudes exhibit non-trivial k-dependent corrections to the scaling exponent.
Non-Abelian coset string backgrounds from asymptotic and initial data
NASA Astrophysics Data System (ADS)
Petropoulos, P. Marios; Sfetsos, Konstadinos
2007-04-01
We describe hierarchies of exact string backgrounds obtained as non-Abelian cosets of orthogonal groups and having a space-time realization in terms of gauged WZW models. For each member in these hierarchies, the target-space backgrounds are identified with the ``boundary'' backgrounds of the next member. We explicitly demonstrate that this property holds to all orders in α' for the three- and four-dimensional cosets, while the general structure of the backgrounds at hand suggests that the property holds in any dimension. The affiliation of the ``boundary'' theory to the ``bulk'' theory exhibits marginal operators, generically build on non-Abelian parafermion bilinears, dressed with a dilaton vertex operator. The dilaton is supported by the extra radial dimension, whose asymptotic value defines the boundary. Depending on the hierarchy, this boundary can be time-like or space-like with, in the latter case, potential cosmological applications.
Abelian and non-Abelian Hopfions in all odd dimensions
NASA Astrophysics Data System (ADS)
Radu, Eugen; Tchrakian, Tigran
2014-10-01
We extend the definition of the topological charge pertaining to the CP1 (i.e. O(3)) Skyrme-Fadde'ev Hopfion on Bbb R3 to candidates for topological charges of Bbb CPn sigma models on Bbb R2n+1 for all n. For this, the Abelian composite connections of the Bbb CPn sigma models are employed. In higher dimensions (n >= 1) it turns out that such charges, described by the nonAbelian composite connections of suitable Grassmannian sigma models, can also be constructed. A concrete discussion of the non-Abelian case for n = 2 is presented.
Non-Abelian family symmetries as portals to dark matter
NASA Astrophysics Data System (ADS)
de Medeiros Varzielas, I.; Fischer, O.
2016-01-01
Non-Abelian family symmetries offer a very promising explanation for the flavour structure in the Standard Model and its extensions. We explore the possibility that dark matter consists in fermions that transform under a family symmetry, such that the visible and dark sector are linked by the familons - Standard Model gauge singlet scalars, responsible for spontaneously breaking the family symmetry. We study three representative models with non-Abelian family symmetries that have been shown capable to explain the masses and mixing of the Standard Model fermions.
Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states
Bonderson, Parsa; Gurarie, Victor; Nayak, Chetan
2011-02-15
We study the non-Abelian statistics of quasiparticles in the Ising-type quantum Hall states which are likely candidates to explain the observed Hall conductivity plateaus in the second Landau level, most notably the one at filling fraction {nu}=5/2. We complete the program started in V. Gurarie and C. Nayak, [Nucl. Phys. B 506, 685 (1997)]. and show that the degenerate four-quasihole and six-quasihole wave functions of the Moore-Read Pfaffian state are orthogonal with equal constant norms in the basis given by conformal blocks in a c=1+(1/2) conformal field theory. As a consequence, this proves that the non-Abelian statistics of the excitations in this state are given by the explicit analytic continuation of these wave functions. Our proof is based on a plasma analogy derived from the Coulomb gas construction of Ising model correlation functions involving both order and (at most two) disorder operators. We show how this computation also determines the non-Abelian statistics of collections of more than six quasiholes and give an explicit expression for the corresponding conformal block-derived wave functions for an arbitrary number of quasiholes. Our method also applies to the anti-Pfaffian wave function and to Bonderson-Slingerland hierarchy states constructed over the Moore-Read and anti-Pfaffian states.
Non-Abelian strings in supersymmetric Yang-Mills
Shifman, M.
2012-09-26
I give a broad review of novel phenomena discovered in certain Yang-Mills theories: non-Abelian strings and confined monopoles. Then I explain how these phenomena allow one to study strong dynamics of gauge theories in four dimensions from two-dimensional models emerging on the string world sheet.
Strong-weak coupling duality in non-abelian gauge theories
NASA Astrophysics Data System (ADS)
Ferrari, Frank
1997-05-01
This is a general introduction to electric-magnetic duality in non-abelian gauge theories. In chapter I, I review the general ideas which led in the late 70s to the idea of electric/magnetic duality in quantum field theory. In chapters II and III, I focus mainly on N=2 supersymmetric theories. I present the lagrangians and explain in more or less detail the non-renormalization theorems, rigid special geometry, supersymmetric instanton calculus, charge fractionization, the semiclassical theory of monopoles, duality in Maxwell theory and the famous Seiberg-Witten solution. I discuss various physical applications, as electric charge confinement, chiral symmetry breaking or non-trivial superconformal theories in four dimensions. In Section II.3 new material is presented, related to the computation of the eta invariant of certain Dirac operators coupled minimally to non-trivial monopole field configurations. I explain how these invariants can be obtained exactly by a one-loop calculation in a suitable N=2 supersymmetric gauge theory. This is an unexpected application of the holomorphy properties of N=2 supersymmetry, and constitutes a tremendous simplification of the usual computation. An expanded version of these new results will be published soon.
NASA Astrophysics Data System (ADS)
Kazakov, Alexander; Kolkovsky, V.; Adamus, Z.; Karczewski, G.; Wojtowicz, T.; Rokhinson, Leonid
2015-03-01
Several experiments detected signatures of Majorana fermions in nanowires, and the focus of current research is shifting toward systems where non-Abelian statistics of excitations can be demonstrated. To achieve this goal we are developing a new platform where non-Abelian excitations can be created and manipulated in a two-dimensional plane, with support for Majorana and higher order non-Abelian excitations. The system is based on CdTe quantum wells non-uniformly doped with paramagnetic impurities, which result in a complicate field-dependence of Zeeman splitting. A unique property of the system is that at high fields we can form a quantum Hall ferromagnet with gate-controllable spin polarization. Helical 1D edge channels formed along the edges of electrostatic gates may support generalized non-Abelian excitations in the fractional qunatum Hall regime, and Majorana and parafermion excitations in the presence of induced superconductivity. We will present results on the gate control of s-d exchange in specially designed heterostructures, demonstrate gate control of spin polarization at filling factor ν = 2 , and show spatial separation of quantum Hall states with different spin polarization using lithographically defined gates.
Scale-Setting Without the Higgs Mechanism:. Non-Abelian Symmetry
NASA Astrophysics Data System (ADS)
Anderson, J. T.
For the non-Abelian Higgs model it is shown that the coupled equations of motion for Aμ, ϕ and ϕ* have nonanalytic singularities which must be removed if the equations are integrable. Current conservation is found to remove the singularities in the vector-field equation and give a mass scale independent of V and the Higgs mechanism. The self-consistent field solutions for Aμ and the ϕ fields give either (1) the Higgs mechanism, zero current and the pure-gauge solution, or (2) nonzero current, a gauge-covariant solution and the mass scale independent of V and the Higgs mechanism.
Non-Abelian bosonic currents in cosmic strings
Lilley, Marc; Di Marco, Fabrizio; Martin, Jerome; Peter, Patrick
2010-07-15
A non-Abelian generalization of the neutral Witten current-carrying string model is discussed in which the bosonic current carrier belongs to a two-dimensional representation of SU(2). We find that the current-carrying solutions can be of three different kinds: either the current spans a U(1) subgroup, and in which case one is left with an Abelian current-carrying string, or the three currents are all lightlike, traveling in the same direction (only left or right movers). The third, genuinely non-Abelian situation, cannot be handled within a cylindrically symmetric framework, but can be shown to depend on all possible string Lorentz invariant quantities that can be constructed out of the phase gradients.
Non-Abelian Born Infeld action, geometry and supersymmetry
NASA Astrophysics Data System (ADS)
Julio Cirilo-Lombardo, Diego
2005-12-01
In this work, we propose a new non-Abelian generalization of the Born Infeld Lagrangian. It is based on a geometrical property of the Abelian Born Infeld Lagrangian in its determinantal form. Our goal is to extend the Abelian second-type Born Infeld action to the non-Abelian form preserving this geometrical property, which permits us to compute the generalized volume element as a linear combination of the components of metric and the Yang Mills energy momentum tensors. Under the BPS-like condition, the action proposed reduces to that of the Yang Mills theory, independently of the gauge group. New instanton-wormhole solution and static and spherically symmetric solution in curved spacetime for an SU(2) isotopic ansatz are solved and the N= 1 supersymmetric extension of the model is performed.
Search for electron liquids with non-Abelian quasiparticles
NASA Astrophysics Data System (ADS)
Wójs, Arkadiusz
2010-03-01
We use exact numerical diagonalization in the search of fractional quantum Hall states with non-Abelian quasiparticle statistics. For the (most promising) states in a partially filled second Landau level, the search is narrowed to the range of filling factors 7/3 < ve < 8/3. In this range, the analysis of energy spectra and correlation functions, calculated including finite width and Landau level mixing, supports the prominent non-Abelian candidates at ve = 5/2 (paired Moore-Read "pfafian" state) and 12/5 (clustered Read-Rezayi "parafermion" state). Outside of this range, the noninteracting composite fermion model with four attached flux quanta is validated, yielding the family of quantum liquids with fractional, but Abelian statistics. The borderline ve = 7/3 state is shown to be adiabatically connected to the Laughlin liquid, but its short-range correlations are significantly different.
Identifying non-Abelian topological order through minimal entangled states.
Zhu, W; Gong, S S; Haldane, F D M; Sheng, D N
2014-03-01
The topological order is encoded in the pattern of long-range quantum entanglements, which cannot be measured by any local observable. Here we perform an exact diagonalization study to establish the non-Abelian topological order for topological band models through entanglement entropy measurement. We focus on the quasiparticle statistics of the non-Abelian Moore-Read and Read-Rezayi states on the lattice models with bosonic particles. We identify multiple independent minimal entangled states (MESs) in the ground state manifold on a torus. The extracted modular S matrix from MESs faithfully demonstrates the Ising anyon or Fibonacci quasiparticle statistics, including the quasiparticle quantum dimensions and the fusion rules for such systems. These findings unambiguously demonstrate the topological nature of the quantum states for these flatband models without using the knowledge of model wave functions. PMID:24655269
Braiding non-Abelian quasiholes in fractional quantum Hall states.
Wu, Yang-Le; Estienne, B; Regnault, N; Bernevig, B Andrei
2014-09-12
Quasiholes in certain fractional quantum Hall states are promising candidates for the experimental realization of non-Abelian anyons. They are assumed to be localized excitations, and to display non-Abelian statistics when sufficiently separated, but these properties have not been explicitly demonstrated except for the Moore-Read state. In this work, we apply the newly developed matrix product state technique to examine these exotic excitations. For the Moore-Read and the Z_{3} Read-Rezayi states, we estimate the quasihole radii, and determine the correlation lengths associated with the exponential convergence of the braiding statistics. We provide the first microscopic verification for the Fibonacci nature of the Z_{3} Read-Rezayi quasiholes. We also present evidence for the failure of plasma screening in the nonunitary Gaffnian wave function. PMID:25259996
Electric-magnetic dualities in non-abelian and non-commutative gauge theories
NASA Astrophysics Data System (ADS)
Ho, Jun-Kai; Ma, Chen-Te
2016-08-01
Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.
Universal reconnection of non-Abelian cosmic strings.
Eto, Minoru; Hashimoto, Koji; Marmorini, Giacomo; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter
2007-03-01
We show that local and semilocal strings in Abelian and non-Abelian gauge theories with critical couplings always reconnect classically in collision, by using moduli space approximation. The moduli matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two vortices, which is known to give the reconnection of the strings. PMID:17359147
Probing Non-Abelian Statistics of Majorana Fermions in Ultracold Atomic Superfluid
Zhu Shiliang; Shao, L.-B.; Wang, Z. D.; Duan, L.-M.
2011-03-11
We propose an experiment to directly probe the non-Abelian statistics of Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms. We show that different orders of braiding operations give orthogonal output states that can be distinguished through Raman spectroscopy. Realization of Majorana states in an s-wave superfluid requires strong spin-orbital coupling and a controllable Zeeman field in the perpendicular direction. We present a simple laser configuration to generate the artificial spin-orbital coupling and the required Zeeman field in the dark-state subspace.
Quaternion-Octonion Analyticity for Abelian and Non-Abelian Gauge Theories of Dyons
NASA Astrophysics Data System (ADS)
Bisht, P. S.; Negi, O. P. S.
2008-06-01
Einstein-Schrödinger (ES) non-symmetric theory has been extended to accommodate the Abelian and non-Abelian gauge theories of dyons in terms of the quaternion-octonion metric realization. Corresponding covariant derivatives for complex, quaternion and octonion spaces in internal gauge groups are shown to describe the consistent field equations and generalized Dirac equation of dyons. It is also shown that quaternion and octonion representations extend the so-called unified theory of gravitation and electromagnetism to the Yang-Mill’s fields leading to two SU(2) gauge theories of internal spaces due to the presence of electric and magnetic charges on dyons.
Moduli Space of Non-Abelian Vortices
NASA Astrophysics Data System (ADS)
Eto, Minoru; Isozumi, Youichi; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke
2006-04-01
We completely determine the moduli space MN,k of k vortices in U(N) gauge theory with N Higgs fields in the fundamental representation. Its open subset for separated vortices is found as the symmetric product (C×CPN-1)k/Sk. Orbifold singularities of this space correspond to coincident vortices and are resolved resulting in a smooth moduli manifold. The relation to Kähler quotient construction is discussed.
Understanding the physics of a possible non-Abelian fractional quantum hall effect state.
Pan, Wei; Crawford, Matthew; Tallakulam, Madhu; Ross, Anthony Joseph, III
2010-10-01
We wish to present in this report experimental results from a one-year Senior Council Tier-1 LDRD project that focused on understanding the physics of a possible non-Abelian fractional quantum Hall effect state. We first give a general introduction to the quantum Hall effect, and then present the experimental results on the edge-state transport in a special fractional quantum Hall effect state at Landau level filling {nu} = 5/2 - a possible non-Abelian quantum Hall state. This state has been at the center of current basic research due to its potential applications in fault-resistant topological quantum computation. We will also describe the semiconductor 'Hall-bar' devices we used in this project. Electron physics in low dimensional systems has been one of the most exciting fields in condensed matter physics for many years. This is especially true of quantum Hall effect (QHE) physics, which has seen its intellectual wealth applied in and has influenced many seemingly unrelated fields, such as the black hole physics, where a fractional QHE-like phase has been identified. Two Nobel prizes have been awarded for discoveries of quantum Hall effects: in 1985 to von Klitzing for the discovery of integer QHE, and in 1998 to Tsui, Stormer, and Laughlin for the discovery of fractional QHE. Today, QH physics remains one of the most vibrant research fields, and many unexpected novel quantum states continue to be discovered and to surprise us, such as utilizing an exotic, non-Abelian FQHE state at {nu} = 5/2 for fault resistant topological computation. Below we give a briefly introduction of the quantum Hall physics.
Non-Abelian, supersymmetric black holes and strings in 5 dimensions
NASA Astrophysics Data System (ADS)
Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.
2016-03-01
We construct and study the first supersymmetric black-hole and black-string solutions of non-Abelian-gauged {N}=1 , d = 5 supergravity ({N}=1 , d = 5 Super-Einstein-Yang-Mills theory) with non-trivial SU(2) gauge fields: BPST instantons for black holes and BPS monopoles of different kinds ('t Hooft-Polyakov, Wu-Yang and Protogenov) for black strings and also for certain black holes that are well defined solutions only for very specific values of all the moduli. Instantons, as well as colored monopoles do not contribute to the masses and tensions but do contribute to the entropies.
Russian doll spectrum in a non-Abelian string-net ladder
NASA Astrophysics Data System (ADS)
Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien
2015-04-01
We study a string-net ladder in the presence of a string tension. Focusing on the simplest non-Abelian anyon theory with a quantum dimension larger than two, we determine the phase diagram and find a Russian doll spectrum featuring size-independent energy levels as well as highly degenerate zero-energy eigenstates. At the self-dual points, we compute the gap exactly by using a mapping onto the Temperley-Lieb chain. These results are in stark contrast with the ones obtained for Fibonacci or Ising theories.
Correlation-induced non-Abelian quantum holonomies
NASA Astrophysics Data System (ADS)
Johansson, Markus; Ericsson, Marie; Singh, Kuldip; Sjöqvist, Erik; Williamson, Mark S.
2011-04-01
In the context of two-particle interferometry, we construct a parallel transport condition that is based on the maximization of coincidence intensity with respect to local unitary operations on one of the subsystems. The dependence on correlation is investigated and it is found that the holonomy group is generally non-Abelian, but Abelian for uncorrelated systems. It is found that our framework contains the Lévay geometric phase (2004 J. Phys. A: Math. Gen. 37 1821) in the case of two-qubit systems undergoing local SU(2) evolutions.
Non-Abelian gauge invariance and the infrared approximation
Cho, H.h.; Fried, H.M.; Grandou, T.
1988-02-15
Two constructions are given of infrared approximations, defined by a nonlocal configuration-space restrictions, which preserve the local, non-Abelian gauge invariance of SU(N) two-dimensional QCD (QCD/sub 2/). These continuum infrared methods are used to estimate the quenched order parameter
Non-Abelian electric-magnetic duality with supersymmetry in 4D and 10D
NASA Astrophysics Data System (ADS)
Nishino, Hitoshi; Rajpoot, Subhash
2015-10-01
We present electric-magnetic (Hodge) duality formulation for non-Abelian gauge groups with N =1 supersymmetry in 3 +1 (4D) dimensions. Our system consists of three multiplets: (i) A super-Yang-Mills vector multiplet (YMVM) (Aμ I,λI) , (ii) a dual vector multiplet (DVM) (Bμ I,χI) , and (iii) an unphysical tensor multiplet (TM) (Cμν I,ρI,φI) , with the index I for adjoint representation. The multiplets YMVM and DVM are dual to each other like: Gμν I=(1 /2 )ɛμν ρ σFρσ I . The TM is unphysical, but still plays an important role for establishing the total consistency of the system, based on recently developed tensor-hierarchy formulation. We also apply this technique to non-Abelian electric-magnetic duality in 9 +1 (10D) dimensions. The extra bosonic auxiliary field Kμ1⋯μ6 in 10D is shown to play an important role for the closure of supersymmetry on fields.
NASA Astrophysics Data System (ADS)
Pogrebkov, A. K.
2016-06-01
We show that the non-Abelian Hirota difference equation is directly related to a commutator identity on an associative algebra. Evolutions generated by similarity transformations of elements of this algebra lead to a linear difference equation. We develop a special dressing procedure that results in an integrable non-Abelian Hirota difference equation and propose two regular reduction procedures that lead to a set of known equations, Abelian or non-Abelian, and also to some new integrable equations.
Type I non-abelian superconductors in supersymmetric gauge theories
NASA Astrophysics Data System (ADS)
Auzzi, Roberto; Eto, Minoru; Vinci, Walter
2007-11-01
Non-BPS non-Abelian vortices with Bbb CBbb P1 internal moduli space are studied in an Script N = 2 supersymmetric U(1) × SU(2) gauge theory with adjoint mass terms. For generic internal orientations the classical force between two vortices can be attractive or repulsive. On the other hand, the mass of the scalars in the theory is always less than that of the vector bosons; also, the force between two vortices with the same Bbb CBbb P1 orientation is always attractive: for these reasons we interpret our model as a non-Abelian generalization of type I superconductors. We compute the effective potential in the limit of two well separated vortices. It is a function of the distance and of the relative colour-flavour orientation of the two vortices; in this limit we find an effective description in terms of two interacting Bbb CBbb P1 sigma models. In the limit of two coincident vortices we find two different solutions with the same topological winding and, for generic values of the parameters, different tensions. One of the two solutions is described by a Bbb CBbb P1 effective sigma model, while the other is just an Abelian vortex without internal degrees of freedom. For generic values of the parameters, one of the two solutions is metastable, while there are evidences that the other one is truly stable.
Monopoles in non-Abelian Born-Infeld-Higgs theory and Born-Infeld collapse
NASA Astrophysics Data System (ADS)
Dyadichev, V. V.; Gal'Tsov, D. V.
2002-06-01
Regular magnetic monopoles in the non-Abelian Born-Infeld-Higgs theory are known to exist in the region of the field strength parameter β>βcr, bounded from below. Beyond this region, only pointlike (embedded Abelian) monopoles exist, and we show that the transition from the regular to singular structure is reminiscent of gravitational collapse. Near the threshold behavior is characterized by the rapidly increasing negative pressure, which typically arises in the high density non-Abelian Born-Infeld (NBI) matter. Another feature, shared by both the NBI and gravitating monopoles, is the existence of excited states, which can be thought of as bound states of monopoles and sphalerons. These are labeled by the number N of nodes of the Yang-Mills function. Their masses are greater than the mass of the ground state monopole, and they are expected to be unstable. The sequence of masses MN rapidly converges to the mass of the embedded Abelian solution with a constant Higgs boson. The ratio of the sphaleron size to that of the monopole grows with decreasing β, and, at the same time, both fall down until the solutions cease to exist, again exhibiting a collapse to the point-like monopole. The results are presented and compared both for the ordinary and the symmetrized trace NBI actions.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang; Wang, Zhenghan
2008-06-01
The classification of complex wave functions of infinite variables is an important problem since it is related to the classification of possible quantum states of matter. In this paper, we propose a way to classify symmetric polynomials of infinite variables using the pattern of zeros of the polynomials. Such a classification leads to a construction of a class of simple non-Abelian quantum Hall states which are closely related to parafermion conformal field theories.
Experimental realization of non-abelian geometric gates with a superconducting three-level system
NASA Astrophysics Data System (ADS)
Abdumalikov, Abdufarrukh; Fink, J. M.; Juliusson, K.; Pechal, M.; Berger, S.; Wallraff, A.; Filipp, S.
2013-03-01
Geometric gates hold promise to provide the building blocks for robust quantum computation. In our experiments, we use a superconducting three-level system (transmon) to realize non-adiabatic non-abelian geometric gates. As computational basis we choose the ground and second excited states, while the first excited state acts as an ancilla state. The gates are realized by applying two resonant drives between the transmon levels. During the geometric gate ration of the amplitudes of the two drive tone is kept constant. Different gates are obtained for different ratio of the drive tones. We implement a Hadamard, a NOT and a phase gates with the fidelities of 95 % , 98 % , and 97 % as determined by full process tomography and maximum likelihood methods. We explicitly show the non-abelian nature of gates by applying two non-commuting gates in alternating order. The demonstrated holonomic gates are not exclusive to superconducting quantum devices, but can also be applied to other three level systems with similar energy level structure.
Creating and manipulating non-Abelian anyons in cold atom systems using auxiliary bosons
NASA Astrophysics Data System (ADS)
Zhang, Yuhe; Sreejith, G. J.; Jain, J. K.
2015-08-01
The possibility of realizing bosonic fractional quantum Hall effect in ultracold atomic systems suggests a new route to producing and manipulating anyons, by introducing auxiliary bosons of a different species that capture quasiholes and thus inherit their nontrivial braiding properties. States with localized quasiholes at any desired locations can be obtained by annihilating the auxiliary bosons at those locations. We explore how this method can be used to generate non-Abelian quasiholes of the Moore-Read Pfaffian state for bosons at filling factor ν =1 . We show that a Hamiltonian with an appropriate three-body interaction can produce two-quasihole states in two distinct fusion channels of the topological "qubit." Characteristics of these states that are related to the non-Abelian nature can be probed and verified by a measurement of the effective relative angular momentum of the auxiliary bosons, which is directly related to their pair distribution function. Moore-Read states of more than two quasiholes can also be produced in a similar fashion. We investigate some issues related to the experimental feasibility of this approach, in particular, how large the systems should be for a realization of this physics and to what extent this physics carries over to systems with the more standard two-body contact interaction.
Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension
NASA Astrophysics Data System (ADS)
Paredes, Belén
2012-05-01
I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.
Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation.
Pan, Wei; Thalakulam, Madhu; Shi, Xiaoyan; Crawford, Matthew; Nielsen, Erik; Cederberg, Jeffrey George
2013-10-01
Topological quantum computation (TQC) has emerged as one of the most promising approaches to quantum computation. Under this approach, the topological properties of a non-Abelian quantum system, which are insensitive to local perturbations, are utilized to process and transport quantum information. The encoded information can be protected and rendered immune from nearly all environmental decoherence processes without additional error-correction. It is believed that the low energy excitations of the so-called =5/2 fractional quantum Hall (FQH) state may obey non-Abelian statistics. Our goal is to explore this novel FQH state and to understand and create a scientific foundation of this quantum matter state for the emerging TQC technology. We present in this report the results from a coherent study that focused on obtaining a knowledge base of the physics that underpins TQC. We first present the results of bulk transport properties, including the nature of disorder on the 5/2 state and spin transitions in the second Landau level. We then describe the development and application of edge tunneling techniques to quantify and understand the quasiparticle physics of the 5/2 state.
Phase diagram of a non-Abelian Aubry-André-Harper model with p -wave superfluidity
NASA Astrophysics Data System (ADS)
Wang, Jun; Liu, Xia-Ji; Xianlong, Gao; Hu, Hui
2016-03-01
We study theoretically a one-dimensional quasiperiodic Fermi system with topological p -wave superfluidity, which can be deduced from a topologically nontrivial tight-binding model on the square lattice in a uniform magnetic field and subject to a non-Abelian gauge field. The system may be regarded as a non-Abelian generalization of the well-known Aubry-André-Harper model. We investigate its phase diagram as a function of the strength of the quasidisorder and the amplitude of the p -wave order parameter through a number of numerical investigations, including a multifractal analysis. There are four distinct phases separated by three critical lines, i.e., two phases with all extended wave functions [(I) and (IV)], a topologically trivial phase (II) with all localized wave functions, and a critical phase (III) with all multifractal wave functions. Phase (I) is related to phase (IV) by duality. It also seems to be related to phase (II) by duality. Our proposed phase diagram may be observable in current cold-atom experiments, in view of simulating non-Abelian gauge fields and topological insulators/superfluids with ultracold atoms.
NASA Astrophysics Data System (ADS)
Zheng, Shi-Biao; Yang, Chui-Ping; Nori, Franco
2016-03-01
We investigate the effects of systematic errors of the control parameters on single-qubit gates based on nonadiabatic non-Abelian geometric holonomies and those relying on purely dynamical evolution. It is explicitly shown that the systematic error in the Rabi frequency of the control fields affects these two kinds of gates in different ways. In the presence of this systematic error, the transformation produced by the nonadiabatic non-Abelian geometric gate is not unitary in the computational space, and the resulting gate infidelity is larger than that with the dynamical method. Our results provide a theoretical basis for choosing a suitable method for implementing elementary quantum gates in physical systems, where the systematic noises are the dominant noise source.
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Wen, Xiao-Gang
2010-12-01
A large class of fractional quantum Hall (FQH) states can be classified according to their pattern of zeros, which describes the way ideal ground-state wave functions go to zero as various clusters of electrons are brought together. In this paper, we generalize this approach to classify multilayer FQH states. Such a classification leads to the construction of a class of non-Abelian multilayer FQH states that are closely related to ĝk parafermion conformal field theories, where ĝk is an affine simple Lie algebra. We discuss the possibility of some of the simplest of these non-Abelian states occurring in experiments on bilayer FQH systems at ν=2/3 , 4/5, 4/7, etc.
Yao, Hong; Lee, Dung-Hai
2011-08-19
We introduce an exactly solvable SU(2)-invariant spin-1/2 model with exotic spin excitations. With time reversal symmetry (TRS), the ground state is a spin liquid with gapless or gapped spin-1 but fermionic excitations. When TRS is broken, the resulting spin liquid exhibits deconfined vortex excitations which carry spin-1/2 and obey non-Abelian statistics. We show that this SU(2) invariant non-Abelian spin liquid exhibits the spin quantum Hall effect with quantized spin Hall conductivity σ(xy)(s)=ℏ/2π, and that the spin response is effectively described by the SO(3) level-1 Chern-Simons theory at low energy. We further propose that a SU(2) level-2 Chern-Simons theory is the effective field theory describing the topological structure of the non-Abelian SU(2) invariant spin liquid.
Matrix model for non-Abelian quantum Hall states
NASA Astrophysics Data System (ADS)
Dorey, Nick; Tong, David; Turner, Carl
2016-08-01
We propose a matrix quantum mechanics for a class of non-Abelian quantum Hall states. The model describes electrons which carry an internal SU(p ) spin. The ground states of the matrix model include spin-singlet generalizations of the Moore-Read and Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen. The effective action for these states is a U(p ) Chern-Simons theory. We show how the matrix model can be derived from quantization of the vortices in this Chern-Simons theory and how the matrix model ground states can be reconstructed as correlation functions in the boundary WZW model.
Asymptotically free scaling solutions in non-Abelian Higgs models
NASA Astrophysics Data System (ADS)
Gies, Holger; Zambelli, Luca
2015-07-01
We construct asymptotically free renormalization group trajectories for the generic non-Abelian Higgs model in four-dimensional spacetime. These ultraviolet-complete trajectories become visible by generalizing the renormalization/boundary conditions in the definition of the correlation functions of the theory. Though they are accessible in a controlled weak-coupling analysis, these trajectories originate from threshold phenomena which are missed in a conventional perturbative analysis relying on the deep Euclidean region. We identify a candidate three-parameter family of renormalization group trajectories interconnecting the asymptotically free ultraviolet regime with a Higgs phase in the low-energy limit. We provide estimates of their low-energy properties in the light of a possible application to the standard model Higgs sector. Finally, we find a two-parameter subclass of asymptotically free Coleman-Weinberg-type trajectories that do not suffer from a naturalness problem.
Simulation of non-Abelian gauge theories with optical lattices.
Tagliacozzo, L; Celi, A; Orland, P; Mitchell, M W; Lewenstein, M
2013-01-01
Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors). PMID:24162080
Simulation of non-Abelian gauge theories with optical lattices
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Celi, A.; Orland, P.; Mitchell, M. W.; Lewenstein, M.
2013-10-01
Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors).
Non-Abelian quantum Hall states of fermions and bosons
NASA Astrophysics Data System (ADS)
Read, Nicholas
2007-03-01
In a non-Abelian quantum Hall state, there are types of elementary excitations or quasiparticles that obey non-Abelian statistics. This is an extension of the idea of fractional statistics that means that when several of these quasiparticles are present in the system and are well-separated at well-defined positions, there is a degenerate space of lowest-energy states. When the quasiparticles are then exchanged adiabatically, the result is a matrix operation on this space of states. Greg Moore and the author^1 introduced this idea to condensed matter physics in 1991. They proposed a basic example called the Moore-Read Pfaffian state. The physics of the existence of the degenerate states for the quasiparticles in this system can be understood by viewing it as a px-ipy paired state of composite fermions, in which quasiparticles are hc/2e vortices that carry Majorana fermion zero modes. This state is expected to be realized in the filling factor ν=5/2 fractional quantum Hall (FQH) state. In later work, a series (labeled by an integer k) of ``parafermion'' states was proposed^2. This talk will review these ideas, and describe recent numerical work that strongly supports the idea that the k=3 member of the sequence occurs in the filling factor 12/5 FQH state for electrons^3, and also^4 in a system of bosons, such as rotating cold atoms, at filling factor 3/2. It will also describe recent analytical results^5 on the explicit quasihole trial wavefunctions of the parafermion states. 1. G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991). 2. N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999). 3. E.H. Rezayi and N. Read, cond-mat/0608346. 4. E.H. Rezayi, N. Read, and N.R. Cooper, Phys. Rev. Lett.95, 160404 (2005). 5. N. Read, Phys. Rev. B 73, 245334 (2006).
Non-Abelian chiral instabilities at high temperature on the lattice
NASA Astrophysics Data System (ADS)
Akamatsu, Yukinao; Rothkopf, Alexander; Yamamoto, Naoki
2016-03-01
We report on an exploratory lattice study on the phenomenon of chiral instabilities in non-Abelian gauge theories at high temperature. It is based on a recently constructed anomalous Langevin-type effective theory of classical soft gauge fields in the presence of a chiral number density n 5 = n R - n L. Evaluated in thermal equilibrium using classical lattice techniques it reveals that the fluctuating soft fields indeed exhibit a rapid energy increase at early times and we observe a clear dependence of the diffusion rate of topological charge (sphaleron rate) on the the initial n 5, relevant in both early universe baryogenesis and relativistic heavy-ion collisions. The topological charge furthermore shows a drift among distinct vacuum sectors, roughly proportional to the initial n 5 and in turn the chiral imbalance is monotonously reduced as required by helicity conservation.
Non-Abelian cosmic strings in de Sitter and anti-de Sitter space
NASA Astrophysics Data System (ADS)
Santos, Antônio de Pádua; Bezerra de Mello, Eugênio R.
2016-09-01
In this paper we investigate the non-Abelian cosmic string in de Sitter and anti-de Sitter spacetimes. In order to do that we construct the complete set of equations of motion considering the presence of a cosmological constant. By using numerical analysis we provide the behavior of the Higgs and gauge fields and also of the metric tensor for specific values of the physical parameters of the theory. For the de Sitter case, we find the appearance of an horizon. This horizon is consequence of the presence of the cosmological constant, and its position strongly depends on the value of the gravitational coupling. In the anti-de Sitter case, we find that the system does not present horizons. In fact the new feature of this system is related with the behavior of the (00) and (z z ) components of the metric tensor. They present a strong increasing behavior for large distance from the string.
Topological phase transitions with non-Abelian gauge potentials on square lattices
NASA Astrophysics Data System (ADS)
Chen, Yao-Hua; Li, Jian; Ting, C. S.
2013-11-01
We investigate the topological phase transition on interacting square lattices via the non-Abelian potential by employing the real-space cellular dynamical mean-field theory combining with the continuous-time Monte Carlo method. For a weak on-site Hubbard interaction, a topological band insulating state with a pair of gapless edge states is induced by a next-nearest-neighbor hopping. A phase transition from the metallic phase to the Mott insulating phase is observed when the interaction is increased. These two phases can be distinguished by detecting whether a bulk gap in the K-dependent spectral function exists. The whole phase diagrams as functions of the interaction, next-nearest-neighbor hopping energy, and temperature are presented. The experimental setup to observe these new interesting phase transitions is also discussed.
Transverse momentum diffusion and collisional jet energy loss in non-Abelian plasmas
Schenke, Bjoern; Strickland, Michael; Dumitru, Adrian; Nara, Yasushi; Greiner, Carsten
2009-03-15
We consider momentum broadening and energy loss of high-momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice-spacing independent. We find that the transport coefficient q corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the p{sub perpendicular} distribution of high-momentum partons. We establish the scaling of q and of dE/dx with density, temperature, and energy in the weak-coupling regime. We also estimate the nuclear modification factor R{sub AA} due to elastic energy loss of a jet in a classical Yang-Mills field.
Robustness of non-Abelian holonomic quantum gates against parametric noise
Solinas, Paolo; Zanghi, Nino; Zanardi, Paolo
2004-10-01
We present a numerical study of the robustness of a specific class of non-Abelian holonomic quantum gates. We take into account the parametric noise due to stochastic fluctuations of the control fields which drive the time-dependent Hamiltonian along an adiabatic loop. The performance estimator used is the state fidelity between noiseless and noisy holonomic gates. We carry over our analysis with different correlation times and we find out that noisy holonomic gates seem to be close to the noiseless ones for 'short' and 'long' noise correlation times. This result can be interpreted as a consequence of the geometric nature of the holonomic operator. Our simulations have been performed by using parameters relevant to the excitonic proposal for the implementation of holonomic quantum computation [P. Solinas et al., Phys. Rev. B 67, 121307 (2003)].
Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study
NASA Astrophysics Data System (ADS)
Zohar, Erez; Wahl, Thorsten B.; Burrello, Michele; Cirac, J. Ignacio
2016-11-01
Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.
Solitons and hairy black holes in Einstein-non-Abelian-Proca theory in anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Ponglertsakul, Supakchai; Winstanley, Elizabeth
2016-08-01
We present new soliton and hairy black hole solutions of Einstein-non-Abelian-Proca theory in asymptotically anti-de Sitter spacetime with gauge group su (2 ) . For static, spherically symmetric configurations, we show that the gauge field must be purely magnetic, and we solve the resulting field equations numerically. The equilibrium gauge field is described by a single function ω (r ) , which must have at least one zero. The solitons and hairy black holes share many properties with the corresponding solutions in asymptotically flat spacetime. In particular, all the solutions we study are unstable under linear, spherically symmetric, perturbations of the metric and gauge field.
Effective models of doped quantum ladders of non-Abelian anyons
NASA Astrophysics Data System (ADS)
Soni, Medha; Troyer, Matthias; Poilblanc, Didier
2016-01-01
Quantum spin models have been studied extensively in one and higher dimensions. Furthermore, these systems have been doped with holes to study t -J models of SU (2 ) spin-1/2. Their anyonic counterparts can be built from non-Abelian anyons, such as Fibonacci anyons described by SU (2) 3 theories, which are quantum deformations of the SU (2 ) algebra. Inspired by the physics of SU (2 ) spins, several works have explored ladders of Fibonacci anyons and also one-dimensional (1D) t -J models. Here, we aim to explore the combined effects of extended dimensionality and doping by studying ladders composed of coupled chains of interacting itinerant Fibonacci anyons. We show analytically that in the limit of strong rung couplings these models can be mapped onto effective 1D models. These effective models can either be gapped models of hole pairs, or gapless models described by t -J (or modified t -J -V ) chains of Fibonacci anyons, whose spectrum exhibits a fractionalization into charge and anyon degrees of freedom. The charge degrees of freedom are described by the hardcore boson spectra while the anyon sector is given by a chain of localized interacting anyons. By using exact diagonalizations for two-leg and three-leg ladders, we show that indeed the doped ladders show exactly the same behavior as that of t -J chains. In the strong ferromagnetic rung limit, we can obtain a new model that hosts two different kinds of Fibonacci particles, which we denote as the heavy τ 's and light τ 's. These two particle types carry the same (non-Abelian) topological charge but different (Abelian) electric charges. Once again, we map the two-dimensional ladder onto an effective chain carrying these heavy and light τ 's. We perform a finite size scaling analysis to show the appearance of gapless modes for certain anyon densities, whereas a topological gapped phase is suggested for another density regime.
Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits
NASA Astrophysics Data System (ADS)
Mezzacapo, A.; Rico, E.; Sabín, C.; Egusquiza, I. L.; Lamata, L.; Solano, E.
2015-12-01
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.
Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.
Mezzacapo, A; Rico, E; Sabín, C; Egusquiza, I L; Lamata, L; Solano, E
2015-12-11
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms. PMID:26705616
Heterotic non-Abelian string of a finite length
NASA Astrophysics Data System (ADS)
Monin, S.; Shifman, M.; Yung, A.
2016-06-01
We consider non-Abelian strings in N =2 supersymmetric quantum chromodynamics (QCD) with the U (N ) gauge group and Nf=N quark flavors deformed by a mass term for the adjoint matter. This deformation breaks N =2 supersymmetry down to N =1 . Dynamics of orientational zero modes on the string world sheet are described then by C P (N -1 ) model with N =(0 ,2 ) supersymmetry. We study the string of a finite length L assuming compactification on a cylinder (periodic boundary conditions). The world-sheet theory is solved in the large-N approximation. At N =∞ we find a rich phase structure in the (L ,u ) plane where u is a deformation parameter. At large L and intermediate u we find a phase with broken Z2 N symmetry, N vacua and a mass gap. At large values of L and u still larger we have the Z2 N-symmetric phase with a single vacuum and massless fermions. In both phases N =(0 ,2 ) supersymmetry is spontaneously broken. We also observe a phase with would-be broken SU (N ) symmetry at small L (it is broken only for N =∞ ). In the latter phase the mass gap vanishes and the vacuum energy is zero in the leading 1 /N approximation. We expect that at large but finite N corrections O (1 /N ) will break N =(0 ,2 ) supersymmetry. Simultaneously, the phase transitions will become rapid crossovers. Finally we discuss how the observed rich phase structure matches the N =(2 ,2 ) limit in which the world-sheet theory has a single phase with the mass gap independent of L .
NASA Astrophysics Data System (ADS)
Das Sarma, S.; Nag, Amit; Sau, Jay D.
2016-07-01
We consider a simple conceptual question with respect to Majorana zero modes in semiconductor nanowires: can the measured nonideal values of the zero-bias-conductance-peak in the tunneling experiments be used as a characteristic to predict the underlying topological nature of the proximity induced nanowire superconductivity? In particular, we define and calculate the topological visibility, which is a variation of the topological invariant associated with the scattering matrix of the system as well as the zero-bias-conductance-peak heights in the tunneling measurements, in the presence of dissipative broadening, using precisely the same realistic nanowire parameters to connect the topological invariants with the zero-bias tunneling conductance values. This dissipative broadening is present in both (the existing) tunneling measurements and also (any future) braiding experiments as an inevitable consequence of a finite braiding time. The connection between the topological visibility and the conductance allows us to obtain the visibility of realistic braiding experiments in nanowires, and to conclude that the current experimentally accessible systems with nonideal zero-bias conductance peaks may indeed manifest (with rather low visibility) non-Abelian statistics for the Majorana zero modes. In general, we find that a large (small) superconducting gap (Majorana peak splitting) is essential for the manifestation of the non-Abelian braiding statistics, and in particular, a zero-bias conductance value of around half the ideal quantized Majorana value should be sufficient for the manifestation of non-Abelian statistics in experimental nanowires. Our work also establishes that as a matter of principle the topological transition associated with the emergence of Majorana zero modes in finite nanowires is always a crossover (akin to a quantum phase transition at finite temperature) requiring the presence of dissipative broadening (which must be larger than the Majorana energy
Non-Abelian Meissner effect in Yang-Mills theories at weak coupling
Gorsky, A.; Shifman, M.; Yung, A.
2005-02-15
We present a weak-coupling Yang-Mills model supporting non-Abelian magnetic flux tubes and non-Abelian confined magnetic monopoles. In the dual description the magnetic flux tubes are prototypes of the QCD strings. Dualizing the confined magnetic monopoles we get gluelumps which convert a 'QCD string' in the excited state to that in the ground state. Introducing a mass parameter m we discover a phase transition between the Abelian and non-Abelian confinement at a critical value m=m{sub *}{approx}{lambda}. Underlying dynamics are governed by a Z{sub N} symmetry inherent to the model under consideration. At m>m{sub *} the Z{sub N} symmetry is spontaneously broken, resulting in N degenerate Z{sub N} (Abelian) strings. At m
Non-Abelian quasigapless modes localized on mass vortices in superfluid He3-B
NASA Astrophysics Data System (ADS)
Nitta, Muneto; Shifman, Mikhail; Vinci, Walter
2013-04-01
Kelvin waves, or Kelvons, have been known for a long time as gapless excitations propagating along superfluid vortices. These modes can be interpreted as the Nambu-Goldstone excitations arising from the spontaneous breaking of the translational symmetry. Recently a different type of gapless excitation localized on strings—the so-called non-Abelian mode—attracted much attention in high-energy physics. We discuss their relevance in condensed matter physics. Non-Abelian rotational quasigapless excitations could appear on the mass vortices in the B phase of the superfluid He3, due to the fact that the order parameter in He3-B is tensorial. While the U(1) rotational excitations are well established in vortices with asymmetric cores, the non-Abelian rotational excitations belonging to the same family were not considered.
Non-Abelian states in Fractional Quantum Hall effect in charge carrier hole systems
NASA Astrophysics Data System (ADS)
Simion, George; Lyanda-Geller, Yuli
Quasiparticle excitations obeying non-Abelian statistics represent the key element of topological quantum computing. Crossing of levels and strong coupling between angular momentum and orbital motion, described by Luttinger Hamiltonian, make properties of charge carrier holes different from those of electrons. Peculiarities of hole spectrum in magnetic field provide an opportunity for controlling Landau level mixing in charge carier hole systems. In order to describe Fractional Quantum Hall effect for holes, we propose a method to map hole spectrum and wavefunctions using a spherical shell. We investigate the experimentally observed ν = 1 / 2 state in spherical geometry. Haldane pseudopotentials are computed and the effect of Landau level mixing is evaluated. Exact diagonalization of Coulomb interaction in systems with eight to fourteen holes is performed. We determine that the ground state superposition with Abelian 331 state is very small and the overlap with Moore-Read state is significant. The quasihole and quasielectron excitations are discussed. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.
Velocity-dependent models for non-Abelian/entangled string networks
Avgoustidis, A.; Shellard, E. P. S.
2008-11-15
We develop velocity-dependent models describing the evolution of string networks that involve several types of interacting strings, each with a different tension. These incorporate the formation of Y-type junctions with links stretching between colliding strings, while always ensuring energy conservation. These models can be used to describe network evolution for non-Abelian strings as well as cosmic superstrings. The application to Z{sub N} strings in which interactions are topologically constrained, demonstrates that a scaling regime is generally reached which involves a hierarchy of string densities with the lightest most abundant. We also study hybrid networks of cosmic superstrings, where energetic considerations are more important in determining interaction outcomes. We again find that networks tend towards scaling, with the three lightest network components being dominant and having comparable number densities, while the heavier string states are suppressed. A more quantitative analysis depends on the precise calculation of the string interaction matrix using the underlying string or field theory. Nevertheless, these results provide further evidence that the presence of junctions in a string network does not obstruct scaling.
Studying critical string emerging from non-Abelian vortex in four dimensions
NASA Astrophysics Data System (ADS)
Koroteev, P.; Shifman, M.; Yung, A.
2016-08-01
Recently a special vortex string was found [5] in a class of soliton vortices supported in four-dimensional Yang-Mills theories that under certain conditions can become infinitely thin and can be interpreted as a critical ten-dimensional string. The appropriate bulk Yang-Mills theory has the U (2) gauge group and the Fayet-Iliopoulos term. It supports semilocal non-Abelian vortices with the world-sheet theory for orientational and size moduli described by the weighted CP (2 , 2) model. The full target space is R4 ×Y6 where Y6 is a non-compact Calabi-Yau space. We study the above vortex string from the standpoint of string theory, focusing on the massless states in four dimensions. In the generic case all massless modes are non-normalizable, hence, no massless gravitons or vector fields are predicted in the physical spectrum. However, at the selfdual point (at strong coupling) weighted CP (2 , 2) admits deformation of the complex structure, resulting in a single massless hypermultiplet in the bulk. We interpret it as a composite "baryon."
Quintet pairing and non-Abelian vortex string in spin- 3/2 cold atomic systems
Wu, C.
2010-03-02
We study the s-wave quintet Cooper pairing phase (S{sub pair} = 2) in spin-3/2 cold atomic systems and identify various novel features which do not appear in spin-1/2 pairing systems. A single quantum vortex is shown to be energetically less stable than a pair of half-quantum vortices. The half-quantum vortex exhibits the global analogue of the non-Abelian Alice string and SO(4) Cheshire charge in gauge theories. The non-Abelian half-quantum vortex loop enables topological generation of quantum entanglement.
Conformal flatness, non-Abelian Kaluza-Klein reduction and quaternions
NASA Astrophysics Data System (ADS)
Maraner, Paolo; Pachos, Jiannis K.
2012-02-01
The non-Abelian Kaluza-Klein reduction of conformally flat spaces is considered for arbitrary dimensions and signatures. The corresponding equations are particularly elegant when the internal space supports a global Killing parallelization. Assuming this imposes the generalized 'spacetime' to be maximally symmetric with holonomy in the unitary quaternionic group Sp(d/4). Recalling an analogous result for the complex case, we conclude that all special manifolds with constant properly 'holonomy-related' sectional curvature, are in natural correspondence with conformally flat, possibly non-Abelian, Kaluza-Klein spaces.
Abelian and non-Abelian states in ν = 2 / 3 bilayer fractional quantum Hall systems
NASA Astrophysics Data System (ADS)
Peterson, Michael; Wu, Yang-Le; Cheng, Meng; Barkeshli, Maissam; Wang, Zhenghan
There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two-component FQH systems at total filling fraction ν = n + 2 / 3 , for integer n. Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction ν = n + 2 / 3 , including in particular the possibility of the non-Abelian Z4 parafermion state. In ν = 2 / 3 bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the Z4 state. On the other hand, in single-component systems at ν = 8 / 3 , we find that the Z4 parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed ν = 8 / 3 state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively. We acknowledge the Office of Research and Sponsored Programs at California State University Long Beach and Microsoft Station Q.
Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Wen, Xiao-Gang
2011-09-01
We study continuous quantum phase transitions that can occur in bilayer fractional quantum Hall (FQH) systems as the interlayer tunneling and interlayer repulsion are tuned. We introduce a slave-particle gauge theory description of a series of continuous transitions from the (ppq) Abelian bilayer states to a set of non-Abelian FQH states, which we dub orbifold FQH states, of which the Z4 parafermion (Read-Rezayi) state is a special case. This provides an example in which Z2 electron fractionalization leads to non-Abelian topological phases. The naive “ideal” wave functions and ideal Hamiltonians associated with these orbifold states do not in general correspond to incompressible phases but, instead, lie at a nearby critical point. We discuss this unusual situation from the perspective of the pattern-of-zeros/vertex algebra frameworks and discuss implications for the conceptual foundations of these approaches. Due to the proximity in the phase diagram of these non-Abelian states to the (ppq) bilayer states, they may be experimentally relevant, both as candidates for describing the plateaus in single-layer systems at filling fractions 8/3 and 12/5 and as a way to tune to non-Abelian states in double-layer or wide quantum wells.
Abelian and non-Abelian states in ν =2 /3 bilayer fractional quantum Hall systems
NASA Astrophysics Data System (ADS)
Peterson, Michael R.; Wu, Yang-Le; Cheng, Meng; Barkeshli, Maissam; Wang, Zhenghan; Das Sarma, Sankar
2015-07-01
There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two-component FQH systems at total filling fraction ν =n +2 /3 , for integer n . Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction ν =n +2 /3 , including in particular the possibility of the non-Abelian Z4 parafermion state. In ν =2 /3 bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the Z4 state. On the other hand, in single-component systems at ν =8 /3 , we find that the Z4 parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed ν =8 /3 state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively.
Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states
Barkeshli, Maissam; Wen Xiaogang
2011-09-15
We study continuous quantum phase transitions that can occur in bilayer fractional quantum Hall (FQH) systems as the interlayer tunneling and interlayer repulsion are tuned. We introduce a slave-particle gauge theory description of a series of continuous transitions from the (ppq) Abelian bilayer states to a set of non-Abelian FQH states, which we dub orbifold FQH states, of which the Z{sub 4} parafermion (Read-Rezayi) state is a special case. This provides an example in which Z{sub 2} electron fractionalization leads to non-Abelian topological phases. The naive ''ideal'' wave functions and ideal Hamiltonians associated with these orbifold states do not in general correspond to incompressible phases but, instead, lie at a nearby critical point. We discuss this unusual situation from the perspective of the pattern-of-zeros/vertex algebra frameworks and discuss implications for the conceptual foundations of these approaches. Due to the proximity in the phase diagram of these non-Abelian states to the (ppq) bilayer states, they may be experimentally relevant, both as candidates for describing the plateaus in single-layer systems at filling fractions 8/3 and 12/5 and as a way to tune to non-Abelian states in double-layer or wide quantum wells.
Escalante, Alberto Manuel-Cabrera, J.
2015-10-15
A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed. • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.
Non-Abelian clouds around Reissner-Nordström black holes: The existence line
NASA Astrophysics Data System (ADS)
Radu, Eugen; Tchrakian, D. H.; Yang, Yisong
2016-06-01
A known feature of electrically charged Reissner-Nordström-anti-de Sitter planar black holes is that they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon. In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different from the anti-de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in five-dimensional asymptotically flat spacetime. In the first case, we augment the usual S U (3 ) Yang-Mills Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons density to the S O (6 ) Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to these two examples, we review the corresponding picture for anti-de Sitter black holes. All these solutions are studied both analytically and numerically, existence proofs being provided for nA clouds in the background of RN black holes. The proofs use shooting techniques which are suggested by and in turn offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate electric charge values are required to ensure the existence of solutions interpolating desired boundary behavior at the horizons and spatial infinity.
Qi Ran; Liu, W. M.; Yu, Xiao-Lu; Li, Z. B.
2009-05-08
We investigate the non-Abelian Josephson effect in F=2 spinor Bose-Einstein condensates with double optical traps. We propose a real physical system which contains non-Abelian Josephson effect and has very different density and spin tunneling characters compared with the Abelian case. We calculate the frequencies of the pseudo Goldstone modes in different phases between two traps, respectively, which are the crucial feature of the non-Abelian Josephson effect. We also give an experimental protocol to observe this novel effect in future experiments.
Dynamical disentanglement across a point contact in a non-Abelian quantum Hall state.
Fendley, Paul; Fisher, Matthew P A; Nayak, Chetan
2006-07-21
We analyze the tunneling of non-Abelian quasiparticles between the edges of a quantum Hall droplet at the Landau level filling fraction nu=5/2, assuming that the electrons in the first excited Landau level organize themselves in the non-Abelian Moore-Read Pfaffian state. By bosonizing the edge theory, we show that an effective spin-1/2 degree of freedom emerges in the description of a point contact. We show how the crossover from the high-temperature regime of weak quasiparticle tunneling between the edges of the droplet, with the 4-terminal Rxx approximately T(-3/2), to the low-temperature limit, with Rxx(-1/10)(h/e2) approximately-T4, is closely related to the two-channel Kondo effect. We give a physical interpretation for the entropy loss of ln(2[square root of 2) in this crossover.
Non-Abelian magnetic black strings versus black holes
NASA Astrophysics Data System (ADS)
Mazharimousavi, S. Habib; Halilsoy, M.
2016-05-01
We present d+1 -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.
Gauge equivalence of two different IAnsaaumlItze Rfor non-Abelian charged vortices
Paul, S.K.
1987-05-15
Recently the existence of non-Abelian charged vortices has been established by taking two different Ansa$uml: tze in SU(2) gauge theories. We point out that these two Ansa$uml: tze are in two topologically equivalent prescriptions. We show that they are gauge equivalent only at infinity. We also show that this gauge equivalence is not possible for Z/sub N/ vortices in SU(N) gauge theories for Ngreater than or equal to3.
NASA Astrophysics Data System (ADS)
Mross, David F.; Essin, Andrew; Alicea, Jason; Stern, Ady
2016-01-01
We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z4 parafermion zero modes.
Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady
2016-01-22
We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes.
Pauli-Villars Regularization of Non-Abelian Gauge Theories
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-07-01
As an extension of earlier work on QED, we construct a BRST-invariant Lagrangian for SU(N) Yang-Mills theory with fundamental matter, regulated by the inclusion of massive Pauli-Villars (PV) gluons and PV quarks. The underlying gauge symmetry for massless PV gluons is generalized to accommodate the PV-index-changing currents that are required by the regularization. Auxiliary adjoint scalars are used, in a mechanism due to Stueckelberg, to attribute mass to the PV gluons and the PV quarks. The addition of Faddeev-Popov ghosts then establishes a residual BRST symmetry. Although there are drawbacks to the approach, in particular the computational load of a large number of PV fields and a nonlocal interaction of the ghost fields, this formulation could provide a foundation for renormalizable nonperturbative solutions of light-front QCD in an arbitrary covariant gauge.
Non-abelian Ramond-Neveu-Schwarz string theory
NASA Astrophysics Data System (ADS)
Hyun Seok Yang; Inbo Kim; Bum-Hoon Lee
1999-08-01
We newly construct a world-sheet matrix string theory described by two-dimensional supergravity coupled to supersymmetric Yang-Mills fields where the string coordinates are non-commuting matrices in the gauge group U( N). We show that our string theory has a free string limit where it becomes N-copies of usual Ramond-Neveu-Schwarz strings and can be described by the orbifold conformal field theory being second quantized string theory. In the weak coupling limit, i.e. gs → 0 where gs is the coupling constant of our theory related with the Yang-Mills coupling as gYM-2 = α' gs2, a new additional dimension appears in the string spectrum and it can be speculatively interpreted as the compactified eleven-dimensional coordinate whose dynamics is given by an orbifold O( N) sigma model.
Improved HDRG decoders for qudit and non-Abelian quantum error correction
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Loss, Daniel; Wootton, James R.
2015-03-01
Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.
Jet broadening in unstable non-Abelian plasmas
Dumitru, Adrian; Schenke, Bjoern; Strickland, Michael; Nara, Yasushi
2008-08-15
We perform numerical simulations of the SU(2) Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. Using this technique we calculate the momentum-space broadening of high-energy jets in real time for both locally isotropic and anisotropic plasmas. In both cases we introduce a separation scale that separates hard and soft interactions and demonstrate that our results for jet broadening are independent of the precise separation scale chosen. For an isotropic plasma this allows us to calculate the jet transport coefficient q-circumflex including hard and soft nonequilibrium dynamics. For an anisotropic plasma the jet transport coefficient becomes a tensor with q-circumflex{sub L}{ne}q-circumflex{sub perpendicular}. We find that for weakly coupled anisotropic plasmas the fields develop unstable modes, forming configurations where B{sub perpendicular}>E{sub perpendicular} and E{sub z}>B{sub z}, which lead to q-circumflex{sub L}>q-circumflex{sub perpendicular}. We study whether the effect is strong enough to explain the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity, {delta}{eta}, than in azimuth, {delta}{phi}.
Holographic phase transitions from higgsed, non abelian charged black holes
NASA Astrophysics Data System (ADS)
Giordano, Gastón L.; Lugo, Adrián R.
2015-07-01
We find solutions of a gravity-Yang-Mills-Higgs theory in four dimensions that represent asymptotic anti-de Sitter charged black holes with partial/full gauge symme-try breaking. We then apply the AdS/CFT correspondence to study the strong coupling regime of a 2 + 1 quantum field theory at temperature T and finite chemical potential, which undergoes transitions to phases exhibiting the condensation of a composite charged vector operator below a critical temperature T c , presumably describing p + ip/p-wave su-perconductors. In the case of p + ip-wave superconductors the transitions are always of second order. But for p-wave superconductors we determine the existence of a critical value αc of the gravitational coupling (for fixed Higgs v.e.v. parameter ) beyond which the transitions become of first order. As a by-product, we show that the p-wave phase is energetically favored over the p + ip one, for any values of the parameters. We also find the ground state solutions corresponding to zero temperature. Such states are described by domain wall geometries that interpolate between AdS 4 spaces with different light veloc-ities, and for a given , they exist below a critical value of the coupling. The behavior of the order parameter as function of the gravitational coupling near the critical coupling suggests the presence of second order quantum phase transitions. We finally study the dependence of the solution on the Higgs coupling, and find the existence of a critical value beyond which no condensed solution is present.
Noncommutative geometry and non-Abelian Berry phase in the wave-packet dynamics of Bloch electrons
NASA Astrophysics Data System (ADS)
Shindou, Ryuichi; Imura, Ken-Ichiro
2005-08-01
Motivated by a recent proposal on the possibility of observing a monopole in the band structure, and by an increasing interest in the role of Berry phase in spintronics, we studied the adiabatic motion of a wave packet of Bloch functions, under a perturbation varying slowly and incommensurately to the lattice structure. We show, using only the fundamental principles of quantum mechanics, that the effective wave-packet dynamics is conveniently described by a set of equations of motion (EOM) for a semiclassical particle coupled to a non-Abelian gauge field associated with a geometric Berry phase. Our EOM can be viewed as a generalization of the standard Ehrenfest's theorem, and their derivation was asymptotically exact in the framework of linear response theory. Our analysis is entirely based on the concept of local Bloch bands, a good starting point for describing the adiabatic motion of a wave packet. One of the advantages of our approach is that the various types of gauge fields were classified into two categories by their different physical origin: (i) projection onto specific bands, (ii) time-dependent local Bloch basis. Using those gauge fields, we write our EOM in a covariant form, whereas the gauge-invariant field strength stems from the noncommutativity of covariant derivatives along different axes of the reciprocal parameter space. On the other hand, the degeneracy of Bloch bands makes the gauge fields non-Abelian. For the purpose of applying our wave-packet dynamics to the analyses on transport phenomena in the context of Berry phase engineering, we focused on the Hall-type and polarization currents. Our formulation turned out to be useful for investigating and classifying various types of topological current on the same footing. We highlighted their symmetries, in particular, their behavior under time reversal ( T) and space inversion ( I). The result of these analyses was summarized as a set of cancellation rules. We also introduced the concept of parity
NASA Astrophysics Data System (ADS)
Wan, Xin; Hu, Zi-Xiang; Rezayi, E. H.; Yang, Kun
2008-04-01
We present a comprehensive numerical study of a microscopic model of the fractional quantum Hall system at filling fraction ν=5/2 , based on the disk geometry. Our model includes Coulomb interaction and a semirealistic confining potential. We also mix in a three-body interaction in some cases to help elucidate the physics. We obtain a phase diagram, discuss the conditions under which the ground state can be described by the Moore-Read state, and study its competition with neighboring stripe phases. We also study quasihole excitations and edge excitations in the Moore-Read-like state. From the evolution of the edge spectrum, we obtain the velocities of the charge and neutral edge modes, which turn out to be very different. This separation of velocities is a source of decoherence for a non-Abelian quasihole and/or quasiparticle (with charge ±e/4 ) when propagating at the edge; using numbers obtained from a specific set of parameters, we estimate the decoherence length to be around 4μm . This sets an upper bound for the separation of the two point contacts in a double point-contact interferometer, designed to detect the non-Abelian nature of such quasiparticles. We also find a state that is a potential candidate for the recently proposed anti-Pfaffian state. We find the speculated anti-Pfaffian state is favored in weak confinement (smooth edge), while the Moore-Read Pfaffian state is favored in strong confinement (sharp edge).
A simple model for the evolution of a non-Abelian cosmic string network
NASA Astrophysics Data System (ADS)
Cella, G.; Pieroni, M.
2016-06-01
In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argument to justify the lack of scaling for the residual cases.
Quantum equivalence of σ models related by non-Abelian duality transformations
NASA Astrophysics Data System (ADS)
Balázs, L. K.; Balog, J.; Forgács, P.; Mohammedi, N.; Palla, L.; Schnittger, J.
1998-03-01
Coupling constant renormalization is investigated in two dimensional σ models related by non-Abelian duality transformations. In this respect it is shown that in the one loop order of perturbation theory the duals of a one parameter family of models, interpolating between the SU(2) principal model and the O(3) sigma model, exhibit the same behavior as the original models. For the O(3) model also the two loop equivalence is investigated, and is found to be broken just like in the already known example of the principal model.
Non-Abelian Bremsstrahlung and Azimuthal Asymmetries in High Energy p+A Reactions
Gyulassy, Miklos; Vitev, Ivan Mateev; Levai, Peter; Biro, Tamas S.
2014-09-25
Here we apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event- by-event uctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, v$M\\atop{n}$ {1}, and even number 2ℓ gluon, v$M\\atop{n}$ {2ℓ} inclusive distributions in high energy p+A reactions as a function of harmonic $n$, target recoil cluster number, $M$, and gluon number, 2ℓ, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to character- istic boost non-invariant trapezoidal rapidity distributions in asymmetric B+A nuclear collisions. The scaling of intrinsically azimuthally anisotropic and long range in η nature of the non-Abelian bremsstrahlung leads to v_{n} moments that are similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic non-flow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd v_{n} without invoking k_{T} factorization. A test of CSA mechanism is the predicted nearly linear η rapidity dependence of the v_{n}(k_{T}η). Non- Abelian beam jet bremsstrahlung may thus provide a simple analytic solution to Beam Energy Scan (BES) puzzle of the near $\\sqrt{s}$ independence of v_{n}(pT) moments observed down to 10 AGeV where large-x valence quark beam jets dominate inelastic dynamics. Recoil bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of v_{n} in p(D) + A and non-central A + A at same dN=dη multiplicity as observed at RHIC and LHC.
Non-Abelian Bremsstrahlung and Azimuthal Asymmetries in High Energy p+A Reactions
Gyulassy, Miklos; Vitev, Ivan Mateev; Levai, Peter; Biro, Tamas S.
2014-09-25
Here we apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event- by-event uctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, vmore » $$M\\atop{n}$$ {1}, and even number 2ℓ gluon, v$$M\\atop{n}$$ {2ℓ} inclusive distributions in high energy p+A reactions as a function of harmonic $n$, target recoil cluster number, $M$, and gluon number, 2ℓ, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to character- istic boost non-invariant trapezoidal rapidity distributions in asymmetric B+A nuclear collisions. The scaling of intrinsically azimuthally anisotropic and long range in η nature of the non-Abelian bremsstrahlung leads to vn moments that are similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic non-flow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd vn without invoking kT factorization. A test of CSA mechanism is the predicted nearly linear η rapidity dependence of the vn(kTη). Non- Abelian beam jet bremsstrahlung may thus provide a simple analytic solution to Beam Energy Scan (BES) puzzle of the near $$\\sqrt{s}$$ independence of vn(pT) moments observed down to 10 AGeV where large-x valence quark beam jets dominate inelastic dynamics. Recoil bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of vn in p(D) + A and non-central A + A at same dN=dη multiplicity as observed at RHIC and LHC.« less
Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady
2016-01-22
We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes. PMID:26849608
Superstring theory on smooth manifolds with a non-abelian lie group as covering space
NASA Astrophysics Data System (ADS)
Fré, P.; Gliozzi, F.
1989-11-01
In this paper we develop superstring theory on target spaces M target = M 4 ⊗ G/B where G is a non-abelian Lie-group and B ⊂ G is a suitable discrete subgroup. These target spaces, different from orbifolds, are smooth differentiable manifolds. Nontrivial choices of B give rise to twisted Kač-Moody algebras providing the mechanism which allows the existence of massless fermions in the string spectrum notwithstanding the non-abelian character of G. Actually we show that there is a unique choice of the group G compatible with the requirement of massless fermion existence, two-dimensional conformal invariance and finally with N = 1 target supersymmetry. It is G = SU(2) 3. We discuss modular invariance and Goddard-Nahm-Olive fermionization. We show that at the quantum level we can describe the SU(2) 3 theory by means of 18 free fermions belonging to the adjoint representation of SU(2) 6. This enables us to make contact with the free fermion approach. However our group interpretation provides additional constraints on the permissible boundary conditions for free fermion theories admitting a geometrical interpretation as σ-models on a smooth manifold: the G/B space. Finally the choice of B is related to the number of space-time supersymmetries.
NASA Astrophysics Data System (ADS)
Goldman, N.; Gerbier, F.; Lewenstein, M.
2013-07-01
We describe a scheme to engineer non-Abelian gauge potentials on a square optical lattice using laser-induced transitions. We emphasize the case of two-electron atoms, where the electronic ground state g is laser-coupled to a metastable state e within a state-dependent optical lattice. In this scheme, the alternating pattern of lattice sites hosting g and e states depicts a chequerboard structure, allowing for laser-assisted tunnelling along both spatial directions. In this configuration, the nuclear spin of the atoms can be viewed as a ‘flavour’ quantum number undergoing non-Abelian tunnelling along nearest-neighbour links. We show that this technique can be useful to simulate the equivalent of the Haldane quantum Hall model using cold atoms trapped in square optical lattices, offering an interesting route to realize Chern insulators. The emblematic Haldane model is particularly suited to investigate the physics of topological insulators, but requires, in its original form, complex hopping terms beyond nearest-neighbouring sites. In general, this drawback inhibits a direct realization with cold atoms, using standard laser-induced tunnelling techniques. We demonstrate that a simple mapping allows us to express this model in terms of matrix hopping operators that are defined on a standard square lattice. This mapping is investigated for two models that lead to anomalous quantum Hall phases. We discuss the practical implementation of such models, exploiting laser-induced tunnelling methods applied to the chequerboard optical lattice.
Non-Abelian vortex in four dimensions as a critical string on a conifold
NASA Astrophysics Data System (ADS)
Koroteev, P.; Shifman, M.; Yung, A.
2016-09-01
Non-Abelian vortex strings supported in a certain four-dimensional N =2 Yang-Mills theory with fundamental matter were shown [1] to become critical superstrings. In addition to translational moduli, the non-Abelian strings under consideration carry orientational and size moduli. Their dynamics is described by the two-dimensional sigma model whose target space is a tautological bundle over the complex projective space. For the N =2 theory with the U (2 ) gauge group and four fundamental hypermultiplets, there are six orientational and size moduli. After combining with four translational moduli, they form a ten-dimensional target space, which is required for a superstring to be critical. For the theory in question, the target space of the sigma model is C2×Y6, where Y6 is a conifold. We study closed string states which emerge in four dimensions (4D) and identify them with hadrons of the 4D bulk N =2 theory. It turns out that most of the states arising from the ten-dimensional graviton spectrum are nondynamical in 4D. We find a single dynamical massless hypermultiplet associated with the deformation of the complex structure of the conifold. We interpret this degree of freedom as a monopole-monopole baryon of the 4D theory (at strong coupling).
Das Sarma, Sankar
2012-10-03
I will discuss the revolutionary new concept of topological quantum computation, which is fault-tolerant at the hardware level with no need, in principle, of any quantum error correction protocols. Errors simply do not occur since the physical qubits and the computation steps are protected against decoherence by non-local topological correlations in the underlying physical system. The key idea is non-Abelian statistics of the quasiparticles (called 'anyons' as opposed to fermions or bosons), where the space-time braiding of the anyons around each other, i.e. quantum 'knots', form topologically protected quantum gate operations. I will describe in detail the theoretical principles guiding the experimental search for the appropriate topological phases of matter where such non-Abelian anyons, which are low-dimensional solid state versions of the elusive and exotic Majorana fermions hypothesized seventy-five years ago, may exist. I will critically discuss the recent experimental claims of observing the Majorana modes in semiconductor nanowire structures following earlier theoretical proposals, outlining the future developments which would be necessary to eventually build a topological quantum computer.
NASA Astrophysics Data System (ADS)
Borgh, Magnus O.; Ruostekoski, Janne
2016-05-01
We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.
Control of tripod-scheme cold-atom wavepackets by manipulating a non-Abelian vector potential
Zhang Qi; Gong Jiangbin; Oh, C.H.
2010-06-15
Tripod-scheme cold atoms interacting with laser beams have attracted considerable interest for their role in synthesizing effective non-Abelian vector potentials. Such effective vector potentials can be exploited to realize an all-optical imprinting of geometric phases onto matter waves. By working on carefully designed extensions of our previous work, we show that coherent lattice structure of cold-atom sub-wavepackets can be formed and that the non-Abelian Aharonov-Bohm effect can be easily manifested via the translational motion of cold atoms. We also show that by changing the frame of reference, effects due to a non-Abelian vector potential may be connected with a simple dynamical phase effect, and that under certain conditions it can be understood as an Abelian geometric phase in a different frame of reference. Results should help design better schemes for the control of cold-atom matter waves.
Solution of Dirac Equation in External Yang-Mills Gauge Field
Koshelkin, A. V.
2011-05-23
The exact solution of the Dirac equation in the external non-abelian SU(N) gauge field, which is governed by the Yang-Mills equations and is in the form of a plane wave on the light cone, is obtained.
Beta function in the non-Abelian Nambu-Jona-Lasinio model in four dimensions
Alves, Van Sergio; Pinheiro, S. V. L.; Nascimento, Leonardo; Pena, Francisco
2009-08-15
In this paper we present the structure of the renormalization group in non-Abelian Nambu-Jona-Lasinio model up to 1-loop order. The model is not perturbatively renormalizable in the usual power counting sense, but it is treated as an effective theory, valid in a scale of energy in which p<<{lambda}, where p is the external momenta of the loop and {lambda} is a massive parameter that characterizes the couplings of the nonrenormalizable vertex. We clarify the tensorial structure of the interaction vertices and calculate the functions of the renormalization group. The analysis of the fixed points of the theory is also presented using Zimmermann's procedure for reducing the coupling constants. We find that the origin is an infrared-stable fixed point at low energies and also there is a nontrivial ultraviolet stable fixed point, indicating that the theory could be perturbatively investigated in the low momentum regime.
Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium
Bliokh, K. Yu.; Frolov, D. Yu.; Kravtsov, Yu. A.
2007-05-15
A theory of electromagnetic wave propagation in a weakly anisotropic smoothly inhomogeneous medium is developed, based on the quantum-mechanical diagonalization procedure applied to Maxwell equations. The equations of motion for the translational (ray) and intrinsic (polarization) degrees of freedom are derived ab initio. The ray equations take into account the optical Magnus effect (spin Hall effect of photons) as well as trajectory variations owing to the medium anisotropy. Polarization evolution is described by the precession equation for the Stokes vector. In the generic case, the evolution of wave turns out to be non-Abelian: it is accompanied by mutual conversion of the normal modes and periodic oscillations of the ray trajectories analogous to electron zitterbewegung. The general theory is applied to examples of wave evolution in media with circular and linear birefringence.
Exact solution of the D3 non-Abelian anyon chain
NASA Astrophysics Data System (ADS)
Braylovskaya, Natalia; Finch, Peter E.; Frahm, Holger
2016-08-01
Commuting transfer matrices for linear chains of interacting non-Abelian anyons from the two-dimensional irreducible representation of the dihedral group D3 [or, equivalently, the integer sector of the s u (2) 4 spin-1 chain] are constructed using the spin-anyon correspondence to a D3-symmetric formulation of the XXZ Heisenberg spin chain. The spectral problem is solved using discrete inversion identities satisfied by these transfer matrices and functional Bethe ansatz methods. The resulting spectrum can be related to that of the XXZ spin-1/2 Heisenberg chain with boundary conditions depending on the topological sector of the anyon chain. The properties of this model in the critical regime are studied by finite size analysis of the spectrum. In particular, points in the phase diagram where the anyon chain realizes some of the rational Z2 orbifold theories are identified.
Barkeshli, Maissam; Wen, Xiao-Gang
2010-11-19
We find a series of possible continuous quantum phase transitions between fractional quantum Hall states at the same filling fraction in two-component quantum Hall systems. These can be driven by tuning the interlayer tunneling and/or interlayer repulsion. One side of the transition is the Halperin (p,p,p-3) Abelian two-component state, while the other side is the non-Abelian Z4 parafermion (Read-Rezayi) state. We predict that the transition is a continuous transition in the 3D Ising class. The critical point is described by a Z2 gauged Ginzburg-Landau theory. These results have implications for experiments on two-component systems at ν=2/3 and single-component systems at ν=8/3. PMID:21231341
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Wen, Xiao-Gang
2010-11-01
We find a series of possible continuous quantum phase transitions between fractional quantum Hall states at the same filling fraction in two-component quantum Hall systems. These can be driven by tuning the interlayer tunneling and/or interlayer repulsion. One side of the transition is the Halperin (p,p,p-3) Abelian two-component state, while the other side is the non-Abelian Z4 parafermion (Read-Rezayi) state. We predict that the transition is a continuous transition in the 3D Ising class. The critical point is described by a Z2 gauged Ginzburg-Landau theory. These results have implications for experiments on two-component systems at ν=2/3 and single-component systems at ν=8/3.
Low energy dynamics of slender monopoles in non-Abelian superconductor
NASA Astrophysics Data System (ADS)
Arai, M.; Blaschke, F.; Eto, M.; Sakai, N.
2016-01-01
Low energy dynamics of magnetic monopoles and anti-monopoles in the U(2)c gauge theory is studied in the Higgs (non-Abelian superconducting) phase. The monopoles in this phase are slender ellipsoids, pierced by a vortex string. We investigate scattering of monopole with anti-monopole and find that they do not always decay into radiation, contrary to our naive intuition. They can repel, make bound states (magnetic mesons) or resonances. We point out that some part of solutions in 1 + 3 dimensions can be mapped exactly onto the sine-Gordon system in 1 + 1 dimensions in the first non-trivial order of rigid-body approximation and we provide analytic formulas for such solutions there.
Supersymmetry and non-Abelian T-duality in type II supergravity
NASA Astrophysics Data System (ADS)
Kelekci, Özgür; Lozano, Yolanda; Macpherson, Niall T.; Colgáin, Eoin Ó.
2015-02-01
We study the effect of T-duality on supersymmetry in the context of type II supergravity. For both U(1) Abelian and SU(2) non-Abelian T-duality, we demonstrate that the supersymmetry variations after T-duality are related to the variations before T-duality through the Kosmann spinorial Lie derivative, which vanishes when the Killing spinors are independent of the T-duality directions. As a byproduct of our analysis, we present closed expressions for SU(2) T-duality in a class of spacetimes with diagonal Bianchi IX symmetry and comment on specific examples of T-dual geometries, including a novel AdS3 geometry with large N=(4,4) superconformal symmetry.
Lu Yuanming; Wang Ziqiang; Wen Xiaogang; Wang Zhenghan
2010-03-15
In the pattern-of-zeros approach to quantum Hall states, a set of data (n;m;S{sub a}|a=1,...,n;n,m,S{sub a} is n element of N) (called the pattern of zeros) is introduced to characterize a quantum Hall wave function. In this paper we find sufficient conditions on the pattern of zeros so that the data correspond to a valid wave function. Some times, a set of data (n;m;S{sub a}) corresponds to a unique quantum Hall state, while other times, a set of data corresponds to several different quantum Hall states. So in the latter cases, the pattern of zeros alone does not completely characterize the quantum Hall states. In this paper, we find that the following expanded set of data (n;m;S{sub a};c|a=1,...,n;n,m,S{sub a} is an element of N;c is an element of R) provides a more complete characterization of quantum Hall states. Each expanded set of data completely characterizes a unique quantum Hall state, at least for the examples discussed in this paper. The result is obtained by combining the pattern of zeros and Z{sub n} simple-current vertex algebra which describes a large class of Abelian and non-Abelian quantum Hall states PHI{sub Z{sub n}{sup sc}}. The more complete characterization in terms of (n;m;S{sub a};c) allows us to obtain more topological properties of those states, which include the central charge c of edge states, the scaling dimensions and the statistics of quasiparticle excitations.
Liu, Ying
2015-11-30
This project deals with odd-parity superconductor Sr_{2}RuO_{4} and related material systems, aiming at understanding the unconventional nature of superconductivity in this material. An odd-parity superconductor is expected to feature a novel topological object, the half-flux-quantum vortex that hosts a Majorana anyons. Majorana anyons carry non-Abelian statistics that can be used are the building block for constructing a fault-tolerated topological quantum computer. Half-flux-quantum vortices form in an odd-parity superconductor because of the availability of charge neutral spin supercurrent in addition to the normal supercurrent. Half-height magnetization steps were found in a cantilever magnetometry measurement of doubly connected mesoscopic samples of Sr_{2}RuO_{4} in the presence of an in-plane magnetic field (J. Jang, D. G. Ferguson, V. Vakaryuk, R. Budakian, S. B. Chung, P. M. Goldbart, and Y. Maeno, Science 331, 186 (2011)), which suggests the presence of a half-flux-quantum (Φ_{0}/2 = h/4e) state. Evidence for half flux quantum states, which can be viewed as coreless half vortices, was obtained in mesoscopic samples of Sr_{2}RuO_{4} in the torque magnetomitry measurements. However, the existence of such an important property has not been confirmed by any other independent measurement.
Index theorem and Majorana zero modes along a non-Abelian vortex in a color superconductor
Fujiwara, Takanori; Fukui, Takahiro; Nitta, Muneto; Yasui, Shigehiro
2011-10-01
Color superconductivity in high-density QCD exhibits the color-flavor-locked phase. To explore zero modes in the color-flavor-locked phase in the presence of a non-Abelian vortex with an SU(2) symmetry in the vortex core, we apply the index theorem to the Bogoliubov-de Gennes (BdG) Hamiltonian. From the calculation of the topological index, we find that triplet, doublet and singlet sectors of SU(2) have certain number of chiral Majorana zero modes in the limit of vanishing chemical potential. We also solve the BdG equation by the use of the series expansion to show that the number of zero modes and their chirality match the result of the index theorem. From particle-hole symmetry of the BdG Hamiltonian, we conclude that if and only if the index of a given sector is odd, one zero mode survives generically for a finite chemical potential. We argue that this result should hold nonperturbatively even in the high-density limit.
Spin correlations and topological entanglement entropy in a non-Abelian spin-one spin liquid
NASA Astrophysics Data System (ADS)
Wildeboer, Julia; Bonesteel, N. E.
2016-07-01
We analyze the properties of a non-Abelian spin-one chiral spin liquid state proposed by Greiter and Thomale [Phys. Rev. Lett. 102, 207203 (2009), 10.1103/PhysRevLett.102.207203] using Monte Carlo. In this state the bosonic ν =1 Moore-Read Pfaffian wave function is used to describe a gas of bosonic spin flips on a square lattice with one flux quantum per plaquette. For toroidal geometries there is a three-dimensional space of these states corresponding to the topological degeneracy of the bosonic Moore-Read state on the torus. We show that spin correlations for different states in this space become indistinguishable for large system size. We also calculate the Renyi entanglement entropy for different system partitions to extract the topological entanglement entropy and provide evidence that the topological order of the lattice spin-liquid state is the same as that of the continuum Moore-Read state from which it is constructed.
Hikami, Kazuhiro
2008-07-15
We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read-Rezayi state whose effective theory is the SU(2){sub K} Chern-Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we propose a method to compute the entanglement entropy skein-theoretically. We find that the entanglement entropy has a nontrivial contribution called the topological entanglement entropy which depends on the quantum dimension of non-Abelian quasi-particle intertwining two subsystems.
NASA Astrophysics Data System (ADS)
Liu, Zhao; Vaezi, Abolhassan; Lee, Kyungmin; Kim, Eun-Ah
2015-08-01
Recent theoretical insights into the possibility of non-Abelian phases in ν =2 /3 fractional quantum Hall states revived the interest in the numerical phase diagram of the problem. We investigate the effect of various kinds of two-body interlayer couplings on the (330) bilayer state and exactly solve the Hamiltonian for up to 14 electrons on sphere and torus geometries. We consider interlayer tunneling, short-ranged repulsive/attractive pseudopotential interactions, and Coulomb repulsion. We find a 6-fold ground-state degeneracy on the torus when the interlayer hollow-core interaction is dominant. To identify the topological nature of this phase we measure the orbital-cut entanglement spectrum, quasihole counting, topological entanglement entropy, and wave-function overlap. Comparing the numerical results to the theoretical predictions, we interpret this 6-fold ground-state degeneracy phase to be the non-Abelian bilayer Fibonacci state.
A topological semimetal model with f-wave symmetry in a non-Abelian triangular optical lattice
NASA Astrophysics Data System (ADS)
Li, Ling; Bai, Zhiming; Hao, Ningning; Liu, Guocai
2016-08-01
We demonstrate that an chiral f-wave topological semimetal can be induced in a non-Abelian triangular optical lattice. We show that the f-wave symmetry topological semimetal is characterized by the topological invariant, i.e., the winding number W, with W=3 and is different from the semimetal with W=1 and 2 which have the p-wave and d-wave symmetry, respectively.
Competing Abelian and non-Abelian topological orders in ν =1 /3 +1 /3 quantum Hall bilayers
NASA Astrophysics Data System (ADS)
Geraedts, Scott; Zaletel, Michael P.; Papić, Zlatko; Mong, Roger S. K.
2015-05-01
Bilayer quantum Hall systems, realized either in two separated wells or in the lowest two subbands of a wide quantum well, provide an experimentally realizable way to tune between competing quantum orders at the same filling fraction. Using newly developed density matrix renormalization group techniques combined with exact diagonalization, we return to the problem of quantum Hall bilayers at filling ν =1 /3 +1 /3 . We first consider the Coulomb interaction at bilayer separation d , bilayer tunneling energy ΔSAS, and individual layer width w , where we find a phase diagram which includes three competing Abelian phases: a bilayer Laughlin phase (two nearly decoupled ν =1 /3 layers), a bilayer spin-singlet phase, and a bilayer symmetric phase. We also study the order of the transitions between these phases. A variety of non-Abelian phases has also been proposed for these systems. While absent in the simplest phase diagram, by slightly modifying the interlayer repulsion we find a robust non-Abelian phase which we identify as the "interlayer-Pfaffian" phase. In addition to non-Abelian statistics similar to the Moore-Read state, it exhibits a novel form of bilayer-spin charge separation. Our results suggest that ν =1 /3 +1 /3 systems merit further experimental study.
Non-Abelian k-vortex dynamics in Script N = 1* theory and its gravity dual
NASA Astrophysics Data System (ADS)
Auzzi, Roberto; Kumar, S. Prem
2008-12-01
We study magnetic flux tubes in the Higgs vacuum of the Script N = 1* mass deformation of SU(Nc), Script N = 4 SYM and its large Nc string dual, the Polchinski-Strassler geometry. Choosing equal masses for the three adjoint chiral multiplets, for all Nc we identify a ``colour-flavour locked'' symmetry, SO(3)C+F which leaves the Higgs vacuum invariant. At weak coupling, we find explicit non-Abelian k-vortex solutions carrying a Bbb ZNc-valued magnetic flux, with winding, 0 < k < Nc. These k-strings spontaneously break SO(3)C+F to U(1)C+F resulting in an S2 moduli space of solutions. The world-sheet sigma model is a nonsupersymmetric Bbb CBbb P1 model with a theta angle θ1+1 = k(Nc-k)θ3+1 where θ3+1 is the Yang-Mills vacuum angle. We find numerically that k-vortex tensions follow the Casimir scaling law Tk propto k(Nc-k) for large Nc. In the large Nc IIB string dual, the SO(3)C+F symmetry is manifest in the geometry interpolating between AdS5 × S5 and the interior metric due to a single D5-brane carrying D3-brane charge. We identify candidate k-vortices as expanded probe D3-branes formed from a collection of k D-strings. The resulting k-vortex tension exhibits precise Casimir scaling, and the effective world-sheet theta angle matches the semiclassical result. S-duality maps the Higgs to the confining phase so that confining string tensions at strong 't Hooft coupling also exhibit Casimir scaling in Script N = 1* theory in the large Nc limit.
From non-Abelian anyons to quantum computation to coin-flipping by telephone
NASA Astrophysics Data System (ADS)
Mochon, Carlos
Following their divorce, Alice and Bob would like to split some of their possessions by flipping a coin. Unwilling to meet in person, and without a trusted third party, they must figure out a scheme to flip the coin over a telephone that guarantees that neither party can cheat. The preceding scenario is the traditional definition of two-party coin-flipping. In a classical setting, without limits on the available computational power, one player can always guarantee a coin-flipping victory by cheating. However, by employing quantum communication it is possible to guarantee, with only information-theoretic assumptions, that neither party can win by cheating, with a probability greater than two thirds. Along with the description of such a protocol, this thesis derives a tight lower bound on the bias for a large family of quantum weak coin-flipping protocols, proving such a protocol optimal within the family. The protocol described herein is an improvement and generalization of one examined by Spekkens and Rudolph. The key steps of the analysis involve Kitaev's description of quantum coin-flipping as a semidefinite program whose dual problem provides a certificate that upper bounds the amount of cheating for each party. In order for such quantum protocols to be viable, though, a number of practical obstacles involving the communication and processing of quantum information must be resolved. In the second half of this thesis, a scheme for processing quantum information is presented, which uses non-abelian anyons that are the magnetic and electric excitations of a discrete-group quantum gauge theory. In particular, the connections between group structure and computational power are examined, generalizing previous work by Kitaev, Ogburn and Preskill. Anyon based computation has the advantage of being topological, which exponentially suppresses the rate of decoherence and the errors associated with the elementary quantum gates. Though no physical systems with such
Fractional Quantum Hall States at ν=13/5 and 12/5 and Their Non-Abelian Nature.
Zhu, W; Gong, S S; Haldane, F D M; Sheng, D N
2015-09-18
Topological quantum states with non-Abelian Fibonacci anyonic excitations are widely sought after for the exotic fundamental physics they would exhibit, and for universal quantum computing applications. The fractional quantum Hall (FQH) state at a filling factor of ν=12/5 is a promising candidate; however, its precise nature is still under debate and no consensus has been achieved so far. Here, we investigate the nature of the FQH ν=13/5 state and its particle-hole conjugate state at 12/5 with the Coulomb interaction, and we address the issue of possible competing states. Based on a large-scale density-matrix renormalization group calculation in spherical geometry, we present evidence that the essential physics of the Coulomb ground state (GS) at ν=13/5 and 12/5 is captured by the k=3 parafermion Read-Rezayi state (RR_{3}), including a robust excitation gap and the topological fingerprint from the entanglement spectrum and topological entanglement entropy. Furthermore, by considering the infinite-cylinder geometry (topologically equivalent to torus geometry), we expose the non-Abelian GS sector corresponding to a Fibonacci anyonic quasiparticle, which serves as a signature of the RR_{3} state at 13/5 and 12/5 filling numbers. PMID:26431006
The Fractional Quantum Hall States at ν = 13 / 5 and 12 / 5 and their Non-Abelian Nature
NASA Astrophysics Data System (ADS)
Zhu, W.; Gong, S. S.; Sheng, D. N.
Topological quantum states with non-Abelian Fibonacci anyonic excitations are widely sought after for their exotic fundamental physics and potential applications in universal quantum computing. The fractional quantum Hall (FQH) state at filling factor ν = 12 / 5 is such a promising candidate, however, its precise nature is still under debate and no consensus has been achieved so far. Here, we investigate the nature of the FQH ν = 13 / 5 state and its particle-hole conjugate state at 12 / 5 with the Coulomb interaction, and address the issue of possible competing states. Based on a large-scale density-matrix renormalization group (DMRG) calculation in spherical geometry, we present evidence that the essential physics of the Coulomb ground state (GS) at ν = 13 / 5 and 12 / 5 is captured by the k = 3 parafermion Read-Rezayi state (RR3), including a robust excitation gap and the topological fingerprint from entanglement spectrum and topological entanglement entropy. Furthermore, by considering the infinite-cylinder geometry (topologically equivalent to torus geometry), we expose the non-Abelian GS sector corresponding to a Fibonacci anyonic quasiparticle, which serves as a signature of the RR3 state at 13 / 5 and 12 / 5 filling numbers. This work is supported by the DOE Grants No. DE-FG02-06ER46305, DE-SC0002140, and the NSF Grant No. DMR-1408560.
Fractional Quantum Hall States at ν =13 /5 and 12 /5 and Their Non-Abelian Nature
NASA Astrophysics Data System (ADS)
Zhu, W.; Gong, S. S.; Haldane, F. D. M.; Sheng, D. N.
2015-09-01
Topological quantum states with non-Abelian Fibonacci anyonic excitations are widely sought after for the exotic fundamental physics they would exhibit, and for universal quantum computing applications. The fractional quantum Hall (FQH) state at a filling factor of ν =12 /5 is a promising candidate; however, its precise nature is still under debate and no consensus has been achieved so far. Here, we investigate the nature of the FQH ν =13 /5 state and its particle-hole conjugate state at 12 /5 with the Coulomb interaction, and we address the issue of possible competing states. Based on a large-scale density-matrix renormalization group calculation in spherical geometry, we present evidence that the essential physics of the Coulomb ground state (GS) at ν =13 /5 and 12 /5 is captured by the k =3 parafermion Read-Rezayi state (RR3), including a robust excitation gap and the topological fingerprint from the entanglement spectrum and topological entanglement entropy. Furthermore, by considering the infinite-cylinder geometry (topologically equivalent to torus geometry), we expose the non-Abelian GS sector corresponding to a Fibonacci anyonic quasiparticle, which serves as a signature of the RR3 state at 13 /5 and 12 /5 filling numbers.
NASA Astrophysics Data System (ADS)
Pareek, Tribhuvan Prasad
2015-09-01
In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a
NASA Astrophysics Data System (ADS)
Pesando, Igor
2016-09-01
We consider the simplest possible setting of non-abelian twist fields which corresponds to SU (2) monodromies. We first review the theory of hypergeometric function and of the solutions of the most general Fuchsian second order equation with three singularities. Then we solve the problem of writing the general solution with prescribed U (2) monodromies. We use this result to compute the classical string solution corresponding to three D2 branes in R4. Despite the fact that the configuration is supersymmetric the classical string solution is not holomorphic. Using the equation of motion and not the KLT approach we give a very simple expression for the classical action of the string. We find that the classical action is not proportional to the area of the triangle determined by the branes intersection points since the solution is not holomorphic. Phenomenologically this means that the Yukawa couplings for these supersymmetric configurations on non-factorized tori are suppressed with respect to the factorized case.
Hou, Chang-Yu; Chamon, Claudio
2006-10-01
We study a tunneling geometry defined by a single point-contact constriction that brings to close vicinity two points sitting at the same edge of a quantum Hall liquid, shortening the trip between the otherwise spatially separated points along the normal chiral edge path. This wormhole-like geometry allows for entrapping bulk quasiparticles between the edge path and the tunnel junction, possibly realizing a topologically protected qubit if the quasiparticles have non-Abelian statistics. We show how either noise or simpler voltage measurements along the edge can probe the non-Abelian nature of the trapped quasiparticles.
Sharma, Sandeep
2015-01-14
We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve of the C{sub 2} dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 10{sup 12} many-body states. While our calculated energy lies within the 0.3 mE{sub h} error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mE{sub h}, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (T{sub e}) of eight lowest lying excited states: a{sup 3}Π{sub u}, b{sup 3}Σ{sub g}{sup −}, A{sup 1}Π{sub u}, c{sup 3}Σ{sub u}{sup +}, B{sup 1}Δ{sub g}, B{sup ′1}Σ{sub g}{sup +}, d{sup 3}Π{sub g}, and C{sup 1}Π{sub g} are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations {sup 1}Σ{sub g}{sup +}, {sup 1}Σ{sub u}{sup +}, {sup 1}Σ{sub g}{sup −}, and {sup 1}Σ{sub u}{sup −}, to an estimated accuracy of 0.1 mE{sub h} of the exact result in this basis.
Predictivity of models with spontaneously broken non-Abelian discrete flavor symmetries
NASA Astrophysics Data System (ADS)
Chen, Mu-Chun; Fallbacher, Maximilian; Omura, Yuji; Ratz, Michael; Staudt, Christian
2013-08-01
In a class of supersymmetric flavor models predictions are based on residual symmetries of some subsectors of the theory such as those of the charged leptons and neutrinos. However, the vacuum expectation values of the so-called flavon fields generally modify the Kähler potential of the setting, thus changing the predictions. We derive simple analytic formulae that allow us to understand the impact of these corrections on the predictions for the masses and mixing parameters. Furthermore, we discuss the effects on the vacuum alignment and on flavor changing neutral currents. Our results can also be applied to non-supersymmetric flavor models.
Non-Abelian {SU}{(3)}_{k} anyons: inversion identities for higher rank face models
NASA Astrophysics Data System (ADS)
Frahm, Holger; Karaiskos, Nikos
2015-12-01
The spectral problem for an integrable system of particles satisfying the fusion rules of {SU}{(3)}k is expressed in terms of exact inversion identities satisfied by the commuting transfer matrices of the integrable fused {A}2(1) interaction round a face model of Jimbo, Miwa and Okado. The identities are proven using local properties of the Boltzmann weights, in particular the Yang-Baxter equation and unitarity. They are closely related to the consistency conditions for the construction of eigenvalues obtained in the separation of variables approach to integrable vertex models.
Viscosities of gluon dominated QGP model within relativistic non-Abelian hydrodynamics
NASA Astrophysics Data System (ADS)
Djun, T. P.; Handoko, L. T.; Soegijono, B.; Mart, T.
2015-04-01
Based on the first principle calculation, a Lagrangian for the system describing quarks, gluons, and their interactions, is constructed. Ascribed to the existence of dissipative behavior as a consequence of strong interaction within quark-gluon plasma (QGP) matter, auxiliary terms describing viscosities are constituted into the Lagrangian. Through a "kind" of phase transition, gluon field is redefined as a scalar field with four-vector velocity inherently attached. Then, the Lagrangian is elaborated further to produce the energy-momentum tensor of dissipative fluid-like system and the equation of motion (EOM). By imposing the law of energy and momentum conservation, the values of shear and bulk viscosities are analytically calculated. Our result shows that, at the energy level close to hadronization, the bulk viscosity is bigger than shear viscosity. By making use of the conjectured values η/s 1/4π and ζ/s 1, the ratio of bulk to shear viscosity is found to be ζ/η>4π.
Solitons and black holes in non-Abelian Einstein-Born-Infeld theory
NASA Astrophysics Data System (ADS)
Dyadichev, V. V.; Gal'tsov, D. V.
2000-08-01
Recently it was shown that the Born-Infeld modification of the quadratic Yang-Mills action gives rise to classical particle-like solutions in the flat space which have a striking similarity with the Bartnik-McKinnon solutions obtained within the gravity coupled Yang-Mills theory. We show that both families of solutions are continuously related within the framework of the Einstein-Born-Infeld theory via interpolating sequences of parameters. We also investigate an internal structure of the associated black holes and find that the Born-Infeld non-linearity changes drastically the black hole interior typical for the usual quadratic Yang-Mills theory. In the latter case a generic solution exhibits violent metric oscillations near the singularity. In the Born-Infeld case the generic interior solution is smooth, the metric tends to the standard Schwarzschild type singularity, and we did not observe internal horizons. Smoothing of the `violent' EYM singularity may be interpreted as a result of non-gravitational quantum effects.
Non-abelian dark matter solutions for Galactic gamma-ray excess and Perseus 3.5 keV X-ray line
Cheung, Kingman; Huang, Wei-Chih; Tsai, Yue-Lin Sming
2015-05-26
We attempt to explain simultaneously the Galactic center gamma-ray excess and the 3.5 keV X-ray line from the Perseus cluster based on a class of non-abelian SU(2) DM models, in which the dark matter and an excited state comprise a “dark” SU(2) doublet. The non-abelian group kinetically mixes with the standard model gauge group via dimensions-5 operators. The dark matter particles annihilate into standard model fermions, followed by fragmentation and bremsstrahlung, and thus producing a continuous spectrum of gamma-rays. On the other hand, the dark matter particles can annihilate into a pair of excited states, each of which decays back into the dark matter particle and an X-ray photon, which has an energy equal to the mass difference between the dark matter and the excited state, which is set to be 3.5 keV. The large hierarchy between the required X-ray and γ-ray annihilation cross-sections can be achieved by a very small kinetic mixing between the SM and dark sector, which effectively suppresses the annihilation into the standard model fermions but not into the excited state.
Non-abelian dark matter solutions for Galactic gamma-ray excess and Perseus 3.5 keV X-ray line
Cheung, Kingman; Huang, Wei-Chih; Tsai, Yue-Lin Sming E-mail: wei-chih.huang@ucl.ac.uk
2015-05-01
We attempt to explain simultaneously the Galactic center gamma-ray excess and the 3.5 keV X-ray line from the Perseus cluster based on a class of non-abelian SU(2) DM models, in which the dark matter and an excited state comprise a ''dark'' SU(2) doublet. The non-abelian group kinetically mixes with the standard model gauge group via dimensions-5 operators. The dark matter particles annihilate into standard model fermions, followed by fragmentation and bremsstrahlung, and thus producing a continuous spectrum of gamma-rays. On the other hand, the dark matter particles can annihilate into a pair of excited states, each of which decays back into the dark matter particle and an X-ray photon, which has an energy equal to the mass difference between the dark matter and the excited state, which is set to be 3.5 keV. The large hierarchy between the required X-ray and γ-ray annihilation cross-sections can be achieved by a very small kinetic mixing between the SM and dark sector, which effectively suppresses the annihilation into the standard model fermions but not into the excited state.
Comparison of NDVI fields obtained from different remote sensors
NASA Astrophysics Data System (ADS)
Escribano Rodriguez, Juan; Alonso, Carmelo; Tarquis, Ana Maria; Benito, Rosa Maria; Hernandez Díaz-Ambrona, Carlos
2013-04-01
Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a
NASA Astrophysics Data System (ADS)
Aleshin, S. S.; Kazantsev, A. E.; Skoptsov, M. B.; Stepanyantz, K. V.
2016-05-01
We consider a general non-Abelian renormalizable {N} = 1 supersymmetric gauge theory, regularized by higher covariant derivatives without breaking the BRST invariance, and calculate one-loop divergences for a general form of higher derivative regulator and of the gauge fixing term. It is demonstrated that the momentum integrals giving the one-loop β-function are integrals of double total derivatives independently of a particular choice of the higher derivative term. Evaluating them we reproduce the well-known result for the one-loop β-function. Also we find that the three-point ghost vertices with a single line of the quantum gauge superfield are not renormalized in the considered approximation.
Portable narcotics detector and the results obtained in field tests
NASA Astrophysics Data System (ADS)
Tumer, Tumay O.; Su, Chih-Wu; Kaplan, Christopher R.; Rigdon, Stephen W.
1997-02-01
A compact integrated narcotics detection instrument (CINDI) has been developed at NOVA R&D, Inc. with funding provided by the U.S. Coast Guard. CINDI is designed as a portable sensitive neutron backscatter detector which has excellent penetration for thick and high Z compartment barriers. It also has a highly sensitive detection system for backscattered neutrons and, therefore, uses a very weak californium-252 neutron source. Neutrons backscatter profusely from materials that have a large hydrogen content, such as narcotics. The rate of backscattered neutrons detected is analyzed by a microprocessor and displayed on the control panel. The operator guides the detector along a suspected area and displays in real time the backscattered neutron rate. CINDI is capable of detecting narcotics effectively behind panels made of steel, wood, fiberglass, or even lead-lined materials. This makes it useful for inspecting marine vessels, ship bulkheads, automobiles, structure walls or small sealed containers. The strong response of CINDI to hydrogen-rich materials such as narcotics makes it an effective tool for detecting concealed drugs. Its response has been field tested by NOVA, the U.S. Coast Guard and Brewt Power Systems. The results of the tests show excellent response and specificity to narcotic drugs. Several large shipments of concealed drugs have been discovered during these trials and the results are presented and discussed.
NASA Astrophysics Data System (ADS)
Odorico, R.
1982-05-01
The well-known Parisi and Petronzio LLA result for the QCD transverse momentum distribution of Drell-Yan pairs at pT≪ Q takes into account the non-singlet contribution only and totally neglects non-abelian effects due to the singlet contribution. The latter becomes substantial and sometimes dominant at pp and overlinepp collider energies, and thus any comparison with data from these machines will require computation of its effects. We present a QCD Monte Carlo procedure which allows one to calculate the transverse momentum distribution with both non-singlet and singlet contributions included. At the same time it computes the evolution of parton density functions and the correlations between transverse and longitudinal distributions. Phase-space effects are duly taken into account. It is found that, at collider energies, the singlet contribution completely alters QCD predictions for dimuon transverse momenta giving at times < pT> ˜ 4 times larger than the non-singlet contribution. Quantitative results are presented and a comparison with existing data is made, showing satisfactory agreement with the experimentally observed behaviours.
Inflating with large effective fields
Burgess, C.P.; Cicoli, M.; Quevedo, F.; Williams, M. E-mail: mcicoli@ictp.it E-mail: mwilliams@perimeterinsititute.ca
2014-11-01
We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.
Nonzero θ13 linking to dark matter from non-Abelian discrete flavor model in radiative seesaw model
NASA Astrophysics Data System (ADS)
Ahn, Y. H.; Okada, Hiroshi
2012-04-01
We propose a new scenario in a radiative seesaw model based on A4 flavor symmetry. In this model, we explore a possibility of linking nonzero θ13 to dark matter. And we analyze the lepton sector to predict the observed neutrinos and mixings, especially obtaining a lower bound of θ13≳3.5°. We show that the nonzero θ13 is correlated with our heavy Majorana type of dark matter. Also we predict that the mass be O(1-10)TeV, as a result of analyzing the Wilkinson-Microwave-Anisotropy-Probe and lepton flavor violation.
Quantization of gauge fields, graph polynomials and graph homology
Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van
2013-09-15
We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.
Anomaly cancelation in field theory and F-theory on a circle
NASA Astrophysics Data System (ADS)
Grimm, Thomas W.; Kapfer, Andreas
2016-05-01
We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.
Effective field theory and projective construction for Zk parafermion fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Wen, Xiao-Gang
2010-04-01
The projective construction is a powerful approach to deriving the bulk and edge field theories of non-Abelian fractional quantum Hall (FQH) states and yields an understanding of non-Abelian FQH states in terms of the simpler integer quantum Hall states. Here we show how to apply the projective construction to the Zk parafermion (Laughlin/Moore-Read/Read-Rezayi) FQH states, which occur at filling fraction ν=k/(kM+2) . This allows us to derive the bulk low-energy effective field theory for these topological phases, which is found to be a Chern-Simons theory at level 1 with a U(M)×Sp(2k) gauge field. This approach also helps us understand the non-Abelian quasiholes in terms of holes of the integer quantum Hall states.
Quantum Fields Obtained from Convoluted Generalized White Noise Never Have Positive Metric
NASA Astrophysics Data System (ADS)
Albeverio, Sergio; Gottschalk, Hanno
2016-05-01
It is proven that the relativistic quantum fields obtained from analytic continuation of convoluted generalized (Lévy type) noise fields have positive metric, if and only if the noise is Gaussian. This follows as an easy observation from a criterion by Baumann, based on the Dell'Antonio-Robinson-Greenberg theorem, for a relativistic quantum field in positive metric to be a free field.
Aspects of the Gravitational and Thermal Physics of Solitons in Field Theory.
NASA Astrophysics Data System (ADS)
O'Neill, Christopher M.
We numerically study classical soliton solutions to two physically relevant field theories in an astrophysical setting, and through the Euclidean path integral formalism of finite-temperature field theory, we develop a new analytical method to study solitons semiclassically in a cosmological setting. By carefully considering non-Abelian gauge theories coupled to classical Einstein gravity, we demonstrate how black hole solutions to such theories can have nontrivial field structure outside the event horizon, despite the widely held belief to the contrary known as the "no-hair" conjecture. We next obtain numerical particle-like soliton and black hole solutions in the spontaneously broken phase of the Einstein-Yang-Mills-Higgs system, which consists of an SU(2) gauge field coupled to a Higgs doublet (the electroweak standard model without hypercharge). We also obtain such solutions to the related Einstein-Non-Abelian -Proca theory as a prelude to the gauge field case. Using the bosonic part of the low-energy heterotic string action, we then construct string-inspired regular and black hole solutions to Einstein-Yang-Mills theory coupled to massive dilaton and axion fields. Though we present numerical solutions only for the case of a trivial axion field, we analyze the full system and discuss the feasibility of additional solutions. Shifting from classical to quantum field theory, we next develop a general method utilizing collective coordinates and Euclidean functional constraints to study solitons semiclassically in the path integral formulation of Euclidean quantum field theory. Our method is an extension of the existing semiclassical method, which does not accomodate Euclidean time or the usual canonical Euclidean formalism, and applies to both time-independent solitons and solitons with time-dependence arising from global charge symmetries. We illustrate the method through an example finite-temperature field theory calculation: the one-loop partition function for
Gauge-covariant decomposition and magnetic monopole for G (2 ) Yang-Mills field
NASA Astrophysics Data System (ADS)
Matsudo, Ryutaro; Kondo, Kei-Ichi
2016-08-01
We provide a gauge-covariant decomposition of the Yang-Mills field with the exceptional gauge group G (2 ), which extends the field decomposition proposed by Cho, Duan-Ge, and Faddeev-Niemi for the S U (N ) Yang-Mills field. As an application of the decomposition, we derive a new expression of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of G (2 ). The resulting new form is used to define gauge-invariant magnetic monopoles in the G (2 ) Yang-Mills theory. Moreover, we obtain the quantization condition to be satisfied by the resulting magnetic charge. The method given in this paper is general enough to be applicable to any semisimple Lie group other than S U (N ) and G (2 ).
NASA Astrophysics Data System (ADS)
Lima, E. A.; Weiss, B. P.
2008-12-01
Magnetic scanning microscopy can be used to study inhomogeneous magnetization in geological samples with submillimiter spatial resolution. In particular, Superconducting Quantum Interference Device (SQUID) microscopes offer a unique combination of high spatial resolution and outstanding field sensitivity. However, due to physical constraints, most magnetic microscopes only measure a single component of the magnetic field. Nevertheless, Maxwell's equations can be used to demonstrate that the components of a static magnetic field in a region of space devoid of sources are not independent. This means that single-axis scanning magnetometers can potentially obtain all of three components of the field external to the sample. We present an improved technique in the Fourier domain which can obtain the complete vector field planar map from just the planar map of one component. This technique is fast, robust, does not rely on any specific source type or configuration and does not require the formulation of an inverse problem. In contrast to other applications in geomagnetic remote sensing, the assumptions and conditions imposed on the field distribution by the technique can be naturally satisfied in scanning microscopy of geological samples. We analyze the advantages and shortcomings of the technique, and establish which sensor and mapping configurations may yield high quality three-component field maps with virtually no information loss. We present results obtained both with synthetic data and experimental data measured with our SQUID microscope system.
Ballistic Josephson junctions in the presence of generic spin dependent fields
NASA Astrophysics Data System (ADS)
Konschelle, François; Tokatly, Ilya V.; Bergeret, F. Sebastian
2016-07-01
Ballistic Josephson junctions are studied in the presence of a spin-splitting field and spin-orbit coupling. A generic expression for the quasiclassical Green's function is obtained and with its help we analyze several aspects of the proximity effect between a spin-textured normal metal (N) and singlet superconductors (S). In particular, we show that the density of states may show a zero-energy peak which is a generic consequence of the spin dependent couplings in heterostructures. In addition, we also obtain the spin current and the induced magnetic moment in a SNS structure and discuss possible coherent manipulation of the magnetization which results from the coupling between the superconducting phase and the spin degree of freedom. Our theory predicts a spin accumulation at the S/N interfaces, and transverse spin currents flowing perpendicular to the junction interfaces. Some of these findings can be understood in the light of a non-Abelian electrostatics.
Supersymmetric composite gauge fields with compensators
NASA Astrophysics Data System (ADS)
Nishino, Hitoshi; Rajpoot, Subhash
2016-06-01
We study supersymmetric composite gauge theory, supplemented with compensator mechanism. As our first example, we give the formulation of N = 1 supersymmetric non-Abelian composite gauge theory without the kinetic term of a non-Abelian gauge field. The important ingredient is the Proca-Stueckelberg-type compensator scalar field that makes the gauge-boson field equation non-singular, i.e., the field equation can be solved for the gauge field algebraically as a perturbative expansion. As our second example, we perform the gauging of chiral-symmetry for N = 1 supersymmetry in four dimensions by a composite gauge field. These results provide supporting evidence for the consistency of the mechanism that combines the composite gauge field formulations and compensator formulations, all unified under supersymmetry.
Non-Abellian field dynamics in the early stage of ultrarelativistic nuclear collisions
Rischke, D.H.
1997-09-22
It was argued that the gluon field of a large, ultrarelativistic nucleus can be considered as a classical field for small values of the longitudinal momentum fraction x and on transverse momentum scales {Lambda}{sup 2}{sub QCD} << k{sup 2}{perpendicular} << {mu}{sup 2}, where {mu}{sup 2} is the transverse area density of color charges. The authors estimated {mu} {approx} 0.4 GeV for collisions of Au-nuclei at RHIC energies. Based on this argument, the gluon field produced in a collision of two ultrarelativistic nuclei is computed perturbatively by solving the classical Yang-Mills equations order by order in the strong coupling constant g. It is shown that to first order in g, the spectrum of produced gluons is identical to that obtained in a perturbative quantum calculation of gluon Bremsstrahlung. It is also identical with that of a coherent quantum state generated by independent collisions between the (classical) color charges in the two nuclei. The perturbative solution is unstable under perturbations. The instabilities arise from the non-Abelian terms in the equations of motion for the gluon field, which enter only at higher order in the perturbative solution scheme. The decay rate of the perturbative solution is shown to be of order {mu}. Since the non-Abelian terms describe the self-interaction of the produced gluon field, and since such interactions lead to thermalization, the decay rate provides an estimate for the thermalization time scale of classical color fields in ultrarelativistic nuclear collisions. For Au-nuclei, this time scale is therefore of order 0.5 fm/c, in agreement with results for the kinetic thermalization time scale.
Li, Hui; Haldane, F D M
2008-07-01
We study the "entanglement spectrum" (a presentation of the Schmidt decomposition analogous to a set of "energy levels") of a many-body state, and compare the Moore-Read model wave function for the nu=5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions. Their spectra share a common "gapless" structure, related to conformal field theory. In the model state, these are the only levels, while in the "generic" case, they are separated from the rest of the spectrum by a clear "entanglement gap", which appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order.
Field Aligned Currents Derived from Pressure Profiles Obtained from TWINS ENA Images
NASA Astrophysics Data System (ADS)
Wood, K.; Perez, J. D.; McComas, D. J.; Goldstein, J.; Valek, P. W.
2015-12-01
Field aligned currents (FACs) that flow from the Earth's magnetosphere into the ionosphere are an important coupling mechanism in the interaction of the solar wind with the Earth's magnetosphere. Assuming pressure balance along with charge conservation yields an expression for the FACs in terms of plasma pressure gradients and pressure anisotropy. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which ion pressure distributions and pressure anisotropies can be obtained. Following the formulations in Heineman [1990] and using results from TWINS observations, we calculate the distribution of field aligned currents for the 17-18 March 2015 geomagnetic storm in which extended ionospheric precipitation was observed. Initial results for the field aligned currents will be generated assuming an isotropic pitch angle distribution. Global maps of field aligned currents during the main and recovery phase of the storm will be presented. Heinemann, H. (1990), Representations of Currents and Magnetic Fields in Anisotropic Magnetohydrostatic Plasma, J. Geophys. Res., 95, 7789.
Symmetries and vanishing couplings in string-derived low energy effective field theory
Kobayashi, Tatsuo
2012-07-27
We study 4D low-energy effective field theory, derived from heterotic string theory on the orbifolds. In particular, we study Abelian and non-Abelian discrete symmetries and their anomalies. Furthermore, stringy computations also provide with stringy coupling selection rules.
Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
Theunissen, F E; Sen, K; Doupe, A J
2000-03-15
The stimulus-response function of many visual and auditory neurons has been described by a spatial-temporal receptive field (STRF), a linear model that for mathematical reasons has until recently been estimated with the reverse correlation method, using simple stimulus ensembles such as white noise. Such stimuli, however, often do not effectively activate high-level sensory neurons, which may be optimized to analyze natural sounds and images. We show that it is possible to overcome the simple-stimulus limitation and then use this approach to calculate the STRFs of avian auditory forebrain neurons from an ensemble of birdsongs. We find that in many cases the STRFs derived using natural sounds are strikingly different from the STRFs that we obtained using an ensemble of random tone pips. When we compare these two models by assessing their predictions of neural response to the actual data, we find that the STRFs obtained from natural sounds are superior. Our results show that the STRF model is an incomplete description of response properties of nonlinear auditory neurons, but that linear receptive fields are still useful models for understanding higher level sensory processing, as long as the STRFs are estimated from the responses to relevant complex stimuli.
Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
Theunissen, F E; Sen, K; Doupe, A J
2000-03-15
The stimulus-response function of many visual and auditory neurons has been described by a spatial-temporal receptive field (STRF), a linear model that for mathematical reasons has until recently been estimated with the reverse correlation method, using simple stimulus ensembles such as white noise. Such stimuli, however, often do not effectively activate high-level sensory neurons, which may be optimized to analyze natural sounds and images. We show that it is possible to overcome the simple-stimulus limitation and then use this approach to calculate the STRFs of avian auditory forebrain neurons from an ensemble of birdsongs. We find that in many cases the STRFs derived using natural sounds are strikingly different from the STRFs that we obtained using an ensemble of random tone pips. When we compare these two models by assessing their predictions of neural response to the actual data, we find that the STRFs obtained from natural sounds are superior. Our results show that the STRF model is an incomplete description of response properties of nonlinear auditory neurons, but that linear receptive fields are still useful models for understanding higher level sensory processing, as long as the STRFs are estimated from the responses to relevant complex stimuli. PMID:10704507
Comparison of Methods to Obtain Force-Field Parameters for Metal Sites.
Hu, LiHong; Ryde, Ulf
2011-08-01
We have critically examined and compared various ways to obtain standard harmonic molecular mechanics (MM) force-field parameters for metal sites in proteins, using the 12 most common Zn(2+) sites as test cases. We show that the parametrization of metal sites is hard to treat with automatic methods. The choice of method is a compromise between speed and accuracy and therefore depends on the intended use of the parameters. If the metal site is not of central interest in the investigation, for example, a structural metal far from the active site, a simple and fast parametrization is normally enough, using either a nonbonded model with restraints or a bonded parametrization based on the method of Seminario. On the other hand, if the metal site is of central interest in the investigation, a more accurate method is needed to give quantitative results, for example, the method by Norrby and Liljefors. The former methods are semiautomatic and can be performed in seconds, once a quantum mechanical (QM) geometry optimization and frequency calculation has been performed, whereas the latter method typically takes several days and requires significant human intervention. All approaches require a careful selection of the atom types used. For a nonbonded model, standard atom types can be used, whereas for a bonded model, it is normally wise to use special atom types for each metal ligand. For accurate results, new atom types for all atoms in the metal site can be used. Atomic charges should also be considered. Typically, QM restrained electrostatic potential charges are accurate and easy to obtain once the QM calculation is performed, and they allow for charge transfer within the complex. For negatively charged complexes, it should be checked that hydrogen atoms of the ligands get proper charges. Finally, water ligands pose severe problems for bonded models in force fields that ignore nonbonded interactions for atoms separated by two bonds. Complexes with a single water ligand
NASA Astrophysics Data System (ADS)
Fay, Jean-Luc; Beluch, Jean; Allirand, Laurence; Brosset, Dominique; Despax, Bernard; Bafleur, Marise; Sarrabayrouse, Gerard
1999-09-01
Isolation area, obtained by local oxidation of silicon (LOCOS) without field implant, naturally shows a high sensitivity of the leakage current to fixed charges in metal oxide semiconductor (MOS) parasitic transistors. It has been shown that during the deposition of the nitride capacitor insulator-layer, fixed charges are generated in the underlying plasma-deposited oxides. The behavior of the P-channel MOS (PMOS) parasitic transistor can be well accounted for by considering fixed charge creation in the thick part of the gate insulator. In the case of the N-channel MOS (NMOS) transistor, the leakage current is controlled by the bird's beak region where a high interface state density exists. The NMOS behavior has been explained taking into account the charge creation as well as a decrease in interface state density during nitride deposition. A new “recipe” for the nitride deposition based on a very low thermal budget has been established. Finally, a high threshold voltage and a reasonably low leakage current have been achieved for both the NMOS and PMOS parasitic transistors.
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-01-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologie parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into faci??s associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O) ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained. Copyright 2009 by the American Geophysical Union.
Motion-cancelled PSP system for obtaining global unsteady fields of a moving object
NASA Astrophysics Data System (ADS)
Miyamoto, Kensueke; Miyazaki, Takeshi; Sakaue, Hirotaka
2010-11-01
A motion-cancelled PSP system is introduced for obtaining global unsteady fields on a moving object. This system uses a reference- and signal-image simultaneously acquired by a digital camera. Each image is provided by a two-color pressure-sensitive paint (PSP). The luminescent outputs from the PSP are converted to the pressures or the oxygen concentrations. The existing system uses a color CMOS camera. The green and red images of the camera correspond to the reference and signal images, respectively. Due to the spectral overlay of the images, the pressure sensitivity of the existing system is poor (0.13 percent/kPa). To improve the sensitivity, a spectral separation is necessary. As an improved system, we use a two-CCD chip camera, which can select the band-pass filters in front of the chips. The filters can limit the wavelength range of each luminescent image that prevents the spectral overlay. A comparison with the existing system is provided, and the developed system is applied to an oscillating unsteady motion of a flat plate for demonstration.
NASA Astrophysics Data System (ADS)
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-08-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
NASA Astrophysics Data System (ADS)
Alonso, C.; Benito, R. M.; Tarquis, A. M.
2012-04-01
such complexities from remote sensing images and will applied in this study to see the scaling behavior for each sensor in generalized fractal dimensions. The studied area is located in the provinces of Caceres and Salamanca (east of Iberia Peninsula) with an extension of 32 x 32 km2. The altitude in the area varies from 1,560 to 320 m, comprising natural vegetation in the mountain area (forest and bushes) and agricultural crops in the valleys. Scaling analysis were applied to Landsat-5 and MODIS TERRA to the normalized derived vegetation index (NDVI) on the same region with one day of difference, 13 and 12 of July 2003 respectively. From these images the area of interest was selected obtaining 1024 x 1024 pixels for Landsat image and 128 x 128 pixels for MODIS image. This implies that the resolution for MODIS is 250x250 m. and for Landsat is 30x30 m. From the reflectance data obtained from NIR and RED bands, NDVI was calculated for each image focusing this study on 0.2 to 0.5 ranges of values. Once that both NDVI fields were obtained several fractal dimensions were estimated in each one segmenting the values in 0.20-0.25, 0.25-0.30 and so on to rich 0.45-0.50. In all the scaling analysis the scale size length was expressed in meters, and not in pixels, to make the comparison between both sensors possible. Results are discussed. Acknowledgements This work has been supported by the Spanish MEC under Projects No. AGL2010-21501/AGR, MTM2009-14621 and i-MATH No. CSD2006-00032
Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements.
Kairn, T; Charles, P H; Cranmer-Sargison, G; Crowe, S B; Langton, C M; Thwaites, D I; Trapp, J V
2015-06-01
There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6 × 6 to 98 × 98 mm(2). Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26 %, for the "very small" fields smaller than 15 mm, and 0.18 % for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within uncertainties. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2 % to the very small field output factors. The overall uncertainties in the field output factors were 1.8 % for the very small fields and 1.1 % for the fields larger than 15 mm across. Recommended steps for acquiring small field output
NASA Astrophysics Data System (ADS)
Romero-Salazar, C.; Hernández-Flores, O. A.
2016-02-01
The conventional elliptic critical-state models (ECSM) establish that the electric field vector is zero when it flows a critical current density in a type-II superconductor. This proposal incorporates a finite electric field on the ECSM to study samples with anisotropic-current-carrying capacity. Our theoretical scheme has the advantage of being able to dispense of a material law which drives the electric field magnitude, however, it does not consider the magnetic history of the superconductor.
Realizations of magnetic-monopole gauge fields - Diatoms and spin precession
NASA Technical Reports Server (NTRS)
Moody, J.; Shapere, A.; Wilczek, F.
1986-01-01
It is found that the effective Hamiltonian for nuclear rotation in a diatom is equivalent to that of a charged particle in a background magnetic-monopole field. In certain cases, half-integer orbital angular momentum or non-Abelian fields occur. Furthermore, the effects of magnetic-monopole-like gauge fields can be experimentally observed in spin-resonance experiments with variable magnetic fields.
NASA Astrophysics Data System (ADS)
Wang, Tong-Tong; Fan, Hong-Yi
2016-12-01
Based on the one- and two-mode combinatorial squeezed state (H.Y. Fan, Phys. Rev. A. 41(3), 1526 (1990))which can enhance squeezing effect, we derive a new optical field by using partial tracing method, we not only obtain its density operator but also deduce its Wigner function by virtue of operators' Weyl ordering property. This new photon field possesses more photon numbers than the corresponding chaotic field, and can be applied to quantum controlling and quantum information processing.
Lectures on Non-Abelian Bosonization
NASA Astrophysics Data System (ADS)
Tsvelik, A. M.
The following sections are included: * Introduction * Kac-Moody algebra * Conformal embedding. Sugawara Hamiltonian * SU(N)×SU(M) model * From the fermionic to WZNW model * The perturbed SUk(2) WZNW model * Correlation functions and Quasi Long Range order * Generalization from SU(2) to SU(N) * A model with Sp(2N) symmetry * Solution for the special case gcdw = gsc * Attraction in the orbital channel. Competing orders. Emergent integrability. ZN parafermions. * Parafermion zero modes * Conclusions and Acknowledgements * Appendix A. TBA equations for the Sp1(2N) model * Appendix B. Bosonization of of Z4 parafermions * References
Physical properties of carbon films obtained by methane pyrolysis in an electric field
NASA Astrophysics Data System (ADS)
Brantov, S. K.; Tereshchenko, A. N.; Shteinman, E. A.; Yakimov, E. B.
2016-03-01
A method of synthesizing carbon films on single-crystal silicon substrates by methane pyrolysis in an electrical field is suggested. The pressure and temperature arising in a working chamber when the substrate is exposed to C-4 ions during pyrolysis are measured. Ion bombardment generates nuclei in the form of fibers about 2 μm in diameter providing the growth of a polycrystalline film. The resulting material is examined using electron microscopy and photo- and cathodoluminescence. Synthesized films are a composite material the matrix of which contains nanoclusters of a dissimilar crystalline nature. The effect of considerable two-stage decrease in the resistivity of the film material with increasing temperature from 300 to 1750 K is discovered. This points to the semiconducting properties of thick carbon films.
Global Twist of Sunspot Magnetic Fields Obtained from High-Resolution Vector Magnetograms
NASA Astrophysics Data System (ADS)
Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Sankarasubramanian, K.
2009-09-01
The presence of fine structures in sunspot vector magnetic fields has been confirmed from Hinode as well as other earlier observations. We studied 43 sunspots based on the data sets taken from ASP/DLSP, Hinode (SOT/SP), and SVM (USO). In this Letter, (1) we introduce the concept of signed shear angle (SSA) for sunspots and establish its importance for non-force-free fields. (2) We find that the sign of global α (force-free parameter) is well correlated with that of the global SSA and the photospheric chirality of sunspots. (3) Local α patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local α in the umbra is typically of the order of the global α of the sunspot. (4) We find that the local α is distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local α in the penumbra is approximately an order of magnitude larger than that in the umbra. The contributions of the local positive and negative currents and α in the penumbra cancel each other giving almost no contribution for their global values for the whole sunspot. (5) Arc-like structures (partial rings) with a sign opposite to that of the dominant sign of α of the umbral region are seen at the umbral-penumbral boundaries of some sunspots. (6) Most of the sunspots studied belong to the minimum epoch of the 23rd solar cycle and do not follow the so-called hemispheric helicity rule.
Chemical analysis of post explosion samples obtained as a result of model field experiments.
Borusiewicz, Rafal; Zadora, Grzegorz; Zieba-Palus, Janina
2013-11-15
Five different explosives were detonated in a series of field experiments. Each experiment (detonation of the charge of each specific explosive) was repeated three times. The experiments were conducted under controlled conditions, exceeding those of research published so far. Detonated charges were uniform in size and, as far as possible, in shape. The explosives used originated from the same batch. Additionally, the same kind of electric detonators were used. Witness plates (sheets of galvanised steel 100 cm × 90 cm × 0.5 mm) were used to collect post-blast residues in a reproducible way. They were placed relatively close to the charge to minimise the influence of the wind. Samples were collected by systematic swabbing of the surface of the plate by acetone moistened cotton swabs. Samples were packed tight, transferred to the laboratory, and extracted with methanol. Extracts were concentrated by solvent evaporation, cleaned by centrifugation, and analysed using HPLC-DAD. Each extract was analysed three times and the mean value of the amount of the given explosive within the extract was calculated. For each of the explosive materials used the results of the repetition of the experiments proved them to be irreproducible. After each detonation of a specific charge different amounts of given explosives were found in post-blast samples. Also, the intuitively expected relationship between the distance from the charge and amount of post-blast residues were not observed. These results are consistent with previously published results of field experiments. The lack of reproducibility may be explained by differences in efficiency of detonation. The efficiency of a detonation may be influenced even by small differences in the shape of the charge as well as by the position and properties of the detonator. The lack of dependency between the amount of the explosive in the post-blast samples and the distance from the charge may be explained by the fact that during detonation
GLOBAL TWIST OF SUNSPOT MAGNETIC FIELDS OBTAINED FROM HIGH-RESOLUTION VECTOR MAGNETOGRAMS
Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Sankarasubramanian, K. E-mail: pvk@prl.res.in
2009-09-10
The presence of fine structures in sunspot vector magnetic fields has been confirmed from Hinode as well as other earlier observations. We studied 43 sunspots based on the data sets taken from ASP/DLSP, Hinode (SOT/SP), and SVM (USO). In this Letter, (1) we introduce the concept of signed shear angle (SSA) for sunspots and establish its importance for non-force-free fields. (2) We find that the sign of global {alpha} (force-free parameter) is well correlated with that of the global SSA and the photospheric chirality of sunspots. (3) Local {alpha} patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local {alpha} in the umbra is typically of the order of the global {alpha} of the sunspot. (4) We find that the local {alpha} is distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local {alpha} in the penumbra is approximately an order of magnitude larger than that in the umbra. The contributions of the local positive and negative currents and {alpha} in the penumbra cancel each other giving almost no contribution for their global values for the whole sunspot. (5) Arc-like structures (partial rings) with a sign opposite to that of the dominant sign of {alpha} of the umbral region are seen at the umbral-penumbral boundaries of some sunspots. (6) Most of the sunspots studied belong to the minimum epoch of the 23rd solar cycle and do not follow the so-called hemispheric helicity rule.
Field-Obtained Soil Water Characteristic Curves and Hydraulic Conductivity Functions
NASA Astrophysics Data System (ADS)
Elvis, Ishimwe
A compacted clay liner (test pad) was constructed and instrumented with volumetric water content and soil matric potential sensors to determine soil water characteristic curves (SWCC) and hydraulic conductivity (k) functions. Specifically, the compacted clay liner was subjected to an infiltration cycle during a sealed double ring infiltrometer (SDRI) test followed by a drying cycle. After the drying cycle, Shelby tube samples were collected from the compacted clay liner and flexible wall permeability (FWP) tests were conducted on sub-samples to determine the saturated hydraulic conductivity. Moreover, two computer programs (RETC and UNSAT-H) were utilized to model the SWCCs and k-functions of the soil based on obtained measurements including the volumetric water content, the soil matric potential, and the saturated hudraulic conductivity (ks). Results obtained from the RETC program (s, r, α, n and ks) were ingested into UNSAT-H program to calculate the movement of water (rate and location) through the compacted clay liner. Although a linear wetting front (location of water infiltration as a function of time) is typically utilized for SDRI calculations, the use of a hyperbolic wetting front is recommended as a hyperbolic wetting front was modeled from the testing results. The suggested shape of the wetting front is associated with utilization of the desorption SWCC instead of the sorption SWCC and with relatively high values of ks (average value of 7.2E-7 cm/sec) were measured in the FWP tests while relatively low values of ks (average value of 1.2E-7 cm/sec) were measured in the SDRI test.
Hernandez, P.
1995-02-01
This paper is an expansion of engineering notes prepared in 1961 to address the question of how to wind circular coils so as to obtain the maximum axial field with the minimum volume of conductor. At the time this was a germain question because of the advent of superconducting wires which were in very limited supply, and the rapid push for generation of very high fields, with little concern for uniformity.
Fu, Jiawei; Pierron, Fabrice; Ruiz, Pablo D
2013-12-01
This paper presents a methodology for stiffness identification from depth-resolved three-dimensional (3-D) full-field deformation fields. These were obtained by performing digital volume correlation on optical coherence tomography volume reconstructions of silicone rubber phantoms. The effect of noise and reconstruction uncertainties on the performance of the correlation algorithm was first evaluated through stationary and rigid body translation tests to give an indication of the minimum strain that can be reliably measured. The phantoms were then tested under tension, and the 3-D deformation fields were used to identify the elastic constitutive parameters using a 3-D manually defined virtual fields method. The identification results for the cases of uniform and heterogeneous strain fields were compared with those calculated analytically through the constant uniaxial stress assumption, showing good agreement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... leased for geothermal resources? 3271.13 Section 3271.13 Public Lands: Interior Regulations Relating to...) GEOTHERMAL RESOURCE LEASING Utilization Operations: Getting a Permit § 3271.13 How do I obtain approval to... Federal lands leased for geothermal resources? Before constructing pipelines and well field facilities...
Code of Federal Regulations, 2011 CFR
2011-10-01
... leased for geothermal resources? 3271.13 Section 3271.13 Public Lands: Interior Regulations Relating to...) GEOTHERMAL RESOURCE LEASING Utilization Operations: Getting a Permit § 3271.13 How do I obtain approval to... Federal lands leased for geothermal resources? Before constructing pipelines and well field facilities...
Code of Federal Regulations, 2013 CFR
2013-10-01
... leased for geothermal resources? 3271.13 Section 3271.13 Public Lands: Interior Regulations Relating to...) GEOTHERMAL RESOURCE LEASING Utilization Operations: Getting a Permit § 3271.13 How do I obtain approval to... Federal lands leased for geothermal resources? Before constructing pipelines and well field facilities...
Code of Federal Regulations, 2012 CFR
2012-10-01
... leased for geothermal resources? 3271.13 Section 3271.13 Public Lands: Interior Regulations Relating to...) GEOTHERMAL RESOURCE LEASING Utilization Operations: Getting a Permit § 3271.13 How do I obtain approval to... Federal lands leased for geothermal resources? Before constructing pipelines and well field facilities...
Azcona, J; Burguete, J
2014-06-01
Purpose: To obtain the pencil beam kernels that characterize a megavoltage photon beam generated in a FFF linac by experimental measurements, and to apply them for dose calculation in modulated fields. Methods: Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from a Varian True Beam (Varian Medical Systems, Palo Alto, CA) linac, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50 mm diameter circular field, collimated with a lead block. Measured dose leads to the kernel characterization, assuming that the energy fluence exiting the linac head and further collimated is originated on a point source. The three-dimensional kernel was obtained by deconvolution at each depth using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. The kernels were used to calculate modulated dose distributions in six modulated fields and compared through the gamma index to their absolute dose measured by film in the RW3 phantom. Results: The resulting kernels properly characterize the global beam penumbra. The output factor-based correction was carried out adding the amount of signal necessary to reproduce the experimental output factor in steps of 2mm, starting at a radius of 4mm. There the kernel signal was in all cases below 10% of its maximum value. With this correction, the number of points that pass the gamma index criteria (3%, 3mm) in the modulated fields for all cases are at least 99.6% of the total number of points. Conclusion: A system for independent dose calculations in modulated fields from FFF beams has been developed. Pencil beam kernels were obtained and their ability to accurately calculate dose in homogeneous media was demonstrated.
Ding, George X; Krauss, Rob
2013-07-21
For small photon fields, accurate values of a tissue-phantom ratio (TPR) are difficult to obtain either by direct measurement or by the conventional method of converting from measured percentage depth doses (%dd). This study aims to develop an empirical method to accurately obtain TPRs from %dd curves for small radiosurgery beams. The Monte Carlo simulation codes BEAMnrc/DOSXYZnrc were used to simulate the accelerator head and small, collimated fields including the circular cone accessory. The Monte Carlo directly calculated TPR values as a function of depth were compared with TPRs converted from %dd curves in a water phantom for field sizes ranging from 4 mm diameter to 10 × 10 cm(2) fields. Direct measurements of TPRs were performed with the detector remaining fixed at a SAD of 100 cm and increasing the detector depth by adding water. The %dd curves were measured at 100 cm SSD in a 50 × 50 × 50 cm(3) water tank. Using the Monte Carlo values, we developed an empirical formula to obtain TPRs from %dd and validated its accuracy. The conventional method of obtaining TPRs from %dd underestimate TPR by 3.4% and 0.6% at a depth 1.5 cm and overestimate TPR by 6.4% and 1.7% at a depth of 25 cm for 4 mm and 30 mm diameter circular fields, respectively. The empirical formula is derived from realistic Monte Carlo simulations using field sizes ranging from 4 to 30 mm and depth ranging from 1.5 to 25 cm. TPRs calculated using this function deviate from TPRs directly calculated from Monte Carlo by less than 0.5%. The accuracy of this empirical formula is validated against the directly measured TPRs in water. The developed empirical method has the potential to greatly simply the work in obtaining TPRs from measured %dd curves for small fields. By using this developed empirical formula the uncertainties between directly measured TPRs and converted TPRs from measured %dd curves are within 1%.
NASA Astrophysics Data System (ADS)
Ding, George X.; Krauss, Rob
2013-07-01
For small photon fields, accurate values of a tissue-phantom ratio (TPR) are difficult to obtain either by direct measurement or by the conventional method of converting from measured percentage depth doses (%dd). This study aims to develop an empirical method to accurately obtain TPRs from %dd curves for small radiosurgery beams. The Monte Carlo simulation codes BEAMnrc/DOSXYZnrc were used to simulate the accelerator head and small, collimated fields including the circular cone accessory. The Monte Carlo directly calculated TPR values as a function of depth were compared with TPRs converted from %dd curves in a water phantom for field sizes ranging from 4 mm diameter to 10 × 10 cm2 fields. Direct measurements of TPRs were performed with the detector remaining fixed at a SAD of 100 cm and increasing the detector depth by adding water. The %dd curves were measured at 100 cm SSD in a 50 × 50 × 50 cm3 water tank. Using the Monte Carlo values, we developed an empirical formula to obtain TPRs from %dd and validated its accuracy. The conventional method of obtaining TPRs from %dd underestimate TPR by 3.4% and 0.6% at a depth 1.5 cm and overestimate TPR by 6.4% and 1.7% at a depth of 25 cm for 4 mm and 30 mm diameter circular fields, respectively. The empirical formula is derived from realistic Monte Carlo simulations using field sizes ranging from 4 to 30 mm and depth ranging from 1.5 to 25 cm. TPRs calculated using this function deviate from TPRs directly calculated from Monte Carlo by less than 0.5%. The accuracy of this empirical formula is validated against the directly measured TPRs in water. The developed empirical method has the potential to greatly simply the work in obtaining TPRs from measured %dd curves for small fields. By using this developed empirical formula the uncertainties between directly measured TPRs and converted TPRs from measured %dd curves are within 1%.
Manipulating Majorana zero modes on atomic rings with an external magnetic field
Li, Jian; Neupert, Titus; Bernevig, B. Andrei; Yazdani, Ali
2016-01-01
Non-Abelian quasiparticles have been predicted to exist in a variety of condensed matter systems. Their defining property is that an adiabatic braid between two of them results in a non-trivial change of the quantum state of the system. The simplest non-Abelian quasiparticles—the Majorana bound states—can occur in one-dimensional electronic nano-structures proximity-coupled to a bulk superconductor. Here we propose a set-up, based on chains of magnetic adatoms on the surface of a thin-film superconductor, in which the control over an externally applied magnetic field suffices to create and manipulate Majorana bound states. We consider specifically rings of adatoms and show that they allow for the creation, annihilation, adiabatic motion and braiding of pairs of Majorana bound states by varying the magnitude and orientation of the external magnetic field. PMID:26791080
NASA Astrophysics Data System (ADS)
Sobota, A.; Guaitella, O.; Garcia-Caurel, E.
2013-09-01
We report on experimentally obtained values of the electric field magnitude on a dielectric surface induced by an impinging atmospheric pressure plasma jet. The plasma plume was striking the dielectric surface at an angle of 45°, at 5 mm from the surface measured at the axis of the jet. The results were obtained using Pockels technique on a BSO (Bi12SiO20) crystal. A coaxial configuration of the plasma jet was used, operating in a stable mode with one bullet per voltage period, at 30 kHz and amplitude of 2 kV. The electric field was shown to be a function of the gas flow (He, at 300, 500 and 700 SCCM) and the manner in which the discharge spreads over the dielectric surface. The maximum value of 11.6 × 105 V m-1 was obtained at the negative half-period of the discharge current measured at the grounded electrode, at the flow of 300 SCCM. The largest electric field averaged over the area of the spreading of the discharge (3.6 × 105 V m-1) was found in the same conditions.
Studies in Quantum Field Theory. Final Report, July 21, 1992 - July 31, 1999
Caldi, Daniel G.
2001-03-31
Mechanisms have been investigated for chiral symmetry breaking in QED and non-abelian gauge theories using the Schwinger proper-time formalism. Multi-soliton and plane-wave solutions have been generated in affine Toda field theories. New predictions for neutrino mass generation via superfluid-type condensates in the Electroweak theory have been made. Solutions for the linear inhomogeneous bioheat equation were studied in cylindrical geometries.
NASA Technical Reports Server (NTRS)
Tracy, M. B.; Plentovich, E. B.
1993-01-01
Static and fluctuating pressure distributions were obtained along the floor of a rectangular-box cavity in an experiment performed in the LaRC 0.3-Meter Transonic Cryogenic Tunnel. The cavity studied was 11.25 in. long and 2.50 in. wide with a variable height to obtain length-to-height ratios of 4.4, 6.7, 12.67, and 20.0. The data presented herein were obtained for yaw angles of 0 deg and 15 deg over a Mach number range from 0.2 to 0.9 at a Reynolds number of 30 x 10(exp 6) per ft with a boundary-layer thickness of approximately 0.5 in. The results indicated that open and transitional-open cavity flow supports tone generation at subsonic and transonic speeds at Mach numbers of 0.6 and above. Further, pressure fluctuations associated with acoustic tone generation can be sustained when static pressure distributions indicate that transitional-closed and closed flow fields exist in the cavity. Cavities that support tone generation at 0 deg yaw also supported tone generation at 15 deg yaw when the flow became transitional-closed. For the latter cases, a reduction in tone amplitude was observed. Both static and fluctuating pressure data must be considered when defining cavity flow fields, and the flow models need to be refined to accommodate steady and unsteady flows.
NASA Astrophysics Data System (ADS)
Gunár, S.; Mackay, D. H.
2016-07-01
Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.
Nicola, Wilten; Tripp, Bryan; Scott, Matthew
2016-01-01
A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks. PMID:26973503
NASA Astrophysics Data System (ADS)
Intrieri, J. M.; de Boer, G.; Shupe, M. D.; Spackman, J. R.; Wang, J.; Neiman, P. J.; Wick, G. A.; Hock, T. F.; Hood, R. E.
2014-11-01
In February and March of 2011, the Global Hawk unmanned aircraft system (UAS) was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign. The WISPAR science missions were designed to (1) mprove our understanding of Pacific weather systems and the polar atmosphere; (2) evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3) demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB) in California. During the 25 h polar flight on 9-10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean-ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.
NASA Astrophysics Data System (ADS)
Maezawa, K.; Mukai, T.; Saito, Y.
2004-12-01
The magnetic field line mapping of the magnetotail is a very important issue since physical interpretaion of any correlatinal studies between ionospheric phenomena (e.g. auroral break up) and magnetospheric phenomena (e.g. fast plasma flows) is directly affected by the field-line mapping. We here present a unique method to trace field lines from plasma measurements in the magnetotail. The plasma pressure balance equation tells us that the plasma pressure should be constant along the field lines since the JxB force counterbalancing the pressure gradient is perpendicular to the magnetic field. Therefore the contour lines of constant plasma pressure in the x-z plane of the magnetotail represent the magentic field lines themselves. Based on this idea, we have analyzed the average plasma pressure distribution in the magnetotail using 10 years data from GEOTAIL, for various conditions of solar wind/IMF parameters including IMF Bz polarity. The result indicates a quantitative difference in the latitude-eauatorial distance relationship, i.e., in the degree of stretching of field lines for different polarities of IMF. We emphasize that this is the first time that the large-scale configuration of magnetic field lines is deduced without introducing any model parameters. Our method is also unique in that it is based on plasma data only. We will comment on the consistency/inconsistency of our result with the Tyganenko field models.
Incorporation of generalized uncertainty principle into Lifshitz field theories
Faizal, Mir; Majumder, Barun
2015-06-15
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
Depth and all-in-focus images obtained by multi-line-scan light-field approach
NASA Astrophysics Data System (ADS)
Štolc, Svorad; Huber-Mörk, Reinhold; Holländer, Branislav; Soukup, Daniel
2014-03-01
We present a light-field multi-line-scan image acquisition and processing system intended for the 2.5/3-D inspection of fine surface structures, such as small parts, security print, etc. in an industrial environment. The system consists of an area-scan camera, that allows for a small number of sensor lines to be extracted at high frame rates, and a mechanism for transporting the inspected object at a constant speed. During the acquisition, the object is moved orthogonally to the camera's optical axis as well as the orientation of the sensor lines. In each time step, a predefined subset of lines is read out from the sensor and stored. Afterward, by collecting all corresponding lines acquired over time, a 3-D light field is generated, which consists of multiple views of the object observed from different viewing angles while transported w.r.t. the acquisition device. This structure allows for the construction of so-called epipolar plane images (EPIs) and subsequent EPI-based analysis in order to achieve two main goals: (i) the reliable estimation of a dense depth model and (ii) the construction of an all-in-focus intensity image. Beside specifics of our hardware setup, we also provide a detailed description of algorithmic solutions for the mentioned tasks. Two alternative methods for EPI-based analysis are compared based on artificial and real-world data.
Bagniewska-Zadworna, Agnieszka; Arasimowicz-Jelonek, Magdalena; Smoliński, Dariusz J.; Stelmasik, Agnieszka
2014-01-01
Background and Aims Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings. Methods Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ. Key Results The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were
Quantum Field Theory and Gravity: Black Holes and Dark Matter
NASA Astrophysics Data System (ADS)
Heo, Junseong
1998-11-01
This thesis examines the various field theory related issues motivated by the gravitational phenomena. Black Holes with quantum degrees of freedom, non-abelian generalization of vortex solutions, and WIMP detection rates for the ongoing experimental search for dark matter are explored. We derive a close relation between the Minkowski signature approach and the Euclidean formalism in the construction of quantum degrees of freedom on a Black hole solution. We demonstrate the benefit of a physically transparent energy momentum consideration and extend the previous analysis on Hawking temperature shifts. Specifically we clear up the issue of thick string limit behavior that obscures the direct intuition and draw an analogy that brings the instanton solutions in flat two dimensional planes to Euclidean vortex solutions in the black hole background. These considerations lead to the question on the various possibilities of non-abelian solutions which supply the seed for the source of quantum hair in general context. We construct an explicit non-abelian vortex solution with a remnant Z3 discrete symmetry and consider its new interaction properties distinct from the known abelian solution behavior. Dark Matter direct search experiments are now in operation yet the expected event rate is very low and the previously available theoretical formalism could not tell the differences among different halo models. We present a derivation of angle dependent differential event rates which allows this possibility, and enables the confirmation of detection of a galactic halo WIMP signal with a smaller number of experimental signals. It may open up realistic methods to distinguish one halo model from another.
Kim, Da-Woon; Kim, Gi-Yong; Kim, Hee-Kyoung; Kim, Jueun; Jeon, Sun Jeong; Lee, Chul Won; Lee, Hyang Burm; Yun, Sung-Hwan
2016-01-01
Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2) of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multi-locus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea. PMID:27298593
New type IIB backgrounds and aspects of their field theory duals
NASA Astrophysics Data System (ADS)
Caceres, Elena; Macpherson, Niall T.; Núñez, Carlos
2014-08-01
In this paper we study aspects of geometries in Type IIA and Type IIB String theory and elaborate on their field theory dual pairs. The backgrounds are associated with reductions to Type IIA of solutions with G 2 holonomy in eleven dimensions. We classify these backgrounds according to their G-structure, perform a non-Abelian T-duality on them and find new Type IIB configurations presenting dynamical SU(2)-structure. We study some aspects of the associated field theories defined by these new backgrounds. Various technical details are clearly spelled out.
Patricia Sobecky; Cassie Hodges; Kerri Lafferty; Mike Humphreys; Melanie Raimondo; Kristin Tuttle; Tamar Barkay
2004-03-17
Considerable knowledge has been gained from the intensive study of a relatively limited group of bacterial plasmids. Recent efforts have begun to focus on the characterization of, at the molecular level, plasmid populations and associated mobile genetic elements (e.g., transposons, integrons) occurring in a wider range of aquatic and terrestrial habitats. Surprisingly, however, little information is available regarding the incidence and distribution of mobile genetic elements extant in contaminated subsurface environments. Such studies will provide greater knowledge on the ecology of plasmids and their contributions to the genetic plasticity (and adaptation) of naturally occurring subsurface microbial communities. We requested soil cores from the DOE NABIR Field Research Center (FRC) located on the Oak Ridge Reservation. The cores, received in February 2003, were sampled from four areas on the Oak Ridge Site: Area 1, Area 2, Area 3 (representing contaminated subsurface locales) and the background reference sites. The average core length (24 in) was subdivided into three profiles and soil pH and moisture content were determined. Uranium concentration was also determined in bulk samples. Replicate aliquots were fixed for total cell counts and for bacterial isolation. Four different isolation media were used to culture aerobic and facultative microbes from these four study areas. Colony forming units ranged from a minimum of 100 per gram soil to a maximum of 10,000 irrespective of media composition used. The vast majority of cultured subsurface isolates were gram-positive isolates and plasmid characterization was conducted per methods routinely used in the Sobecky laboratory. The percentage of plasmid incidence ranged from 10% to 60% of all isolates tested. This frequency appears to be somewhat higher than the incidence of plasmids we have observed in other habitats and we are increasing the number of isolates screened to confirm this observation. We are also
Ferrari de Prieto, J; Saluzzi de Torres, M E
1980-06-01
The aim of this paper is to demonstrate, with the aid of reliable numerical methods, the incidence of the variable, lack of mothering care, in an experimental group (GE) of 94 children under three years of age who had suffered, at least once, separation from mother and had lived for a while in a institution for young children. GE was compared with a control group (GC) of 79 children of similar age and socio-economic status who had never suffered separation from mother. The present paper was based on field research carried out by Julia Ferrari de Prieto in the Refugio Maternal (RM), an institution for young children located in a pediatric hospital in Buenos Aires. From the data gathered, comprising specimen observation, interviews, and results of Brunet and Lezine's Development Test for young children, the AA selected quantitative information--quotient of development (CD)--to make a computational program that proved the following: a) that GC, with a mean CD of 101.61 was really a random sample from a population of children under three years old who had received non-interrupted mothering care; b) that in all the experimental group (GET) the weight of the variable lack of mothering care was found to be very strong, and represented a development shortfall of about 20%; c) that the GET was really a non-homogeneous sample from which was set apart a small sub-group called experimental segregated group (GES) characterized by the short span spent in the RM and whose mean CD of 97.11 was comparatively high; d) that, however, GES was different from GC (Chi-squared test proved the non-dependency of GES and GC samples with a level of significance of 0.05); e) that, therefore, the variable, time when mothering care was lacking was one of very strong weight, even if the period spent in RM was a very short one (7 days for children of age over three months, and 30 days for children of age under three months, at the time of their arrival at the RM). The AA are now carring out an
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.
2015-04-01
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.
2015-04-01
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.
2015-04-01
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pitch angle, mixed-term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (˜1 MeV) and ring current (˜100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyroresonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L=4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the 17 March 2013 storm and for L≲4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.
NASA Astrophysics Data System (ADS)
Singh, BirBikram; Bhuyan, M.; Patra, S. K.; Gupta, Raj K.
2012-02-01
A microscopic nucleon-nucleon (NN) interaction is derived from the popular relativistic-mean-field (RMF) theory Lagrangian and used to obtain the optical potential by folding it with the RMF densities of cluster and daughter nuclei. The NN-interaction is remarkably related to the inbuilt fundamental parameters of RMF theory, and the results of the application of the so obtained optical potential, made to exotic cluster radioactive decays and α+α scattering, are found comparable to that for the well-known, phenomenological M3Y effective NN-interaction. The RMF-based NN-interaction can also be used to calculate a number of other nuclear observables.
NASA Astrophysics Data System (ADS)
Bechis, K.; Pitruzzello, A.
2014-09-01
This presentation describes our ongoing research into using a ground-based light field camera to obtain passive, single-aperture 3D imagery of LEO objects. Light field cameras are an emerging and rapidly evolving technology for passive 3D imaging with a single optical sensor. The cameras use an array of lenslets placed in front of the camera focal plane, which provides angle of arrival information for light rays originating from across the target, allowing range to target and 3D image to be obtained from a single image using monocular optics. The technology, which has been commercially available for less than four years, has the potential to replace dual-sensor systems such as stereo cameras, dual radar-optical systems, and optical-LIDAR fused systems, thus reducing size, weight, cost, and complexity. We have developed a prototype system for passive ranging and 3D imaging using a commercial light field camera and custom light field image processing algorithms. Our light field camera system has been demonstrated for ground-target surveillance and threat detection applications, and this paper presents results of our research thus far into applying this technology to the 3D imaging of LEO objects. The prototype 3D imaging camera system developed by Northrop Grumman uses a Raytrix R5 C2GigE light field camera connected to a Windows computer with an nVidia graphics processing unit (GPU). The system has a frame rate of 30 Hz, and a software control interface allows for automated camera triggering and light field image acquisition to disk. Custom image processing software then performs the following steps: (1) image refocusing, (2) change detection, (3) range finding, and (4) 3D reconstruction. In Step (1), a series of 2D images are generated from each light field image; the 2D images can be refocused at up to 100 different depths. Currently, steps (1) through (3) are automated, while step (4) requires some user interaction. A key requirement for light field camera
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor)
1989-01-01
A method and apparatus is developed for obtaining a stereo image with reduced depth distortion and optimum depth resolution. Static and dynamic depth distortion and depth resolution tradeoff is provided. Cameras obtaining the images for a stereo view are converged at a convergence point behind the object to be presented in the image, and the collection-surface-to-object distance, the camera separation distance, and the focal lengths of zoom lenses for the cameras are all increased. Doubling the distances cuts the static depth distortion in half while maintaining image size and depth resolution. Dynamic depth distortion is minimized by panning a stereo view-collecting camera system about a circle which passes through the convergence point and the camera's first nodal points. Horizontal field shifting of the television fields on a television monitor brings both the monitor and the stereo views within the viewer's limit of binocular fusion.
Multiple D/p-branes in weak background fields
NASA Astrophysics Data System (ADS)
Taylor, Washington, IV; Van Raamsdonk, Mark
2000-05-01
We find the terms in the non-abelian world-volume action of a system of many Dp-branes which describe the leading coupling to all type II supergravity background fields. These results are found by T-dualizing earlier results for D0-branes, which in turn were determined from calculations of the M(atrix) theory description of the supercurrent of 11D supergravity. Our results are compatible with earlier results on the supersymmetric Born-Infeld action for a single D-brane in a general background and with Tseytlin's symmetrized trace proposal for extending the abelian Born-Infeld action to a non-abelian theory. In the case p=3, the operators we find on the D-brane world-volume are closely related to those which couple to supergravity fields in the AdS 5× S5 IIB supergravity background. This gives an explicit construction, including normalization, of some of the operators used in the celebrated AdS/CFT correspondence for 3-branes. We also discuss the S-duality of the action in the case p=3, finding that the S-duality of the action determines how certain operators in the N=4 4D SYM theory transform under S-duality. These S-duality results give some new insight into the puzzle of the transverse 5-brane in M(atrix) theory.
P/NP, and the quantum field computer.
Freedman, M H
1998-01-01
The central problem in computer science is the conjecture that two complexity classes, P (polynomial time) and NP (nondeterministic polynomial time-roughly those decision problems for which a proposed solution can be checked in polynomial time), are distinct in the standard Turing model of computation: P not equal NP. As a generality, we propose that each physical theory supports computational models whose power is limited by the physical theory. It is well known that classical physics supports a multitude of implementation of the Turing machine. Non-Abelian topological quantum field theories exhibit the mathematical features necessary to support a model capable of solving all #P problems, a computationally intractable class, in polynomial time. Specifically, Witten [Witten, E. (1989) Commun. Math. Phys. 121, 351-391] has identified expectation values in a certain SU(2)-field theory with values of the Jones polynomial [Jones, V. (1985) Bull. Am. Math. Soc. 12, 103-111] that are #P-hard [Jaeger, F., Vertigen, D. & Welsh, D. (1990) Math. Proc. Comb. Philos. Soc. 108, 35-53]. This suggests that some physical system whose effective Lagrangian contains a non-Abelian topological term might be manipulated to serve as an analog computer capable of solving NP or even #P-hard problems in polynomial time. Defining such a system and addressing the accuracy issues inherent in preparation and measurement is a major unsolved problem.
Deep elastic processes of composite particles in field theory and asymptotic freedom
Anatoly Radyushkin
2004-10-01
This is an English translation of my 1977 Russian preprint. It contains the first explicit definition of the pion distribution amplitude (DA), the expression for the pion form factor asymptotics in terms of the pion DA, and formulates the pQCD parton picture for hard exclusive processes. The large Q{sup 2} behavior of the pion electromagnetic form factor is explicitly calculated in the non-Abelian gauge theory to demonstrate a field-theoretical approach to the deep elastic processes of composite particles. The approach is equivalent to a new type of parton model.
NASA Technical Reports Server (NTRS)
Lee, T-H.; Burnside, W. D.
1992-01-01
Inverse Synthetic Aperture Radar (ISAR) images for a 32 in long and 19 in wide model aircraft are documented. Both backscattered and bistatic scattered fields of this model aircraft were measured in the OSU-ESL compact range to obtain these images. The scattered fields of the target were measured for frequencies from 2 to 18 GHz with a 10 MHz increment and for full 360 deg azimuth rotation angles with a 0.2 deg step. For the bistatic scattering measurement, the compact range was used as the transmitting antenna; while, a broad band AEL double ridge horn was used as the receiving antenna. Bistatic angles of 90 deg and 135 deg were measured. Due to the size of the chamber and target, the receiving antenna was in the near field of the target; nevertheless, the image processing algorithm was valid for this case.
Non-abelian gauge extensions for B-decay anomalies
NASA Astrophysics Data System (ADS)
Boucenna, Sofiane M.; Celis, Alejandro; Fuentes-Martín, Javier; Vicente, Avelino; Virto, Javier
2016-09-01
We study the generic features of minimal gauge extensions of the Standard Model in view of recent hints of lepton-flavor non-universality in semi-leptonic b → sℓ+ℓ- and b → cℓν decays. We classify the possible models according to the symmetry-breaking pattern and the source of flavor non-universality. We find that in viable models the SU (2) L factor is embedded non-trivially in the extended gauge group, and that gauge couplings should be universal, hinting to the presence of new degrees of freedom sourcing non-universality. Finally, we provide an explicit model that can explain the B-decay anomalies in a coherent way and confront it with the relevant phenomenological constraints.
Non-Abelian dark matter: Models and constraints
NASA Astrophysics Data System (ADS)
Chen, Fang; Cline, James M.; Frey, Andrew R.
2009-10-01
Numerous experimental anomalies hint at the existence of a dark matter (DM) multiplet χi with small mass splittings. We survey the simplest such models which arise from DM in the low representations of a new SU(2) gauge symmetry, whose gauge bosons have a small mass μ≲1GeV. We identify preferred parameters Mχ≅1TeV, μ˜100MeV, αg˜0.04, and the χχ→4e annihilation channel, for explaining PAMELA, Fermi, and INTEGRAL/SPI lepton excesses, while remaining consistent with constraints from relic density, diffuse gamma rays, and the CMB. This consistency is strengthened if DM annihilations occur mainly in subhalos, while excitations (relevant to the excited DM proposal to explain the 511 keV excess) occur in the galactic center, due to higher velocity dispersions in the galactic center, induced by baryons. We derive new constraints and predictions which are generic to these models. Notably, decays of excited DM states χ'→χγ arise at one loop and could provide a new signal for INTEGRAL/SPI; big bang nucleosynthesis constraints on the density of dark SU(2) gauge bosons imply a lower bound on the mixing parameter γ between the SU(2) gauge bosons and photon. These considerations rule out the possibility of the gauge bosons that decay into e+e- being long-lived. We study in detail models of doublet, triplet, and quintuplet DM, showing that both normal and inverted mass hierarchies can occur, with mass splittings that can be parametrically smaller [e.g., O(100)keV] than the generic MeV scale of splittings. A systematic treatment of Z2 symmetry, which insures the stability of the intermediate DM state, is given for cases with inverted mass hierarchy, of interest for boosting the 511 keV signal from the excited dark matter mechanism.
Non Abelian structures and the geometric phase of entangled qudits
Oxman, L.E. Khoury, A.Z.
2014-12-15
In this work, we address some important topological and algebraic aspects of two-qudit states evolving under local unitary operations. The projective invariant subspaces and evolutions are connected with the common elements characterizing the su(d) Lie algebra and their representations. In particular, the roots and weights turn out to be natural quantities to parametrize cyclic evolutions and fractional phases. This framework is then used to recast the coset contribution to the geometric phase in a form that generalizes the usual monopole-like formula for a single qubit.
Abelian and non-abelian topological phases with dipoles
NASA Astrophysics Data System (ADS)
Gorshkov, Alexey
2015-03-01
Topological phases of matter offer a pathway towards fault-tolerant topological quantum computers, in which quantum information is encoded in nonlocal (topological) degrees of freedom and is processed robustly by braiding (i.e. moving around one another) topological defects called anyons. In this talk, we will develop schemes for taking advantage of the tremendous degree of control recently achieved in atomic, molecular, and optical systems - particularly in systems of interacting dipoles - to realize exotic topological phenomena, such as parafermions, Ising anyons, and Fibonacci anyons, that ultimately allow for universal topologically protected quantum computing.
Verbaro, Daniel; Ghosh, Indrajit; Nau, Werner M; Schweitzer-Stenner, Reinhard
2010-12-30
Structural preferences in the unfolded state of peptides determined by molecular dynamics still contradict experimental data. A remedy in this regard has been suggested by MD simulations with an optimized Amber force field ff03* ( Best, R. Hummer, G. J. Phys. Chem. B 2009 , 113 , 9004 - 9015 ). The simulations yielded a statistical coil distribution for alanine which is at variance with recent experimental results. To check the validity of this distribution, we investigated the peptide H-A(5)W-OH, which with the exception of the additional terminal tryptophan is analogous to the peptide used to optimize the force fields ff03*. Electronic circular dichroism, vibrational circular dichroism, and infrared spectroscopy as well as J-coupling constants obtained from NMR experiments were used to derive the peptide's conformational ensemble. Additionally, Förster resonance energy transfer between the terminal chromophores of the fluorescently labeled peptide analogue H-Dbo-A(5)W-OH was used to determine its average length, from which the end-to-end distance of the unlabeled peptide was estimated. Qualitatively, the experimental (3)J(H(N),C(α)), VCD, and ECD indicated a preference of alanine for polyproline II-like conformations. The experimental (3)J(H(N),C(α)) for A(5)W closely resembles the constants obtained for A(5). In order to quantitatively relate the conformational distribution of A(5) obtained with the optimized AMBER ff03* force field to experimental data, the former was used to derive a distribution function which expressed the conformational ensemble as a mixture of polyproline II, β-strand, helical, and turn conformations. This model was found to satisfactorily reproduce all experimental J-coupling constants. We employed the model to calculate the amide I' profiles of the IR and vibrational circular dichroism spectrum of A(5)W, as well as the distance between the two terminal peptide carbonyls. This led to an underestimated negative VCD couplet and an
Conaway, Christopher; Thordsen, James J.; Manning, Michael A.; Cook, Paul J.; Trautz, Robert C.; Thomas, Burt; Kharaka, Yousif K.
2016-01-01
The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a characterization well in the Citronelle Oil Field, Alabama, as part of the Southeast Regional Carbon Sequestration Partnership (SECARB) Phase III Anthropogenic Test, which is an integrated carbon capture and storage project. In this study, formation water and gas samples were obtained from well D-9-8 #2 at Citronelle using gas lift, electric submersible pump, U-tube, and a downhole vacuum sampler (VS) and subjected to both field and laboratory analyses. Field chemical analyses included electrical conductivity, dissolved sulfide concentration, alkalinity, and pH; laboratory analyses included major, minor and trace elements, dissolved carbon, volatile fatty acids, free and dissolved gas species. The formation water obtained from this well is a Na–Ca–Cl-type brine with a salinity of about 200,000 mg/L total dissolved solids. Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity. There was little gas in samples, and gas composition results were strongly influenced by sampling methods. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the VS and U-tube system performing most favorably in this aspect.
NASA Astrophysics Data System (ADS)
Leonte, M.; Kessler, J. D.; Chepigin, A.; Kellermann, M. Y.; Arrington, E.; Valentine, D. L.; Sylva, S.
2014-12-01
Aerobic methane oxidation, or methanotrophy, is the dominant process by which methane is removed from the water column in oceanic environments. Therefore, accurately quantifying methane oxidation rates is crucial when constructing methane budgets on a local or global scale. Here we present a comparison of two techniques used to determine methane oxidation rates based on samples obtained over the Hudson Canyon seep field in the North Atlantic. Traditional methane oxidation rate measurements require inoculation of water samples with isotopically labeled methane and tracking the changes to methane concentrations and isotopes as the samples are incubated. However, the addition of methane above background levels is thought to increase the potential for methane oxidation in the sample. A new technique to calculate methane oxidation rates is based on kinetic isotope models and incorporates direct measurements of methane concentrations, methane 13C isotopes, and water current velocity. Acoustic instrumentation (ADCP) aboard the R/V Endeavor was used to obtain water current velocity data while water samples were collected for methane concentration and isotopic ratio analysis. Methane δ13C measurements allow us to attribute changes in methane concentration to either water dispersion or bacterial methane oxidation. The data obtained from this cruise will tell us a comprehensive story of methane removal processes from this active seep field. The kinetic isotope models will allow us to estimate the total flux of methane from the seep site and calculate methane oxidation rates at different depths and locations away from seafloor plumes.
Beraldi, Rosanna; Sciamanna, Ilaria; Mangiacasale, Rosamaria; Lorenzini, Rodolfo; Spadafora, Corrado
2003-07-01
We have investigated the sensitivity of pre-implantation embryos obtained by natural breeding (NB) or in vitro fertilization (IVF) to extremely low-frequency magnetic fields (ELF-MF). Fertilized eggs obtained by NB were removed from mothers 12h after mating and cultured in vitro for 5 days under continuous ELF-MF exposure (constant strength of 50Hz and various intensities, i.e. 60, 120 and 220 microT). Alternatively, zygotes obtained by IVF were subjected to ELF-MF exposure (50Hz, 60 microT), starting 12h after IVF for 5 days. We found that ELF-MF exposure causes a small yet significant (P<0.05) decrease in the survival rate of NB-derived embryos at the latest stages of pre-implantation development, i.e. the eight cell-to-blastocyst transition. In embryos exposed to the highest field intensity (220 microT), the effect became apparent somewhat earlier. When IVF-derived embryos were exposed to ELF-MF, the reduction in the rate of embryo survival was more pronounced and the difference from controls was more significant (P<0.01). Moreover, the decreased survival rate in IVF embryos became apparent as early as the first cleavage and persisted throughout pre-implantation. These results suggest that IVF-derived embryos are more sensitive than NB-generated embryos to ELF-MF, and that this sensitivity occurs earlier in development.
Quantum Chromodynamics -- The Perfect Yang-Mills Gauge Field Theory
NASA Astrophysics Data System (ADS)
Gross, David
David Gross: My talk today is about the most beautiful of all Yang-Mills Theories (non-Abelian gauge theories), the theory of the strong nuclear interactions, Quantum Chromodynamics, QCD. We are celebrating 60 years of the publication of a remarkable paper which introduced the concept of non-Abelian local gauge symmetries, now called the Yang-Mills theory, to physics. In the introduction to this paper it is noted that the usual principle of isotopic spin symmetry is not consistent with the concept of localized fields. This sentence has drawn attention over the years because the usual principle of isotopic spin symmetry is consistent, it is just not satisfactory. The authors, Yang and Mills, introduced a more satisfactory notion of local symmetry which did not require one to rotate (in isotopic spin space) the whole universe at once to achieve the symmetry transformation. Global symmetries are thus are similar to `action at a distance', whereas Yang-Mills theory is manifestly local...
Lattice simulations of real-time quantum fields
NASA Astrophysics Data System (ADS)
Berges, J.; Borsányi, Sz.; Sexty, D.; Stamatescu, I.-O.
2007-02-01
We investigate lattice simulations of scalar and non-Abelian gauge fields in Minkowski space-time. For SU(2) gauge-theory expectation values of link variables in 3+1 dimensions are constructed by a stochastic process in an additional (5th) “Langevin-time.” A sufficiently small Langevin step size and the use of a tilted real-time contour leads to converging results in general. All fixed point solutions are shown to fulfil the infinite hierarchy of Dyson-Schwinger identities, however, they are not unique without further constraints. For the non-Abelian gauge theory the thermal equilibrium fixed point is only approached at intermediate Langevin-times. It becomes more stable if the complex time path is deformed towards Euclidean space-time. We analyze this behavior further using the real-time evolution of a quantum anharmonic oscillator, which is alternatively solved by diagonalizing its Hamiltonian. Without further optimization stochastic quantization can give accurate descriptions if the real-time extent of the lattice is small on the scale of the inverse temperature.
Soh, R; Lee, J; Harianto, F
2014-06-01
Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute material for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.
NASA Astrophysics Data System (ADS)
Markov, Yu. A.; Shishmarev, A. A.
2010-11-01
Based on the most general principles of materiality, gauge, and re-parameterized invariance, the problem of constructing an action describing the dynamics of a classical color-charged particle moving in external non-Abelian gauge and fermion fields is considered. The case of a linear Lagrangian dependence on the external fermion fields is discussed. Within the framework of the description of the color degree of freedom of the particle with half-integer spin by the Grassmann color charges, a new concept of the Grassmann color source of the particle being a fermion analog of the conventional color current is introduced.
NASA Astrophysics Data System (ADS)
Yu. Moshin, Pavel; Reshetnyak, Alexander A.
2016-07-01
We continue our research1-4 and extend the class of finite BRST-anti-BRST transformations with odd-valued parameters λa, a = 1, 2, introduced in these works. In doing so, we evaluate the Jacobians induced by finite BRST-anti-BRST transformations linear in functionally-dependent parameters, as well as those induced by finite BRST-anti-BRST transformations with arbitrary functional parameters. The calculations cover the cases of gauge theories with a closed algebra, dynamical systems with first-class constraints, and general gauge theories. The resulting Jacobians in the case of linearized transformations are different from those in the case of polynomial dependence on the parameters. Finite BRST-anti-BRST transformations with arbitrary parameters induce an extra contribution to the quantum action, which cannot be absorbed into a change of the gauge. These transformations include an extended case of functionally-dependent parameters that implies a modified compensation equation, which admits nontrivial solutions leading to a Jacobian equal to unity. Finite BRST-anti-BRST transformations with functionally-dependent parameters are applied to the Standard Model, and an explicit form of functionally-dependent parameters λa is obtained, providing the equivalence of path integrals in any 3-parameter Rξ-like gauges. The Gribov-Zwanziger theory is extended to the case of the Standard Model, and a form of the Gribov horizon functional is suggested in the Landau gauge, as well as in Rξ-like gauges, in a gauge-independent way using field-dependent BRST-anti-BRST transformations, and in Rξ-like gauges using transverse-like non-Abelian gauge fields.
Schwinger-Dyson equations in large-N quantum field theories and nonlinear random processes
Buividovich, P. V.
2011-02-15
We propose a stochastic method for solving Schwinger-Dyson equations in large-N quantum field theories. Expectation values of single-trace operators are sampled by stationary probability distributions of the so-called nonlinear random processes. The set of all the histories of such processes corresponds to the set of all planar diagrams in the perturbative expansions of the expectation values of singlet operators. We illustrate the method on examples of the matrix-valued scalar field theory and the Weingarten model of random planar surfaces on the lattice. For theories with compact field variables, such as sigma models or non-Abelian lattice gauge theories, the method does not converge in the physically most interesting weak-coupling limit. In this case one can absorb the divergences into a self-consistent redefinition of expansion parameters. A stochastic solution of the self-consistency conditions can be implemented as a 'memory' of the random process, so that some parameters of the process are estimated from its previous history. We illustrate this idea on the two-dimensional O(N) sigma model. The extension to non-Abelian lattice gauge theories is discussed.
Background field method and the cohomology of renormalization
NASA Astrophysics Data System (ADS)
Anselmi, Damiano
2016-03-01
Using the background field method and the Batalin-Vilkovisky formalism, we prove a key theorem on the cohomology of perturbatively local functionals of arbitrary ghost numbers in renormalizable and nonrenormalizable quantum field theories whose gauge symmetries are general covariance, local Lorentz symmetry, non-Abelian Yang-Mills symmetries and Abelian gauge symmetries. Interpolating between the background field approach and the usual, nonbackground approach by means of a canonical transformation, we take advantage of the properties of both approaches and prove that a closed functional is the sum of an exact functional plus a functional that depends only on the physical fields and possibly the ghosts. The assumptions of the theorem are the mathematical versions of general properties that characterize the counterterms and the local contributions to the potential anomalies. This makes the outcome a theorem on the cohomology of renormalization, rather than the whole local cohomology. The result supersedes numerous involved arguments that are available in the literature.
Hunter, D.A.; Winkelman, S. Michigan Univ., Ann Arbor )
1990-08-01
Ground-based photometry of stars in the OB associations NGC 206 and A184 in M 31 is presented and discussed. The filters that were used are replicas of the F555W and F785LP filters that are with the WF/PC on the Hubble Space Telescope and which will be used frequently in the study of stellar populations with that instrument. These data were obtained in order to aid in the interpretation of the flight data of these fields and are presented here in order to lay a foundation for those observations. These observations serve as a basis for further explorations with the HST of the stellar luminosity function in different galactic environments. 39 refs.
NASA Technical Reports Server (NTRS)
Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni
2010-01-01
Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.
On the stability of the asymptotically free scalar field theories
Shalaby, A M.
2015-03-30
Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.
Large field excursions from a few site relaxion model
NASA Astrophysics Data System (ADS)
Fonseca, N.; de Lima, L.; Machado, C. S.; Matheus, R. D.
2016-07-01
Relaxion models are an interesting new avenue to explain the radiative stability of the Standard Model scalar sector. They require very large field excursions, which are difficult to generate in a consistent UV completion and to reconcile with the compact field space of the relaxion. We propose an N -site model which naturally generates the large decay constant needed to address these issues. Our model offers distinct advantages with respect to previous proposals: the construction involves non-Abelian fields, allowing for controlled high-energy behavior and more model building possibilities, both in particle physics and inflationary models, and also admits a continuum limit when the number of sites is large, which may be interpreted as a warped extra dimension.
Wang, Yun; Butler, Robert R.; Reddy, N. Rukma; Skinner, Guy E.; Larkin, John W.
2015-01-01
Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance. PMID:26519392
Schill, Kristin M; Wang, Yun; Butler, Robert R; Pombert, Jean-François; Reddy, N Rukma; Skinner, Guy E; Larkin, John W
2015-10-30
Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance.
(Studies in quantum field theory: Progress report, April 1, 1991--March 31, 1992)
Bender, C M
1992-01-01
Professors Bender, Bernard, and Shrauner, Assistant Professors Ogilvie and Goltermann, Research Assistant Professors Visser and Petcher, and Research Associate Rivas are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: lattice gauge calculations of masses and weak matrix elements; strong-coupling approximation; low-energy effective field theories; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; the nature of perturbation theory in large order; quark condensation in QCD; chiral fermion theories on the lattice; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD; studies of the early universe and inflation; quantum gravity. This work is described in detail in the body of this proposal.
Stationary Yang-Mills fields with current sources
Mathelitsch, L.; Mitter, H.; Widder, F.
1982-02-15
Classical, time-independent solutions of the Yang-Mills equations are studied for spherically symmetric situations. In the presence of charge and current distributions the same types of solutions are found as for purely electric sources: Besides the Abelian (Coulomb-Biot-Savart) solution there are two non-Abelian types, one of which requires minimal source strengths and comes in two branches. The solution pattern is investigated by rough numerical calculations for a simple source model corresponding to spherical shell distributions. In the absence of charge distributions an additional type is found, which has zero electric field and a magnetic field corresponding to a monopole of fixed strength. This type of solution exists for a large class of reasonable source currents. Some analytical examples are given in addition to numerical results for the shell model. Stability problems are not touched.
Anatomy of a deformed symmetry: Field quantization on curved momentum space
Arzano, Michele
2011-01-15
In certain scenarios of deformed relativistic symmetries relevant for noncommutative field theories particles exhibit a momentum space described by a non-Abelian group manifold. Starting with a formulation of phase space for such particles which allows for a generalization to include group-valued momenta we discuss quantization of the corresponding field theory. Focusing on the particular case of {kappa}-deformed phase space we construct the one-particle Hilbert space and show how curvature in momentum space leads to an ambiguity in the quantization procedure reminiscent of the ambiguities one finds when quantizing fields in curved space-times. The tools gathered in the discussion on quantization allow for a clear definition of the basic deformed field mode operators and two-point function for {kappa}-quantum fields.
ABJ triality: from higher spin fields to strings
NASA Astrophysics Data System (ADS)
Chang, Chi-Ming; Minwalla, Shiraz; Sharma, Tarun; Yin, Xi
2013-05-01
We demonstrate that a supersymmetric and parity violating version of Vasiliev’s higher spin gauge theory in AdS4 admits boundary conditions that preserve N=0,1,2,3,4 or 6 supersymmetries. In particular, we argue that the Vasiliev theory with U(M) Chan-Paton and N=6 boundary condition is holographically dual to the 2+1 dimensional U(N)k × U(M)-k ABJ theory in the limit of large N, k and finite M. In this system all bulk higher spin fields transform in the adjoint of the U(M) gauge group, whose bulk t’Hooft coupling is M/N. Analysis of boundary conditions in Vasiliev theory allows us to determine exact relations between the parity breaking phase of Vasiliev theory and the coefficients of two and three point functions in Chern-Simons vector models at large N. Our picture suggests that the supersymmetric Vasiliev theory can be obtained as a limit of type IIA string theory in AdS_4\\times {CP}^3, and that the non-Abelian Vasiliev theory at strong bulk ’t Hooft coupling smoothly turn into a string field theory. The fundamental string is a singlet bound state of Vasiliev’s higher spin particles held together by U(M) gauge interactions. This is illustrated by the thermal partition function of free ABJ theory on a two sphere at large M and N even in the analytically tractable free limit. In this system the traces or strings of the low temperature phase break up into their Vasiliev particulate constituents at a U(M) deconfinement phase transition of order unity. At a higher temperature of order T=\\sqrt{\\frac{N}{M}} Vasiliev’s higher spin fields themselves break up into more elementary constituents at a U(N) deconfinement temperature, in a process described in the bulk as black hole nucleation. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’.
Gauge invariant coupling of fields to torsion: A string inspired model
Bhattacharjee, Srijit; Chatterjee, Ayan
2011-05-15
In a consistent heterotic string theory, the Kalb-Ramond field, which is the source of space-time torsion, is augmented by Yang-Mills and gravitational Chern-Simons terms. When compactified to 4 dimensions and in the field theory limit, such additional terms give rise to interactions with interesting astrophysical predictions like rotation of plane of polarization for electromagnetic and gravitational waves. On the other hand, if one is also interested in coupling 2- or 3-form (Abelian or non-Abelian) gauge fields to torsion, one needs another class of interaction. In this paper, we shall study this interaction and offer some astrophysical and cosmological predictions. We explicitly calculate the Coleman-Weinberg potential for this theory. We also comment on the possibility of such terms in loop quantum gravity where, if the Barbero-Immirzi parameter is promoted to a field, acts as a source for torsion.
Clustering properties, Jack polynomials and unitary conformal field theories
NASA Astrophysics Data System (ADS)
Estienne, Benoit; Regnault, Nicolas; Santachiara, Raoul
2010-01-01
Recently, Jack polynomials have been proposed as natural generalizations of Z Read-Rezayi states describing non-Abelian fractional quantum Hall systems. These polynomials are conjectured to be related to correlation functions of a class of W-conformal field theories based on the Lie algebra A. These theories can be considered as non-unitary solutions of a more general series of CFTs with Z symmetry, the parafermionic theories. Starting from the observation that some parafermionic theories admit unitary solutions as well, we show, by computing the corresponding correlation functions, that these theories provide trial wavefunctions which satisfy the same clustering properties as the non-unitary ones. We show explicitly that, although the wavefunctions constructed by unitary CFTs cannot be expressed as a single Jack polynomial, they still show a fine structure where the mathematical properties of the Jack polynomials play a major role.
Koenig, Thomas; Zuber, Marcus; Trimborn, Barbara; Farago, Tomas; Meyer, Pascal; Kunka, Danays; Albrecht, Frederic; Kreuer, Sascha; Volk, Thomas; Fiederle, Michael; Baumbach, Tilo
2016-05-01
The x-ray dark-field contrast accessible via grating interferometry is sensitive to features at length scales well below what is resolvable by a detector system. It is commonly explained as arising from small-angle x-ray scattering (SAXS), and can be implemented both at synchrotron beamlines and with low-brilliance sources such as x-ray tubes. Here, we demonstrate that for tube based setups the underlying process of image formation can be fundamentally different. For focal spots or detector pixels that comprise multiple grating periods, we show that dark-field images contain a strong artificial and system-specific component not arising from SAXS. Based on experiments carried out with a nanofocus x-ray tube and the example of an excised rat lung, we demonstrate that the dark-field contrast observed for porous media transforms into a differential phase contrast for large geometric magnifications. Using a photon counting detector with an adjustable point spread function, we confirm that a dark-field image can indeed be formed by an intra-pixel differential phase contrast that cannot be resolved as such due to a dephasing between the periodicities of the absorption grating and the Talbot carpet. Our findings are further corroborated by a link between the strength of this pseudo-dark-field contrast and our x-ray tube's focal spot size in a three-grating setup. These results must not be ignored when measurements are intended to be reproducible across systems. PMID:27046451
NASA Astrophysics Data System (ADS)
Koenig, Thomas; Zuber, Marcus; Trimborn, Barbara; Farago, Tomas; Meyer, Pascal; Kunka, Danays; Albrecht, Frederic; Kreuer, Sascha; Volk, Thomas; Fiederle, Michael; Baumbach, Tilo
2016-05-01
The x-ray dark-field contrast accessible via grating interferometry is sensitive to features at length scales well below what is resolvable by a detector system. It is commonly explained as arising from small-angle x-ray scattering (SAXS), and can be implemented both at synchrotron beamlines and with low-brilliance sources such as x-ray tubes. Here, we demonstrate that for tube based setups the underlying process of image formation can be fundamentally different. For focal spots or detector pixels that comprise multiple grating periods, we show that dark-field images contain a strong artificial and system-specific component not arising from SAXS. Based on experiments carried out with a nanofocus x-ray tube and the example of an excised rat lung, we demonstrate that the dark-field contrast observed for porous media transforms into a differential phase contrast for large geometric magnifications. Using a photon counting detector with an adjustable point spread function, we confirm that a dark-field image can indeed be formed by an intra-pixel differential phase contrast that cannot be resolved as such due to a dephasing between the periodicities of the absorption grating and the Talbot carpet. Our findings are further corroborated by a link between the strength of this pseudo-dark-field contrast and our x-ray tube’s focal spot size in a three-grating setup. These results must not be ignored when measurements are intended to be reproducible across systems.
Knoop, L. de; Gatel, C.; Houdellier, F.; Monthioux, M.; Masseboeuf, A.; Snoeck, E.; Hÿtch, M. J.
2015-06-29
A dedicated transmission electron microscope sample holder has been used to study in situ the cold-field emission process of carbon cone nanotips (CCnTs). We show that when using a CCnT instead of a Au plate-anode, the standard deviation of the emission current noise can be decreased from the 10 nA range to the 1 nA range under vacuum conditions of 10{sup −5 }Pa. This shows the strong influence of the anode on the cold-field emission current noise.
Robustness of fractional quantum Hall states with dipolar atoms in artificial gauge fields
Grass, T.; Baranov, M. A.; Lewenstein, M.
2011-10-15
The robustness of fractional quantum Hall states is measured as the energy gap separating the Laughlin ground state from excitations. Using thermodynamic approximations for the correlation functions of the Laughlin state and the quasihole state, we evaluate the gap in a two-dimensional system of dipolar atoms exposed to an artificial gauge field. For Abelian fields, our results agree well with the results of exact diagonalization for small systems but indicate that the large value of the gap predicted [Phys. Rev. Lett. 94, 070404 (2005)] was overestimated. However, we are able to show that the small gap found in the Abelian scenario dramatically increases if we turn to non-Abelian fields squeezing the Landau levels.
Wallace, A.; Romney, E.M.; Kinnear, J.
1982-07-01
Baseline measurements were made of mineral composition of alfalfa (Medicago sativa L.) and sugar beets (Beta vulgaris L.) from one field each in the Imperial Valley of California. The fields are in a geothermal area being developed for energy production, and the purpose of the investigation was to ascertain variablility within a relatively large number of samples from a common area, so that subsequent samplings could be made to satisfactorily detect whether there were changes resulting from the geothermal activity. Means, standard deviations, frequency distribution, correlations, cluster trees, and other statistics were examined for over 20 elements at each site.Most elements were normally distributed, but there was three- to fourfold range in the concentration for each.
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
Solomon, L.
1998-05-01
Measurements of the multipole content of the Mini-Undulator magnet have been made with two different integrating wire techniques. Both measurements used 43 strand Litz wire stretched along the length of the magnet within the magnet gap. In the first technique, the wire motion was purely translational, while in the second technique the wire was moved along a circular path. The induced voltage in the Litz wire was input into a Walker integrator, and the integrator output was analyzed as a function of wire position for determination of the multipole content of the magnetic field. The mini-undulator magnet is a 10 period, 80 mm per period hybrid insertion device. For all the data contained herein the magnet gap was set at 49 mm. In the mini-undulator magnet, the iron poles are 18mm x 32mm x 86 mm, and the Samarium Cobalt permanent magnet blocks are 22mm x 21mm x 110mm. For this magnet, which is a shortened prototype for the NSLS Soft X-Ray Undulator Magnet, the undulator parameter K = 0.934 B (Tesla){lambda}(cm), and B(tesla) = 0.534/sinh({pi}Gap/{lambda}). At a gap of 49 mm, the magnetic field is 1590 Gauss.
Obtaining and maintaining funding
Beverly Hartline
1996-04-01
Obtaining and maintaining funding is important for individuals, groups, institutions, and fields. This challenge is easier during times of abundant and growing resources than it is now, when funding is tight and shrinking. Thus, to obtain and maintain funding will require: maintaining healthy funding levels for all of science; maintaining healthy funding levels for the field(s) you work in; and competing successfully for the available funds. Everyone should pay attention to the overall prospects for science funding and dedicate some effort to working with others to grow the constituency for science. Public support is likely an important prerequisite for keeping future science budgets high. In this context, researchers should share with society at large the benefits of their research, so that taxpayers can see and appreciate some return from the federal investment in science. Assuming this effort is successful, and there continue to be government and private organizations with substantial resources to invest in research, what can the individual investigator do to improve her chances? She can be clear about her goal(s) and carefully plan her effort to make maximum progress for minimum resources, especially early in her career while she is establishing a solid professional reputation. Specific useful strategies include: brainstorm funding options and select the most promising one(s); be persistent but flexible, responsive to new information and changing circumstances; provide value and assistance to prospective funding sources both before and after receiving funding; know the funding agents and what their goals are, they are the customers; promise a lot and always deliver more; build partnerships and collaboration to leverage interest and resources; and develop capabilities and ideas with a promising, irresistible future. There is no guarantee of success. For the best chances, consistently contribute positively and productively in all your efforts, and continue to
SOLOMON, L.
1998-05-01
Measurements of the multipole content of the Mini-Undulator magnet have been made with two different integrating wire techniques. Both measurements used 43 strand Litz wire stretched along the length of the magnet within the magnet gap. In the first technique, the wire motion was purely translational, while in the second technique the wire was moved along a circular path. The induced voltage in the Litz wire was input into a Walker integrator, and the integrator output was analyzed as a function of wire position for determination of the multipole content of the magnetic field. The mini-undulator magnet is a 10 period, 80 mm per period hybrid insertion device. For all the data contained herein the magnet gap was set at 49 mm. In the mini-undulator magnet, the iron poles are 18mm x 32mm x 86mm, and the Samarium Cobalt permanent magnet blocks are 22mm x 21mm x 110mm. For this magnet, which is a shortened prototype for the NSLS Soft X-Ray Undulator Magnet, the undulator parameter K = 0.934 B(Tesla){lambda}(cm), and B(tesla) = 0.534/sinh({pi}Gap/{lambda}). At a gap of 49 mm, the magnetic field is 1590 Gauss. The 43 strand Litz wire is supported on motorized x-y stages at both ends of the magnet, which are controlled by stepping motors through a Labview program. One leg of the wire loop is within the magnet gap, and the other leg is in an essentially field free region. Only the leg of the wire loop within the magnet gap is moved during data acquisition. The Litz wire is tensioned with 11.5 pounds, and is wrapped with a supporting tape which is itself tensioned with 18 pounds through a spring and turnbuckle arrangement. With this setup the sag in the wire over the 72 inch span is less than 0.003 inches, as measured with survey instruments. Photographs of the setup are shown.
NASA Technical Reports Server (NTRS)
Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy
2013-01-01
Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.
NASA Astrophysics Data System (ADS)
Zong, B. Y.; Phuoc, N. N.; Wu, Y. P.; Ho, P.; Yang, Y.; Li, Z. W.
2016-08-01
The preparation of thin ferromagnetic films with thermally stable properties in the high frequency gigahertz range is crucial for applications in different advanced devices. However, it is a challenge to attain such films as the mechanism and correlation between the crystallographic structure and dynamic magnetic properties remain unclear. Herein, through an appropriate annealing process involving a temperature of 510-580 K and an applied strong magnetic field of 10 kOe along the easy-axis of electrodeposited FeCo films, magnetic properties of the films (300-450 nm) in the gigahertz range are significantly improved. Typically, the magnetic soft nanofilms display highly stable dynamic microwave properties from room temperature to 420 K, even in the presence of a high frequency of ˜1.5 GHz and a large magnetic permeability of ˜460 (the maximum value in real part). The origin of the high thermal stability is attributed to the recrystallized uniformity in crystalline orientations and larger particle sizes after the annealing, which leads to slightly increased anisotropy, stress, Curie temperature, and difference in the magnetic coercivity between the easy and hard axes for the crystalline films, thus giving rise to the steady static magnetic properties (e.g., magnetic moment of 2.02-2.05 T) against environmental temperature fluctuation. This is in contrast to conventional as-prepared thin films without annealing or annealed in a transverse applied field. This method can be applied to other ferromagnetic films to improve their thermal stability for the utilization in various high frequency devices.
Gravitational Fields with 2-Dimensional Killing Leaves and the Gravitational Interaction of Light
NASA Astrophysics Data System (ADS)
Vilasi, Gaetano
Gravitational fields invariant for a non Abelian Lie algebra generating a 2-dimensional distribution, are explicitly described. When the orthogonal distribution is integrable and the metric is not degenerate along the orbits, these solutions are parameterized either by solutions of a transcendental equation (the tortoise equation), or by solutions of Darboux equation. Metrics, corresponding to solutions of the tortoise equation, are characterized as those that admit a 3-dimensional Lie algebra of Killing fields with 2-dimensional leaves. It is shown that the remaining metrics represent nonlinear gravitational waves obeying to two nonlinearsuperposition laws. The energy and the polarization of this family of waves are explicitly evaluated; it is shown that they have spin-1 and their possible sources are also described. Old results by Tolman, Ehrenfest, Podolsky and Wheeler on the gravitational interaction of photons are naturally reinterpreted.
Classical gluon fields and collective dynamics of color-charge systems
Voronyuk, V.; Goloviznin, V. V.; Zinovjev, G. M.; Cassing, W.; Molodtsov, S. V.; Snigirev, A. M.; Toneev, V. D.
2015-03-15
An investigation of color fields that arise in collisions of relativistic heavy ions reveals that, in the non-Abelian case, a change in the color charge leads to the appearance of an extra term that generates a sizable contribution of color-charge glow in chromoelectric and chromomagnetic fields. The possibility of the appearance of a color echo in the scattering of composite color particles belonging to the dipole type is discussed. Arguments are adduced in support of the statement that such effects are of importance in simulating the first stage of ultrarelativistic heavy-ion collisions,where the initial parton state is determined by a high nonequilibrium parton density and by strong local color fluctuations.
Geometrical gauge theory of ghost and Goldstone fields and of ghost symmetries
Ne'eman, Yuval; Thierry-Mieg, Jean
1980-01-01
We provide a geometrical identification of the ghost fields, essential to the renormalization procedure in the non-Abelian (Yang-Mills) case. These are some of the local components of a connection on a principal bundle. They multiply the differentials of coordinates spanning directions orthogonal to those of a given section, whereas the Yang-Mills potential multiplies the coordinates in the section itself. In the case of a supergroup, the ghosts become commutative for the odd directions, and represent Nambu-Goldstone fields. We apply the results to chiral “flavor” SU(3)L × SU(3)R and to SU(2/1). The latter reproduces a highly constrained Weinberg-Salam model. PMID:16592778
Swift, T.E.; Marlow, R.E.; Wilhelm, M.H.; Goodrich, J.H.; Kumar, R.M.
1981-11-01
This report describes part of the work done to fulfill a contract awarded to Gruy Federal, Inc., by the Department of Energy (DOE) on Feburary 12, 1979. The work includes pressure-coring and associated logging and testing programs to provide data on in-situ oil saturation, porosity and permeability distribution, and other data needed for resource characterization of fields and reservoirs in which CO/sub 2/ injection might have a high probability of success. This report details the second such project. Core porosities agreed well with computed log porosities. Core water saturation and computed log porosities agree fairly well from 3692 to 3712 feet, poorly from 3712 to 3820 feet and in a general way from 4035 to 4107 feet. Computer log analysis techniques incorporating the a, m, and n values obtained from Core Laboratories analysis did not improve the agreement of log versus core derived water saturations. However, both core and log analysis indicated the ninth zone had the highest residual hydrocarbon saturations and production data confirmed the validity of oil saturation determinations. Residual oil saturation, for the perforated and tested intervals were 259 STB/acre-ft for the interval from 4035 to 4055 feet, and 150 STB/acre-ft for the interval from 3692 to 3718 feet. Nine BOPD was produced from the interval 4035 to 4055 feet and no oil was produced from interval 3692 to 3718 feet, qualitatively confirming the relative oil saturations as calculated. The low oil production in the zone from 4022 to 4055 and the lack of production from 3692 to 3718 feet indicated the zone to be at or near residual waterflood conditions as determined by log analysis. This project demonstrates the usefulness of integrating pressure core, log, and production data to realistically evaluate a reservoir for carbon dioxide flood.
Tagami, Keiko; Uchida, Shigeo
2016-02-16
Radiocesium concentrations in most marine fish collected off the coast of Fukushima and surrounding prefectures have decreased with time, and four years after the Fukushima Daiichi Nuclear Power Plant accident occurred, radiocesium concentrations have generally fallen below the detectable level (ca. < 10 Bq kg(-1)-raw). Only in some demersal fish species have detectable concentration levels still been found, and even these species have showed slow radiocesium decreases. The food web was considered as the major factor causing this phenomenon; however, slow elimination rates of radiocesium from these fish species also could be the cause. The latter effect was examined by considering that the (137)Cs concentration decreasing trend in fish could be fit with a set of three exponentially decreasing components; that is, having short, intermediate, and long biological half-lives. The long ecological half-life component was calculated using a 400-1500 d period of monitoring results for Japanese rockfish (Sebastes cheni) and compared with previous reported laboratory results for biological half-life. The obtained ecological half-lives ranged from 274-365 d, and these values agreed with the biological half-life of this fish species. This result implied that the long biological half-lives of radiocesium in some demersal fish species made their radiocesium contamination periods longer.
Tagami, Keiko; Uchida, Shigeo
2016-02-16
Radiocesium concentrations in most marine fish collected off the coast of Fukushima and surrounding prefectures have decreased with time, and four years after the Fukushima Daiichi Nuclear Power Plant accident occurred, radiocesium concentrations have generally fallen below the detectable level (ca. < 10 Bq kg(-1)-raw). Only in some demersal fish species have detectable concentration levels still been found, and even these species have showed slow radiocesium decreases. The food web was considered as the major factor causing this phenomenon; however, slow elimination rates of radiocesium from these fish species also could be the cause. The latter effect was examined by considering that the (137)Cs concentration decreasing trend in fish could be fit with a set of three exponentially decreasing components; that is, having short, intermediate, and long biological half-lives. The long ecological half-life component was calculated using a 400-1500 d period of monitoring results for Japanese rockfish (Sebastes cheni) and compared with previous reported laboratory results for biological half-life. The obtained ecological half-lives ranged from 274-365 d, and these values agreed with the biological half-life of this fish species. This result implied that the long biological half-lives of radiocesium in some demersal fish species made their radiocesium contamination periods longer. PMID:26828695
Wada, Yumiko; Furuse, Tamio; Yamada, Ikuko; Masuya, Hiroshi; Kushida, Tomoko; Shibukawa, Yoko; Nakai, Yuji; Kobayashi, Kimio; Kaneda, Hideki; Gondo, Yoichi; Noda, Tetsuo; Shiroishi, Toshihiko; Wakana, Shigeharu
2010-01-01
To establish the cutoff values for screening ENU-induced behavioral mutations, normal variations in mouse behavioral data were examined in home-cage activity (HA), open-field (OF), and passive-avoidance (PA) tests. We defined the normal range as one that included more than 95% of the normal control values. The cutoffs were defined to identify outliers yielding values that deviated from the normal by less than 5% for C57BL/6J, DBA/2J, DBF(1), and N(2) (DXDB) progenies. Cutoff values for G1-phenodeviant (DBF(1)) identification were defined based on values over +/- 3.0 SD from the mean of DBF(1) for all parameters assessed in the HA and OF tests. For the PA test, the cutoff values were defined based on whether the mice met the learning criterion during the 2nd (at a shock intensity of 0.3 mA) or the 3rd (at a shock intensity of 0.15 mA) retention test. For several parameters, the lower outliers were undetectable as the calculated cutoffs were negative values. Based on the cutoff criteria, we identified 275 behavioral phenodeviants among 2,646 G1 progeny. Of these, 64 were crossed with wild-type DBA/2J individuals, and the phenotype transmission was examined in the G2 progeny using the cutoffs defined for N(2) mice. In the G2 mice, we identified 15 novel dominant mutants exhibiting behavioral abnormalities, including hyperactivity in the HA or OF tests, hypoactivity in the OF test, and PA deficits. Genetic and detailed behavioral analysis of these ENU-induced mutants will provide novel insights into the molecular mechanisms underlying behavior.
NASA Astrophysics Data System (ADS)
Bock, Josué; Jacobi, Hans-Werner
2010-05-01
The boundary layer composition in polar or snow covered regions is strongly affected by physical and chemical processes, which take place in the surface snow. Photolysis reactions initiated by solar radiation are particularly important. Among the reactive chemical species present in snow, nitrate can be ubiquitously found and is known to be photolyzed to produce nitrogen oxides, which are subsequently released to the overlying atmosphere. We developed a reaction mechanism for N-containing species in snow to describe the transformation of nitrate to NOx. Laboratory experiments using artificial snow were used to constrain a box model including the snow nitrate chemistry. This allowed to identify major reactions occurring after the photolysis of nitrate as an initial step. The mechanism was further extended to include reactions of hydrogen peroxide and formaldehyde. Finally, the box model was applied to investigate the surface snow chemistry in a natural, polar environment. The model was compared to results obtained in a 36-hour experiment carried out during the OASIS spring campaign 2009 at Barrow, AK. During this period, surface snow samples were collected every 2 hours in order to monitor the concentration evolution of the major reactive species in the snow. The samples were analyzed for compounds like nitrate, nitrite, formaldehyde, hydrogen peroxide, and further non-reactive sea salt components. Moreover, photolysis rates of nitrate, nitrite, and hydrogen peroxide in the snow were calculated based on measurements of in-snow spectral irradiance at different depths within the snow. The box model for snow chemistry was applied to this data set and used to elucidate the role of the various (photo)chemical reactions in the overall budgets of the measured species. Moreover, the effect of the chemical and physical processes on the composition of snow and the exchange of reactive compounds between the surface snow and the atmospheric boundary layer will be presented.
Rivoal, Katell; Protais, Jocelyne; Quéguiner, Stéphane; Boscher, Evelyne; Chidaine, Bérengère; Rose, Valérie; Gautier, Michel; Baron, Florence; Grosset, Noël; Ermel, Gwennola; Salvat, Gilles
2009-02-15
Salmonella is a well-documented pathogen known to occur in a wide range of foods, especially poultry products. The most frequently reported food-sources of human infection are eggs and egg products. In this study, in order to describe Salmonella contamination of egg products, 144 liquid egg samples were collected from 3 different egg-breaking plants during the 3 sampling periods. Salmonella detection was performed on raw samples stored at 2 degrees C for 2 days (D+2) and on pasteurised samples stored at 2 degrees C at D+2 and at shelf-life date. Salmonella was detected in 130 of the 144 raw egg samples collected and in 11 of the 288 pasteurised egg samples analysed. 740 Salmonella isolates were collected and serotyped: 14 serovars were demonstrated. A great diversity, particularly during summer, was noted. The dominant serovars were S. Enteritidis, S. Typhimurium and S. Infantis, mainly found in whole raw egg products. Typing of 325 isolates of S. Enteritidis, 54 isolates of S. Typhimurium and 58 isolates of S. Infantis was carried out by macrorestriction of the genomic DNA with XbaI and SpeI enzymes followed by pulsed field gel electrophoresis (PFGE). The Salmonella Enteritidis isolates could be grouped into 3 clusters. Cluster 1 was predominant at all 3 egg-breaking companies during the different sampling periods. This cluster seemed to be adapted to the egg-breaking plants. Cluster 2 was linked to plant 1 and cluster 3 to plant 3. Two main clusters of Salmonella Typhimurium were demonstrated. Cluster A was mainly found at plant 2 during autumn. Plant 3 was contaminated by all the Salmonella Typhimurium genotypes but in a more sporadic manner during the three seasons studied. Plant 1 seemed to be less contaminated by Salmonella Typhimurium than the others. Three clusters and 2 genotypes of Salmonella Infantis were shown. The main cluster, cluster alpha, consisted of 75% of the S. Infantis isolates and was mainly found during summer at plants 1 and 3. Plant 2
NASA Astrophysics Data System (ADS)
Koker, Edmond B.
1994-12-01
The application of tunable excimer lasers in combustion and flow diagnostics is almost routine nowadays. The properties of this laser system that enable density and temperature measurements in supersonic and hypersonic flow fields to be conducted are its high power, high repetition rate, and high spectral brightness. The limitation imposed by this system on these measurements is the paucity of lines in the wavelength region, the vacuum-ultraviolet, where species of interest, such as OH, N2, O2, H2, H2O, CO, NO, etc., are susceptible to electronic excitation to high-lying states. To circumvent this problem one normally resorts to nonlinear optical techniques such as frequency conversion via stimulated Raman scattering (SRS), more commonly known as Raman shifting or Raman mixing, to extend these nonintrusive and nonperturbing techniques to the shorter wavelengths in the VUV region and, for that matter, to longer wavelengths in the infrared region, if the need arises. The theoretical basis of SRS and its application are well documented in the literature. In essence, the Raman shift is a consequence of the inelastic scattering of the incident radiation by the sample. Most of the scattered radiation from the molecules of the sample is unchanged in frequency. However, a small fraction of the incident radiation is changed in frequency. This shift is a result of the fact that some of the incident photons on colliding with the molecules of the sample give up some of their energy and emerge with a lower energy resulting in the lower-frequency Stokes radiation. Other incident photons may increase their energy by colliding with the vibrationally excited molecules of the medium and emerge as higher-frequency antistokes radiation. The generation of the latter is the main objective of this project. The process, however, depends on several factors, including the beam quality of the pump laser, the cross-section of the gaseous medium, the gas pressure, and the ambient temperature
NASA Technical Reports Server (NTRS)
Koker, Edmond B.
1994-01-01
The application of tunable excimer lasers in combustion and flow diagnostics is almost routine nowadays. The properties of this laser system that enable density and temperature measurements in supersonic and hypersonic flow fields to be conducted are its high power, high repetition rate, and high spectral brightness. The limitation imposed by this system on these measurements is the paucity of lines in the wavelength region, the vacuum-ultraviolet, where species of interest, such as OH, N2, O2, H2, H2O, CO, NO, etc., are susceptible to electronic excitation to high-lying states. To circumvent this problem one normally resorts to nonlinear optical techniques such as frequency conversion via stimulated Raman scattering (SRS), more commonly known as Raman shifting or Raman mixing, to extend these nonintrusive and nonperturbing techniques to the shorter wavelengths in the VUV region and, for that matter, to longer wavelengths in the infrared region, if the need arises. The theoretical basis of SRS and its application are well documented in the literature. In essence, the Raman shift is a consequence of the inelastic scattering of the incident radiation by the sample. Most of the scattered radiation from the molecules of the sample is unchanged in frequency. However, a small fraction of the incident radiation is changed in frequency. This shift is a result of the fact that some of the incident photons on colliding with the molecules of the sample give up some of their energy and emerge with a lower energy resulting in the lower-frequency Stokes radiation. Other incident photons may increase their energy by colliding with the vibrationally excited molecules of the medium and emerge as higher-frequency antistokes radiation. The generation of the latter is the main objective of this project. The process, however, depends on several factors, including the beam quality of the pump laser, the cross-section of the gaseous medium, the gas pressure, and the ambient temperature
Generalized helicity and Beltrami fields
Buniy, Roman V.; Kephart, Thomas W.
2014-05-15
We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.
Undalov, Yu. K. Terukov, E. I.; Gusev, O. B.; Lebedev, V. M.; Trapeznikova, I. N.
2008-11-15
The effect of electric field on the elemental composition and photoluminescence of films of amorphous hydrogenated silicon doped with erbium and oxygen (a-SiO{sub x}:H(Er, O)) in the course of obtaining these films by dc magnetron sputtering is studied. Two series of films were studied in relation to the electric-field strength in the magnetron, the area of the metallic erbium target, and oxygen content in the working chamber. The first series of films was obtained using an electrically insulated substrate holder, and the second series was obtained with a positive potential at the substrate holder with respect to the cathode. It is shown that, although the character of variation in the elemental composition and photoluminescence intensity for erbium Er{sup 3+} ions differ appreciably in the films of the two series, both of these factors are determined, as a result, by the processes of sputtering oxidation of the Si and Er targets that represent the cathode.
Protected gates for topological quantum field theories
NASA Astrophysics Data System (ADS)
Beverland, Michael E.; Buerschaper, Oliver; Koenig, Robert; Pastawski, Fernando; Preskill, John; Sijher, Sumit
2016-02-01
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
The charged inflaton and its gauge fields: preheating and initial conditions for reheating
NASA Astrophysics Data System (ADS)
Lozanov, Kaloian D.; Amin, Mustafa A.
2016-06-01
We calculate particle production during inflation and in the early stages of reheating after inflation in models with a charged scalar field coupled to Abelian and non-Abelian gauge fields. A detailed analysis of the power spectra of primordial electric fields, magnetic fields and charge fluctuations at the end of inflation and preheating is provided. We carefully account for the Gauss constraints during inflation and preheating, and clarify the role of the longitudinal components of the electric field. We calculate the timescale for the back-reaction of the produced gauge fields on the inflaton condensate, marking the onset of non-linear evolution of the fields. We provide a prescription for initial conditions for lattice simulations necessary to capture the subsequent nonlinear dynamics. On the observational side, we find that the primordial magnetic fields generated are too small to explain the origin of magnetic fields on galactic scales and the charge fluctuations are well within observational bounds for the models considered in this paper.
Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields
NASA Astrophysics Data System (ADS)
Finazzo, Stefano Ivo; Critelli, Renato; Rougemont, Romulo; Noronha, Jorge
2016-09-01
We present a holographic perspective on momentum transport in strongly coupled, anisotropic non-Abelian plasmas in the presence of strong magnetic fields. We compute the anisotropic heavy quark drag forces and Langevin diffusion coefficients and also the anisotropic shear viscosities for two different holographic models, namely, a top-down deformation of strongly coupled N =4 super-Yang-Mills theory triggered by an external Abelian magnetic field, and a bottom-up Einstein-Maxwell-dilaton (EMD) model which is able to provide a quantitative description of lattice QCD thermodynamics with (2 +1 ) flavors at both zero and nonzero magnetic fields. We find that, in general, energy loss and momentum diffusion through strongly coupled anisotropic plasmas are enhanced by a magnetic field being larger in transverse directions than in the direction parallel to the magnetic field. Moreover, the anisotropic shear viscosity coefficient is smaller in the direction of the magnetic field than in the plane perpendicular to the field, which indicates that strongly coupled anisotropic plasmas become closer to the perfect fluid limit along the magnetic field. We also present, in the context of the EMD model, holographic predictions for the entropy density and the crossover critical temperature in a wider region of the (T , B ) phase diagram that has not yet been covered by lattice simulations. Our results for the transport coefficients in the phenomenologically realistic magnetic EMD model could be readily used as inputs in numerical codes for magnetohydrodynamics.
Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional non-Abelian spin models.
Borisenko, Oleg; Chelnokov, Volodymyr; Cuteri, Francesca; Papa, Alessandro
2016-07-01
It is argued that two-dimensional U(N) spin models for any N undergo a Berezinskii-Kosterlitz-Thouless (BKT)-like phase transition, similarly to the famous XY model. This conclusion follows from the Berezinskii-like calculation of the two-point correlation function in U(N) models, approximate renormalization group analysis, and numerical investigations of the U(2) model. It is shown, via Monte Carlo simulations, that the universality class of the U(2) model coincides with that of the XY model. Moreover, preliminary numerical results point out that two-dimensional SU(N) spin models with the fundamental and adjoint terms and N>4 exhibit two phase transitions of BKT type, similarly to Z(N) vector models. PMID:27575078
Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional non-Abelian spin models
NASA Astrophysics Data System (ADS)
Borisenko, Oleg; Chelnokov, Volodymyr; Cuteri, Francesca; Papa, Alessandro
2016-07-01
It is argued that two-dimensional U(N ) spin models for any N undergo a Berezinskii-Kosterlitz-Thouless (BKT)-like phase transition, similarly to the famous X Y model. This conclusion follows from the Berezinskii-like calculation of the two-point correlation function in U(N ) models, approximate renormalization group analysis, and numerical investigations of the U(2 ) model. It is shown, via Monte Carlo simulations, that the universality class of the U(2 ) model coincides with that of the X Y model. Moreover, preliminary numerical results point out that two-dimensional SU(N ) spin models with the fundamental and adjoint terms and N >4 exhibit two phase transitions of BKT type, similarly to Z (N ) vector models.
On Pauli's Invention of Non-Abelian Kaluza-Klein Theory in 1953
NASA Astrophysics Data System (ADS)
Straumann, N.
2002-12-01
There are documents which show that Wolfgang Pauli developed in 1953 the first consistent generalization of the five-dimensional theory of Kaluza, Klein, Fock and others to a higher dimensional internal space. Because he saw no way to give masses to the gauge bosons, he refrained from publishing his results formally.
Holographic entropy and real-time dynamics of quarkonium dissociation in non-Abelian plasma
Iatrakis, Ioannis; Kharzeev, Dmitri E.
2016-04-26
The peak of the heavy quark pair entropy at the deconfinement transition, observed in lattice QCD, suggests that the transition is effectively driven by the increase of the entropy of bound states. The growth of the entropy with the interquark distance leads to the emergent entropic force that induces dissociation of quarkonium states. Since the quark-gluon plasma around the transition point is a strongly coupled system, we use the gauge-gravity duality to study the entropy of heavy quarkonium and the real-time dynamics of its dissociation. In particular, we employ the improved holographic QCD model as a dual description of largemore » Nc Yang-Mills theory. Studying the dynamics of the fundamental string between the quarks placed on the boundary, we find that the entropy peaks at the transition point. We also study the real-time dynamics of the system by considering the holographic string falling in the black hole horizon where it equilibrates. As a result, in the vicinity of the deconfinement transition, the dissociation time is found to be less than a fermi, suggesting that the entropic destruction is the dominant dissociation mechanism in this temperature region.« less
Lepton Flavour Violation and electron EDM in SUSY with a non-abelian flavour symmetry
Calibbi, Lorenzo
2008-11-23
We present the lepton sector phenomenology of a supersymmetric flavour model based on a SU(3) horizontal symmetry. This model successfully reproduces the observed fermion masses and mixings, without introducing unacceptably large SUSY sources of flavour and CP violation. We show that the model, which is at present weakly constrained, predicts the electron EDM and {mu}{yields}e,y to be within the final sensitivity of the currently running experiments, at least for SUSY masses within the reach of the LHC.
Probing non-Abelian statistics in ν=12/5 quantum Hall state
NASA Astrophysics Data System (ADS)
Law, K. T.
2008-05-01
The tunneling current and shot noise of the current between two fractional quantum hall (FQH) edges in the ν=12/5 FQH state in an electronic Mach-Zehnder interferometer are studied. It is shown that the tunneling current and shot noise can be used to probe the existence of k=3 parafermion statistics in the ν=12/5 FQH state. More specifically, the dependence of the current on the Aharonov-Bohm flux in the Read-Rezayi state is asymmetric under the change in the sign of the applied voltage. This property is absent in the Abelian-Laughlin states. Moreover, the Fano factor can exceed 12.7 electron charges in the ν=12/5 FQH state. This number well exceeds the maximum possible Fano factor in all Laughlin states and the ν=5/2 Moore-Read state, which was previously shown to be e and 3.2e , respectively.
Bernevig, B Andrei; Haldane, F D M
2009-02-13
We present model wave functions for quasielectron (as opposed to quasihole) excitations of the unitary Z_{k} parafermion sequence (Laughlin, Moore-Read, or Read-Rezayi) of fractional quantum Hall states. We uniquely define these states through two generalized clustering conditions: they vanish when either a cluster of k+2 electrons is put together or when two clusters of k+1 electrons are formed at different positions. For Abelian fractional quantum Hall states (k=1), our construction reproduces the Jain quasielectron wave function and elucidates the difference between the Jain and Laughlin quasielectrons. PMID:19257618
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei; Haldane, F. D. M.
2009-02-01
We present model wave functions for quasielectron (as opposed to quasihole) excitations of the unitary Zk parafermion sequence (Laughlin, Moore-Read, or Read-Rezayi) of fractional quantum Hall states. We uniquely define these states through two generalized clustering conditions: they vanish when either a cluster of k+2 electrons is put together or when two clusters of k+1 electrons are formed at different positions. For Abelian fractional quantum Hall states (k=1), our construction reproduces the Jain quasielectron wave function and elucidates the difference between the Jain and Laughlin quasielectrons.
Holographic entropy and real-time dynamics of quarkonium dissociation in non-Abelian plasma
NASA Astrophysics Data System (ADS)
Iatrakis, Ioannis; Kharzeev, Dmitri E.
2016-04-01
The peak of the heavy quark pair entropy at the deconfinement transition, observed in lattice QCD, suggests that the transition is effectively driven by the increase of the entropy of bound states. The growth of the entropy with the interquark distance leads to the emergent entropic force that induces dissociation of quarkonium states. Since the quark-gluon plasma around the transition point is a strongly coupled system, we use the gauge-gravity duality to study the entropy of heavy quarkonium and the real-time dynamics of its dissociation. In particular, we employ the improved holographic QCD model as a dual description of large Nc Yang-Mills theory. Studying the dynamics of the fundamental string between the quarks placed on the boundary, we find that the entropy peaks at the transition point. We also study the real-time dynamics of the system by considering the holographic string falling in the black hole horizon where it equilibrates. In the vicinity of the deconfinement transition, the dissociation time is found to be less than a fermi, suggesting that the entropic destruction is the dominant dissociation mechanism in this temperature region.
Christiansen, H.R.; Schaposnik, F.A.
1997-04-01
We compute vacuum expectation values of products of fermion bilinears for two-dimensional quantum chromodynamics at finite flavored-fermion densities. We introduce the chemical potential as an external charge distribution within the path-integral approach and carefully analyze the contribution of different topological sectors to fermion correlators. We show the existence of chiral condensates exhibiting an oscillatory inhomogeneous behavior as a function of a chemical potential matrix. This result is exact and goes in the same direction as the behavior found in four-dimensional QCD within the large N approximation. {copyright} {ital 1997} {ital The American Physical Society}
Cosmological consequences of classical flavor-space locked gauge field radiation
NASA Astrophysics Data System (ADS)
Bielefeld, Jannis; Caldwell, Robert R.
2015-06-01
We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early Universe and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: nonzero cross-correlation of the cosmic microwave background temperature and polarization, T B and E B , both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future cosmic microwave background experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and magnetic field energy density. The fluctuation power of primordial gravitational waves oscillates back and forth into fluctuations of the gauge field. In certain cases, the gravitational wave spectrum is shown to be suppressed or amplified by up to an order of magnitude depending on the initial conditions of the gauge field.
NASA Technical Reports Server (NTRS)
Butler, Thomas G.
1990-01-01
In modeling a complex structure the researcher was faced with a component that would have logical appeal if it were modeled as a beam. The structure was a mast of a robot controlled gantry crane. The structure up to this point already had a large number of degrees of freedom, so the idea of conserving grid points by modeling the mast as a beam was attractive. The researcher decided to make a separate problem of of the mast and model it in three dimensions with plates, then extract the equivalent beam properties by setting up the loading to simulate beam-like deformation and constraints. The results could then be used to represent the mast as a beam in the full model. A comparison was made of properties derived from models of different constraints versus manual calculations. The researcher shows that the three-dimensional model is ineffective in trying to conform to the requirements of an equivalent beam representation. If a full 3-D plate model were used in the complete representation of the crane structure, good results would be obtained. Since the attempt is to economize on the size of the model, a better way to achieve the same results is to use substructuring and condense the mast to equivalent end boundary and intermediate mass points.
Consistent compactification of double field theory on non-geometric flux backgrounds
NASA Astrophysics Data System (ADS)
Hassler, Falk; Lüst, Dieter
2014-05-01
In this paper, we construct non-trivial solutions to the 2 D-dimensional field equations of Double Field Theory (DFT) by using a consistent Scherk-Schwarz ansatz. The ansatz identifies 2( D - d) internal directions with a twist U M N which is directly connected to the covariant fluxes ABC . It exhibits 2( D - d) linear independent generalized Killing vectors K I J and gives rise to a gauged supergravity in d dimensions. We analyze the covariant fluxes and the corresponding gauged supergravity with a Minkowski vacuum. We calculate fluctuations around such vacua and show how they gives rise to massive scalars field and vectors field with a non-abelian gauge algebra. Because DFT is a background independent theory, these fields should directly correspond the string excitations in the corresponding background. For ( D - d) = 3 we perform a complete scan of all allowed covariant fluxes and find two different kinds of backgrounds: the single and the double elliptic case. The later is not T-dual to a geometric background and cannot be transformed to a geometric setting by a field redefinition either. While this background fulfills the strong constraint, it is still consistent with the Killing vectors depending on the coordinates and the winding coordinates, thereby giving a non-geometric patching. This background can therefore not be described in Supergravity or Generalized Geometry.
Karagöz, Alper; Sunnetcioglu, Mahmut; Ceylan, Mehmet Resat; Bayram, Yasemin; Yalcin, Gozde; Kocak, Nadir; Suvak, Burak; Andac, Cenk A
2016-01-01
In this study, drug resistance of 28 ESBL-producing Escherichia coli isolates obtained from 144 patients hospitalized at the Yüzüncüyil University Hospital at Van (YUH), Turkey, between 2009 and 2012 were characterized by pulsed field gel electrophoresis and antibiotic susceptibility tests. Antibiotic resistance profile was determined by Phoenix automated system (BD, USA). The ratio of ESBL-producing E. coli strains was determined to be 19.4% (28 out of 144 E. coli isolates). It was determined that the anaesthesiology, paediatrics and thoracic medicine intensive care units in YUH were cross-contaminated between 2009 and 2012 by ESBL-producing E. coli strains, which is a sign of nosocomial infection in YUH. Analysis of PFGE results gave rise to two main PFGE profiles, profile-A with four subprofiles and profile-B with three subprofiles, where profile-A predominates over profile-B (14%). Comparison of the antibiotic resistance profile with the PFGE profile yielded similarities while some differences also exist due to either identical restriction enzyme cutting sites with slightly different genetic sequences in between the cutting sites or newly formed restriction enzyme cutting sites that do not affect antibiotic resistance genes. Enterobacteriaceae, particularly E. coli, have developed resistance in YUH by producing ESBLs against oxyimino and non-oxyimino cephalosporins, and penicillin-type antibiotics. Therefore, more effective antibiotics such as cefoxitin or cefoperazone-sulbactam should be used for the treatment of future nosocomial infections in YUH while hospital staff should take care with hygiene, such as hand washing. PMID:27031893
NASA Astrophysics Data System (ADS)
Stumpf, H.
1987-03-01
The model is defined by a selfregularizing nonlinear preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of the fermionic preon fields. In particular electroweak gauge bosons are two-particle composites, leptons and quarks are three-particle composites, and gluons are six-particle composites. Electroweak gauge bosons, leptons and quarks and their effective interactions etc. were studied in preceding papers. In this paper gluons and their effective dynamics are discussed. Due to the complications of a six-particle bound state dynamics the formation of gluons is performed in two steps: First the effective dynamics of three-particle composites (quarks) is derived, and secondly gluons are fusioned from two quarks respectively. The resulting effective gluon dynamics is a non-abelian SU(3) dynamics, i.e. this local gauge dynamics is produced by the properties of the composites and need not be introduced in the original preon field equation. Mathematically these results are achieved by the application of functional quantum theory to the model under consideration and subsequent evaluation of weak mapping procedures, both introduced in preceding papers. PACS 11.10 Field theory. PACS 12.10 Unified field theories and models. PACS 12.35 Composite models of particles.
Planar limit of orientifold field theories and emergent center symmetry
NASA Astrophysics Data System (ADS)
Armoni, Adi; Shifman, Mikhail; Ünsal, Mithat
2008-02-01
We consider orientifold field theories [i.e., SU(N) Yang-Mills theories with fermions in the two-index symmetric or antisymmetric representations] on R3×S1 where the compact dimension can be either temporal or spatial. These theories are planar equivalent to supersymmetric Yang-Mills theory. The latter has ZN center symmetry. The famous Polyakov criterion establishing confinement-deconfinement phase transition as that from ZN symmetric to ZN broken phase applies. At the Lagrangian level the orientifold theories have at most a Z2 center. We discuss how the full ZN center symmetry dynamically emerges in the orientifold theories in the limit N→∞. In the confining phase the manifestation of this enhancement is the existence of stable k strings in the large-N limit of the orientifold theories. These strings are identical to those of supersymmetric Yang-Mills theories. We argue that critical temperatures (and other features) of the confinement-deconfinement phase transition are the same in the orientifold daughters and their supersymmetric parent up to 1/N corrections. We also discuss the Abelian and non-Abelian confining regimes of four-dimensional QCD-like theories.
Planar limit of orientifold field theories and emergent center symmetry
Armoni, Adi; Shifman, Mikhail; Uensal, Mithat
2008-02-15
We consider orientifold field theories [i.e., SU(N) Yang-Mills theories with fermions in the two-index symmetric or antisymmetric representations] on R{sub 3}xS{sub 1} where the compact dimension can be either temporal or spatial. These theories are planar equivalent to supersymmetric Yang-Mills theory. The latter has Z{sub N} center symmetry. The famous Polyakov criterion establishing confinement-deconfinement phase transition as that from Z{sub N} symmetric to Z{sub N} broken phase applies. At the Lagrangian level the orientifold theories have at most a Z{sub 2} center. We discuss how the full Z{sub N} center symmetry dynamically emerges in the orientifold theories in the limit N{yields}{infinity}. In the confining phase the manifestation of this enhancement is the existence of stable k strings in the large-N limit of the orientifold theories. These strings are identical to those of supersymmetric Yang-Mills theories. We argue that critical temperatures (and other features) of the confinement-deconfinement phase transition are the same in the orientifold daughters and their supersymmetric parent up to 1/N corrections. We also discuss the Abelian and non-Abelian confining regimes of four-dimensional QCD-like theories.
Planar Limit of Orientifold Field Theories and Emergent Center Symmetry
Armoni, Adi; Shifman, Mikhail; Unsal, Mithat
2007-12-05
We consider orientifold field theories (i.e. SU(N) Yang-Mills theories with fermions in the two-index symmetric or antisymmetric representations) on R{sub 3} x S{sub 1} where the compact dimension can be either temporal or spatial. These theories are planar equivalent to supersymmetric Yang-Mills. The latter has Z{sub N} center symmetry. The famous Polyakov criterion establishing confinement-deconfinement phase transition as that from Z{sub N} symmetric to Z{sub N} broken phase applies. At the Lagrangian level the orientifold theories have at most a Z{sub 2} center. We discuss how the full Z{sub N} center symmetry dynamically emerges in the orientifold theories in the limit N {yields} {infinity}. In the confining phase the manifestation of this enhancement is the existence of stable k-strings in the large-N limit of the orientifold theories. These strings are identical to those of supersymmetric Yang-Mills theories. We argue that critical temperatures (and other features) of the confinement-deconfinement phase transition are the same in the orientifold daughters and their supersymmetric parent up to 1/N corrections. We also discuss the Abelian and non-Abelian confining regimes of four-dimensional QCD-like theories.
The quantum field theory of electric and magnetic charge
NASA Astrophysics Data System (ADS)
Blagojević, M.; Senjanović, P.
1988-01-01
The dynamics of monopoles as quantum objects is described by the quantum field theory of monopoles and charges. Owing to the presence of a preferred direction n, this is the first example of a theory which is not manifestly Lorentz invariant, though intrinsically it possesses this invariance. Another unusual property of this Abelian theory is that it has two coupling constants connected via the quatization condition. The investigation of the basic properties of the theory is facilitated by the existence of various formulations. Thus, Lorentz invariance, which is not easily seen in Schwinger's Hamiltonian framework, is transparent after the introduction of the particle-path representation of Zwanziger's local Langrarian formulation. Ultraviolet properties of the theory receive a superior, n-independent treatment in this representation, with the result that favors opposite renormalization of electric and magnetic charge. The physical content of infrared regularization is clearly described in the one-potential formulation. Several other topics are treated: Dirac's quantum mechanics of the monopole, connection with non-Abelian monopoles, a supersymmetric generalization of the theory, and its possible role in preon dynamics.
Isospin diffusion in thermal AdS/CFT correspondence with flavor
Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix
2007-08-15
We study the gauge/gravity dual of a finite temperature field theory at finite isospin chemical potential by considering a probe of two coincident D7-branes embedded in the AdS-Schwarzschild black hole background. The isospin chemical potential is obtained by giving a vacuum expectation value to the time component of the non-Abelian gauge field on the brane. The fluctuations of the non-Abelian gauge field on the brane are dual to the SU(2) flavor current in the field theory. For the embedding corresponding to vanishing quark mass, we calculate all Green functions corresponding to the components of the flavor current correlator. We discuss the physical properties of these Green functions, which go beyond linear response theory. In particular, we show that the isospin chemical potential leads to a frequency-dependent isospin diffusion coefficient.
Motion of small bodies in classical field theory
Gralla, Samuel E.
2010-04-15
I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body's composition (and, e.g., black holes are allowed). The worldline 'left behind' by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the 'Bianchi identity' for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the ''monopoles'' of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of 'chameleon' bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.
NASA Astrophysics Data System (ADS)
Carter, Brandon
2010-02-01
The principles of a previously developed formalism for the covariant treatment of multiscalar fields for which (as in a nonlinear sigma model) the relevant target space is not of affine type—but curved—are recapitulated. Their application is extended from ordinary harmonic models to a more general category of harmonious field models, with emphasis on cases in which the field is confined to a string or higher brane world sheet, and for which the relevant internal symmetry group is non-Abelian, so that the conditions for conservation of the corresponding charge currents become rather delicate, particularly when the symmetry is gauged. Attention is also given to the conditions for conservation of currents of a different kind—representing surface fluxes of generalized momentum or energy—associated with symmetries not of the internal target space but of the underlying space-time background structure, including the metric and any relevant gauge field. For the corresponding current to be conserved the latter need not be manifestly invariant: preservation modulo a gauge adjustment will suffice. The simplest case is that of “strong” symmetry, meaning invariance under the action of an effective Lie derivative (an appropriately gauge adjusted modification of an ordinary Lie derivative). When the effective symmetry is of the more general “weak” kind, the kinetic part of the current is not conserved by itself but only after being supplemented by a suitable contribution from the background.
Topics in multi-component ultracold gases and gauge fields
NASA Astrophysics Data System (ADS)
Ozawa, Tomoki
In this thesis, we present theoretical studies on three topics related to multi-component ultracold gases and gauge fields. The first topic that we discuss is artificial gauge fields in ultracold gases. Recently, methods to create artificial gauge fields coupled to neutral ultracold systems using a light-induced Berry's connection have been rapidly developing. These methods are not only capable of creating Abelian gauge fields, such as a conventional magnetic field, but also non-Abelian gauge fields, which opens a way to explore and simulate a wide variety of physical models. In this thesis, we discuss various properties of bosons with Rashba-Dresselhaus spin-orbit coupling, which is a special type of non-Abelian gauge field. We investigate the stability of Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling, and show that the condensates are stable against quantum and thermal fluctuations. We also consider the renormalization of the bare interaction by calculating the t-matrix and its consequence on the ground state phase diagrams. The second topic discussed here is three-component ultracold fermionic systems. It is known that ferromagnetism and superfluidity can coexist at low enough temperature in three-component ultracold fermions. In this thesis, we elucidate how fermionic pairing and population imbalance enhance each other. We also describe a crossover from Bardeen-Cooper-Schrieffer state of fermionic pairing state to the limit of Bose-Einstein condensate of three weakly interacting species of molecules, as the interaction increases. Furthermore, we find an interesting similarity in the free energies between three-component ultracold fermions and quantum chromodynamics. The last topic discussed here is Niels Bohr's double-slit interference gedankenexperiment with charged particles, which argues that the consistency of elementary quantum mechanics requires that the electromagnetic field must be quantized. In the experiment a particle's path
Baryon squishing in synthetic dimensions by effective SU (M) gauge fields
NASA Astrophysics Data System (ADS)
Ghosh, Sudeep Kumar; Yadav, Umesh K.; Shenoy, Vijay B.
We investigate the physics of SU (M) symmetric interactions in the ``synthetic dimensions'' (Celi et al., PRL 112, 043001 (2014)) that provides a cold atom realization of the Hofstadter model. We show that this system is equivalent to particles (with SU (M) symmetric interactions) experiencing an SU (M) Zeeman field at each lattice site and a non-Abelian SU (M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating non-local interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the ``baryon breaking'' effect of the Zeeman field. For M particles, concomitantly, the SU (M) singlet baryon which is site localized in the usual 1d optical lattice, is deformed to a non-local object (``squished baryon''). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed matter models such as the SU (M) random flux model, inconceivable in conventional experimental systems. Reference: arXiv:1503.02301 Work supported by CSIR, DST and DAE.
Testing the master constraint programme for loop quantum gravity: V. Interacting field theories
NASA Astrophysics Data System (ADS)
Dittrich, B.; Thiemann, T.
2006-02-01
This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein Yang Mills theory and 2 + 1 gravity. Interestingly, while Yang Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity.
Non-perturbative effects in quantum field theory: QCD, supersymmetric QCD and axions
NASA Astrophysics Data System (ADS)
Wu, Weitao
In the study of non-perturbative effects in four dimenstional non-Abelian gauge theories, instantons have played an important conceptual role. However, their role in the quantitative understanding these theories has remained obscure. In the first part of this thesis, we revisit the question of whether or not one can perform reliable semiclassical QCD computation at zero temperature. We study correlation functions with no perturbative contributions, and organize the problem by means of the operator product expansion, establishing a precise criterion for the validity of semiclassical calculation. For N f > Nc, a systematic computation is possible; for Nf < Nc, it is not. Nf = Nc is a borderline case. As an application, we describe a test of QCD lattice gauge theory computations in the chiral limit. Supersymmetry has provided a tool with which to obtain a range of exact results in field theory and string theory. Arguably the first inkling that one could obtain such results was the work of Novikov, Shifman, Vainshtein, and Zakharov (NSVZ). They argued for two exact results in gauge theories using instanton computation. First, that one could compute certain correlation functions exactly at weak coupling, and extend the results to strong coupling; second, that one could obtain exact expressions for beta-functions. However, each of these results raised questions. As methods exploiting systematic weak coupling expansions and holomorphy were developed, it became clear that the strong coupling instanton computation was incorrect. This in turn called the exact beta-function into question. In the second part of this thesis, we will provide resolutions to both of these questions. First, we explain why the instanton computation in the pure supersymmetric gauge theory is not reliable, even at short distances. The semiclassical expansion about the instanton is purely formal; if infrared divergences appear, they spoil arguments based on holomorphy. For the question of the NSVZbeta
Free Quantum Field Theory from Quantum Cellular Automata
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro
2015-10-01
After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).
Low-energy effective field theory for chromo-natural inflation
Dimastrogiovanni, Emanuela; Fasiello, Matteo; Tolley, Andrew J. E-mail: mrf65@case.edu
2013-02-01
Chromo-natural inflation is a novel model of inflation which relies on the existence of non-abelian gauge fields interacting with an axion. In its simplest realization, an SU(2) gauge field is assumed to begin inflation in a rotationally invariant VEV. The dynamics of the gauge fields significantly modifies the equations of motion for the axion, providing an additional damping term that supports slow-roll inflation, without the need to fine tune the axion decay constant. We demonstrate that in an appropriate slow-roll limit it is possible to integrate out the massive gauge field fluctuations whilst still maintaining the nontrivial modifications of the gauge field to the axion. In this slow-roll limit, chromo-natural inflation is exactly equivalent to a single scalar field effective theory with a non-minimal kinetic term, i.e. a P(X,χ) model. This occurs through a precise analogue of the gelaton mechanism, whereby heavy fields can have unsuppressed effects on the light field dynamics without contradicting decoupling. The additional damping effect of the gauge fields can be completely captured by the non-minimal kinetic term of the single scalar field effective theory. We utilize the single scalar field effective theory to infer the power spectrum and non-gaussianities in chromo-natural inflation and confirm that the mass squared of all the gauge field fluctuations is sufficiently large and positive that they completely decouple during inflation. These results confirm that chromo-natural inflation is a viable, stable and compelling model for the generation of inflationary perturbations.
NASA Astrophysics Data System (ADS)
Bouchiat, Marie-Anne; Bouchiat, Claude
2012-10-01
We have constructed the geometric phases emerging from the non-trivial topology of a space-dependent magnetic field B(r), interacting with the spin magnetic moment of a neutral particle. Our basic tool, adapted from a previous work on Berry’s phases, is the space-dependent unitary transformation {U}({\\mathbf {r}}), which leads to the identity, {U}({\\mathbf {r}})^{\\dag }\\, {\\mathbf {S}}\\,{\\bm \\cdot}\\, {\\mathbf {B}}({\\mathbf {r}}) \\, {U}({\\mathbf {r}}) = \\vert {\\mathbf {B}}({\\mathbf {r}}) \\vert \\, S_z, at each point r. In the ‘rotated’ Hamiltonian \\widehat{ H}, \\frac{ \\partial }{\\partial {\\mathbf {r}}} is replaced by the non-Abelian covariant derivative \\frac{ \\partial }{\\partial {\\mathbf {r}}}- \\frac{i}{\\hbar } {A}({\\mathbf {r}}) where {A}({\\mathbf {r}}) = i \\hbar \\, {U}^{\\dag }\\,{\\bm\\cdot}\\, \\frac{ \\partial }{\\partial {\\mathbf {r}}} {U} can be written as A1(r)Sx + A2(r)Sy + A3(r)Sz. The Abelian differentials Ak(r)·dr are given in terms of the Euler angles defining the orientation of B(r). The non-Abelian field {A}({\\mathbf {r}}) transforms as a Yang-Mills field; however, its vanishing ‘curvature’ reveals its purely geometric character. We have defined a perturbation scheme based upon the assumption that in \\widehat{ H} the longitudinal field A3(r) dominates the transverse field A1, 2(r) contributions, evaluated to second order. The geometry embedded in both the vector field A3(r) and the geometric magnetic field \\mathbf { B}_3 ({\\mathbf {r}}) = \\frac{ \\partial }{\\partial {\\mathbf {r}}}\\wedge {{\\mathbf {A}}}_3({\\mathbf {r}}) is described by their associated Aharonov-Bohm phase. As an illustration we study the physics of cold 171Yb atoms dressed by overlaying two circularly polarized stationary waves with orthogonal directions, which form a 2D square optical lattice. The frequency is tuned midway between the two hyperfine levels of the (6s6p)3P1 states to protect the optical B(r) field generated by the
Gauge theories on A(dS) space and Killing vectors
Banerjee, Rabin Majhi, Bibhas Ranjan
2008-03-15
We provide a general technique for collectively analysing a manifestly covariant formulation of non-abelian gauge theories on both anti-de Sitter as well as de Sitter spaces. This is done by stereographically projecting the corresponding theories, defined on a flat Minkowski space, onto the surface of the A(dS) hyperboloid. The gauge and matter fields in the two descriptions are mapped by conformal Killing vectors and conformal Killing spinors, respectively. A bilinear map connecting the spinors with the vector is established. Different forms of gauge fixing conditions and their equivalence are discussed. The U(1) axial anomaly as well as the non-abelian covariant and consistent chiral anomalies on A(dS) space are obtained. Electric-magnetic duality is demonstrated. The zero curvature limit is shown to yield consistent findings.
Satoh, Yuji; Kanou, Takehiro; Takagi, Norito; Tokuda, Yuji; Uozumi, Jiro; Masaki, Zenjiro
2005-07-01
We herein report a technique which facilitates a retroperitoneal approach to the kidney in cases of highly deformed thorax due to kyphoscoliosis. The operation consists of a lumbar oblique incision with removal of the 11th rib, combined with the additional removal of the 12th and 10th ribs. Resection of the upper two ribs was performed subperiosteally, leaving the periosteum of the deep side untouched. However, the deep side periosteum of the 12th rib was incised caudal from the pleural margin in order to facilitate exposure of the diaphragm. The retroperitoneal space was entered through the tip of the 11th rib bed. The diaphragm was incised dorso-medially at a level 1 cm caudal from the lower margin of the pleura, to an extent necessary to enable the pleura together with the cranial diaphragm to be manoeuvred in an upward direction. Two cases with renal tuberculosis associated with high-grade kyphosis and one case with staghorn calculi accompanied with lordosis were operated on utilizing this technique. In the former two cases, the thoracic cage was in direct contact with the iliac bone and there was practically no space between the rib border and the iliac crest. This was also true of the third case, but the grade of deformity was not as extensive as in the former two cases. Removal of the 10th, 11th and 12th ribs could be achieved without injuring the pleura and a satisfactorily large operating field could thus be developed which enabled a simple nephrectomy to be performed without difficulty. The characteristic feature of the described approach is that resection of the 10th and 11th ribs is simply to facilitate manoevrability of the wound margin, without going through the rib bed. The technique could be advantageous in selected cases where there is a highly deformed thorax. PMID:16083038
NASA Astrophysics Data System (ADS)
Kwak, Young-Sil; Yang, Tae-Yong; Kil, Hoysub; Phanikumar, D.; Heo, Bok-Haeng; Lee, Jae-Jin; Hwang, Junga; Choi, Seong-Hwan; Park, Young-Deuk; Choi, Ho-Seong
2014-03-01
We present preliminary observations of the field-aligned-irregularities (FAIs) in the E and F regions during the solar minimum (2009 - 2010) using the 40.8 MHz coherent backscatter radar at Daejeon (36.18°N, 127.14°E, 26.7°N dip latitude) in South Korea. The radar, which consists of 24 Yagi antennas, observes the FAIs using a single beam with a peak power of 24 kW. The radar has been continuously operated since December 2009. Depending on the manner of occurrence of the backscatter echoes, the E-region echoes are largely divided into two types: quasi-periodic (QP) and continuous echoes. Our observations show that the QP echoes occur frequently above an altitude of 105 km in the post-sunset period and continuous echoes occur preferentially around an altitude of 105 km in the post-sunrise period. QP echoes appear as striated discrete echoes for a period of about 10 - 20 min. The QP-type echoes occur more frequently than the continuoustype echoes do and the echo intensity of the QP type is stronger than that of the continuous type. In the F region, the FAIs occur at night at an altitude interval of 250 - 450 km. As time proceeds, the occurrence height of the FAIs gradually increases until early in the morning and then decreases. The duration of the F-region FAIs is typically a few hours at night, although, in rare cases, FAIs persist throughout the night or appear even after sunrise. We discuss the similarities and differences of the FAIs observed by the Daejeon radar in comparison with other radar observations.
Cartan gravity, matter fields, and the gauge principle
Westman, Hans F.; Zlosnik, Tom G.
2013-07-15
Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top of it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as
Lightning danger and advanced warning times obtainable from field mills
NASA Technical Reports Server (NTRS)
Nisbet, John S.
1988-01-01
The rate of charge moment generation derived from Maxwell current densities at the ground is compared with the rate of charge moment removal by lightning for the initial stages of a small thunderstorm cell. It is shown that the current moment in the cell increased with time at a rate of 4.5 (A m/s) during the first seven minutes following detection of electrical activity on the ground. At the time of the first lightning flash which neutralized 0.48 (kC m) a charge moment of over 8 (kC m) had been separated. Theoretical and practical implications of these measurements are discussed.
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
NASA Astrophysics Data System (ADS)
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory
Employment Obtaining and Business Starting
ERIC Educational Resources Information Center
Lan, Jian
2009-01-01
The implementation of business starting education in higher vocational colleges is of important and realistic meanings for cultivating advanced technology application-type talents and for releasing the employment obtaining pressure of higher vocational students. Based on the analysis on the employment situation of higher vocational graduates, this…
Obtaining Public Records: Reporter Guide
ERIC Educational Resources Information Center
Hammond, Betsy
2013-01-01
Obtaining public records is essential to covering public education. Fortunately, the law is on the side of reporters: Public agencies generally must disclose their records to the public and to the media--with important exceptions. Public agencies are often reluctant to hand over records, however, even when the law clearly says they should.…
The Thirring-Wess model revisited: a functional integral approach
Belvedere, L.V. . E-mail: armflavio@if.uff.br
2005-06-01
We consider the Wess-Zumino-Witten theory to obtain the functional integral bosonization of the Thirring-Wess model with an arbitrary regularization parameter. Proceeding a systematic of decomposing the Bose field algebra into gauge-invariant- and gauge-non-invariant field subalgebras, we obtain the local decoupled quantum action. The generalized operator solutions for the equations of motion are reconstructed from the functional integral formalism. The isomorphism between the QED {sub 2} (QCD {sub 2}) with broken gauge symmetry by a regularization prescription and the Abelian (non-Abelian) Thirring-Wess model with a fixed bare mass for the meson field is established.
Motion of small bodies in classical field theory
NASA Astrophysics Data System (ADS)
Gralla, Samuel E.
2010-04-01
I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body’s composition (and, e.g., black holes are allowed). The worldline “left behind” by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the “Bianchi identity” for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the “monopoles” of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of “chameleon” bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.
Non-abelian solutions of d= 4 + 1 Einstein-Yang-Mills and Yang-Mills-dilaton theories
NASA Astrophysics Data System (ADS)
Radu, E.; Shnir, Ya.; Tchrakian, D. H.
2010-03-01
We construct static, asymptotically flat solutions of SU(2) Einstein-Yang-Mills theory in 4 + 1 dimensions, subject to bi-azimuthal symmetry. The results are compared with similar solutions of the SU(2) Yang-Mills-dilaton model. Both particle-like and black hole solutions are considered. The text was submitted by the authors in English.
Black holes and gravitating axially symmetric non-abelian solitons in d 3+1 and d = 4+1
Radu, Eugen; Shnir, Yasha; Tchrakian, D. H.
2010-03-24
We construct static, asymptotically flat solutions of SU(2) Einstein-Yang-Mills (EYM) theory in 4+1 dimensions, subject to bi-azimuthal symmetry. The results are compared with similar solutions of the SU(2) Yang--Mills--dilaton (YMd) model. Both particle-like and black hole solutions are considered.
Magnetically charged black holes and their stability
Aichelburg, P.C. ); Bizon, P. )
1993-07-15
We study magnetically charged black holes in the Einstein-Yang-Mills-Higgs theory in the limit of infinitely strong coupling of the Higgs field. Using mixed analytical and numerical methods we give a complete description of static spherically symmetric black hole solutions, both Abelian and non-Abelian. In particular, we find a new class of extremal non-Abelian solutions. We show that all non-Abelian solutions are stable against linear radial perturbations. The implications of our results for the semiclassical evolution of magnetically charged black holes are discussed.
Neutrino mixings and grand unification: SU(5) GUT with anomaly free U(1)F
NASA Astrophysics Data System (ADS)
Tavartkiladze, Zurab
2013-05-01
The model of supersymmetric SU(5) GUT augmented with anomaly free U(1)F flavor symmetry is presented. The field content and the U(1)F charge assignment is obtained by specific embedding of SU(5) × U(1)F in larger non-Abelian group. We focus on a particular case which gives very economical field content with the U(1)F charges fixed in such a way that for quarks and leptons appealing texture zero Yukawa couplings are generated. The model gives realistic fermion masses and mixings and predict inverted hierarchical neutrino mass scenario with interesting implications.
Optical knots and contact geometry II. From Ranada dyons to transverse and cosmetic knots
NASA Astrophysics Data System (ADS)
Kholodenko, Arkady L.
2016-08-01
Some time ago Ranada (1989) obtained new nontrivial solutions of the Maxwellian gauge fields without sources. These were reinterpreted in Kholodenko (2015) [10] (part I) as particle-like (monopoles, dyons, etc.). They were obtained by the method of Abelian reduction of the non-Abelian Yang-Mills functional. The developed method uses instanton-type calculations normally employed for the non-Abelian gauge fields. By invoking the electric-magnetic duality it then becomes possible to replace all known charges/masses by the particle-like solutions of the source-free Abelian gauge fields. To employ these results in high energy physics, it is essential to extend Ranada's results by carefully analyzing and classifying all dynamically generated knotted/linked structures in gauge fields, including those discovered by Ranada. This task is completed in this work. The study is facilitated by the recent progress made in solving the Moffatt conjecture. Its essence is stated as follows: in steady incompressible Euler-type fluids the streamlines could have knots/links of all types. By employing the correspondence between the ideal hydrodynamics and electrodynamics discussed in part I and by superimposing it with the already mentioned method of Abelian reduction, it is demonstrated that in the absence of boundaries only the iterated torus knots and links could be dynamically generated. Obtained results allow to develop further particle-knot/link correspondence studied in Kholodenko (2015) [13].
32 CFR 806b.8 - Obtaining law enforcement records.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Obtaining law enforcement records. The Commander, Air Force Office of Special Investigation; the Commander, Air Force Security Forces Center; Major Command, Field Operating Agency, and base chiefs of security... Section 806b.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR...
32 CFR 806b.8 - Obtaining law enforcement records.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Obtaining law enforcement records. The Commander, Air Force Office of Special Investigation; the Commander, Air Force Security Forces Center; Major Command, Field Operating Agency, and base chiefs of security... Section 806b.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR...
40 CFR 35.6310 - Obtaining equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STATE AND LOCAL ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Personal Property Requirements Under A Cooperative Agreement § 35.6310 Obtaining equipment....
SOFIA Observatory Obtains 'First Light' Images
NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, successfully obtained its "First Light"" images during an overnight flight May 26. Scientists are now processing the data gathered...
42 CFR 442.101 - Obtaining certification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... section states the requirements for obtaining notice of an ICF/MR's certification before a Medicaid agency... Secretary for an ICF/MR located on an Indian reservation. (c) The agency must obtain notice of certification... provisions pertains to the ICF/MR: (1) An ICF/MR meets the conditions of participation set forth in subpart...
42 CFR 442.101 - Obtaining certification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... section states the requirements for obtaining notice of an ICF/MR's certification before a Medicaid agency... Secretary for an ICF/MR located on an Indian reservation. (c) The agency must obtain notice of certification... provisions pertains to the ICF/MR: (1) An ICF/MR meets the conditions of participation set forth in subpart...
Ready Reference. How To Obtain an ISBN; How To Obtain an ISSN; How To Obtain an SAN.
ERIC Educational Resources Information Center
Koltay, Emery
2003-01-01
These three articles describe ISBNs (International Standard Book Numbers); ISSNs (International Standard Serial Numbers); and SANs (Standard Address Numbers), for organizations served by the book industry; and explains how to apply to obtain the appropriate numbers. (LRW)
25 CFR 162.539 - Must I obtain a WEEL before obtaining a WSR lease?
Code of Federal Regulations, 2014 CFR
2014-04-01
... AND PERMITS Wind and Solar Resource Leases Wsr Leases § 162.539 Must I obtain a WEEL before obtaining... direct result of energy resource information gathered from a WEEL activity, obtaining a WEEL is not...
Topological phases for fermionic cold atoms on the Lieb lattice
Goldman, N.; Urban, D. F.; Bercioux, D.
2011-06-15
We investigate the properties of the Lieb lattice, that is, a face-centered square lattice, subjected to external gauge fields. We show that an Abelian gauge field leads to a peculiar quantum Hall effect, which is a consequence of the single Dirac cone and the flat band characterizing the energy spectrum. Then we explore the effects of an intrinsic spin-orbit term--a non-Abelian gauge field--and demonstrate the occurrence of the quantum spin Hall effect in this model. Besides, we obtain the relativistic Hamiltonian describing the Lieb lattice at low energy and derive the Landau levels in the presence of external Abelian and non-Abelian gauge fields. Finally, we describe concrete schemes for realizing these gauge fields with cold fermionic atoms trapped in an optical Lieb lattice. In particular, we provide a very efficient method to reproduce the intrinsic (Kane-Mele) spin-orbit term with assisted-tunneling schemes. Consequently, our model could be implemented in order to produce a variety of topological states with cold atoms.
47 CFR 54.615 - Obtaining services.
Code of Federal Regulations, 2012 CFR
2012-10-01
... provided under § 54.621, that the requester cannot obtain toll-free access to an Internet service provider... thing of value; (6) If the service or services are being purchased as part of an aggregated...
47 CFR 54.615 - Obtaining services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... provided under § 54.621, that the requester cannot obtain toll-free access to an Internet service provider... thing of value; (6) If the service or services are being purchased as part of an aggregated...
47 CFR 54.615 - Obtaining services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... provided under § 54.621, that the requester cannot obtain toll-free access to an Internet service provider... thing of value; (6) If the service or services are being purchased as part of an aggregated...
Treatment of biomass to obtain ethanol
Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie
2011-08-16
Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.
40 CFR 35.6305 - Obtaining supplies.
Code of Federal Regulations, 2010 CFR
2010-07-01
....6325 through 35.6340, and 35.6350. Supplies obtained with Core Program funds must be for non-site-specific purposes. All purchases of supplies under the Core Program must comply with the requirements...
Methods for Obtaining and Determination of Squalene from Natural Sources
Popa, Ovidiu; Băbeanu, Narcisa Elena; Niță, Sultana; Dinu-Pârvu, Cristina Elena
2015-01-01
Squalene is a natural dehydrotriterpenic hydrocarbon (C30H50) with six double bonds, known as an intermediate in the biosynthesis of phytosterol or cholesterol in plants or animals. We have briefly reviewed the natural sources for squalene and focused on the main methods and techniques to obtain and to determine it. Some of its applications in different fields of human activity are also mentioned. PMID:25695064
Kheirandish, F.; Amooshahi, M.
2008-11-18
Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.
A Guide to Obtaining a Psychology Internship.
ERIC Educational Resources Information Center
Megargee, Edwin J.
This is a guidebook written to help graduate students in clinical psychology from a variety of programs obtain internships at training programs across the country. Chapter 1 discloses the politics and power relationship among internship training directors, university faculties, and internship applicants, and describes how they influence guidelines…
METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE
Campbell, I.E.
1961-04-01
A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.
Method of Obtaining Uniform Coatings on Graphite
Campbell, I. E.
1961-04-01
A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.
42 CFR 442.101 - Obtaining certification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... certification. (a) This section states the requirements for obtaining notice of an ICF/IID's certification... of certification from the Secretary for an ICF/IID located on an Indian reservation. (c) The agency... indicate that one of the following provisions pertains to the ICF/IID: (1) An ICF/IID meets the...
42 CFR 442.101 - Obtaining certification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... certification. (a) This section states the requirements for obtaining notice of an ICF/IID's certification... of certification from the Secretary for an ICF/IID located on an Indian reservation. (c) The agency... indicate that one of the following provisions pertains to the ICF/IID: (1) An ICF/IID meets the...
42 CFR 442.101 - Obtaining certification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... certification. (a) This section states the requirements for obtaining notice of an ICF/IID's certification... of certification from the Secretary for an ICF/IID located on an Indian reservation. (c) The agency... indicate that one of the following provisions pertains to the ICF/IID: (1) An ICF/IID meets the...
15 CFR 285.15 - Obtaining documents.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Obtaining documents. 285.15 Section 285.15 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS...
36 CFR 251.84 - Obtaining notice.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 251.84 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Appeal of Decisions Relating to Occupancy and Use of National Forest System Lands § 251.84 Obtaining... mediation of decisions to suspend or cancel term grazing permits, in whole or in part, pursuant to 36...
Obtaining Funding and Support for Undergraduate Research
ERIC Educational Resources Information Center
Dorff, Michael; Narayan, Darren A.
2013-01-01
Over the past decade there has been a dramatic increase in undergraduate research activities at colleges and universities nationwide. However, this comes at a time when budgets are being tightened and some institutions do not have the resources to pursue new initiatives. In this article we present some ideas for obtaining funding and support for…
Acoustic barriers obtained from industrial wastes.
Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M
2008-07-01
Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.
25 CFR 162.539 - Must I obtain a WEEL before obtaining a WSR lease?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Must I obtain a WEEL before obtaining a WSR lease? 162.539 Section 162.539 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Wsr Leases § 162.539 Must I obtain a WEEL before...
Classical electrodynamics in a space with spin noncommutativity of coordinates
NASA Astrophysics Data System (ADS)
Vasyuta, V. M.; Tkachuk, V. M.
2016-10-01
We propose a relativistic Lorentz-invariant spin-noncommutative algebra. Using the Weyl ordering of noncommutative position operators, we find a mapping from a space of commutative functions into space of noncommutative functions. The Lagrange function of an electromagnetic field in the space with spin noncommutativity is constructed. In such a space electromagnetic field becomes non-abelian. A gauge transformation law of this field is also obtained. Exact nonlinear field equations of noncommutative electromagnetic field are derived from the least action principle. Within the perturbative approach we consider field of a point charge in a constant magnetic field and interaction of two plane waves. An exact solution of a plane wave propagation in a constant magnetic and electric fields is found.
Intelligent drug delivery systems obtained by radiation
NASA Astrophysics Data System (ADS)
Martellini, Flavia; Higa, Olga Z.; Takacs, Erzsebet; Safranj, Agneza; Yoshida, Masaru; Katakai, Ryoichi; Carenza, Mario
1998-06-01
Radiation-induced polymerization of acryloyl-L-proline methyl ester, an α-aminoacid-containing monomer, in the presence of a crosslinking agent and a hydrophilic monomer gave rise to polymer hydrogels whose water content at equilibrium was found to decrease as the swelling temperature increased. Some hydrogel samples were obtained with entrapped acetaminophen, an analgesic and antipyretic drug. It was ascertained that the release of the drug was controlled by both the hydrophilicity of the polymer matrices and the environmental temperature.
A Sensor for Obtaining Ablation Rates
NASA Technical Reports Server (NTRS)
Winters, Clyde W.; Bracalente, Emedio
1961-01-01
A variable-capacitance ablation-rate sensor which allows continuous measurements of ablation rates for Teflon and similar polymers has been developed and tested i n an ethylene-heated high-temperature jet at stagnation temperatures ranging from 2,400 deg to 3,800 deg F. The data (length changes) were measured by using the same telemeter equipment as that used in rocket-propelled flight vehicles.Results indicate measurement error to be a maximum of 4 percent between the telemetered length changes and the length changes that were obtained from photographic records of the test.
Obtaining growth hormone from calf blood
NASA Technical Reports Server (NTRS)
Kalchev, L. A.; Ralchev, K. K.; Nikolov, I. T.
1979-01-01
The preparation of a growth hormone from human serum was used for the isolation of the hormone from calf serum. The preparation was biologically active - it increased the quantity of the free fatty acids released in rat plasma by 36.4 percent. Electrophoresis in Veronal buffer, ph 8.6, showed the presence of a single fraction having mobility intermediate between that of alpha and beta globulins. Gel filtration through Sephadex G 100 showed an elutriation curve identical to that obtained by the growth hormone prepared from pituitary glands.
Obtaining optical properties using Representative Layer Theory
NASA Astrophysics Data System (ADS)
Razavi, Neema; Yust, Brain; Sardar, Dhiraj
2011-03-01
Reliable and minimally invasive methods for diagnosis of toxicity and onset of disease are important for advances in clinical practices. This is commonly achieved through the optical properties, such as a change in the absorption or scattering strength of the diseased tissue. Thus, being able to quantitatively characterize these changes is important to advancements in medical diagnostic methods. By adapting the Representative Layer Theory to the integrating sphere technique, very thin biological samples may be optically characterized, yielding a quick and easy method for monitoring optical changes as a function of disease progression. Samples, consisting of cells, dyes, and nanoparticles of known concentrations were optically characterized at multiple wavelengths. Optical properties obtained by the Representative Layer Theory are compared to those obtained through other methods, such as Kubelka-Munk and Inverse Adding Doubling which are known to have sample thickness limitations. This work is also supported in part by National Science Foundation PREM Grant No. DMR - 0934218 and UTSA Collaborative Research Seed Grant Program (CRSGP).
Acoustic barriers obtained from industrial wastes.
Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M
2008-07-01
Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building. PMID:18514765
Obtaining useful information from expert based sources.
Slawson, D. C.; Shaughnessy, A. F.
1997-01-01
Clinicians rely heavily on expert based systems-consultation with colleagues, journal reviews and textbooks, and continuing education activities-to obtain new information. The usefulness of sources such as these depends on the relevance and validity of the information and the work it takes to obtain it. Useful information can be distinguished from the useless by asking three questions: Does the information focus on an outcome that my patients care about? Is the issue common to my practice, and is the intervention feasible? If the information is true, will it require me to change my practice? If the answer to all three questions is yes, then the information is a common POEM (patient oriented evidence that matters), capable of improving the lives of your patients and must be evaluated for validity. Conclusions based on results of well designed clinical trials are more likely to be valid than those drawn from observations based on experience in clinical practice. Both members of the team, clinicians and experts, must take responsibility for their respective roles. PMID:9099121
Obtaining information by dynamic (effortful) touching
Turvey, M. T.; Carello, Claudia
2011-01-01
Dynamic touching is effortful touching. It entails deformation of muscles and fascia and activation of the embedded mechanoreceptors, as when an object is supported and moved by the body. It is realized as exploratory activities that can vary widely in spatial and temporal extents (a momentary heft, an extended walk). Research has revealed the potential of dynamic touching for obtaining non-visual information about the body (e.g. limb orientation), attachments to the body (e.g. an object's height and width) and the relation of the body both to attachments (e.g. hand's location on a grasped object) and surrounding surfaces (e.g. places and their distances). Invariants over the exploratory activity (e.g. moments of a wielded object's mass distribution) seem to ground this ‘information about’. The conception of a haptic medium as a nested tensegrity structure has been proposed to express the obtained information realized by myofascia deformation, by its invariants and transformations. The tensegrity proposal rationalizes the relative indifference of dynamic touch to the site of mechanical contact (hand, foot, torso or probe) and the overtness of exploratory activity. It also provides a framework for dynamic touching's fractal nature, and the finding that its degree of fractality may matter to its accomplishments. PMID:21969694
Obtaining information by dynamic (effortful) touching.
Turvey, M T; Carello, Claudia
2011-11-12
Dynamic touching is effortful touching. It entails deformation of muscles and fascia and activation of the embedded mechanoreceptors, as when an object is supported and moved by the body. It is realized as exploratory activities that can vary widely in spatial and temporal extents (a momentary heft, an extended walk). Research has revealed the potential of dynamic touching for obtaining non-visual information about the body (e.g. limb orientation), attachments to the body (e.g. an object's height and width) and the relation of the body both to attachments (e.g. hand's location on a grasped object) and surrounding surfaces (e.g. places and their distances). Invariants over the exploratory activity (e.g. moments of a wielded object's mass distribution) seem to ground this 'information about'. The conception of a haptic medium as a nested tensegrity structure has been proposed to express the obtained information realized by myofascia deformation, by its invariants and transformations. The tensegrity proposal rationalizes the relative indifference of dynamic touch to the site of mechanical contact (hand, foot, torso or probe) and the overtness of exploratory activity. It also provides a framework for dynamic touching's fractal nature, and the finding that its degree of fractality may matter to its accomplishments. PMID:21969694
[Obtaining the Impact Factor by Ginekologia Polska].
Spaczyński, Marek; Januszek-Michalecka, Lucyna; Nowak-Markwitz, Ewa; Kedzia, Witold; Spaczyński, Robert; Karowicz-Bilińska, Agata
2011-08-01
Scientific journals are ranked and evaluated to measure their relative importance and influence on science within a specific field. One of the tools most widely used to evaluate and compare journals is the Thomson Reuters Impact Factor In Poland a specific value of a scientist's Impact Factor is required for academic promotion. Ginekologia Polska was placed on the Master Journal List in 2008 in the result of changes introduced in 2007 by the new Chief Editor prof. Marek Spaczynski. In 2010, first time in its history the journal was listed in the Journal Citation Reports with the Impact Factor 0.367. The analysis of Ginekologia Polska contemporary value, as well as of prospects for its development was conducted on the basis of the Journal Citation Reports. In the light of the JCR data, Ginekologia Polska is a highly regarded title compared to other Polish journals. Its value and importance is gradually growing.
Anyons in an exactly solved model and beyond
Kitaev, Alexei . E-mail: kitaev@iqi.caltech.edu
2006-01-15
A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength. The model is solved exactly by a reduction to free fermions in a static Z{sub 2} gauge field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding rules coincide with those of conformal blocks for the Ising model. We also consider a general theory of free fermions with a gapped spectrum, which is characterized by a spectral Chern number {nu}. The Abelian and non-Abelian phases of the original model correspond to {nu}=0 and {nu}=+/-1, respectively. The anyonic properties of excitation depend on {nu} mod 16, whereas {nu} itself governs edge thermal transport. The paper also provides mathematical background on anyons as well as an elementary theory of Chern number for quasidiagonal matrices.
Calibration results obtained with Liulin-4 type dosimeters.
Dachev, Ts; Tomov, B; Matviichuk, Yu; Dimitrov, Pl; Lemaire, J; Gregoire, Gh; Cyamukungu, M; Schmitz, H; Fujitaka, K; Uchihori, Y; Kitamura, H; Reitz, G; Beaujean, R; Petrov, V; Shurshakov, V; Benghin, V; Spurny, F
2002-01-01
The Mobile Radiation Exposure Control System's (Liulin-4 type) main purpose is to monitor simultaneously the doses and fluxes at 4 independent places. It can also be used for personnel dosimetry. The system consists of 4 battery-operated 256-channel dosimeters-spectrometers. We describe results obtained during the calibrations of the spectrometers at the Cyclotron facilities of the University of Louvain, Belgium and of the National Institute of Radiological Sciences-STA, Chiba, Japan with protons of energies up to 70 MeV. The angular sensitivities of the devices are studied and compared with Monte-Carlo predictions. We also present the results obtained at the HIMAC accelerator with 500 MeV/u Fe ions and at the CERN high energy radiation reference fields. Records made during airplane flights are shown and compared with the predictions of the CARI-6 model.
Spin and orbital magnetization loops obtained using magnetic Compton scattering
Itou, M.; Sakurai, Y.; Koizumi, A.
2013-02-25
We present an application of magnetic Compton scattering (MCS) to decompose a total magnetization loop into spin and orbital magnetization contributions. A spin magnetization loop of SmAl{sub 2} was measured by recording the intensity of magnetic Compton scattering as a function of applied magnetic field. Comparing the spin magnetization loop with the total magnetization one measured by a vibrating sample magnetometer, the orbital magnetization loop was obtained. The data display an anti-coupled behavior between the spin and orbital magnetizations and confirm that the orbital part dominates the magnetization.
NASA Astrophysics Data System (ADS)
Oliveira, O.; Bertulani, C. A.; Hussein, M. S.; Paula, W. de; Frederico, T.
2016-08-01
We propose a mirror model for ordinary and dark matter that assumes a new SU(3) gauge group of transformations, as a natural extension of the Standard Model (SM). A close study of big bang nucleosynthesis, baryon asymmetries, cosmic microwave background bounds, galaxy dynamics, together with the Standard Model assumptions, help us to set a limit on the mass and width of the new gauge boson. The cross section for the elastic scattering of a dark proton by an ordinary proton is estimated and compare to the WIMP-nucleon experimental upper bounds. It is observed that all experimental bounds for the various cross sections can be accommodated consistently within the gauge model. We also suggest a way for direct detection of the new gauge boson via one example of a SM forbidden process: e+ + p → μ + + X, where X=Λ or Λ c .
Plasticity characteristics obtained through hardness measurement
Milman, Y.V.; Galanov, B.A.; Chugunova, S.I. )
1993-09-01
A characteristic of material plasticity [delta][sub H] is proposed. [delta][sub H] is determined as a part of plastic deformation in the total deformation during indentation. The following analytic expressions for the elastic deformation [epsilon][sub e] and for the total deformation [epsilon] on the contact area indenter-specimen in the direction of loading force are obtained, [epsilon][sub e] = 1.08(1 [minus] v [minus] 2v[sup 2])H[sub V/E], [epsilon] [approx] 0.076, where H[sub V] is the Vickers hardness, E is Young's modulus, v is the Poisson ratio, and [delta][sub H] = 1 [minus] ([epsilon][sub e]/[epsilon]). The [delta][sub H] value is calculated for various crystalline materials at different temperatures and in different structural states. [delta][sub H] is consistent with the concept of plasticity established before, and to characterize the influence of temperature, alloying and strain hardening on plasticity. The necessary condition for revealing ductility at tension and bending is [delta][sub H] [>=] 0.9. [delta][sub H] can be used as a plasticity characteristic of brittle materials.
Obtaining high resolution XUV coronal images
NASA Technical Reports Server (NTRS)
Golub, L.; Spiller, E.
1992-01-01
Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.
Utilizing therapists to obtain death penalty verdicts.
Weinstock, R
1994-01-01
As a result of recent decisions by the United States and California Supreme Courts, therapists now have been placed in a position in which they can be forced to testify in death penalty cases for the only purposes of achieving a conviction and a death penalty verdict. Zeal for the death penalty seems to have overcome any concern for the ethics of psychiatrists or even for the welfare of society. In California, therapists can now be forced to testify against their own patients in capital cases even if the patient does not tender his mental state as an issue, despite the presence of a psychotherapist-patient privilege in the state for criminal matters. In California, the only option for therapists who wish to treat potentially dangerous patients may be to conduct the therapy under the umbrella of attorney-client privilege. Otherwise they may not be able to avoid serious ethical problems and personal danger if the patient actually does kill someone during or after therapy. They may be unable honestly and ethically to treat such patients without obtaining truly informed consent to therapy under these potentially "undercover policeman" circumstances. Hopefully, professional organizations will take a more activist position, and courts will appreciate the folly of these decisions and reverse them. Otherwise, they may spread to other states, for which California frequently sets precedents.
Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice
Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub
2015-01-01
Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635
Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice
NASA Astrophysics Data System (ADS)
Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub
2015-06-01
Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets.
Introducing Electromagnetic Field Momentum
ERIC Educational Resources Information Center
Hu, Ben Yu-Kuang
2012-01-01
I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…
Lead Oxychloride Borates Obtained under Extreme Conditions.
Siidra, Oleg I; Kabbour, Houria; Mentre, Olivier; Nazarchuk, Evgeny V; Kegler, Philip; Zinyakhina, Diana O; Colmont, Marie; Depmeier, Wulf
2016-09-01
[Pb10O4]Pb2(B2O5)Cl12 (1) and [Pb18O12]Pb(BO2OH)2Cl10 (2) were obtained via high-temperature high-pressure experiments. [O12Pb18](12+) and [O4Pb10](12+) oxocentered structural units of different dimensionality are excised from the ideal [OPb] layer in tetragonal α-PbO. 2 is formed with an excess of lead oxide component, and 1 is formed with an excess of borate and halide reagents. The structure of 2 can be visualized as the incorporation of {Pb(10)Cl4(BO2OH)2} clusters into alternating PbO and chloride layers, with the existence of square vacancies in both. However, the structure of 1 is described as the intrusion of [O4Pb10](12+) tetramers linked by disordered Pb(B2O5) groups into a halogen three-dimensional matrix. The structure of 2 contains 10 symmetrically independent Pb positions. The 6s(2) lone electron pair is stereochemically active on Pb(1)-Pb(9) atoms, whereas it is inert on Pb(10). All of the Pb coordinations in the structure of 2, in accordance with ECCv (volume eccentricity) parameters and the density of states (DOS), can be subdivided into three groups. The current study is the first attempt to analyze this unusual behavior in structurally complex oxyhalide material with the rare case of Pb(2+) cations, demonstrating both stereochemically active and inactive behavior of the lone pair via charge and first-principle calculations. PMID:27560309
Overview of galactic results obtained by MAGIC
NASA Astrophysics Data System (ADS)
Zanin, Roberta
2013-06-01
MAGIC is a system of two atmospheric Cherenkov telescopes which explores the very-high-energy sky, from some tens of GeV up to tens of TeV. Located in the Canary island of La Palma, MAGIC has the lowest energy threshold among the instruments of its kind, well suited to study the still poorly explored energy band below 100 GeV. Although the space-borne gamma-ray telescope Fermi/LAT is sensitive up to 300 GeV, gamma-ray rates drop fast with increasing energy, so γ-ray collection areas larger than 104m2, as those provided by grounds-based instruments, are crucial above a few GeV. The combination of MAGIC and Fermi/LAT observations have provided the first astrophysical spectra sampled in the inverse Compton peak region, resulting in a complete coverage from MeV up to TeV energies, as well as the discovery of a pulsed emission in the very-high-energy band. This paper focuses on the latest results on Galactic sources obtained by MAGIC which are highlighted by the detection of the pulsed gamma-ray emission from the Crab pulsar up to 400 GeV. In addition, we will present the morphological study on the W51 complex which allowed to pinpoint the location of the majority of the emission around the interaction point between the supernova remnant W51C and the star forming region W51B, but also to find a possible contribution from the associated pulsar wind nebula. Other important scientific achievements involve the Crab Nebula with an unprecedented spectrum covering three decades in energy starting from 50 GeV and a morphological study of the unidentified source HESS J1857+026 which supports the pulsar wind nebula scenario. Finally we will report on the searches of very-high-energy signals from gamma-ray binaries, mainly LS I 303+ and HESS J0632+057.
Component Repair Times Obtained from MSPI Data
Eide, Steven A.
2015-05-01
Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a “white” (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant’s insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only
Improving the quality of parameter estimates obtained from slug tests
Butler, J.J.; McElwee, C.D.; Liu, W.
1996-01-01
The slug test is one of the most commonly used field methods for obtaining in situ estimates of hydraulic conductivity. Despite its prevalence, this method has received criticism from many quarters in the ground-water community. This criticism emphasizes the poor quality of the estimated parameters, a condition that is primarily a product of the somewhat casual approach that is often employed in slug tests. Recently, the Kansas Geological Survey (KGS) has pursued research directed it improving methods for the performance and analysis of slug tests. Based on extensive theoretical and field research, a series of guidelines have been proposed that should enable the quality of parameter estimates to be improved. The most significant of these guidelines are: (1) three or more slug tests should be performed at each well during a given test period; (2) two or more different initial displacements (Ho) should be used at each well during a test period; (3) the method used to initiate a test should enable the slug to be introduced in a near-instantaneous manner and should allow a good estimate of Ho to be obtained; (4) data-acquisition equipment that enables a large quantity of high quality data to be collected should be employed; (5) if an estimate of the storage parameter is needed, an observation well other than the test well should be employed; (6) the method chosen for analysis of the slug-test data should be appropriate for site conditions; (7) use of pre- and post-analysis plots should be an integral component of the analysis procedure, and (8) appropriate well construction parameters should be employed. Data from slug tests performed at a number of KGS field sites demonstrate the importance of these guidelines.
Improving the quality of parameter estimates obtained from slug tests
Butler, J.J. Jr.; McElwee, C.D.; Liu, W.
1996-05-01
The slug test is one of the most commonly used field methods for obtaining in situ estimates of hydraulic conductivity. Despite its prevalence, this method has received criticism from many quarters in the ground-water community. This criticism emphasizes the poor quality of the estimated parameters, a condition that is primarily a product of the somewhat casual approach that is often employed in slug tests. Recently, the Kansas Geological Survey (KGS) has pursued research directed at improving methods for the performance and analysis of slug tests. Based on extensive theoretical and field research, a series of guidelines have been proposed that should enable the quality of parameter estimates to be improved. The most significant of these guidelines are: (1) three or more slug tests should be performed at each well during a given test period; (2) two or more different initial displacements (H{sub 0}) should be used at each well during a test period; (3) the method used to initiate a test should enable the slug to e introduced in a near-instantaneous manner and should allow a good estimate of H{sub 0} to be obtained; (4) data-acquisition equipment that enables a large quantity of high quality data to be collected should be employed; (5) if an estimate of the storage parameter is needed, an observation well other than the test well should be employed; (6) the method chosen for analysis of the slug-test data should be appropriate for site conditions; (7) use of pre- and post-analysis plots should be an integral component of the analysis procedure, and (8) appropriate well construction parameters should be employed. Data from slug tests performed at a number of KGS field sites demonstrate the importance of these guidelines.
Obtaining Io's internal state from in situ and remote observations
NASA Astrophysics Data System (ADS)
Khurana, Krishan; Keszthelyi, Laszlo; Jia, Xianzhe; McEwen, Alfred
2016-04-01
Based on sound theoretical arguments, Io has long been suspected of harboring a magma ocean in its interior. The extremely high temperature of the lava erupting on Io's surface indeed hint at an extremely hot interior consistent with an internal magma ocean. However, the only direct evidence for a melt layer in Io's interior has been provided by Khurana et al. (2011), who used Jupiter's rotating magnetic field as an electromagnetic induction signal. They have shown that a strong dipolar field is present in Galileo magnetometer data, which is consistent with electromagnetic induction from large amounts of rock-melts in Io's interior. Modeling of this signature showed that the induction response from a completely solid mantle model is inadequate to explain the magnetometer observations. However, they found that a layer of asthenosphere > 50 km in thickness with a rock melt fraction ≥ 20% is adequate to accurately model the observed magnetic field. In this presentation, we first provide a progress report on our effort to marry the principles of thermodynamics with those of electromagnetism to further constrain the temperature profile inside Io. The constraints on the mineralogy, temperature and melt state of Io are being obtained from MELTS a modeling program that utilizes thermodynamic principles to calculate the chemical variations in the assemblages of minerals and melts as a function of pressure, temperature and oxygen fugacity. Electromagnetic induction response is calculated by solving the induction equation numerically for several different models of the interior and tested for their agreement with the Galileo magnetometer data. Next, we explore how future in situ and remote observations could be used to characterize Io's interior using multi-frequency electromagnetic induction and auroral observations. We show that the lithospheric thickness can be obtained from induction response at the Jovian synodic period while information on the magma ocean thickness
Scalar triplet on a domain wall: an exact solution
NASA Astrophysics Data System (ADS)
Gani, Vakhid A.; Lizunova, Mariya A.; Radomskiy, Roman V.
2016-04-01
We study a model with a real scalar Higgs field and a scalar triplet field that allows existence of a topological defect — a domain wall. The wall breaks the global O(3) symmetry of the model, which gives rise to non-Abelian orientational degrees of freedom. We found an exact analytic solution that describes a domain wall with a localized configuration of the triplet field on it. This solution enables one to calculate contributions to the action from the orientational and translational degrees of freedom of the triplet field. We also study the linear stability of the domain wall with the triplet field switched off. We obtain that degrees of freedom localized on the wall can appear or do not appear depending on the parameters of the model.
The analysis of experimental data obtained from automotives tests
NASA Astrophysics Data System (ADS)
Stoica, R. M.; Radulescu, V. J.; Neagu, D.; Trocan, C.; Copae, I.
2016-08-01
The paper highlights the three important and inseparably aspects of the systemic approach of automotives dynamics: taking into account the human-vehicle-field interaction, dealing movement with algorithms specific to system theory and analysis of experimental data with algorithms specific to signals theory.Within the paper, the systemic approach regarding vehicles dynamics is based on experimental data obtained from tests, whereby it is analyzed the movement and there are obtained movement mathematical models through algorithms of systems identification.Likewise, there are shown main analysis methods for experimental data, which uses probability theory, information theory, correlation analysis and variance analysis;in addition, there are highlighted possibilities given by time analysis, frequency analysis and data time-frequency analysis. Identification algorithms and highlighted analysis procedures assure the study of automotives dynamics and fuel saving,by directly using experimental data, or by using mathematical models and applying concepts and algorithms specific to systems theory. Experimental data were obtained by testing automotives with electronic control devices and by using acquisition and storage equipmentsfor data given by the on-board computer and taken from embedded sensors.
The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory
Braguta, V. V.; Buividovich, P. V. Kalaydzhyan, T. Kuznetsov, S. V. Polikarpov, M. I.
2012-04-15
We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Luescher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent {nu} = 1.6 {+-} 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations of the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect.
How to obtain traceability on optical radiation measurements?
NASA Astrophysics Data System (ADS)
Matamoros García, Carlos H.
2006-02-01
Traceability to national standards provides confidence in measurements results, granting a guaranty when carrying out governmental rules and when demonstrating conformity with quality requirements such as ISO 9000 or ISO/IEC 17025 (and the Mexican equivalent standards). The appropriate traceability contributes with confidence of the quality of products or services. This paper presents different ways to obtain traceability in Mexico for the optical radiation measurements, mentioning some applications, and highlighting the necessity of having traceability to the appropriate units of the SI. Additionally it present the national standards maintained by Centro Nacional de Metrologia (CENAM), the national metrology institute in Mexico, that give the technical support to Mexican measurements in this field and the international recognition that the personal of the Optics and Radiometry Division had gained in 10 years of development.
Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner
NASA Astrophysics Data System (ADS)
Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.
2015-12-01
Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.
Possibilities of obtaining an additional water supply near Hingham, Massachusetts
Brashears, M.L.
1942-01-01
In February 1942 the War Production Board requested the U.S. Geological Survey to furnish information on the possibilities of obtaining additional water supply near the shore at Hingham, Mass. It was estimated that 300,000 to 500,000 gallons a day was needed. On February 25 and 26, 1942, a brief field study of the ground-water conditions was made in an area about 2 miles wide along the shore of Hingham Bay at Hingham, Mass. Most of this area is shown on the topographic map of the Weymouth Quadrangle, Mass., surveyed by the U.S. Geological Survey in 1936. The field work of the ground-water study consisted mainly of surface transverses and the examination of road cuts and gravel pits. In addition, well records and other data were collected from well drillers and public officials. Acknowledgement is made to H. B. Kinnison, district engineer, U.S. Geological Survey, at Boston, Mass., for his assistance and suggestions.
Digital holographic interferometry as a tool to obtain shapes
NASA Astrophysics Data System (ADS)
Uribe López, Ubaldo; Hernández-Montes, María. del Socorro; Muñoz-Solís, Silvino
2015-08-01
This work describes a new method to obtain shapes on surfaces based on digital holographic interferometry (DHI). Research has been reported with different methods, such as fringe projection. DHI, being a full-field technique, decreases the number of images to capture and the processing time, besides having a high resolution. Our proposed method consists in obtaining the shape of the object and a reference plane using an out-of-plane interferometer. The phase difference of the recorded holograms is achieved by means of the Fourier transform method. This resulting phase has a tilt produced by the angle of the object beam relative to the optical axis, which is removed by subtracting the phase difference from the reference plane. The method was tested in two cylinders, one with dimensions of 17.5x23.4mm reconstructed with a height sensitivity of 4.1mm, and another with two levels: one half with dimensions of 16.08x12.75mm, and the other half of 19.07x12.75mm; the result was a successfully reconstructed shape, with a height sensitivity of 2.7mm.
Subtask 4.24 - Field Evaluation of Novel Approach for Obtaining Metal Emission Data
Pavlish, John; Laudal, Dennis; Thompson, Jeffrey
2013-12-31
Over the past two decades, emissions of mercury, nonmercury metals, and acid gases from energy generation and chemical production have increasingly become an environmental concern. On February 16, 2012, the U.S. Environmental Protection Agency (EPA) promulgated the Mercury and Air Toxics Standards (MATS) to reduce mercury, nonmercury metals, and HCl emissions from coal-fired power plants. The current reference methods for trace metals and halogens are wet-chemistry methods, EPA Method (M) 29 and M26A, respectively. As a possible alternative to EPA M29 and M26A, the Energy & Environmental Research Center (EERC) has developed a novel multielement sorbent trap (ME-ST) method to be used to sample for trace elements and/or halogens. Testing was conducted at three different power plants, and the results show that for halogens, the ME-ST halogen (ME-ST-H) method did not show any significant bias compared to EPA M26A and appears to be a potential candidate to serve as an alternative to the reference method. For metals, the ME-ST metals (ME-ST-M) method offers a lower detection limit compared to EPA M29 and generally produced comparable data for Sb, As, Be, Cd, Co, Hg, and Se. Both the ME-ST-M and M29 had problems associated with high blanks for Ni, Pb, Cr, and Mn. Although this problem has been greatly reduced through improved trap design and material selection, additional research is still needed to explore possible longer sampling durations and/or selection of lower background materials before the ME-ST-M can be considered as a potential alternative method for all the trace metals listed in MATS.
Homothetic mapping as means to obtain a wide field of view: the Delft Testbed Interferometer
NASA Astrophysics Data System (ADS)
van Brug, Hedser; Oostdijck, Bastiaan; Snijders, Bart; van der Avoort, Casper; Gori, Pierre-Marie
2004-10-01
The Delft Testbed Interferometer (DTI) will be presented. The basics of homothetic mapping will be explained together with the method of fulfilling the requirements as chosen in the DTI setup. The optical layout incorporates a novel tracking concept enabling the use of homothetic mapping in real telescope systems for observations on the sky. The requirements for homothetic mapping and the choices made in the DTI setup will be discussed. Finally the first results and the planned experiments will be presented.
King, G.E.; Anderson, A.R.; Ringham, M.D.
1986-06-01
A study of 90 wells perforated with the tubing-conveyed perforating system showed a correlation between underbalanced pressure and formation permeability that can be used to achieve clean perforations. The data, from gas and oil producers in clean sandstones, are from wells that were perforated, tested, acidized, and retested. There is a clear minimum underbalance line separating the data sets of wells that had clean perforations (unassisted by acidizing) from those wells that showed a significant productivity increase after acidizing. The study includes data from oil and gas wells in the Gulf of Mexico, Lousiana (Tuscaloosa trend), New Mexico (Morrow sandstone), Rocky Mountain overthrust, and Alberta, Canada.
How to Obtain Information in Different Fields of Science and Technology--A User's Guide.
ERIC Educational Resources Information Center
North Atlantic Treaty Organization, Neuilly-sur-Seine (France). Advisory Group for Aerospace Research and Development.
This user guide is comprised of the text of a series of lectures designed to establish an understanding of available data resources in several scientific and technological areas. Presentations of general information on this subject and more detailed examples of specific scientific, medical, and governmental systems are included. The following…
Usmani, Nawaid; Sloboda, Ron; Kamal, Wafa; Ghosh, Sunita; Pervez, Nadeem; Pedersen, John; Yee, Don; Danielson, Brita; Murtha, Albert; Amanie, John; Monajemi, Tara
2011-07-01
Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.
Extensive Cochleotopic Mapping of Human Auditory Cortical Fields Obtained with Phase-Encoding fMRI
Amedi, Amir
2011-01-01
The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl's gyrus curvature). Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities. PMID:21448274
ERIC Educational Resources Information Center
Smith, Glori H.
2009-01-01
To fully acculturate into society, English language learners (ELLs) need to be conversant with the language and culture of their peers. The National Association for Media Literacy (NAMLE) asserts that media, including the electronic media, are an integral component of modern culture and function as an agent of socialization. They assert that to be…
Sanchez-Bel, P; Egea, I; Serrano, M; Romojaro, A; Pretel, M T
2012-02-01
The aim of this study was to optimize all parameters implied in the process of obtaining orange segments as minimally processed product by enzymatic peeling, from the method of segment obtaining to the storage conditions, and also to evaluate two films with different permeability. Enzymatic peeling was carried out by fruit infusion under vacuum conditions in a commercial preparation of pectinases and cellulases (Peelzym II). The best condition to obtain Cadenera segments by enzymatic peeling was 1 mL/L of Peelzym II applied at 53 kPa with three vacuum pulses of 2 min and a subsequent period of 30 min in the enzymatic solution at atmospheric pressure. The segments were packaged in two films with different permeability and they were stored for 10 days at 4 °C. Samplings were carried out after 4, 7 and 10 days of storage. The results showed that the concentration of CO(2) in the less permeable film (PA 120) ranged between 0.7 and 1.2 mL/100 mL, while in the most permeable one (PA 240) was around 0.2 mL/100 mL. Under these conditions, the weight loss was kept at low levels until day 7 of storage, showing a significant increase after 10 days. Colour (a/b) increased with the peeling process and it remained without significant changes during the whole storage period for both films. The antioxidant capacity slightly decreased after 10 days of storage. The microbial flora was reduced after the enzymatic peeling. Both the sensory and the microbiological quality were kept in adequate levels for consumption during 7 days. From this moment, they lost sweetness and aroma and the microbial development increased. Thus, the use of the most permeable film and a maximum storage time of 7 days are recommended to maintain the most quality of the segments. PMID:22328121
NASA Technical Reports Server (NTRS)
Weaver, R. W.
1983-01-01
As a part of the Flat-Plate Solar Array Project (FSA), a field-test program was developed to obtain solar photovoltaic (PV) module performance and endurance data. These data are used to identify the specific characteristics of module designs under various environmental conditions. The information obtained from field testing is useful to all participants in the National Photovoltaics Program, from the research planner to the life-cycle cost analyst.
On the zero modes of the Faddeev-Popov operator in the Landau gauge
Landim, R. R.; Vilar, L. C. Q. Lemes, V. E. R.; Ventura, O. S.
2014-02-15
Following Henyey procedure [Phys. Rev. D 20, 1460 (1979)], we construct examples of zero modes of the Faddeev-Popov operator in the Landau gauge in Euclidean space in D dimensions, for both SU(2) and SU(3) groups. We obtain gauge field configurations A{sub μ}{sup a} which give rise to a field strength, F{sub μν}{sup a}=∂{sub μ}A{sub ν}{sup a}−∂{sub ν}A{sub μ}{sup a}+f{sup abc}A{sub μ}{sup b}A{sub ν}{sup c}, whose nonlinear term, f{sup abc}A{sub μ}{sup b}A{sub ν}{sup c}, turns out to be non-vanishing. To our knowledge, this is the first time where such a non-abelian configuration is explicitly obtained in the case of SU(3) in 4D.
Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam : This is a quick and basic check of the visual field. The health care provider ...
Weizsacker-Williams approximation in quantum chromodynamics
NASA Astrophysics Data System (ADS)
Kovchegov, Yuri V.
The Weizsacker-Williams approximation for a large nucleus in quantum chromodynamics is developed. The non-Abelian Wieizsacker Williams field for a large ultrarelativistic nucleus is constructed. This field is an exact solution of the classical Yang-Mills equations of motion in light cone gauge. The connection is made to the McLerran- Venugopalan model of a large nucleus, and the color charge density for a nucleus in this model is found. The density of states distribution, as a function of color charge density, is proved to be Gaussian. We construct the Feynman diagrams in the light cone gauge which correspond to the classical Weizsacker Williams field. Analyzing these diagrams we obtain a limitation on using the quasi-classical approximation for nuclear collisions.
Analog of the spin-orbit-induced anomalous Hall effect with quantized radiation
Larson, Jonas
2010-05-15
We demonstrate how the term describing the interaction between a single two-level atom and two cavity field modes may attain a Rashba form. As an outcome, cavity QED provides a testbed for studies of phenomena reminiscent of the spin-orbit induced anomalous Hall effect. The effective magnetic field, deriving from the non-Abelian gauge potentials rendered by the Rashba coupling, induces a transverse force acting on the phase space distributions. Thereby, the phase space distributions build up a transverse motion manifesting itself in spiral trajectories, rather than circular ones obtained for a zero magnetic field as one would acquire for the corresponding Abelian gauge potentials. Utilizing realistic experimental parameters, the phenomenon is numerically verified, ascertain that it should be realizable with current techniques.
Obtaining of new magnetic nanocomposites based on modified polysaccharide.
Tudorachi, Nita; Chiriac, Aurica
2013-10-15
The study presents the preparation of some composite materials with magnetic properties by two different encapsulation methods of magnetite (Fe3O4) in a polymer matrix based on carboxymethyl starch-g-polylactic acid (CMS-g-PLA). The copolymer matrix used to obtain the magnetic nanocomposites was synthesized by grafting reaction of carboxymethyl starch (CMS) with D,L-lactic acid (DLLA), in the presence of Sn octanoate [Sn(Oct)2] as catalyst. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3 (molar ratio 1/2). The magnetic composites were prepared by precipitation method in acetone (non-solvent) of the DMSO solutions of magnetite and copolymer, and synthesis in situ of the nanocomposites. In the first case, the particle size measured by DLS-technique was 168 nm, and the magnetization was 46.82 emu/g, while after in situ synthesis, the composite materials showed smaller size (141 nm), but the magnetization was reduced (3.04 emu/g). The higher magnetization in the first case is due to the great degree of encapsulation of the magnetite, which was about 43.4 wt.%, compared to 4.37 wt.% for the in situ synthesis (determined by thermogravimetry). The CMS-g-PLA copolymer, magnetite, and the nanocomposites were characterized by infrared spectroscopy (FTIR), near infrared chemical imagistic (NIR-CI), dynamic light scattering (DLS) technique, X-ray diffraction (WAXD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and thermal analyses. Since the polymer matrix and magnetite are biodegradable and biocompatible, the magnetic nanocomposites can be used for conjugation of some drugs. The polymer matrix CMS-g-PLA acts as a shell, and vehicle for the active component, whereas magnetite is the component which makes targeting possible by external magnetic field manipulation. PMID:23987367
Reliability of fish size estimates obtained from multibeam imaging sonar
Hightower, Joseph E.; Magowan, Kevin J.; Brown, Lori M.; Fox, Dewayne A.
2013-01-01
Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄ = −8.34, SE = 2.39) and white perch (x̄ = 14.48, SE = 3.99) but not striped bass (x̄ = 3.71, SE = 2.58) or channel catfish (x̄ = 3.97, SE = 5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of
MONOPOLES AND DYONS IN THE PURE EINSTEIN YANG MILLS THEORY
HOSOTANI,Y.; BJORAKER,J.
1999-08-16
In the pure Einstein-Yang-Mills theory in four dimensions there exist monopole and dyon solutions. The spectrum of the solutions is discrete in asymptotically flat or de Sitter space, whereas it is continuous in asymptotically anti-de Sitter space. The solutions are regular everywhere and specified with their mass, and non-Abelian electric and magnetic charges. In asymptotically anti-de Sitter space a class of monopole solutions have no node in non-Abelian magnetic fields, and are stable against spherically symmetric perturbations.
NASA Astrophysics Data System (ADS)
White, C. D.
2016-04-01
Webs are sets of Feynman diagrams that contribute to the exponents of scattering amplitudes, in the kinematic limit in which emitted radiation is soft. As such, they have a number of phenomenological and formal applications, and offer tantalizing glimpses into the all-order structure of perturbative quantum field theory. This article is based on a series of lectures given to graduate students, and aims to provide a pedagogical introduction to webs. Topics covered include exponentiation in (non-)abelian gauge theories, the web mixing matrix formalism for non-abelian gauge theories, and recent progress on the calculation of web diagrams. Problems are included throughout the text, to aid understanding.
Ligand Release Pathways Obtained with WExplore: Residence Times and Mechanisms.
Dickson, Alex; Lotz, Samuel D
2016-06-23
The binding of ligands with their molecular receptors is of tremendous importance in biology. Although much emphasis has been placed on characterizing binding sites and bound poses that determine the binding thermodynamics, the pathway by which a ligand binds importantly determines the binding kinetics. The computational study of entire unbiased ligand binding and release pathways is still an emerging field, made possible only recently by advances in computational hardware and sampling methodologies. We have developed one such method (WExplore) that is based on a weighted ensemble of trajectories, which we apply to ligand release for the first time, using a set of three previously characterized interactions between low-affinity ligands and the protein FKBP-12 (FK-506 binding protein). WExplore is found to be more efficient that conventional sampling, even for the nanosecond-scale unbinding events observed here. From a nonequilibrium ensemble of unbinding trajectories, we obtain ligand residence times and release pathways without using biasing forces or a Markovian assumption of transitions between regions. We introduce a set of analysis tools for unbinding transition pathways, including using von Mises-Fisher distributions to model clouds of ligand exit points, which provide a quantitative proxy for ligand surface diffusion. Differences between the transition pathway ensembles of the three ligands are identified and discussed.
Magnetic biocatalysts and their uses to obtain bioproducts
NASA Astrophysics Data System (ADS)
López, Carmen; Cruz-Izquierdo, Álvaro; Picó, Enrique; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María; Serra, Juan
2014-08-01
Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media and compared between them and to those showed by the corresponding soluble enzyme. Thus, the hydrolysis of triglycerides or the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB.
Ligand Release Pathways Obtained with WExplore: Residence Times and Mechanisms.
Dickson, Alex; Lotz, Samuel D
2016-06-23
The binding of ligands with their molecular receptors is of tremendous importance in biology. Although much emphasis has been placed on characterizing binding sites and bound poses that determine the binding thermodynamics, the pathway by which a ligand binds importantly determines the binding kinetics. The computational study of entire unbiased ligand binding and release pathways is still an emerging field, made possible only recently by advances in computational hardware and sampling methodologies. We have developed one such method (WExplore) that is based on a weighted ensemble of trajectories, which we apply to ligand release for the first time, using a set of three previously characterized interactions between low-affinity ligands and the protein FKBP-12 (FK-506 binding protein). WExplore is found to be more efficient that conventional sampling, even for the nanosecond-scale unbinding events observed here. From a nonequilibrium ensemble of unbinding trajectories, we obtain ligand residence times and release pathways without using biasing forces or a Markovian assumption of transitions between regions. We introduce a set of analysis tools for unbinding transition pathways, including using von Mises-Fisher distributions to model clouds of ligand exit points, which provide a quantitative proxy for ligand surface diffusion. Differences between the transition pathway ensembles of the three ligands are identified and discussed. PMID:27231969
Obtaining Crosswind from Single-Aperture Optical Scintillometers
NASA Astrophysics Data System (ADS)
van Dinther, D.; Hartogensis, O. K.
2010-09-01
A scintillometer is a device that consist of a transmitter and receiver. The receiver records intensity fluctuations of the electromagnetic beam emitted at optical or microwave wavelengths by the transmitter. These fluctuations are caused by refraction of the beam upon its passage through the turbulent surface layer. An increasingly popular application of scintillometry is to estimate the area-averaged surface fluxes from these raw measurements following scintillometer theory (Tatarskii, 1961) relating the raw intensity measurements to the structure parameter of the refractive index, Cn2 and Monin-Obukhov similarity theory that relates structure parameters to surface fluxes (Meijninger et al., 2002). A less known application of scintillometry is the estimation of the crosswind, i.e. the wind perpendicular to the scintillometer path. Past research on this issue focused on multiple aperture scintillometers that use the time delay between the turbulence signals of the displaced apertures to estimate the crosswind (Andreas, 2000, Poggio et al., 2000 and Furger et al., 2001,). The goal of this study is to explore a method to obtain the crosswind from single aperture scintillometers through spectral analysis of the raw scintillometer signal. In theory the scintillometer spectrum shows an inflection at the transition of the refractive and absorption part of the spectrum. The transition frequency (fC2) is related to the ratio of the crosswind and the diameter of the receiver and transmitter (Nieveen et al., 1998) via fc2 = -u-- 1.25D where u is the crosswind speed and D the diameter of the scintillometer. Limitation of the method is that it only works properly when the crosswind is constant, i.e. with a horizontal scintillometer path, no time variation and no spatial variations of the crosswind. The prescribed method to obtain the crosswind is examined with LITFASS-2009 (Germany) and Haarweg (The Netherlands) datasets. At LITFASS-2009 different optical and microwave
Electromagnetic Field Penetration Studies
NASA Technical Reports Server (NTRS)
Deshpande, M.D.
2000-01-01
A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.
Entanglement entropy and entanglement spectrum of the Kitaev model.
Yao, Hong; Qi, Xiao-Liang
2010-08-20
In this letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = SG+SF, with SF the entanglement entropy of a free Majorana fermion system and SG that of a Z2 gauge field. The Z2 gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z2 vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states--the capacity of entanglement, which can distinguish the st ates with and without topologically protected gapless entanglement spectrum.
Jet energy loss in the quark-gluon plasma by stream instabilities
Mannarelli, Massimo; Manuel, Cristina; Gonzalez-Solis, Sergi; Strickland, Michael
2010-04-01
We study the evolution of the plasma instabilities induced by two jets of particles propagating in opposite directions and crossing a thermally equilibrated non-Abelian plasma. In order to simplify the analysis we assume that the two jets of partons can be described with uniform distribution functions in coordinate space and by Gaussian distribution functions in momentum space. We find that while crossing the quark-gluon plasma, the jets of particles excite unstable chromomagnetic and chromoelectric modes. These fields interact with the particles (or hard modes) of the plasma inducing the production of currents; thus, the energy lost by the jets is absorbed by both the gauge fields and the hard modes of the plasma. We compare the outcome of the numerical simulations with the analytical calculation performed assuming that the jets of particles can be described by a tsunamilike distribution function. We find qualitative and semiquantitative agreement between the results obtained with the two methods.
PT Symmetry, Conformal Symmetry, and the Metrication of Electromagnetism
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2016-05-01
We present some interesting connections between PT symmetry and conformal symmetry. We use them to develop a metricated theory of electromagnetism in which the electromagnetic field is present in the geometric connection. However, unlike Weyl who first advanced this possibility, we do not take the connection to be real but to instead be PT symmetric, with it being iA_{μ } rather than A_{μ } itself that then appears in the connection. With this modification the standard minimal coupling of electromagnetism to fermions is obtained. Through the use of torsion we obtain a metricated theory of electromagnetism that treats its electric and magnetic sectors symmetrically, with a conformal invariant theory of gravity being found to emerge. An extension to the non-Abelian case is provided.
Appearance of gauge structure in simple dynamical systems
NASA Technical Reports Server (NTRS)
Wilczek, F.; Zee, A.
1984-01-01
By generalizing a construction of Berry and Simon, it is shown that non-Abelian gauge fields arise in the adiabatic development of simple quantum mechanical systems. Characteristics of the gauge fields are related to energy splittings, which may be observable in real systems. Similar phenomena are found for suitable classical systems.
PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS
Yamamoto, Tetsuya T.; Kusano, K.
2012-06-20
Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.
Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants.
López, Carmen; Cruz-Izquierdo, Alvaro; Picó, Enrique A; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J; Serra, Juan L
2014-01-01
Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale. PMID:25207271
Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants
López, Carmen; Cruz-Izquierdo, Álvaro; Picó, Enrique A.; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J.; Serra, Juan L.
2014-01-01
Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale. PMID:25207271
49 CFR 375.519 - Must I obtain weight tickets?
Code of Federal Regulations, 2010 CFR
2010-10-01
... TRANSPORTATION OF HOUSEHOLD GOODS IN INTERSTATE COMMERCE; CONSUMER PROTECTION REGULATIONS Pick Up of Shipments of Household Goods Weighing the Shipment § 375.519 Must I obtain weight tickets? (a) You must obtain...
47 CFR 1.8002 - Obtaining an FRN.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Obtaining an FRN. 1.8002 Section 1.8002 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE FCC Registration Number § 1.8002 Obtaining an FRN. (a) The FRN must be obtained by anyone doing business with the Commission, see 31 U.S.C. 7701(c)(2), including but...
Earning and Obtaining Reinforcers under Concurrent Interval Scheduling
ERIC Educational Resources Information Center
MacDonall, James S.
2005-01-01
Contingencies of reinforcement specify how reinforcers are earned and how they are obtained. Ratio contingencies specify the number of responses that earn a reinforcer, and the response satisfying the ratio requirement obtains the earned reinforcer. Simple interval schedules specify that a certain time earns a reinforcer, which is obtained by the…
32 CFR 806b.8 - Obtaining law enforcement records.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Obtaining law enforcement records. 806b.8... ADMINISTRATION PRIVACY ACT PROGRAM Obtaining Law Enforcement Records and Confidentiality Promises § 806b.8 Obtaining law enforcement records. The Commander, Air Force Office of Special Investigation; the...
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.
1987-01-01
Observed correlations between the atmospheric electric field and the neutral wind were studied using additional atmospheric measurements during Project CONDOR. Project CONDOR obtained measurements near the equatorial electrojet (12 S) during March 1983. Neutral atmosphere wind measurements were obtained using lightweight inflatable spheres and temperatures were obtained using a datasonde. The lightweight sphere technology, the wind structure, and temperature structure are described. Results show that the lightweight sphere gives higher vertical resolution of winds below 75 km compared with the standard sphere, but gives little or no improvement above 80 km, and no usable temperature and density data.
Main results obtained by the Siberia Regional Project of GAME
NASA Astrophysics Data System (ADS)
Ohata, T.; Fukushima, Y.
2002-12-01
GAME(GEWEX Asian Monsoon Experiment) selected one of their field experiment site in Siberia. Importance of this area was, first, its large area on Eurasia, second, potential effect of fresh water supply to the Arctic Ocean, thirdly, this region is one center of the recent intense warming. In order to progress the study, we set up the following objectives. 1) Clarify the physical processes of the land-surface/atmosphere interacting system. 2) Clarify the characteristics and variability of regional energy/water cycle. 3) Obtain the climate trend and land-surface change during the past 50 years. 4) Improve and develop atmospheric and hydrological models 5) Collection and archive of regional ground based/satellite data. 6) Establishment of observational network for long-term variation study, and development of hardware. The 1st phase of the study was 1996-2001, and from 2002 to 2004, 2nd phase emphasizing on integration is continued. Among the drainage in Siberia, Lena River was selected and following main results were obtained. (1) Land surface processes at three local sites: Heat water exchange study was made at three sites (Tundra: Tiksi, Flat taiga:Yakutsk, Mountaineous taiga:Tynda) for multiple years. They all showed strong influence of frozen ground (permafrost) to the heat/ water balance at patch scale. Snow cover had strong influence to hydrological process at Tundra and Mountaineous taiga, but it was masked at Flat Taiga. In Flat taiga, rhythm of heat flux to atmosphere is regulated strongly by foliation of leaves. Grassland (called alas) in comparison with nearby forest show different seasonal progress of fluxes, higher evaporation and low sensible heat at small young alas, and lower evaporation at vastly cultivated alas. Inter-annual variation of evaporation seem to be small in the Flat taiga forest compared with Tundra, although soil moisture show strong inter-annual variability, mainly due to the result of active function of the trees. In dry years trees
Numerical techniques for lattice gauge theories
Creutz, M.
1981-02-06
The motivation for formulating gauge theories on a lattice is reviewed. Monte Carlo simulation techniques are then discussed for these systems. Finally, the Monte Carlo methods are combined with renormalization group analysis to give strong numerical evidence for confinement of quarks by non-Abelian gauge fields.
Christensen, S.M.
1984-01-01
The book of essay entitled Quantum Theory of Gravity, edited by Steven M. Christensen is reviewed. The book contains over thirty papers dealing with the subject of the unification of quantum field theory and general relativity theory. Contributions include discussions of non-Abelian gauge theories, supersymmetry, issues in renormalization and quantization and matters related to the interpretation of theories.
Thews, R.L.; Scadron, M.D.; Patrascioiu, A.; Sucipto, E.
1986-01-01
Progress is reported in these areas: dynamical quark mass in QCD; quark s-d self energy in QFD; theory of nonleptonic weak decays; decays of heavy-quark mesons; quarks in nuclei; nonperturbative effects in non-abelian quantum field theory; whether perturbation theory is the asymptotic expansion in lattice gauge theories; and expanding in the gradient at weak coupling. 16 refs. (LEW)
Hopf bifurcation in Yang--Mills mechanics
Kursawe, U.; Malec, E.
1985-10-01
The periodic non-Abelian space-independent solutions to Yang--Mills SU(2) equations are studied. Hopf bifurcation is shown to appear. New analytic solutions generating a simple Abelian source are found and their stability is discussed. The source can be produced by a fermion field; a self-consistent solution of Yang--Mills--Dirac equations is presented.
Colorful Horizons with Charge in Anti-de Sitter Space
Gubser, Steven S.
2008-11-07
An Abelian gauge symmetry can be spontaneously broken near a black hole horizon in anti-de Sitter space using a condensate of non-Abelian gauge fields. A second order phase transition is shown to separate Reissner-Nordstroem-anti-de Sitter solutions from a family of symmetry-breaking solutions which preserve a diagonal combination of gauge invariance and spatial rotational invariance.
Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions
Schlichting, S.; Venugopalan, R.; Berges, J.; Boguslavski, K.
2015-02-10
Isolated quantum systems in extreme conditions can exhibit unusually large occupancies per mode. In addition, this over-population gives rise to new universality classes of many-body systems far from equilibrium. We present theoretical evidence that important aspects of non-Abelian plasmas in the ultra-relativistic limit admit a dual description in terms of a Bose condensed scalar field theory.
Born-Infeld inspired bosonic action in a noncommutative geometry
Serie, Emmanuel; Masson, Thierry; Kerner, Richard
2004-09-15
The Born-Infeld Lagrangian for non-Abelian gauge theory is adapted to the case of the generalized gauge fields arising in noncommutative matrix geometry. Basic properties of static and time-dependent solutions of the scalar sector of this model are investigated.
Thermal Effusivity of Vegetable Oils Obtained by a Photothermal Technique
NASA Astrophysics Data System (ADS)
Cervantes-Espinosa, L. M.; de L. Castillo-Alvarado, F.; Lara-Hernández, G.; Cruz-Orea, A.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.
2014-10-01
Thermal properties of several vegetable oils such as soy, corn, and avocado commercial oils were obtained by using a photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. The obtained results are in good agreement with the thermal effusivity reported for other vegetable oils. All measurements were done at room temperature.
48 CFR 222.1008 - Procedures for obtaining wage determinations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Service Contract Labor Standards 222.1008 Procedures for obtaining...
48 CFR 222.1008-1 - Obtaining wage determinations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Service Contract Labor Standards 222.1008-1 Obtaining wage determinations. Follow the...
48 CFR 222.1008 - Procedures for obtaining wage determinations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Service Contract Labor Standards 222.1008 Procedures for obtaining...
48 CFR 222.1008-1 - Obtaining wage determinations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Service Contract Labor Standards 222.1008-1 Obtaining wage determinations. Follow the...
Jansson, Ronnie; Farrar, Glennys R.
2012-12-10
With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.
ERIC Educational Resources Information Center
Koltay, Emery
2002-01-01
Includes four articles: one lists publishers' toll-free telephone numbers and Web sites; and the others explain how to obtain an ISBN (International Standard Book Number), an ISSN (International Standard Serial Number), and an SAN (Standard Address Number) for organizations involved in the book industry. (LRW)
Chromohydrodynamics in Einstein-Cartan theory
Amorim, R.
1986-05-15
The complete dynamical system for a classical fluid endowed with non-Abelian charge density is obtained by using variational techniques. Spin density appears in a natural way, as a consequence of a usual gauge construction. Einstein-Cartan, Yang-Mills, and generalized Wong equations are explicitly shown.
25 CFR 175.50 - Obtaining rights-of-way.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Obtaining rights-of-way. 175.50 Section 175.50 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Rights-of-Way § 175.50 Obtaining rights-of-way. Where there is no existing right(s)-of-way for...
25 CFR 175.50 - Obtaining rights-of-way.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Obtaining rights-of-way. 175.50 Section 175.50 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Rights-of-Way § 175.50 Obtaining rights-of-way. Where there is no existing right(s)-of-way for...
25 CFR 175.50 - Obtaining rights-of-way.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Obtaining rights-of-way. 175.50 Section 175.50 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Rights-of-Way § 175.50 Obtaining rights-of-way. Where there is no existing right(s)-of-way for...
25 CFR 175.50 - Obtaining rights-of-way.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Obtaining rights-of-way. 175.50 Section 175.50 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Rights-of-Way § 175.50 Obtaining rights-of-way. Where there is no existing right(s)-of-way for...
25 CFR 175.50 - Obtaining rights-of-way.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Obtaining rights-of-way. 175.50 Section 175.50 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Rights-of-Way § 175.50 Obtaining rights-of-way. Where there is no existing right(s)-of-way for...
7 CFR 1421.14 - Obtaining peanut loans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Obtaining peanut loans. 1421.14 Section 1421.14... peanut loans. (a) Peanuts loans to individual producers may be obtained through: (1) County offices; or... presented for disbursement unless the peanuts pledged as collateral for the marketing assistance loan...
7 CFR 1421.14 - Obtaining peanut loans.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 10 2011-01-01 2011-01-01 false Obtaining peanut loans. 1421.14 Section 1421.14... peanut loans. (a) Peanuts loans to individual producers may be obtained through: (1) County offices; or... presented for disbursement unless the peanuts pledged as collateral for the marketing assistance loan...
48 CFR 9.105-1 - Obtaining information.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Obtaining information. 9... information. (a) Before making a determination of responsibility, the contracting officer shall possess or obtain information sufficient to be satisfied that a prospective contractor currently meets...
48 CFR 209.105-1 - Obtaining information.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Obtaining information. 209....105-1 Obtaining information. (1) For guidance on using the Exclusions section of the System for Award... responsibility (see FAR 9.104-1(c)). One source of information relating to contractor performance is the...
42 CFR 423.2118 - Obtaining evidence from the MAC.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 3 2010-10-01 2010-10-01 false Obtaining evidence from the MAC. 423.2118 Section..., MAC review, and Judicial Review § 423.2118 Obtaining evidence from the MAC. An enrollee may request... the costs of providing these items. If an enrollee requests evidence from the MAC and an...
42 CFR 405.1118 - Obtaining evidence from the MAC.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Obtaining evidence from the MAC. 405.1118 Section... Council Review § 405.1118 Obtaining evidence from the MAC. A party may request and receive a copy of all... these items. If a party requests evidence from the MAC and an opportunity to comment on that...
A method for obtaining coefficients of compositional inverse generating functions
NASA Astrophysics Data System (ADS)
Kruchinin, Dmitry V.; Shablya, Yuriy V.; Kruchinin, Vladimir V.; Shelupanov, Alexander A.
2016-06-01
The aim of this paper is to show how to obtain expressions for coefficients of compositional inverse generating functions in explicit way. The method is based on the Lagrange inversion theorem and composita of generating functions. Also we give a method of obtaining expressions for coefficients of reciprocal generating functions and consider some examples.
29 CFR 541.501 - Making sales or obtaining orders.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 3 2012-07-01 2012-07-01 false Making sales or obtaining orders. 541.501 Section 541.501... SALES EMPLOYEES Outside Sales Employees § 541.501 Making sales or obtaining orders. (a) Section 541.500 requires that the employee be engaged in: (1) Making sales within the meaning of section 3(k) of the...
29 CFR 541.501 - Making sales or obtaining orders.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Making sales or obtaining orders. 541.501 Section 541.501... SALES EMPLOYEES Outside Sales Employees § 541.501 Making sales or obtaining orders. (a) Section 541.500 requires that the employee be engaged in: (1) Making sales within the meaning of section 3(k) of the...
29 CFR 541.501 - Making sales or obtaining orders.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 3 2014-07-01 2014-07-01 false Making sales or obtaining orders. 541.501 Section 541.501... SALES EMPLOYEES Outside Sales Employees § 541.501 Making sales or obtaining orders. (a) Section 541.500 requires that the employee be engaged in: (1) Making sales within the meaning of section 3(k) of the...
29 CFR 541.501 - Making sales or obtaining orders.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Making sales or obtaining orders. 541.501 Section 541.501... SALES EMPLOYEES Outside Sales Employees § 541.501 Making sales or obtaining orders. (a) Section 541.500 requires that the employee be engaged in: (1) Making sales within the meaning of section 3(k) of the...
29 CFR 541.501 - Making sales or obtaining orders.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 3 2013-07-01 2013-07-01 false Making sales or obtaining orders. 541.501 Section 541.501... SALES EMPLOYEES Outside Sales Employees § 541.501 Making sales or obtaining orders. (a) Section 541.500 requires that the employee be engaged in: (1) Making sales within the meaning of section 3(k) of the...
20 CFR 726.4 - Who must obtain insurance coverage.
Code of Federal Regulations, 2010 CFR
2010-04-01
... to self-insure or obtain a policy or contract of insurance to guarantee the payment of benefits for... business entity, any former, current, or future operator or any other form of business entity which has had... business entity to self-insure or obtain a policy or contract of insurance shall in no way relieve...
75 FR 22189 - Obtaining Information From the Postal Service
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
... Commission 39 CFR Parts 3001 and 3005 Obtaining Information From the Postal Service; Final Rule #0;#0;Federal... COMMISSION 39 CFR Parts 3001 and 3005 Obtaining Information From the Postal Service AGENCY: Postal Regulatory... information from the Postal Service. Their adoption is consistent with Commission obligations under a...
46 CFR 70.35-5 - Where obtainable.
Code of Federal Regulations, 2012 CFR
2012-10-01
...: For Federal Register citations affecting § 70-35-5, see the List of CFR Sections Affected, which... 46 Shipping 3 2012-10-01 2012-10-01 false Where obtainable. 70.35-5 Section 70.35-5 Shipping COAST... of Shipping's Standards § 70.35-5 Where obtainable. (a) The standards established by the...
46 CFR 188.35-5 - Where obtainable.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Where obtainable. 188.35-5 Section 188.35-5 Shipping... PROVISIONS American Bureau of Shipping's Standards § 188.35-5 Where obtainable. (a) The standards established... also be examined at the Office of the Commandant (CG-CVC), U.S. Coast Guard, 2100 2nd St. SW.,...
46 CFR 70.35-5 - Where obtainable.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Where obtainable. 70.35-5 Section 70.35-5 Shipping COAST... of Shipping's Standards § 70.35-5 Where obtainable. (a) The standards established by the American... Office of the Commandant (CG-52), 2100 2nd St., SW., Stop 7126, Washington, DC 20593-7126, or at...
46 CFR 188.35-5 - Where obtainable.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Where obtainable. 188.35-5 Section 188.35-5 Shipping... PROVISIONS American Bureau of Shipping's Standards § 188.35-5 Where obtainable. (a) The standards established... also be examined at the Office of the Commandant (CG-543), U.S. Coast Guard, 2100 2nd St. SW.,...
46 CFR 70.35-5 - Where obtainable.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Where obtainable. 70.35-5 Section 70.35-5 Shipping COAST... of Shipping's Standards § 70.35-5 Where obtainable. (a) The standards established by the American... Office of the Commandant (CG-52), 2100 2nd St., SW., Stop 7126, Washington, DC 20593-7126, or at...
46 CFR 90.35-5 - Where obtainable.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Where obtainable. 90.35-5 Section 90.35-5 Shipping COAST... American Bureau of Shipping's Standards § 90.35-5 Where obtainable. The standards established by the... Office of the Commandant (CG-5PS), 2100 2nd St. SW., Stop 7126, Washington, DC 20593-7126, or at...
46 CFR 90.35-5 - Where obtainable.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Where obtainable. 90.35-5 Section 90.35-5 Shipping COAST... American Bureau of Shipping's Standards § 90.35-5 Where obtainable. (a) The standards established by the... Office of the Commandant (CG-52), 2100 2nd St. SW., Stop 7126, Washington, DC 20593-7126, or at...