Sample records for obvious seasonal variation

  1. A further contribution to the seasonal variation of weighted mean temperature

    NASA Astrophysics Data System (ADS)

    Ding, Maohua; Hu, Wusheng

    2017-12-01

    The weighted mean temperature Tm is a variable parameter in the Global Navigation Satellite System (GNSS) meteorology and the Askne-Nordius zenith wet delay (ZWD) model. Some parameters about the Tm seasonal variation (e.g. the annual mean value, the annual range, the annual and semi-annual amplitudes, and the long-term trend) were discussed before. In this study, some additional results about the Tm seasonal variation on a global scale were found by using the Tm time series at 309 global radiosonde sites. Periodic signals of the annual and semi-annual variations were detected in these Tm time series by using the Lomb-Scargle periodogram. The annual variation is the main component of the periodic Tm in non-tropical regions, while the annual variation or the semiannual variation can be the main component of the periodic Tm in tropics. The mean annual Tm almost keeps constant with the increasing latitude in tropics, while it decreases with the increasing latitude in non-tropical regions. From a global perspective, Tm has an increasing trend of 0.22 K/decade on average, which may be caused by the global warming effects. The annual phase is almost found in about January for the non-tropical regions of the Southern Hemisphere and in about July for the non-tropical regions of the Northern Hemisphere, but it has no clear symmetry in tropics. Unlike the annual phase, the geographical distributions of semi-annual phase do not follow obvious rules. In non-tropical regions, the maximum and minimum Tm of the seasonal model are usually found in respective summer and winter days while the maximum and minimum Tm are distributed over a whole year but not in any fixed seasons for tropical regions. The seasonal model errors increase with the increasing value of annual amplitude. A primary reason for the irregular seasonal variation in tropics is that Tm has rather small variations in this region.

  2. Seasonal variation in sports participation.

    PubMed

    Schüttoff, Ute; Pawlowski, Tim

    2018-02-01

    This study explores indicators describing socio-demographics, sports participation characteristics and motives which are associated with variation in sports participation across seasons. Data were drawn from the German Socio-Economic Panel which contains detailed information on the sports behaviour of adults in Germany. Overall, two different measures of seasonal variation are developed and used as dependent variables in our regression models. The first variable measures the coefficient of (seasonal) variation in sport-related energy expenditure per week. The second variable measures whether activity drops below the threshold as defined by the World Health Organization (WHO). Results suggest that the organisational setting, the intensity and number of sports practised, and the motive for participation are strongly correlated with the variation measures used. For example, both, participation in a sports club and a commercial facility, are associated with reduced seasonal variation and a significantly higher probability of participating at a volume above the WHO threshold across all seasons. These findings give some impetus for policymaking and the planning of sports programmes as well as future research directions.

  3. Seasonal variation of streptococcal vulvo-vaginitis in an urban community

    PubMed Central

    Morris, C. A.

    1971-01-01

    A study was made of patients investigated by general practitioners. Over a three-year period Streptococcus pyogenes (group A) was isolated most commonly from vaginal and vulval swabs collected in the winter. The serotypes of strains indicate that some had probably been derived from the skin and others from the respiratory tract. The two sources are thought to have masked a consistent, but not obvious, seasonal variation in streptococcal vulvo-vaginitis acquired usually from streptococcal infections of the respiratory tract in winter and from those of the skin in summer. PMID:4946417

  4. Lidar observed seasonal variation of vertical canopy structure in the Amazon evergreen forests

    NASA Astrophysics Data System (ADS)

    Tang, H.; Dubayah, R.

    2017-12-01

    Both light and water are important environmental factors governing tree growth. Responses of tropical forests to their changes are complicated and can vary substantially across different spatial and temporal scales. Of particular interest is the dry-season greening-up of Amazon forests, a phenomenon undergoing considerable debates whether it is real or a "light illusion" caused by artifacts of passive optical remote sensing techniques. Here we analyze seasonal dynamic patterns of vertical canopy structure in the Amazon forests using lidar observations from NASA's Ice, Cloud, and and land Elevation Satellite (ICESat). We found that the net greening of canopy layer coincides with the wet-to-dry transition period, and its net browning occurs mostly at the late dry season. The understory also shows a seasonal cycle, but with an opposite variation to canopy and minimal correlation to seasonal variations in rainfall or radiation. Our results further suggest a potential interaction between canopy layers in the light regime that can optimize the growth of Amazon forests during the dry season. This light regime variability that exists in both spatial and temporal domains can better reveal the dry-season greening-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  5. Seasonal variation of the East Asian Subtropical Westerly Jet and its association with the heating field over East Asia

    NASA Astrophysics Data System (ADS)

    Kuang, Xueyuan; Zhang, Yaocun

    2005-11-01

    The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration.

  6. Seasonal Variation in Epidemiology

    ERIC Educational Resources Information Center

    Marrero, Osvaldo

    2013-01-01

    Seasonality analyses are important in medical research. If the incidence of a disease shows a seasonal pattern, then an environmental factor must be considered in its etiology. We discuss a method for the simultaneous analysis of seasonal variation in multiple groups. The nuts and bolts are explained using simple trigonometry, an elementary…

  7. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure.

    PubMed

    Tang, Hao; Dubayah, Ralph

    2017-03-07

    Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  8. Seasonal Variations in Mercury's Dayside Calcium Exosphere

    NASA Technical Reports Server (NTRS)

    Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee W.; Vervack, Ronald J., Jr.; Cassidy, Timothy A.; Sarantos, Menelaos

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer on the MESSENGER spacecraft has observed calcium emission in Mercury's exosphere on a near-daily basis since March 2011. During MESSENGER's primary and first extended missions (March 2011 - March 2013) the dayside calcium exosphere was measured over eight Mercury years. We have simulated these data with a Monte Carlo model of exospheric source processes to show that (a) there is a persistent source of energetic calcium located in the dawn equatorial region, (b) there is a seasonal dependence in the calcium source rate, and (c) there are no obvious year-to-year variations in the near-surface dayside calcium exosphere. Although the precise mechanism responsible for ejecting the calcium has not yet been determined, the most likely process is the dissociation of Ca-bearing molecules produced in micrometeoroid impact plumes to form energetic, escaping calcium atoms.

  9. Seasonal variation of columnar aerosol optical properties and radiative forcing over Beijing, China

    NASA Astrophysics Data System (ADS)

    Yu, Xingna; Lü, Rui; Liu, Chao; Yuan, Liang; Shao, Yixing; Zhu, Bin; Lei, Lu

    2017-10-01

    Long-term seasonal characteristics of aerosol optical properties and radiative forcing at Beijing (during March 2001-March 2015) were investigated using a combination of ground-based Sun/sky radiometer retrievals from the AERONET and a radiative transfer model. Aerosol optical depth (AOD) showed a distinct seasonal variation with higher values in spring and summer, and relatively lower values in fall and winter. Average Angstrom exponent (AE) in spring was lower than other seasons, implying the significant impact of dust episodes on aerosol size distribution. AE mainly distributed between 1.0 and 1.4 with an obvious uni-peak pattern in each season. The observation data showed that high AODs (>1.0) were clustered in the fine mode growth wing and the coarse mode. Compared to AOD, seasonal variation in single scattering albedo (SSA) showed an opposite pattern with larger values in summer and spring, and smaller ones in winter and fall. The highest volume size distribution and median radius of fine mode particles occurred in summer, while those of coarse mode particles in spring. The averaged aerosol radiative forcing (ARF) at the top of the atmosphere (TOA) in spring, summer, fall and winter were -33 ± 22 W m-2, -35 ± 22 W m-2, -28 ± 20 W m-2, and -24 ± 23 W m-2 respectively, and these differences were mainly due to the SSA seasonal variation. The largest positive ARF within atmosphere occurred in spring, implying strong warming in the atmosphere. The low heating ratio in summer was caused by the increase in water vapor content, which enhanced light scattering capacity (i.e., increased SSA).

  10. Diurnal and seasonal variations of greenhouse gas emissions from a naturally ventilated dairy barn in a cold region

    NASA Astrophysics Data System (ADS)

    Huang, Dandan; Guo, Huiqing

    2018-01-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions were quantified for a naturally ventilated free-stall dairy barn in the Canadian Prairies climate through continuous measurements for a year from February 2015 to January 2016, with ventilation rate estimated by a CO2 mass balance method. The results were categorized into seasonal emission profiles with monthly data measured on a typical day, and diurnal profiles in cold (January), warm (July), and mild seasons (October) of all three gases. Seasonal CO2, CH4, and N2O concentrations greatly fluctuated within ranges of 593-2433 ppm, 15-152 ppm, and 0.32-0.40 ppm, respectively, with obviously higher concentrations in the cold season. Emission factors of the three gases were summarized: seasonal N2O emission varied between 0.5 and 10 μg s-1 AU-1 with lower emission in the cold season, while seasonal CO2 and CH4 emissions were within narrow ranges of 112-119 mg s-1 AU-1 and 2.5-3.5 mg s-1 AU-1. The result suggested a lower enteric CH4 emission for dairy cows than that estimated by Environment Canada (2014). Significant diurnal effects (P < 0.05) were observed for CH4 emissions in all seasons with higher emissions in the afternoons and evenings. The total greenhouse gas (GHG) emission, which was calculated by summing the three GHG in CO2 equivalent, was mainly contributed by CO2 and CH4 emissions and showed no significant seasonal variations (P > 0.05), but obvious diurnal variations in all seasons. In comparison with previous studies, it was found that the dairy barn in a cold region climate with smaller vent openings had relatively higher indoor CO2 and CH4 concentrations, but comparable CO2 and CH4 emissions to most previous studies. Besides, ventilation rate, temperature, and relative humidity all significantly affected the three gas concentrations with the outdoor temperature being the most relevant factor (P < 0.01); however, they showed less or no statistical relations to emissions.

  11. Variation in calcification rate of Acropora downingi relative to seasonal changes in environmental conditions in the northeastern Persian Gulf

    NASA Astrophysics Data System (ADS)

    Vajed Samiei, Jahangir; Saleh, Abolfazl; Shirvani, Arash; Sheijooni Fumani, Neda; Hashtroudi, Mehri; Pratchett, Morgan Stuart

    2016-12-01

    There is a strong interest in understanding how coral calcification varies with changing environmental conditions, especially given the projected changes in temperature and aragonite saturation due to climate change. This study explores in situ variation in calcification rates of Acropora downingi in the northeastern Persian Gulf relative to seasonal changes in temperature, irradiance and aragonite saturation state ( Ω arag). Calcification rates of A. downingi were highest in the spring and lowest in the winter, and intra-annual variation in calcification rate was significantly related to temperature ( r 2 = 0.30) and irradiance ( r 2 = 0.36), but not Ω arag ( r 2 = 0.02). Seasonal differences in temperature are obviously confounded by differences in other environmental conditions and vice versa. Therefore, we used published relationships from experimental studies to establish which environmental parameter(s) (temperature, irradiance, and/or Ω arag) placed greatest constraints on calcification rate (relative to the maximum spring rate) in each season. Variation in calcification rates was largely attributable to seasonal changes in irradiance and temperature (possibly 57.4 and 39.7% respectively). Therefore, we predict that ocean warming may lead to increased rates of calcification during winter, but decelerate calcification during spring, fall and especially summer, resulting in net deceleration of calcification for A. downingi in the Persian Gulf.

  12. Seasonal Variation of Dystocia in a Large Danish Cohort

    PubMed Central

    Rohr Thomsen, Christine; Uldbjerg, Niels; Hvidman, Lone; Atladóttir, Hjördís Ósk; Henriksen, Tine Brink; Milidou, Ioanna

    2014-01-01

    Background Dystocia is one of the most frequent causes of cesarean delivery in nulliparous women. Despite this, its causes are largely unknown. Vitamin D receptor (VDR) has been found in the myometrium. Thus, it is possible that vitamin D affects the contractility of the myometrium and may be involved in the pathogenesis of dystocia. Seasonal variation of dystocia in areas with distinct seasonal variation in sunlight exposure, like Denmark, could imply that vitamin D may play a role. This study examined whether there was seasonal variation in the incidence of dystocia in a Danish population. Method We used information from a cohort of 34,261 nulliparous women with singleton pregnancies, spontaneous onset of labor between 37 and 42 completed gestational weeks, and vertex fetal presentation. All women gave birth between 1992 and 2010 at the Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby. Logistic regression combined with cubic spline was used to estimate the seasonal variation for each outcome after adjusting for calendar time. Results No evidence for seasonal variation was found for any of the outcomes: acute cesarean delivery due to dystocia (p = 0.44); instrumental vaginal delivery due to dystocia (p = 0.69); oxytocin augmentation due to dystocia (p = 0.46); and overall dystocia (p = 0.91). Conclusion No seasonal variation in the incidence of dystocia was observed in a large cohort of Danish women. This may reflect no association between vitamin D and dystocia, or alternatively that other factors with seasonal variation and influence on the occurrence of dystocia attenuate such an association. PMID:24736600

  13. Seasonal variation of dystocia in a large Danish cohort.

    PubMed

    Rohr Thomsen, Christine; Uldbjerg, Niels; Hvidman, Lone; Atladóttir, Hjördís Ósk; Henriksen, Tine Brink; Milidou, Ioanna

    2014-01-01

    Dystocia is one of the most frequent causes of cesarean delivery in nulliparous women. Despite this, its causes are largely unknown. Vitamin D receptor (VDR) has been found in the myometrium. Thus, it is possible that vitamin D affects the contractility of the myometrium and may be involved in the pathogenesis of dystocia. Seasonal variation of dystocia in areas with distinct seasonal variation in sunlight exposure, like Denmark, could imply that vitamin D may play a role. This study examined whether there was seasonal variation in the incidence of dystocia in a Danish population. We used information from a cohort of 34,261 nulliparous women with singleton pregnancies, spontaneous onset of labor between 37 and 42 completed gestational weeks, and vertex fetal presentation. All women gave birth between 1992 and 2010 at the Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby. Logistic regression combined with cubic spline was used to estimate the seasonal variation for each outcome after adjusting for calendar time. No evidence for seasonal variation was found for any of the outcomes: acute cesarean delivery due to dystocia (p = 0.44); instrumental vaginal delivery due to dystocia (p = 0.69); oxytocin augmentation due to dystocia (p = 0.46); and overall dystocia (p = 0.91). No seasonal variation in the incidence of dystocia was observed in a large cohort of Danish women. This may reflect no association between vitamin D and dystocia, or alternatively that other factors with seasonal variation and influence on the occurrence of dystocia attenuate such an association.

  14. Seasonal variations in sleep disorders of nurses.

    PubMed

    Chang, Yuanmay; Lam, Calvin; Chen, Su-Ru; Sithole, Trevor; Chung, Min-Huey

    2017-04-01

    To investigate the difference between nurses and the general population regarding seasonal variations in sleep disorders during 2004-2008. The effects of season and group interaction on sleep disorders with regard to different comorbidities were also examined. Studies on seasonal variations in sleep disorders were mainly conducted in Norway for the general population. Furthermore, whether different comorbidities cause seasonal variations in sleep disorders in nurses remains unknown. A retrospective study. Data from the Taiwan National Health Insurance Research Database were used in generalised estimating equation Poisson distribution models to investigate the differences in sleep disorders between nurses and the general population diagnosed with sleep disorders (each n = 7643) as well as the interaction effects of sleep disorders between the groups with respect to different seasons. Furthermore, the interaction effects between groups and seasons on sleep disorders in the subgroups of comorbid anxiety disorders and depressive disorders were studied. Both the nurses and the general population had fewer outpatient visits for sleep disorders in winter than in other seasons. The nurses had fewer outpatient visits for sleep disorders than the general population did in each season. The nurses had more outpatient visits for sleep disorders in winter than in summer compared with the general population in the comorbid depressive disorder subgroup but not in the comorbid anxiety disorder subgroup. Nurses and the general population exhibited similar seasonal patterns of sleep disorders, but nurses had fewer outpatient visits for sleep disorders than the general population did in each season. For nurses with comorbid depressive disorders, outpatient visits for sleep disorders were more numerous in winter than in summer, potentially because nurses with comorbid depressive disorders are affected by shorter daylight exposure during winter. Depression and daylight exposure may

  15. Antigenic variation of the human influenza A (H3N2) virus during the 2014-2015 winter season.

    PubMed

    Hua, Sha; Li, XiYan; Liu, Mi; Cheng, YanHui; Peng, YouSong; Huang, WeiJuan; Tan, MinJu; Wei, HeJiang; Guo, JunFeng; Wang, DaYan; Wu, AiPing; Shu, YueLong; Jiang, TaiJiao

    2015-09-01

    The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbidity and mortality because of its antigenic variation. So far, very little is known about the antigenic patterns of the recent H3N2 virus. By systematically mapping the antigenic relationships of H3N2 strains isolated since 2010, we discovered that two groups with obvious antigenic divergence, named SW13 (A/Switzerland/9715293/2013-like strains) and HK14 (A/Hong Kong/5738/2014-like strains), co-circulated during the 2014-2015 winter season. HK14 group co-circulated with SW13 in Europe and the United States during this season, while there were few strains of HK14 in mainland China, where SW13 has dominated since 2012. Furthermore, we found that substitutions near the receptor-binding site on hemagglutinin played an important role in the antigenic variation of both the groups. These findings provide a comprehensive understanding of the recent antigenic evolution of H3N2 virus and will aid in the selection of vaccine strains.

  16. Seasonal variation in human reproduction: environmental factors.

    PubMed

    Bronson, F H

    1995-06-01

    Almost all human populations exhibit seasonal variation in births, owing mostly to seasonal variation in the frequency of conception. This review focuses on the degree to which environmental factors like nutrition, temperature and photoperiod contribute to these seasonal patterns by acting directly on the reproductive axis. The reproductive strategy of humans is basically that of the apes: Humans have the capacity to reproduce continuously, albeit slowly, unless inhibited by environmental influences. Two, and perhaps three, environmental factors probably act routinely as seasonal inhibitors in some human populations. First, it seems likely that ovulation is regulated seasonally in populations experiencing seasonal variation in food availability. More specifically, it seems likely that inadequate food intake or the increased energy expenditure required to obtain food, or both, can delay menarche, suppress the frequency of ovulation in the nonlactating adult, and prolong lactational amenorrhea in these populations on a seasonal basis. This action is most easily seen in tropical subsistence societies where food availability often varies greatly owing to seasonal variation in rainfall; hence births in these populations often correlate with rainfall. Second, it seems likely that seasonally high temperatures suppress spermatogenesis enough to influence the incidence of fertilization in hotter latitudes, but possibly only in males wearing clothing that diminishes scrotal cooling. Since most of our knowledge about this phenomenon comes from temperate latitudes, the sensitivity of spermatogenesis in both human and nonhuman primates to heat in the tropics needs further study. It is quite possible that high temperatures suppress ovulation and early embryo survival seasonally in some of these same populations. Since we know less than desired about the effect of heat stress on ovulation and early pregnancy in nonhuman mammals, and nothing at all about it in humans or any of the

  17. [Seasonal variation of soil heat conduction in a larch plantation and its relations to environmental factors].

    PubMed

    Wang, Wen-Jie; Cui, Song; Liu, Wei; Zu, Yuan-Gang; Sun, Wei; Wang, Hui-Min

    2008-10-01

    Based on a 3-year (2003-2005) observation of soil heat flux (SHF) in a larch (Larix gmelinii) plantation, the characteristics of soil heat conduction in the plantation and their relationships with environment factors were analyzed. The results showed that there was an obvious seasonal variation of SHF in different years and sampling sites. The SHF was positive from April to August and mostly negative from September to next March, with an almost balance between heat income and outcome at annual scale. Solar net radiation had significant effects on the SHF and soil heat conductance (k), and an obvious time-lag effect was found, with 4-5 hours' time-lag in winter and 2-3 hours' time-lag in summer. Based on the real-time measurement of SHF and soil temperature difference at the study sites, the k value was significantly higher in early spring (P < 0.05), but no significant difference was observed in other seasons (P > 0.05). Therefore, when we use the observation data of soil temperature from weather stations to estimate soil heat flux, the k value in spring (from March to May) could induce a bias estimation.

  18. Seasonal Variations of Stratospheric Age Spectra in GEOSCCM

    NASA Technical Reports Server (NTRS)

    Li, Feng; Waugh, Darryn; Douglass, Anne R.; Newman, Paul A.; Pawson, Steven; Stolarski, Richard S.; Strahan, Susan E.; Nielsen, J. Eric

    2011-01-01

    There are many pathways for an air parcel to travel from the troposphere to the stratosphere, each of which takes different time. The distribution of all the possible transient times, i.e. the stratospheric age spectrum, contains important information on transport characteristics. However, it is computationally very expensive to compute seasonally varying age spectra, and previous studies have focused mainly on the annual mean properties of the age spectra. To date our knowledge of the seasonality of the stratospheric age spectra is very limited. In this study we investigate the seasonal variations of the stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). We introduce a method to significantly reduce the computational cost for calculating seasonally dependent age spectra. Our simulations show that stratospheric age spectra in GEOSCCM have strong seasonal cycles and the seasonal cycles change with latitude and height. In the lower stratosphere extratropics, the average transit times and the most probable transit times in the winter/early spring spectra are more than twice as old as those in the summer/early fall spectra. But the seasonal cycle in the subtropical lower stratosphere is nearly out of phase with that in the extratropics. In the middle and upper stratosphere, significant seasonal variations occur in the sUbtropics. The spectral shapes also show dramatic seasonal change, especially at high latitudes. These seasonal variations reflect the seasonal evolution of the slow Brewer-Dobson circulation (with timescale of years) and the fast isentropic mixing (with timescale of days to months).

  19. Seasonal and interannual variations of atmospheric CO2 and climate

    USGS Publications Warehouse

    Dettinger, M.D.; Ghil, M.

    1998-01-01

    Interannual variations of atmospheric CO2 concentrations at Mauna Loa are almost masked by the seasonal cycle and a strong trend; at the South Pole, the seasonal cycle is small and is almost lost in the trend and interannual variations. Singular-spectrum analysis (SSA) issued here to isolate and reconstruct interannual signals at both sites and to visualize recent decadal changes in the amplitude and phase of the seasonal cycle. Analysis of the Mauna Loa CO2 series illustrates a hastening of the CO2 seasonal cycle, a close temporal relation between Northern Hemisphere (NH) mean temperature trends and the amplitude of the seasonal CO2 cycle, and tentative ties between the latter and seasonality changes in temperature over the NH continents. Variations of the seasonal CO2 cycle at the South Pole differ from those at Mauna Loa: it is phase changes of the seasonal cycle at the South Pole, rather than amplitude changes, that parallel hemispheric and global temperature trends. The seasonal CO2 cycles exhibit earlier occurrences of the seasons by 7 days at Mauna Loa and 18 days at the South Pole. Interannual CO2 variations are shared at the two locations, appear to respond to tropical processes, and can be decomposed mostly into two periodicities, around (3 years)-1 and (4 years)-1, respectively. Joint SSA analyses of CO2 concentrations and tropical climate indices isolate a shared mode with a quasi-triennial (QT) period in which the CO2 and sea-surface temperature (SST) participation are in phase opposition. The other shared mode has a quasi-quadrennial (QQ) period and CO2 variations are in phase with the corresponding tropical SST variations throughout the tropics. Together these interannual modes exhibit a mean lag between tropical SSTs and CO2 variations of about 6-8 months, with SST leading. Analysis of the QT and QQ signals in global gridded SSTs, joint SSA of CO2 and ??13C isotopic ratios, and SSA of CO2 and NH-land temperatures indicate that the QT variations in

  20. Seasonal and interannual variations of atmospheric CO2 and climate

    NASA Astrophysics Data System (ADS)

    Dettinger, Michael D.; Ghil, Michael

    1998-02-01

    Interannual variations of atmospheric CO2 concentrations at Mauna Loa are almost masked by the seasonal cycle and a strong trend; at the South Pole, the seasonal cycle is small and is almost lost in the trend and interannual variations. Singular-spectrum analysis (SSA) is used here to isolate and reconstruct interannual signals at both sites and to visualize recent decadal changes in the amplitude and phase of the seasonal cycle. Analysis of the Mauna Loa CO2 series illustrates a hastening of the CO2 seasonal cycle, a close temporal relation between Northern Hemisphere (NH) mean temperature trends and the amplitude of the seasonal CO2 cycle, and tentative ties between the latter and seasonality changes in temperature over the NH continents. Variations of the seasonal CO2 cycle at the South Pole differ from those at Mauna Loa: it is phase changes of the seasonal cycle at the South Pole, rather than amplitude changes, that parallel hemispheric and global temperature trends. The seasonal CO2 cycles exhibit earlier occurrences of the seasons by 7days at Mauna Loa and 18days at the South Pole. Interannual CO2 variations are shared at the two locations, appear to respond to tropical processes, and can be decomposed mostly into two periodicities, around (3years)-1 and (4years)-1, respectively. Joint SSA analyses of CO2 concentrations and tropical climate indices isolate a shared mode with a quasi-triennial (QT) period in which the CO2 and sea-surface temperature (SST) participation are in phase opposition. The other shared mode has a quasi-quadrennial (QQ) period and CO2 variations are in phase with the corresponding tropical SST variations throughout the tropics. Together these interannual modes exhibit a mean lag between tropical SSTs and CO2 variations of about 6 8months, with SST leading

  1. Seasonal variations of Cu and the mechanisms in Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Yang, Dong Fang; Ding, Jun; Li, Hai Xia; Zhang, Long Lei; Wang, Qi

    2018-05-01

    Understanding the seasonal variation and the mechanism in marine bay is helpful to decision-making of pollution control practice. This paper analyzed the seasonal variations of Cu in Jiaozhou Bay during 1982 — 1986. Furthermore, the mechanisms of the seasonal variations were analyzed. Results showed that the variations of Cu contents in spring, summer and autumn were relying on the source inputs of Cu. As a whole, the change process of Cu contents in Jiaozhou Bay were determined by the terrestrial transport process and oceanic transport process jointly.

  2. Characteristics of Seasonal Variation and Solar Activity Dependence of the Geomagnetic Solar Quiet Daily Variation

    NASA Astrophysics Data System (ADS)

    Shinbori, Atsuki; Koyama, Yukinobu; Nosé, Masahito; Hori, Tomoaki; Otsuka, Yuichi

    2017-10-01

    Characteristics of seasonal variation and solar activity dependence of the X and Y components of the geomagnetic solar quiet (Sq) daily variation at Memambetsu in midlatitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1 h time resolution from 1957 to 2016. The monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y) shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and the Sq-X and Sq-Y shows an almost linear relationship, but the slope of the linear fitted line varies as a function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The pattern of the local time and seasonal variations of Sq-Y at Guam shows good agreement with that of a magnetic field produced by interhemispheric field-aligned currents (FACs), which flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in the prenoon to afternoon sectors. The direction of the interhemispheric FAC in the dusk sector is opposite to the concept of Fukushima's model.

  3. Seasonal variation of serum vitamin D levels in Romania.

    PubMed

    Niculescu, Dan Alexandru; Capatina, Cristina Ana Maria; Dusceac, Roxana; Caragheorgheopol, Andra; Ghemigian, Adina; Poiana, Catalina

    2017-12-11

    We measured serum vitamin D in 8024 Romanian subjects and found a marked seasonal variation with highest levels in September and lowest levels in March. The seasonal variation (early autumn vs. early spring) persisted in all age and sex groups. The prevalence of vitamin D deficiency was very high. Romania is located in Eastern Europe, roughly between 44°N and 48°N latitude. Seasonal variation of serum vitamin D in Romanian subjects is unknown. We assessed the seasonal variation of 25-hydroxy vitamin D [25(OH)D] in Romanian population. We retrieved from our endocrinology center database all 25(OH)D measurements between 2012 and 2016. We also evaluated age, sex, diagnosis, and date of blood sampling. The 25(OH)D was measured by two different chemiluminescence or electrochemiluminescence assays. There were 8024 subjects (median age 50 (37, 62); 1429 men (17.8%)) without a diagnosis of low bone mass (osteopenia or osteoporosis). The median serum 25(OH)D was 18.6 (12.7, 25.4) ng/mL. Of the subjects, 0.73, 14.4, 55.6, and 86.1% had a serum 25(OH)D level below 4, 10, 20, and 30 ng/mL, respectively. Serum 25(OH)D showed a marked seasonal variation with highest levels in September (24.1 [18.3, 30.3] ng/mL) and lowest levels in March (13.5 [9.4, 19.6] ng/mL) (p < 0.001). The seasonal variation (early autumn vs. early spring) persisted in all age and sex groups and was maximal for 21-40 years of age (26.5 (20.8, 33.1) vs. 12.9 (9.7, 17.9) ng/mL) and minimal for >65 years of age (18.6 (13.0, 27.2) vs. 12.7 (7.8, 19.7) ng/mL). Men and women showed similar amplitude of serum 25(OH)D variation. The prevalence of vitamin D deficiency is high, particularly in the elderly. The data show a strong seasonal variation of serum 25(OH)D in all subgroups of our Romanian population with highest levels in September and lowest levels in March.

  4. Demographic characteristics and seasonal variations of acute appendicitis.

    PubMed

    Bal, Ahmet; Ozkececi, Ziya Taner; Turkoglu, Ozgur; Ozsoy, Mustafa; Celep, Ruchan Bahadir; Yilmaz, Sezgin; Arikan, Yüksel

    2015-01-01

    The most common disease required emergency surgical operation is acute appendicitis. Appendectomy is the most common surgical procedure in the world and remains important due to be an efficient treatment method. We aimed to determine seasonal variations of acute appendicitis in our regions and identify the demographical and regional differences. We analyzed retrospectively data of the patients who were admitted to the Afyon Kocatepe University hospital and Sivrihisar State hospital between 2003 and 2012. 839 patients' data were analyzed. Mean age of the all patients was 33 ± 14.7 year. Acute appendicitis was seen more frequent in autumn and spring (P > 0.05). There was no significant difference between seasons in Afyon Kocatepe university hospital, while appendicitis was seen more common in autumn than winter in Sivrihisar state hospital (P < 0.05). There was not any relationship with the monthly average temperature, humidity, total precipitation amount and frequency of appendicitis (P > 0.05). Although appendicitis has a seasonal variation, other environmental factors and impact of nutritional habit should not be ignored. Etiology of appendicitis is still multifactorial. In the future multiparameter nationwide studies can present country-specific etiology of appendicitis. Appendectomy, Appendicitis, Seasonal variations.

  5. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    PubMed

    Huber, John H; Childs, Marissa L; Caldwell, Jamie M; Mordecai, Erin A

    2018-05-01

    Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal

  6. Spatial and temporal demographic variation drives within-season fluctuations in sexual selection.

    PubMed

    Kasumovic, Michael M; Bruce, Matthew J; Andrade, Maydianne C B; Herberstein, Marie E

    2008-09-01

    Our understanding of selection in nature stems mainly from whole-season and cross-sectional estimates of selection gradients. These estimates suggest that selection is relatively constant within, but fluctuates between seasons. However, the strength of selection depends on demographics, and because demographics can vary within seasons, there is a gap in our understanding regarding the extent to which seasonal fluctuations in demographics may cause variation in selection. Here we use two populations of the golden orb-web spider (Nephila plumipes) that differ in density to examine how demographics change within a season and whether there are correlated shifts in selection. We demonstrate that there is within-season variation in sex ratio and density at multiple spatial and temporal scales. This variation led to changes in the competitive challenges that males encountered at different times of the season and was correlated with significant variation in selection gradients on male size and weight between sampling periods. We highlight the importance of understanding the biology of the organism under study to correctly determine the relevant scale in which to examine selection. We also argue that studies may underestimate the true variation in selection by averaging values, leading to misinterpretation of the effect of selection on phenotypic evolution.

  7. Seasonal Variation of High-latitude Geomagnetic Activity Revisited

    NASA Astrophysics Data System (ADS)

    Tanskanen, E.; Hynönen, R.; Mursula, K.

    2017-12-01

    The coupling of the solar wind and auroral region has been examined by using westward electrojet indices since 1966 - 2014. We have studied the seasonal variation of high-latitude geomagnetic activity in individual years for solar cycles 20 - 24. The classical two-equinox activity pattern in geomagnetic activity was seen in multi-year averages but it was found in less than one third of the years examined. We found that the seasonal variation of high-latitude geomagnetic activity closely follows the solar wind speed. While the mechanisms leading to the two-equinox maxima pattern are in operation, the long-term change of solar wind speed tends to mask the effect of these mechanisms for individual years. We identified the most active and the second most active season based on westward electrojet indices AL (1966 - 2014) and IL (1995 - 2014). The annual maximum is found at either equinox in 2/3 and at either solstice in 1/3 of the years examined. Large cycle-to-cycle variation is found in the seasonal pattern: equinox maxima are more common during cycles 21 and 22 than in cycles 23 or 24. An exceptionally long winter dominance in high-latitude activity and solar wind speed is seen in the declining phase of cycle 23, after the appearance of the long-lasting low-latitude coronal hole.

  8. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China.

    PubMed

    Zhang, Yanxu; Tao, Shu

    2008-12-01

    A regression model based on the provincial energy consumption data was developed to calculate the monthly proportions of residential energy consumption compared to the total year volume. This model was also validated by comparing with some survey and statistical data. With this model, a PAHs emission inventory with seasonal variation was developed. The seasonal variations of different sources in different regions of China and the spatial distribution of the major sources in different seasons were also achieved. The PAHs emissions were larger in the winter than in the summer, with a difference of about 1.3-folds between the months with the largest and the smallest emissions. Residential solid fuel combustion dominated the pattern of seasonal variation with the winter-time emissions as much as 1.6 times as that in the summer, while the emissions from wild fires and open fire straw burning was mainly concentrated during the spring and summer.

  9. Spatio-temporal variation of methane over Indian region: Seasonal and inter-annual variation .

    NASA Astrophysics Data System (ADS)

    M, K.; Nair, P. R.

    2015-12-01

    Methane (CH4) has an important role in the radiation budget and chemistry in the lower and middle atmosphere as a greenhouse and reactive trace gas. The rapid developments in the agriculture and industry over India have lead to the emission of many pollutants like CO, O3, CH4, CO2, SO2 etc into the atmosphere. However, their sources, sinks and concentration levels are poorly understood because of the lack of systematic sampling and monitoring. The advent of satellite remote sensing has helped to analyze the chemical composition of atmosphere with good spatial coverage especially over tropical region which was poorly sampled with the existing surface network. This work attempts an analysis of spatial distribution, seasonal cycle and inter annual variation of CH4 over Indian region during 2003-2009 using SCIAMACHY data onboard ENVISAT. Column CH4 varies from 1740-1890 ppbv over Indian region with distinct spatial and temporal features. We observed a dependence of seasonal CH4 variation on rice cultivation, convective activities and changes in boundary layer characteristics. The comparative study using satellite, aircraft and surface measurement shown CH4 has non-homogeneity in its distribution and seasonal variation in different layers of atmosphere. A comparative study of CH4 at different hot spot regions over the globe was carried out which showed prominent hemispherical variations. Large spread in column CH4 was observed at India and Chinese region compared to other regions with a significant seasonal variability. This study points to the blending of satellite, aircraft and surface measurements for the realization of regional distribution of CH4.

  10. Diversity is maintained by seasonal variation in species abundance

    PubMed Central

    2013-01-01

    Background Some of the most marked temporal fluctuations in species abundances are linked to seasons. In theory, multispecies assemblages can persist if species use shared resources at different times, thereby minimizing interspecific competition. However, there is scant empirical evidence supporting these predictions and, to the best of our knowledge, seasonal variation has never been explored in the context of fluctuation-mediated coexistence. Results Using an exceptionally well-documented estuarine fish assemblage, sampled monthly for over 30 years, we show that temporal shifts in species abundances underpin species coexistence. Species fall into distinct seasonal groups, within which spatial resource use is more heterogeneous than would be expected by chance at those times when competition for food is most intense. We also detect seasonal variation in the richness and evenness of the community, again linked to shifts in resource availability. Conclusions These results reveal that spatiotemporal shifts in community composition minimize competitive interactions and help stabilize total abundance. PMID:24007204

  11. Seasonal variation in the Dutch bovine raw milk composition.

    PubMed

    Heck, J M L; van Valenberg, H J F; Dijkstra, J; van Hooijdonk, A C M

    2009-10-01

    In this study, we determined the detailed composition of and seasonal variation in Dutch dairy milk. Raw milk samples representative of the complete Dutch milk supply were collected weekly from February 2005 until February 2006. Large seasonal variation exists in the concentrations of the main components and milk fatty acid composition. Milk lactose concentration was rather constant throughout the season. Milk true protein content was somewhat more responsive to season, with the lowest content in June (3.21 g/100 g) and the highest content in December (3.38 g/100 g). Milk fat concentration increased from a minimum of 4.10 g/100 g in June to a maximum of 4.57 g/100 g in January. The largest (up to 2-fold) seasonal changes in the fatty acid composition were found for trans fatty acids, including conjugated linoleic acid. Milk protein composition was rather constant throughout the season. Milk unsaturation indices, which were used as an indication of desaturase activity, were lowest in spring and highest in autumn. Compared with a previous investigation of Dutch dairy milk in 1992, the fatty acid composition of Dutch raw milk has changed considerably, in particular with a higher content of saturated fatty acids in 2005 milk.

  12. Methanogenic Pathway and Fraction of CH4 Oxidized in Paddy Fields: Seasonal Variation and Effect of Water Management in Winter Fallow Season

    PubMed Central

    Zhang, Guangbin; Liu, Gang; Zhang, Yi; Ma, Jing; Xu, Hua; Yagi, Kazuyuki

    2013-01-01

    A 2-year field and incubation experiment was conducted to investigate δ13C during the processes of CH4 emission from the fields subjected to two water managements (flooding and drainage) in the winter fallow season, and further to estimate relative contribution of acetate to total methanogenesis (Fac) and fraction of CH4 oxidized (Fox) based on the isotopic data. Compared with flooding, drainage generally caused CH4, either anaerobically or aerobically produced, depleted in 13C. There was no obvious difference between the two in transport fractionation factor (εtransport) and δ13C-value of emitted CH4. CH4 emission was negatively related to its δ13C-value in seasonal variation (P<0.01). Acetate-dependent methanogenesis in soil was dominant (60–70%) in the late season, while drainage decreased Fac-value by 5–10%. On roots however, CH4 was mostly produced through H2/CO2 reduction (60–100%) over the season. CH4 oxidation mainly occurred in the first half of the season and roughly 10–90% of the CH4 was oxidized in the rhizosphere. Drainage increased Fox-value by 5–15%, which is possibly attributed to a significant decrease in production while no simultaneous decrease in oxidation. Around 30–70% of the CH4 was oxidized at the soil-water interface when CH4 in pore water was released into floodwater, although the amount of CH4 oxidized therein might be negligible relative to that in the rhizosphere. CH4 oxidation was also more important in the first half of the season in lab conditions and about 5–50% of the CH4 was oxidized in soil while almost 100% on roots. Drainage decreased Fox-value on roots by 15% as their CH4 oxidation potential was highly reduced. The findings suggest that water management in the winter fallow season substantially affects Fac in the soil and Fox in the rhizosphere and roots rather than Fac on roots and Fox at the soil-water interface. PMID:24069259

  13. New Results on the Seasonal Variations in Saturn's Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Elrod, M. K.; Tseng, W.; Johnson, R. E.

    2012-12-01

    The region of the magnetosphere from the main rings to inside the orbit of Enceladus is populated by oxygen from the Saturn's ring atmosphere and water products from Enceladus. Therefore, we examined the CAPS plasma data for several equatorial periapsis passes from 2004 to 2012 for the region from 2.4 to 3.8 Saturn radii (~60,300 km) including Voyager 2 in order to separate the contributions from these two sources and to understand the temporal variations in the plasma. Because of the high background in this region, only eight orbits were used in this study. Using Voyager II data and CAPS data from 2004, and 2012 we show that large variations in ion density, temperature, and composition occur. Although the Enceladus plumes are variable, we propose that the large change in the ion density from 2004 to equinox near 2010 was likely due to the seasonal variation in the ring atmosphere (Elrod et al. 2012). Furthermore, when comparing the recent 2012 passes with the 2010 passes, where are much closer to Enceladus, and likely dominated by the water sources from this moon, we still see an increase in the signal between 2010 and 2012 indicating that there is likely still a seasonal variation throughout the region. This interpretation of the plasma data was in turn supported by a simple photochemical model which combined water products from Enceladus and with the seasonally variable oxygen from the the ring atmosphere (Tseng et al. 2012). In this presentation we will compare the results of our recent analysis of the 2012 data with our model for seasonal variations in the plasma source in this region. Elrod, M. K., W.-L. Tseng, R. J. Wilson, and R. E. Johnson (2012), Seasonal variations in Saturn's plasma between the main rings and Enceladus, J. Geophys. Res., 117, A03207, doi:10.1029/2011JA017332. Tseng, W.-L., et al., Modeling the seasonal variability of the plasma environment in Saturn's magnetosphere between main rings and Mimas. Planetary and Space Science (2012), http

  14. Seasonal variation of lipid-lowering effects of complex spa therapy.

    PubMed

    Strauss-Blasche, G; Ekmekcioglu, C; Leibetseder, V; Marktl, W

    2003-04-01

    It has been shown that spa therapy has a lipid-lowering effect. Also, seasonal variations in spa therapy effects have been found for some outcome measures. The aim of the present study is to investigate whether the lipid-lowering effects of spa therapy as a complex health intervention also are subject to seasonal variation. The effect of 3-week resident spa therapy at the Austrian spa Bad Tatzmannsdorf was studied in 395 patients with moderate musculoskeletal chronic pain over a time of 2 years. Spa therapy included balneotherapy, exercise therapy, and dietary measures. Total cholesterol (CHOL), HDL, LDL, triglycerides (TG), and the CHOL/HDL ratio were assessed at the beginning and end of therapy. Spa therapy was associated with a decrease of CHOL, HDL, and LDL (p < 0.001). TG and CHOL/HDL did not change. The decrease of lipids was smaller for older patients, females, and normal weight individuals. CHOL decrease showed a seasonal variation independent of weight loss (p = 0.04), being largest in fall (-6.1%) and smallest in spring (-2.4%). CHOL and CHOL/HDL for obese individuals showed the greatest decrease in winter (-10% for CHOL, -9% for CHOL/HDL ratio), whereas corresponding measures increased for normal-weight subjects. The lipid-lowering effect of spa therapy could be confirmed; it is partly moderated by season. The results suggest that the effect of some components of spa therapy such as exercise therapy, diet, and relaxation may be subject to seasonal variation. Copyright 2003 S. Karger GmbH, Freiburg

  15. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  16. SEASONAL VARIATION IN PLASMA SEX STEROID CONCENTRATION IN JUVENILE ALLIGATORS

    EPA Science Inventory

    Seasonal variation in plasma sex steroid concentrations is common in mature vertebrates, and is occasionally seen in juvenile animals. In this study, we examine the seasonal pattern of sex hormone concentration in juvenile American alligators (Alligator mississippiensis) and make...

  17. Seasonal Variation in Vitamin D Status among Frail Older Hospitalized Patients.

    PubMed

    Pourhassan, M; Wirth, R

    2018-01-01

    Seasonal variation in 25-hydroxyvitamin D [25(OH)D] levels is the result of sunlight dependent skin synthesis of vitamin D. However, its presence is not studied in frail older hospitalized patients. We sought to investigate whether seasonal variation in 25(OH)D levels is evident among these patients. This study investigated older participants who were consecutively admitted between February 2015 and December 2016 to the geriatric acute care ward. Results of routine measurements of 25(OH)D at hospital admission were retrospectively analyzed and stratified according to months and seasons. Previous intake of vitamin D supplementation was derived from the patients' medical records. The study group comprised 679 participants (mean age 82.1±8.2; 457 females), of which 78% had vitamin D deficiency. Older individuals not taking vitamin D supplements had a lower mean serum 25(OH)D than those receiving supplements. Of those patients with no vitamin D supplementation, 87.0% were vitamin D deficient and only 5% showing sufficient vitamin 25(OH)D. Further, there were neither monthly nor seasonal variations in vitamin 25(OH)D levels among these patients and their vitamin D levels stayed far below the recommended threshold of 20 ng/ml across the seasons. Vitamin D deficiency was very prevalent in the subgroup of older hospitalized patients without vitamin D supplementation, irrespective of season. Since no seasonal variations in mean 25(OH)D levels was observed, sunlight dependent skin synthesis is unlikely to contribute to vitamin D status in these patients. Supplementation seems to be necessary to maintain desirable vitamin D levels among this population throughout the year.

  18. Characteristics of seasonal variation and solar activity dependence of the geomagnetic solar quiet daily variation

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.

    2017-12-01

    Characteristics of seasonal variation and solar activity dependence of the X- and Y-components of the geomagnetic solar quiet (Sq) daily variation at Memanbetsu in mid-latitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1-h time resolution from 1957 to 2016. In this analysis, we defined the quiet day when the maximum value of the Kp index is less than 3 for that day. In this analysis, we used the monthly average of the adjusted daily F10.7 corresponding to geomagnetically quiet days. For identification of the monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y), we first determined the baseline of the X and Y components from the average value from 22 to 2 h (LT: local time) for each quiet day. Next, we calculated a deviation from the baseline of the X- and Y-components of the geomagnetic field for each quiet day, and computed the monthly mean value of the deviation for each local time. As a result, Sq-X and Sq-Y shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities, and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and Sq-X and Sq-Y shows almost the linear relationship, but the slope and intercept of the linear fitted line varies as function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The local time dependence of the offset value of Sq-Y at Guam and its seasonal variation suggest a magnetic field produced by inter-hemispheric field-aligned currents (FACs). From the sign of the offset value of Sq-Y, it is infer that the inter-hemispheric FACs flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in

  19. Seasonal Variation of High-Latitude Geomagnetic Activity in Individual Years

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Hynönen, R.; Mursula, K.

    2017-10-01

    We study the seasonal variation of high-latitude geomagnetic activity in individual years in 1966-2014 (solar cycles 20-24) by identifying the most active and the second most active season based on westward electrojet indices AL (1966-2014) and IL (1995-2014). The annual maximum is found at either equinox in two thirds and at either solstice in one third of the years examined. The traditional two-equinox maximum pattern is found in roughly one fourth of the years. We found that the seasonal variation of high-latitude geomagnetic activity closely follows the solar wind speed. While the mechanisms leading to the two-equinox maxima pattern are in operation, the long-term change of solar wind speed tends to mask the effect of these mechanisms for individual years. Large cycle-to-cycle variation is found in the seasonal pattern: equinox maxima are more common during cycles 21 and 22 than in cycles 23 or 24. Exceptionally long winter dominance in high-latitude activity and solar wind speed is seen in the declining phase of cycle 23, after the appearance of the long-lasting low-latitude coronal hole.

  20. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    NASA Technical Reports Server (NTRS)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  1. Epidemic seasonal infertility — a hypothesis for the cause of seasonal variation of births

    NASA Astrophysics Data System (ADS)

    Miura, T.; Shimura, M.

    1980-03-01

    A hypothesis is proposed to explain the seasonality of births and its variations, that some unrecognized epidemic infertile factors have existed seasonally. In that case, certain women born in a particular low birth rate season must be those who survived these infertile factors in very early stage of their fetal lives. Then in later years, when they become pregnant, they may possibly be immune or different in their susceptibility to these infertile factors. Therefore, mothers born in a particular low birth rate season would tend to bear babies more frequently in that season than the others. To examine this hypothesis, birth records in 1930 of two maternity hospitals in Tokyo were investigated. These years were chosen for a period when seasonality of birth was most prominent in Japan. First babies were excluded to eliminate disturbances by season of marriages and other possible non-biological factors. The results show that among 1038 mothers born in a low birthrate season, May July, 245 (23.6%) had babies in May July, while the other mothers had significantly less babies (19.0%, 819/4302, P<0.001) in the same season. This may imply that seasonality of birth may have been influenced by some immunogenic infertile factors epidemic in a particular season.

  2. Structure and seasonal variations of the nocturnal mesospheric K layer at Arecibo

    NASA Astrophysics Data System (ADS)

    Yue, Xianchang; Friedman, Jonathan S.; Wu, Xiongbin; Zhou, Qihou H.

    2017-07-01

    We present the seasonal variations of the nocturnal mesospheric potassium (K) layer at Arecibo, Puerto Rico (18.35°N, 66.75°W) from 160 nights of K Doppler lidar observations between December 2003 and January 2010, during which the solar activity is mostly low. The background temperature is also measured simultaneously by the lidar and shows a strong semiannual oscillation with maxima occurring during equinoxes at all altitudes. The annual mean K density profile is approximately Gaussian with a peak altitude of 91.7 km. The K column abundance and the centroid height have strong semiannual variations, with maxima at the solstices. Both parameters are negatively correlated to the mean background temperature with a correlation coefficient < -0.5. The root-mean-square (RMS) width has a distinct annual oscillation with the largest width occurring in May. The seasonal variation of the centroid height is similar to that of the Fe layer at the same site. The seasonal temperature variation indicates significant enhanced wave-induced downward transport for both species during spring and autumn. This explains the metal layer centroid height and column abundance variations at Arecibo and provides a general mechanism to account for the seasonal variations in the centroid height of all metal species measured at low-latitude and midlatitude sites.

  3. Seasonal oxygen isotopic variations in living planktonic foraminifera off Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D.F.; Be, A.W.H.; Fairbanks, R.G.

    1979-10-26

    Seasonal variations in the oxygen-18/oxygen-16 ratio of calcite shells of living planktonic foraminifera in the Sargasso Sea off Bermuda are a direct function of surface water temperature. Seasonal occurrence as well as depth habitat are determining factors in the oxygen isotopic composition of planktonic foraminifera. These relationships may be used to determine the seasonal temperature contrast of oceans in the past.

  4. Seasonal variation of the stratospheric circulation

    NASA Technical Reports Server (NTRS)

    Hirota, I.; Shiotani, M.

    1985-01-01

    An extensive analysis is made of the extratropical stratospheric circulation in terms of the seasonal variation of large-scale motion fields, with the aid of height and temperature data obtained from the TIROS satellite. Special attention is paid to a comparison of climatological aspects between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In order to see the general picture of the annual mach of the upper stratosphere, the zonal mean values of geopotential height of the 1 mb level at 70 deg N and 70 deg S were plotted on the daily basis throughout a year. It is observed that, during the winter, the zonal mean 1 mb height in the NH is much more variable than that in the SH. It is also notable that the SH height is rather oscillatory throughout the longer period from midwinter to early summer. Since the zonal mean height in the polar latitude is a rough measure of the mean zonal flow in extratropical latitudes, the difference of the seasonal variation between the two hemispheres mentioned above is considered to be due mainly to the planetary wave-mean flow interaction in the middle atmosphere. The wave activity in the middle atmosphere is represented more rigorously by the Eliassen-Palm flux associated with vertically propagating planetary waves forced from below. The day-to-day variation of the EP flux in the upper stratosphere shows that the wave activity varies intermittently with a characteristic time scale of about two weeks.

  5. Landscape variation of seasonal pool plant communities in forests of northern Minnesota, USA

    Treesearch

    Brian Palik; Dwight Streblow; Leanne Egeland; Richard Buech

    2007-01-01

    Seasonal forest pools are abundant in the northern Great Lakes forest landscape, but the range of variation in their plant communities and the relationship of this variation to multi-scale landscape features remains poorly quantified. We examined seasonal pools in forests of northern Minnesota USA with the objective of quantifying the range of variation in plant...

  6. Annual changes and seasonal variations of Cr in Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Haixia, Li; Zhang, Longlei; Li, Jiangmin; Nan, Nan

    2017-04-01

    Many bays have been polluted by Cr due to the rapid increasing of industry, hence understanding the temporal change trends and seasonal patterns is essential to pollution control and environmental remediation. Jiaozhou Bay is a semi-closed bay located in Shandong Province, China. This paper analyzed the annual changes and seasonal variations of Cr in Jiaozhou Bay in 1979-1983. Results showed that for annual changes, Cr contents were showing decreasing trend. For seasonal variations, Cr contents were in order of spring > summer > autumn. In generally, the pollution level of Cr contents in the early stage of China’s Reform and Opening-up was still low. These results were meaningful as basic information for pollution control and environmental remediation in this Bay.

  7. Seasonal variations in urinary risk factors among patients with nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Hill, K.; Poindexter, J.; Pak, C. Y.

    1991-01-01

    Twenty-four hour urine specimens from 5,677 stone-forming patients throughout the United States were analyzed for seasonal variations in urinary risk factors for nephrolithiasis. Determinations were performed for urine volume, pH, calcium, oxalate, phosphorus, sodium, magnesium, citrate, sulfate, uric acid, and the relative supersaturation (RS) of calcium oxalate, brushite, monosodium urate, and uric acid. Criteria for significant seasonal variation included a significant difference in monthly means of risk factors, seasonal grouping of the data by the Student-Newman-Keuls multiple range test, consistent year-to-year trends and a physiologically significant range. Minimum urine volume of 1.54 +/- 0.70 SD L/day occurred in October while a maximum urine volume of 1.76 +/- 0.78 SD L/day was observed during February. Minimum urine pH of 5.94 +/- 0.64 SD was observed during July and August while a maximum pH of 6.18 +/- 0.61 SD was observed during February. Daily urinary excretion of sodium was lowest during August, 158 +/- 74 SD mEq/day and highest during February 177 +/- 70 SD mEq/day. The RS of brushite and uric acid were found to display significant pH-dependent seasonal variation with a maximum RS of uric acid 2.26 +/- 1.98 SD in June and a low of 1.48 +/- 1.30 SD in February. Maximum RS of brushite 2.75 +/- 2.58 was observed during February. Minimum RS of brushite 1.93 +/- 1.70 SD was observed in June. Phosphorus excretion displayed seasonal variation about a spring-fall axis with a maximum value 1042 +/- 373 SD mg/day in April and a minimum value of 895 +/- 289 SD mg/day. Urine volume, sodium, and pH were significantly lower during the summer (June, July, August) than in the winter (December, January, February). The RS of uric acid was higher, but that of brushite and monosodium urate was lower in the summer than in the winter. The seasonal changes observed in urine volume, pH, sodium, and the RS of brushite and uric acid are consistent with summertime sweating

  8. Mind the cell: Seasonal variation in telomere length mirrors changes in leucocyte profile.

    PubMed

    Beaulieu, Michaël; Benoit, Laure; Abaga, Steven; Kappeler, Peter M; Charpentier, Marie J E

    2017-10-01

    Leucocytes are typically considered as a whole in studies examining telomere dynamics in mammals. Such an approach may be precarious, as leucocytes represent the only nucleated blood cells in mammals, their composition varies temporally, and telomere length differs between leucocyte types. To highlight this limitation, we examined here whether seasonal variation in leucocyte composition was related to variation in telomere length in free-ranging mandrills (Mandrilllus sphinx). We found that the leucocyte profile of mandrills varied seasonally, with lower lymphocyte proportion being observed during the long dry season presumably because of the combined effects of high nematode infection and stress at that time of the year. Interestingly, this low lymphocyte proportion during the long dry season was associated with shorter telomeres. Accordingly, based on longitudinal data, we found that seasonal changes in lymphocyte proportion were reflected by corresponding seasonal variation in telomere length. Overall, these results suggest that variation in lymphocyte proportion in blood can significantly affect telomere measurements in mammals. However, lymphocyte proportion did not entirely explain variation in telomere length. For instance, a lower lymphocyte proportion with age could not fully explain shorter telomeres in older individuals. Overall, our results show that telomere length and leucocyte profile are strongly although imperfectly intertwined, which may obscure the relationship between telomere dynamics and ageing processes in mammals. © 2017 John Wiley & Sons Ltd.

  9. Contagious Yawning and Seasonal Climate Variation

    PubMed Central

    Gallup, Andrew C.; Eldakar, Omar Tonsi

    2011-01-01

    Recent evidence suggests that yawning is a thermoregulatory behavior. To explore this possibility further, the frequency of contagious yawning in humans was measured while outdoors in a desert climate in the United States during two distinct temperature ranges and seasons (winter: 22°C; early summer: 37°C). As predicted, the proportion of pedestrians who yawned in response to seeing pictures of people yawning differed significantly between the two conditions (winter: 45%; summer: 24%). Across conditions yawning occurred at lower ambient temperatures, and the tendency to yawn during each season was associated with the length of time spent outside prior to being tested. Participants were more likely to yawn in the milder climate after spending long periods of time outside, while prolonged exposure to ambient temperatures at or above body temperature was associated with reduced yawning. This is the first report to show that the incidence of yawning in humans is associated with seasonal climate variation, further demonstrating that yawn-induced contagion effects can be mediated by factors unrelated to individual social characteristics or cognitive development. PMID:21960970

  10. Seasonal variations of volcanic eruption frequencies

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  11. Seasonal and Interannual Variations of Heat Fluxes in the Barents Sea Region

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I. L.; Yurova, A. Yu.; Bobylev, L. P.; Vesman, A. V.

    2018-03-01

    Seasonal and interannual variations in adjective heat fluxes in the ocean ( dQ oc) and the convergence of advective heat fluxes in the atmosphere ( dQ atm) in the Barents Sea region have been investigated over the period of 1993-2012 using the results of the MIT regional eddy-permitting model and ERA-Interim atmospheric reanalysis. Wavelet analysis and singular spectrum analysis are used to reveal concealed periodicities. Seasonal 2- to 4- and 5- to 8-year cycles are revealed in the dQ oc and dQ atm data. It is also found that seasonal variations in dQ oc are primarily determined by the integrated volume fluxes through the western boundary of the Barents Sea, whereas the 20-year trend is determined by the temperature variation of the transported water. A cross-wavelet analysis of dQ oc and dQ atm in the Barents Sea region shows that the seasonal variations in dQ oc and dQ atm are nearly in-phase, while their interannual variations are out-of-phase. It is concluded that the basin of the Barents Sea plays an important role in maintaining the feedback mechanism (the Bjerknes compensation) of the ocean-atmosphere system in the Arctic region.

  12. Seasonal variation of sudden infant death syndrome in Hawaii.

    PubMed

    Mage, David T

    2004-11-01

    To test whether the sudden infant death syndrome (SIDS) rate displays the universal winter maximum and summer minimum in Hawaii where there is no appreciable seasonal variation of temperature. The null hypothesis is tested that there is no seasonal variation of necropsied SIDS in Hawaii. The numbers of live births and SIDS cases by month for the years 1979 to 2002 were collected and the monthly SIDS distribution is predicted based on the age at death distribution. The state of Hawaii, located in the midst of the Pacific Ocean, has a semi-tropical climate with temperatures fluctuating diurnally as 25 +/- 5 degrees C throughout the year. Therefore homes are unheated and infants are not excessively swaddled. The Hawaii State Department of Health maintains vital statistics of all infant births and deaths. The results reject the null hypothesis of no seasonal variation of SIDS (p = 0.026). An explanation for the seasonal effect of the winter maximum and summer minimum for Hawaiian SIDS is that it arises from the cycle of the school session and summer vacation periods that represent variable intensity of a possible viral infection vector. SIDS rates in both Hawaii and the United States increase with parity, also indicating a possible role of school age siblings as carriers. The winter peak of the SIDS in Hawaii is support for the hypothesis that a low grade viral infection, insufficient by itself to be a visible cause of death at necropsy, may be implicated as contributing to SIDS in vulnerable infants.

  13. Interpopulational and seasonal variation in the chemical signals of the lizard Gallotia galloti.

    PubMed

    García-Roa, Roberto; Megía-Palma, Rodrigo; Ortega, Jesús; Jara, Manuel; López, Pilar; Martín, José

    2017-01-01

    Communicative traits are strikingly diverse and may vary among populations of the same species. Within a population, these traits may also display seasonal variation. Chemical signals play a key role in the communication of many taxa. However, we still know far too little about chemical communication in some vertebrate groups. In lizards, only a few studies have examined interpopulational variation in the composition of chemical cues and signals and only one study has explored the seasonal effects. Here we sampled three subspecies of the Tenerife lizards ( Gallotia galloti ) and analyze the lipophilic fraction of their femoral gland secretions to characterize the potential interpopulational variation in the chemical signals. In addition, we assessed whether composition of these secretions differed between the reproductive and the non-reproductive season. We analyzed variations in both the overall chemical profile and the abundance of the two main compounds (cholesterol and vitamin E). Our results show interpopulational and seasonal differences in G. gallotia chemical profiles. These findings are in accordance with the high interpopulational variability of compounds observed in lizard chemical signals and show that their composition is not only shaped by selective factors linked to reproductive season.

  14. Beware the "Obvious"

    ERIC Educational Resources Information Center

    Weinberg, Eugene D.; Fraser, Dean

    1976-01-01

    Discussed is the tendency in science to challenge obvious explanation for observed phenomenon. Ten examples are given where the initial obvious explanation was subsequently shown to be totally incorrect. Four examples that relate to biomedicine are presented in detail. (SL)

  15. Seasonal variations in fouling diatom communities on the Yantai coast

    NASA Astrophysics Data System (ADS)

    Yang, Cuiyun; Wang, Jianhua; Yu, Yang; Liu, Sujing; Xia, Chuanhai

    2015-03-01

    Fouling diatoms are a main component of biofilm, and play an important role in marine biofouling formation. We investigated seasonal variations in fouling diatom communities that developed on glass slides immersed in seawater, on the Yantai coast, northern Yellow Sea, China, using microscopy and molecular techniques. Studies were conducted during 2012 and 2013 over 3, 7, 14, and 21 days in each season. The abundance of attached diatoms and extracellular polymeric substances increased with exposure time of the slides to seawater. The lowest diatom density appeared in winter and the highest species richness and diversity were found in summer and autumn. Seasonal variation was observed in the structure of fouling diatom communities. Pennate diatoms Cylindrotheca, Nitzschia, Navicula, Amphora, Gomphonema, and Licmophora were the main fouling groups. Cylindrotheca sp. dominated in the spring. Under laboratory culture conditions, we found that Cylindrotheca grew very fast, which might account for the highest density of this diatom in spring. The lower densities in summer and autumn might result from the emergence of fouling animals and environmental factors. The Cylindrotheca sp. was identified as Cylindrotheca closterium using18S rDNA sequencing. The colonization process of fouling diatoms and significant seasonal variation in this study depended on environmental and biological factors. Understanding the basis of fouling diatoms is essential and important for developing new antifouling techniques.

  16. Seasonal variation of semidiurnal internal tides in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Jeon, Chanhyung; Park, Jae-Hun; Varlamov, Sergey M.; Yoon, Jong-Hwan; Kim, Young Ho; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik; Lee, Jae Hak; Kim, Cheol-Ho

    2014-05-01

    The seasonal variation of semidiurnal internal tides in the East/Japan Sea was investigated using 25 month long output from a real-time ocean forecasting system. The z coordinate eddy-resolving high-resolution numerical model, called the RIAM ocean model, incorporates data assimilation that nudges temperature and salinity fields together with volume transport through the Korea Strait to produce realistic oceanic currents and stratification. In addition to atmospheric forcing, it includes tidal forcing of 16 major components along open boundaries. The model generates energetic semidiurnal internal tides around the northern entrance of the Korea Strait. Energy conversion from barotropic to baroclinic (internal) tides varies seasonally with maxima in September (ranging 0.48-0.52 GW) and minima in March (ranging 0.11-0.16 GW). This seasonal variation is induced by the seasonality in stratification near the southwestern East/Japan Sea. The propagation distance of the internal tides is associated with generation intensity and wavelength. From late summer to early winter, the semidiurnal internal tides travel relatively far from the generation region due to stratification changes; its energy dissipates less as a result of longer wavelengths. Our results suggest that spatiotemporal variation of internal-tide-induced mixing due to the seasonality in the generation, propagation, and dissipation of internal tides should be considered for a more realistic simulation of water masses and circulation in models of the East/Japan Sea.

  17. Seasonal variation in physiological condition of Amblema plicata in the Upper Mississippi River

    USGS Publications Warehouse

    Monroe, E.M.; Newton, T.J.

    2001-01-01

    Measures of physiological condition are being used as sub-lethal endpoints in studies with unionids exposed to a variety of stressors, yet the natural seasonal variation in these measures are largely undocumented. We measured concentrations of glycogen in foot and mantle tissue and a tissue condition index (TCI) in Amblema plicata (Say 1817), about monthly, for 2 years in mussels that were: (1) obtained directly from the Upper Mississippi River (riverine group); and (2) relocated from the river into an artificial pond (relocated group). In both groups, we observed significant seasonal variation in all physiological indicators. Seasonal variation in glycogen was 72% in mantle and 52% in foot tissue and paralleled reproductive activity in this short-term breeder. In the relocated group, most of the variation in glycogen occurred during the first six months after relocation, suggesting that handling stress may have been a contributing factor. The significant seasonal variation in the TCI paralleled glycogen in riverine mussels. We observed tissue-specific differences in glycogen in the riverine group, but not in the relocated group. These data suggest that an interaction of environmental and biological factors influence the energetic status of mussels in natural populations. A better understanding of this variation is needed to interpret changes in physiological condition due to stressors such as relocation.

  18. Modeling seasonal variation of hip fracture in Montreal, Canada.

    PubMed

    Modarres, Reza; Ouarda, Taha B M J; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre

    2012-04-01

    The investigation of the association of the climate variables with hip fracture incidences is important in social health issues. This study examined and modeled the seasonal variation of monthly population based hip fracture rate (HFr) time series. The seasonal ARIMA time series modeling approach is used to model monthly HFr incidences time series of female and male patients of the ages 40-74 and 75+ of Montreal, Québec province, Canada, in the period of 1993-2004. The correlation coefficients between meteorological variables such as temperature, snow depth, rainfall depth and day length and HFr are significant. The nonparametric Mann-Kendall test for trend assessment and the nonparametric Levene's test and Wilcoxon's test for checking the difference of HFr before and after change point are also used. The seasonality in HFr indicated sharp difference between winter and summer time. The trend assessment showed decreasing trends in HFr of female and male groups. The nonparametric test also indicated a significant change of the mean HFr. A seasonal ARIMA model was applied for HFr time series without trend and a time trend ARIMA model (TT-ARIMA) was developed and fitted to HFr time series with a significant trend. The multi criteria evaluation showed the adequacy of SARIMA and TT-ARIMA models for modeling seasonal hip fracture time series with and without significant trend. In the time series analysis of HFr of the Montreal region, the effects of the seasonal variation of climate variables on hip fracture are clear. The Seasonal ARIMA model is useful for modeling HFr time series without trend. However, for time series with significant trend, the TT-ARIMA model should be applied for modeling HFr time series. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Influence of seasonal variation in mood and behavior on cognitive test performance among young adults.

    PubMed

    Merikanto, Ilona; Lahti, Tuuli; Castaneda, Anu E; Tuulio-Henriksson, Annamari; Aalto-Setälä, Terhi; Suvisaari, Jaana; Partonen, Timo

    2012-10-01

    Seasonal variations in mood and behavior are common among the general population and may have a deteriorating effect on cognitive functions. In this study the effect of seasonal affective disorder (SAD-like symptoms) on cognitive test performance were evaluated in more detail. The data were derived from the study Mental Health in Early Adulthood in Finland. Participants (n = 481) filled in a modified Seasonal Pattern Assessment Questionnaire (SPAQ) and performed cognitive tests in verbal and visual skills, attention and general intelligence. SAD-like symptoms, especially regarding the seasonal variations in weight and appetite, had a significant effect on working memory (Digit Span Backward, P = 0.008) and auditory attention and short-term memory (Digit Span Forward, P = 0.004). The seasonal variations in sleep duration and mood had an effect on auditory attention and short-term memory (Digit Span Forward, P = 0.02 and P = 0.0002, respectively). The seasonal variations in social activity and energy level had no effect. Seasonal changes in mood, appetite and weight have an impairing effect on auditory attention and processing speed. If performance tests are not to repeated in different seasons, attention needs to be given to the most appropriate season in which to test.

  20. Seasonal variation in imposex intensity of Thais clavigera

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan

    2005-06-01

    Imposex, specifically caused by TBT pollution, refers to the superimposition of male sexual characteristics in gastropod females. Seasonal variation of imposex intensity in Thais clavigera from both slightly and severely contaminated sites in Hong Kong waters was studied from 1988 to 1999. The male penis length showed significant difference between both sites and seasons. It was shortest during late autumn and early winter (October to December) and longest during spring and early summer (February to June). Female penis length also showed significant difference between sites. It did not change seasonally, however. The RPS (Relative Penis Size) index was the highest during autumn and early winter, and the lowest during spring and early summer. The VDS (Vas Deferens Sequence) index remained stable throughout the sampling period. This study showed that VDS index is a better indicator when we compare relative intensity of imposex. The comparison can only be meaningful provided the samples from different locations are taken during the same season.

  1. Seasonal Variation of Mass Transport Across the Tropopause

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.; Rosenlof, Karen H.

    1996-01-01

    The annual cycle of the net mass transport across the extratropical tropopause is examined. Contributions from both the global-scale meridional circulation and the mass variation of the lowermost stratosphere are included. For the northern hemisphere the mass of the lowermost stratosphere has a distinct annual cycle, whereas for the southern hemisphere, the corresponding variation is weak. The net mass transport across the tropopause in the northern hemisphere has a maximum in late spring and a distinct minimum in autumn. This variation and its magnitude compare well with older estimates based on representative Sr-90 mixing ratios. For the southern hemisphere the seasonal cycle of the net mass transport is weaker and follows roughly the annual variation of the net mass flux across a nearby isentropic surface.

  2. Seasonal Variations in Water Chemistry and Sediment Composition in Three Minnesota Lakes

    NASA Astrophysics Data System (ADS)

    Lascu, I.; Ito, E.; Banerjee, S.

    2006-12-01

    Variations in water chemistry, isotopic composition of dissolved inorganic carbon, sediment geochemistry and mineral magnetism were monitored for several months in three Minnesota lakes. Lake McCarrons, Deming Lake and Steel Lake are all small (<1 km2), deep (>16 m), stratified lakes that contain varved sediments for some time intervals or throughout. Deming Lake and Steel Lake are situated in north-central Minnesota, about 40 km apart, while Lake McCarrons is located in the heart of the Twin Cities and is heavily used for recreational purposes. The lakes have different mixing regimes (Steel is dimictic, Deming is meromictic and McCarrons is oligomictic) but all have well defined epilimnia and hypolimnia during the ice-free season. Water samples were collected bi-weekly from the epilimnia, upper and lower hypolimnia, while sediments were collected monthly from sediment traps placed in shallow and deep parts of the lakes. All lakes are moderately alkaline (80-280 ppm HCO3-) carbonate-producing systems, although calcite is being dissolved in the slightly acidic hypolimnetic waters of Deming Lake. The magnetic parameters reveal different distributions of the magnetic components in the three lakes, but all exhibit a general increase in the concentration of bacterial magnetosomes towards the end of summer. Differences in elemental concentrations, cation and anion profiles, and chemical behavior as the season progressed are also obvious among the three lakes. For the two lakes situated in the same climatic regime, this implies additional controls (besides climate) on water and sediment composition, such as local hydrology, substrate composition and biogeochemical in-lake processes.

  3. Geographical variations in seasonal mortality across the United States: A bioclimatological approach

    NASA Astrophysics Data System (ADS)

    Kalkstein, Adam

    2008-10-01

    Human mortality exhibits a strong seasonal pattern with deaths in winter far exceeding those in the summer. Surprisingly, this seasonal trend is evident in all major cities across the United States, seemingly independent of climate. While the pattern itself is clear, its magnitude varies considerably across space, and it is not known if there is regional homogeneity among cities. Additionally, the causal mechanisms relating to pattern variability are not clearly understood. The goal of this study is to conduct a comprehensive geographic analysis of seasonal mortality across the United States, to uncover systematic regional differences in such mortality, and to determine what role weather plays in impacting seasonal mortality rates. Unique seasonal mortality curves were created for 28 Metropolitan Statistical Areas across the United States, and the amplitude and timing of mortality peaks were determined. In addition, seasonality was calculated for different demographic groups and causes of death. Meteorological factors were also evaluated as possible causal mechanisms. The findings here indicate that the seasonality of mortality exhibits strong spatial variation with the largest seasonal mortality amplitudes found in the southwestern United States and the smallest in the North, along with South Florida. In addition, there have been changes in the timing of seasonal mortality; the date of maximum mortality is occurring increasingly early in the year. Demographics also play an important role with women, Whites, and the elderly exhibiting the strongest seasonality in mortality. There is a strong connection between respiratory disease and other causes of death, implying a cause-effect relationship. Meteorology also plays an important role in seasonal mortality; variations in the frequency of certain air masses were associated with changes in the timing and amplitude of seasonal mortality. Finally, there were strong intra-regional similarities that exist among the

  4. Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan.

    PubMed

    Qureshi, I A; Xiao, R X; Yang, B H; Zhang, J; Xiang, D W; Hui, J L

    1999-05-01

    Studies have been shown that intraocular pressure (IOP) shows a diurnal variation in ocular hypertensive subjects, but the amount of change differs from study to study. In recent years it has been noted that intraocular pressure is a dynamic function and is subjected to many influences both acutely and over the long term. The variability in the results may be due to negligence of factors that can affect IOP. Moreover, seasonal variations in the ocular hypertensive subjects have never been described. After placing control on those factors that can affect IOP, this study investigated seasonal and diurnal variations in IOP of ocular hypertensive subjects. IOP was measured each month over the course of 12 months with the Goldmann applanation tonometer in 91 ocular hypertensive male subjects. To see the diurnal changes, subjects were asked to stay in the hospital for 24 hours. The average IOP in the winter months was higher than those in spring, summer, and autumn. The IOP difference between winter and summer was (mean +/- sem) 2.9 +/- 0.9 mmHg (p < 0.001). The peak of mean IOP in diurnal variation curve (25.7 +/- 1.2 mmHg) appeared in the morning when the subjects had just awaken. The mean diurnal variation was found to be 4.2 +/- 0.6 mmHg (p < 0.001). This study confirms that seasons influence IOP and it shows diurnal variations. As compared to other nations, diurnal variations in ocular hypertensive subjects seem to be somewhat less in Pakistan. Knowledge of the seasonal and diurnal variations in IOP may help glaucoma screeners.

  5. Seasonal variation in male alternative reproductive tactics.

    PubMed

    Monroe, M J; Amundsen, T; Utne-Palm, A C; Mobley, K B

    2016-12-01

    Genetic parentage analyses reveal considerable diversity in alternative reproductive behaviours (e.g. sneaking) in many taxa. However, little is known about whether these behaviours vary seasonally and between populations. Here, we investigate seasonal variation in male reproductive behaviours in a population of two-spotted gobies (Gobiusculus flavescens) in Norway. Male two-spotted gobies guard nests, attract females and care for fertilized eggs. We collected clutches and nest-guarding males early and late in the breeding season in artificial nests and used microsatellite markers to reconstruct parentage from a subset of offspring from each nest. We hypothesized that mating, reproductive success and sneaking should be more prevalent early in the breeding season when competition for mates among males is predicted to be higher. However, parentage analyses revealed similar values of mating, reproductive success and high frequencies of successful sneaking early (30% of nests) and late (27% of nests) in the season. We also found that multiple females with eggs in the same nest were fertilized by one or more sneaker males, indicating that some males in this population engage in a satellite strategy. We contrast our results to previous work that demonstrates low levels of cuckoldry in a population in Sweden. Our results demonstrate marked stability in both the genetic mating system and male alternative reproductive tactics over the breeding season. However, sneaking rates may vary geographically within a species, likely due to local selection influencing ecological factors encountered at different locations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  6. Seasonal variation of food security among the Batwa of Kanungu, Uganda.

    PubMed

    Patterson, Kaitlin; Berrang-Ford, Lea; Lwasa, Shuaib; Namanya, Didacus B; Ford, James; Twebaze, Fortunate; Clark, Sierra; Donnelly, Blánaid; Harper, Sherilee L

    2017-01-01

    Climate change is projected to increase the burden of food insecurity (FI) globally, particularly among populations that depend on subsistence agriculture. The impacts of climate change will have disproportionate effects on populations with higher existing vulnerability. Indigenous people consistently experience higher levels of FI than their non-Indigenous counterparts and are more likely to be dependent upon land-based resources. The present study aimed to understand the sensitivity of the food system of an Indigenous African population, the Batwa of Kanungu District, Uganda, to seasonal variation. A concurrent, mixed methods (quantitative and qualitative) design was used. Six cross-sectional retrospective surveys, conducted between January 2013 and April 2014, provided quantitative data to examine the seasonal variation of self-reported household FI. This was complemented by qualitative data from focus group discussions and semi-structured interviews collected between June and August 2014. Ten rural Indigenous communities in Kanungu District, Uganda. FI data were collected from 130 Indigenous Batwa Pygmy households. Qualitative methods involved Batwa community members, local key informants, health workers and governmental representatives. The dry season was associated with increased FI among the Batwa in the quantitative surveys and in the qualitative interviews. During the dry season, the majority of Batwa households reported greater difficulty in acquiring sufficient quantities and quality of food. However, the qualitative data indicated that the effect of seasonal variation on FI was modified by employment, wealth and community location. These findings highlight the role social factors play in mediating seasonal impacts on FI and support calls to treat climate associations with health outcomes as non-stationary and mediated by social sensitivity.

  7. Seasonal Variations of Atmospheric CO2 over Fire Affected Regions Based on GOSAT Observations

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Matsunaga, T.

    2016-12-01

    Abstract: The carbon dioxide (CO2) emissions released from biomass burning significantly affect the temporal variations of atmospheric CO2 concentrations. Based on a long-term (July 2009-June 2015) retrieved datasets by the Greenhouse Gases Observing Satellite (GOSAT), the seasonal cycle and interannual variations of column-averaged volume mixing ratios of atmospheric carbon dioxide (XCO2) in four fire affected continental regions were investigated. The results showed Northern Africa had the largest seasonal variations after removing its regional long-term trend of XCO2 with peak-to-peak amplitude of 6.2 ppm within the year, higher than central South America (2.4 ppm), Southern Africa (3.8 ppm) and Australia (1.7 ppm). The detrended regional XCO2 was found to be positively correlated with the fire CO2 emissions during fire activity period and negatively correlated with vegetation photosynthesis activity with different seasonal variabilities. Northern Africa recorded the largest change of seasonal variations of detrended XCO2 with a total of 12.8 ppm during fire seasons, higher than central South America, Southern Africa and Australia with 5.4 ppm, 6.7 ppm and 2.2 ppm, respectively. During fire episode, the positive detrended XCO2 was noticed during June-November in central South America, December-June in Northern Africa, May-November in Southern Africa. The Pearson correlation coefficients between the variations of detrended XCO2 and fire CO2 emissions from GFED4 (Global Fire Emissions Database v4) achieved best correlations in Southern Africa (R=0.77, p<0.05). Meanwhile, Southern Africa also experienced a significant negative relationship between the variations of detrended XCO2 and vegetation activity (R=-0.84, p<0.05). This study revealed that fire CO2 emissions and vegetation activity contributed greatly to the seasonal variations of GOSAT XCO2 dataset.

  8. Impact of seasonal variation on soil bacterial diversity and ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Amoo, Adenike Eunice; Oluranti Babalola, Olubukola

    2017-04-01

    Soil biodiversity boosts the functioning of the ecosystem thereby contributing to the provision of various ecosystem services. Understanding the link between biodiversity and ecosystem functioning and their reaction to environmental heterogeneity can maximize the contribution of soil microbes to ecosystem services. The diversity, abundance and function of microorganisms can be altered by seasonal variation. There is a dearth of information on how soil biodiversity respond to environmental changes. The impact of seasonal variation on bacterial communities and its effects on soil functioning in four South African forests was investigated. The samples were analysed for pH, moisture content, total carbon and nitrogen, soil nitrate and extractable phosphate. High-throughput sequencing and quantitative PCR were used to determine the diversity and abundance of bacteria. Community level physiological profiles (CLPPs) were measured using the MicroResp™ method. Enzyme activities were additionally used as proxy for ecosystem functions. The functional genes for nitrification and phosphate solubilisation were also measured. Seasonal variation has strong effects on bacterial communities and consequently soil processes. A reduction in biodiversity has direct results on soil ecosystem functioning.

  9. Seasonal and interannual temperature variations in the tropical stratosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, G.C.

    1994-09-20

    Temperature variations in the tropical lower and middle stratosphere are influenced by at least five distinct driving forces. These are (1) the mechanism of the regular seasonal cycle, (2) the quasi-biennial oscillation (QBO) in zonal winds, (3) the semiannual zonal wind oscillation (SAO) at higher levels, (4) El Nino-Southern Oscillation (ENSO) effects driven by the underlying troposphere, and (5) radiative effects, including volcanic aerosol heating. Radiosonde measurements of temperatures from a number of tropical stations, mostly in the western Pacific region, are used in this paper to examine the characteristic annual and interannual temperature variability in the stratosphere below themore » 10-hPa pressure level ({approximately} 31 km) over a time period of 17 years, chosen to eliminate or at least minimize the effect of volcanic eruptions. Both annual and interannual variations are found to show a fairly distinct transition between the lower and the middle stratosphere at about the 35-hPa level ({approximately} 23 km). The lower stratosphere, below this transition level, is strongly influenced by the ENSO cycle as well as by the QBO. The overall result of the interaction is to modulate the amplitude of the normal stratospheric seasonal cycle and to impose a biennial component on it, so that alternate seasonal cycles are stronger or weaker than normal. Additional modulation by the ENSO cycle occurs at its quasi-period of 3-5 years, giving rise to a complex net behavior. In the middle stratosphere above the transition level, there is no discernible ENSO influence, and departures from the regular semiannual seasonal cycle are dominated by the QBO. Recent ideas on the underlying physical mechanisms governing these variations are discussed, as is the relationship of the radiosonde measurements to recent satellite remote-sensing observations. 37 refs., 8 figs., 1 tab.« less

  10. Seasonal variation in the behaviour of a short-lived rodent.

    PubMed

    Eccard, Jana A; Herde, Antje

    2013-11-15

    Short lived, iteroparous animals in seasonal environments experience variable social and environmental conditions over their lifetime. Animals can be divided into those with a "young-of-the-year" life history (YY, reproducing and dying in the summer of birth) and an "overwinter" life history (OW, overwintering in a subadult state before reproducing next spring).We investigated how behavioural patterns across the population were affected by season and sex, and whether variation in behaviour reflects the variation in life history patterns of each season. Applications of pace-of-life (POL) theory would suggest that long-lived OW animals are shyer in order to increase survival, and YY are bolder in order to increase reproduction. Therefore, we expected that in winter and spring samples, when only OW can be sampled, the animals should be shyer than in summer and autumn, when both OW and YY animals can be sampled.We studied common vole (Microtus arvalis) populations, which express typical, intra-annual density fluctuation. We captured a total of 492 voles at different months over 3 years and examined boldness and activity level with two standardised behavioural experiments. Behavioural variables of the two tests were correlated with each other. Boldness, measured as short latencies in both tests, was extremely high in spring compared to other seasons. Activity level was highest in spring and summer, and higher in males than in females. Being bold in laboratory tests may translate into higher risk-taking in nature by being more mobile while seeking out partners or valuable territories. Possible explanations include asset-protection, with OW animals being rather old with low residual reproductive value in spring. Therefore, OW may take higher risks during this season. Offspring born in spring encounter a lower population density and may have higher reproductive value than offspring of later cohorts. A constant connection between life history and animal personality, as

  11. Season-to-Season Variations of Physiological Fitness Within a Squad of Professional Male Soccer Players

    PubMed Central

    Clark, Niall A.; Edwards, Andrew M.; Morton, R. Hugh; Butterly, Ronald J.

    2008-01-01

    The purpose of this study was to examine season-to-season variations in physiological fitness parameters among a 1st team squad of professional adult male soccer players for the confirmatory purposes of identifying normative responses (immediately prior to pre-season training (PPS), mid-season (MID), and end-of-season (EOS)). Test-retest data were collected from a student population on the primary dependent variables of anaerobic threshold (AT) and maximal aerobic power (VO2 max) to define meaningful measurement change in excess of test-retest technical error between test-to-test performances. Participants from a pool of 42 professional soccer players were tested over a set sequence of tests during the 3-year period: 1) basic anthropometry, 2) countermovement jump (CMJ) tests 3) a combined AT and VO2 max test. Over the 3-year period there were no test-to-test changes in mean VO2 max performance exceeding pre-defined limits of test agreement (mean of eight measures: 61.6 ± 0.6 ml·kg-1·min-1). In contrast, VO2 at AT was significantly higher at the MID test occasion in seasons 2 (+4.8%; p = 0.04, p < 0.05) and 3 (+6.8%; p = 0.03, p < 0.05). The CMJ tests showed a test-to-test improvement of 6.3% (best of 3 jumps) (p = 0.03, p < 0.05) and 10.3% (20-s sustained jumping test) (p = 0.007, p < 0.01) between PPS2 and MID2 and thereafter remained stable. Anthropometrics were unaffected. In summary, despite some personnel changes in the elite cohort between test-to-test occasions, VO2 max values did not vary significantly over the study which supports previous short-term observations suggesting a general ‘elite’ threshold of 60 ml·kg-1 min. Interestingly, AT significantly varied where VO2 max was stable and these variations also coincided with on- and off-seasons suggesting that AT is a better indication of acute training state than VO2 max. Key points Maximal aerobic power remains fairly stable across inter- and intra-season measurements. Anaerobic threshold appears

  12. Seasonal variations in the moduli of unbound pavement layers.

    DOT National Transportation Integrated Search

    2006-07-01

    The in situ moduli of unbound pavement materials vary on a seasonal basis as a function of temperature and moisture conditions. : Knowledge of these variations is required for accurate prediction of pavement life for pavement design and other pavemen...

  13. Prediction of Seasonal Climate-induced Variations in Global Food Production

    NASA Technical Reports Server (NTRS)

    Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki; Luo, Jing-Jia; Challinor, Andrew J.; Brown, Molly E.; Sakurai, Gen; Yamagata, Toshio

    2013-01-01

    Consumers, including the poor in many countries, are increasingly dependent on food imports and are therefore exposed to variations in yields, production, and export prices in the major food-producing regions of the world. National governments and commercial entities are paying increased attention to the cropping forecasts of major food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We assessed the reliability of hindcasts (i.e., retrospective forecasts for the past) of crop yield loss relative to the previous year for two lead times. Pre-season yield predictions employ climatic forecasts and have lead times of approximately 3 to 5 months for providing information regarding variations in yields for the coming cropping season. Within-season yield predictions use climatic forecasts with lead times of 1 to 3 months. Pre-season predictions can be of value to national governments and commercial concerns, complemented by subsequent updates from within-season predictions. The latter incorporate information on the most recent climatic data for the upcoming period of reproductive growth. In addition to such predictions, hindcasts using observations from satellites were performed to demonstrate the upper limit of the reliability of crop forecasting.

  14. Seasonal Variations in Mortality, Clinical, and Laboratory Parameters in Hemodialysis Patients: A 5-Year Cohort Study

    PubMed Central

    Usvyat, Len A.; Carter, Mary; Thijssen, Stephan; Kooman, Jeroen P.; van der Sande, Frank M.; Zabetakis, Paul; Balter, Paul; Levin, Nathan W.; Kotanko, Peter

    2012-01-01

    Summary Background and objectives Mortality varies seasonally in the general population, but it is unknown whether this phenomenon is also present in hemodialysis patients with known higher background mortality and emphasis on cardiovascular causes of death. This study aimed to assess seasonal variations in mortality, in relation to clinical and laboratory variables in a large cohort of chronic hemodialysis patients over a 5-year period. Design, setting, participants, & measurements This study included 15,056 patients of 51 Renal Research Institute clinics from six states of varying climates in the United States. Seasonal differences were assessed by chi-squared tests and univariate and multivariate cosinor analyses. Results Mortality, both all-cause and cardiovascular, was significantly higher during winter compared with other seasons (14.2 deaths per 100 patient-years in winter, 13.1 in spring, 12.3 in autumn, and 11.9 in summer). The increase in mortality in winter was more pronounced in younger patients, as well as in whites and in men. Seasonal variations were similar across climatologically different regions. Seasonal variations were also observed in neutrophil/lymphocyte ratio and serum calcium, potassium, and platelet values. Differences in mortality disappeared when adjusted for seasonally variable clinical parameters. Conclusions In a large cohort of dialysis patients, significant seasonal variations in overall and cardiovascular mortality were observed, which were consistent over different climatic regions. Other physiologic and laboratory parameters were also seasonally different. Results showed that mortality differences were related to seasonality of physiologic and laboratory parameters. Seasonal variations should be taken into account when designing and interpreting longitudinal studies in dialysis patients. PMID:22096041

  15. Seasonal variation in myocardial infarction is limited to patients with ST-elevations on admission.

    PubMed

    Leibowitz, David; Planer, David; Weiss, Teddy; Rott, David

    2007-01-01

    Previous studies have demonstrated seasonal variation in the incidence of acute myocardial infarction (AMI) with an increase in cases during the winter months. However, they did not assess whether ST-elevation MI (STEMI) and non-ST-elevation MI (NSTEMI) exhibit similar changes. The object of this study was to compare the seasonal variation of STEMI and NSTEMI. All patients who presented with AMI and underwent coronary angiography within seven days of admission were identified via the institutional database. STEMI diagnosis required admission ECG demonstrating ST elevation in at least two continguous leads. All AMIs not meeting criteria for STEMI were defined as NSTEMI. Patients were divided into monthly and seasonal groups based on the date of admission with MI. A total of 784 patients were included: 549 patients with STEMI and 235 with NSTEMI. When STEMI patients were analyzed by season, there were 170 patients (31%) in the winter months, a statistically significant difference of excess MI (p<0.005). When NSTEMI patients were analyzed, there were 62 patients (26%) in the winter with no statistically significant difference in the seasonal variation. Our findings suggest that the previously noted seasonal variation in the incidence of AMI is limited to patients presenting with STEMI, and that there are important physiological differences between STEMI and NSTEMI, the nature of which remains to be elucidated.

  16. Spatial and seasonal variations of polycyclic aromatic hydrocarbons in Haihe Plain, China.

    PubMed

    Wang, Rong; Cao, Hongying; Li, Wei; Wang, Wei; Wang, Wentao; Zhang, Liwen; Liu, Jiumeng; Ouyang, Huiling; Tao, Shu

    2011-05-01

    A dynamic fugacity model was developed to simulate the spatial and seasonal variations of PAHs in Haihe Plain, China. The calculated and measured concentrations exhibited good consistency in magnitude with deviations within a factor of 4 in air and 2 in soil. The spatial distributions of PAHs in air were mainly controlled by emission while the seasonal variations were dominated by emission and gas-particle partition. In soil, the spatial distributions of PAHs were controlled by the soil organic carbon content while the seasonal variations were insignificant. The severest soil contamination was observed in Shanxi and followed by the southwest of Hebei province. Transfer fluxes of total PAHs between air and soil were calculated. The spatial distribution of air-to-soil flux was closely related to the landcover while the soil-to-air flux changed with soil organic matter content. Monte Carlo simulation was done to evaluate the uncertainty of the estimated results in air. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Seasonal variation of metabolism in lizard Phrynocephalus vlangalii at high altitude.

    PubMed

    Liang, Shiwei; Li, Weixin; Zhang, Yang; Tang, Xiaolong; He, Jianzheng; Bai, Yucheng; Li, Dongqin; Wang, Yan; Chen, Qiang

    2017-01-01

    Seasonal acclimatization is important for animals to live optimally in the varying environment. Phrynocephalus vlangalii, a species of lizard endemic in China, distributes on Qinghai-Tibet Plateau ranging from 2000 to 4600m above sea level. To dissect how this lizard mediate metabolism to adapt various season, the preferred body temperature (Tb), standard metabolic rate (SMR), mitochondrial respiration rates and activities of four metabolic enzymes in this species were tested in different seasons (spring, summer, and autumn). The results showed that the preferred Tb was the lowest in spring and the highest in summer. SMR, maximal mitochondrial respiration rates in liver and skeletal muscle were the highest in spring. Similarly, higher activities of lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities of liver and skeletal muscle were observed in spring. However, β-hydroxyacyl coenzyme A dehydrogenase (HOAD) activities of liver and skeletal muscle were higher in autumn. On the whole, seasonal variation of metabolism is the highest in spring and the lowest in summer. Seasonal variation of metabolism is the opposite of preferred body temperature, this may be one of the mechanisms to adapt to the environment in P. vlangalii. Our results suggested that P. vlangalii at high altitude has certain adaptive characteristics on metabolism in different seasons. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Seasonal variation in hospital encounters with hypoglycaemia and hyperglycaemia.

    PubMed

    Clemens, K K; Shariff, S; Richard, L; Booth, G; Gilliland, J; Garg, A X

    2017-07-01

    To assess whether rates of hospital encounters with hypoglycaemia and hyperglycaemia display seasonal variation. Time series analyses of the monthly rates of hospital encounters (emergency room visits or inpatient admissions) with hypoglycaemia and hyperglycaemia from 2003 to 2012 using linked healthcare databases in Ontario, Canada. Over the study period, there were 129 887 hypoglycaemia and 79 773 hyperglycaemia encounters. The characteristics of people at the time of their encounters were similar across the seasons in 2008 (median age 68 years for hypoglycaemia encounters and 53 years for hyperglycaemia encounters; 50% female; 90% with diabetes). We observed moderate seasonality in both types of encounters (R 2 autoregression coefficient 0.58 for hypoglycaemia; 0.59 for hyperglycaemia). The rate of hypoglycaemia encounters appeared to peak between April and June, when on average, there was an additional 49 encounters per month (0.36 encounters per 100 000 persons per month) compared with the other calendar months (5% increase). The rate of hyperglycaemia encounters appeared to peak in January, when on average, there was an additional 69 encounters per month (0.50 encounters per 100 000 persons per month) compared with the other calendar months (11% increase). In our region, there is seasonal variation in the rate of hospital encounters with hypoglycaemia and hyperglycaemia. Our findings may help to highlight periods of vulnerability for people, may inform future epidemiological studies and may aid in the appropriate planning of healthcare resources. © 2017 Diabetes UK.

  19. Seasonal variation of seclusion incidents from violent and suicidal acts in forensic psychiatric patients.

    PubMed

    Paavola, Paula; Tiihonen, Jari

    2010-01-01

    A seasonal variation in violence and suicidal behaviour has been reported in several studies with partially congruent results. Most of forensic psychiatric patients have a history of severe violent behaviour that often continues in spite of regular treatment. In the forensic psychiatric hospital environment aggressive and suicidal acts are often sudden and unpredictable. For reasons of safety, rapid and intensive coercive measures, such as seclusion and restraint, are necessary in the treatment of such patients. To examine whether these involuntary seclusions have a seasonal pattern, possibly similar than the reported seasonal variation in violence and suicidal behaviour. By investigating the possibility of a seasonal variation of seclusion incidents from violent and suicidal acts, it may become possible to improve the management of forensic psychiatric patients. The hospital files of all secluded patients at Niuvanniemi Hospital from 1 January 1996 to 31 December 2002 were examined. In total, 385 patients (324 male and 61 female) were identified as being secluded at least once in 1930 different incidents (1476 from male and 454 from female patients). Seasonal decomposition and linear regression with dummy month variables were used to examine the possibility of annual variations for seclusions. The seasonal variation of involuntary seclusion incidents was statistically significant. According to the linear regression model, most of the seclusion incidents, affecting many different patients, began in July and August, and were concentrated throughout the fall until November. The sum of all seclusion days was lowest in January and highest between July and November (difference +31% to +37%). These findings are mainly in agreement with results from other studies on seasonal variation and violent behaviour. The allocation of staff for late summer and fall might enhance the management of forensic psychiatric patients, thus leading to possible decreases in seclusion

  20. Patterns of seasonal variation in lagoonal macrozoobenthic assemblages (Mellah lagoon, Algeria).

    PubMed

    Magni, Paolo; Draredja, Brahim; Melouah, Khalil; Como, Serena

    2015-08-01

    In coastal lagoons, many studies indicated that macrozoobenthic assemblages undergo marked temporal fluctuations as related to the strong environmental variability of these systems. However, most of these studies have not assessed the seasonal patterns of these fluctuations and none of them has investigated the consistency of this variation in different areas within the same lagoon system. In this study, we assessed patterns of variation at multiple temporal (date, season and year) scales in two different areas in the coastal lagoon of Mellah (northeast Algeria). These areas (hereafter Shore and Center) are representative of two different environments typically found in coastal lagoons. The Shore (water depth of about 1.5-2 m) is characterized by relatively higher hydrodynamics, sand to silty-sand sediments and the presence of vegetation (Ruppia maritima), the Center (water depth of about 3-3.5 m) is characterized by mud to sandy-mud, organic-enriched sediments due to fine particle accumulation. Results showed two distinct patterns of seasonal variation in Shore and Center assemblages for two consecutive years. In Shore, species richness (S), total abundance (N) and the abundance of several dominant taxa were highest in summer and/or autumn. This pattern can be related to the local environmental conditions maintaining relatively well oxidized conditions, while increasing food availability, and favoring the recruitment of species and individuals in summer/autumn. On the contrary in Center, S was lowest in summer and autumn, and N and the abundance of fewer dominant taxa were lowest in summer. In Center, the bivalve Loripes lucinalis showed a 10-fold increase from summer to autumn in both years, likely related to the lagoon's hydrodynamics favoring larval transport and settlement in the central sector of the lagoon. Overall, the seasonal variation found in Center followed a regression/recovery pattern typical of opportunistic assemblages occurring in confined

  1. Seasonal variation of plankton communities influenced by environmental factors in an artificial lake

    NASA Astrophysics Data System (ADS)

    Li, Xuemei; Yu, Yuhe; Zhang, Tanglin; Feng, Weisong; Ao, Hongyi; Yan, Qingyun

    2012-05-01

    We evaluated the seasonal variation in plankton community composition in an artificial lake. We conducted microscopic analysis and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA and 18S rRNA genes to characterize the plankton community. The clustering of unweighted pair group method with arithmetic mean (UPGMA) was then used to investigate the similarity of these plankton communities. DGGE fingerprinting revealed that samples collected at the different sites within a season shared high similarity and were generally grouped together. In contrast, we did not observe any seasonal variation based on microscopic analysis. Redundancy analysis (RDA) of the plankton operational taxonomic units (OTUs) in relation to environmental factors revealed that transparency was negatively correlated with the first axis ( R=-0.931), and temperature and total phosphorus (TP) were positively correlated with the first axis ( R=0.736 and R=0.660, respectively). In conclusion, plankton communities in the artificial lake exhibited significant seasonal variation. Transparency, phosphorus and temperature appear to be the major factors driving the differences in plankton composition.

  2. Modeling seasonal surface temperature variations in secondary tropical dry forests

    NASA Astrophysics Data System (ADS)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  3. Background levels of methane in Mars’ atmosphere show strong seasonal variations

    NASA Astrophysics Data System (ADS)

    Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Moores, John E.; Flesch, Gregory J.; Malespin, Charles; McKay, Christopher P.; Martinez, German; Smith, Christina L.; Martin-Torres, Javier; Gomez-Elvira, Javier; Zorzano, Maria-Paz; Wong, Michael H.; Trainer, Melissa G.; Steele, Andrew; Archer, Doug; Sutter, Brad; Coll, Patrice J.; Freissinet, Caroline; Meslin, Pierre-Yves; Gough, Raina V.; House, Christopher H.; Pavlov, Alexander; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Pearson, John C.; Keymeulen, Didier; Christensen, Lance E.; Schwenzer, Susanne P.; Navarro-Gonzalez, Rafael; Pla-García, Jorge; Rafkin, Scot C. R.; Vicente-Retortillo, Álvaro; Kahanpää, Henrik; Viudez-Moreiras, Daniel; Smith, Michael D.; Harri, Ari-Matti; Genzer, Maria; Hassler, Donald M.; Lemmon, Mark; Crisp, Joy; Sander, Stanley P.; Zurek, Richard W.; Vasavada, Ashwin R.

    2018-06-01

    Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.

  4. Seasonal and Geographical Variation of Dengue Vectors in Narathiwat, South Thailand

    PubMed Central

    Boonklong, Ornanong; Bhumiratana, Adisak

    2016-01-01

    Using GIS-based land use map for the urban-rural division (the relative ratio of population density adjusted to relatively Aedes-infested land area), we demonstrated significant independent observations of seasonal and geographical variation of Aedes aegypti and Aedes albopictus vectors between Muang Narathiwat district (urban setting) and neighbor districts (rural setting) of Narathiwat, Southern Thailand, based on binomial distribution of Aedes vectors in water-holding containers (water storage containers, discarded receptacles, miscellaneous containers, and natural containers). The distribution of Aedes vectors was influenced seasonally by breeding outdoors rather than indoors in all 4 containers. Accordingly, both urban and rural settings elicited significantly seasonal (wet versus dry) distributions of Ae. aegypti larvae observed in water storage containers (P = 0.001 and P = 0.002) and natural containers (P = 0.016 and P = 0.015), whereas, in rural setting, the significant difference was observed in discarded receptacles (P = 0.028) and miscellaneous containers (P < 0.001). Seasonal distribution of Ae. albopictus larvae in any containers in urban setting was not remarkably noticed, whereas, in rural setting, the significant difference was observed in water storage containers (P = 0.007) and discarded receptacles (P < 0.001). Moreover, the distributions of percentages of container index for Aedes-infested households in dry season were significantly lower than that in other wet seasons, P = 0.034 for urban setting and P = 0.001 for rural setting. Findings suggest that seasonal and geographical variation of Aedes vectors affect the infestation in those containers in human inhabitations and surroundings. PMID:27437001

  5. Seasonal variations in aerosol optical properties over China

    Treesearch

    Yuesi Wang; Jinyuan Xin; Zhanqing Li; Shigong Wang; Pucai Wang; Wei Min Hao; Bryce L. Nordgren; Hongbin Chen; Lili Wang; Yang Sun

    2012-01-01

    Seasonal variations in background aerosol optical depth (AOD) and aerosol type are investigated over various ecosystems in China based upon three years' worth of meteorological data and data collected by the Chinese Sun Hazemeter Network. In most parts of China, AODs are at a maximum in spring or summer and at a minimum in autumn or winter. Minimum values (0.10~0....

  6. Comparison of seasonal variation in the fasting respiratory quotient of young Japanese, Polish and Thai women in relation to seasonal change in their percent body fat.

    PubMed

    Morinaka, Tomoko; Wozniewicz, Malgorzata; Jeszka, Jan; Bajerska, Joanna; Limtrakul, Porn-ngarm; Makonkawkeyoon, Luksana; Hirota, Naoko; Kumagai, Shoko; Sone, Yoshiaki

    2012-05-04

    From the viewpoint of human physiological adaptability, we previously investigated seasonal variation in the amount of unabsorbed dietary carbohydrates from the intestine after breakfast in Japanese, Polish and Thai participants. In this investigation we found that there were significant seasonal variations in the amount of unabsorbed dietary carbohydrates in Japanese and Polish participants, while we could not find significant seasonal variation in Thai participants. These facts prompted us to examine seasonal variations in the respiratory quotient after an overnight fast (an indicator of the ratio of carbohydrate and fat oxidized after the last meal) with female university students living in Osaka (Japan), Poznan (Poland) and Chiang Mai (Thailand). We enrolled 30, 33 and 32 paid participants in Japan, Poland and Thailand, respectively, and measurements were taken over the course of one full year. Fasting respiratory quotient was measured with the participants in their postabsorptive state (after 12 hours or more fasting before respiratory quotient measurement). Respiratory quotient measurements were carried out by means of indirect calorimetry using the mixing chamber method. The percent body fat was measured using an electric bioelectrical impedance analysis scale. Food intake of the participants in Osaka and Poznan were carried out by the Food Frequency Questionnaire method. There were different seasonal variations in the fasting respiratory quotient values in the three different populations; with a significant seasonal variation in the fasting respiratory quotient values in Japanese participants, while those in Polish and Thai participants were non-significant. We found that there were significant seasonal changes in the percent body fat in the three populations but we could not find any significant correlation between the fasting respiratory quotient values and the percent body fat. There were different seasonal variations in the fasting respiratory quotient

  7. Comparison of seasonal variation in the fasting respiratory quotient of young Japanese, Polish and Thai women in relation to seasonal change in their percent body fat

    PubMed Central

    2012-01-01

    Background From the viewpoint of human physiological adaptability, we previously investigated seasonal variation in the amount of unabsorbed dietary carbohydrates from the intestine after breakfast in Japanese, Polish and Thai participants. In this investigation we found that there were significant seasonal variations in the amount of unabsorbed dietary carbohydrates in Japanese and Polish participants, while we could not find significant seasonal variation in Thai participants. These facts prompted us to examine seasonal variations in the respiratory quotient after an overnight fast (an indicator of the ratio of carbohydrate and fat oxidized after the last meal) with female university students living in Osaka (Japan), Poznan (Poland) and Chiang Mai (Thailand). Methods We enrolled 30, 33 and 32 paid participants in Japan, Poland and Thailand, respectively, and measurements were taken over the course of one full year. Fasting respiratory quotient was measured with the participants in their postabsorptive state (after 12 hours or more fasting before respiratory quotient measurement). Respiratory quotient measurements were carried out by means of indirect calorimetry using the mixing chamber method. The percent body fat was measured using an electric bioelectrical impedance analysis scale. Food intake of the participants in Osaka and Poznan were carried out by the Food Frequency Questionnaire method. Results There were different seasonal variations in the fasting respiratory quotient values in the three different populations; with a significant seasonal variation in the fasting respiratory quotient values in Japanese participants, while those in Polish and Thai participants were non-significant. We found that there were significant seasonal changes in the percent body fat in the three populations but we could not find any significant correlation between the fasting respiratory quotient values and the percent body fat. Conclusions There were different seasonal

  8. Seasonal variations and sources of sedimentary organic carbon in Tokyo Bay.

    PubMed

    Kubo, Atsushi; Kanda, Jota

    2017-01-30

    Total organic carbon (TOC), total nitrogen (TN) contents, their stable C and N isotope ratio (δ 13 C and δ 15 N), and chlorophyll a ([Chl a] sed ) of surface sediments were investigated monthly to identify the seasonal variations and sources of organic matter in Tokyo Bay. The sedimentary TOC (TOC sed ) and TN (TN sed ) contents, and the sedimentary δ 13 C and δ 15 N (δ 13 C sed and δ 15 N sed ) values were higher in summer than other seasons. The seasonal variations were controlled by high primary production in the water column and hypoxic water in the bottom water during summer. The fraction of terrestrial and marine derived organic matter was estimated by Bayesian mixing model using stable isotope data and TOC/TN ratio. Surface sediments in Tokyo Bay are dominated by marine derived organic matter, which accounts for about 69±5% of TOC sed . Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The effectiveness of intensive nursing care on seasonal variation of blood pressure in patients on peritoneal dialysis.

    PubMed

    Quan, Lei; Dong, Jie; Li, Yanjun; Zuo, Li

    2012-06-01

      This article is a report of a study to reduce the seasonal variation of blood pressure in patients on peritoneal dialysis through an intensive programme of nursing care.   The seasonal variation of blood pressure is a common phenomenon in patients on maintenance dialysis. Whether or not this variation can be reduced through a given intervention is unknown.   The programme of intensive nursing care including education on volume control, home blood pressure monitoring and intensified antihypertensive treatment, was implemented from December 2006. The blood pressure, fluid and sodium removal and defined daily doses of antihypertensive agents were measured at 1-monthly intervals and averagely quarterly for seasonal values for spring, summer, autumn and winter, respectively, before (December 2005-November 2006) and after intervention (December 2006-November 2007).   A total of 76 clinically stable patients on peritoneal dialysis were enrolled and finally analysed. The mean age was 60·6 years, and dialysis duration was 23·2 months. Before intervention, there were important seasonal variations in systolic and diastolic blood pressure. After intensive nursing care was implemented, the seasonal variation of systolic blood pressure disappeared. The diastolic blood pressure still represented a season pattern, but the discrepancy between winter and summer decreased. There were no seasonal patterns of total fluid and sodium removal before and after intervention.   Intensive nursing care reduced the seasonal variation of blood pressure in patients on peritoneal dialysis. These data provided an evidence for implementing nurse-centred interventions in this population. © 2011 Blackwell Publishing Ltd.

  10. Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone, 1958-1987 (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angell, J. K.; Korshover, J.; Planet, W. G.

    For 1958 through 1987, this data base presents total ozone variations and layer mean ozone variations expressed as percent deviations from the 1958 to 1977 mean. The total ozone variations were derived from mean monthly ozone values published in Ozone Data for the World by the Atmospheric Environment Service in cooperation with the World Meteorological Organization. The layer mean ozone variations are derived from ozonesonde and Umkehr observations. The data records include year, seasonal and annual total ozone variations, and seasonal and annual layer mean ozone variations. The total ozone data are for four regions (Soviet Union, Europe, North America,more » and Asia); five climatic zones (north and south polar, north and south temperate, and tropical); both hemispheres; and the world. Layer mean ozone data are for four climatic zones (north and south temperate and north and south polar) and for the stratosphere, troposphere, and tropopause layers. The data are in two files [seasonal and year-average total ozone (13.4 kB) and layer mean ozone variations (24.2 kB)].« less

  11. The behavior of seasonal variations in induced seismicity in the Koyna-Warna region, western India

    NASA Astrophysics Data System (ADS)

    Smirnov, V. B.; Srinagesh, D.; Ponomarev, A. V.; Chadha, R.; Mikhailov, V. O.; Potanina, M. G.; Kartashov, I. M.; Stroganova, S. M.

    2017-07-01

    Based on the earthquake catalog data for the Koyna-Warna region of induced seismicity in western India, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level are analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. The seasonal seismic activity is minimal in May-June when the reservoir level is lowest. During the remaining part of the year, the activity has three peaks: the fall peak in September, winter peak in November-December, and spring peak in February-March. The first mentioned peak, which falls in the phase of the water level reaching its maximal seasonal value is considered as the immediate response of the fluid saturated medium to the additional loading under the weight of reservoir water. The two subsequent maxima concur with the decline phase in the reservoir level and are interpreted as the delayed response associated with the changes in the properties of the medium due to water diffusion. It is shown that the intensities of the immediate and delayed responses to the seasonal water level variations both vary with time as does their ratio. The probable factors affecting the variations in the intensity of the seasonal components of the reservoir-induced seismicity are discussed.

  12. Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa argenteastriatus Leaves

    PubMed Central

    Ni, Qinxue; Xu, Guangzhi; Wang, Zhiqiang; Gao, Qianxin; Wang, Shu; Zhang, Youzuo

    2012-01-01

    Sasa argenteastriatus, with abundant active compounds and high antioxidant activity in leaves, is a new leafy bamboo grove suitable for exploitation. To utilize it more effectively and scientifically, we investigate the seasonal variations of antioxidant composition in its leaves and antioxidant activity. The leaves of Sasa argenteastriatus were collected on the 5th day of each month in three same-sized sample plots from May 2009 to May 2011. The total flavonoids (TF): phenolics (TP) and triterpenoid (TT) of bamboo leaves were extracted and the contents analyzed by UV-spectrophotometer. Our data showed that all exhibited variations with the changing seasons, with the highest levels appearing in November to March. Antioxidant activity was measured using DPPH and FRAP methods. The highest antioxidant activity appeared in December with the lowest in May. Correlation analyses demonstrated that TP and TF exhibited high correlation with bamboo antioxidant activity. Eight bamboo characteristic compounds (orientin, isoorientin, vitexin, homovitexin and p-coumaric acid, chlorogenic acid, caffeic acid, ferulic acid) were determined by RP-HPLC synchronously. We found that chlorogenic acid, isoorientin and vitexin are the main compounds in Sasa argenteastriatus leaves and the content of isovitexin and chlorogenic acid showed a similar seasonal variation with the TF, TP and TT. Our results suggested that the optimum season for harvesting Sasa argenteastriatus leaves is between autumn and winter. PMID:22408451

  13. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    PubMed

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  14. SEASONAL VARIATIONS IN RIVER DISCHARGE AND NUTRIENT EXPORT TO A NORTHEASTERN PACIFIC ESTUARY

    EPA Science Inventory

    Seasonal variations in dissolved nitrogen and silica loadings were related to seasonal variability in river discharge. Dissolved nutrient concentrations measured weekly at three stations in the Yaquina River, Oregon from 1999 through 2001, and then monthly in 2002 were used as th...

  15. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; Xu, Honghui; An, Junlin; Xue, Guoqiang; Cao, Jinfei

    2015-12-01

    In order to investigate the regional variations of water-soluble ions (WSIs), size-resolved measurement of aerosol particles and WSIs was conducted by using Anderson Sampler and Ion Chromatography at five sites (Nanjing, Suzhou, Lin'an, Hangzhou and Ningbo) in the Yangtze River Delta (YRD) region, China in the Autumn of 2012 and Winter, Spring and Summer of 2013. WSIs exhibited obvious seasonal variations due to the monsoon conversion, with the highest level in winter and lowest level in summer. The aerosol mass concentrations and WSIs in different size segments varied with four seasons. The dominant ions concentrations in PM2.1 ranked in the order of SO42- > NO3- > NH4+ > Cl- > K+ > Ca2+, and the dominant ions concentrations in PM2.1-10 ranked in the order of Ca2+ > NO3- > SO42- > Cl- > NH4+ > Na+. The size spectra of mass and WSIs concentration peaked mostly at 0.43-0.65 μm in four seasons. The concentration discrepancies of WSIs in different cities were caused by the geographic locations and emission source. It's belonged to ammonium-rich distribution in PM2.1 and ammonium-poor distribution in PM2.1-10 in the YRD region. The impact of temperature on mass concentrations of NO3- and NH4+ in PM2.1 were stronger than those in PM2.1-10. PCA analysis shows that the sources of WSIs dominant by anthropogenic sources, soil particles or falling dust, sea salt and burning process.

  16. Background levels of methane in Mars' atmosphere show strong seasonal variations.

    PubMed

    Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Moores, John E; Flesch, Gregory J; Malespin, Charles; McKay, Christopher P; Martinez, German; Smith, Christina L; Martin-Torres, Javier; Gomez-Elvira, Javier; Zorzano, Maria-Paz; Wong, Michael H; Trainer, Melissa G; Steele, Andrew; Archer, Doug; Sutter, Brad; Coll, Patrice J; Freissinet, Caroline; Meslin, Pierre-Yves; Gough, Raina V; House, Christopher H; Pavlov, Alexander; Eigenbrode, Jennifer L; Glavin, Daniel P; Pearson, John C; Keymeulen, Didier; Christensen, Lance E; Schwenzer, Susanne P; Navarro-Gonzalez, Rafael; Pla-García, Jorge; Rafkin, Scot C R; Vicente-Retortillo, Álvaro; Kahanpää, Henrik; Viudez-Moreiras, Daniel; Smith, Michael D; Harri, Ari-Matti; Genzer, Maria; Hassler, Donald M; Lemmon, Mark; Crisp, Joy; Sander, Stanley P; Zurek, Richard W; Vasavada, Ashwin R

    2018-06-08

    Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Diagnosis of seasonal variations of tropical cyclogenesis over the South China Sea using a genesis potential index

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Pan, Xiumei

    2012-09-01

    This study examines the seasonal variations of tropical cyclogenesis over the South China Sea (SCS) using a genesis potential (GP) index developed by Emanuel and Nolan. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to these variations is investigated. Composite anomalies of the GP index are produced for the summer and winter monsoons separately. These composites replicate the observed seasonal variations of the observed frequency and location of tropical cyclogenesis over the SCS. The degree of contribution by each factor in different regions is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. Over the northern SCS, potential intensity makes the largest contributions to the seasonal variations in tropical cyclogenesis. Over the southern SCS, the low-level relative vorticity plays the primary role in the seasonal modulation of tropical cyclone (TC) genesis frequency, and the vertical wind shear plays the secondary role. Thermodynamic factors play more important roles for the seasonal variations in tropical cyclogenesis over the northern SCS, while dynamic factors are more important in the seasonal modulation of TC genesis frequency over the southern SCS.

  18. Seasonal variation of temporal niche in wild owl monkeys (Aotus azarai azarai) of the Argentinean Chaco: a matter of masking?

    PubMed

    Erkert, Hans G; Fernandez-Duque, Eduardo; Rotundo, Marcelo; Scheideler, Angelika

    2012-07-01

    Among the more than 40 genera of anthropoid primates (monkeys, apes, and humans), only the South American owl monkeys, genus Aotus, are nocturnal. However, the southernmostly distributed species, Aotus azarai azarai, of the Gran Chaco may show considerable amounts of its 24-h activity during bright daylight. Due to seasonal changes in the duration of photophase and climatic parameters in their subtropical habitat, the timing and pattern of their daily activity are expected to show significant seasonal variation. By quantitative long-term activity recordings with Actiwatch AW4 accelerometer data logger devices of 10 wild owl monkeys inhabiting a gallery forest in Formosa, Argentina, the authors analyzed the seasonal variation in the temporal niche and activity pattern resulting from entrainment and masking of the circadian activity rhythm by seasonally and diurnally varying environmental factors. The owl monkeys always displayed a distinct bimodal activity pattern, with prominent activity bouts and peaks during dusk and dawn. Their activity rhythm showed distinct lunar and seasonal variations in the timing and daily pattern. During the summer, the monkeys showed predominantly crepuscular/nocturnal behavior, and a crepuscular/cathemeral activity pattern with similar diurnal and nocturnal activity levels during the cold winter months. The peak times of the evening and morning activity bouts were more closely related to the times of sunset and sunrise, respectively, than activity-onset and -offset. Obviously, they were better circadian markers for the phase position of the entrained activity rhythm than activity-onset and -offset, which were subject to more masking effects of environmental and/or internal factors. Total daily activity was lowest during the two coldest lunar months, and almost twice as high during the warmest months. Nighttime (21:00-06:00 h) and daytime (09:00-18:00 h) activity varied significantly across the year, but in an opposite manner. Highest

  19. Seasonal variations of snow depth on Mars.

    PubMed

    Smith, D E; Zuber, M T; Neumann, G A

    2001-12-07

    Using topography collected over one martian year from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor (MGS) spacecraft, we have measured temporal changes in the elevation of the martian surface that correlate with the seasonal cycle of carbon dioxide exchange between the surface and atmosphere. The greatest elevation change (1.5 to 2 meters) occurs at high latitudes ( above 80 degrees ), whereas the bulk of the mass exchange occurs at lower latitudes (below 75 degrees N and below 73 degrees S). An unexpected period of sublimation was observed during northern hemisphere autumn, coincident with dust storms in the southern hemisphere. Analysis of MGS Doppler tracking residuals revealed temporal variations in the flattening of Mars that correlate with elevation changes. The combined changes in gravity and elevation constrain the average density of seasonally deposited carbon dioxide to be 910 +/- 230 kilograms per cubic meter, which is considerably denser than terrestrial snow.

  20. Seasonal Variation in Emergency Department Visits Among Pediatric Headache Patients.

    PubMed

    Pakalnis, A; Heyer, G L

    2016-09-01

    To ascertain whether seasonal variation occurs in emergency department (ED) visits for headache among children and adolescents. A retrospective review was conducted using the electronic medical records of ED visits for headache at a tertiary children's hospital through calendar years 2010-2014. Using ICD-9 diagnostic codes for headache and migraine, the numbers of headache visits were determined and compared by season and during school months vs summer months. A total of 6572 headache visits occurred. Headache visits increased during the fall season (133 ± 27 visits per month) compared with other seasons (101 ± 19 visits per month), P ≤ .002, but did not differ when comparing school months (113 ± 25 visits per month) and summer months (100 ± 24 visits per month), P = .1. The corresponding increase in ED visits during the fall season coincides with the start of the school year. Academic stressors and the change in daily schedule may lead to more headaches and more ED headache visits among school-aged youth. © 2016 American Headache Society.

  1. Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM

    NASA Astrophysics Data System (ADS)

    Zhang, Yutong; Xu, Haiming; Qiao, Fangli; Dong, Changming

    2018-03-01

    The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIOESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simulation accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins.

  2. Distribution, seasonal variation & dengue transmission prediction in Sisaket, Thailand

    PubMed Central

    Wongkoon, S.; Jaroensutasinee, M.; Jaroensutasinee, K.

    2013-01-01

    Background & objectives: Environmental factors including weather variables may play a significant role in the transmission of dengue. This study investigated the effect of seasonal variation on the abundance of Aedes aegypti and Ae. albopictus larvae and explored the impact of weather variability on dengue transmission in Sisaket, Thailand. Methods: The monthly mosquito larval surveys were carried out in urban and rural areas in Sisaket, Thailand from January to December 2010. Data on monthly-reported cases of dengue fever over the period 2004-2010 were obtained from the Ministry of Public Health. Weather data over the same period were obtained from the Thai Meteorological Department. Chi-square test was used to find the differences relating to seasonal variability, areas of study, and mosquito species factors using entomological survey data. Time series Poisson regression analysis was performed using data on monthly weather variables and dengue cases. Results: There were more Ae. aegypti larvae per household than Ae. albopictus larvae in the winter and rainy seasons. More Aedes larvae per household were found in the rainy season than in the winter and summer seasons. Relative humidity at a lag of one month and rainy days in the current month were significant predictors of dengue incidence in Sisaket. Interpretation & conclusions: Increased rain during the current month and less humidity during the previous month might trigger a higher incidence of dengue epidemic in Sisaket. The present findings suggest that the dengue incidence corresponds with the number of Aedes larvae. The seasonal patterns of dengue outbreaks coincide with the rainy season. PMID:24135179

  3. [Diurnal and seasonal variations of surface atmospheric CO2 concentration in the river estuarine marsh].

    PubMed

    Zhang, Lin-Hai; Tong, Chuan; Zeng, Cong-Sheng

    2014-03-01

    Characteristics of diurnal and seasonal variations of surface atmospheric CO2 concentration were analyzed in the Minjiang River estuarine marsh from December 2011 to November 2012. The results revealed that both the diurnal and seasonal variation of surface atmospheric CO2 concentration showed single-peak patterns, with the valley in the daytime and the peak value at night for the diurnal variations, and the maxima in winter and minima in summer for the seasonal variation. Diurnal amplitude of CO2 concentration varied from 16.96 micromol x mol(-1) to 38.30 micromol x mol(-1). The seasonal averages of CO2 concentration in spring, summer, autumn and winter were (353.74 +/- 18.35), (327.28 +/- 8.58), (354.78 +/- 14.76) and (392.82 +/- 9.71) micromol x mol(-1), respectively, and the annual mean CO2 concentration was (357.16 +/- 26.89) micromol x mol(-1). The diurnal CO2 concentration of surface atmospheric was strongly negatively correlated with temperature, wind speed, photosynthetically active radiation and total solar radiation (P < 0.05). The diurnal concentration of CO2 was negatively related with tidal level in January, but significantly positively related in July.

  4. Incorporating Temperature-driven Seasonal Variation in Survival, Growth, and Reproduction Models for Small Fish

    EPA Science Inventory

    Seasonal variation in survival and reproduction can be a large source of prediction uncertainty in models used for conservation and management. A seasonally varying matrix population model is developed that incorporates temperature-driven differences in mortality and reproduction...

  5. Representing the Seasonal Variation of Marine Stratus and Stratocumulus near the Western Coast of Continents

    NASA Astrophysics Data System (ADS)

    He, Y.; Dickinson, R.

    2005-12-01

    The seasonal variation of marine stratus and stratocumulus (MSC) plays a significant role in ocean- atmosphere-land interaction during the seasonal transition of basic climate in the Eastern Pacific. A key factor in parameterization of MSC cloud cover is atmospheric stability. In this study, we examine the importance of lower troposphere stability for Marine Stratus and Stratocumulus (MSC) cloud cover variations over subtropical oceans on monthly and seasonal timescales. Our approach is to consider a two-layer conceptual model with moist denser boundary layer air topped by dry lighter free air beneath a trade wind inversion at around 700 mb.The vertical integrated dry static energy is of central importance in the lower troposphere. The variation of dry static energy transport and latent heat release leads to the variation of cloud top radiative forcing, which is a function of low cloud cover. A diagnostic cloud cover scheme derived from the model is a nonlinear function of lower troposphere stability and large-scale subsidence. Use ERA-40 and ISCCP-FD data as input, the scheme reproduces well the seasonal variation of low cloud cover in four MSC regions near the western coast of continents. NCAR CAM linear empirical cloud cover scheme could explain 16% of the observed ISCCP monthly covariance in the southeast subtropical Pacific during 1990 to 2000 period; while the new cloud cover scheme could explain 50% of the total covariance. When implementing new scheme into NCAR CAM3.1, it is found that the seasonal phase of MSC is better simulated near the Peruvian region, but the seasonal amplitudes of MSC cloud cover in four MSC regions using both schemes have systematic problems. Possible causes for model cloud biases are investigated through numerical experiments. The importance of MSC cloud cover in the eastern Pacific on local mean climate is also discussed.

  6. Seasonal Variation of Ozone in the Tropical Lower Stratosphere: Southern Tropics are Different from Northern Tropics

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Waugh, Darryn W.; Wang, Lei,; Oman, Luke D.; Douglass, Anne R.; Newman, Paul A.

    2014-01-01

    We examine the seasonal behavior of ozone by using measurements from various instruments including ozonesondes, Aura Microwave Limb Sounder, and Stratospheric Aerosol and Gas Experiment II. We find that the magnitude of the annual variation in ozone, as a percentage of the mean ozone, exhibits a maximum at or slightly above the tropical tropopause. The maximum is larger in the northern tropics than in the southern tropics, and the annual maximum of ozone in the southern tropics occurs 2 months later than that in the northern tropics, in contrast to usual assumption that the tropics can be treated as a horizontally homogeneous region. The seasonal cycles of ozone and other species in this part of the lower stratosphere result from a combination of the seasonal variation of the Brewer-Dobson circulation and the seasonal variation of tropical and midlatitude mixing. In the Northern Hemisphere, the impacts of upwelling and mixing between the tropics and midlatitudes on ozone are in phase and additive. In the Southern Hemisphere, they are not in phase. We apply a tropical leaky pipe model independently to each hemisphere to examine the relative roles of upwelling and mixing in the northern and southern tropical regions. Reasonable assumptions of the seasonal variation of upwelling and mixing yield a good description of the seasonal magnitude and phase in both the southern and northern tropics. The differences in the tracers and transport between the northern and southern tropical stratospheres suggest that the paradigm of well-mixed tropics needs to be revised to consider latitudinal variations within the tropics.

  7. Variations in the ceramide profile in different seasons and regions of the body contribute to stratum corneum functions.

    PubMed

    Ishikawa, Junko; Shimotoyodome, Yoshie; Ito, Shotaro; Miyauchi, Yuki; Fujimura, Tsutomu; Kitahara, Takashi; Hase, Tadashi

    2013-03-01

    The objective of this study was to clarify variations of the ceramide (CER) profile in human stratum corneum (SC) in different seasons and in different regions of the body and to estimate the contributions of CERs to the SC barrier and water-holding functions. Based on the information that there are great variations of SC functions among body sites, we compared the CER profiles obtained from ten different anatomical sites in healthy Japanese males in four seasons. Not only the physiological parameters of skin but also the CER profile showed body region and seasonal variations. The total CER level, the CER composition and the C34-CER[NS] species displayed strong correlations with the values of transepidermal water loss and capacitance throughout the body. Especially in the cheek, a strong correlation between the capacitance and the CER profile was observed. There were seasonal variations of the CER profile in the lip, upper arm and palm. Our results indicate that regional and seasonal variations of the CER profile may contribute to SC functions.

  8. The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations

    PubMed Central

    Yang, Qianqian; Li, Tongwen; Shen, Huanfeng; Zhang, Liangpei

    2017-01-01

    The interactions between PM2.5 and meteorological factors play a crucial role in air pollution analysis. However, previous studies that have researched the relationships between PM2.5 concentration and meteorological conditions have been mainly confined to a certain city or district, and the correlation over the whole of China remains unclear. Whether spatial and seasonal variations exist deserves further research. In this study, the relationships between PM2.5 concentration and meteorological factors were investigated in 68 major cities in China for a continuous period of 22 months from February 2013 to November 2014, at season, year, city, and regional scales, and the spatial and seasonal variations were analyzed. The meteorological factors were relative humidity (RH), temperature (TEM), wind speed (WS), and surface pressure (PS). We found that spatial and seasonal variations of their relationships with PM2.5 exist. Spatially, RH is positively correlated with PM2.5 concentration in north China and Urumqi, but the relationship turns to negative in other areas of China. WS is negatively correlated with PM2.5 everywhere except for Hainan Island. PS has a strong positive relationship with PM2.5 concentration in northeast China and mid-south China, and in other areas the correlation is weak. Seasonally, the positive correlation between PM2.5 concentration and RH is stronger in winter and spring. TEM has a negative relationship with PM2.5 in autumn and the opposite in winter. PS is more positively correlated with PM2.5 in autumn than in other seasons. Our study investigated the relationships between PM2.5 and meteorological factors in terms of spatial and seasonal variations, and the conclusions about the relationships between PM2.5 and meteorological factors are more comprehensive and precise than before. We suggest that the variations could be considered in PM2.5 concentration prediction and haze control to improve the prediction accuracy and policy efficiency. PMID

  9. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    NASA Astrophysics Data System (ADS)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  10. Seasonal variations in modern speleothem calcite growth in Central Texas, U.S.A

    USGS Publications Warehouse

    Banner, J.L.; Guilfoyle, A.; James, E.W.; Stern, L.A.; Musgrove, M.

    2007-01-01

    Variations in growth rates of speleothem calcite have been hypothesized to reflect changes in a range of paleoenvironmental variables, including atmospheric temperature and precipitation, drip-water composition, and the rate of soil CO2 delivery to the subsurface. To test these hypotheses, we quantified growth rates of modern speleothem calcite on artificial substrates and monitored concurrent environmental conditions in three caves across the Edwards Plateau in central Texas. Within each of two caves, different drip sites exhibit similar annual cycles in calcite growth rates, even though there are large differences between the mean growth rates at the sites. The growth-rate cycles inversely correlate to seasonal changes in regional air temperature outside the caves, with near-zero growth rates during the warmest summer months, and peak growth rates in fall through spring. Drip sites from caves 130 km apart exhibit similar temporal patterns in calcite growth rate, indicating a controlling mechanism on at least this distance. The seasonal variations in calcite growth rate can be accounted for by a primary control by regional temperature effects on ventilation of cave-air CO2 concentrations and/or drip-water CO2 contents. In contrast, site-to-site differences in the magnitude of calcite growth rates within an individual cave appear to be controlled principally by differences in drip rate. A secondary control by drip rate on the growth rate temporal variations is suggested by interannual variations. No calcite growth was observed in the third cave, which has relatively high values of and small seasonal changes in cave-air CO2. These results indicate that growth-rate variations in ancient speleothems may serve as a paleoenvironmental proxy with seasonal resolution. By applying this approach of monitoring the modern system, speleothem growth rate and geochemical proxies for paleoenviromnental change may be evaluated and calibrated. Copyright ?? 2007, SEPM (Society for

  11. Effects of seasonal and climate variations on calves' thermal comfort and behaviour.

    PubMed

    Tripon, Iulian; Cziszter, Ludovic Toma; Bura, Marian; Sossidou, Evangelia N

    2014-09-01

    The aim of this study was to measure the effect of season and climate variations on thermal comfort and behaviour of 6-month-old dairy calves housed in a semi-opened shelter to develop animal-based indicators for assessing animal thermal comfort. The ultimate purpose was to further exploit the use of those indicators to prevent thermal stress by providing appropriate care to the animals. Measurements were taken for winter and summer seasons. Results showed that season significantly influenced (P ≤ 0.01) the lying down behaviour of calves by reducing the time spent lying, from 679.9 min in winter to 554.1 min in summer. Moreover, season had a significant influence (P ≤ 0.01) on feeding behaviour. In detail, the total length of feeding periods was shorter in winter, 442.1 min in comparison to 543.5 min in summer. Time spent drinking increased significantly (P ≤ 0.001), from 11.9 min in winter to 26.9 min in summer. Furthermore, season had a significant influence (P ≤ 0.001) on self grooming behaviour which was 5.5 times longer in duration in winter than in summer (1,336 s vs 244 s). It was concluded that calves' thermal comfort is affected by seasonal and climate variations and that this can be assessed by measuring behaviour with animal-based indicators, such as lying down, resting, standing up, feeding, rumination, drinking and self grooming. The indicators developed may be a useful tool to prevent animal thermal stress by providing appropriate housing and handling to calves under seasonal and climate challenge.

  12. Distribution of artificial sweeteners in dust and soil in China and their seasonal variations in the environment of Tianjin.

    PubMed

    Gan, Zhiwei; Sun, Hongwen; Yao, Yiming; Zhao, Yangyang; Li, Yan; Zhang, Yanwei; Hu, Hongwei; Wang, Ruonan

    2014-08-01

    A nationwide investigation on the occurrence of artificial sweeteners (ASs) was conducted by collecting 98 paired outdoor dust and soil samples from mainland China. The ASs were widely detected in Chinese atmospheric dry deposition and soil samples, at concentrations up to 6450 and 1280 ng/g, respectively. To give a picture on AS distribution and source in the whole environment, the concentrations and seasonal variations of ASs in Tianjin were studied, including atmosphere, soil, and water samples. The AS levels were significantly higher in Haihe river at TJW (a sampling site in central city) in winter, while no obviously seasonal trends were obtained at BYL (close to a AS factory) and the site at a wastewater treatment plant. Saccharin, cyclamate, and acesulfame were the dominant ASs in both gas and particulate phase, with concentrations varying from 0.02 to 1940 pg/m(3). Generally, gas phase concentrations of the ASs were relatively higher in summer, while opposite results were acquired for particulate phase. Wet and dry deposition fluxes were calculated based on the measured AS levels. The results indicated that both wet and dry deposition could efficiently remove ASs in the atmosphere and act as important pollutant sources for the ASs in surface environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Regional and seasonal variations in facial sebum secretions: a proposal for the definition of combination skin type.

    PubMed

    Youn, Sang Woong; Na, Jung Im; Choi, Sun Young; Huh, Chang Hun; Park, Kyoung Chan

    2005-08-01

    Facial sebum secretions are known to change under various circumstances. Facial skin types have been categorized as oily, normal, dry, and combination types. However, these have been evaluated subjectively by individuals to date, and no objective accepted standard measurement method exists. The combination skin type is most common, but its definition is vaguer than the definitions of the other skin types. We measured facial sebum secretions with Sebumeter. Sebum secretions were measured at five sites of the face seasonally for a year, in the same volunteers. Using the data obtained we developed a set of rules to define the combination skin type. Regional differences in sebum secretion were confirmed. Sebum secretions on forehead, nose, and chin were higher than on both cheeks. Summer was found to be the highest sebum-secreting season, and seasonal variations were found in the T- and U-zones. A mismatch of skin type in the T- and U-zones in more than two seasons appears to be close to subjective ratings of what is described as the 'combination' skin type. We showed that the face shows definitive regional and seasonal variations in sebum secretion. To define the combination skin type, seasonal variations in sebum secretion should be considered in addition to regional variations.

  14. Seasonal Variation in Penicillin Use in Mexico and Brazil: Analysis of the Impact of Over-the-Counter Restrictions

    PubMed Central

    Santa-Ana-Tellez, Yared; Mantel-Teeuwisse, Aukje K.; Leufkens, Hubert G. M.

    2014-01-01

    During 2010, Mexico and Brazil implemented policies to enforce existing laws of restricting over-the-counter sales of antibiotics. We determined if the enforcement led to more appropriate antibiotic use by measuring changes in seasonal variation of penicillin use. We used retail quarterly sales data in defined daily doses per 1,000 inhabitant-days (DDD/TID) from IMS Health from the private sector in Mexico and Brazil from the first quarter of 2007 to the first quarter of 2013. This database contains information on volume of antibiotics sold in retail pharmacies using information from wholesalers. We used interrupted time-series models controlling for external factors with the use of antihypertensives with interaction terms to assess changes in trend, level, and variation in use between quarters for total penicillin use and by active substance. The most used penicillin was amoxicillin, followed by amoxicillin-clavulanic acid and ampicillin (minimal use in Brazil). Before the restrictions, the seasonal variation in penicillin use was 1.1 DDD/TID in Mexico and 0.8 DDD/TID in Brazil. In Mexico, we estimated a significant decrease in the seasonal variation of 0.4 DDD/TID after the restriction, mainly due to changes in seasonal variation of amoxicillin and ampicillin. In Brazil, the seasonal variation did not change significantly, overall and in the breakdown by individual active substances. For Mexico, inappropriate penicillin use may have diminished after the restrictions were enforced. For Brazil, increasing use and no change in seasonal variation suggest that further efforts are needed to reduce inappropriate penicillin use. PMID:25313222

  15. Aerosol Seasonal Variations over Urban-Industrial Regions in Ukraine According to AERONET and POLDER Measurements

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Danylevsky, V.; Bovchaliuk, V.; Bovchaliuk, A.; Goloub, Ph.; Dubovik, O.; Kabashnikov, V.; Chaikovsky, A.; Miatselskaya, N.; Mishchenko, M.; hide

    2014-01-01

    The paper presents an investigation of aerosol seasonal variations in several urban-industrial regions in Ukraine. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008-2013 data from two urban ground-based AERONET (AErosol RObotic NETwork) sites in Ukraine (Kyiv, Lugansk) as well as on satellite POLDER instrument data for urban-industrial areas in Ukraine. We also analyzed the data from one AERONET site in Belarus (Minsk) in order to compare with the Ukrainian sites. Aerosol amount and optical depth (AOD) values in the atmosphere columns over the large urbanized areas like Kyiv and Minsk have maximum values in the spring (April-May) and late summer (August), whereas minimum values are observed in late autumn. The results show that fine-mode particles are most frequently detected during the spring and late summer seasons. The analysis of the seasonal AOD variations over the urban-industrial areas in the eastern and central parts of Ukraine according to both ground-based and POLDER data exhibits the similar traits. The seasonal variation similarity in the regions denotes the resemblance in basic aerosol sources that are closely related to properties of aerosol particles. The behavior of basic aerosol parameters in the western part of Ukraine is different from eastern and central regions and shows an earlier appearance of the spring and summer AOD maxima. Spectral single-scattering albedo, complex refractive index and size distribution of aerosol particles in the atmosphere column over Kyiv have different behavior for warm (April-October) and cold seasons. The seasonal features of fine and coarse aerosol particle behavior over the Kyiv site were analyzed. A prevailing influence of the fine-mode particles on the optical properties of the aerosol layer over the region has been established. The back-trajectory and cluster analysis techniques were applied to study the seasonal back trajectories and prevailing

  16. Leptin mediates seasonal variation in some but not all symptoms of sickness in Siberian hamsters

    PubMed Central

    Carlton, Elizabeth D.; Demas, Gregory E.

    2014-01-01

    Many seasonally breeding species, including Siberian hamsters (Phodopus sungorus), exhibit seasonal variation in sickness responses. One hypothesis regarding the mechanism of this variation is that sickness intensity tracks an animal's energetic state, such that sickness is attenuated in the season that an animal has the lowest fat stores. Energetic state may be signaled via leptin, an adipose hormone that provides a signal of fat stores. Siberian hamsters respond to extended housing in short, winter-like days by reducing fat stores and leptin levels, relative to those housed in long, summer-like days. Sickness responses are also attenuated in short-day hamsters as compared to long-day hamsters. We hypothesized that leptin provides a physiological signal by which seasonally breeding animals modulate sickness responses, such that animals with higher leptin levels show increased sickness intensity. To test this, we provided short-day hamsters with a long-day-like leptin signal and assessed their responses to lipopolysaccharide (LPS), a sickness-inducing antigen. We compared these responses to short-day vehicle-, long-day vehicle-, and long-day leptin-treated hamsters. Unexpectedly, LPS induced a hypothermic response (rather than fever) in all groups. Short-day vehicle-treated hamsters exhibited the greatest LPS-induced hypothermia, and leptin treatment attenuated this response, making hypothermia more long-day-like. Contrary to our hypothesis, short-day leptin-treated hamsters showed the least pronounced LPS-induced anorexia among all groups. These results suggest that leptin may mediate some but not all aspects of seasonal sickness variation in this species. Future studies should be targeted at determining roles of other energetic hormones in regulating seasonal sickness response variation. PMID:25461974

  17. Seasonal variation in Internet searches for vitamin D.

    PubMed

    Moon, Rebecca J; Curtis, Elizabeth M; Davies, Justin H; Cooper, Cyrus; Harvey, Nicholas C

    2017-12-01

    Internet search rates for "vitamin D" were explored using Google Trends. Search rates increased from 2004 until 2010 and thereafter displayed a seasonal pattern peaking in late winter. This knowledge could help guide the timing of public health interventions aimed at managing vitamin D deficiency. The Internet is an important source of health information. Analysis of Internet search activity rates can provide information on disease epidemiology, health related behaviors and public interest. We explored Internet search rates for vitamin D to determine whether this reflects the increasing scientific interest in this topic. Google Trends is a publically available tool that provides data on Internet searches using Google. Search activity for the term "vitamin D" from 1st January 2004 until 31st October 2016 was obtained. Comparison was made to other bone and nutrition related terms. Worldwide, searches for "vitamin D" increased from 2004 until 2010 and thereafter a statistically significant (p < 0.001) seasonal pattern with a peak in February and nadir in August was observed. This seasonal pattern was evident for searches originating from both the USA (peak in February) and Australia (peak in August); p < 0.001 for both. Searches for the terms "osteoporosis", "rickets", "back pain" or "folic acid" did not display the increase observed for vitamin D or evidence of seasonal variation. Public interest in vitamin D, as assessed by Internet search activity, did increase from 2004 to 2010, likely reflecting the growing scientific interest, but now displays a seasonal pattern with peak interest during late winter. This information could be used to guide public health approaches to managing vitamin D deficiency.

  18. Seasonal variation in night blindness incidence among Union soldiers in the US Civil War.

    PubMed

    Lanska, Douglas J

    2014-09-09

    During the US Civil War, medical officers typically attributed night blindness among soldiers to malingering. A dietary basis was not generally suspected or appreciated. Incident cases of night blindness, scurvy, and diarrheal diseases, as well as mean troop strength among Union troops, were abstracted by month and race from tabulations of the US Surgeon General for the period from July 1861 through June 1866. Monthly incidence rates and annual incidence rates are presented as time series by race. Night blindness incidence was seasonal. Seasonal patterns of night blindness incidence were similar for white and black soldiers, although the peak incidence rates were approximately 2-3 times higher in black soldiers. The seasonal effect for white Union soldiers increased progressively to 1864. The seasonal pattern for night blindness roughly parallels that for scurvy and for diarrheal diseases. The peak season for night blindness incidence was summer, and the next highest season was spring. The mode of monthly incidence rates for diarrheal diseases slightly anticipated that for night blindness and scurvy. In addition, there was greater relative variation in monthly incidence for night blindness and scurvy than for diarrheal diseases. Nutritional night blindness occurred in a seasonal pattern among soldiers forced to subsist on nutritionally inadequate diets. The seasonal pattern is consistent with seasonal variations in the availability of foodstuffs with high vitamin A or provitamin A content, superimposed on marginal vitamin A reserves, and possibly exacerbated by co-occurring seasonal patterns of diarrheal disease. © 2014 American Academy of Neurology.

  19. Seasonal variation of mood and behaviour in a healthy middle-aged population in Japan.

    PubMed

    Okawa, M; Shirakawa, S; Uchiyama, M; Oguri, M; Kohsaka, M; Mishima, K; Sakamoto, K; Inoue, H; Kamei, K; Takahashi, K

    1996-10-01

    A population survey of seasonality in six representative cities in Japan was conducted using the Japanese version of the Seasonal Pattern Assessment Questionnaire (SPAQ). The questionnaires were given to 951 parents (male: female ratio 1:1 age range 34-59 years) of high-school students. Significant regional differences in seasonal variations of mood, length of sleep, and weight were observed; the proportion of individuals reporting high seasonality in the two northern cities was significantly higher than that in the other areas. These results provide evidence for a northern predominance in the prevalence of seasonal affective disorder in Japan.

  20. Seasonally asymmetric enhancement of northern vegetation productivity

    NASA Astrophysics Data System (ADS)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  1. Seasonal variation in child and old-age mortality in rural Ghana.

    PubMed

    Engelaer, Frouke M; van Bodegom, David; Mangione, Julia N A; Eriksson, Ulrika K; Westendorp, Rudi G J

    2014-03-01

    Mortality in tropical countries varies considerably from season to season. As many of these countries have seen mortality moving from child to old-age mortality, we have studied seasonal variation in child and old-age mortality in a rural area in Ghana that currently undergoes an epidemiologic transition. In an annual survey from 2002 through to 2011, we followed 29 642 individuals and obtained the cause and month of death from 1406 deceased individuals by making use of verbal autopsies. When comparing the seasons, we observed a trend for higher mortality during the wet season. When comparing separate months, we observed 34% more deaths than expected in September (95% CI 1.04-1.69; p = 0.024) at the end of the wet season and 43% more deaths in April (95% CI 1.13-1.80; p = 0.004) at the end of the dry season, while there were 42% less deaths than expected in December (95% CI 0.52-0.70; p = 0.003), shortly after the wet season. Cause-specific analysis indicated that the peak at the end of the wet season was due to excess mortality from infectious diseases in children and older people alike, whereas the peak in old-age mortality at the end of the dry season was due to non-infectious causes in older people only. Taken together, our data suggest that during the epidemiologic transition, mortality not only shifts from child to old-age and from infectious to non-infectious, but also from the wet to the dry season.

  2. Seasonal variations of NO and O3 at altitudes of 18.3 and 21.3 km

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.; Savage, H. F.; Whitten, R. C.

    1975-01-01

    Nitric oxide and ozone concentrations have been measured in situ from a high-altitude research aircraft. Data which show the variations of NO and O3 with the time of year are presented for altitudes of 18.3 and 21.3 km. The extreme values of the observed NO concentrations at 21.3 km are 1.2 billion per cu cm in summer and 0.2 billion per cu cm in winter. At 18.3 km the extreme values are 1.6 billion per cu cm in summer and 0.1 billion per cu cm in winter. The smoothed NO seasonal data show a variation of about a factor of 2.5 at 21.3 km and a factor of 4 at 18.3 km. The ozone data show the generally expected magnitude and seasonal variation. We have used a photochemical model employing the measured ozone concentrations, the mean solar zenith angle, and seasonal HNO3 data reported by others to predict the seasonal NO variation at 20 km. The result is a summer-to-winter NO ratio of 2.5 which is in fair agreement with the observed ratios.

  3. Comparative Transcriptome Analysis of Chinary, Assamica and Cambod tea (Camellia sinensis) Types during Development and Seasonal Variation using RNA-seq Technology

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Chawla, Vandna; Sharma, Eshita; Mahajan, Pallavi; Shankar, Ravi; Yadav, Sudesh Kumar

    2016-11-01

    Tea quality and yield is influenced by various factors including developmental tissue, seasonal variation and cultivar type. Here, the molecular basis of these factors was investigated in three tea cultivars namely, Him Sphurti (H), TV23 (T), and UPASI-9 (U) using RNA-seq. Seasonal variation in these cultivars was studied during active (A), mid-dormant (MD), dormant (D) and mid-active (MA) stages in two developmental tissues viz. young and old leaf. Development appears to affect gene expression more than the seasonal variation and cultivar types. Further, detailed transcript and metabolite profiling has identified genes such as F3‧H, F3‧5‧H, FLS, DFR, LAR, ANR and ANS of catechin biosynthesis, while MXMT, SAMS, TCS and XDH of caffeine biosynthesis/catabolism as key regulators during development and seasonal variation among three different tea cultivars. In addition, expression analysis of genes related to phytohormones such as ABA, GA, ethylene and auxin has suggested their role in developmental tissues during seasonal variation in tea cultivars. Moreover, differential expression of genes involved in histone and DNA modification further suggests role of epigenetic mechanism in coordinating global gene expression during developmental and seasonal variation in tea. Our findings provide insights into global transcriptional reprogramming associated with development and seasonal variation in tea.

  4. Comparative Transcriptome Analysis of Chinary, Assamica and Cambod tea (Camellia sinensis) Types during Development and Seasonal Variation using RNA-seq Technology.

    PubMed

    Kumar, Ajay; Chawla, Vandna; Sharma, Eshita; Mahajan, Pallavi; Shankar, Ravi; Yadav, Sudesh Kumar

    2016-11-17

    Tea quality and yield is influenced by various factors including developmental tissue, seasonal variation and cultivar type. Here, the molecular basis of these factors was investigated in three tea cultivars namely, Him Sphurti (H), TV23 (T), and UPASI-9 (U) using RNA-seq. Seasonal variation in these cultivars was studied during active (A), mid-dormant (MD), dormant (D) and mid-active (MA) stages in two developmental tissues viz. young and old leaf. Development appears to affect gene expression more than the seasonal variation and cultivar types. Further, detailed transcript and metabolite profiling has identified genes such as F3'H, F3'5'H, FLS, DFR, LAR, ANR and ANS of catechin biosynthesis, while MXMT, SAMS, TCS and XDH of caffeine biosynthesis/catabolism as key regulators during development and seasonal variation among three different tea cultivars. In addition, expression analysis of genes related to phytohormones such as ABA, GA, ethylene and auxin has suggested their role in developmental tissues during seasonal variation in tea cultivars. Moreover, differential expression of genes involved in histone and DNA modification further suggests role of epigenetic mechanism in coordinating global gene expression during developmental and seasonal variation in tea. Our findings provide insights into global transcriptional reprogramming associated with development and seasonal variation in tea.

  5. Seasonal variation in the international normalized ratio of neonates and its relationship with ambient temperature.

    PubMed

    Iijima, Shigeo; Sekii, Katsuyuki; Baba, Toru; Ueno, Daizo; Ohishi, Akira

    2016-07-19

    The morbidity and mortality rates due to cardiovascular events such as myocardial infarction are known to exhibit seasonal variations. Moreover, changes in the ambient temperature are reportedly associated with an increase in these events, which may potentially involve blood coagulation markers. Bleeding due to vitamin K deficiency in neonates, which is associated with high mortality and a high frequency of neurological sequelae, is more commonly observed during the summer season and in warm regions in Japan. To determine the presence of seasonal variation and the influence of ambient temperature on blood coagulation markers in healthy term neonates, we assessed the international normalized ratio (INR) values measured using CoaguChek XS. We studied 488 consecutive healthy term neonates who were born at a perinatal center between July 2012 and June 2013. The INR values were measured using CoaguChek XS in 4-day-old neonates who received nursing care in the newborn nursery throughout the duration of hospitalization. The seasonal variations in the INR values and environmental effects on the INR were assessed. The mean monthly INR values peaked in July (1.13 ± 0.08), whereas the lowest values were observed in January (1.05 ± 0.08). Higher levels of INR were observed during the summer season (June to August) than during the winter season (December to February). Simple linear regression analysis indicated the presence of weakly positive but significant correlations between INR and outdoor temperature (r = 0.25, p < 0.001), outdoor relative humidity (r = 0.19, p < 0.001), and room relative humidity (r = 0.24, p < 0.001), and the presence of a significant negative correlation between INR and room temperature (r = -0.13, p = 0.02). Furthermore, multiple linear regression analysis showed that only outdoor temperature significantly influenced the INR. A seasonal variation in the INR values was observed among neonates, possibly due to

  6. Seasonal variation in penicillin use in Mexico and Brazil: analysis of the impact of over-the-counter restrictions.

    PubMed

    Santa-Ana-Tellez, Yared; Mantel-Teeuwisse, Aukje K; Leufkens, Hubert G M; Wirtz, Veronika J

    2015-01-01

    During 2010, Mexico and Brazil implemented policies to enforce existing laws of restricting over-the-counter sales of antibiotics. We determined if the enforcement led to more appropriate antibiotic use by measuring changes in seasonal variation of penicillin use. We used retail quarterly sales data in defined daily doses per 1,000 inhabitant-days (DDD/TID) from IMS Health from the private sector in Mexico and Brazil from the first quarter of 2007 to the first quarter of 2013. This database contains information on volume of antibiotics sold in retail pharmacies using information from wholesalers. We used interrupted time-series models controlling for external factors with the use of antihypertensives with interaction terms to assess changes in trend, level, and variation in use between quarters for total penicillin use and by active substance. The most used penicillin was amoxicillin, followed by amoxicillin-clavulanic acid and ampicillin (minimal use in Brazil). Before the restrictions, the seasonal variation in penicillin use was 1.1 DDD/TID in Mexico and 0.8 DDD/TID in Brazil. In Mexico, we estimated a significant decrease in the seasonal variation of 0.4 DDD/TID after the restriction, mainly due to changes in seasonal variation of amoxicillin and ampicillin. In Brazil, the seasonal variation did not change significantly, overall and in the breakdown by individual active substances. For Mexico, inappropriate penicillin use may have diminished after the restrictions were enforced. For Brazil, increasing use and no change in seasonal variation suggest that further efforts are needed to reduce inappropriate penicillin use. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. [SEASONAL VARIATION OF MICROVOLT T-WAVE ALTERNANS IN PATIENTS WITH CARDIOVASCULAR DISEASE AND HEALTHY SUBJECTS].

    PubMed

    Halabi, Gh; Bulanova, N; Aleksandrova, S; Ivanov, G; Aleksandrova, M

    2018-05-01

    Objective - to access seasonal variation of microvolt T-wave alternans of ECG dispersion mapping in patients with cardiovascular disease and healthy subjects. ECG data of the three groups of healthy subjects have been compared: inhabitants of Beirut, Lebanon (n=51), inhabitants of Moscow, Russia (n=94) and ECG data of healthy subjects (n=44) from the testing ECG database of the PTB - The National Metrology Institute of Germany as well as a group of patients with cardiovascular disease (n=138), inhabitants of Beirut, Lebanon. Microvolt T-wave alternans of ECG dispersion mapping was evaluated in three points - Tbeginning, Tmaximum, Tend. In healthy subjects, the seasonal variation of ECG dispersion mapping microvolt T-wave alternans was nonexistent. Myocardial lesion is characterized by an increase in Tbeg, Tmax, Tend in relation to the healthy individuals. Tbeg values are minimal in winter and summer and increase in spring and autumn. Tend values were reversed - they were maximal in winter and summer, decreasing in spring-autumn period. Seasonal variation of Tmax - Tbeg, and Tmax -Tend was detected: Tmax - Tbeg increased in the winter-summer period and decreased in spring and autumn, Tmax-Tend - increased in the spring-autumn period in relation to the winter-summer period. In patients with cardiovascular disease, in contrast to the healthy, there is a seasonal variation in microvolt T-wave alternans of ECG dispersion mapping, with the maximum differences in the winter and spring seasons, which should be taken into account when applying the method in clinical practice.

  8. Seasonal Variation of Carbon Metabolism in the Cambial Zone of Eucalyptus grandis

    PubMed Central

    Budzinski, Ilara G. F.; Moon, David H.; Lindén, Pernilla; Moritz, Thomas; Labate, Carlos A.

    2016-01-01

    Eucalyptus species are the most widely hardwood planted in the world. It is one of the successful examples of commercial forestry plantation in Brazil and other tropical and subtropical countries. The tree is valued for its rapid growth, adaptability and wood quality. Wood formation is the result of cumulative annual activity of the vascular cambium. This cambial activity is generally related to the alternation of cold and warm, and/or dry and rainy seasons. Efforts have focused on analysis of cambial zone in response to seasonal variations in trees from temperate zones. However, little is known about the molecular changes triggered by seasonal variations in trees from tropical countries. In this work we attempted to establish a global view of seasonal alterations in the cambial zone of Eucalyptus grandis Hill ex Maiden, emphasizing changes occurring in the carbon metabolism. Using transcripts, proteomics and metabolomics we analyzed the tissues harvested in summer-wet and winter-dry seasons. Based on proteomics analysis, 70 proteins that changed in abundance were successfully identified. Transcripts for some of these proteins were analyzed and similar expression patterns were observed. We identified 19 metabolites differentially abundant. Our results suggest a differential reconfiguration of carbon partioning in E. grandis cambial zone. During summer, pyruvate is primarily metabolized via ethanolic fermentation, possibly to regenerate NAD+ for glycolytic ATP production and cellular maintenance. However, in winter there seems to be a metabolic change and we found that some sugars were highly abundant. Our results revealed a dynamic change in E. grandis cambial zone due to seasonality and highlight the importance of glycolysis and ethanolic fermentation for energy generation and maintenance in Eucalyptus, a fast growing tree. PMID:27446160

  9. Seasonal variation in food intake and the interaction effects of sex and age among adults in southern Brazil.

    PubMed

    Rossato, S L; Olinto, M T A; Henn, R L; Moreira, L B; Camey, S A; Anjos, L A; Wahrlich, V; Waissmann, W; Fuchs, F D; Fuchs, S C

    2015-09-01

    Because studies have evidenced variations in nutrient intake, further investigation of the interaction between demographic characteristics and the seasons is necessary. We aimed to test the differences in food intake throughout the seasons and the interaction between the seasons and sex and age. This study included 273 individuals. Food intake was evaluated with 24-hour dietary recalls, and the reported food items were sorted into food groups. We performed the test on the differences in intake of food groups throughout the seasons with repeated measures and on the interaction effect by using the Generalized Estimate Equation. Intake of fruits and natural fruit juices and sweetened beverages was lower, whereas that of grains and derivatives was higher in the winter. The intake of leafy vegetables and fish and seafood was lower in the autumn. The consumption of coffee and eggs was higher in the spring. Intake of chocolate powder and sugar, salt and lean poultry was higher in the winter. The variation in consumption of grains and derivatives, eggs, fatty poultry and processed meat over the seasons was more likely to be modified by sex. Age interacted with the seasons for leafy vegetables, beans and lentils, lean beef, lean poultry, low fat milk and light yogurt, vegetable oil and unsalted margarine, chocolate powder and sugar and processed meat. This study shows that food intake may change seasonally and that seasonal variation depends on sex and age, which might aggregate a specific co-variation component.

  10. Seasonal variations of the atmospheric temperature response in mesosphere and lower thermosphere on solar activity

    NASA Astrophysics Data System (ADS)

    Semenov, A. I.; Shefov, N. N.

    2003-04-01

    On the basis of the measurement data of temperature by rocket and ground-based spectrophotometric (nightglow emissions of hydroxyl,sodium and atomic oxygen of 557.7 nm) methods obtained during 21 and 22 cycles of solar activity, the distributions with height of mean monthly temperature of an atmosphere for region of altitudes Z from 60 to 100 km have been constructed. The periods of maxima and minima of solar activity (1980 and 1991, F10.7=198 and 208; 1976 and 1986, F10.7=73 and 75) were considered. On the basis of these distributions with height of the seasonal variations of dependence of temperature from solar activity S = deltaT(Z)/deltaF, K/100 sfu have been analyzed. It was revealed, that character of seasonal variations essentially changes with growth of height. Mean annual solar response S at heights lower than 70 km is negative, and at higher heights is positive. This solar response S in mesopause region reaches 3 (sigma=1). Such character of influence of solar activity on temperature of the upper atmosphere is caused by features of mean annual and seasonal variations of its distributions with height. The distributions with height of amplitudes and phases of three harmonics of seasonal variations S are presented. This work was supported by the Grant N 2274 of ISTC.

  11. Seasonal Variation in Fluoride Content in Groundwaters of Langtang Area, Northcentral Nigeria

    NASA Astrophysics Data System (ADS)

    Dibal, H. U.; Dajilak, W. N.; Lekmang, I. C.; Nimze, L. W.; Yenne, E. Y.

    2017-06-01

    Thirty groundwater samples were collected at the peak of the rainy season and analysed for fluoride and other cations and anions in drinking water sources of Langtang area. For comparative purposes, thirty seven groundwater samples were collected in the dry season. The aim of the study was to determine variation in fluoride content with respect to the seasons. Fluoride in water was determined by the Ion Selective Electrode (ISE) and the cations by the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The anion (sulphate) was determined by Multi - Ion Colorimeter, bicarbonate and chloride by titration method. In addition fluorine content in aquifer materials from a borehole section were determined by Fusion method. The two seasons show variation in content of fluoride in groundwater. Fluoride content in groundwater is higher in the dry season ranging from 0.13 - 10.3 mg/l compared to the 0.06 - 4.60 mg/l values in the rainy season. Content of fluorine (0.01 wt %) in the aquifer materials (sands) is low from depth of 0 to 7.95 m. However, fluorine content increases with depth, from 7.95 to 10.60 m with concentration of 0.04 wt %, 0.05 wt % from 10.60 to 13.25m, and 0.07 wt % from 13.25 to 15.70 m, the content of fluorine however, decreased at depth 15.70 to18.55m with concentration of 0.02 wt % even with fluorite mineral in the aquifer material at this depth. Dilution of fluoride ion as a result of rain input which recharges the aquifer may be the main reason for lower values recorded in the rainy season. Over fifty and sixty percent of waters in both dry and rainy season have fluoride concentration above the WHO upper limit of 1.5 mg/l. Consumption of these elevated values of fluoride in groundwater of the study area, clearly manifests as symptoms of dental fluorosis.

  12. Seasonal Variations in Color Preference.

    PubMed

    Schloss, Karen B; Nelson, Rolf; Parker, Laura; Heck, Isobel A; Palmer, Stephen E

    2017-08-01

    We investigated how color preferences vary according to season and whether those changes could be explained by the ecological valence theory (EVT). To do so, we assessed the same participants' preferences for the same colors during fall, winter, spring, and summer in the northeastern United States, where there are large seasonal changes in environmental colors. Seasonal differences were most pronounced between fall and the other three seasons. Participants liked fall-associated dark-warm colors-for example, dark-red, dark-orange (brown), dark-yellow (olive), and dark-chartreuse-more during fall than other seasons. The EVT could explain these changes with a modified version of Palmer and Schloss' (2010) weighted affective valence estimate (WAVE) procedure that added an activation term to the WAVE equation. The results indicate that color preferences change according to season, as color-associated objects become more/less activated in the observer. These seasonal changes in color preferences could not be characterized by overall shifts in weights along cone-contrast axes. Copyright © 2016 Cognitive Science Society, Inc.

  13. Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database.

    PubMed

    Pan, Xubin; Jones, Kim D

    2012-01-01

    Bacteria are one of the major causes of surface water impairments in the USA. Over the past several years, best management practices, including detention basins, manufactured devices, grass swales, filters and bioretention cells have been used to remove bacteria and other pollutants from stormwater runoff. However, there are data gaps in the comprehensive studies of bacteria concentrations in stormwater runoff. In this paper, the event mean concentration (EMC) of fecal indicator bacteria (Enterococcus, Escherichia coli, fecal Streptococcus group bacteria, and fecal coliform) across the USA was retrieved from the international stormwater best management practices database to analyze the seasonal variations of inflow and outflow event mean concentrations and removal efficiencies. The Kruskal-Wallis test was employed to determine the seasonal variations of bacteria indicator concentrations and removals, and the two-sample Kolmogorov-Smirnov test was used for comparing different seasonal outcomes. The results indicate that all the inflow EMC of FIB in stormwater runoff is above the water quality criteria. The seasonal differences of fecal Streptococcus group bacteria and fecal coliform are significant. Summer has the potential to increase the bacteria EMC and illustrate the seasonal differences.

  14. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations showawinter (November–February) high (413.2 ng m $-$3) and spring (March–June) low(139.1 ng m $-$3) at Ranwu, but in contrast awinter lowand spring high at Beiluhe (204.8 and 621.6 ng m $-$3, respectively). By examining the meteorological conditions at various scales, we found that themonthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation atmore » both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. Thewinter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwusampling site showed a significant diurnal cyclewith a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct.« less

  15. Seasonal variation in internet keyword searches: a proxy assessment of sex mating behaviors.

    PubMed

    Markey, Patrick M; Markey, Charlotte N

    2013-05-01

    The current study investigated seasonal variation in internet searches regarding sex and mating behaviors. Harmonic analyses were used to examine the seasonal trends of Google keyword searches during the past 5 years for topics related to pornography, prostitution, and mate-seeking. Results indicated a consistent 6-month harmonic cycle with the peaks of keyword searches related to sex and mating behaviors occurring most frequently during winter and early summer. Such results compliment past research that has found similar seasonal trends of births, sexually transmitted infections, condom sales, and abortions.

  16. Seasonal Variation in Bright Daylight Exposure, Mood and Behavior among a Group of Office Workers in Sweden

    PubMed Central

    Laike, Thorbjörn; Morita, Takeshi

    2018-01-01

    The purpose of the study was to investigate seasonal variation in mood and behavior among a group of office workers in Sweden (56°N). Thirty subjects participated in this longitudinal study. The subjects kept a weekly log that included questionnaires for ratings of psychological wellbeing and daily sleep-activity diaries where they also noted time spent outdoors. The lighting conditions in the offices were subjectively evaluated during one day, five times over the year. There was a seasonal variation in positive affect and in sleep-activity behavior. Across the year, there was a large variation in the total time spent outdoors in daylight. The subjects reported seasonal variation concerning the pleasantness, variation and strength of the light in the offices and regarding the visibility in the rooms. Finally, the subjects spent most of their time indoors, relying on artificial lighting, which demonstrates the importance of the lighting quality in indoor environments.

  17. Seasonal variation of selenium in outdoor experimental stream-wetland systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, K.N.

    Two outdoor experimental stream-wetland systems were exposed continuously to 10 {mu}g/L Se(IV) over a 2-yr period. A seasonal variation in the water column Se concentrations was found in wetlands; a comparable variation was not observed in the stream segment. Water column Se was never reduced by more than 20% in the streams, but was reduced by greater than 90% in midsummer in the wetlands. Accumulation of Se in plants was much higher in the wetlands than in the streams, particularly in duckweed (Lemma minor). The deposition of Se in sediments was extremely variable within the wetlands.

  18. The seasonal cycle revisited: interannual variation and ecosystem consequences

    NASA Astrophysics Data System (ADS)

    Bertram, Douglas F.; Mackas, David L.; McKinnell, Stewart M.

    The annual seasonal cycle accounts for much of the total temporal variability of mid- and high-latitude marine ecosystems. Although the general pattern of the seasons repeats each year, climatic variability of the atmosphere and the ocean produce detectable changes in intensity and onset timing. We use a combination of time series data from oceanographic, zooplankton and seabird breeding data to ask if and how these variations in the timing of the spring growing season affect marine populations. For the physical environment, we develop an annual index of spring timing by fitting a non-linear 2-parameter periodic function to the average weekly SST data observed in British Columbia from 1 January to the end of August each year. For each year, the phase parameter describes the timing of seasonal warming (the timing index) and the amplitude parameter describes the magnitude of the temperature increase between the fitted winter minimum and summer maximum. For the zooplankton, which have annual and strongly synchronous cycles of biomass, productivity, and developmental sequence, we use copepodite stage composition to index the timing of the annual maximum. For seabirds, we examine (1975-1999) the timing of hatching, nestling growth performance, and diet for four species of alcids at Triangle Island, British Columbia's largest seabird colony and the world's largest population of the planktivorous Cassin's auklet. Temperature, zooplankton, and seabirds have all shown recent decadal trends toward ‘earlier spring’, but the magnitudes of the timing perturbations have differed from variable to variable and from year to year. Recent (1996-1999) extreme interannual variation in spring timing and April SST helped to facilitate a mechanistic investigation of oceanographic features that affect the reproductive performance of seabirds. Our results demonstrate a significant negative relationship between the annual spring timing index (and April mean SST) and nestling growth rates

  19. Atmospheric radioactivity of Cs-134/137 observed at Namie, Fukushima: seasonal variation and contribution of biological re-suspension.

    NASA Astrophysics Data System (ADS)

    Kita, K.

    2015-12-01

    Radionuclides emitted by the accident in Fukushima dai-ichi nuclear power plant (FNDPP) have been deposited on the soil, ocean and vegetation. Even after about 4 years since the FNDPP accident significant activities of the radionuclides have been observed over severely contaminated areas. Re-suspension of radioactive cesium from the soil and vegetation to the atmosphere has been one of significant paths for its diffusion after the accident. Although the quantitative understanding of the re-suspensions is important for the prediction of future transition of radionuclides, its mechanism, identification of aerosol species which bring radioactive cesium, and the resuspension flux have not been understood in Fukushima.  We are continuously measuring atmospheric concentration of Cs-134/137 radioactivity at Tsushima, Namie-town, located about 30km northwest from FNDPP with high-volume air samplers. It showed clear seasonal variation: it increase from April to June, and decreased from September to December. In winter and spring, it was weakly but positively correlated with the surface wind speed. On the contrary, it did not depend on the wind speed in summer and autumn. It also has different diurnal variation: higher activities were observed in daytime in winter/spring, while the activities were obviously higher in nighttime in summer/autumn. The size distribution of aerosols contributing to the Cs-134/137 re-suspension has been measured using cascade impactors attached with high-volume air samplers, and it also shows different features in winter/spring and summer/autumn. These results indicate that the mechanism of the Cs-134/137 re-suspension is different with the season in Fukushima. Scanning electron microscope observation showed that most of suspended coarse particles were soil particles in spring and biogenic particles in autumn. Details on the Cs-134/137 re-suspension mechanisms revealed by our observations and contribution of biogenic emission will be presented

  20. Seasonal variations in VOC emission rates from gorse (Ulex europaeus)

    NASA Astrophysics Data System (ADS)

    Boissard, C.; Cao, X.-L.; Juan, C.-Y.; Hewitt, C. N.; Gallagher, M.

    Seasonal variations of biogenic volatile organic compound (VOC) emission rates and standardised emission factors from gorse (Ulex europaeus) have been measured at two sites in the United Kingdom, from October 1994 to September 1995, within temperature and PAR conditions ranging from 3 to 34°C and 10-1300 μmol m-2 s-1, respectively. Isoprene was the dominant emitted compound with a relative composition fluctuating from 7% of the total VOC (winter) to 97% (late summer). The monoterpenes α-pinene, camphene, sabinene, β-pinene, myrcene, limonene, trans-ocimene and γ-terpinene were also emitted, with α-pinene being the dominant monoterpene during most the year. Trans-ocimene represented 33-66% of the total monoterpene during the hottest months from June to September. VOC emissions were found to be accurately predicted using existing algorithms. Standard (normalised) emission factors of VOCs from gorse were calculated using experimental parameters measured during the experiment and found to fluctuate with season, from 13.3±2.1 to 0.1±0.1 μg C (g dwt)-1 h-1 in August 1995 and January 1995, respectively, for isoprene, and from 2.5±0.2 to 0.4±0.2 μg C (g dwt)-1 h-1 in July and November 1995, respectively, for total monoterpenes. No simple clear relation was found to allow prediction of these seasonal variations with respect to temperature and light intensity. The effects of using inappropriate algorithms to derive VOC fluxes from gorse were assessed for isoprene and monoterpenes. Although on an annual basis the discrepancies are not significant, monthly estimation of isoprene were found to be overestimated by more than a factor of 50 during wintertime when the seasonality of emission factors is not considered.

  1. Seasonal variation and solar activity dependence of the quiet-time ionospheric trough

    NASA Astrophysics Data System (ADS)

    Ishida, T.; Ogawa, Y.; Kadokura, A.; Hiraki, Y.; Häggström, I.

    2014-08-01

    We have conducted a statistical analysis of the ionospheric F region trough, focusing on its seasonal variation and solar activity dependence under geomagnetically quiet and moderate conditions, using plasma parameter data obtained via Common Program 3 observations performed by the European Incoherent Scatter (EISCAT) radar between 1982 and 2011. We have confirmed that there is a major difference in frictional heating between the high- and low-latitude sides of the EISCAT field of view (FOV) at ~73°0'N-60°5'N (geomagnetic latitude) at an altitude of 325 km, which is associated with trough formation. Our statistical results show that the high-latitude and midlatitude troughs occur on the high- and low-latitude sides of the FOV, respectively. Seasonal variations indicate that dissociative recombination accompanied by frictional heating is a main cause of trough formation in sunlit regions. During summer, therefore, the occurrence rate is maintained at 80-90% in the postmidnight high-latitude region owing to frictional heating by eastward return flow. Solar activity dependence on trough formation indicates that field-aligned currents modulate the occurrence rate of the trough during the winter and equinox seasons. In addition, the trough becomes deeper via dissociative recombination caused by an increased ion temperature with F10.7, at least in the equinox and summer seasons but not in winter.

  2. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  3. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul F.; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  4. Hybrid model for forecasting time series with trend, seasonal and salendar variation patterns

    NASA Astrophysics Data System (ADS)

    Suhartono; Rahayu, S. P.; Prastyo, D. D.; Wijayanti, D. G. P.; Juliyanto

    2017-09-01

    Most of the monthly time series data in economics and business in Indonesia and other Moslem countries not only contain trend and seasonal, but also affected by two types of calendar variation effects, i.e. the effect of the number of working days or trading and holiday effects. The purpose of this research is to develop a hybrid model or a combination of several forecasting models to predict time series that contain trend, seasonal and calendar variation patterns. This hybrid model is a combination of classical models (namely time series regression and ARIMA model) and/or modern methods (artificial intelligence method, i.e. Artificial Neural Networks). A simulation study was used to show that the proposed procedure for building the hybrid model could work well for forecasting time series with trend, seasonal and calendar variation patterns. Furthermore, the proposed hybrid model is applied for forecasting real data, i.e. monthly data about inflow and outflow of currency at Bank Indonesia. The results show that the hybrid model tend to provide more accurate forecasts than individual forecasting models. Moreover, this result is also in line with the third results of the M3 competition, i.e. the hybrid model on average provides a more accurate forecast than the individual model.

  5. Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil.

    PubMed

    Jaikaew, Piyanuch; Boulange, Julien; Thuyet, Dang Quoc; Malhat, Farag; Ishihara, Satoru; Watanabe, Hirozumi

    2015-12-01

    To estimate the potential effect of seasonal variation on the fate of herbicides in andisol soil, atrazine and metolachlor residues were investigated through the summer and winter seasons during 2013 and 2014 under field condition. The computed half-lives of atrazine and metolachlor in soil changed significantly through the two seasons of the trial. The half-lives were shorter in summer season with 16.0 and 23.5 days for atrazine and metolachlor, respectively. In contrast, the half-lives were longer during the winter season with 32.7 and 51.8 days for atrazine and metolachlor, respectively. The analysis of soil water balance suggested that more pesticide was lost in deeper soil layers through infiltration in summer than in winter. In addition, during the summer season, metolachlor was more likely to leach into deeper soil layer than atrazine possibly due to high water solubility of metolachlor.

  6. Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda

    1993-01-01

    The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.

  7. Seasonal variations in red deer (Cervus elaphus) hematology related to antler growth and biometrics measurements.

    PubMed

    Gaspar-López, Enrique; Landete-Castillejos, Tomás; Estevez, Jose Antonio; Ceacero, Francisco; Gallego, Laureano; García, Andrés Jose

    2011-04-01

    The aim of the study was to relate seasonal hematology changes with the rest of physiological variations suffered by red deer, such as antler and biometrics cycle, and to assess the relationship between hematology and the effort performed in antler development. Blood samples were taken from 21 male red deer every 4 weeks during 18 months. Samples were analyzed for the main hematological parameters. Simultaneously, biometrics measurements were taken, such as antler length, body weight, body condition score, testicular diameter (TD), and thoracic and neck girth. All the blood cell types (erythrocytes, leukocytes, and platelets) showed seasonal variations, increasing as antler cleaning approached, as did hematocrit and hemoglobin. The final size of antlers was negatively related to leukocyte count, nonlymphoid leukocyte count, red cell distribution width, mean corpuscular hemoglobin, mean platelet volume, and TD, whereas it was positively related to body condition during antler growth. Huge seasonal variations in some hematological values have been found to be related to changes in antler and biometrics measurements. Since these variations are even greater than the caused by deer handling, they should be taken into account when evaluating hematology in deer populations. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  8. Seasonal and Daily Variation in Physical Activity among Three-Year-Old Finnish Preschool Children

    ERIC Educational Resources Information Center

    Soini, Anne; Tammelin, Tuija; Sääkslahti, Arja; Watt, Anthony; Villberg, Jari; Kettunen, Tarja; Mehtälä, Anette; Poskiparta, Marita

    2014-01-01

    The purposes of this study were to assess seasonal, daily, and gender variations in children's physical activity (PA). ActiGraph GT3X accelerometers were used to record the three-year-old children's PA levels for five consecutive days in autumn and winter. Complete data for both seasons were obtained for 47 children. Despite a significant…

  9. Physiological implications of seasonal variation in membrane-associated calcium in red spruce mesophyll cells

    Treesearch

    D.H. DeHayes; P.G. Schaberg; G.J. Hawley; C.H. Borer; J.R. Cumming; J.R. Strimbeck

    1997-01-01

    We examined the pattern of seasonal variation in total foliar calcium (Ca) pools and plasma membrane-associated Ca (mCa) in mesophyll cells of current-year and 1-year-old needles of red spruce (Picea rubens Sarg.) and the relationship between mCa and total foliar Ca on an individual plant and seasonal basis. Foliar samples were collected from...

  10. What Controls Seasonal Variation of Phytoplankton Growth in the East China Sea?

    NASA Astrophysics Data System (ADS)

    Liu, K.; Chao, S.; Lee, H.; Gong, G.; Teng, Y.

    2009-05-01

    The seasonal variation of phytoplankton growth in the East China Sea (ECS) is simulated with a three- dimensional coupled physical-biogeochemical model, which includes discharges from Changjiang (aka the Yangtze River). The purpose is to determine the main control on the seasonality of primary productivity in the ECS shelf, which nurtures rich biological resources. The model has a horizontal resolution of 1/6 degree in the domain from 23N to 41N and from 116E to 134E, excluding the Japan/East Sea, and 33 layers in the vertical. The nitrogen-based biogeochemical model has four compartments: dissolved inorganic nitrogen (DIN), phytoplankton, zooplankton and detritus. The chlorophyll to phytoplankton ratio depends on light and DIN availability. The model is driven by monthly climatological winds with the sea surface temperature, salinity and DIN relaxed towards the climatological mean values. It successfully reproduces the observed seasonal variation of phytoplankton growth over the ECS shelf with a strong peak in later spring and summer. The modeled annual mean primary production over the entire ECS shelf is 439 mg C m-2 d-1, which falls within the reported range of 390-529 mg C m-2 d-1. It also reproduces the marked gradient of DIN across the shelf decreasing away from the Changjiang River plume. An alternative model run, Free-N, which deviates from the standard run by essentially removing nudging on DIN, generates the same seasonal pattern of primary productivity but somewhat reduced productivity. In yet another alternative run, Fix-PAR, which deviates from Free-N by removing the seasonal cycle of photosynthetically active radiation, the seasonality of primary productivity almost vanishes. These model results demonstrate that light availability is the major control on the seasonality of primary productivity. However, nutrient supply from vertical nutrient pumping and from Changjiang discharges is still important. It is the insufficient nutrient pumping that leads

  11. Prediction of seasonal climate-induced variations in global food production

    NASA Astrophysics Data System (ADS)

    Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki; Luo, Jing-Jia; Challinor, Andrew J.; Brown, Molly E.; Sakurai, Gen; Yamagata, Toshio

    2013-10-01

    Consumers, including the poor in many countries, are increasingly dependent on food imports and are thus exposed to variations in yields, production and export prices in the major food-producing regions of the world. National governments and commercial entities are therefore paying increased attention to the cropping forecasts of important food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We found that moderate-to-marked yield loss over a substantial percentage (26-33%) of the harvested area of these crops is reliably predictable if climatic forecasts are near perfect. However, only rice and wheat production are reliably predictable at three months before the harvest using within-season hindcasts. The reliabilities of estimates varied substantially by crop--rice and wheat yields were the most predictable, followed by soybean and maize. The reasons for variation in the reliability of the estimates included the differences in crop sensitivity to the climate and the technology used by the crop-producing regions. Our findings reveal that the use of seasonal climatic forecasts to predict crop failures will be useful for monitoring global food production and will encourage the adaptation of food systems toclimatic extremes.

  12. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China.

    PubMed

    Hao, Chunbo; Wei, Pengfei; Pei, Lixin; Du, Zerui; Zhang, Yi; Lu, Yanchun; Dong, Hailiang

    2017-04-01

    Acid mine drainage (AMD),characterized by strong acidity and high metal concentrations, generates from the oxidative dissolution of metal sulfides, and acidophiles can accelerate the process significantly. Despite extensive research in microbial diversity and community composition, little is known about seasonal variations of microbial community structure (especially micro eukaryotes) in response to environmental conditions in AMD ecosystem. To this end, AMD samples were collected from Nanshan AMD lake, Anhui Province, China, over a full seasonal cycle from 2013 to 2014, and water chemistry and microbial composition were studied. pH of lake water was stable (∼3.0) across the sampling period, while the concentrations of ions varied dramatically. The highest metal concentrations in the lake were found for Mg and Al, not commonly found Fe. Unexpectedly, ultrahigh concentration of chlorophyll a was measured in the extremely acidic lake, reaching 226.43-280.95 μg/L in winter, even higher than those in most eutrophic freshwater lakes. Both prokaryotic and eukaryotic communities showed a strong seasonal variation. Among the prokaryotes, "Ferrovum", a chemolithotrophic iron-oxidizing bacterium was predominant in most sampling seasons, although it was a minor member prior to September, 2012. Fe 2+ was the initial geochemical factor that drove the variation of the prokaryotic community. The eukaryotic community was simple but varied more drastically than the prokaryotic community. Photoautotrophic algae (primary producers) formed a food web with protozoa or flagellate (top consumers) across all four seasons, and temperature appeared to be responsible for the observed seasonal variation. Ochromonas and Chlamydomonas (responsible for high algal bloom in winter) occurred in autumn/summer and winter/spring seasons, respectively, because of their distinct growth temperatures. The closest phylogenetic relationship between Chlamydomonas species in the lake and those in Arctic

  13. [Seasonal variation patterns of NH4(+) -N/NO3(-) -N ratio and delta 15 NH4(+) value in rainwater in Yangtze River Delta].

    PubMed

    Xie, Ying-Xin; Zhang, Shu-Li; Zhao, Xu; Xiong, Zheng-Qin; Xing, Guang-Xi

    2008-09-01

    By using a customized manual rainwater sampler made of polyvinyl chloride plastic, the molar ratio of NH4(+) -N/NO3(-) -N and the natural 15N abundance of NH4(+) (delta 15 NH4(+) in rainwater was monitored all year round from June 2003 to July 2005 at three observation sites (Changshu, Nanjing, and Hangzhou) in the Yangtze River Delta. The results indicated that at the three sites, the NH4(+) -N/NO3(-) -N ratio and the delta 15 NH4(+) value in rainwater had the similar seasonal variation trend, being more obvious in Changshu (rural monitoring type) site than in Nanjing (urban monitoring type) and Hangzhou (urban-rural monitoring type) sites. The NH4(+) -N/NO3(-) -N ratio peaked from early June to early August, declined gradually afterwards, and reached the bottom in winter; while the delta 15 NH4(+) value was negative from late June to mid-August, turned positive from late August to mid or late November, became negative again when winter dominated from December to March, but turned positive again in next May and negative again in next July. These seasonal variation patterns of NH4(+) -N/NO3(-) -N ratio and delta 15 NH4(+) value were found in relation to the application of chemical nitrogen fertilizers during different crop growth periods, and also, the alternation of seasons and the NH3 volatilization from other NH3 emission sources (including excrements of human and animals, nitrogen- polluted water bodies, and organic nitrogen sources, etc.), which could be taken as an indicator of defining the sources and form composition of NH4(+) in atmospheric wet deposition and the intensity of various terrestrial NH3 emission sources.

  14. Poisson regression models outperform the geometrical model in estimating the peak-to-trough ratio of seasonal variation: a simulation study.

    PubMed

    Christensen, A L; Lundbye-Christensen, S; Dethlefsen, C

    2011-12-01

    Several statistical methods of assessing seasonal variation are available. Brookhart and Rothman [3] proposed a second-order moment-based estimator based on the geometrical model derived by Edwards [1], and reported that this estimator is superior in estimating the peak-to-trough ratio of seasonal variation compared with Edwards' estimator with respect to bias and mean squared error. Alternatively, seasonal variation may be modelled using a Poisson regression model, which provides flexibility in modelling the pattern of seasonal variation and adjustments for covariates. Based on a Monte Carlo simulation study three estimators, one based on the geometrical model, and two based on log-linear Poisson regression models, were evaluated in regards to bias and standard deviation (SD). We evaluated the estimators on data simulated according to schemes varying in seasonal variation and presence of a secular trend. All methods and analyses in this paper are available in the R package Peak2Trough[13]. Applying a Poisson regression model resulted in lower absolute bias and SD for data simulated according to the corresponding model assumptions. Poisson regression models had lower bias and SD for data simulated to deviate from the corresponding model assumptions than the geometrical model. This simulation study encourages the use of Poisson regression models in estimating the peak-to-trough ratio of seasonal variation as opposed to the geometrical model. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Seasonal variation of air kerma in the "Vulcano Porto" area (Aeolian Islands, Italy).

    PubMed

    Bellia, S; Basile, S; Brai, M; Hauser, S; Puccio, P; Rizzo, S

    2001-04-01

    Air kerma was measured in the "Vulcano Porto" area of the Vulcano Island, belonging to the Aeolian Islands, in the Mediterranean Sea. Measurements were carried out using thermoluminescence dosimeters. The relationship between observed dose values and source lithology has been assessed. Data show a seasonal variation due to weather conditions but also probably related to features of the soils, making the variation more evident.

  16. Seasonal and spatial variation of the bacterial mutagenicity of fine organic aerosol in southern california.

    PubMed Central

    Hannigan, M P; Cass, G R; Lafleur, A L; Busby, W F; Thilly, W G

    1996-01-01

    The bacterial mutagenicity of a set of 1993 urban particulate air pollution samples is examined using the Salmonella typhimurium TM677 forward mutation assay. Amibent fine particulate samples were collected for 24 hr every sixth day throughout 1993 at four urban sites, including Long Beach, central Los Angeles, Azusa, and Rubidoux, California, and at an upwind background site on San Nicolas Island. Long Beach and central Los Angeles are congested urban areas where air quality is dominated by fresh emissions from air pollution sources; Azuasa and Rubidoux are located farther downwind and receive transported air pollutants plus increased quantities of the products of atmospheric chemical reactions. Fine aerosol samples from Long Beach and Los Angeles show a pronounced seasonal variation in bacterial mutagenicity per cubic meter of- ambient air, with maximum in the winter and a minimum in the summer. The down-wind smog receptor site at Rubidoux shows peak mutagenicity (with postmitochondrial supernatant but no peak without postmitochondrial supernatant) during the September-October periods when direct transport from upwind sources can be expected. At most sites the mutagenicity per microgram of organic carbon from the aerosol is not obviously higher during the summer photochemical smog period than during the colder months. Significant spatial variation in bacterial mutagenicity is observed: mutagenicity per cubic meter of ambient air, on average, is more than an order of magnitude lower at San Nicolas Island than within the urban area. The highest mutagenicity values per microgram of organics supplied to the assay are found at the most congested urban sites at central Los Angeles and Long Beach. The highest annual average values of mutagenicity per cubic meter of air sampled occur at central Los Angeles. These findings stress the importance of proximity to sources of direct emissions of bacterial mutagens and imply that if important mutagen-forming atmospheric

  17. Variations of streambed vertical hydraulic conductivity before and after a flood season

    NASA Astrophysics Data System (ADS)

    Wu, Guangdong; Shu, Longcang; Lu, Chengpeng; Chen, Xunhong; Zhang, Xiao; Appiah-Adjei, Emmanuel K.; Zhu, Jingsi

    2015-11-01

    The change of vertical hydraulic conductivity ( K v) before and after a flood season is crucial in understanding the long-term temporal variation of streambed permeability. Therefore, in this study, a detailed K v field investigation was conducted at an in-channel site within the Dawen River, China, before and after a flood season. In-situ falling-head permeameter tests were performed for the determination of K v. The tests were conducted using a 10 × 10 grid, at five different depths. In total, 871 valid K v values from layers 1-5 were obtained. The Kruskal-Wallis test on these K v values before and after the flood season shows they belonged to different populations. The sediments before the flood season primarily consisted of sand and gravel, whereas after the flood season, patchy distribution of silt/clay occurred in the sandy streambed and silt/clay content increased with the increasing depth; under the losing condition during flooding, downward movement of water brought fine particles into the coarse sediments, partially silting the pores. Accordingly, the K v values after the flood season had a smaller mean and median, and a higher level of heterogeneity, compared to those before the flood season. Additionally, the distribution pattern in K v across the stream differed before and after flood season; after the flood season, there was an increasing trend in K v from the south bank to the north bank. Overall, the contrasts of K v before and after the flood season were predominantly subject to the infiltration of fine particles.

  18. Seasonal variation of pteropods from the Western Arabian Sea sediment trap

    NASA Astrophysics Data System (ADS)

    Mohan, R.; Verma, K.; Mergulhao, L. P.; Sinha, D. K.; Shanvas, S.; Guptha, M. V. S.

    2006-11-01

    Sediment trap samples collected from the Western Arabian Sea yielded a rich assemblage of intact and non-living (opaque white) pteropod tests from a water depth of 919 m during January to September 1993. Nine species of pteropods were recorded, all (except one) displaying distinct seasonality in abundance, suggesting their response to changing hydrographical conditions influenced by the summer/winter monsoon cycle. Pteropod fluxes increased during the April-May peak of the intermonsoon, and reached maximum levels in the late phase of the southwest summer monsoon, probably due to the shallowing of the mixed layer depth. This shallowing, coupled with enhanced nutrient availability, provides ideal conditions for pteropod growth, also reflected in corresponding fluctuations in the flux of the foraminifer Globigerina bulloides. Pteropod/planktic foraminifer ratios displayed marked seasonal variations, the values increasing during the warmer months of April and May when planktic foraminiferal fluxes declined. The variation in fluxes of calcium carbonate, organic carbon and biogenic opal show positive correlations with fluxes of pteropods and planktic foraminifers. Calcium carbonate was the main contributor to the total particulate flux, especially during the SW monsoon. In the study area, pteropod flux variations are similar to the other flux patterns, indicating that they, too could be used as a potential tool for palaeoclimatic reconstruction of the recent past.

  19. Seasonal variations in dissolved neodymium isotope composition in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Yu, Zhaojie; Colin, Christophe; Meynadier, Laure; Douville, Eric; Dapoigny, Arnaud; Reverdin, Gilles; Wu, Qiong; Wan, Shiming; Song, Lina; Xu, Zhaokai; Bassinot, Frank

    2017-12-01

    Constraining the dissolved neodymium (Nd) cycle in the ocean is paramount for using Nd isotopic composition (εNd) as a tracer to reconstruct deep-sea paleocirculations or continental weathering on different time scales. Dissolved εNd has been measured in seawater samples from six hydrological stations collected along ∼89°E North-South transect in the Bay of Bengal (BoB) in order to assess the impact of seasonal freshwater and sediment discharges from the continental river systems. Seawater samples collected in this study during June 2012 reveal more radiogenic εNd (a difference of ∼2 Epsilon units for the upper 2000 m, and ∼0.5 Epsilon unit below 2000 m) and ∼3-8 pmol/kg lower Nd concentrations than the reported values of nearby seawater samples collected in November 2008. These observations are most plausibly explained by a seasonal variations in dissolved Nd concentrations and εNd in the BoB, induced by seasonal variations in the freshwater and sediment discharges from the Ganges-Brahmaputra (G-B) river system. However, we cannot entirely exclude the possibility of spatial differences given that the water stations collected in this study are not exactly the same positions collected in November 2008. A two-box model suggests, (1) the particulate Nd inputs from the G-B river system mainly control the seasonal shift of εNd observed in the BoB seawater, and (2) a very rapid Nd exchange exists between lithogenic particles and seawater (at least on the scale of a few months). Seasonal changes in seawater εNd may also occur in other marginal seas and in the outflows of major rivers, and these need to be taken into account when using the εNd proxy in the ocean.

  20. Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK.

    PubMed

    Chen, Biye; Lewis, Michael J; Grandison, Alistair S

    2014-09-01

    The composition and physical properties of raw milk from a commercial herd were studied over a 1 year period in order to understand how best to utilise milk for processing throughout the year. Protein and fat levels demonstrated seasonal trends, while minerals and many physical properties displayed considerable variations, which were apparently unrelated to season. However, rennet clotting time, ethanol stability and foaming ability were subject to seasonal variation. Many significant interrelationships in physico-chemical properties were found. It is clear that the milk supply may be more suited to the manufacture of different products at different times of the year or even on a day to day basis. Subsequent studies will report on variation in production and quality of products manufactured from the same milk samples described in the current study and will thus highlight potential advantages of seasonal processing of raw milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Seasonal variation in physical activity, sedentary behaviour and sleep in a sample of UK adults.

    PubMed

    O'Connell, Sophie E; Griffiths, Paula L; Clemes, Stacy A

    2014-01-01

    Physical activity (PA), sedentary behaviour (SB), sleep and diet have all been associated with increased risk for chronic disease. Seasonality is often overlooked as a determinant of these behaviours in adults. Currently, no study has simultaneously monitored these behaviours in UK adults to assess seasonal variation. The present study investigated whether PA, SB, sleep and diet differed over season in UK adults. Forty-six adults (72% female; age = 41.7 ± 14.4 years, BMI = 24.9 ± 4.4 kg/m(2)) completed four 7-day monitoring periods; one during each season of the year. The ActiGraph GT1M was used to monitor PA and SB. Daily sleep diaries monitored time spent in bed (TIB) and total sleep time (TST). The European Prospective Investigation of Cancer (EPIC) food frequency questionnaire (FFQ) assessed diet. Repeated measures ANOVAs were used to identify seasonal differences in behaviours. Light-intensity PA was significantly higher in summer and spring (p < 0.001). SB and TIB were significantly higher in winter (p < 0.01). There were no seasonal variations detected in moderate-vigorous PA, TST or diet (p > 0.05). Findings support the concept that health promotion campaigns need to encourage year-round participation in light intensity PA, whilst limiting SB, particularly during the winter months.

  2. Seasonal variation of benthic macro invertebrates from Tons River of Garhwal Himalaya Uttarakhand.

    PubMed

    Negi, R K; Mamgain, Sheetal

    2013-11-15

    Present investigation was carried out to assess the seasonal variation of benthic macro-invertebrates from the Tons river, a tributary of Yamuna River in Garhwal Himalaya, Uttrakhand during December, 2007 to November, 2009. The seasonal benthic diversity was correlated with various physic-chemical parameters which documented that the macrobenthic diversity is mostly regulated by the dissolved oxygen in the water while temperature and free CO2 were found to be inversely correlated with the benthic fauna. Maximum diversity of benthos was reported at the upstream site ('H' 0.204) during the winter season while it was recorded minimum during the rainy season at all the sites. Maximum diversity is reported during the winter season at all the sites. The benthic fauna is represented by three phylum, 4 classes and 10 orders with Insecta emerging as the most dominant class. Maximum genera were reported from midstream site as it acts as ecotone between upstream and downstream.

  3. Seasonal Variations of Oceanographic Variables and Eastern Little Tuna (Euthynnus affinis) Catches in the North Indramayu Waters Java Sea

    NASA Astrophysics Data System (ADS)

    Syamsuddin, Mega; Sunarto; Yuliadi, Lintang

    2018-02-01

    The remotely derived oceanographic variables included sea surface temperature (SST), chlorophyll-a (Chl-a) and Eastern Little Tuna (Euthynnus affinis) catches are used as a combined dataset to understand the seasonal variation of oceanographic variables and Eastern Little Tuna catches in the north Indramayu waters, Java Sea. The fish catches and remotely sensed data were analysed for the 5 years datasets from 2010-2014. This study has shown the effect of monsoon inducing oceanographic condition in the study area. Seasonal change features were dominant for all the selected oceanographic parameters of SST and Chl-a, and also Eastern Little Tuna catches, respectively. The Eastern Little Tuna catch rates have the peak season from September to December (700 to 1000) ton that corresponded with the value of SST ranging from 29 °C to 30 °C following the decreasing of Chl-a concentrations in September to November (0.4 to 0.5) mg m-3. The monsoonal system plays a great role in determining the variability of oceanographic conditions and catch in the north Indramayu waters, Java Sea. The catches seemed higher during the northwest monsoon than in the southeast monsoon for all year observations except in 2010. The wavelet spectrum analysis results confirmed that Eastern Little Tuna catches had seasonal and inter-annual variations during 2012-2014. The SST had seasonal variations during 2010-2014. The Chl-a also showed seasonal variations during 2010-2011 and interannual variations during 2011-2014. Our results would benefit the fishermen and policy makers to have better management for sustainable catch in the study area.

  4. Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, W.; Sheen, D.; Seo, K.; Yun, S.

    2009-12-01

    The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period

  5. Seasonal variation of acute toxoplasmic lymphadenopathy in the United States.

    PubMed

    Contopoulos-Ioannidis, D; Talucod, J; Maldonado, Y; Montoya, J G

    2015-07-01

    We describe the seasonal variation of acute toxoplasmosis in the United States. Acute toxoplasmic lymphadenopathy (ATL) can be a surrogate of acute toxoplasmosis in patients in whom the date of onset of lymphadenopathy matches the window of acute infection predicted by serological tests performed at a reference laboratory. We used the electronic database of the Palo Alto Medical Foundation Toxoplasma Serology Laboratory (PAMF-TSL) (1997-2011) to identify cases of ATL. We tested the uniformity of distribution of ATL cases per month, across the 12 calendar months, using circular statistics uniformity tests. We identified 112 consecutive cases of ATL. The distribution of cases was not uniform across the 12 calendar months. We observed the highest peak of cases in December and a second highest peak in September. Similar months were identified in patients with acute toxoplasmosis in rural areas in France. The results were similar when we performed weighted analyses, weighting for the total number of Toxoplasma gondii IgG tests performed per month in the PAMF-TSL laboratory. This is the largest study to date of the seasonal variation of ATL in the United States. Physicians should advise high-risk individuals to avoid risk factors associated with T. gondii infections especially around those months.

  6. Seasonal Variation in Month of Diagnosis of Polish Children with Type 1 Diabetes - A Multicenter Study.

    PubMed

    Szypowska, Agnieszka; Ramotowska, Anna; Wysocka-Mincewicz, Marta; Mazur, Artur; Lisowicz, Lucyna; Beń-Skowronek, Iwona; Sieniawska, Joanna; Klonowska, Bożenna; Charemska, Dorota; Nawrotek, Jolanta; Jałowiec, Irena; Bossowski, Artur; Jamiołkowska, Milena; Pyrżak, Beata; Miszkurka, Grażyna; Szalecki, Mieczysław

    2018-03-05

    The seasonal variation of incidence of type 1 diabetes (T1D) theory supports the hypothesis that environmental factors play a role in the onset of the disease. The aim of this study is to assess seasonality of month of diagnosis in children with T1D in Poland. the study group consisted of 2174 children from eastern and central Poland diagnosed with T1D between 2010 and 2014. Analysis was performed in different age groups, based on place of residence (rural/urban area) and depending on sex. We noted significant seasonality in the incidence of T1D with a peak in diagnosis of diabetes in January and the minimum rate in June. A total of 423 (19%) children were diagnosed in the warmest months (June to August with a mean temperature of 16.8°C) compared to 636 (29%) recognised in the coldest months (December to February with a mean temperature of -1.6°C), OR 0.57 95%CI [0.51-0.67], p<0.0001. We noted a more flat seasonal pattern in children 0-4 years of age compared with subjects 5-17 years old with a week correlation of trend comparison between both groups, r=0.69, p=0.001. Similar seasonal variation in the incidence of T1D was noted in children from urban and rural setting. For girls, seasonal pattern peaks were observed one month earlier as compared to boys. Seasonal variation in incidence of T1D diagnosis of Polish children supports the role of different environmental factors in diabetes onset. The majority of children were diagnosed with diabetes in autumn and winter. © Georg Thieme Verlag KG Stuttgart · New York.

  7. A regional study of the seasonal variation in the molecular composition of rainwater

    NASA Astrophysics Data System (ADS)

    Cottrell, Barbara A.; Gonsior, Michael; Isabelle, Lorne M.; Luo, W.; Perraud, Véronique; McIntire, Theresa M.; Pankow, James F.; Schmitt-Kopplin, Philippe; Cooper, William J.; Simpson, André J.

    2013-10-01

    Rainwater is not only a critical source of drinking and agricultural water but it plays a key role in the fate and transport of contaminants through their removal by wet deposition. Rainwater is a complex mixture of organic compounds yet despite its importance its spatial and temporal variability are not well understood and less than 50% of the organic matter has been characterized. In-depth analytical approaches were used in this study to characterize the seasonal variation in rainwater composition. Rainwater samples were collected over a one-year period in Scarborough, Ontario, Canada. The seasonal variation of atmospheric organic carbon (AOC) in rainwater was analyzed by excitation-emission matrix spectroscopy (EEMs), 1D and 2D NMR with compound identification by spectral database matching, GC-MS, FT-ICR-MS, and GC × GC-TOFMS. This combination of techniques provided four complementary datasets, with less than 10% overlap, of anthropogenic and biogenic AOC. NMR with database matching identified over 100 compounds, primarily carboxylic acids, carbohydrates, and nitrogen-containing compounds. GC × GC-TOFMS analysis identified 344 compounds in two rain events with 33% of the compounds common to both events. FT-ICR-MS generated a seasonally dependent profile of 1226-1575 molecular ions of CHO, CHOS, and CHON elemental composition. FT-ICR-MS and GC × GC-TOFMS datasets were compared using van Krevelen diagrams (H/C vs. O/C), the H/C ratio vs. mass/charge (m/z), and the carbon oxidation state/carbon number matrix. Fluorescence patterns were correlated with NMR results resulting in the identification one seasonally-dependent component of chromophoric dissolved organic matter (CDOM). This study demonstrated the importance of using of an integrated analytical approach to monitor the compositional variation of AOC.

  8. Dynamics of the seasonal variation of the North Equatorial Current bifurcation

    NASA Astrophysics Data System (ADS)

    Chen, Zhaohui; Wu, Lixin

    2011-02-01

    The dynamics of the seasonal variation of the North Equatorial Current (NEC) bifurcation is studied using a 1.5-layer nonlinear reduced-gravity Pacific basin model and a linear, first-mode baroclinic Rossby wave model. The model-simulated bifurcation latitude exhibits a distinct seasonal cycle with the southernmost latitude in June and the northernmost latitude in November, consistent with observational analysis. It is found that the seasonal migration of the NEC bifurcation latitude (NBL) not only is determined by wind locally in the tropics, as suggested in previous studies, but is also significantly intensified by the extratropical wind through coastal Kelvin waves. The model further demonstrates that the amplitude of the NEC bifurcation is also associated with stratification. A strong (weak) stratification leads to a fast (slow) phase speed of first-mode baroclinic Rossby waves, and thus large (small) annual range of the bifurcation latitude. Therefore, it is expected that in a warm climate the NBL should have a large range of annual migration.

  9. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S A; Huang, Yongmei

    2016-01-11

    Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature (Tmax) in ~22-25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer Tmax, particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24-26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth.

  10. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate

    PubMed Central

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S. A.; Huang, Yongmei

    2016-01-01

    Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature () in ~22–25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer , particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24–26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth. PMID:26751166

  11. Seasonal variations in the diversity and abundance of diazotrophic communities across soils.

    PubMed

    Pereira e Silva, Michele C; Semenov, Alexander V; van Elsas, Jan Dirk; Salles, Joana Falcão

    2011-07-01

    The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based on the nifH gene, across eight different representative Dutch soils during one complete growing season, to evaluate the amplitude of the natural variation in abundance and diversity, and identify possible relationships with abiotic factors. Overall, our results indicate that soil type is the main factor influencing the N-fixing communities, which were more abundant and diverse in the clay soils (n=4) than in the sandy soils (n=4). On average, the amplitude of variation in community size as well as the range-weighted richness were also found to be higher in the clay soils. These results indicate that N-fixing communities associated with sandy and clay soil show a distinct amplitude of variation under field conditions, and suggest that the diazotrophic communities associated with clay soil might be more sensitive to fluctuations associated with the season and agricultural practices. Moreover, soil characteristics such as ammonium content, pH and texture most strongly correlated with the variations observed in the diversity, size and structure of N-fixing communities, whose relative importance was determined across a temporal and spatial scale. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Carbonate system and nutrients in the Pearl River estuary, China: Seasonal and inter-annual variations

    NASA Astrophysics Data System (ADS)

    Guo, X.

    2017-12-01

    Located in southern China and surrounded by several metropolis, the Pearl River estuary is a large subtropical estuary under significant human perturbation. We examined the impact of sewage treatment rate on the water environmental factors. Carbonate system parameters (Dissolved inorganic carbon or DIC, Total alkalinity or TA, and pH), and nutrients were surveyed in the Pearl River estuary from 2000 to 2015. Spatially, concentrations of nutrients were high at low salinity and decreased with salinity in both wet and dry seasons although seasonal variation occurred. However, distribution patterns of DIC and TA differed in wet and dry seasons. In wet season, both DIC and TA were low at low salinity (600-1500 umol kg-1) and increased with salinity, but in dry season they were high at low salinity (3000-3500 umol kg-1) and decreased with salinity. Compared with the years before 2010, both values and distribution patterns of DIC, TA and pH were similar among the years in wet season, but they were conspicuously different in the upper estuary in dry season. Both DIC and TA were more than 1000 umol kg-1 lower than those in the years before 2010. For nutrients at low salinity, the ammonia concentration was much lower in the years after 2010 (200 vs. 400 umol kg-1 in wet season and 400 vs. 800 umol kg-1 in dry season), but nitrate concentration was slightly higher (180 vs 120 mmol kg-1 in wet season and 200 vs 180 mmol kg-1 in dry season). As a reference, carbonate system parameters and nutrients were stable among the 16 years in the adjacent northern South China Sea. The variations in biogeochemical processes induced by nutrients concentration and structure as a result of sewage discharge will be discussed in detail. The decrease in DIC, TA and nutrients in the upper Pearl River estuary after 2010 was due mainly to the improvement of sewage treatment rate and capacity.

  13. The influence of thermal inertia on Mars' seasonal pressure variation and the effect of the weather component

    NASA Technical Reports Server (NTRS)

    Wood, S. E.; Paige, D. A.

    1993-01-01

    Using a Leighton-Murray type diurnal and seasonal Mars thermal model, we found that it is possible to reproduce the seasonal variation in daily-averaged pressures (approximately 680-890 Pa) measured by Viking Lander 1 (VL1), during years without global dust storms, with a standard deviation of less than 5 Pa. In this simple model, surface CO2, frost condensation, and sublimation rates at each latitude are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers. An inherent assumption of our model is that the seasonal pressure variation is due entirely to the exchange of mass between the atmosphere and polar caps. However, the results of recent Mars GCM modeling have made it clear that there is a significant dynamical contribution to the seasonal pressure variation. This 'weather' component is primarily due to large-scale changes in atmospheric circulation, and its magnitude depends somewhat on the dust content of the atmosphere. The overall form of the theoretical weather component at the location of VL1, as calculated by the AMES GCM, remains the same over the typical range of Mars dust opacities.

  14. On pressure measurement and seasonal pressure variations during the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Taylor, Peter A.; Kahanpää, Henrik; Weng, Wensong; Akingunola, Ayodeji; Cook, Clive; Daly, Mike; Dickinson, Cameron; Harri, Ari-Matti; Hill, Darren; Hipkin, Victoria; Polkko, Jouni; Whiteway, Jim

    2010-03-01

    In situ surface pressures measured at 2 s intervals during the 150 sol Phoenix mission are presented and seasonal variations discussed. The lightweight Barocap®/Thermocap® pressure sensor system performed moderately well. However, the original data processing routine had problems because the thermal environment of the sensor was subject to more rapid variations than had been expected. Hence, the data processing routine was updated after Phoenix landed. Further evaluation and the development of a correction are needed since the temperature dependences of the Barocap sensor heads have drifted after the calibration of the sensor. The inaccuracy caused by this appears when the temperature of the unit rises above 0°C. This frequently affects data in the afternoons and precludes a full study of diurnal pressure variations at this time. Short-term fluctuations, on time scales of order 20 s are unaffected and are reported in a separate paper in this issue. Seasonal variations are not significantly affected by this problem and show general agreement with previous measurements from Mars. During the 151 sol mission the surface pressure dropped from around 860 Pa to a minimum (daily average) of 724 Pa on sol 140 (Ls 143). This local minimum occurred several sols earlier than expected based on GCM studies and Viking data. Since battery power was lost on sol 151 we are not sure if the timing of the minimum that we saw could have been advanced by a low-pressure meteorological event. On sol 95 (Ls 122), we also saw a relatively low-pressure feature. This was accompanied by a large number of vertical vortex events, characterized by short, localized (in time), low-pressure perturbations.

  15. Seasonal variation in the copepod community structure from a tropical Amazon estuary, Northern Brazil.

    PubMed

    Magalhães, André; Leite, Natália da R; Silva, João G S; Pereira, Luci C C; Costa, Rauquírio M da

    2009-06-01

    The main purpose of this study was to investigate the seasonal variation of copepod community structure during the months of July, September and November 2003 (dry season) and January, March and May 2004 (rainy season) in the Curuçá estuary, northern Brazil. Samples were collected during neap tides via gentle 200microm mesh net tows from a small powerboat. Measurements of surface water conductivity were accomplished in situ using an electronic conductivimeter and salinity was later obtained through the transformation of the conductivity values. Salinity varied seasonally from 7.2 +/- 0.1 to 39.2 +/- 1.8 (mean +/- standard deviation) and was influenced mainly by differences in the amount of rainfall between the studied sampling seasons. In total, 30 Copepoda taxa were identified and Acartia tonsa comprised the most representative species throughout the entire studied period followed by Acartia lilljeborgii, Subeucalanus pileatus and Paracalanus quasimodo. In the present study, the density values, ecological indexes and copepod species dominance presented a clear seasonal pattern, showing that the studied area may be considered seasonally heterogeneous in relation to the investigated parameters.

  16. Annual and seasonal variations in the low-latitude topside ionosphere

    NASA Astrophysics Data System (ADS)

    Su, Y. Z.; Bailey, G. J.; Oyama, K.-I.

    1998-08-01

    Annual and seasonal variations in the low-latitude topside ionosphere are investigated using observations made by the Hinotori satellite and the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The observed electron densities at 600 km altitude show a strong annual anomaly at all longitudes. The average electron densities of conjugate latitudes within the latitude range +/-25° are higher at the December solstice than at the June solstice by about 100 during daytime and 30 during night-time. Model calculations show that the annual variations in the neutral gas densities play important roles. The model values obtained from calculations with inputs for the neutral densities obtained from MSIS86 reproduce the general behaviour of the observed annual anomaly. However, the differences in the modelled electron densities at the two solstices are only about 30 of that seen in the observed values. The model calculations suggest that while the differences between the solstice values of neutral wind, resulting from the coupling of the neutral gas and plasma, may also make a significant contribution to the daytime annual anomaly, the E×B drift velocity may slightly weaken the annual anomaly during daytime and strengthen the anomaly during the post-sunset period. It is suggested that energy sources, other than those arising from the 6 difference in the solar EUV fluxes at the two solstices due to the change in the Sun-Earth distance, may contribute to the annual anomaly. Observations show strong seasonal variations at the solstices, with the electron density at 600 km altitude being higher in the summer hemisphere than in the winter hemisphere, contrary to the behaviour in NmF2. Model calculations confirm that the seasonal behaviour results from effects caused by transequatorial component of the neutral wind in the direction summer hemisphere to winter hemisphere. Acknowledgements. We thank all the members of the Exos-D project team, especially K. Tsuruda and H. Oya

  17. Seasonal variation of cold-induced vasooscillation on rabbit ear central artery

    NASA Astrophysics Data System (ADS)

    Takeoka, Michiko

    1990-09-01

    We studied the seasonal variation of vasooscillation of a rabbit ear central artery induced by exposure of the earlobes to-7°C liquid. The data were collected over a period of 10 years and analyzed by month. a) The index of arterial temperature fluctuation (IATF) i.e., activation index of cold-induced vasooscillatior (CIVO), ranged from 114.5±26.7 (mean±SE) in January to 386.7±36.1 in June. A significant variation over all 12 months was revealed by analysis of variance ( P<0.01). The values measured in May (317.1±47.3), June (386.7±36.1), and July (315.1±36.0) were significantly larger than those of other months. b) The monthly IATFs were correlated with the open air temperatures ( r=0.7017, P<0.05); however, the peak IATF occurred in June, while the peak open air temperature was in August. c) There was no seasonal variation of the arterial temperature either before or at 18 20 min after-7°C immersion. Arterial temperature was not related to IATF during-7°C exposure. d) When measuring-site temperature was steady, the thermistor temperature changed in parallel with the output from a laser blood volume meter. e) The CIVO was independent of systemic blood pressure and heart rate, which suggested that the occurrence of CIVO was regulated by changes in local vascular resistance.

  18. Seasonal variation of cold-induced vasooscillation on rabbit ear central artery.

    PubMed

    Takeoka, M

    1990-12-01

    We studied the seasonal variation of vasooscillation of a rabbit ear central artery induced by exposure of the earlobes to - 7 degrees C liquid. The data were collected over a period of 10 years and analyzed by month. a) The index of arterial temperature fluctuation (IATF), i.e., activation index of cold-induced vasooscillation (CIVO), ranged from 114.5 +/- 26.7 (mean +/- SE) in January to 386.7 +/- 36.1 in June. A significant variation over all 12 months was revealed by analysis of variance (P less than 0.01). The values measured in May (317.1 +/- 47.3), June (386.7 +/- 36.1), and July (315.1 +/- 36.0) were significantly larger than those of other months. b) The monthly IATFs were correlated with the open air temperatures (r = 0.7017, P less than 0.05); however, the peak IATF occurred in June, while the peak open air temperature was in August. c) There was no seasonal variation of the arterial temperature either before or at 18-20 min after -7 degrees C immersion. Arterial temperature was not related to IATF during -7 degrees C exposure. d) When measuring-site temperature was steady, the thermistor temperature changed in parallel with the output from a laser blood volume meter. e) The CIVO was independent of systemic blood pressure and heart rate, which suggested that the occurrence of CIVO was regulated by changes in local vascular resistance.

  19. Seasonal variations in emergency room visits for asthma attacks in Gama, Brazil.

    PubMed

    Valença, Laércio Moreira; Restivo, Paulo César Nunes; Nunes, Mário Sérgio

    2006-01-01

    To quantify the number of asthma attacks treated in the emergency room of a public hospital and to study seasonal fluctuations, taking into consideration the local climate, which is characterized by having only two seasons: a rainy/humid season and a dry season. A retrospective survey was conducted in a community general hospital. A total of 37,642 emergency room consultations related to asthma, bronchitis, pneumonia, upper-airway infection or other respiratory complaints were registered during a two year period. The data from each patient chart were collected for later analysis. Among the respiratory conditions treated, asthma (24.4%) was the second most common diagnosis. Most of the asthma consultations (56.6%) involved children below the age of fifteen. Regression analysis revealed a seasonal variation in the number of asthma consultations, which was significantly higher in March (p = 0.0109), the low points being in August (p = 0.0485) and September (p = 0.0169). The correlation between climate and asthma was most significant in relation to changes in humidity, although the effect was delayed by one month (p = 0.0026) or two months (p = 0.0002). Visits to the emergency room for the treatment of asthma attacks were more frequent during the rainy season, increasing at one to two months after the annual increase in humidity and decreasing in the dry season. This positive correlation raises the possibility of a causal relationship with proliferation of house dust mites and molds.

  20. Seasonal Variation in Blood Pressure in 162,135 Patients With Type 1 or Type 2 Diabetes Mellitus.

    PubMed

    Hermann, Julia M; Rosenbauer, Joachim; Dost, Axel; Steigleder-Schweiger, Claudia; Kiess, Wieland; Schöfl, Christof; Holl, Reinhard W

    2016-04-01

    Seasonal variation in blood pressure (BP) has been observed in different populations. However, only few studies have focused on BP seasonality in diabetic patients. This study examined the seasonal patterns in BP in 62,589 patients with type 1 diabetes mellitus (T1DM) and in 99,546 patients with type 2 diabetes mellitus (T2DM) from the German/Austrian Diabetes Follow-up Registry. Adjusted mean BP values revealed seasonal cycles of 12 months, with higher BP in colder months. Using harmonic regression models, the estimated systolic BP difference throughout the year was 2.28/2.48 mm Hg in T1DM/T2DM (both P<.001). Interestingly, seasonal variation in diastolic BP was larger in T1DM than in T2DM (1.24/0.64 mm Hg, P<.001). A sex difference was observed in T1DM only, while age differences occurred in both types of diabetes. Correlations between BP and potentially related factors such as outdoor temperature indicated that reasons underlying BP seasonality are likely to be complex and vary by subgroup. © 2015 Wiley Periodicals, Inc.

  1. Effect of soil moisture on seasonal variation in indoor radon concentration: modelling and measurements in 326 Finnish houses

    PubMed Central

    Arvela, H.; Holmgren, O.; Hänninen, P.

    2016-01-01

    The effect of soil moisture on seasonal variation in soil air and indoor radon is studied. A brief review of the theory of the effect of soil moisture on soil air radon has been presented. The theoretical estimates, together with soil moisture measurements over a period of 10 y, indicate that variation in soil moisture evidently is an important factor affecting the seasonal variation in soil air radon concentration. Partitioning of radon gas between the water and air fractions of soil pores is the main factor increasing soil air radon concentration. On two example test sites, the relative standard deviation of the calculated monthly average soil air radon concentration was 17 and 26 %. Increased soil moisture in autumn and spring, after the snowmelt, increases soil gas radon concentrations by 10–20 %. In February and March, the soil gas radon concentration is in its minimum. Soil temperature is also an important factor. High soil temperature in summer increased the calculated soil gas radon concentration by 14 %, compared with winter values. The monthly indoor radon measurements over period of 1 y in 326 Finnish houses are presented and compared with the modelling results. The model takes into account radon entry, climate and air exchange. The measured radon concentrations in autumn and spring were higher than expected and it can be explained by the seasonal variation in the soil moisture. The variation in soil moisture is a potential factor affecting markedly to the high year-to-year variation in the annual or seasonal average radon concentrations, observed in many radon studies. PMID:25899611

  2. Seasonal variation of the South Indian tropical gyre

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    The South Indian tropical gyre receives and redistributes water masses from the Indonesian Throughflow (ITF), a source of Pacific Ocean water which represents the only low-latitude connector between the world oceans and, therefore, a key component in the global ocean circulation and climate system. We investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR), based on satellite altimeter data (AVISO) and global atlases of temperature and salinity (CARS09), wind stress (SCOW) and wind-driven circulation. Two novel large-scale features governing the upper geostrophic circulation of the South Indian tropical gyre are revealed. First, the seasonal shrinkage of the ocean gyre. This occurs when the South Equatorial Countercurrent (SECC) recirculates before arrival to Sumatra from winter to spring, in apparent synchronization with the annual cycle of the ITF. Second, the open-ocean upwelling is found to vary following seasonality of the overlying geostrophic ocean gyre, a relationship that has not been previously shown for this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. Broadly speaking, the seasonal shrinkage of the ocean gyre (and the SCTR) is the one feature that differs most when the geostrophic circulation is compared to the wind-driven Sverdrup circulation. From late autumn to spring, the eastward SECC recirculates early in

  3. Seasonal variation in nutritional status and anemia among lactating mothers in two agro-ecological zones of rural Ethiopia: A longitudinal study.

    PubMed

    Roba, Kedir Teji; O'Connor, Thomas P; Belachew, Tefera; O'Brien, Nora M

    2015-10-01

    The aim of this study was to determine seasonal and agro-ecological variations in nutritional status, anemia, and associated factors among lactating women in rural Ethiopia. We conducted a longitudinal study with 216 mothers in pre- and postharvest seasons in two agro-ecological zones of rural Ethiopia. We conducted interviews using a structured questionnaire, anthropometric measurements, and blood tests for anemia. We used multivariable linear regression models to identify independent predictors. The prevalence of anemia increased from postharvest (21.8%) to preharvest seasons (40.9%). Increases were from 8.6% to 34.4% in midland and from 34.2% to 46.3% in lowland agro-ecological zones. Of the mothers, 15% were anemic during both seasons. The prevalence of undernutrition, assessed using body mass index (BMI) < 18.5 kg/m(2), increased from 41.7% to 54.7% between the two seasons. Prevalence of maternal mid upper arm circumferences <22 cm also increased from 43.1% to 55.2% during the preharvest season. The seasonal effect was generally more pronounced in the midland community for all forms of malnutrition. Predictors of anemia were high parity of mother and low dietary diversity. Parity, number of children under the age of 5 y, and regional variation were predictors of low BMI among lactating mothers. The magnitude of malnutrition and anemia was significantly influenced by variations in season and agro-ecological zones. Interventions focused on agro-ecology and seasonal variation should be considered in addition to current strategies to alleviate malnutrition in lactating mothers. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment

    NASA Technical Reports Server (NTRS)

    Martens, C. S.; Green, C. D.; Blair, N. E.; Des Marais, D. J.

    1986-01-01

    Systematic seasonal variations in the stable carbon isotopic signature of methane gas occur in the anoxic sediments of Cape Lookout Bight, a lagoonal basin on North Carolina's Outer Banks. Values for the carbon isotope ratio of methane range from -57.3 per mil during summer to -68.5 per mil during winter in gas bubbles with an average methane content of 95 percent. The variations are hypothesized to result from changes in the pathways of microbial methane production and cycling of key substrates including acetate and hydrogen. The use of stable isotopic signatures to investigate the global methane cycle through mass balance calculations, involving various sediment and soil biogenic sources, appears to require seasonally averaged data from individual sites.

  5. 1-D Photochemical Modeling of the Martian Atmosphere: Seasonal Variations

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Emmanuel, S.; Hafsa, U.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Smith, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Blue, S.; Gurung, D.; Salako, O.

    2016-12-01

    High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), utilize Caltech/JPL's one-dimensional atmospheric, photochemical models. These sophisticated models, were built over the course of the last four decades, describing all planetary bodies in our Solar System and selected extrasolar planets. Specifically, students employed the Martian one-dimensional photochemical model to assess the seasonal variability of molecules in its atmosphere. Students learned the overall model construct, running a baseline simulation, and fluctuating parameters (e.g., obliquity, orbital eccentricity) which affects the incoming solar radiation on Mars, temperature and pressure induce by seasonal variations. Students also attain a `real-world' experience that exemplifies the required level of coding competency and innovativeness needed for building an environment that can simulate observations and forecast. Such skills permeate STEM-related occupations that model systems and/or predict how that system may/will behave.

  6. Seasonal variations as predictive factors of the comet assay parameters: a retrospective study.

    PubMed

    Geric, Marko; Gajski, Goran; Orešcanin, Višnja; Garaj-Vrhovac, Vera

    2018-02-24

    Since there are several predicting factors associated with the comet assay parameters, we have decided to assess the impact of seasonal variations on the comet assay results. A total of 162 volunteers were retrospectively studied, based on the date when blood donations were made. The groups (winter, spring, summer and autumn) were matched in terms of age, gender, smoking status, body mass index and medical diagnostic exposure in order to minimise the impact of other possible predictors. Means and medians of the comet assay parameters were higher when blood was sampled in the warmer period of the year, the values of parameters being the highest during summer. Correlation of meteorological data (air temperature, sun radiation and sun insolation) was observed when data were presented as the median per person. Using multivariate analysis, sampling season and exposure to medical radiation were proved to be the most influential predictors for the comet assay parameters. Taken together, seasonal variation is another variable that needs to be accounted for when conducting a cohort study. Further studies are needed in order to improve the statistical power of the results related to the impact of sun radiation, air temperature and sun insolation on the comet assay parameters.

  7. A vegetation control on seasonal variations in global atmospheric mercury concentrations

    NASA Astrophysics Data System (ADS)

    Jiskra, Martin; Sonke, Jeroen E.; Obrist, Daniel; Bieser, Johannes; Ebinghaus, Ralf; Myhre, Cathrine Lund; Pfaffhuber, Katrine Aspmo; Wängberg, Ingvar; Kyllönen, Katriina; Worthy, Doug; Martin, Lynwill G.; Labuschagne, Casper; Mkololo, Thumeka; Ramonet, Michel; Magand, Olivier; Dommergue, Aurélien

    2018-04-01

    Anthropogenic mercury emissions are transported through the atmosphere as gaseous elemental mercury (Hg(0)) before they are deposited to Earth's surface. Strong seasonality in atmospheric Hg(0) concentrations in the Northern Hemisphere has been explained by two factors: anthropogenic Hg(0) emissions are thought to peak in winter due to higher energy consumption, and atmospheric oxidation rates of Hg(0) are faster in summer. Oxidation-driven Hg(0) seasonality should be equally pronounced in the Southern Hemisphere, which is inconsistent with observations of constant year-round Hg(0) levels. Here, we assess the role of Hg(0) uptake by vegetation as an alternative mechanism for driving Hg(0) seasonality. We find that at terrestrial sites in the Northern Hemisphere, Hg(0) co-varies with CO2, which is known to exhibit a minimum in summer when CO2 is assimilated by vegetation. The amplitude of seasonal oscillations in the atmospheric Hg(0) concentration increases with latitude and is larger at inland terrestrial sites than coastal sites. Using satellite data, we find that the photosynthetic activity of vegetation correlates with Hg(0) levels at individual sites and across continents. We suggest that terrestrial vegetation acts as a global Hg(0) pump, which can contribute to seasonal variations of atmospheric Hg(0), and that decreasing Hg(0) levels in the Northern Hemisphere over the past 20 years can be partly attributed to increased terrestrial net primary production.

  8. Seasonal variation of acute gastro-intestinal illness by hydroclimatic regime and drinking water source: a retrospective population-based study.

    PubMed

    Galway, Lindsay P; Allen, Diana M; Parkes, Margot W; Takaro, Tim K

    2014-03-01

    Acute gastro-intestinal illness (AGI) is a major cause of mortality and morbidity worldwide and an important public health problem. Despite the fact that AGI is currently responsible for a huge burden of disease throughout the world, important knowledge gaps exist in terms of its epidemiology. Specifically, an understanding of seasonality and those factors driving seasonal variation remain elusive. This paper aims to assess variation in the incidence of AGI in British Columbia (BC), Canada over an 11-year study period. We assessed variation in AGI dynamics in general, and disaggregated by hydroclimatic regime and drinking water source. We used several different visual and statistical techniques to describe and characterize seasonal and annual patterns in AGI incidence over time. Our results consistently illustrate marked seasonal patterns; seasonality remains when the dataset is disaggregated by hydroclimatic regime and drinking water source; however, differences in the magnitude and timing of the peaks and troughs are noted. We conclude that systematic descriptions of infectious illness dynamics over time is a valuable tool for informing disease prevention strategies and generating hypotheses to guide future research in an era of global environmental change.

  9. Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns.

    PubMed

    Daniels, Emily V; Murad, Rabi; Mortazavi, Ali; Reed, Robert D

    2014-12-01

    In the eastern United States, the buckeye butterfly, Junonia coenia, shows seasonal wing colour plasticity where adults emerging in the spring are tan, while those emerging in the autumn are dark red. This variation can be artificially induced in laboratory colonies, thus making J. coenia a useful model system to examine the mechanistic basis of plasticity. To better understand the developmental basis of seasonal plasticity, we used RNA-seq to quantify transcription profiles associated with development of alternative seasonal wing morphs. Depending on the developmental stage, between 547 and 1420 transfrags were significantly differentially expressed between morphs. These extensive differences in gene expression stand in contrast to the much smaller numbers of differentially expressed transcripts identified in previous studies of genetic wing pattern variation in other species and suggest that environmentally induced phenotypic shifts arise from very broad systemic processes. Analyses of candidate endocrine and pigmentation transcripts revealed notable genes upregulated in the red morph, including several ecdysone-associated genes, and cinnabar, an ommochrome pigmentation gene implicated in colour pattern variation in other butterflies. We also found multiple melanin-related transcripts strongly upregulated in the red morph, including tan and yellow-family genes, leading us to speculate that dark red pigmentation in autumn J. coenia may involve nonommochrome pigments. While we identified several endocrine and pigmentation genes as obvious candidates for seasonal colour morph differentiation, we speculate that the majority of observed expression differences were due to thermal stress response. The buckeye transcriptome provides a basis for further developmental studies of phenotypic plasticity. © 2014 John Wiley & Sons Ltd.

  10. Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest

    Treesearch

    David Medvigy; Su-Jong Jeong; Kenneth L. Clark; Nicholas S. Skowronski; Karina V. R. Schäfer

    2013-01-01

    Seasonal variation in photosynthetic capacity is an important part of the overall seasonal variability of temperate deciduous forests. However, it has only recently been introduced in a few terrestrial biosphere models, and many models still do not include it. The biases that result from this omission are not well understood. In this study, we use the Ecosystem...

  11. Comparative Analysis of Seasonal Variation in Tropospheric Nitrogen Dioxide over Pakistan and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Fahim Khokhar, Muhammad; Wagner, Thomas; Jamil, Mohsin

    2016-07-01

    In this study, spatial and temporal distributions of tropospheric NO2 vertical column densities over Pakistan and Saudi Arabia during the time period of 2004-2015 are discussed. Data products from the satellite instrument OMI are used. The results show a large NO2 growth over major cities of both countries, particularly the areas with rapid urbanization. Different seasonal cycles were observed over both countries. Especially, seasonal variation in tropospheric NO2 over Pakistan is largely impacted by the photolysis rate, OH radical and monsoon rains in addition to soil emissions, agriculture fires and other anthropogenic activities. While in the case of Saudi Arabia, the seasonal variation in tropospheric NO2 is completely driven by thermal power generation. Furthermore, different regions of Pakistan exhibited different seasonal trends. In the provinces of Punjab (north-east), Khyber Paktunkhwa (north-west) and Sindh (south-east), NO2 columns are maximum in winter and minimum in summer months while a reversed seasonality was observed in the province of Baluchistan (south-west). We compared the observed Spatio-temporal patterns to existing emission inventories and found that for the most populated provinces the NOx emissions are clearly dominated by anthropogenic sources. In these areas also the strongest positive trends were observed. NOx released from soils and produced by lightning both together contribute about 20% for the provinces of Punjab, Sindh, and Khyber Pakhtunkhwa, while its contribution in Baluchistan is much stronger (~50%). NOx emissions from biomass burning are negligible. This finding can also explain the observed summer maximum in Baluchistan since the highest lightning activity occurs during the Monsoon season. Our comparison also indicates that the inventories of anthropogenic NOx emissions over Pakistan seem to underestimate the true emissions by about a factor of two.

  12. Seasonal and clonal variation in cellulose microfibril orientation during cell wall formation of tracheids in Cryptomeria japonica.

    PubMed

    Jyske, Tuula; Fujiwara, Takeshi; Kuroda, Katsushi; Iki, Taiichi; Zhang, Chunhua; Jyske, Tuomas K; Abe, Hisashi

    2014-08-01

    To investigate the biological mechanism by which trees control the changes in microfibril (MF) orientation among secondary cell wall layers of conifer tracheids, we studied seasonal variation in the orientation of newly deposited MFs during tracheid cell wall development in Japanese cedar (Cryptomeria japonica D. Don) trees growing in Central Japan (36°36'N, 140°39'E). Sample blocks were repeatedly collected from four 16-year-old clones of different origins during the growing season of 2010 to investigate the hypotheses that changes in cellulose MF orientation between wall layers exhibited seasonal and clonal differences. The progressive change in the orientation of newly deposited MFs on the primary and secondary cell wall layers of tracheids was detected by field-emission-scanning electron microscopy. Tracheid production and differentiation was studied by light microscopy. We observed a decreasing trend in the orientation of deposited MFs from earlywood to latewood in the S2 and S1 layers, where MFs appeared in a Z-helix. In contrast, no seasonal pattern in the orientation of the MFs in the S-helix was observed. Minor clonal variation was observed in the phenology of tracheid production and differentiation. We concluded that a seasonal decreasing trend in the orientation of the MFs in the Z-helix in S1 and S2 was present, whereas the MFs in other layers exhibited minor random variations. Thus, the orientation of the MFs in S2 was affected by seasonal factors, whereas the MFs in other layers were more intrinsically controlled. The within-ring variations in the MF orientation and thus the resulting average MF angle might also be related to genotypic differences in the tracheid production and differentiation rate. However, our results do not exclude other intrinsic and environmental regulations in the change in MF orientation, which remains a topic for future studies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions

  13. Evaluation of seasonal variations of remotely sensed leaf area index over five evergreen coniferous forests

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Chen, Jing M.; Liu, Zhili; Arain, Altaf

    2017-08-01

    Seasonal variations of leaf area index (LAI) have crucial controls on the interactions between the land surface and the atmosphere. Over the past decades, a number of remote sensing (RS) LAI products have been developed at both global and regional scales for various applications. These products are so far only validated using ground LAI data acquired mostly in the middle of the growing season. The accuracy of the seasonal LAI variation in these products remains unknown and there are few ground data available for this purpose. We performed regular LAI measurements over a whole year at five coniferous sites using two methods: (1) an optical method with LAI-2000 and TRAC; (2) a direct method through needle elongation monitoring and litterfall collection. We compared seasonal trajectory of LAI from remote sensing (RS LAI) with that from a direct method (direct LAI). RS LAI agrees very well with direct LAI from the onset of needle growth to the seasonal peak (R2 = 0.94, RMSE = 0.44), whereas RS LAI declines earlier and faster than direct LAI from the seasonal peak to the completion of needle fall. To investigate the possible reasons for the discrepancy, the MERIS Terrestrial Chlorophyll Index (MTCI) was compared with RS LAI. Meanwhile, phenological metrics, i.e. the start of growing season (SOS) and the end of growing season (EOS), were extracted from direct LAI, RS LAI and MTCI time series. SOS from RS LAI is later than that from direct LAI by 9.3 ± 4.0 days but earlier than that from MTCI by 2.6 ± 1.9 days. On the contrary, for EOS, RS LAI is later than MTCI by 3.3 ± 8.4 days and much earlier than direct LAI by 30.8 ± 7.2 days. Our results suggest that the seasonal trajectory of RS LAI well captures canopy structural information from the onset of needle growth to the seasonal peak, but is greatly influenced by the decrease in leaf chlorophyll content, as indicated by MTCI, from the seasonal peak to the completion of needle fall. These findings have significant

  14. Seasonal variation in functional properties of microbial communities in beech forest soil

    PubMed Central

    Koranda, Marianne; Kaiser, Christina; Fuchslueger, Lucia; Kitzler, Barbara; Sessitsch, Angela; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2013-01-01

    Substrate quality and the availability of nutrients are major factors controlling microbial decomposition processes in soils. Seasonal alteration in resource availability, which is driven by plants via belowground C allocation, nutrient uptake and litter fall, also exerts effects on soil microbial community composition. Here we investigate if seasonal and experimentally induced changes in microbial community composition lead to alterations in functional properties of microbial communities and thus microbial processes. Beech forest soils characterized by three distinct microbial communities (winter and summer community, and summer community from a tree girdling plot, in which belowground carbon allocation was interrupted) were incubated with different 13C-labeled substrates with or without inorganic N supply and analyzed for substrate use and various microbial processes. Our results clearly demonstrate that the three investigated microbial communities differed in their functional response to addition of various substrates. The winter communities revealed a higher capacity for degradation of complex C substrates (cellulose, plant cell walls) than the summer communities, indicated by enhanced cellulase activities and reduced mineralization of soil organic matter. In contrast, utilization of labile C sources (glucose) was lower in winter than in summer, demonstrating that summer and winter community were adapted to the availability of different substrates. The saprotrophic community established in girdled plots exhibited a significantly higher utilization of complex C substrates than the more plant root associated community in control plots if additional nitrogen was provided. In this study we were able to demonstrate experimentally that variation in resource availability as well as seasonality in temperate forest soils cause a seasonal variation in functional properties of soil microorganisms, which is due to shifts in community structure and physiological adaptations

  15. Seasonal variations in body melanism and size of the wolf spider Pardosa astrigera (Araneae: Lycosidae).

    PubMed

    Yang, Jinjian; Wu, Qijia; Xiao, Rong; Zhao, Jupeng; Chen, Jian; Jiao, Xiaoguo

    2018-04-01

    Variations in species morphology and life-history traits strongly correlate with geographic and climatic characteristics. Most studies on morphological variations in animals focus on ectotherms distributed on a large geographic scale across latitudinal and/or altitudinal gradient. However, the morphological variations of spiders living in the same habitats across different seasons have not been reported. In this study, we used the wolf spider, Pardosa astrigera , as a model to determine seasonal differences in adult body size, melanism, fecundity, and egg diameter both in the overwintering and the first generation for 2010 and 2016. The results showed that in 2010, both females and males of the overwintering generation were significantly darker than the first generation. Moreover, the overwintering females were markedly larger and produced more and bigger eggs than the first generation in both 2010 and 2016. Considering the overwintering P. astrigera experiencing low temperature and/or desiccation stress, these results suggest that substantially darker and larger body of the overwintering generation is adaptive to adverse conditions.

  16. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan.

    PubMed

    Ardö, Jonas; Mölder, Meelis; El-Tahir, Bashir Awad; Elkhidir, Hatim Abdalla Mohammed

    2008-12-01

    2005. The small sink during the dry season is surprising and similar dry season sinks have not to our knowledge been reported from other similar savanna ecosystems and could have potential management implications for agroforestry. A strong response of NEE versus small changes in plant available soil water content was found. Collection and analysis of flux data for several consecutive years including variations in precipitation, available soil moisture and labile soil carbon are needed for understanding the year to year variation of the carbon budget of this grass land/sparse savanna site in semi arid Sudan.

  17. Frequency and seasonal variation of ophthalmology-related internet searches.

    PubMed

    Leffler, Christopher T; Davenport, Byrd; Chan, Dana

    2010-06-01

    To use internet search activity to reveal the intensity of public interest and seasonal variation in ophthalmology-related diseases, symptoms, and treatments. Time-series analysis of internet search data. Google trend data for ophthalmology terms for the United States, the United Kingdom, Canada, and Australia from 2004 through 2008 were studied. Mean population-weighted temperature and fraction of schools in session were estimated from databases, and relative potential sunlight intensity was calculated. Multivariable linear regression was used to predict search term frequency based on environmental variables. Relative to diabetes searches (100%), common US eye-related searches were: "glasses" (44%), "Lasik" (16%), "contact lenses" (12.4%), "pink eye" (9.5%), "glaucoma" (5.9%), "cataract" (4.1%), "dry eyes" (2.1%), "eye twitching" (1.9%), and "eye pain" (1.9%). Seasonal nature was high for "conjunctivitis" (r(2) = 0.37), "pink eye" (r(2) = 0.32), "eye floaters" (r2 = 0.26), and "stye" (r(2) = 0.19), moderate for "glaucoma" (r(2) = 0.09) and "eye twitching" (r(2) = 0.06), and low for "uveitis" (r(2) = 0.02) and "macular degeneration" (r(2) < 0.01). Heat was associated with "stye" and cold was associated with "pink eye," "conjunctivitis," and "glaucoma" (all p < 0.002). Sunlight intensity was associated with "dry eyes" and "eye floaters" (p < 0.01). School sessions were associated positively with "eye twitching" (p >= 0.001) and negatively with "eyeglasses." "Eye allergy," "itchy eyes," and "watery eyes" were highly seasonal (r(2) = 0.75-0.38) and associated with "pollen" searches. Internet ophthalmology searches relate (in decreasing order) to refractive correction, eye diseases, and eye symptoms. Search study reveals the seasonality and environmental associations of interest in health terms.

  18. Seasonal and Interannual Variation of Currents and Water Properties off the Mid-East Coast of Korea

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Chang, K. I.; Nam, S.

    2016-02-01

    Since 1999, physical parameters such as current, temperature, and salinity off the mid-east coast of Korea have been continuously observed from the long-term buoy station called `East-Sea Real-time Ocean monitoring Buoy (ESROB)'. Applying harmonic analysis to 6-year-long (2007-2012) depth-averaged current data from the ESROB, a mean seasonal cycle of alongshore currents, characterized by poleward current in average and equatorward current in summer, is extracted which accounts for 5.8% of the variance of 40 hours low-pass filtered currents. In spite of the small variance explained, a robust seasonality of summertime equatorward reversal typifies the low-passed alongshore currents along with low-density water. To reveal the dynamics underlying the seasonal variation, each term of linearized, depth-averaged momentum equations is estimated using the data from ESROB, adjacent tide gauge stations, and serial hydrographic stations. The result indicates that the reversal of alongshore pressure gradient is a major driver of the equatorward reversals in summer. The reanalysis wind product (MERRA) and satellite altimeter-derived sea surface height (AVISO) data show correlated features between positive (negative) wind stress curl and sea surface depression (uplift). Quantitative estimates reveal that the wind-stress curl accounts for 42% of alongshore sea level variation. Summertime low-density water originating from the northern coastal region is a footprint of the buoyancy-driven equatorward current. An interannual variation (anomalies from the mean seasonal cycle) of alongshore currents and its possible driving mechanisms will be discussed.

  19. Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters

    NASA Astrophysics Data System (ADS)

    Price, Colin; Melnikov, Alexander

    2004-09-01

    The Schumann resonances (SR) represent an electromagnetic phenomenon in the Earth's atmosphere related to global lightning activity. The spectral characteristics of the SR modes are defined by their resonant mode amplitude, center frequency and half-width (Q-factor). Long-term (4 years) diurnal and seasonal variations of these parameters are presented based on measurements at a field site in the Negev desert, Israel. Variations of the different modes (8, 14 and 20Hz) and the different electromagnetic components (Hns, Hew and Ez) are presented. The power variations of the various modes and components show three dominant maxima in the diurnal cycle related to lightning activity in south-east Asia (0800UT), Africa (1400UT) and South America (2000UT). The largest global lightning activity occurs during the northern hemisphere summer (JJA) with the southern hemisphere summer (DJF) having the least lightning around the globe. The frequency and half-width (Q-factor) variations of the different modes and SR components are fairly complicated in structure, and will need additional theoretical work to explain their variations. However, the frequency variations are in excellent agreement with previous studies, implying that the frequency variations are robust features of the SR. The inter-annual variability of global lightning activity is shown to vary differently for each of the three major source regions of global lightning.

  20. Remote sensing of the seasonal variation of coniferous forest structure and function

    NASA Technical Reports Server (NTRS)

    Spanner, Michael; Waring, Richard

    1991-01-01

    One of the objectives of the Oregon Transect Ecosystem Research (OTTER) project is the remotely sensed determination of the seasonal variation of leaf area index (LAI) and absorbed photosynthetically active radiation (APAR). These measurements are required for input into a forest ecosystem model which predicts net primary production evapotranspiration, and photosynthesis of coniferous forests. Details of the study are given.

  1. Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird.

    PubMed

    Noakes, Matthew J; Wolf, Blair O; McKechnie, Andrew E

    2016-03-01

    Intraspecific variation in avian thermoregulatory responses to heat stress has received little attention, despite increasing evidence that endothermic animals show considerable physiological variation among populations. We investigated seasonal (summer versus winter) variation in heat tolerance and evaporative cooling in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocepasser mahali; ∼ 47 g) at three sites along a climatic gradient with more than 10 °C variation in mid-summer maximum air temperature (Ta). We measured resting metabolic rate (RMR) and total evaporative water loss (TEWL) using open flow-through respirometry, and core body temperature (Tb) using passive integrated transponder tags. Sparrow-weavers were exposed to a ramped profile of progressively higher Ta between 30 and 52 °C to elicit maximum evaporative cooling capacity (N=10 per site per season); the maximum Ta birds tolerated before the onset of severe hyperthermia (Tb ≈ 44 °C) was considered to be their hyperthermia threshold Ta (Ta,HT). Our data reveal significant seasonal acclimatisation of heat tolerance, with a desert population of sparrow-weavers reaching significantly higher Ta in summer (49.5 ± 1.4 °C, i.e. higher Ta,HT) than in winter (46.8 ± 0.9 °C), reflecting enhanced evaporative cooling during summer. Moreover, desert sparrow-weavers had significantly higher heat tolerance and evaporative cooling capacity during summer compared with populations from more mesic sites (Ta,HT=47.3 ± 1.5 and 47.6 ± 1.3 °C). A better understanding of the contributions of local adaptation versus phenotypic plasticity to intraspecific variation in avian heat tolerance and evaporative cooling capacity is needed for modelling species' responses to changing climates. © 2016. Published by The Company of Biologists Ltd.

  2. Circadian and seasonal variation of migraine attacks in children.

    PubMed

    Soriani, Stefano; Fiumana, Elisa; Manfredini, Roberto; Boari, Benedetta; Battistella, Pier Antonio; Canetta, Elisabetta; Pedretti, Stefania; Borgna-Pignatti, Caterina

    2006-01-01

    To investigate the rhythmicity of migraine episodes without aura in a pediatric population. Time of occurrence of 2517 migraine attacks in 115 children was recorded, by means of a diary, both by hourly and monthly intervals. A significant circadian variation, characterized by a peak in the afternoon (P < .001) and one in the early morning (P= .002) was found. A seasonal peak was also observed between November and January, while a nadir was observed in July. The clustering of attacks in the morning and midday and in autumn-winter, with a minimum frequency in July, suggests that school activities may represent an important cause of migraine.

  3. Melatonin receptors in a pleuronectiform species, Solea senegalensis: Cloning, tissue expression, day-night and seasonal variations.

    PubMed

    Confente, Francesca; Rendón, María Carmen; Besseau, Laurence; Falcón, Jack; Muñoz-Cueto, José A

    2010-06-01

    Melatonin receptors are expressed in neural and peripheral tissues and mediate melatonin actions on the synchronization of circadian and circannual rhythms. In this study we have cloned three melatonin receptor subtypes (MT1, MT2 and Mel1c) in the Senegalese sole and analyzed their central and peripheral tissue distribution. The full-length MT1 (1452 nt), MT2 (1728 nt) and Mel1c (1980 nt) cDNAs encode different proteins of 345, 373, 355 amino acids, respectively. They were mainly expressed in retina, brain and pituitary, but MT1 was also expressed in gill, liver, intestine, kidney, spleen, heart and skin. At peripheral level, MT2 expression was only evident in gill, kidney and skin whereas Mel1c expression was restricted to the muscle and skin. This pattern of expression was not markedly different between sexes or among the times of day analyzed. The real-time quantitative PCR analyses showed that MT1 displayed higher expression at night than during the day in the retina and optic tectum. Seasonal MT1 expression was characterized by higher mRNA levels in spring and autumn equinoxes for the retina, and in winter and summer solstices for the optic tectum. An almost similar expression profile was found for MT2, but differences were less conspicuous. No day-night differences in MT1 and MT2 expression were observed in the pituitary but a seasonal variation was detected, being mRNA levels higher in summer for both receptors. Mel1c expression did not exhibit significant day-night variation in retina and optic tectum but showed seasonal variations, with higher transcript levels in summer (optic tectum) and autumn (retina). Our results suggest that day-night and seasonal variations in melatonin receptor expression could also be mediating circadian and circannual rhythms in sole. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Seasonal variation of Legionella in Taiwan's reservoir and its relationships with environmental factors.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Chang, Tien-Yu; Hsu, Tsui-Kang; Tzeng, Kai-Jiun; Huang, Yu-Li

    2015-04-01

    In this study, the presence of Legionella in major water reservoirs of Taiwan was examined with respect to seasonal variation, geographical variation, and water quality parameters using TaqMan real-time qPCR. Water samples were collected quarterly at 19 reservoirs in Taiwan between November 2012 and August 2013. The detection rate for Legionella was 35.5% (27/76), and Legionella was detected in all seasons. The Legionella concentration was relatively high in spring and summer, reaching 3.86 × 10(8) and 7.35 × 10(8) cells/L, respectively. By sampling the area, Legionella was detected at a higher proportion in reservoirs in the northern and southern areas, and the difference was consistent in all seasons. Significant association was found between detection of Legionella and various water quality parameters, including conductivity, chlorophyll a, and dissolved oxygen (Mann-Whitney U test, P < 0.05). Results of Spearman rank test showed negative correlation for Legionella detection with pH (P = 0.030, R = -0.497) and dissolved oxygen (P = 0.007, R = -0.596) in fall and positive correlation with Carlson's trophic state index (P = 0.049, R = 0.457) in spring. The identified species included Legionella pneumophila and Legionella drancourtii. The detection of Legionella in reservoirs was indicative of a potential public health risk and should be further evaluated.

  5. Seasonal variation of the South Indian tropical gyre

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    Based on satellite altimeter data and global atlases of temperature, salinity, wind stress and wind-driven circulation we investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR). Results show a year-round, altimeter-derived cyclonic gyre where the upwelling regime appears closely related to seasonality of the ocean gyre, a relationship that has not been previously explored in this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. At basin-scale, the most outstanding feature is the seasonal shrinkage of the ocean gyre and the SCTR. From late autumn to spring, the eastward South Equatorial Countercurrent (SECC) recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as remote forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC.

  6. Age and seasonal-dependent variations in the biochemical composition of boar semen.

    PubMed

    Fraser, L; Strzeżek, J; Filipowicz, K; Mogielnicka-Brzozowska, M; Zasiadczyk, L

    2016-08-01

    This study investigated the effect of age- and seasonal-related variations in the composition of boar semen over a 3-year period. At the onset of 8 months of age, ejaculates were collected from four boars and allocated into three groups: 8 to 18, 19 to 30, and 31 to 42 months and were divided into two seasonal periods: autumn-winter and spring-summer. Boar variability had a significant effect on most of the analyzed semen parameters. Significantly, higher ejaculate volumes were observed in the boars older than 18 months of age during the autumn-winter period. Sperm concentration was higher in boars less than the age of 18 months of age, whereas the total sperm numbers were significantly higher during the autumn-winter period, regardless of the age group. Seasonal effects in sperm motility were more marked in boars at the age of 19 to 30 months, being significantly higher during the autumn-winter period. The proportions of spermatozoa with intact, normal apical ridge acrosome, and osmotically tolerant acrosomal membranes were markedly higher in boars at the age of 19 to 30 months during the autumn-winter period. Spermatozoa harvested during the spring-summer period were more susceptible to lipid peroxidation, irrespective of the age group. Significantly, higher levels of protein content and concentrations of nonthiol-containing antioxidant components of the seminal plasma (SP) were detected in boars less than 18 months of age during the autumn-winter period. Seasonal effects on the pH and proteinase inhibitory activity in the SP were more marked in boars less than 18 months of age, whereas alkaline phosphatase activity was greater in boars at the age of 19 to 30 months during the autumn-winter period. Substantial amounts of the thiol-containing antioxidants of the SP were detected in boars older than 18 months of age during the spring-summer period. Neither osmolality nor total antioxidant status was affected by differences in the seasonal periods or age

  7. Seasonal variation of Martian pick-up ions: Evidence of breathing exosphere

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Hara, T.; Lundin, R.; Dubinin, E.; Fedorov, A.; Sauvaud, J.-A.; Frahm, R. A.; Ramstad, R.; Futaana, Y.; Holmstrom, M.; Barabash, S.

    2015-12-01

    The Mars Express (MEX) Ion Mass Analyser (IMA) found that the detection rate of the ring-like distribution of protons in the solar wind outside of the bow shock to be quite different between Mars orbital summer (around perihelion) and orbital winter (around aphelion) for four Martian years, while the north-south asymmetry is much smaller than the perihelion-aphelion difference. Further analyses using eight years of MEX/IMA solar wind data between 2005 and 2012 has revealed that the detection frequency of the pick-up ions originating from newly ionized exospheric hydrogen with certain flux strongly correlates with the Sun-Mars distance, which changes approximately every two years. Variation due to the solar cycle phase is not distinguishable partly because this effect is masked by the seasonal variation under the MEX capability of plasma measurements. This finding indicates that the variation in solar UV has a major effect on the formation of the pick-up ions, but this is not the only controlling factor.

  8. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records

    USGS Publications Warehouse

    Wong, C.I.; Banner, J.L.; Musgrove, M.

    2011-01-01

    A 4-year study in a central Texas cave quantifies multiple mechanisms that control dripwater composition and how these mechanisms vary at different drip sites. We monitored cave-air compositions, in situ calcite growth, dripwater composition and drip rate every 4-6weeks. Three groups of drip sites are delineated (Groups 1-3) based on geochemical variations in dripwater composition. Quantitative modeling of mineral-solution reactions within the host carbonate rock and cave environments is used to identify mechanisms that can account for variations in dripwater compositions. The covariation of Mg/Ca (and Sr/Ca) and Sr isotopes is key in delineating whether Mg/Ca and Sr/Ca variations are dictated by water-rock interaction (i.e., calcite or dolomite recrystallization) or prior calcite precipitation (PCP). Group 1 dripwater compositions reflects a narrow range of the extent of water-rock interaction followed by varying amounts of prior calcite precipitation (PCP). Group 2 dripwater compositions are controlled by varying amounts of water-rock interaction with little to no PCP influence. Group 3 dripwater compositions are dictated by variable extents of both water-rock interaction and PCP. Group 1 drip sites show seasonal variations in dripwater Mg/Ca and Sr/Ca, whereas the other drip sites do not. In contrast to the findings of most previous dripwater Mg/Ca-Sr/Ca studies, these seasonal variations (at Group 1 drip sites) are independent of changes in water flux (i.e., rainfall and/or drip rate), and instead significantly correlate with changes in cave-air CO2 concentrations. These results are consistent with lower cave-air CO2, related to cool season ventilation of the cave atmosphere, enhancing calcite precipitation and leading to dripwater geochemical evolution via PCP. Group 1 dripwater Mg/Ca and Sr/Ca seasonality and evidence for PCP as a mechanism that can account for that seasonality, have two implications for many other regions where seasonal ventilation of caves

  9. Longitudinal dependence of the seasonal variations of the topside ionospheric and plasmaspheric electron content: observations and model results

    NASA Astrophysics Data System (ADS)

    Zhang, Man-Lian; Liu, Libo; Ning, Baiqi; Wan, Weixing

    2016-07-01

    Radio signals transmitted from GPS satellite going through the ionization zone above the Earth will be refracted by the ionized components in the ionosphere and the plasmasphere, which would produce additional transfer delay and generate extra errors in satellite navigation and positioning, etc. These errors have strong relation with the total electron content (TEC) along the signal's travelling path. Therefore TEC is one of the most important parameters required by many users for different modern usage purposes. The topside ionospheric and plasmaspheric electron content makes a large contribution to TEC. In the present study, data for the year 2008 of the topside ionospheric and plasmaspheric electron content (PEC) between the height of 800-20200km above the Earth derived from the upward-looking TEC measurements of the precise orbit determination antenna on board the COSMIC low Earth orbit (LEO) satellites to the GPS signals are used to study the longitudinal dependence of the seasonal variations of PEC. A comparison study of the observed PEC with the IZMIRAN_Plas model results is also made. Our study showed that PEC shows different seasonal variations at different longitudinal sectors: for the 240°E-60°E longitudinal sector, PEC shows a strong annual variation with lowest value in the June solstice and highest value in the December solstice months; In contrast, very weak seasonal variations are observed for PEC at 60°E-240°E longitudinal sector; Comparison study showed that this longitudinal dependence feature of the observed PEC's seasonal variation is not well captured by the IZMIRAN_Plas model result. Acknowledgments This research was supported by the National Natural Science Foundation of China (NSFC No. 41274163)

  10. Evaluation of an 18-year CMAQ simulation: Seasonal variations and long-term temporal changes in sulfate and nitrate

    NASA Astrophysics Data System (ADS)

    Civerolo, Kevin; Hogrefe, Christian; Zalewsky, Eric; Hao, Winston; Sistla, Gopal; Lynn, Barry; Rosenzweig, Cynthia; Kinney, Patrick L.

    2010-10-01

    This paper compares spatial and seasonal variations and temporal trends in modeled and measured concentrations of sulfur and nitrogen compounds in wet and dry deposition over an 18-year period (1988-2005) over a portion of the northeastern United States. Substantial emissions reduction programs occurred over this time period, including Title IV of the Clean Air Act Amendments of 1990 which primarily resulted in large decreases in sulfur dioxide (SO 2) emissions by 1995, and nitrogen oxide (NO x) trading programs which resulted in large decreases in warm season NO x emissions by 2004. Additionally, NO x emissions from mobile sources declined more gradually over this period. The results presented here illustrate the use of both operational and dynamic model evaluation and suggest that the modeling system largely captures the seasonal and long-term changes in sulfur compounds. The modeling system generally captures the long-term trends in nitrogen compounds, but does not reproduce the average seasonal variation or spatial patterns in nitrate.

  11. Water-use efficiency of willow: Variation with season, humidity and biomass allocation

    NASA Astrophysics Data System (ADS)

    Lindroth, Anders; Verwijst, Theo; Halldin, Sven

    1994-04-01

    Information on the water-use efficiency (WUE) of a vegetation cover improves understanding of the interrelationship between the water and carbon cycles, and enables hydrological practices to be related to agricultural and silvicultural planning and management. This study determined seasonal and climatic variations of the WUE of a fertilized and irrigated short-rotation stand of Salix viminalis L. on a clay soil. The WUE was determined as the ratio of above-ground production to transpiration or, alternatively, to transpiration divided by the saturation vapour pressure deficit. Growth was estimated from a combination of destructive and non-destructive measurements for 10 day periods during the growing seasons of 1986 and 1988. Daily transpiration was estimated using a physically based evaporation model, tuned against energy-balance/Bowen-ratio measurements of total stand evaporation. Nutrients were adequate and climate conditions were similar in both years. In spite of irrigation soil-water deficits developed during midsummer and affected growth rates in different ways: in 1986, both stem and leaf growth decreased, while in 1988 only stem growth decreased. Exceptionally high stem growth rates, twice the total potential growth rates, were recorded after the drought of 1988. They were probably caused by root-allocated assimilates that were sent above-ground after the drought. In both years, stem growth ceased 2-3 weeks after the leaf area had reached its maximum. Since light and temperature were still sufficient to maintain assimilation, all growth presumably took place below ground towards the end of the season. Changes in root-shoot allocation caused large variations in the WUE in 1988. The WUE, weighted by the saturation vapour pressure deficit, was fairly constant in 1986. In both years, the WUE was correlated with the vapour pressure deficit. Towards the end of both growing seasons, when all assimilates were sent below ground, the WUE decreased rapidly to zero

  12. Understanding the climate-included variations in the seasonal water demands of irrigated crops in Northern India

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Jain, M.

    2016-12-01

    Expected changes in temperature and precipitation patterns in the rice-wheat belt of Northern India have implications for balancing crop water demand and available water resources. Because the impacts of water scarcity and reduced crop production are realized at a local scale, water-saving interventions are most effective when implemented locally. However, a paucity of fine-scale studies on the relationship between variations in climate and crop water demand has limited our ability to effectively implement such interventions. In an effort to better understand the responses of irrigated crops to changing climate in Northern India at finer-scales, we propose a remote sensing based semi-empirical approach. First, we employ a multi-model surface energy balance (SEB) approach to map seasonal evapotranspiration (ET)/water use (1995-2015) at 30 to 100 m resolution from space and investigate how seasonal and inter-annual variations in temperature and precipitation are associated with regional surface-energy budgets. Second, using remote estimates of ET and other biophysical variables, such as vegetation indices, land surface temperature, and albedo, we will explain the possible relationships between climate change and seasonal water demands of crops. Our estimates of high/moderate resolution (30 to 100 m) seasonal ET maps can make clear distinctions between impacts of climate variations on crop water demand at field, plot, and regional scales in Northern India. Finally, by improving our ability to identify targeted area for water-saving interventions, this study supports agricultural resiliency of Northern India in the face of climate change.

  13. PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): Seasonal variations, source identification, health risk assessment and their relationship to air-mass movement

    NASA Astrophysics Data System (ADS)

    Wiriya, Wan; Prapamontol, Tippawan; Chantara, Somporn

    2013-04-01

    This study aims to analyze the seasonal variations of PM10-bound polycyclic aromatic hydrocarbons (PAHs) for an estimation of the human health risk and identification of their possible sources. Ninety four PM10 samples were collected during the dry and wet seasons of 2010 and the dry season of 2011 in Chiang Mai, Thailand, and analyzed for 16 PAHs by gas chromatography-mass spectrometry. The average PM10 concentrations were 104.91 ± 32.70, 13.28 ± 11.34 and 36.24 ± 19.16 μg/m3 in dry season of 2010, wet season of 2010 and dry season of 2011, respectively, while the average 16-PAHs concentrations were 25.87 ± 10.13, 3.12 ± 2.18 and 4.58 ± 2.18 ng/m3, respectively. Correlations of PM10 and total PAHs concentrations were relatively high during all seasons (r > 0.796). In addition, PM10 concentrations were highly correlated with carcinogenic PAHs (r = 0.927) during the dry season of 2010, indicating that carcinogenic compounds were dominant in the particulate PAHs and could be generated from open burning, usually conducted in the dry season. The average PM10 concentration in the dry season of 2011 was much lower than that in 2010 and lower than the annual average of the past 12 years (48.17 μg/m3) because of the unusually high amount of rain precipitation and low open burning activity in this year. According to the accumulated number of hot spots occurring in northern part of Thailand, approximately 19,000 spots were found in the dry season of 2010, while only 6,600 spots were found in the dry season of 2011. It can be seen that larger scale open burning activities were performed in the dry season of 2010 than in the dry season of 2011. The value of toxicity equivalent concentration from PAHs in the dry season of 2010 was higher than that of the wet season of 2010 and the dry season of 2011. This is obviously related to concentrations of PM10 and PAHs. Diagnostic ratio and principal component analysis were used to find out the sources of PM10-bound PAHs. It was

  14. The specificity of host-bat fly interaction networks across vegetation and seasonal variation.

    PubMed

    Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta

    2016-10-01

    Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.

  15. Seasonal variations in daily rhythms of activity in athletic horses.

    PubMed

    Bertolucci, C; Giannetto, C; Fazio, F; Piccione, G

    2008-07-01

    Circadian rhythms reflect extensive programming of biological activity that meets and exploits the challenges and opportunities offered by the periodic nature of the environment. In the present investigation, we recorded the total activity of athletic horses kept at four different times of the year (vernal equinox, summer solstice, autumn equinox and winter solstice), to evaluate the presence of seasonal variations of daily activity rhythms. Athletic Thoroughbred horses were kept in individual boxes with paddock. Digitally integrated measure of total activity of each mare was continuously recorded by actigraphy-based data loggers. Horse total activities were not evenly distributed over the day, but they were mainly diurnal during the year. Daily activity rhythms showed clear seasonal variations, with the highest daily amount of activity during the vernal equinox and the lowest during the winter solstice. Interestingly, the amount of activity during either photophase or scotophase changed significantly throughout the year. Circadian analysis of horse activities showed that the acrophase, the estimated time at which the peak of the rhythm occurs, did not change during the year, it always occurred in the middle of the photoperiod. Analysing the time structure of long-term and continuously measured activity and feeding could be a useful method to critically evaluate athletic horse management systems in which spontaneous locomotor activity and feeding are severely limited. Circadian rhythms are present in several elements of sensory motor and psychomotor functions and these would be taken into consideration to plan the training schedules and competitions in athletic horses.

  16. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    PubMed Central

    Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind

    2012-01-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651

  17. Sources of variation and genetic profile of spontaneous, out-of-season ovulatory activity in the Chios sheep

    PubMed Central

    Avdi, Melpomeni; Banos, Georgios; Kouttos, Athanasios; Bodin, Loys; Chemineau, Philippe

    2003-01-01

    Organising the breeding plan of a seasonally breeding species, such as sheep, presents a challenge to farmers and the industry as a whole, since both economical and biological considerations need to be carefully balanced. Understanding the breeding activity of individual animals becomes a prerequisite for a successful breeding program. This study set out to investigate the sources of variation and the genetic profile of the spontaneous, out-of-season ovulatory activity of ewes of the Chios dairy sheep breed in Greece. The definition of the trait was based on blood progesterone levels, measured before exposing the ewes to rams, which marks the onset of the usual breeding season. Data were 707 records, taken over two consecutive years, of 435 ewes kept at the Agricultural Research Station of Chalkidiki in northern Greece. When all available pedigree was included, the total number of animals involved was 1068. On average, 29% of all ewes exhibited spontaneous, out-of-season ovulatory activity, with no substantial variation between the years. Significant sources of systematic variation were the ewe age and live weight, and the month of previous lambing. Older, heavier ewes, that had lambed early the previous autumn, exhibited more frequent activity. Heritability estimates were 0.216 (± 0.084) with a linear and 0.291 with a threshold model. The latter better accounts for the categorical nature of the trait. The linear model repeatability was 0.230 (± 0.095). The results obtained in this study support the notion that spontaneous out-of-season ovulatory activity can be considered in the development of a breeding plan for the Chios sheep breed. PMID:12605851

  18. Formulation of cosmic-ray solar daily variation and its seasonal variation, produced from generalized stationary anisotropy of solar origin

    NASA Technical Reports Server (NTRS)

    Tatsuoka, R.; Nagashima, K.

    1985-01-01

    In previous papers, a formulation was presented of cosmic ray daily variations produced from solar anisotropies stationary through a year, and also of their annual (or seasonal) modulation caused by the annual variation of the rotation axis of the Earth relative to that of the Sun. These anisotropies are symmetric for an arbitrary rotation around an axis. From observations of the tri-diurnal variation, it has been suggested that solar anisotropies also contain some axis-asymmetric term of the third order with respect to the IMF-axis. This suggestion has recently found support in a theoretical study by Munakata and Nagashima. According to their results, the terms of axis-asymmetry with respect to IMF-axis appear also in the 2nd order anisotropy, together with some different kinds of axis-symmetric terms. The contribution of these anisotropies to the daily variation is different from that of those discussed previously. The above mentioned formulation is extended to a case of a generalized anisotropy.

  19. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands

    NASA Astrophysics Data System (ADS)

    Quan, Jinling; Zhan, Wenfeng; Chen, Yunhao; Wang, Mengjie; Wang, Jinfei

    2016-03-01

    Previous time series methods have difficulties in simultaneous characterization of seasonal, gradual, and abrupt changes of remotely sensed land surface temperature (LST). This study proposed a model to decompose LST time series into trend, seasonal, and noise components. The trend component indicates long-term climate change and land development and is described as a piecewise linear function with iterative breakpoint detection. The seasonal component illustrates annual insolation variations and is modeled as a sinusoidal function on the detrended data. This model is able to separate the seasonal variation in LST from the long-term (including gradual and abrupt) change. Model application to nighttime Moderate Resolution Imaging Spectroradiometer (MODIS)/LST time series during 2000-2012 over Beijing yielded an overall root-mean-square error of 1.62 K between the combination of the decomposed trend and seasonal components and the actual MODIS/LSTs. LST decreased (~ -0.086 K/yr, p < 0.1) in 53% of the study area, whereas it increased with breakpoints in 2009 (~0.084 K/yr before and ~0.245 K/yr after 2009) between the fifth and sixth ring roads. The decreasing trend was stronger over croplands than over urban lands (p < 0.05), resulting in an increasing trend in surface urban heat island intensity (SUHII, 0.022 ± 0.006 K/yr). This was mainly attributed to the trends in urban-rural differences in rainfall and albedo. The SUHII demonstrated a concave seasonal variation primarily due to the seasonal variations of urban-rural differences in temperature cooling rate (related to canyon structure, vegetation, and soil moisture) and surface heat dissipation (affected by humidity and wind).

  20. INVESTIGATION OF SYSTEMATIC EFFECTS IN KEPLER DATA: SEASONAL VARIATIONS IN THE LIGHT CURVE OF HAT-P-7b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eylen, V.; Lindholm Nielsen, M.; Hinrup, B.

    2013-09-10

    With years of Kepler data currently available, the measurement of variations in planetary transit depths over time can now be attempted. To do so, it is of primary importance to understand which systematic effects may affect the measurement of transits. We aim to measure the stability of Kepler measurements over years of observations. We present a study of the depth of about 500 transit events of the Hot Jupiter HAT-P-7b, using 14 quarters (Q0-Q13) of data from the Kepler satellite. We find a systematic variation in the depth of the primary transit, related to quarters of data and recurring yearly.more » These seasonal variations are about 1%. Within seasons, we find no evidence for trends. We speculate that the cause of the seasonal variations could be unknown field crowding or instrumental artifacts. Our results show that care must be taken when combining transits throughout different quarters of Kepler data. Measuring the relative planetary radius of HAT-P-7b without taking these systematic effects into account leads to unrealistically low error estimates. This effect could be present in all Kepler targets. If so, relative radius measurements of all Hot Jupiters to a precision much better than 1% are unrealistic.« less

  1. Evolution of Mars' northern polar seasonal CO2 deposits: Variations in surface brightness and bulk density

    NASA Astrophysics Data System (ADS)

    Mount, Christopher P.; Titus, Timothy N.

    2015-07-01

    Small-scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct end-members across the NPSC: (1) Snow deposits may anneal to form an overlying slab layer that fractures. These low-density deposits maintain relatively constant densities over springtime. (2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high-density deposits dramatically increase in density over time. The end-members appear to be correlated with latitude.

  2. Evolution of Mars’ Northern Polar Seasonal CO2 deposits: variations in surface brightness and bulk density

    USGS Publications Warehouse

    Mount, Christopher P.; Titus, Timothy N.

    2015-01-01

    Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.

  3. Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn

    NASA Astrophysics Data System (ADS)

    Kang, Shichang; Zhang, Qianggong; Kaspari, Susan; Qin, Dahe; Cong, Zhiyuan; Ren, Jiawen; Mayewski, Paul A.

    In May 2005, a total of 14 surface snow (0-10 cm) samples were collected along the climbing route from the advanced base camp to the summit (6500-8844 m a.s.l.) on the northern slope of Mt. Everest (Qomolangma). A 108 m firn/ice core was retrieved from the col of the East Rongbuk Glacier (28.03°N, 86.96°E, 6518 m a.s.l.) on the north eastern saddle of Mt. Everest in September 2002. Surface snow and the upper 3.5 m firn samples from the core were analyzed for major and trace elements by inductively coupled plasma mass spectroscopy (ICP-MS). Measurements show that crustal elements dominated both surface snow and the firn core, suggesting that Everest snow chemistry is mainly influenced by crustal aerosols from local rock or prevalent spring dust storms over southern/central Asia. There are no clear trends for element variations with elevation due to local crustal aerosol inputs or redistribution of surface snow by strong winds during the spring. Seasonal variability in snow/firn elements show that high elemental concentrations occur during the non-monsoon season and low values during the monsoon season. Ca, Cr, Cs, and Sr display the most distinct seasonal variations. Elemental concentrations (especially for heavy metals) at Mt. Everest are comparable with polar sites, generally lower than in suburban areas, and far lower than in large cities. This indicates that anthropogenic activities and heavy metal pollution have little effect on the Mt. Everest atmospheric environment. Everest firn core REE concentrations are the first reported in the region and seem to be comparable with those measured in modern and Last Glacial Maximum snow/ice samples from Greenland and Antarctica, and with precipitation samples from Japan and the East China Sea. This suggests that REE concentrations measured at Everest are representative of the background atmospheric environment.

  4. [The changes of forest canopy spectral reflectance with seasons in Xiaoxing'anling].

    PubMed

    Xu, Guang-Cai; Pang, Yong; Li, Zeng-Yuan; Zhao, Kai-Rui; Liu, Lu-Xia

    2013-12-01

    The ASD FieldSpec portable spectrometer was adopted to collect canopy reflectance spectrum data of the 9 main tree species in study area by a long-term observation to get the data of the four seasons Then the smoothed reflectance curve and the first derivation curve from 350 to 1400 nm and several commonly used vegetation spectral characteristic parameters were generated to analyse seasonal change characteristics and variation of the 9 tree species in visible and near-infrared band and to explore the best band characteristics and period for species identification. The results showed that different trees had different and rather unique spectral features during the four seasons. The spectral characteristics of the deciduous trees have regular changes with the cycle of the seasons, whereas those of the evergreen tree species have no significant changes in one year. As well changes in the spectral characteristics could effectively reflect forest phenology changes, and it is proposed that the optimal strategy for tree species classification may be the integration and analysis of multi-seasonal spectral data. Evergreen trees and deciduous trees in the winter have obvious differences in the canopy spectral characteristics and the best single-season remote sensing data for tree species recognition is in summer.

  5. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas

    NASA Astrophysics Data System (ADS)

    Akin, S.; Winemiller, K. O.; Gelwick, F. P.

    2003-05-01

    Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large

  6. An efficient mosaic algorithm considering seasonal variation: application to KOMPSAT-2 satellite images.

    PubMed

    Choi, Jaewon; Jung, Hyung-Sup; Yun, Sang-Ho

    2015-03-09

    As the aerospace industry grows, images obtained from Earth observation satellites have been successfully used in various fields. Specifically, the demand for a high-resolution (HR) optical images is gradually increasing, and hence the generation of a high-quality mosaic image is being magnified as an interesting issue. In this paper, we have proposed an efficient mosaic algorithm for HR optical images that are significantly different due to seasonal change. The algorithm includes main steps such as: (1) seamline extraction from gradient magnitude and seam images; (2) histogram matching; and (3) image feathering. Eleven Kompsat-2 images characterized by seasonal variations are used for the performance validation of the proposed method. The results of the performance test show that the proposed method effectively mosaics Kompsat-2 adjacent images including severe seasonal changes. Moreover, the results reveal that the proposed method is applicable to HR optic images such as GeoEye, IKONOS, QuickBird, RapidEye, SPOT, WorldView, etc.

  7. Seasonal variation of organic aerosol in PM2.5 at Anmyeondo, a background site in Korea

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, E. S.; Kim, Y. P.; Jung, C. H.; Lee, J.

    2016-12-01

    Routine measurements of PM2.5 and chemical speciation for 100 individual organic compounds were carried out to understand seasonal variation of organic compounds at a background area in Korea between 2015 and 2016. Organic compounds analyzed in this study were classified into five groups, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), fatty acids (FA), dicarboxylic acids (DCAs), and sugar. Further, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and Humic Like Substance-Carbon (HULIS-C) in PM2.5 were simultaneously analyzed to make mass balance of carbonaceous aerosol in PM2.5 at a background site in Korea. PAHs concentrations at this site was lower than that at Seoul, a representative urban site in Korea. PAHs and n-Alkanes concentrations showed clear seasonal variation with summer minimum and winter maximum, while, seasonal variation of DCAs and Sugars were different with PAHs and n-Alkanes.WSOC concentrations were highly correlated with SOC (Secondary Organic Carbon) concentrations which were estimated by the EC tracer method. The results indicate the formation of secondary organic aerosol (SOA) is major factor for the determination of WSOC concentrations in this region. HULIS-C as known one of brown carbon was major component of WSOC which accounts for 39 to 99% in WSOC. The average concentrations of HULIS-C was 2.02±1.42 and the highest concentration was observed in fall.

  8. Using Acoustics to Determine Eelgrass Bed Distribution and to Assess the Seasonal Variation of Ecosystem Service.

    PubMed

    Sonoki, Shiori; Shao, Huamei; Morita, Yuka; Minami, Kenji; Shoji, Jun; Hori, Masakazu; Miyashita, Kazushi

    2016-01-01

    Eelgrass beds are an important source of primary production in coastal ecosystems. Understanding seasonal variation in the abundance and distribution of eelgrass is important for conservation, and the objectives of this study were to 1) monitor seasonal variation in eelgrass beds using an acoustic monitoring method (Quantitative echo sounder) and 2) broadly quantify the carbon circulation function. We obtained acoustic data of eelgrass beds in coastal areas north and east of Ikunojima Island. Surveys were conducted nine times over the 3-year period from 2011 to 2013 in order to monitor seasonal variation. Acoustic data were obtained and used to estimate the spatial distribution of eelgrass by geostatistical methods. To determine supporting services, we determined carbon sink and carbon fixation by eelgrass beds using data from the National Research Institute of Fisheries and Environment of Inland Sea (2011). The height and distribution of eelgrass beds were at a maximum in May and at a minimum in November of each year. Distribution trends were different between the north and east areas. Supporting services showed the same patterns throughout the year. The area of distribution was considered to be coincident with the life history of eelgrass. Distribution differed by area and changed yearly due to the effects of bottom characteristics and wind direction. Quantifying the supporting services of eelgrass beds was shown to be useful for managing the conservation of coastal ecosystems.

  9. Spatial and seasonal variations in stream water delta34S-dissolved organic matter in northern Sweden.

    PubMed

    Giesler, Reiner; Björkvald, Louise; Laudon, Hoalmar; Mörth, Carl-Magnus

    2009-01-15

    The discharge of terrestrial dissolved organic matter (DOM) by streams is an important cross-system linkage that strongly influences downstream aquatic ecosystems. Isotopic tracers are important tools that can help to unravel the source of DOM from different terrestrial compartments in the landscape. Here we demonstrate the spatial and seasonal variation of delta34S of DOM in 10 boreal streams to test if the tracer could provide new insights into the origin of DOM. We found large spatial and seasonal variations in stream water delta34S-DOM values ranging from -5.2 per thousand to +9.6 per thousand with an average of +4.0 +/- 0.6 (N = 62; average and 95% confidence interval). Large seasonal variations were found in stream water delta34S-DOM values: for example, a shift of more than 10 per thousand during the spring snowmelt in a wetland-dominated stream. Spatial differences were also observed during the winter base flow with higher delta34S-DOM values in the fourth-order Krycklan stream at the outlet of the 68 km2 catchment compared to the small (< 1 km2) headwater streams. Our data clearly show that the delta34S-DOM values have the potential to be used as a tracer to identify and generate new insights about terrestrial DOM sources in the boreal landscape.

  10. Diurnal and seasonal variation of mercury species at coastal-suburban, urban, and rural sites in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Nair, Udaysankar S.; Wu, Yuling; Walters, Justin; Jansen, John; Edgerton, Eric S.

    2012-02-01

    Observations for the 2005-2008 time period from three Southeastern Aerosol Research and Characterization (SEARCH) air quality monitoring sites are examined for diurnal and seasonal variation in concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particle bound mercury (HgP < 2.5 μm). The sites are located at 1) a suburban-coastal location near Pensacola, Florida (OLF), 2) an urban location in Birmingham, Alabama (BHM), and 3) a rural location west-northwest of Atlanta, Georgia (YRK). Average concentrations of GEM at both OLF and YRK are 1.35 ng m -3, whereas at BHM it is 2.12 ng m -3. All sites show increase in GEM concentration during the morning hours (0.023 and 0.011 ng m -3hr -1 at OLF and YRK between 6 and 10 AM, 0.038 ng m -3hr -1 at BHM between 5 and 10 AM) due to downward mixing of higher concentrations from the residual layer, after which OLF and YRK show negligible variation compared to decrease in concentration at BHM (2.3-1.9 ng m -3 from 10 AM to 6 PM). All sites show seasonal variation of GEM with enhanced concentrations found in winter and spring. Average GOM concentrations are 4.26, 8.55, and 78.2 pg m -3 at OLF, YRK, and BHM, respectively. Seasonally, GOM values are enhanced during fall and spring. All sites undergo a sinusoidal daytime variation of GOM that peaks in the afternoon, while BHM additionally exhibits an early morning enhancement likely caused by vertical mixing. The average HgP concentrations at OLF, YRK, and BHM are 2.49, 4.43, and 39.5 pg m -3, respectively. At OLF, vertical mixing causes an early morning increase in HgP concentration followed by an afternoon decline during all seasons. A daytime increase in HgP is found at YRK for all seasons, while at BHM, nocturnal accumulation followed by a daytime decline is also found for most seasons except winter. In winter, concentrations increase due to vertical mixing in the morning and then decline as the boundary layer grows. Boundary layer processes

  11. Seasonal Changes in Atmospheric Noise Levels and the Annual Variation in Pigeon Homing Performance

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.; McIsaac, H. P.; Drob, D. P.

    2015-12-01

    The remarkable navigational ability of homing pigeons (Columba livia) is influenced by a number of factors, an unknown one of which causes the "Wintereffekt"1 or annual variation in homing performance. Minima in homeward orientation and return speeds have been observed in winter, with maxima in summer, during repetitive pigeon releases from single sites near experimental lofts in Wilhelmshaven, Göttingen, and Munich, Germany, and near Pisa, Italy1-4. Overall the annual variation is more pronounced in northern Germany than Italy4, and both mature and juvenile cohorts respond to this seasonal factor. Older, more experienced pigeons are better at compensating for its effects than naïve ones, but are still affected after numerous releases. The narrow low-frequency band of atmospheric background noise (microbaroms; 0.1-0.3 Hz) also varies with an annual cycle that generally has higher amplitudes in winter than in summer depending on location5. In addition, homing pigeons, and possibly other birds, apparently use infrasonic signals of similar frequency as navigational cues6, and a seasonal variation in background noise levels could cause corresponding changes in signal-to-noise ratios and thus in homing performance. The annual variation in homing performance, however, was not observed during long-term pigeon releases at two sites in eastern North America. The annual and geographic variability in homing performance in the northern hemisphere can be explained to a first order by seasonal changes in infrasonic noise sources related to ocean storm activity, and to the direction and intensity of stratospheric winds. In addition, increased dispersion in departure bearings of individual birds for some North American releases were likely caused by additional infrasonic noise associated with severe weather events during tornado and Atlantic hurricane seasons. 1Kramer, G. & von Saint Paul, U., J. Ornithol. 97, 353-370 (1956); 2Wallraff, H. G., Z. Tierpsychol. 17, 82-113 (1960

  12. Experimental characterization of seasonal variations in infrasonic traveltimes on the Korean Peninsula with implications for infrasound event location

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Stump, Brian W.; Lee, Hee-Il

    2011-04-01

    The dependence of infrasound propagation on the season and path environment was quantified by the analysis of more than 1000 repetitive infrasonic ground-truth events at an active, open-pit mine over two years. Blast-associated infrasonic signals were analysed from two infrasound arrays (CHNAR and ULDAR) located at similar distances of 181 and 169 km, respectively, from the source but in different azimuthal directions and with different path environments. The CHNAR array is located to the NW of the source area with primarily a continental path, whereas the ULDAR is located East of the source with a path dominated by open ocean. As a result, CHNAR observations were dominated by stratospheric phases with characteristic celerities of 260-289 m s-1 and large seasonal variations in the traveltime, whereas data from ULDAR consisted primarily of tropospheric phases with larger celerities from 322 to 361 m s-1 and larger daily than seasonal variation in the traveltime. The interpretation of these observations is verified by ray tracing using atmospheric models incorporating daily weather balloon data that characterizes the shallow atmosphere for the two years of the study. Finally, experimental celerity models that included seasonal path effects were constructed from the long-term data set. These experimental celerity models were used to constrain traveltime variations in infrasonic location algorithms providing improved location estimates as illustrated with the empirical data set.

  13. Local time, seasonal, and solar cycle dependency of longitudinal variations of TEC along the crest of EIA over India

    NASA Astrophysics Data System (ADS)

    Sunda, Surendra; Vyas, B. M.

    2013-10-01

    global wave number 4 structure in the Indian longitudinal region spanning from ~70 to 95°E forming the upward slope of the peak in the total electron content (TEC) are reported along the crest of equatorial ionization anomaly (EIA). The continuous and simultaneous measurements from five GPS stations of GPS Aided Geo Augmented Navigation (GAGAN) network are used in this study. The long-term database (2004-2012) is utilized for examining the local time, seasonal, and solar cycle dependency on the longitudinal variations of TEC. Our results confirm the existence of longitudinal variations of TEC in accordance with wave number 4 longitudinal structure including its strength. The results suggest that these variations, in general, start to develop at ~09 LT, achieve maximum strength at 12-15 LT, and decay thereafter, the decay rate depending on the season. They are more pronounced in equinoctial season followed by summer and winter. The longitudinal variations persist beyond midnight in equinox seasons, whereas in winter, they are conspicuously absent. Interestingly, they also exhibit significant solar cycle dependence in the solstices, whereas in the equinoxes, they are independent of solar activity. The comparison of crest-to-trough ratio (CTR) in the eastern (92°E) and western (72°E) extreme longitudes reveals higher CTR on the eastern side than over the western extreme, suggesting the role of nonmigrating tides in modulating the ExB vertical drift and the consequential EIA crest formation.

  14. Standard seasons

    NASA Astrophysics Data System (ADS)

    Tuller, Stanton E.

    1990-09-01

    A renewed interest in climatic definitions of the seasons has surfaced in recent years. However, people usually associate biological phenomena and climate with the seasons. Standard seasons, defined as the periods of the year when the climate is within specified bounds, can be delimited in terms of biological phenomena if climatic thresholds are known for the groups of interest. By focusing attention on the time variation they illustrate climatic variation from a different perspective. An example of the type of information provided by standard seasons on the regional scale is given using human thermal standard seasons in the Pacific Basin. The latitudinal control of climate is indicated by the length of the hot and cold seasons. The moderation of maritime climates is seen in the shortness and slower rate of advance and retreat of the hot and cold seasons, and the extended length of the neutral (or spring) season. Standard seasons have widespread application in indicating the times of the year favorable or unfavorable for particular populations or activities. Bioclimatologists can contribute to season definition by expanding the range of information on climate-organism interaction on which seasonal thresholds are based and may find standard seasons useful in presenting the results of many types of investigations.

  15. Impact of seasonal variation, age and smoking status on human semen parameters: The Massachusetts General Hospital experience

    PubMed Central

    Chen, Zuying; Godfrey-Bailey, Linda; Schiff, Isaac; Hauser, Russ

    2004-01-01

    Background To investigate the relationship of human semen parameters with season, age and smoking status. Methods The present study used data from subjects recruited into an ongoing cross-sectional study on the relationship between environmental agents and semen characteristics. Our population consisted of 306 patients who presented to the Vincent Memorial Andrology Laboratory of Massachusetts General Hospital for semen evaluation. Sperm concentration and motility were measured with computer aided sperm analysis (CASA). Sperm morphology was scored using Tygerberg Kruger strict criteria. Regression analyses were used to investigate the relationships between semen parameters and season, age and smoking status, adjusting for abstinence interval. Results Sperm concentration in the spring was significantly higher than in winter, fall and summer (p < 0.05). There was suggestive evidence of higher sperm motility and percent of sperm with normal morphology in the spring than in the other seasons. There were no statistically significant relationships between semen parameters and smoking status, though current smokers tended to have lower sperm concentration. We also did not find a statistically significant relationship between age and semen parameters. Conclusions We found seasonal variations in sperm concentration and suggestive evidence of seasonal variation in sperm motility and percent sperm with normal morphology. Although smoking status was not a significant predictor of semen parameters, this may have been due to the small number of current smokers in the study. PMID:15507127

  16. Seasonal variations in erodibility and sediment transport potential in a mesotidal channel-flat complex, Willapa Bay, WA

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Law, Brent A.; Wheatcroft, Robert A.; Milligan, Timothy G.; Hill, Paul S.

    2013-06-01

    Measurements of erodibility, porosity and sediment size were made three times over the course of a year at sites within a muddy, mesotidal flat-channel complex in southern Willapa Bay, WA, to examine spatial and seasonal variations in sediment properties and transport potential. Average critical shear stress profiles, the metric we used for erodibility, were quantified using a power-law fit to cumulative eroded mass vs. shear stress for the flats and channel. Laboratory erosion measurements of deposits made from slurries of flat and channel sediment were used to quantify erodibility over consolidation time scales ranging from 6 to 96h. Erodibility of the tidal flats was consistently low, with spatial variability comparable to seasonal variability despite seasonal changes in biological activity. In contrast, channel-bed erodibility underwent large seasonal variations, with mobile sediment present in the channel thalweg during winter that was absent in the spring and summer, when channel-bed erodibility was low and comparable to that of the tidal flats. Sediment on the northern (left) channel flank was mobile in summer and winter, whereas sediment on the southern flank was not. Seasonal changes in channel-bed erodibility are sufficient to produce order-of-magnitude changes in suspended sediment concentrations during peak tidal flows. Porosity just below the sediment surface was the best predictor of erodibility in our study area.

  17. Longitudinal Changes and Seasonal Variation in Body Composition in Professional Australian Football Players.

    PubMed

    Bilsborough, Johann C; Kempton, Thomas; Greenway, Kate; Cordy, Justin; Coutts, Aaron J

    2017-01-01

    To compare development and variations in body composition of early-, mid-, and late-career professional Australian Football (AF) players over 3 successive seasons. Regional and total-body composition (body mass [BM], fat mass [FM], fat-free soft-tissue mass [FFSTM], and bone mineral content [BMC]) were assessed 4 times, at the same time of each season-start preseason (SP), end preseason (EP), midseason (MS), and end season (ES)-from 22 professional AF players using pencil-beam dual-energy X-ray absorptiometry. Nutritional intake for each player was evaluated concomitantly using 3-d food diaries. Players were classified according to their age at the beginning of the observational period as either early- (<21 y, n = 8), mid- (21 to 25 y, n = 9), or late- (>25 y, n = 5) career athletes. Early-career players had lower FFSTM, BMC, and BM than mid- and late-career throughout. FM and %FM had greatest variability, particularly in the early-career players. FM reduced and FFSTM increased from SP to EP, while FM and FFSTM decreased from EP to MS. FM increased and FFSTM decreased from MS to ES, while FM and FFSTM increased during the off-season. Early-career players may benefit from greater emphasis on specific nutrition and resistance-training strategies aimed at increasing FFSTM, while all players should balance training and diet toward the end of season to minimize increases in FM.

  18. Further study on the solar activity variation of daytime NmF2

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo

    2010-12-01

    The ionosonde observations in the East Asia-Australia sector are collected to further investigate the solar activity variation of daytime (0800 ˜ 1600 LT) NmF2. The linear increase rate of NmF2 with F10.7 at lower solar activity levels is remarkably dependent on latitude, season, and local time. The rate is largest in equinoxes (with an equinoctial asymmetry) and higher in the morning (afternoon) in local winter (summer) at geomagnetic midlatitudes; particularly, the maximum rates in local winter are obviously larger than those in local summer at northern midlatitudes. In the equatorial ionization anomaly (EIA) crest regions, the rates in equinoxes and December (June) solstice are remarkably higher than those in June (December) solstice at the northern (southern) EIA crest, and the rate grows from the morning sector to the afternoon sector. The variation trend of NmF2 with F10.7 also shows latitudinal, seasonal, and local time dependences. The saturation effect dominates in all seasons in the EIA regions; at midlatitudes, NmF2 nearly increases linearly with F10.7 in local winter so that a linear fit is a good approximation for NmF2 modeling, while the saturation effect still dominates in other seasons. The saturation effect is more significant in the afternoon, and the strongest saturation effect appears at the EIA crest latitudes in equinox afternoon. Discussions indicate that the variations of neutral atmosphere and hmF2 are responsible for the seasonal and local time dependences of the linear increase rate of NmF2 with F10.7 at midlatitudes, and the seasonal variation of neutral atmosphere is the primary reason for the seasonal dependence of the variation trend of NmF2 with F10.7, while dynamics processes are the more important factors controlling the linear increase rate and the variation trend of NmF2 with F10.7 at low latitudes. Furthermore, dynamics processes are important for the saturation effect, and the fountain effect is related to the strongest

  19. Seasonal variation and chemical characterization of PM2.5 in northwestern Philippines

    NASA Astrophysics Data System (ADS)

    Bagtasa, Gerry; Cayetano, Mylene G.; Yuan, Chung-Shin

    2018-04-01

    The seasonal and chemical characteristics of fine particulate matter (PM2.5) were investigated in Burgos, Ilocos Norte, located at the northwestern edge of the Philippines. Each 24 h sample of fine aerosol was collected for four seasons. Fine particulate in the region shows strong seasonal variation in both concentration and composition. Highest mass concentration was seen during the boreal spring season with a mean mass concentration of 21.6 ± 6.6 µg m-3, and lowest was in fall with a mean concentration of 8.4 ± 2.3 µg m-3. Three-day wind back trajectory analysis of air mass reveals the influence of the northwestern Pacific monsoon regimes on PM2.5 concentration. During southwest monsoon, sea salt was the dominant component of fine aerosols carried by moist air from the South China Sea. During northeast monsoon, on the other hand, both wind and receptor model analysis showed that higher particulate concentration was due to the long-range transport (LRT) of anthropogenic emissions from northern East Asia. Overall, sea salt and soil comprise 33 % of total PM2.5 concentration, while local biomass burning makes up 33 %. LRT of industrial emission, solid waste burning and secondary sulfate from East Asia have a mean contribution of 34 % to the total fine particulate for the whole sampling period.

  20. Seasonal variation in Hibiscus sabdariffa (Roselle) calyx phytochemical profile, soluble solids and α-glucosidase inhibition.

    PubMed

    Ifie, Idolo; Ifie, Beatrice E; Ibitoye, Dorcas O; Marshall, Lisa J; Williamson, Gary

    2018-09-30

    Seasonal variations in crops can alter the profile and amount of constituent compounds and consequentially any biological activity. Differences in phytochemical profile, total phenolic content and inhibitory activity on α-glucosidase (maltase) of Hibiscus sabdariffa calyces grown in South Western Nigeria were determined over wet and dry seasons. The phenolic profile, organic acids and sugars were analysed using HPLC, while inhibition of rat intestinal maltase was measured enzymically. There was a significant increase (1.4-fold; p ≤ 0.05) in total anthocyanin content in the dry compared to wet planting seasons, and maltase inhibition from the dry season was slightly more potent (1.15-fold, p ≤ 0.05). Fructose (1.8-fold), glucose (1.8-fold) and malic acid (3.7-fold) were significantly higher (p ≤ 0.05) but citric acid was lower (62-fold, p ≤ 0.008) in the dry season. Environmental conditions provoke metabolic responses in Hibiscus sabdariffa affecting constituent phytochemicals and nutritional value. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Seasonal variation of fecal contamination in drinking water sources in developing countries: a systematic review.

    PubMed

    Kostyla, Caroline; Bain, Rob; Cronk, Ryan; Bartram, Jamie

    2015-05-01

    Accounting for fecal contamination of drinking water sources is an important step in improving monitoring of global access to safe drinking water. Fecal contamination varies with time while its monitoring is often infrequent. We sought to understand seasonal trends in fecal contamination to guide best practices to capture seasonal variation and ascertain the extent to which the results of a single sample may overestimate compliance with health guidelines. The findings from 22 studies from developing countries written in English and identified through a systematic review were analyzed. Fecal contamination in improved drinking water sources was shown to follow a statistically significant seasonal trend of greater contamination during the wet season (p<0.001). This trend was consistent across fecal indicator bacteria, five source types, twelve Köppen-Geiger climate zones, and across both rural and urban areas. Guidance on seasonally representative water quality monitoring by the World Health Organization and national water quality agencies could lead to improved assessments of access to safe drinking water. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Seasonal variations in water relations in current-year leaves of evergreen trees with delayed greening.

    PubMed

    Harayama, Hisanori; Ikeda, Takefumi; Ishida, Atsushi; Yamamoto, Shin-Ichi

    2006-08-01

    We investigated seasonal patterns of water relations in current-year leaves of three evergreen broad-leaved trees (Ilex pedunculosa Miq., Ligustrum japonicum Thunb., and Eurya japonica Thunb.) with delayed greening in a warm-temperate forest in Japan. We used the pressure-volume method to: (1) assess the extent to which seasonal variation in leaf water relations is attributable to leaf development processes in delayed greening leaves versus seasonal variation in environmental variables; and (2) investigate variation in leaf water relations during the transition from the sapling to the adult tree stage. Leaf mass per unit leaf area was generally lowest just after completion of leaf expansion in May (late spring), and increased gradually throughout the year. Osmotic potential at full turgor (Psi(o) (ft)) and leaf water potential at the turgor loss point (Psi(w) (tlp)) were highest in May, and lowest in midwinter in all species. In response to decreasing air temperature, Psi(o) (ft) dropped at the rate of 0.037 MPa degrees C(-1). Dry-mass-based water content of leaves and the symplastic water fraction of total leaf water content gradually decreased throughout the year in all species. These results indicate that reductions in the symplastic water fraction during leaf development contributed to the passive concentration of solutes in cells and the resulting drop in winter Psi(o) (ft). The ratio of solutes to water volume increased in winter in current-year leaves of L. japonicum and E. japonica, indicating that osmotic adjustment (active accumulation of solutes) also contributed to the drop in winter in Psi(o) (ft). Bulk modulus of elasticity in cell walls fluctuated seasonally, but no general trend was found across species. Over the growing season, Psi(o) (ft) and Psi(w) (tlp) were lower in adult trees than in saplings especially in the case of I. pedunculosa, suggesting that adult-tree leaves are more drought and cold tolerant than sapling leaves. The ontogenetic

  3. Circadian and seasonal variation of malignant arrhythmias in a pediatric and congenital heart disease population.

    PubMed

    Stephenson, Elizabeth A; Collins, Kathryn K; Dubin, Anne M; Epstein, Michael R; Hamilton, Robert M; Kertesz, Naomi J; Alexander, Mark E; Cecchin, Frank; Triedman, John K; Walsh, Edward P; Berul, Charles I

    2002-10-01

    Recent studies in adult populations have revealed seasonal variation in the frequency of acute cardiovascular events, including life-threatening arrhythmias, demonstrating increased events during winter and early spring. Trends in the time of day that arrhythmias occur also were noted. We sought to establish whether pediatric and young adult congenital heart disease implantable cardioverter defibrillator (ICD) recipients have circadian or seasonal variability in shock frequency, similar to adult populations. Data from ICD patients at six pediatric centers in North America were analyzed to assess the timing of life-threatening arrhythmias. The populations consisted of children and adults with congenital heart disease and ICDs placed for malignant arrhythmias. Data were considered in 46 patients who received appropriate therapy (total 139 episodes) for ventricular tachycardia or ventricular fibrillation. Multiple variables were analyzed, including time of day, day of week, and month of year. In contrast to previously studied adult patients, fewer events occurred in the early morning (7.5%), with the most therapies occurring between 6 P.M. and midnight (35%). An increased frequency of therapies was observed in the fall and winter (September-January), representing 60% of all appropriate shocks. Unlike adult populations, Mondays did not have an increased frequency of malignant arrhythmias. Pediatric and adult congenital heart disease populations have moderate seasonal and 24-hour variation in ICD event rate, with some distinctly different peaks than those seen in typical adult ICD populations. These findings suggest circadian variation in arrhythmia vulnerability that may differ from conventional occupational, physical, or emotional stressors. (J Cardiovasc Electrophysiol, Vol. 13, pp.

  4. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations

    USGS Publications Warehouse

    Tsai, V.C.

    2011-01-01

    It is known that GPS time series contain a seasonal variation that is not due to tectonic motions, and it has recently been shown that crustal seismic velocities may also vary seasonally. In order to explain these changes, a number of hypotheses have been given, among which thermoelastic and hydrology-induced stresses and strains are leading candidates. Unfortunately, though, since a general framework does not exist for understanding such seasonal variations, it is currently not possible to quickly evaluate the plausibility of these hypotheses. To fill this gap in the literature, I generalize a two-dimensional thermoelastic strain model to provide an analytic solution for the displacements and wave speed changes due to either thermoelastic stresses or hydrologic loading, which consists of poroelastic stresses and purely elastic stresses. The thermoelastic model assumes a periodic surface temperature, and the hydrologic models similarly assume a periodic near-surface water load. Since all three models are two-dimensional and periodic, they are expected to only approximate any realistic scenario; but the models nonetheless provide a quantitative framework for estimating the effects of thermoelastic and hydrologic variations. Quantitative comparison between the models and observations is further complicated by the large uncertainty in some of the relevant parameters. Despite this uncertainty, though, I find that maximum realistic thermoelastic effects are unlikely to explain a large fraction of the observed annual variation in a typical GPS displacement time series or of the observed annual variations in seismic wave speeds in southern California. Hydrologic loading, on the other hand, may be able to explain a larger fraction of both the annual variations in displacements and seismic wave speeds. Neither model is likely to explain all of the seismic wave speed variations inferred from observations. However, more definitive conclusions cannot be made until the model

  5. Seasonal variation of the underground cosmic muon flux observed at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sebastiani, C.; Steiner, H.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.

    2018-01-01

    The Daya Bay Experiment consists of eight identically designed detectors located in three underground experimental halls named as EH1, EH2, EH3, with 250, 265 and 860 meters of water equivalent vertical overburden, respectively. Cosmic muon events have been recorded over a two-year period. The underground muon rate is observed to be positively correlated with the effective atmospheric temperature and to follow a seasonal modulation pattern. The correlation coefficient α, describing how a variation in the muon rate relates to a variation in the effective atmospheric temperature, is found to be αEH1 = 0.362±0.031, αEH2 = 0.433±0.038 and αEH3 = 0.641±0.057 for each experimental hall.

  6. Seasonal Variation of Total Mercury Burden in the American Alligator (Alligator Mississippiensis) at Merritt Island National Wildlife Refuge (MINWR), Florida

    NASA Technical Reports Server (NTRS)

    Nilsen, Frances M.; Dorsey, Jonathan E.; Long, Stephen E.; Schock, Tracey B.; Bowden, John A.; Lowers, Russell H.; Guillette, Louis J., Jr.

    2016-01-01

    Seasonal variation of mercury (Hg) is not well studied in free-ranging wildlife. Atmospheric deposition patterns of Hg have been studied in detail and have been modeled for both global and specific locations with great accuracy and correlates to environment impact. However, monitoring these trends in wildlife is complicated due to local environmental parameters (e.g., rainfall, humidity, pH, bacterial composition) that can affect the transformation of atmospheric Hg to the biologically available forms. Here, we utilized an abundant and healthy population of American alligators (Alligator mississippiensis) at Merritt Island National Wildlife Refuge (MINWR), FL, and assessed Hg burden in whole blood samples over a span of 7 years (2007 2014; n 174) in an effort to assess seasonal variation of total [Hg]. While the majority of this population is assumed healthy, 18 individuals with low body mass indices (BMI, defined in this study) were captured throughout the 7 year sampling period. These individual alligators exhibited [Hg] that were not consistent with the observed overall seasonal [Hg] variation, and were statistically different from the healthy population of alligators. The alligators with low BMI had elevated concentrations of Hg compared to their age/sex/season matched counterparts with normal BMI. Statistically significant differences were found between the winter and spring seasons for animals with normal BMI. The data in this report supports the conclusion that organismal total [Hg] do fluctuate directly with seasonal deposition rates as well as other seasonal environmental parameters, such as average rainfall and prevailing wind direction. This study highlights the unique environment of MINWR to permit annual assessment of apex predators, such as the American alligator, to determine detailed environmental impact of contaminants of concern.

  7. Annual variation in foraging ecology of prothonotary warblers during the breeding season

    USGS Publications Warehouse

    Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.

    1990-01-01

    We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) along the Tennessee River in west-central Tennessee during the breeding seasons of 1984-1987. We analyzed seven foraging variables to determine if this population exhibited annual variation in foraging behavior. Based on nearly 3,000 foraging maneuvers, most variables showed significant interyear variation during the four prenestling and three nestling periods we studied. This interyear variation probably was due -to proximate, environmental cues--such as distribution and abundance of arthropods - which, in turn, were influenced by local weather conditions. Researchers should consider the consequences of combining foraging behavior data collected in different years, because resolution of ecological trends may be sacrificed by considering only general patterns of foraging ecology and not the dynamics of those activities. In addition, because of annual variability, foraging data collected in only one year, regardless of the number of observations gathered, may not provide an accurate concept of the foraging ecology in insectivorous birds.

  8. Seasonal and Ontogenetic Variation in Subcutaneous Adipose Of the Bowhead Whale (Balaena mysticetus).

    PubMed

    Ball, Hope C; Stavarz, Madeline; Oldaker, Jonathan; Usip, Sharon; Londraville, Richard L; George, John C; Thewissen, Johnannes G M; Duff, Robert Joel

    2015-08-01

    Cetacean evolution was shaped by an extraordinary land-to-sea transition in which the ancestors of whales became fully aquatic. As part of this transition, these mammals evolved unusually thick blubber which acts as a metabolic reservoir as well as an insulator and provides buoyancy and streamlining. This study describes blubber stratification and correlates it to seasonal variation, feeding patterns, and ontogeny in an arctic-adapted mysticete, the bowhead whale (Balaena mysticetus). Bowheads are unique among mammals for possessing the largest known blubber stores. We found that adipocyte numbers in bowheads, like other mammals, do not vary with season or feeding pattern but that adipocyte size and structural fiber densities do vary with blubber depth. © 2015 Wiley Periodicals, Inc.

  9. Hydrolyzable Tannins, Flavonol Glycosides, and Phenolic Acids Show Seasonal and Ontogenic Variation in Geranium sylvaticum.

    PubMed

    Tuominen, Anu; Salminen, Juha-Pekka

    2017-08-09

    The seasonal variation of polyphenols in the aboveground organs and roots of Geranium sylvaticum in four populations was studied using UPLC-DAD-ESI-QqQ-MS/MS. The content of the main compound, geraniin, was highest (16% of dry weight) in the basal leaves after the flowering period but stayed rather constant throughout the growing season. Compound-specific mass spectrometric methods revealed the different seasonal patterns in minor polyphenols. Maximum contents of galloylglucoses and flavonol glycosides were detected in the small leaves in May, whereas the contents of further modified ellagitannins, such as ascorgeraniin and chebulagic acid, increased during the growing season. In flower organs, the polyphenol contents differed significantly between ontogenic phases so that maximum amounts were typically found in the bud phase, except in pistils the amount of gallotannins increased significantly in the fruit phase. These results can be used in evaluating the role of polyphenols in plant-herbivore interactions or in planning the best collection times of G. sylvaticum for compound isolation purposes.

  10. Seasonal and annual variation in young children's physical activity.

    PubMed

    McKee, David P; Murtagh, Elaine M; Boreham, Colin A G; Nevill, Alan M; Murphy, Marie H

    2012-07-01

    It is well established that regular physical activity (PA) contributes to lower levels of morbidity and mortality. However, little is known about the stability of very young children's PA habits across seasons and years. The aims of this study were to 1) examine the influence of season and increasing age on objectively assessed PA in preschool children and 2) examine the stability of young children's PA rankings during 1 yr. The PA levels of preschool (3- and 4-yr-old) children were measured, using 6-d pedometer step counts, during winter and spring (n = 85, 52 boys). PA levels were measured again 1 yr after the spring data collection when the children had entered primary school (n = 37, 22 boys). Parents completed questionnaires to assess attitudes toward PA, PA habits, and demographic information in the winter of the first year and the spring of the second year. Young children take approximately 2000 (20%) fewer steps per day in winter than in spring with a rank order stability between the two measures of r = 0.04 (P < 0.01). A modest degree of the observed intrachild or seasonal variation was related to the amount of time fathers played with their children (P < 0.05) and the availability of a safe place for children to play (P < 0.05). Children took approximately 2300 (20%) more steps per day at age 5 compared with age 4 (P < 0.01). The rank order stability of young children's PA during this period was low with correlations ranging from 0.01 to 0.15. Results suggest that a one-off assessment of PA is unlikely to be representative of a young child's activity during 1 yr and that PA tracks poorly from age 4 to 5.

  11. Using Acoustics to Determine Eelgrass Bed Distribution and to Assess the Seasonal Variation of Ecosystem Service

    PubMed Central

    Sonoki, Shiori; Shao, Huamei; Morita, Yuka; Minami, Kenji; Shoji, Jun; Hori, Masakazu; Miyashita, Kazushi

    2016-01-01

    Eelgrass beds are an important source of primary production in coastal ecosystems. Understanding seasonal variation in the abundance and distribution of eelgrass is important for conservation, and the objectives of this study were to 1) monitor seasonal variation in eelgrass beds using an acoustic monitoring method (Quantitative echo sounder) and 2) broadly quantify the carbon circulation function. We obtained acoustic data of eelgrass beds in coastal areas north and east of Ikunojima Island. Surveys were conducted nine times over the 3-year period from 2011 to 2013 in order to monitor seasonal variation. Acoustic data were obtained and used to estimate the spatial distribution of eelgrass by geostatistical methods. To determine supporting services, we determined carbon sink and carbon fixation by eelgrass beds using data from the National Research Institute of Fisheries and Environment of Inland Sea (2011). The height and distribution of eelgrass beds were at a maximum in May and at a minimum in November of each year. Distribution trends were different between the north and east areas. Supporting services showed the same patterns throughout the year. The area of distribution was considered to be coincident with the life history of eelgrass. Distribution differed by area and changed yearly due to the effects of bottom characteristics and wind direction. Quantifying the supporting services of eelgrass beds was shown to be useful for managing the conservation of coastal ecosystems. PMID:26954673

  12. Seasonal and diel variations of ammonia and methane emissions from a naturally ventilated dairy building and the associated factors influencing emissions.

    PubMed

    Saha, C K; Ammon, C; Berg, W; Fiedler, M; Loebsin, C; Sanftleben, P; Brunsch, R; Amon, T

    2014-01-15

    Understanding seasonal and diel variations of ammonia (NH3) and methane (CH4) emissions from a naturally ventilated dairy (NVD) building may lead to develop successful control strategies for reducing emissions throughout the year. The main objective of this study was to quantify seasonal and diel variations of NH3 and CH4 emissions together with associated factors influencing emissions. Measurements were carried out with identical experimental set-up to cover three winter, spring and summer seasons, and two autumn seasons in the years 2010, 2011, and 2012. The data from 2010 and 2011 were used for developing emission prediction models and the data from 2012 were used for model validation. The results showed that NH3 emission varied seasonally following outside temperature whereas CH4 emission did not show clear seasonal trend. Diel variation of CH4 emission was less pronounced than NH3. The average NH3 and CH4 emissions between 6a.m. and 6p.m. were 66% and 33% higher than the average NH3 and CH4 emissions between 6p.m. and 6a.m., respectively for all seasons. The significant relationships (P<0.0001) between NH3 and influencing factors were found including outside temperature, humidity, wind speed and direction, hour of the day and day of the year. The significant effect (P<0.0001) of climate factors, hours of the day and days of the year on CH4 emission might be directly related to activities of the cows. © 2013.

  13. Seasonal variation in home blood pressure: findings from nationwide web-based monitoring in Japan

    PubMed Central

    Miura, Katsuyuki; Obayashi, Keiichi; Ohkubo, Takayoshi; Nakajima, Hiroshi; Shiga, Toshikazu; Ueshima, Hirotsugu

    2018-01-01

    Objectives Our aim was to assess seasonal variation in home blood pressure (BP) among free-living nationwide participants using home BP values accumulated from a web-based healthcare platform established in Japan. Settings An observational study. OMRON Healthcare Co., Ltd. has been developing web-based personal healthcare record systems in Japan since November 2010; over two million voluntary participants had joined this platform in September 2015. Nationwide home BP measurements made by oscillometric-type electronic sphygmomanometers from over 110 000 voluntary participants have been transmitted to the system from devices. Participants Seasonal variation in home BP was evaluated among 64 536 (51 335 men, 13 201 women; mean age 52.9 years) free-living nationwide users for whom data were automatically and simultaneously transmitted to the system from devices. Primary outcome measures Mean monthly and weekly home BP. Results In multiple regression analysis, the relationship between BP and temperature was a significant inverse association, independent of age, gender and geological locations. Highest and lowest BP was observed in December and July, respectively. Substantial seasonal differences in the mean values of morning and evening home systolic BP between summer and winter were 6.2 mmHg and 5.5 mmHg in men, and 7.3 mmHg and 6.5 mmHg in women. Seasonal variation was a little greater in older (7.3 mmHg in men, 8.7 mmHg in women) than in younger individuals (5.8 mmHg in men, 6.5 mmHg in women). BP from February to July was approximately 1.5 mmHg lower than the value from August to December. Conclusions A web-based healthcare platform has enabled easier monitoring of population-wide BP. Tighter BP control is necessary in winter than in summer, and especially in a colder climate toward winter than toward summer. New technologies using web-based self-monitoring systems for health-related indexes are expected to initiate a new phase of

  14. Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.

    PubMed

    Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran

    2014-05-01

    Stem CO2 efflux is known to vary seasonally and vertically along tree stems. However, annual tree- and stand-scale efflux estimates are commonly based on measurements made only a few times a year, during daytime and at breast height. In this study, the effect of these simplifying assumptions on annual efflux estimates and their influence on the estimates of the importance of stems in stand-scale carbon cycling are evaluated. In order to assess the strength of seasonal, diurnal and along-stem variability in CO2 efflux, half-hourly measurements were carried out at three heights on three mature Norway spruce (Picea abies (L.) Karst.) trees over a period of 3 years. Making the common assumption of breast height efflux rates being representative of the entire stem was found to result in underestimations of 10-17% in the annual tree-scale CO2 efflux. Upscaling using only daytime measurements from breast height increased the underestimation to 15-20%. Furthermore, the results show that the strength of the vertical gradient varies seasonally, being strongest in the early summer and non-existent during the cool months. The observed seasonality in the vertical CO2 efflux gradient could not be explained by variation in stem temperature, temperature response of the CO2 efflux (Q10), outer-bark permeability, CO2 transport in the xylem or CO2 release from the phloem. However, the estimated CO2 concentration immediately beneath the bark was considerably higher in the upper stem during the main period of diameter growth, coinciding with the strongest vertical efflux gradient. These results suggest that higher growth rates in the upper stem are the main cause for the observed vertical variation in the stem CO2 effluxes. Furthermore, the results indicate that accounting for the vertical efflux variation is essential for assessments of the importance of stems in stand-scale carbon cycling. © The Author 2014. Published by Oxford University Press. All rights reserved.

  15. Seasonal Variation of Submesoscale Flow Features in a Mesoscale Eddy-dominant Region in the East Sea

    NASA Astrophysics Data System (ADS)

    Chang, Yeon S.; Choi, Byoung-Ju; Park, Young-Gyu

    2018-03-01

    Seasonal changes in the distribution of submesoscale (SM) flow features were examined using a fine-resolution numerical simulation. The SM flows are expected to be strong where mesoscale (MS) eddies actively develop and also when the mixed layer depth (MLD) is deep due to enhanced baroclinic instability. In the East Sea (ES), MS eddies more actively develop in summer while the MLD is deeper in winter, which provided the motivation to conduct this study to test the effects of MLD and MS eddies on the SM activity in this region. Finite-scale Liapunov exponents and the vertical velocity components were employed to analyze the SM activities. It was found that the SM intensity was marked by seasonality: it is stronger in winter when the mixed layer is deep but weaker in summer - despite the greater eddy kinetic energy. This is because in summer the mixed layer is so thin that there is not enough available potential energy. When the SM activity was quantified based on parameterization, (MLD × density gradient), it was determined that the seasonal variation of MLD plays a more important role than the lateral density gradient variation on SM flow motion in the ES.

  16. Seasonal variation of residence time in spring and groundwater evaluated by CFCs and numerical simulation in mountainous headwater catchment

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Watanabe, Yasuto; Ikeda, Koichi; Yano, Shinjiro; Abe, Yutaka

    2016-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time of subsurface water in time and space at the mountainous headwaters especially with steep slope. We investigated the temporal variation of the residence time of the spring and groundwater with tracing of hydrological flow processes in mountainous catchments underlain by granite, Yamanashi Prefecture, central Japan. We conducted intensive hydrological monitoring and water sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2013 in River Jingu Watershed underlain by granite, with an area of approximately 15 km2 and elevation ranging from 950 m to 2000 m. The CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Also, a numerical simulation was conducted to reproduce of the average residence times of the spring and groundwater. The residence time of the spring water estimated by the CFCs concentration ranged from 10 years to 60 years in space within the watershed, and it was higher (older) during the low flow season and lower (younger) during the high flow season. We tried to reproduce the seasonal change of the residence time in the spring water by numerical simulation, and the calculated residence time of the spring water and discharge of the stream agreed well with the observed values. The groundwater level was higher during the high flow season and the groundwater dominantly flowed through the weathered granite with higher permeability, whereas that was lower during the low flow season and that flowed dominantly through the fresh granite with lower permeability. This caused the seasonal variation of the residence time of the spring

  17. Response to gonadotropin-releasing hormone challenge: Seasonal variation in steroid production in a viviparous lizard, Tiliqua nigrolutea.

    PubMed

    Edwards, Ashley; Jones, Susan M

    2017-04-01

    The hypothalamic-pituitary-gonadal axis plays a central role in the regulation of gamete maturation, sex steroid production and the stimulation of reproductive behaviours in vertebrates. In seasonal breeders, the timely activation and deactivation of this control system is important to ensure successful reproduction: this process is not well understood in species which breed irregularly. Males of the viviparous blotched blue-tongued lizard, Tiliqua nigrolutea, breed annually, while females display a multiennial cycle. We investigated seasonal variation in hypothalamic-pituitary-gonadal axis responsiveness in both sexes of T. nigrolutea. We measured changes in plasma concentrations of testosterone and estrogen in response to a single intraperitoneal injection of a GnRH agonist, chicken-II LH-RH, at three reproductively distinct times of year. Plasma testosterone concentrations in males were significantly increased during gonadal quiescence, but not initial or final spermatogenesis. There was no estrogen response in males at any time of year. Conversely, in females, there was an increase in plasma testosterone, but not estrogen, concentration, in reproductively quiescent females several months in advance of a successful pregnancy. These results indicate clear variation in HPG axis activity with sex, season and reproductive condition in this seasonally breeding viviparous lizard. This study opens the way for further investigation into the mechanisms by which internal (body condition) and external seasonal cues (temperature and photoperiod) are coordinated to regulate reproduction in irregularly-breeding reptiles. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Seasonal variations in PM composition from Beijing, China drive liver oxidative stress

    NASA Astrophysics Data System (ADS)

    Pardo, M.; Rudich, Y.

    2017-12-01

    Air pollution can cause oxidative stress, inflammation and adverse health effects, but the underlying biological mechanisms are not completely understood. In order to understand how seasonal and chemical variations drive health impacts, we investigated the oxidative stress and inflammation in mice exposed to extracts (water and DCM) from urban PM collected in Beijing (China). Higher levels of pollution components were detected in the heating season (HS, winter) than in the non-heating season (NHS, summer). Higher concentrations of PM were measured in the heating season, mostly from coal and wood burning used for domestic heating. This was accompanied by increased levels of polyaromatic hydrocarbons (PAHs) in the DCM extracts. An increased inflammatory response was detected in the lung and liver with DCM extracts compared to the water extracts, and mostly in the winter aerosol. Reduced antioxidant response was observed in the lung, whereas it was activated in the liver. Gene expression of the Nrf2 transcription factor (A master regulator of stress response that controls the basal oxidative capacity and induces the expression of antioxidant response) and its related genes were induced. In the liver, higher levels of lipid peroxidation adducts were measured, correlated with histologic analysis that revealed morphologic features of damage/proliferation in the liver, indicating oxidative and toxic damage. Altogether, our study suggests that the acute effects of PM can vary by the season with the largest effect observed in winter than summer in Beijing, and that some secondary organs may be susceptible for exposure damage. This suggests that the liver is a potential organ to be influenced from PM especially by PAHs

  19. Seasonal variations of antioxidant imbalance in Cuban healthy men.

    PubMed

    Arnaud, J; Fleites, P; Chassagne, M; Verdura, T; Barnouin, J; Richard, M J; Chacornac, J P; Garcia, I G; Perez-Cristia, R; Favier, A E

    2001-01-01

    To determine the antioxidant imbalance in healthy Cuban men 2y after the end of the epidemic neuropathy (50 862 cases from 1991 to 1993) and to evaluate its change over 1 y. Prospective study. La Lisa health centres (Havana, Cuba). One-hundred and ninety-nine healthy middle-aged men were selected and 106 completed the study. Subjects were studied at 3 month intervals over 1 year. No invervention. An assessment of dietary intake and the determination of blood lipid peroxides (TBARS), glutathione, diglutathione, glutathione peroxidase, superoxide dismutase, vitamin E, carotenoids, copper, zinc and selenium were performed at each period. While dietary zinc, vitamins C and E, carotenoids and fat dietary intakes and blood concentrations were low for adult men compared to international reference ranges, serum TBARS concentrations were high at every period. Some significant seasonal variations were observed. The lowest carotenoids (P < 0.002) and vitamin C(P = 0.0001) intakes, serum beta-carotene (P = 0.0001) and lutein/zeaxanthin (P < 0.05) concentrations, and the highest blood TBARS (P = 0.0001) and diglutathione (P < 0.001) concentrations were observed at the end of the rainy season (October). This period seemed to pose the greatest risk of antioxidant imbalance. Cuban men still represent a vulnerable population in terms of antioxidant imbalance. A national program of vegetable growing and increase in fruit and vegetable consumption is now evaluated in Cuba.

  20. Marked seasonal variation in the wild mouse gut microbiota.

    PubMed

    Maurice, Corinne F; Knowles, Sarah C L; Ladau, Joshua; Pollard, Katherine S; Fenton, Andy; Pedersen, Amy B; Turnbaugh, Peter J

    2015-11-01

    Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.

  1. Seasonal variation in vitamin D status of beef cattle reared in the central United States

    USDA-ARS?s Scientific Manuscript database

    The objective was to measure seasonal sunshine associated variation in concentration 25-hydroxyvitamin D (25OHD) in beef cattle. Vitamin D is a key modulator of calcium homeostasis, as well as innate and adaptive immunity. Concentrations of 25OHD reflects vitamin D production/intake and vitamin D s...

  2. Seasonal variations in shallow Alaska seismicity and stress modulation from GRACE derived hydrological loading

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Fu, Y.; Burgmann, R.

    2017-12-01

    Shallow (≤50 km), low magnitude (M≥2.0) seismicity in southern Alaska is examined for seasonal variations during the annual hydrological cycle. The seismicity is declustered with a spatio-temporal epidemic type aftershock sequence (ETAS) model. The removal of aftershock sequences allows detailed investigation of seismicity rate changes, as water and ice loads modulate crustal stresses throughout the year. The GRACE surface loads are obtained from the JPL mass concentration blocks (mascons) global land and ocean solutions. The data product is smoothed with a 9˚ Gaussian filter and interpolated on a 25 km grid. To inform the surface loading model, the global solutions are limited to the region from -160˚ to -120˚ and 50˚ to 70˚. The stress changes are calculated using a 1D spherical layered earth model at depth intervals of 10 km from 10 - 50 km in the study region. To evaluate the induced seasonal stresses, we use >30 years of earthquake focal mechanisms to constrain the background stress field orientation and assess the stress change with respect to the principal stress orientation. The background stress field is assumed to control the preferred orientation of faulting, and stress field perturbations are expected to increase or decrease seismicity. The number of excess earthquakes is calculated with respect to the background seismicity rates. Here, we present preliminary results for the shallow seismicity variations and quantify the seasonal stresses associated with changes in hydrological loading.

  3. MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole

    NASA Technical Reports Server (NTRS)

    2001-01-01

    MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole: False Color. This is a visualization of the topography near the Martian north pole as measured with the MOLA instrument. This particular animation shows a slow zoom to the surface of the pole, a flyover of the polar cap and a slow zoom out. The surface color is based on the elevation of the topography.

  4. Seasonal Variation of Eutrophication in Some Lakes of Danube Delta Biosphere Reserve.

    PubMed

    Török, Liliana; Török, Zsolt; Carstea, Elfrida M; Savastru, Dan

    2017-01-01

      To understand the trophic state of lakes, this study aims to determine the dynamics of phytoplankton assemblages and the main factors that influence their seasonal variation. Sampling campaigns were carried out in three lakes from the Danube Delta Biosphere Reserve. Spectral analysis of specific phytoplankton pigments was applied as a diagnostic marker to establish the distribution and composition of phytoplankton taxonomic groups. Fluorescence spectroscopy was used to quantify changes in dissolved organic matter (DOM). The relative contribution of the main phytoplankton groups to the total phytoplankton biomass and the trend of development during succession of the seasons showed that cyanobacteria could raise potential ecological or human health problems. Moreover, fluorescence spectroscopy revealed that Cryptophyta and cyanobacteria were the main contributors to the protein-like components of DOM. It was concluded that fluorescence could be used to provide a qualitative evaluation of the eutrophication degree in Danube Delta lakes.

  5. The response of water quality variation in Poyang Lake (Jiangxi, People's Republic of China) to hydrological changes using historical data and DOM fluorescence.

    PubMed

    Yao, Xin; Wang, Shengrui; Ni, Zhaokui; Jiao, Lixin

    2015-02-01

    Poyang Lake is a unique wetland system that has evolved in response to natural seasonal fluctuations in water levels. To better characterize the response of water quality to hydrological variation, historical data were analyzed in combination with dissolved organic matter (DOM) fluorescence samplings conducted in situ. Historical data showed that long-term changes in water quality are mainly controlled by the sewage inputs to Poyang Lake. Monthly changes in water quality recorded during 2008 and 2012 suggest that water level may be the most important factor for water quality during a hydrological year. DOM fluorescence samples were identified as three humic-like components (C1, C2, and C3) and a protein-like component (C4). These obvious compositional changes in DOM fluorescence were considered to be related to the hydrodynamic differences controlled by water regimen. Principal component analysis (PCA) showed higher C1 and C2 signals during a normal season than the wet season, whereas C3 was lower, and C4 was higher in the dry season than in the wet or normal seasons. From the open lake to the Yangtze River mouth, increased C3 component carried by backflows of the Yangtze River to the lake resulted in these unique variations of PCA factor 2 scores during September. These obvious compositional changes in DOM fluorescence were considered to be related to the hydrodynamic differences controlled by water regimen. DOM fluorescence could be a proxy for capturing rapid changes in water quality and thereby provide an early warning signal for the quality of water supply.

  6. Seasonal variation in the populations of Polyphagotarsonemus latus and Tetranychus bastosi in physic nut (Jatropha curcas) plantations.

    PubMed

    Rosado, Jander F; Picanço, Marcelo C; Sarmento, Renato A; da Silva, Ricardo Siqueira; Pedro-Neto, Marçal; Carvalho, Marcos Alberto; Erasmo, Eduardo A L; Silva, Laila Cristina Rezende

    2015-07-01

    Studies on the seasonal variation of agricultural pest species are important for the establishment of integrated pest control programs. The seasonality of pest attacks on crops is affected by biotic and abiotic factors, for example, climate and natural enemies. Besides that, characteristics of the host plant, crop management, location and the pests' bioecology also affect this seasonality. The mites Polyphagotarsonemus latus (Prostigmata: Tarsonemidae) and Tetranychus bastosi (Prostigmata: Tetranychidae) are the most important pests in the cultivation of physic nut, Jatropha curcas (Euphorbiaceae). All parts of J. curcas can be used for a wide range of purposes. In addition many researchers have studied its potential for use as neat oil, as transesterified oil (biodiesel), or as a blend with diesel. However studies about physic nut pests have been little known. The objective of this study was to assess the seasonal variation of P. latus and T. bastosi in physic nut. This study was conducted at three sites in the state of Tocantins, Brazil. We monitored climatic elements and the densities of the two mite species and of their natural enemies for a period of 2 years. Attack by P. latus occurred during rainy seasons, when the photoperiod was short and the physic nut had new leaves. In contrast, attack by T. bastosi occurred during warmer seasons with longer photoperiods and stronger winds. Populations of both mites and their natural enemies were greater in sites with greater plant diversity adjacent to the plantations. The predators found in association with P. latus and T. bastosi were Euseius concordis (Acari: Phytoseiidae), spiders, Stethorus sp. (Coleoptera: Coccinellidae) and Chrysoperla sp. (Neuroptera: Chrysopidae).

  7. Predicting seasonal variations in coastal seabird habitats in the English Channel and the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Virgili, A.; Lambert, C.; Pettex, E.; Dorémus, G.; Van Canneyt, O.; Ridoux, V.

    2017-07-01

    Seabirds, like all animals, have to live in suitable habitats to fulfil their energetic needs for both somatic and reproductive growth and maintenance. Apart from migration trips, all coastal seabirds are linked to the coast, because they need to return daily to land for resting or breeding. Their use of marine habitats strongly depends on their biology, but also on environmental conditions, and can be described using habitat models. This study aimed to: (1) identify the processes that mostly influence seabird distributions along the coasts of the English Channel and the Bay of Biscay; (2) determine seasonal variations of these processes, (3) provide prediction maps that describe the species distributions. We collected data of coastal seabird sightings from aerial surveys carried out in the English Channel and the eastern North Atlantic in the winter 2011-2012 and summer 2012. We classified seabirds into morphological groups and described their habitats using physiographic and oceanographic variables in Generalised Additive Models (GAMs). Finally, we produced maps of predicted distributions by season for each group. The distributions of coastal seabirds were essentially determined by the distance to the nearest coast, with a weaker influence of oceanographic variables. The nature of the substrate, sand or rock, combined with the timing of reproduction, also contributed to determine seasonal at-sea distributions for some species. The highest densities were predicted near the coast, particularly in bays and estuaries for strictly coastal species with possible variations depending on the season. From this study, we were able to predict the seasonal distribution of the studied species according to varying environmental parameters that changed over time, allowing us to understand better their behaviour and ecology.

  8. Seasonal changes in atmospheric noise levels and the annual variation in pigeon homing performance

    USGS Publications Warehouse

    Hagstrum, Jonathan T.; McIsaac, Hugh P.; Drob, Douglas P.

    2016-01-01

    Repeated releases of experienced homing pigeons from single sites were conducted between 1972 and 1974 near Cornell University in upstate New York and between 1982 and 1983 near the University of Pittsburgh in western Pennsylvania, USA. No annual variation in homing performance was observed at these sites in eastern North America, in contrast to results from a number of similar experiments in Europe. Assuming pigeons home using low-frequency infrasonic signals (~0.1–0.3 Hz), as has been previously proposed, the annual and geographic variability in homing performance within the northern hemisphere might be explained, to a first order, by seasonal changes in low-frequency atmospheric background noise levels related to storm activity in the North Atlantic Ocean, and by acoustic waveguides formed between the surface and seasonally reversing stratospheric winds. In addition, increased dispersion among departure bearings of test birds on some North American release days was possibly caused by infrasonic noise from severe weather events during tornado and Atlantic hurricane seasons.

  9. Seasonal changes in atmospheric noise levels and the annual variation in pigeon homing performance.

    PubMed

    Hagstrum, Jonathan T; McIsaac, Hugh P; Drob, Douglas P

    2016-06-01

    Repeated releases of experienced homing pigeons from single sites were conducted between 1972 and 1974 near Cornell University in upstate New York and between 1982 and 1983 near the University of Pittsburgh in western Pennsylvania, USA. No annual variation in homing performance was observed at these sites in eastern North America, in contrast to results from a number of similar experiments in Europe. Assuming pigeons home using low-frequency infrasonic signals (~0.1-0.3 Hz), as has been previously proposed, the annual and geographic variability in homing performance within the northern hemisphere might be explained, to a first order, by seasonal changes in low-frequency atmospheric background noise levels related to storm activity in the North Atlantic Ocean, and by acoustic waveguides formed between the surface and seasonally reversing stratospheric winds. In addition, increased dispersion among departure bearings of test birds on some North American release days was possibly caused by infrasonic noise from severe weather events during tornado and Atlantic hurricane seasons.

  10. Seasonal Variations of Quantified Organic Compounds in PM10 over Seoul

    NASA Astrophysics Data System (ADS)

    Choi, N.; Lee, J.; Kim, Y. P.

    2014-12-01

    The concentrations of 87 individual organic matters in the PM10 samples, systematically collected on the roof of the School of Public Health building at Seoul National University (mixed commercial and residential area), Seoul, South Korea on a daily basis from April 2010 to April 2011, were quantified by mean of Gas Chromatography/Mass Spectrometry (GC/MS). The daily average concentrations of five organic groups, alkanes, PAHs, fatty acid, DCAs, and sugars were ranged from 498.40 ng m3 to 10.20 μg m3. The seasonal concentrations of the total quantified organic species were 1.73 μg m3 (Spring), 2.04 μg m3 (Summer), 3.11 μg m3 (Fall), and 3.60 μg m3 (Winter), respectively. All the organic groups showed higher average concentration in winter than in summer. However, some organic compounds among fatty acids, DCAs, and sugars showed reverse pattern. The seasonal concentration patterns and episode variation of individual organic compounds were studied to clarify the emission characteristics of organic matters in PM10.

  11. Seasonal variations in the physico-chemical characteristics of aerosols in North Taiwan

    NASA Astrophysics Data System (ADS)

    Chou, Charles

    2014-05-01

    From 2007 to 2012, this study investigated the mass concentration and chemical composition of ambient aerosols (i.e. PM10, PM2.5, and PMc = PM10-PM2.5) at Cape Fuguei, Yangminshan, and NTU (National Taiwan University) stations in northern Taiwan. It was found that the concentration and composition of aerosols exhibited significant seasonal variations but without an inter-annual trend during the study period. Moderate correlations (R2 = 0.4-0.6) were observed among the aerosol concentrations at the respective stations, indicating that the aerosol concentrations were dominated by factors on regional scales. During the seasons of northeasterly winter monsoons, long range transport of dust and particulate air pollutants from the Asia Continent had negatively impacted the atmospheric environment in this area. On the other hand, as a highly developed urban area, Taipei has substantial local emissions of air pollutants that should have transported to the surrounding areas of Taipei basin and caused deterioration of air quality and visibility in Cape Fuguei and Yangminshan. The results indicated that the major components of aerosols in Taipei include sulfate, sea salts, dust, and organic matters. In addition, contributions from nitrate, ammonium, and elemental carbon were also significant. In terms of mass concentration, most of the sea salts and dust particles existed in the coarse mode of aerosols, whereas sulfate and EC were confined within PM2.5. This suggests that the dust and sea salts particles were externally mixed with EC and sulfate in the aerosols over Taipei area. Further, it was found that nitrate were closely associated with sea salts in aerosols, suggesting the reaction between nitric acid and sea salt particles. Different seasonality was observed for sea salt and dust: sea salts peaked in fall and dust reached the maximal level in springtime, implying their sources were regulated by independent seasonal factors. Particulate pollutants (i.e. sulfate, nitrate

  12. Chemical characterization of size-resolved aerosols in four seasons and hazy days in the megacity Beijing of China.

    PubMed

    Sun, Kang; Liu, Xingang; Gu, Jianwei; Li, Yunpeng; Qu, Yu; An, Junling; Wang, Jingli; Zhang, Yuanhang; Hu, Min; Zhang, Fang

    2015-06-01

    Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8 mass concentrations were 166.0±120.5 and 91.6±69.7 μg/m3, respectively, throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM (organic matter=1.6×OC (organic carbon)) and SIA (secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca2+ were major components in coarse particles. Moreover, secondary components, mainly SOA (secondary organic aerosol) and SIA, accounted for 46%-96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of (NH4)2SO4, NH4NO3, CaSO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons. Copyright © 2015. Published by Elsevier B.V.

  13. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves.

    PubMed

    Salminen, Juha-Pekka; Roslin, Tomas; Karonen, Maarit; Sinkkonen, Jari; Pihlaja, Kalevi; Pulkkinen, Pertti

    2004-09-01

    Oaks have been one of the classic model systems in elucidating the role of polyphenols in plant-herbivore interactions. This study provides a comprehensive description of seasonal variation in the phenolic content of the English oak (Quercus robur). Seven different trees were followed over the full course of the growing season, and their foliage repeatedly sampled for gallic acid, 9 individual hydrolyzable tannins, and 14 flavonoid glycosides, as well as for total phenolics, total proanthocyanidins, carbon, and nitrogen. A rare dimeric ellagitannin, cocciferin D2, was detected for the first time in leaves of Q. robur, and relationships between the chemical structures of individual tannins were used to propose a biosynthetic pathway for its formation. Overall, hydrolyzable tannins were the dominant phenolic group in leaves of all ages. Nevertheless, young oak leaves were much richer in hydrolyzable tannins and flavonoid glycosides than old leaves, whereas the opposite pattern was observed for proanthocyanidins. However, when quantified as individual compounds, hydrolyzable tannins and flavonoid glycosides showed highly variable seasonal patterns. This large variation in temporal trends among compounds, and a generally weak correlation between the concentration of any individual compound and the total concentration of phenolics, as quantified by the Folin-Ciocalteau method, leads us to caution against the uncritical use of summary quantifications of composite phenolic fractions in ecological studies.

  14. Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest.

    PubMed

    Ohashi, Shinta; Durgante, Flávia M; Kagawa, Akira; Kajimoto, Takuya; Trumbore, Susan E; Xu, Xiaomei; Ishizuka, Moriyoshi; Higuchi, Niro

    2016-03-01

    In Amazonian non-flooded forests with a moderate dry season, many trees do not form anatomically definite annual rings. Alternative indicators of annual rings, such as the oxygen (δ(18)Owc) and carbon stable isotope ratios of wood cellulose (δ(13)Cwc), have been proposed; however, their applicability in Amazonian forests remains unclear. We examined seasonal variations in the δ(18)Owc and δ(13)Cwc of three common species (Eschweilera coriacea, Iryanthera coriacea, and Protium hebetatum) in Manaus, Brazil (Central Amazon). E. coriacea was also sampled in two other regions to determine the synchronicity of the isotopic signals among different regions. The annual cyclicity of δ(18)Owc variation was cross-checked by (14)C dating. The δ(18)Owc showed distinct seasonal variations that matched the amplitude observed in the δ(18)O of precipitation, whereas seasonal δ(13)Cwc variations were less distinct in most cases. The δ(18)Owc variation patterns were similar within and between some individual trees in Manaus. However, the δ(18)Owc patterns of E. coriacea differed by region. The ages of some samples estimated from the δ(18)Owc cycles were offset from the ages estimated by (14)C dating. In the case of E. coriacea, this phenomenon suggested that missing or wedging rings may occur frequently even in well-grown individuals. Successful cross-dating may be facilitated by establishing δ(18)Owc master chronologies at both seasonal and inter-annual scales for tree species with distinct annual rings in each region.

  15. Seasonal variations and shared latrine cleaning practices in the slums of Kampala city, Uganda.

    PubMed

    Kwiringira, Japheth; Atekyereza, Peter; Niwagaba, Charles; Kabumbuli, Robert; Rwabukwali, Charles; Kulabako, Robinah; Günther, Isabel

    2016-04-27

    The effect of seasons on health outcomes is a reflection on the status of public health and the state of development in a given society. Evidence shows that in Sub-Saharan Africa, most infectious diseases flourish during the wet months of the year; while human activities in a context of constrained choices in life exacerbate the effects of seasons on human health. The paper argues that, the wet season and when human activities are at their peak, sanitation is most dire poor slum populations. A shared latrine cleaning observation was undertaken over a period of 6 months in the slums of Kampala city. Data was collected through facility observations, user group meetings, Focus group discussions and, key informant interviews. The photos of the observed sanitation facilities were taken and assessed for facility cleanliness or dirt. Shared latrine pictures, observations, Focus Group Discussion, community meetings and key informant interviews were analysed and subjected to an analysis over the wet, dry and human activity cycles before a facility was categorised as either 'dirty' or 'clean'. Human activity cycles also referred to as socio-economic seasons were, school days, holidays, weekends and market days. These have been called 'impure' seasons, while the 'pure' seasons were the wet and dry months: improved and unimproved facilities were negatively affected by the wet seasons and the peak seasons of human activity. Wet seasons were associated with, mud and stagnant water, flooding pits and a repugnant smell from the latrine cubicle which made cleaning difficult. During the dry season, latrines became relatively cleaner than during the wet season. The presence of many child(ren) users during school days as well as the influx of market goers for the roadside weekly markets compromised the cleaning outcomes for these shared sanitation facilities. Shared latrine cleaning in slums is impacted by seasonal variations related to weather conditions and human activity. The wet

  16. Recent variations in seasonality of temperature and precipitation in Canada, 1976-95

    NASA Astrophysics Data System (ADS)

    Whitfield, Paul H.; Bodtker, Karin; Cannon, Alex J.

    2002-11-01

    A previously reported analysis of rehabilitated monthly temperature and precipitation time series for several hundred stations across Canada showed generally spatially coherent patterns of variation between two decades (1976-85 and 1986-95). The present work expands that analysis to finer time scales and a greater number of stations. We demonstrate how the finer temporal resolution, at 5 day or 11 day intervals, increases the separation between clusters of recent variations in seasonal patterns of temperature and precipitation. We also expand the analysis by increasing the number of stations from only rehabilitated monthly data sets to rehabilitated daily sets, then to approximately 1500 daily observation stations. This increases the spatial density of data and allows a finer spatial resolution of patterns between the two decades. We also examine the success of clustering partial records, i.e. sites where the data record is incomplete. The intent of this study was to be consistent with previous work and explore how greater temporal and spatial detail in the climate data affects the resolution of patterns of recent climate variations. The variations we report for temperature and precipitation are taking place at different temporal and spatial scales. Further, the spatial patterns are much broader than local climate regions and ecozones, indicating that the differences observed may be the result of variations in atmospheric circulation.

  17. Diel and seasonal variation in food habits of Atlantic salmon parr in a small stream

    USGS Publications Warehouse

    Grader, M.; Letcher, B.H.

    2006-01-01

    The diel and seasonal food habits of young-of-year (YOY) and post-young-of-year (PYOY) Atlantic salmon (Salmo salar) parr were assayed over the course of 11 months in the West Brook, Massachusetts USA. Gut fullness of YOY salmon did not vary significantly among months. PYOY salmon exhibited significant seasonal differences in gut fullness, with peak fullness occurring in the spring and late fall. Significant diel differences in PYOY gut fullness occurred in June and April, with peak fullness always occurring at dawn. Prey composition varied substantially among months. Dominant prey items of PYOY salmon were baetid mayflies in June, July, and August, limnephilid caddisflies in October and November, and ephemerellid mayflies in February and April. Few differences in prey composition between PYOY and YOY salmon were observed. Fish growth was unrelated to prey availability, but gut fullness explained up to 97% of growth variation across seasons. Results suggest that spring and fall are critical periods of feeding for PYOY salmon and that diel feeding intensity shifts seasonally.

  18. Making Pedagogical Adaptability Less Obvious

    ERIC Educational Resources Information Center

    Vagle, Mark D.

    2016-01-01

    In this article, I try to make pedagogical adaptability a bit less obvious. In particular, I use some post-structural philosophical ideas and some concepts at the intersections of social class and race to re-interpret Dylan Wiliam's conception of formative assessment. I suggest that this interpretation can provide opportunities to resist the urge…

  19. [Seasonal variation of soil respiration and its components in tropical rain forest and rubber plantation in Xishuangbanna, Yunnan].

    PubMed

    Lu, Hua-Zheng; Sha, Li-Qing; Wang, Jun; Hu, Wen-Yan; Wu, Bing-Xia

    2009-10-01

    By using trenching method and infrared gas analyzer, this paper studied the seasonal variation of soil respiration (SR), including root respiration (RR) and heterotrophic respiration (HR), in tropical seasonal rain forest (RF) and rubber (Hevea brasiliensis) plantation (RP) in Xishuangbanna of Yunnan, China. The results showed that the SR and HR rates were significantly higher in RF than in RP (P < 0.01), while the RR rate had less difference between the two forests. Soil temperature and moisture were the key factors affecting the SR, RR and HR. The SR and HR rates in the two forests were rainy season > dry-hot season > foggy season, but the RR rate was rainy season > foggy season > dry-hot season in RF, and foggy season > rainy season > dry-hot season in RP. The contribution of RR to SR in RF (29%) was much lower than that in RP (42%, P < 0.01), while the contribution of HR to SR was 71% in RF and 58% in RP. When the soil temperature at 5 cm depth varied from 12 degrees C to 32 degrees C, the Q10 values for SR, HR, and RR rates were higher in RF than in RP. HR had the highest Q10 value, while RR had the lowest one.

  20. Assessment of Sulphate and Iron Contamination and Seasonal Variations in the Water Resources of a Damodar Valley Coalfield, India: A Case Study.

    PubMed

    Tiwari, Ashwani Kumar; De Maio, Marina

    2018-02-01

    The aim of the present study was to assess the sulphate [Formula: see text] and iron (Fe) contamination and seasonal variations in the water resources (groundwater, surface water, and mine water) of the West Bokaro coalfield region, India. One hundred and twenty-four water resources samples were collected from the coalfield during the post- and pre-monsoon seasons. The concentrations of [Formula: see text] were determined using ion chromatography and Fe concentrations were analyzed using inductively coupled plasma mass spectrometry. A statistical analysis was used to easily understand the seasonal variations of the elements in the water resources of the area. The concentrations of [Formula: see text] and Fe in the water resources were higher in the pre-monsoon season than in the post-monsoon season, irrespective of location. The water resources of the coalfield were contaminated with high concentrations of [Formula: see text] and Fe, and would require suitable treatment before drinking, domestic and industrial uses.

  1. Spatial variations of sea level along the coast of Thailand: Impacts of extreme land subsidence, earthquakes and the seasonal monsoon

    NASA Astrophysics Data System (ADS)

    Saramul, Suriyan; Ezer, Tal

    2014-11-01

    The study addresses two important issues associated with sea level along the coasts of Thailand: first, the fast sea level rise and its spatial variation, and second, the monsoonal-driven seasonal variations in sea level. Tide gauge data that are more extensive than in past studies were obtained from several different local and global sources, and relative sea level rise (RSLR) rates were obtained from two different methods, linear regressions and non-linear Empirical Mode Decomposition/Hilbert-Huang Transform (EMD/HHT) analysis. The results show extremely large spatial variations in RSLR, with rates varying from ~ 1 mm y-1 to ~ 20 mm y-1; the maximum RSLR is found in the upper Gulf of Thailand (GOT) near Bangkok, where local land subsidence due to groundwater extraction dominates the trend. Furthermore, there are indications that RSLR rates increased significantly in all locations after the 2004 Sumatra-Andaman Earthquake and the Indian Ocean tsunami that followed, so that recent RSLR rates seem to have less spatial differences than in the past, but with high rates of ~ 20-30 mm y-1 almost everywhere. The seasonal sea level cycle was found to be very different between stations in the GOT, which have minimum sea level in June-July, and stations in the Andaman Sea, which have minimum sea level in February. The seasonal sea-level variations in the GOT are driven mostly by large-scale wind-driven set-up/set-down processes associated with the seasonal monsoon and have amplitudes about ten times larger than either typical steric changes at those latitudes or astronomical annual tides.

  2. Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan

    NASA Astrophysics Data System (ADS)

    Li, Qingbo; Wang, Xianyu; Song, Jing; Sui, Hongqi; Huang, Lei; Li, Lu

    2012-12-01

    Successive 52-week air monitoring of α-endosulfan (α-E), β-endosulfan (β-E) and endosulfan sulfate (E.S) in the gaseous and particulate phases was conducted in Dalian city, northeast China by using an active high-volume sampler. Significant seasonal and diurnal variations in endosulfan concentrations were observed. It was found that the concentration of gaseous-phase α-E peaked in the summer and the concentration of particulate phase α-E peaked in the winter. For E.S, both gaseous and particulate phase concentrations peaked in the summer. α-E was distributed predominantly in the gas phase in the summer but was distributed mainly in the particulate phase in the winter. β-E was distributed mainly in the gas phase in the summer and in the particulate phase at other times of the year. E.S was distributed mainly in the particulate phase throughout the year. Elevated temperatures facilitated the volatilization of α-E from particle surfaces but exerted little effect on β-E and had almost no effect on E.S. Trajectory-based analysis indicates that the seasonal variation in atmospheric concentrations of endosulfan in Dalian city was influenced strongly by the land and sea air masses. In addition, differences in endosulfan concentrations in the particulate phase between day and night were likely due to the circulation of sea/land breezes. The 'cold-condensation' effect occurring during the night may result in the attachment of endosulfan to the particulate phase.

  3. Variable Variation: Annual and Seasonal Changes in Offspring Sex Ratio in a Bat

    PubMed Central

    Barclay, Robert M. R.

    2012-01-01

    Many organisms produce offspring with sex-ratios that deviate from equal numbers of males and females, and numerous adaptive explanations have been proposed. In some species, offspring sex-ratio varies across the reproductive season, again with several explanations as to why this might be adaptive. However, patterns for birds and mammals are inconsistent, and multiple factors are likely involved. Long-term studies on a variety of species may help untangle the complexity. I analyzed a long-term data set on the variation in offspring sex-ratio of the big brown bat, Eptesicus fuscus, a temperate-zone, insectivorous species. Sex ratio varied seasonally, but only in some years. Births early in the season were significantly female biased in years in which parturition occurred relatively early, but not in years with late parturition. Survival of female pups increased with earlier median birth date for the colony, and early-born females were more likely to survive and reproduce as one-year olds, compared to later-born pups. I argue that, due to the unusual timing of reproductive activities in male and female bats that hibernate, producing female offspring early in the year increases their probability of reproducing as one year olds, but this is not the case for male offspring. Thus, mothers that can give birth early in the year, benefit most by producing a female pup. The relative benefit of producing female or male offspring varies depending on the length of the growing season and thus the time available for female pups to reach sexual maturity. This suggests that not only does sex-ratio vary seasonally and among years, depending on the condition of the mother and the environment, but also likely varies geographically due to differences in season length. PMID:22570704

  4. Seasonal and geographic variations in the incidence of asthma exacerbations in the United States.

    PubMed

    Gerhardsson de Verdier, M; Gustafson, Per; McCrae, Christopher; Edsbäcker, Staffan; Johnston, Neil

    2017-10-01

    Exacerbations drive the burden of asthma and lead to significant morbidity and consumption of health care resources. Many prior studies of the epidemiology of asthma exacerbations have relied upon data from hospital care. The objective of this study was to determine US patterns of geographic and seasonal variations of asthma exacerbations being defined as asthma episodes requiring hospital care and/or a prescription for oral steroid. The study was a retrospective observational cohort study using administrative claims data for insured individuals from the HealthCore Integrated Research Database, including around 43 million members in the United States. Analyses examined 3 age groups, 6-17, 18-64, and ≥65 years and four US regions, Northeast, Southeast, Central, and Western. Monthly rates of asthma exacerbations showed the greatest variation over the year in children, less so in adults and in the elderly. Clinically important differences in rates of asthma exacerbation were observed between regions with the Western Region having the lowest in all three age groups followed by the Northeast, Central, and Southeast regions. Peaks in children occurred in the early fall following troughs in the summer months, and peaks at year-end occurred in adults, particularly in those over 65 years. There is a striking seasonal variation in asthma exacerbations in the United States. Substantial differences between regions of the United States in asthma exacerbation rates cannot readily be explained and invite further investigation.

  5. Seasonal Variation of Arsenic Concentration in Natural Water of the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Yu, C.; Wen, L.; Yu, Z.

    2017-12-01

    grandly different in April and July. The seasonal variation of arsenic is obvious and further investigation is needed.

  6. Seasonal variations in the concentrations of metals in Crassostrea corteziensis from Sonora, México.

    PubMed

    García-Rico, L; Tejeda-Valenzuela, L; Burgos-Hernández, A

    2010-08-01

    This study examines seasonal variations in the concentrations of Cd, Cu, Pb, and Hg in experimentally cultured Crassostrea corteziensis, an oyster species known to have high resistance to physical and chemical stressors. The highest levels of Cd (4.92 mg/kg), Cu (3.45 mg/kg), and Pb (0.67 mg/kg) were detected in oyster samples collected during the summer, while Hg concentrations were similar (0.03 to 0.04 mg/kg) throughout all seasons. Results indicate that except for Cd, Crassostrea corteziensis accumulates metals to levels below those recommended by the US. FDA and the Mexican government. For Cd, its concentration correlates more strongly with the temperature of the oyster's environment rather than to the oyster growth cycle.

  7. Effect of land use on the seasonal variation of streamwater quality in the Wei River basin, China

    NASA Astrophysics Data System (ADS)

    Yu, S.; Xu, Z.; Wu, W.; Zuo, D.

    2015-05-01

    The temporal effect of land use on streamwater quality needs to be addressed for a better understanding of the complex relationship between land use and streamwater quality. In this study, GIS and Pearson correlation analysis were used to determine whether there were correlations of land-use types with streamwater quality at the sub-basin scale in the Wei River basin, China, during dry and rainy seasons in 2012. Temporal variation of these relations was observed, indicating that relationships between water quality variables and proportions of different land uses were weaker in the rainy season than that in the dry season. Comparing with other land uses, agriculture and urban lands had a stronger relationship with water quality variables in both the rainy and dry seasons. These results suggest that the aspect of temporal effects should be taken into account for better land-use management.

  8. Theory of planned behaviour variables and objective walking behaviour do not show seasonal variation in a randomised controlled trial

    PubMed Central

    2014-01-01

    Background Longitudinal studies have shown that objectively measured walking behaviour is subject to seasonal variation, with people walking more in summer compared to winter. Seasonality therefore may have the potential to bias the results of randomised controlled trials if there are not adequate statistical or design controls. Despite this there are no studies that assess the impact of seasonality on walking behaviour in a randomised controlled trial, to quantify the extent of such bias. Further there have been no studies assessing how season impacts on the psychological predictors of walking behaviour to date. The aim of the present study was to assess seasonal differences in a) objective walking behaviour and b) Theory of Planned Behaviour (TPB) variables during a randomised controlled trial of an intervention to promote walking. Methods 315 patients were recruited to a two-arm cluster randomised controlled trial of an intervention to promote walking in primary care. A series of repeated measures ANCOVAs were conducted to examine the effect of season on pedometer measures of walking behaviour and TPB measures, assessed immediately post-intervention and six months later. Hierarchical regression analyses were conducted to assess whether season moderated the prediction of intention and behaviour by TPB measures. Results There were no significant differences in time spent walking in spring/summer compared to autumn/winter. There was no significant seasonal variation in most TPB variables, although the belief that there will be good weather was significantly higher in spring/summer (F = 19.46, p < .001). Season did not significantly predict intention or objective walking behaviour, or moderate the effects of TPB variables on intention or behaviour. Conclusion Seasonality does not influence objectively measured walking behaviour or psychological variables during a randomised controlled trial. Consequently physical activity behaviour outcomes in trials will

  9. Theory of planned behaviour variables and objective walking behaviour do not show seasonal variation in a randomised controlled trial.

    PubMed

    Williams, Stefanie L; French, David P

    2014-02-05

    Longitudinal studies have shown that objectively measured walking behaviour is subject to seasonal variation, with people walking more in summer compared to winter. Seasonality therefore may have the potential to bias the results of randomised controlled trials if there are not adequate statistical or design controls. Despite this there are no studies that assess the impact of seasonality on walking behaviour in a randomised controlled trial, to quantify the extent of such bias. Further there have been no studies assessing how season impacts on the psychological predictors of walking behaviour to date. The aim of the present study was to assess seasonal differences in a) objective walking behaviour and b) Theory of Planned Behaviour (TPB) variables during a randomised controlled trial of an intervention to promote walking. 315 patients were recruited to a two-arm cluster randomised controlled trial of an intervention to promote walking in primary care. A series of repeated measures ANCOVAs were conducted to examine the effect of season on pedometer measures of walking behaviour and TPB measures, assessed immediately post-intervention and six months later. Hierarchical regression analyses were conducted to assess whether season moderated the prediction of intention and behaviour by TPB measures. There were no significant differences in time spent walking in spring/summer compared to autumn/winter. There was no significant seasonal variation in most TPB variables, although the belief that there will be good weather was significantly higher in spring/summer (F = 19.46, p < .001). Season did not significantly predict intention or objective walking behaviour, or moderate the effects of TPB variables on intention or behaviour. Seasonality does not influence objectively measured walking behaviour or psychological variables during a randomised controlled trial. Consequently physical activity behaviour outcomes in trials will not be biased by the season in which

  10. Seasonal variations of reflexibility and transmissibility of ULF waves propagating through the ionosphere of geomagnetic mid-latitudes

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (1) continuous band f 0.1-0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; (2) the f 0.2 Hz band with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.

  11. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons

    PubMed Central

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-01-01

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses. PMID:27892507

  12. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons

    NASA Astrophysics Data System (ADS)

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-11-01

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses.

  13. Seasonal variation in child mortality in rural Guinea-Bissau.

    PubMed

    Nielsen, Bibi Uhre; Byberg, Stine; Aaby, Peter; Rodrigues, Amabelia; Benn, Christine Stabell; Fisker, Ane Baerent

    2017-07-01

    In many African countries, child mortality is higher in the rainy season than in the dry season. We investigated the effect of season on child mortality by time periods, sex and age in rural Guinea-Bissau. Bandim health project follows children under-five in a health and demographic surveillance system in rural Guinea-Bissau. We compared the mortality in the rainy season (June to November) between 1990 and 2013 with the mortality in the dry season (December to May) in Cox proportional hazards models providing rainy vs. dry season mortality rate ratios (r/d-mrr). Seasonal effects were estimated in strata defined by time periods with different frequency of vaccination campaigns, sex and age (<1 month, 1-11 months, 12-59 months). Verbal autopsies were interpreted using InterVa-4 software. From 1990 to 2013, overall mortality was declined by almost two-thirds among 81 292 children (10 588 deaths). Mortality was 51% (95% ci: 45-58%) higher in the rainy season than in the dry season throughout the study period. The seasonal difference increased significantly with age, the r/d-mrr being 0.94 (0.86-1.03) among neonates, 1.57 (1.46-1.69) in post-neonatal infants and 1.83 (1.72-1.95) in under-five children (P for same effect <0.001). According to the InterVa, malaria deaths were the main reason for the seasonal mortality difference, causing 50% of all deaths in the rainy season, but only if the InterVa included season of death, making the argument self-confirmatory. The mortality declined throughout the study, yet rainy season continued to be associated with 51% higher overall mortality. © 2017 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  14. Possible daily and seasonal variations in quantum interference induced by Chern-Simons gravity.

    PubMed

    Okawara, Hiroki; Yamada, Kei; Asada, Hideki

    2012-12-07

    Possible effects of Chern-Simons (CS) gravity on a quantum interferometer turn out to be dependent on the latitude and direction of the interferometer on Earth in orbital motion around the Sun. Daily and seasonal variations in phase shifts are predicted with an estimate of the size of the effects, wherefore neutron interferometry with ~5 m arm length and ~10(-4) phase measurement accuracy would place a bound on a CS parameter comparable to the Gravity Probe B satellite.

  15. Seasonal variation in standardized litter decomposition and effects of elevation and land use at Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, Joscha; Kuzyakov, Yakov

    2017-04-01

    Decomposition is one of most important ecological steps in organic matter and nutrient cycles, but studies and reliable data from tropical regions in Africa are still scarce. At the global scale, litter decomposition and recycling is controlled by climatic factors and land-use intensity. These factors can be linked to specific ecosystem characteristics along the unique elevation gradient of Mt. Kilimanjaro. Our objectives were to assess the effects of climatic conditions (i.e. elevation) and land-use intensity on C turnover and stabilization and investigated the seasonal variations. Tea-bag Index (see www.teatime4science.org) was used to measure decomposition of a standardized litter substrate by microorganisms and mesofauna <0.25 mm. Nine pairs of litterbags were exposed in eleven ecosystems for 90 days during the short-rainy (October-December), warm-dry (December-March), long-rainy (March-July) and cold-dry season (July-September) respectively. Decomposition rates increased from k=0.007 in savanna, up to a maximum of k=0.022 in cloud forest (i.e. mid elevation). The increase was followed by a decrease of 50% in (sub-) alpine ecosystems. Stabilization factors decreased from savanna (S=0.33) to coffee plantations or cloud forest (S=0.11) respectively and strongly increased again to a maximum of S=0.41 in the alpine helichrysum ecosystem. During all seasons, we found the highest decomposition rates at mid elevation. However, during both warm seasons the peak is shifted upslope. Savanna experienced the strongest seasonal variation, with 23 times higher S-values in dry- compared to rainy season. Mean annual k-values increased for about 30% with increasing land-use intensity. C stabilization in Mt. Kilimanjaro ecosystems is strongly dependent on seasonal moisture limitation (lower slope) and perennial temperature limitation (alpine zone). Ecosystems at mid elevation (around 1920 & 2120m) represent the interception zone of optimal moisture and temperature conditions

  16. Seasonal C-13 variations of methane from an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, Neal; Desmarais, David S.; Martens, Christopher S.

    1985-01-01

    Recent analyses of glacial ice suggest that the atmospheric concentration of methane has doubled in the last several hundred years, presumably due to anthropogenic perturbations of the relevant biogeochemical cycles. In principal, carbon isotopic measurements of atmospheric methane would provide information concerning changes in the sources and sinks of methane. The isotopic composition of methane is dependent on the source of the methane carbon, the mechanism of methane synthesis, and the degree and mode of oxidation which the methane has experienced. Unfortunately, few carbon isotopic measurements of atmospheric variations have been reported, so conclusions about temporal isotopic variations cannot be made. Also, before isotopic measurements of atmospheric methane can be used to identify changes in methane isotopic composition from different sources must be obtained. Methane bubbles from the anoxic sediments of Cape Lookout Bight, NC exhibit seasonal C-13 variations. The C-13 values ranged from -58 in August to -64 in the winter months with the evolution of the C-13 enriched gas occurring during periods of peak methane production. Even though a few intramolecular C-13 measurements of the pore water acetate have been made (methyl group, -26 per mil; carbonyl, -6 per mil), it is not clear how the acetate fermentation pathway affects the methane C-13/C-12 composition.

  17. Occurrence, distribution, and seasonal variation of antibiotics in an artificial water source reservoir in the Yangtze River delta, East China.

    PubMed

    Cui, Changzheng; Han, Qi; Jiang, Lei; Ma, Lei; Jin, Lei; Zhang, Dong; Lin, Kuangfei; Zhang, Tianyang

    2018-05-04

    This study investigated the occurrence and variation of 11 antibiotics (including four sulfonamides (SAs), four fluoroquinolones (FQs), two tetracyclines (TCs), and one macrolide (ML)) and one SA synergist trimethoprim (TMP) in an artificial drinking water source reservoir in Yangtze River delta of East China. Water samples were collected each month from January to November in 2014 at the water inlet and outlet site of the reservoir. Sulfamethoxazole, sulfadiazine, and norfloxacin were detected with the high frequencies of 100, 92.31, and 97.85%, respectively. The total concentration showed the highest level in winter (229.14 ng/L) and the lowest one in summer (96.11 ng/L). FQs and TCs were the dominant species among all the antibiotics. The total amount of antibiotics detected in this reservoir showed a negative relationship with temperature (R 2  = 0.7565) in this area. From the inlet site to outlet site of this reservoir, all SAs as well as TMP showed decline trends in the four seasons, but other antibiotics including FQs, TCs, and MLs increased more or less in different seasons, especially for ciprofloxacin in winter (from 48.82 ng/L at inlet site to 80.36 ng/L at outlet site). Most antibiotics detected in this drinking water source reservoir had no direct health risk for human with different age groups (except ciprofloxacin for the group of 0-3 months), but still showed obvious ecological risk for algae and invertebrate. Among the three target organisms (algae, invertebrate, and fish), algae was the most sensitive for antibiotics, which was followed by invertebrate. Among the target antibiotics, sulfamethoxazole, ciprofloxacin, tetracycline, and oxytetracycline showed high ecological risk for algae (RQs > 1), and oxytetracycline also showed high risk for invertebrate (RQ = 1.34).

  18. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China

    PubMed Central

    Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu

    2014-01-01

    Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the

  19. Comparison of Seasonal Terrestrial Water Storage Variations from GRACE with Groundwater-level Measurements from the High Plains Aquifer (USA)

    NASA Technical Reports Server (NTRS)

    Strassberg, Gil; Scanlon, Bridget R.; Rodell, Matthew

    2007-01-01

    This study presents the first direct comparison of variations in seasonal GWS derived from GRACE TWS and simulated SM with GW-level measurements in a semiarid region. Results showed that variations in GWS and SM are the main sources controlling TWS changes over the High Plains, with negligible storage changes from surface water, snow, and biomass. Seasonal variations in GRACE TWS compare favorably with combined GWS from GW-level measurements (total 2,700 wells, average 1,050 GW-level measurements per season) and simulated SM from the Noah land surface model (R = 0.82, RMSD = 33 mm). Estimated uncertainty in seasonal GRACE-derived TWS is 8 mm, and estimated uncertainty in TWS changes is 11 mm. Estimated uncertainty in SM changes is 11 mm and combined uncertainty for TWS-SM changes is 15 mm. Seasonal TWS changes are detectable in 7 out of 9 monitored periods and maximum changes within a year (e.g. between winter and summer) are detectable in all 5 monitored periods. Grace-derived GWS calculated from TWS-SM generally agrees with estimates based on GW-level measurements (R = 0.58, RMSD = 33 mm). Seasonal TWS-SM changes are detectable in 5 out of the 9 monitored periods and maximum changes are detectable in all 5 monitored periods. Good correspondence between GRACE data and GW-level measurements from the intensively monitored High Plains aquifer validates the potential for using GRACE TWS and simulated SM to monitor GWS changes and aquifer depletion in semiarid regions subjected to intensive irrigation pumpage. This method can be used to monitor regions where large-scale aquifer depletion is ongoing, and in situ measurements are limited, such as the North China Plain or western India. This potential should be enhanced by future advances in GRACE processing, which will improve the spatial and temporal resolution of TWS changes, and will further increase applicability of GRACE data for monitoring GWS.

  20. Seasonal variations of natural ventilation and radon-222 exhalation in a slightly rising dead-end tunnel.

    PubMed

    Perrier, Frédéric; Richon, Patrick; Gautam, Umesh; Tiwari, Dilli Ram; Shrestha, Prithvi; Sapkota, Soma Nath

    2007-01-01

    The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.

  1. Seasonal and Spatial Variations of Heavy Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible Sources

    PubMed Central

    Yao, Hong; Qian, Xin; Gao, Hailong; Wang, Yulei; Xia, Bisheng

    2014-01-01

    Ten metals were analyzed in samples collected in three seasons (the dry season, the early rainy season, and the late rainy season) from two rivers in China. No observed toxic effect concentrations were used to estimate the risks. The possible sources of the metals in each season, and the dominant source(s) at each site, were assessed using principal components analysis. The metal concentrations in the area studied were found, using t-tests, to vary both seasonally and spatially (P = 0.05). The potential risks in different seasons decreased in the order: early rainy season > dry season > late rainy season, and Cd was the dominant contributor to the total risks associated with heavy metal pollution in the two rivers. The high population and industrial site densities in the Taihu basin have had negative influences on the two rivers. The river that is used as a source of drinking water (the Taipu River) had a low average level of risks caused by the metals. Metals accumulated in environmental media were the main possible sources in the dry season, and emissions from mechanical manufacturing enterprises were the main possible sources in the rainy season. The river in the industrial area (the Wusong River) had a moderate level of risk caused by the metals, and the main sources were industrial emissions. The seasonal and spatial distributions of the heavy metals mean that risk prevention and mitigation measures should be targeted taking these variations into account. PMID:25407421

  2. Seasonal variation in hormonal responses of timber rattlesnakes (Crotalus horridus) to reproductive and environmental stressors.

    PubMed

    Lutterschmidt, William I; Lutterschmidt, Deborah I; Mason, Robert T; Reinert, Howard K

    2009-08-01

    Data addressing adrenocortical modulation across taxonomic groups are limited, especially with regard to how female reproductive condition influences the sensitivity of the hypothalamus-pituitary-adrenal axis. We investigated seasonal and reproductive variation in basal and stress-induced hormone profiles in a population of free-ranging timber rattlesnakes (Crotalus horridus) in north-central Pennsylvania during spring (i.e., May), summer (i.e., July), and early fall (i.e., September). Baseline corticosterone concentrations varied seasonally and were significantly lower during the summer sampling period in July. We observed a significant negative relationship between baseline corticosterone and testosterone in male snakes, while baseline corticosterone and estradiol tended to be positively correlated in females. Treatment of snakes with 1 h of capture stress significantly increased corticosterone across all seasons. However, there was a significant interaction between corticosterone responses to capture stress and season, suggesting that adrenocortical function is modulated seasonally. Because elevated corticosterone may be associated with reproduction, we asked whether hormonal stress responses vary with female reproductive condition. Although sample sizes are low, reproductive snakes had significantly higher baseline and stress-induced corticosterone concentrations than non-reproductive or post-parturient females. Further, despite similar baseline corticosterone concentrations between non-reproductive and post-parturient rattlesnakes, post-parturient females responded to capture stress with a significantly higher increase in corticosterone. Collectively, these data suggest that the sensitivity of the hypothalamus-pituitary-adrenal axis varies both seasonally and with changing reproductive states.

  3. Seasonal variations in diet composition, diet breadth and dietary overlap between three commercially important fish species within a flood-pulse system: The Tonle Sap Lake (Cambodia).

    PubMed

    Heng, Kong; Chevalier, Mathieu; Lek, Sovan; Laffaille, Pascal

    2018-01-01

    Tropical lakes and their associated floodplain habitats are dynamic habitat mosaics strongly influenced by seasonal variations in hydrologic conditions. In flood-pulse systems, water level oscillations directly influence the connectivity to floodplain habitats for fish. Here, we aimed to investigate whether seasonal changes in the water level of a flood-pulse system (the Tonle Sap Lake, Cambodia) differentially affect diet breadth and dietary overlap of three common and commercially important fish species (Anabas testudineus, Boesemania microplepis and Notopterus notopterus) presenting important differences in their life-cycle (e.g. seasonal migration). For this purpose, the three fish species were sampled at four locations spread over the lake and their stomach contents extracted for analyses. Dietary differences were investigated across seasons regarding the diet composition and diet breadth of each species as well as the amount of dietary overlap between species. We found that the proportion of empty stomachs changed similarly across seasons for the three species, thus suggesting that ecological differences between species are not sufficient to outweigh the effect of seasonal variations in resource abundance. In contrast, changes in diet composition were species-specific and can be explained by ecological and behavioral differences between species. Diet breadth differed between species in all seasons, except during the wet season, and tended to be higher during the dry season when dietary overlap was the lowest. These variations likely result from changes in the diversity and amount of resources and may lead to habitat use shifts with potential implications for competitive interactions. In particular, increasing connectivity to floodplain habitats may reduce the competitive pressure during the wet season, while resource scarcity during the dry season may constrain individuals to diversify their diet to avoid competition. Overall, our results suggest a

  4. Seasonal modeling of hand, foot, and mouth disease as a function of meteorological variations in Chongqing, China

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Zhao, Han; You, Fangxin; Zhou, Hailong; Goggins, William B.

    2017-08-01

    Hand, foot, and mouth disease (HFMD) is an enterovirus-induced infectious disease, mainly affecting children under 5 years old. Outbreaks of HFMD in recent years indicate the disease interacts with both the weather and season. This study aimed to investigate the seasonal association between HFMD and weather variation in Chongqing, China. Generalized additive models and distributed lag non-linear models based on a maximum lag of 14 days, with negative binomial distribution assumed to account for overdispersion, were constructed to model the association between reporting HFMD cases from 2009 to 2014 and daily mean temperature, relative humidity, total rainfall and sun duration, adjusting for trend, season, and day of the week. The year-round temperature and relative humidity, rainfall in summer, and sun duration in winter were all significantly associated with HFMD. An inverted-U relationship was found between mean temperature and HFMD above 19 °C in summer, with a maximum morbidity at 27 °C, while the risk increased linearly with the temperature in winter. A hockey-stick association was found for relative humidity in summer with increasing risks over 60%. Heavy rainfall, relative to no rain, was found to be associated with reduced HFMD risk in summer and 2 h of sunshine could decrease the risk by 21% in winter. The present study showed meteorological variables were differentially associated with HFMD incidence in two seasons. Short-term weather variation surveillance and forecasting could be employed as an early indicator for potential HFMD outbreaks.

  5. Evaluation of epidemiology, concomitant urethral disruption and seasonal variation of penile fracture: A report of 86 cases

    PubMed Central

    Moslemi, Mohammad Kazem

    2013-01-01

    Introduction: Penile fracture (PF) is a well-recognized clinical entity and is often deemed a urological emergency. It is not uncommon in our region. The main objective of this study is to describe the clinical characteristics of patients diagnosed with penile fracture in the Qom Province, Iran. We evaluate surgical treatment, concomitant urethral disruption and its seasonal variation. Methods: This is a descriptive retrospective study, reviewing all the medical records of patients admitted with penile fracture from 2003 to 2012 at Kamkar Hospital of Qom, Iran. It takes into account variables related to the urological history, etiology, diagnosis and its surgical treatment. The epidemiologic data, marriage status and the seasonal variation were evaluated. In total, 86 patients, aged between 17 and 62, with PF were hospitalized in our centre. The average age of patients was 36.74 years. All operated cases were followed 3 months and 6 months after surgery. Results: Of the 86 patients, 34 (68%) were the ages of 20 and 40. In terms of marital status, 56 (65%) were married and 30 (35%) were single at the time of presentation. Twenty-six patients (30.2%) had episodes related to intercourse and 48 patients (56%) to manual habitual trauma; the remaining 12 patients had a direct blow to an erect penis or rolled/fell off a bed. Patients presented with swelling, pain and a popping or cracking sound in the penis. The diagnosis was made using history and physical examination in all patients. Unilateral corporeal ruptures were present in 80 (93%) and bilateral in 2 cases (2.32%). Surgical repair was performed with a circumferential sub-coronal degloving incision in 82 cases (95.35%). There were seasonal variations: 22 cases in spring; 25 in summer; 17 in autumn; 22 in winter. Patients had an average postoperative hospital stay of 1 day. Conclusion: Habitual manual trauma was the most common cause of PF in our study. Immediate surgical intervention has low morbidity, short

  6. Seasonal and Interannual Variations of Ice Sheet Surface Elevation at the Summit of Greenland: Observed and Modeled

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due

  7. Evaluation of epidemiology, concomitant urethral disruption and seasonal variation of penile fracture: A report of 86 cases.

    PubMed

    Moslemi, Mohammad Kazem

    2013-01-01

    Penile fracture (PF) is a well-recognized clinical entity and is often deemed a urological emergency. It is not uncommon in our region. The main objective of this study is to describe the clinical characteristics of patients diagnosed with penile fracture in the Qom Province, Iran. We evaluate surgical treatment, concomitant urethral disruption and its seasonal variation. This is a descriptive retrospective study, reviewing all the medical records of patients admitted with penile fracture from 2003 to 2012 at Kamkar Hospital of Qom, Iran. It takes into account variables related to the urological history, etiology, diagnosis and its surgical treatment. The epidemiologic data, marriage status and the seasonal variation were evaluated. In total, 86 patients, aged between 17 and 62, with PF were hospitalized in our centre. The average age of patients was 36.74 years. All operated cases were followed 3 months and 6 months after surgery. Of the 86 patients, 34 (68%) were the ages of 20 and 40. In terms of marital status, 56 (65%) were married and 30 (35%) were single at the time of presentation. Twenty-six patients (30.2%) had episodes related to intercourse and 48 patients (56%) to manual habitual trauma; the remaining 12 patients had a direct blow to an erect penis or rolled/fell off a bed. Patients presented with swelling, pain and a popping or cracking sound in the penis. The diagnosis was made using history and physical examination in all patients. Unilateral corporeal ruptures were present in 80 (93%) and bilateral in 2 cases (2.32%). Surgical repair was performed with a circumferential sub-coronal degloving incision in 82 cases (95.35%). There were seasonal variations: 22 cases in spring; 25 in summer; 17 in autumn; 22 in winter. Patients had an average postoperative hospital stay of 1 day. Habitual manual trauma was the most common cause of PF in our study. Immediate surgical intervention has low morbidity, short hospital stay and rapid functional recovery. In

  8. Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen

    PubMed Central

    IBĂNESCU, Iulian; LEIDING, Claus; BOLLWEIN, Heinrich

    2017-01-01

    This study aimed to identify motile sperm subpopulations in extended boar semen and to observe the presumptive seasonal variation in their distribution. Data from 4837 boar ejaculates collected over a two-year period were analyzed in terms of kinematic parameters by Computer Assisted Sperm Analysis (CASA). Individual sperm data were used to determine subgroups of motile sperm within the ejaculates using cluster analysis. Four motile sperm subpopulations (SP) were identified, with distinct movement patterns: SP1 sperm with high velocity and high linearity; SP2 sperm with high velocity but low linearity; SP3 sperm with low velocity but high linearity; and SP4 sperm with low velocity and low linearity. SP1 constituted the least overall proportion within the ejaculates (P < 0.05). Season of semen collection significantly influenced the different proportions of sperm subpopulations. Spring was characterized by similar proportions of SP1 and SP4 (NS) and higher proportions of SP3. Summer brought a decrease in both subgroups containing fast sperm (SP1 and SP2) (P < 0.05). During autumn, increases in SP2 and SP4 were recorded. Winter substantially affected the proportions of all sperm subpopulations (P < 0.05) and SP2 became the most represented subgroup, while SP1 (fast and linear) reached its highest proportion compared to other seasons. In conclusion, extended boar semen is structured in distinct motile sperm subpopulations whose proportions vary according to the season of collection. Summer and autumn seem to have a negative impact on the fast and linear subpopulation. Cluster analysis can be useful in revealing differences in semen quality that are not normally detected by classical evaluation based on mean values. PMID:29081440

  9. Spatio-temporal assessment and seasonal variation of tropospheric ozone in Pakistan during the last decade.

    PubMed

    Noreen, Asma; Khokhar, Muhammad Fahim; Zeb, Naila; Yasmin, Naila; Hakeem, Khalid Rehman

    2018-03-01

    This study uses the tropospheric ozone data derived from combined observations of Ozone Monitoring Instrument/Microwave Limb Sounder instruments by using the tropospheric ozone residual method. The main objective was to study the spatial distribution and temporal evolution in the troposphere ozone columns over Pakistan during the time period of 2004 to 2014. Results showed an overall increase of 3.2 ± 1.1 DU in tropospheric ozone columns over Pakistan. Spatial distribution showed enhanced ozone columns in the Punjab and southern Sindh consistent to high population, urbanization, and extensive anthropogenic activities, and exhibited statistically significant temporal increase. Seasonal variations in tropospheric ozone columns are driven by various factors such as seasonality in UV-B fluxes, seasonality in ozone precursor gases such as NO x and volatile organic compounds (caused by temperature dependent biogenic emission) and agricultural fire activities in Pakistan. A strong correlation of 96% (r = 0.96) was found between fire events and tropospheric ozone columns in Pakistan.

  10. Seasonal variation in plasma lipids and lipases in young healthy humans.

    PubMed

    Cambras, Trinitat; Baena-Fustegueras, Juan A; Pardina, Eva; Ricart-Jané, David; Rossell, Joana; Díez-Noguera, Antoni; Peinado-Onsurbe, Julia

    2017-01-01

    Although intermediate metabolism is known to follow circadian rhythms, little information is available on the variation in lipase activities (lipoprotein and hepatic lipase, LPL and HL, respectively) and lipids throughout the year. In a cross-sectional study, we collected and analysed blood from 245 healthy students (110 men and 135 women) between 18 and 25 years old from the University of Barcelona throughout the annual campaign (March, May, October and December) of the blood bank. All subjects gave their written informed consent to participate. All blood samples were taken after breakfast at 8:00 and 11:00 am. Plasma glucose, total plasma protein, triacylglycerides (TAG), free fatty acids (FFA), free cholesterol and esterified cholesterol (FC and TC, respectively), cholesterol in low-density lipoproteins (cLDL), cholesterol in high-density lipoproteins (cHDL), phospholipids (PL) and lipase activities (LPL and HL) were determined. Cosinor analysis was used to evaluate the presence (significance of fit cosine curve to data and variance explained by rhythm) and characteristics of possible 12-month rhythms (acrophase, MESOR and amplitude). Statistically significant seasonal rhythms were detected for all the variables studied except proteins, with most of them peaking in the winter season. The lowest value for cLDL and the HL occurs in summer, while for cHDL and the LPL it is in winter. These findings demonstrate for the first time that in physiological conditions, plasma LPL and HL activities and lipids follow seasonal rhythms. The metabolic significance of this pattern is discussed.

  11. Seasonal variations of reflexibility and transmissibility of ULF waves propagating through the ionosphere of geomagnetic mid-latitudes

    NASA Astrophysics Data System (ADS)

    Prikner, K.

    Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility and absorption, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (a) continuous band f of less than 0.1 to 0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; and (b) a Hz band of greater than 0.2 Hz with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.

  12. Seasonal metabolic acclimatization in the herbivorous desert lizard Uromastyx philbyi (Reptilia: Agamidea) from western Saudi Arabia.

    PubMed

    Zari, Talal A

    2016-08-01

    Many ectotherms adjust their metabolic rate seasonally in association with variations in environmental temperatures. The range and direction of these seasonal changes in reptilian metabolic rates are thought to be linked to the seasonality of activity and energy requirements. The present study was conducted to measure the standard metabolic rate (SMR) of seasonally-acclimatized Uromastyx philbyi with different body masses at 20, 25, 30, 35 and 40°C using open-flow respirometry during the four seasons. SMR was mass-dependent. The mean exponent of mass, "b", in the metabolism-body mass relation was 0.76 (variance=0.0007). Likewise, SMR increased as temperature increased with low Q10 values at high temperatures and high Q10 values at low temperatures. The lowest and highest Q10 values were achieved for temperature ranges of 30-35°C for summer-acclimatized dhabbs (Q10=1.6) and 20-25°C for winter-acclimatized dhabbs (Q10=3.9). Seasonal acclimatization effects were obvious at all temperatures (20-40°C). Winter-acclimatized dhabbs had the lowest metabolic rates at all temperatures. The seasonal acclimatization patterns displayed by U. philbyi may represent a valuable adaptation for herbivorous desert lizards that inhabit subtropical deserts to facilitate activity during their active seasons and to conserve energy during inactivity at low temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Are variations in heterotrophic soil respiration related to changes in substrate availability and microbial biomass carbon in the subtropical forests?

    PubMed

    Wei, Hui; Chen, Xiaomei; Xiao, Guoliang; Guenet, Bertrand; Vicca, Sara; Shen, Weijun

    2015-12-16

    Soil temperature and moisture are widely-recognized controlling factors on heterotrophic soil respiration (Rh), although they often explain only a portion of Rh variability. How other soil physicochemical and microbial properties may contribute to Rh variability has been less studied. We conducted field measurements on Rh half-monthly and associated soil properties monthly for two years in four subtropical forests of southern China to assess influences of carbon availability and microbial properties on Rh. Rh in coniferous forest was significantly lower than that in the other three broadleaf species-dominated forests and exhibited obvious seasonal variations in the four forests (P < 0.05). Temperature was the primary factor influencing the seasonal variability of Rh while moisture was not in these humid subtropical forests. The quantity and decomposability of dissolved organic carbon (DOC) were significantly important to Rh variations, but the effect of DOC content on Rh was confounded with temperature, as revealed by partial mantel test. Microbial biomass carbon (MBC) was significantly related to Rh variations across forests during the warm season (P = 0.043). Our results suggest that DOC and MBC may be important when predicting Rh under some conditions, and highlight the complexity by mutual effects of them with environmental factors on Rh variations.

  14. Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong

    2018-02-01

    The Andaman Sea (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the air-sea interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the sea surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.

  15. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia

    NASA Astrophysics Data System (ADS)

    Ou Yang, Chang-Feng; Lin, Neng-Huei; Sheu, Guey-Rong; Lee, Chung-Te; Wang, Jia-Lin

    2012-01-01

    Continuous measurements of tropospheric ozone were conducted at the Lulin Atmospheric Background Station (LABS) at an altitude of 2862 m from April 2006 to the end of 2009. Distinct seasonal variations in the ozone concentration were observed at the LABS, with a springtime maximum and a summertime minimum. Based on a backward trajectory analysis, CO data, and ozonesondes, the springtime maximum was most likely caused by the long-range transport of air masses from Southeast Asia, where biomass burning was intense in spring. In contrast, a greater Pacific influence contributed to the summertime minimum. In addition to seasonal variations, a distinct diurnal pattern was also observed at the LABS, with a daytime minimum and a nighttime maximum. The daytime ozone minimum was presumably caused by sinks of dry deposition and NO titration during the up-slope transport of surface air. The higher nighttime values, however, could be the result of air subsidence at night bringing ozone aloft to the LABS. After filtering out the daytime data to remove possible local surface contributions, the average background ozone value for the period of 2006-2009 was approximately 36.6 ppb, increased from 32.3 ppb prior to data filtering, without any changes in the seasonal pattern. By applying HYSPLIT4 model analysis, the origins of the air masses contributing to the background ozone observed at the LABS were investigated.

  16. Seasonal variation in the flux of euthecosomatous pteropods collected in a deep sediment trap in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Almogi-Labin, A.; Hemleben, Ch.; Deuser, W. G.

    1988-03-01

    A 4-year series of sediment trap samples from a depth of 3.2 km in the Sargasso Sea (32°05'N, 64°15'W) has revealed seasonal variations in the flux of euthecosomatous pteropods. Total pteropod flux is related to seasonal variations of the total particulate and organic carbon flux with a lag of 1-1.5 months. High flux of pteropods (>200 specimens m -2 day -1) occurs in late winter to mid-summer. Shells of individual pteropod species arrive in deep water in a seasonal succession similar to that in the living assemblage. Peak fluxes of Styliola subula, Clio pyramidata and Limacina bulimoides were recorded from February to May. Limacina inflata, Limacina lesueuri and Cuvierina columnella entered the trap in maximum numbers from April to mid-August. Creseis virgula conica and C. acicula were most abundant from June to late August. The latter two are non-migrating, epipelagic pteropods and comprise <10% of the assemblage. Diel migrators dominate the pteropod assemblage (92%). During the summer months they appear to migrate at greater depth, without reaching the surface water. Although many young are produced, only a small fraction, about 4% in the case of L. inflata and L. bulimoides, survives and reaches maturity. Adult shell size of L. inflata and L. bulimoides varies seasonally, reaching maximum size during spring, probably in response to increasing food availability.

  17. 20th-Century Climate Change over Africa: Seasonal Variation in Hydroclimate Trends and Sahara Desert Extent

    NASA Astrophysics Data System (ADS)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    Twentieth-century trends in seasonal temperature and precipitation over the African continent are analyzed from observational data sets and historical climate simulations. Given the agricultural economy of the continent, a seasonal perspective is adopted as it is more pertinent than an annual-average one which can mask off-setting but agriculturally-sensitive seasonal hydroclimate variations. Examination of linear trends in seasonal surface air temperature (SAT) shows that heat stress has increased in several regions, including Sudan and Northern Africa where largest SAT trends occur in the warm season. Broadly speaking, the northern continent has warmed more than the southern one in all seasons. Precipitation trends are varied but notable declining trends are found in the countries along the Gulf of Guinea, especially in the source region of Niger river in West Africa, and in the Congo river basin. Rainfall over the African Great Lakes - one of the largest freshwater repositories - has however increased. We show that the Sahara Desert has expanded significantly over the 20th century - by 12-20% depending on the season. The desert expanded southward in summer, reflecting retreat of the northern edge of the Sahel rainfall belt; and to the north in winter, indicating potential impact of the widening of the Tropics. Specific mechanisms driving the expansion in each season are investigated. Finally, this observational analysis is used to evaluate the state-of-the-art climate models from a comparison of the 20th-century hydroclimate trends with those manifest in historical climate simulations. The evaluation shows that modeling regional hydroclimate change over the Africa continent remains challenging.

  18. Seasonal variation in Rayleigh-to-Love wave ratio in the secondary microseism

    NASA Astrophysics Data System (ADS)

    Tanimoto, T.; Hadziioannou, C.; Igel, H.; Wassermann, J. M.; Schreiber, U.; Gebauer, A.; Chow, B.

    2015-12-01

    The Ring Laser (the G-ring) at Wettzell (WET), Germany, is a rotation-measurement instrument that can monitor tiny variations in seismic noise. It essentially records only SH-type signals. Combined with a co-located seismograph (three-component seismograph STS-2), we can monitor the amount of Love waves from this instrument and that of Rayleigh waves from the STS seismograph. We report on seasonal variation of Rayleigh-to-Love wave ratio in the secondary microseism. The first step in our analysis is to obtain stacked Fourier spectra that were least affected by earthquakes. We used two earthquake catalogues to do this; the GCMT (Global Centroid Moment Tensor, Earthquakes M > 5.5) catalogue and the EMSC (European-Mediterranean Seismic Centre) catalogue for regional earthquakes (distance < 1000 km) with M > 4.5. We then created monthly averages of noise Fourier spectra for the frequency range 0.13-0.30 Hz using both the G-ring and STS data from 2009 to 2015. Monthly spectra show clear seasonal variations for the secondary microseism. We obtained surface vertical acceleration from STS and surface transverse acceleration from G-ring from which we can directly measure the Rayleigh-to-Love wave ratio. The procedure is the same with an account in our recent GRL paper (Tanimoto et al., 2015). Comparison between vertical acceleration and transverse acceleration shows that Rayleigh-wave surface amplitudes are about 20 percent larger than Love waves but in terms of kinetic energy this ratio will be different. We converted these ratios of surface amplitude to those of kinetic energy using an available earth model (Fichtner et al., 2013). The averaged ratio over the frequency band 0.13-0.30 Hz shows is in the range 0.6-0.8 in spring, autumn and winter but it increases to about 1.2 in summer. Except for the summer, the amount of Love waves are higher but the amount of Rayleigh waves increases in summer and appears to exceed that of Love waves.

  19. A research about characteristics of longitudinal variations of ES layers irregularities based on CHAMP occultation measurements

    NASA Astrophysics Data System (ADS)

    Liao, Sunmin

    2018-04-01

    Based on the data of CHAMP occultation measurements, this paper makes a preliminary analysis of the longitudinal variations of ES irregular structure by using Fourier decomposition and reconstruction technique. It is found that the longitudinal variations of the ES irregular structure show the features of multiple wave-numbers, which is dominated by the wave number 1 to the wave number 5 components, and decrease from the amplitudes of the wave number 6 components. The features of wave number structures are very different in different DIP latitude and different seasons. The number of crests in summer and autumn is mostly 3 or 4 crest structures, while the number of crests in spring achieves 5 at DIP 15°N with small fluctuates, the crests number of winter is the least. In the multiple wave-numbers structure, the wave number 4 component shows a significant dependence on the season, mainly in the summer and autumn, particularly obvious from July to October.

  20. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, Hewen; Kang, Shichang; Wang, Hailong; Zhang, Rudong; Lu, Xixi; Qian, Yun; Paudyal, Rukumesh; Wang, Shijin; Shi, Xiaofei; Yan, Xingguo

    2018-05-01

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m-3, respectively. Although the annual mean OC / EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC / EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g-1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol-climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  1. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    Treesearch

    J-C. Domec; F.G. Scholz; S.J. Bucci; F.C. Meinzer; G. Goldstein; R. Villalobos-Vega

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occuring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (ψroot...

  2. Seasonal variations in tuberculosis diagnosis among HIV-positive individuals in Southern Africa: analysis of cohort studies at antiretroviral treatment programmes

    PubMed Central

    Ballif, Marie; Zürcher, Kathrin; Reid, Stewart E; Boulle, Andrew; Fox, Matthew P; Prozesky, Hans W; Chimbetete, Cleophas; Egger, Matthias; Fenner, Lukas

    2018-01-01

    Objectives Seasonal variations in tuberculosis diagnoses have been attributed to seasonal climatic changes and indoor crowding during colder winter months. We investigated trends in pulmonary tuberculosis (PTB) diagnosis at antiretroviral therapy (ART) programmes in Southern Africa. Setting Five ART programmes participating in the International Epidemiology Database to Evaluate AIDS in South Africa, Zambia and Zimbabwe. Participants We analysed data of 331 634 HIV-positive adults (>15 years), who initiated ART between January 2004 and December 2014. Primary outcome measure We calculated aggregated averages in monthly counts of PTB diagnoses and ART initiations. To account for time trends, we compared deviations of monthly event counts to yearly averages, and calculated correlation coefficients. We used multivariable regressions to assess associations between deviations of monthly ART initiation and PTB diagnosis counts from yearly averages, adjusted for monthly air temperatures and geographical latitude. As controls, we used Kaposi sarcoma and extrapulmonary tuberculosis (EPTB) diagnoses. Results All programmes showed monthly variations in PTB diagnoses that paralleled fluctuations in ART initiations, with recurrent patterns across 2004–2014. The strongest drops in PTB diagnoses occurred in December, followed by April–May in Zimbabwe and South Africa. This corresponded to holiday seasons, when clinical activities are reduced. We observed little monthly variation in ART initiations and PTB diagnoses in Zambia. Correlation coefficients supported parallel trends in ART initiations and PTB diagnoses (correlation coefficient: 0.28, 95% CI 0.21 to 0.35, P<0.001). Monthly temperatures and latitude did not substantially change regression coefficients between ART initiations and PTB diagnoses. Trends in Kaposi sarcoma and EPTB diagnoses similarly followed changes in ART initiations throughout the year. Conclusions Monthly variations in PTB diagnosis at ART programmes in

  3. Seasonal variation in habitat use of juvenile Steelhead in a tributary of Lake Ontario

    USGS Publications Warehouse

    Studdert, Emily W.; Johnson, James H.

    2015-01-01

    We examined seasonal-habitat use by subyearling and yearling Oncorhynchus mykiss (Rainbow Trout or Steelhead) in Trout Brook, a tributary of the Salmon River, NY. We determined daytime fish-habitat use and available habitat during August and October of the same year and observed differences in habitat selection among year classes. Water depth and cover played the greatest role in Steelhead habitat use. During summer and autumn, we found yearling Steelhead in areas with deeper water and more cover than where we observed subyearling Steelhead. Both year classes sought out areas with abundant cover during both seasons; this habitat was limited within the stream reach. Subyearling Steelhead were associated with more cover during autumn, even though available cover within the stream reach was greater during summer. Principal component analysis showed that variation in seasonal-habitat use was most pronounced for subyearling Steelhead and that yearling Steelhead were more selective in their habitat use than subyearling Steelhead. The results of this study contribute to a greater understanding of how this popular sportfish is adapting to a new environment and the factors that may limit juvenile Steelhead survival. Our findings provide valuable new insights into the seasonal-habitat requirements of subyearling and yearling Steelhead that can be used by fisheries managers to enhance and protect the species throughout the Great Lakes region.

  4. Seasonal variations in the characteristics of superficial sediments in a macrotidal estuary (the Seine inlet, France)

    NASA Astrophysics Data System (ADS)

    Lesourd, S.; Lesueur, P.; Brun-Cottan, J. C.; Garnaud, S.; Poupinet, N.

    2003-09-01

    Seasonal variations in the sedimentary regime in the mouth of the Seine river, a macrotidal estuary, are described for a 3-year period. The aim of this study is to characterize and to understand the main governing mechanisms, using data from more than a thousand of superficial sediment grab samples or box cores gathered throughout the study period. Analyses of lithofacies and rheological properties were carried out. The distribution of sediments is governed by seasonal meteorological variations. The surface covered by mud reaches a maximum (40% of the total mouth area) during winter. After the winter, the soft mud deposits are progressively redistributed throughout the whole estuary area and onto the shelf. During the lowest freshwater flow at the end of summer, the fine-grained sediments cover less than 20% of the river mouth area. These seasonal variations mainly depend on the river discharge intensity, but are also linked to wave activity. In the study area, the amount of fine-grained deposits after high river flow periods depends on (1) volume of mud erodable within the estuary, (2) the duration of the flood tidal influx, and (3) the duration preceding the particular annual high river flow. During the last decades, filling of the estuary upstream from Honfleur has led to a downstream shift of the fine-grained sediment deposition area; following this, the present-day mud deposition area is in the open part of the estuary, in the subtidal shallow area. Subsequently, fresh mud deposits undergo intense hydrodynamical and meteorological effects, and are partly reworked by waves and tidal currents effects. In this study, it is shown that the behaviour of suspended matter and of superficial sediments is strongly influenced by short but intense events including high river flows and gales.

  5. High-throughput profiling of seasonal variations of antibiotic resistance gene transport in a peri-urban river.

    PubMed

    Zheng, Ji; Zhou, Zhenchao; Wei, Yuanyuan; Chen, Tao; Feng, Wanqiu; Chen, Hong

    2018-05-01

    The rapid expansion of human activity in a region can exacerbate human health risks induced by antibiotic resistance genes (ARGs). Peri-urban ecosystems serve at the symbiotic interface between urban and rural ecosystems, and investigations into the dissemination of ARGs in peri-urban areas provide a basic framework for tracking the spread of ARGs and potential mitigations. In this study, through the use of high-throughput quantitative PCR and 16S rRNA gene high-throughput sequencing, seasonal and geographical distributions of ARGs and their host bacterial communities were characterized in a peri-urban river. The abundance of ARGs in downstream was 5.2-33.9 times higher than upstream, which indicated distinct antibiotic resistance pollution in the areas where human lives. With the comparison classified based on land use nearby, the abundance of ARGs in samples near farmland and villages was higher than in the background (3.47-5.58 times), pointing to the high load in the river caused by farming and other human activities in the peri-urban areas. With the co-occurrence pattern revealed by network analysis, blaVEB and tetM were proposed to be indicators of ARGs which get together in the same module. Furthermore, seasonal variations in ARGs and the transport of bacterial communities were observed. The effects of seasonal temperature on the dissemination of ARGs along the watershed was also evaluated. The highest absolute abundance of ARGs occurred in summer (2.81 × 10 9  copies/L on average), the trends of ARG abundances in four seasons were similar with local air temperature. The Linear discriminant analysis effect size (LEfSe) suggested that nine bacterial genera were implicated as biomarkers for the corresponding season. Mobile genetic elements (MGEs) showed significant positive correlation with ARGs (P < 0.01) and MGEs were also identified as the key-contributing factor driving ARG alteration. This study provides an overview of seasonal and geographical

  6. Watershed Land Use and Seasonal Variation Constrain the ...

    EPA Pesticide Factsheets

    While watershed and local scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at these different scales interact to determine stream metabolic rates, or how these interactions vary across seasons. To address this knowledge gap, we measured ecosystem metabolism in four urban and four reference streams in northern Kentucky, USA, with paired closed and open riparian canopies, during each of the four seasons of the year. Gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) were all best predicted by models with season as a main effect, but interactions between season, canopy and watershed varied for each response. Urban streams exhibited higher GPP during most seasons, likely due to elevated nutrient loads. Open canopy reaches in both urban and forested streams supported higher rates of GPP than the closed canopy reaches during the summer and fall when the overhead vegetation shaded the closed reaches. Surprisingly, the effect of canopy cover on GPP was similar among urban and forested streams. The combination of watershed and local-scale controls resulted in urban streams that alternated between net heterotrophy (NEP 0) between seasons with and without dense canopy cover. This finding has management relevance because net production can lead to accumulation of algal biomass and associated issues like dissolved oxygen sags at night. Our study reinforces

  7. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux.

    PubMed

    Ayoub, F; Avouac, J-P; Newman, C E; Richardson, M I; Lucas, A; Leprince, S; Bridges, N T

    2014-09-30

    Coupling between surface winds and saltation is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is crucial for both erosion of the surface and dust lifting into the atmosphere. Wind tunnel experiments along with measurements from surface meteorology stations and modelling of wind speeds suggest that winds should only rarely move sand on Mars. However, evidence for currently active dune migration has recently accumulated. Crucially, the frequency of sand-moving events and the implied threshold wind stresses for saltation have remained unknown. Here we present detailed measurements of Nili Patera dune field based on High Resolution Imaging Science Experiment images, demonstrating that sand motion occurs daily throughout much of the year and that the resulting sand flux is strongly seasonal. Analysis of the seasonal sand flux variation suggests an effective threshold for sand motion for application to large-scale model wind fields (1-100 km scale) of τ(s)=0.01±0.0015 N m(-2).

  8. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China.

    PubMed

    He, Jinhong; Tedersoo, Leho; Hu, Ang; Han, Conghai; He, Dan; Wei, Hui; Jiao, Min; Anslan, Sten; Nie, Yanxia; Jia, Yongxia; Zhang, Gengxin; Yu, Guirui; Liu, Shirong; Shen, Weijun

    2017-07-01

    Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    PubMed

    Zhang, Lei; Sun, Rui; Xu, Ziwei; Qiao, Chen; Jiang, Guoqing

    2015-01-01

    Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP), Ecosystem Respiration (Reco) and Net Ecosystem Exchange (NEE) were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR) on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different species. Nighttime

  10. Is the Pearl River basin, China, drying or wetting? Seasonal variations, causes and implications

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Jianfeng; Gu, Xihui; Shi, Peijun

    2018-07-01

    Soil moisture plays crucial roles in the hydrological cycle and is also a critical link between land surface and atmosphere. The Pearl River basin (PRb) is climatically subtropical and tropical and is highly sensitive to climate changes. In this study, seasonal soil moisture changes across the PRb were analyzed using the Variable Infiltration Capacity (VIC) model forced by the gridded 0.5° × 0.5° climatic observations. Seasonal changes of soil moisture in both space and time were investigated using the Mann-Kendall trend test method. Potential influencing factors behind seasonal soil moisture changes such as precipitation and temperature were identified using the Maximum Covariance Analysis (MCA) technique. The results indicated that: (1) VIC model performs well in describing changing properties of soil moisture across the PRb; (2) Distinctly different seasonal features of soil moisture can be observed. Soil moisture in spring decreased from east to west parts of the PRb. In summer however, soil moisture was higher in east and west parts but was lower in central parts of the PRb; (3) A significant drying trend was identified over the PRb in autumn, while no significant drying trends can be detected in other seasons; (4) The increase/decrease in precipitation can generally explain the wetting/drying tendency of soil moisture. However, warming temperature contributed significantly to the drying trends and these drying trends were particularly evident during autumn and winter; (5) Significant decreasing precipitation and increasing temperature combined to trigger substantially decreasing soil moisture in autumn. In winter, warming temperature is the major reason behind decreased soil moisture although precipitation is in slightly decreasing tendency. Season variations of soil moisture and related implications for hydro-meteorological processes in the subtropical and tropical river basins over the globe should arouse considerable human concerns.

  11. Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China.

    PubMed

    Zhao, Heng; Cao, Zhen; Liu, Xue; Zhan, Yi; Zhang, Jing; Xiao, Xi; Yang, Yi; Zhou, Junliang; Xu, Jiang

    2017-12-15

    The occurrence and seasonal variation of 24 dissolved emerging organic contaminants in the Yangtze Estuary were studied, including 12 non-antibiotic pharmaceuticals, seven sulfonamides, two macrolides and three chloramphenicols. Sulfadiazine, erythromycin, thiamphenicol and paracetamol were the primary contaminants in sulfonamides, macrolides, chloramphenicols and non-antibiotic pharmaceutical groups, respectively. Compared to the concentrations at Datong, chloramphenicols at Xuliujing were significantly higher in autumn and winter, while macrolides were lower in spring. Based on the flux estimation, approximately 37.1 tons of sulfonamides, 17.4 tons of macrolides, 79.2 tons of chloramphenicols and 14.1 tons of non-antibiotic pharmaceuticals were discharged into the Yangtze Estuary from June 2013 to May 2014. However, the total flux from the Huangpu River only represented 5% of the total. The pharmaceutical sources were speculated on by analyzing the seasonal variations in pharmaceutical concentrations and fluxes at various sites. Both environmental and social factors might affect the fluxes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An optimized chronology for a stalagmite using seasonal trace element cycles from Shihua Cave, Beijing, North China

    NASA Astrophysics Data System (ADS)

    Ban, F.; Baker, A.; Marjo, C.; Duan, W.; Li, X.; Coleborn, K.; Akter, R.; Nagra, G.

    2017-12-01

    Stalagmites play an increasingly important role in the paleoclimatic reconstruction from seasonal to orbital timescales. One of the important reasons is that 230Th-dating can provide an absolute age enabling more accurate knowledge of the stalagmite growth. Additionally, annual trace element and optical layers can provide complementary method for determining a precise age and seasonal resolution. The trace elements of a stalagmite (XMG) in Beijing Shihua Cave, which is located in the East Asian monsoon region, were analyzed by laser ablation ICP-MS and compared with stalagmite laminae. The results show that: (1) the polished section of the topmost 4 mm of stalagmite XMG has obvious bi-optical layers (fluorescence and visible light) under a conventional transmission microscope. In the rest of the sample laminae are not observed using this method. (2) The variations of P/Ca, Sr/Ca, Ba/Ca, U/Ca and Mg/Ca show seasonal cycles throughout the sample. Sr/Ca is inversely correlated to P/Ca, and its peaks correspond with the (non-fluorescing) white layers, which deposit in late winter and spring when the climate is dry. The peaks of P/Ca match closely with the (fluorescing) opaque layers, because P is a soil-derived element which increases in the high rainfall monsoon period. (3) The PCA of the five trace elements showed that the cycles of PC1 could represent the annual cycle. This stalagmite was deposited over 148 ± 4 years through peak counting and the cycles of PC1 correspond well with the annual layers. Trace element cyclicity as shown by PC1 can increase the accuracy of stalagmite dating, especially in the absence of obvious laminae. The trace elements can be used as the marker of seasonal changes in a strongly contrasting wet-dry monsoon climate regime. Keywords: high-precision dating; LA-ICP-MS; stalagmite; trace elements; seasonal cycles; Shihua Cave

  13. Seasonal variation of energy reserves and reproduction in neotropical free-tailed bats Molossus molossus (Chiroptera: Molossidae).

    PubMed

    Barros, M S; Morais, D B; Araújo, M R; Carvalho, T F; Matta, S L P; Pinheiro, E C; Freitas, M B

    2013-08-01

    Seasonal variation is a key factor regulating energy metabolism and reproduction in several mammals, including bats. This study aimed to track seasonal changes in the energy reserves of the insectivorous bat Molossus molossus associated with its reproductive cycle. Adult males were collected during the four neotropical annual seasons in Viçosa - MG, Brazil. Blood and tissues were collected for metabolic analysis and testes were removed for histology and morphometry. Our results show that liver and breast muscle glycogen concentrations were significantly lower in winter. The adiposity index was significantly higher in the fall compared to winter and spring. Seminiferous tubules were greater in diameter in animals captured in fall and winter, indicating a higher investment in spermatic production during these seasons. The percentage of Leydig cells was higher in summer compared to fall and winter. We suggest that M. molossus presents a type of seasonal reproduction with two peaks of testicular activity: one in fall, with higher sperm production (spermatogenesis), and another in summer, with higher hormone production (steroidogenesis). The metabolic pattern may be associated with reproductive events, especially due to the highest fat storage observed in the fall, which coincides with the further development of the seminiferous tubules.

  14. Estimation of seasonal diurnal variations in primary and secondary organic carbon concentrations in the urban atmosphere: EC tracer and multiple regression approaches

    NASA Astrophysics Data System (ADS)

    Kim, Woogyung; Lee, Hanlim; Kim, Jhoon; Jeong, Ukkyo; Kweon, Jung

    2012-09-01

    In order to investigate seasonal and diurnal variation of primary organic carbon (POC) and secondary organic carbon (SOC) concentrations in a megacity, hourly measurements of particulate and gaseous pollutants were carried out in Seoul from January to December 2010. The EC Tracer Method (ECTM) and the Multiple Regression Method (MRM) have been used to estimate seasonal and diurnal concentrations of POC and SOC concentrations. Annual mean SOC concentrations estimated by ECTM (SOCECTM) and MRM (SOCMRM) accounted for 14.61 and 17.21% of TOC concentrations, respectively. Seasonal patterns in SOCMRM were comparable to those of SOCECTM, but the annual average SOCMRM was about 15% greater than that of SOCECTM. In spring, however, a large discrepancy was observed between SOCECTM and SOCMRM, which is thought to be due to a high ozone concentration and primary TOC/EC ratio. Regarding the annual mean diurnal characteristics, POC concentration showed peaks around 10:00 and 00:00 local time that were also observed in diurnal variations of TOC and EC concentrations. Annual mean SOC concentration, however, showed peaks at around 15:00. In the morning over all seasons, we found discrepancies between SOCECTM and SOCMRM due to overestimated SOCECTM concentration. The diurnal variations in SOC concentrations were found to have seasonal characteristics. The diurnal pattern of SOC concentration in spring was similar to that in autumn, and SOC concentrations in all seasons with the exception of winter showed a peak at around 15:00. In summer, however, the SOC concentration peak at around 15:00 was greater by 70%, 81%, and 54% than the peaks seen in spring, autumn, and winter, respectively, which could be explained by the high ozone concentration and strong UV radiation in summer. From 10:00 to 15:00 in summer, the average increase rates in SOCECTM and SOCMRM were 0.39 and 0.24 μg m-3 h-1, respectively. In winter, negligible diurnal variations of estimated SOC concentrations demonstrate

  15. Activation of AMP-activated protein kinase in response to temperature elevation shows seasonal variation in the zebra mussel, Dreissena polymorpha.

    PubMed

    Jost, Jennifer A; Keshwani, Sarah S; Abou-Hanna, Jacob J

    2015-04-01

    Global climate change is affecting ectothermic species, and a variety of studies are needed on thermal tolerances, especially from cellular and physiological perspectives. This study utilized AMP-activated protein kinase (AMPK), a key regulator of cellular energy levels, to examine the effects of high water temperatures on zebra mussel (Dreissena polymorpha) physiology. During heating, AMPK activity increased as water temperature increased to a point, and maximum AMPK activity was detected at high, but sublethal, water temperatures. This pattern varied with season, suggesting that cellular mechanisms of seasonal thermal acclimatization affect basic metabolic processes during sublethal heat stress. There was a greater seasonal variation in the water temperature at which maximum AMPK activity was measured than in lethal water temperature. Furthermore, baseline AMPK activity varied significantly across seasons, most likely reflecting altered metabolic states during times of growth and reproduction. In addition, when summer-collected mussels were lab-acclimated to winter and spring water temperatures, patterns of heat stress mirrored those of field-collected animals. These data suggest that water temperature is the main driver of the seasonal variation in physiology. This study concluded that AMPK activity, which reflects changes in energy supply and demand during heat stress, can serve as a sensitive and early indicator of temperature stress in mussels. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Using GMD Data, AIRS Measurements, and the NASA Chemistry-Climate Model to Reveal Regional and Seasonal Variation of Methane

    NASA Astrophysics Data System (ADS)

    Steele, K. J.; Duncan, B. N.; Warner, J. X.; Nielsen, J. E.

    2010-12-01

    The concentration of methane (CH4) has more than doubled in the atmosphere since the preindustrial era due to a change in source-sink interactions. Many studies have aimed to quantify CH4 source contributions, but 1) the long tropospheric lifetime of CH4, resulting in a high background concentration, 2) along with sources often having overlapping distributions, and 3) the uncertainty in the chemical sink of CH4 with the hydroxyl radical makes it difficult to constrain inputs to the CH4 budget. The purpose of this study was to use a variety of observations in conjunction with the NASA GEOS-5 climate-chemistry model (CCM) to better understand regional and seasonal variation in atmospheric CH4. Seasonal variation in surface in situ data from the NOAA ESRL Global Monitoring Division (GMD) and data from the Japanese Airlines (JAL) in the upper troposphere (UT) were compared to satellite observations recorded by the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite, which is most sensitive to CH4 in the UT. There was more variability in CH4 at the GMD sites than in the JAL data or AIRS because the GMD sites are closer to the source. As the CH4 is lofted into the UT, it mixes with the background CH4 so the seasonal variation is dampened. The JAL data followed the AIRS observations as expected. There was less variability in all measurements in the Southern Hemisphere and over oceans because these areas are farther away from sources. While the observations from AIRS, JAL flights, and the GMD sites provide valuable information regarding source locations and atmospheric CH4 concentration, it is important to understand which CH4 sources have the largest contribution to CH4 emissions in different regions of the world and the influence of these sources on the global CH4 cycle. Model output from the GEOS-5 CCM was used to monitor individual CH4 sources (e.g. from rice production, wetlands, biofuel use, etc.) as they are transported from the surface to the UT. The

  17. An analysis of underlying factors for seasonal variation in gonorrhoea in India: a 6-year statistical assessment.

    PubMed

    Kakran, M; Bala, M; Singh, V

    2015-01-01

    A statistical assessment of a disease is often necessary before resources can be allocated to any control programme. No literature on seasonal trends of gonorrhoea is available from India. The objectives were (1) to determine, if any, seasonal trends were present in India (2) to describe factors contributing to seasonality of gonorrhoea (3) to formulate approaches for gonorrhoea control at the national level. Seasonal indices for gonorrhoea were calculated quarterly in terms of a seasonal index between 2005 and 2010. Ratio-to-moving average method was used to determine the seasonal variation. The original data values in the time-series were expressed as percentages of moving averages. Results were also analyzed by second statistical method i.e. seasonal subseries plot. The seasonally adjusted average for culture-positive gonorrhoea cases was highest in the second quarter (128.61%) followed by third quarter (108.48%) while a trough was observed in the first (96.05%) and last quarter (64.85%). The second quarter peak was representative of summer vacations in schools and colleges. Moreover, April is the harvesting month followed by celebrations and social gatherings. Both these factors are associated with increased sexual activity and partner change. A trough in first and last quarter was indicative of festival season and winter leading to less patients reporting to the hospital. The findings highlight the immediate need to strengthen sexual health education among young people in schools and colleges and education on risk-reduction practices especially at crucial points in the calendar year for effective gonorrhoea control.

  18. Spatial variation and seasonal dynamics of leaf-area index in the arctic tundra-implications for linking ground observations and satellite images

    NASA Astrophysics Data System (ADS)

    Juutinen, Sari; Virtanen, Tarmo; Kondratyev, Vladimir; Laurila, Tuomas; Linkosalmi, Maiju; Mikola, Juha; Nyman, Johanna; Räsänen, Aleksi; Tuovinen, Juha-Pekka; Aurela, Mika

    2017-09-01

    Vegetation in the arctic tundra typically consists of a small-scale mosaic of plant communities, with species differing in growth forms, seasonality, and biogeochemical properties. Characterization of this variation is essential for understanding and modeling the functioning of the arctic tundra in global carbon cycling, as well as for evaluating the resolution requirements for remote sensing. Our objective was to quantify the seasonal development of the leaf-area index (LAI) and its variation among plant communities in the arctic tundra near Tiksi, coastal Siberia, consisting of graminoid, dwarf shrub, moss, and lichen vegetation. We measured the LAI in the field and used two very-high-spatial resolution multispectral satellite images (QuickBird and WorldView-2), acquired at different phenological stages, to predict landscape-scale patterns. We used the empirical relationships between the plant community-specific LAI and degree-day accumulation (0 °C threshold) and quantified the relationship between the LAI and satellite NDVI (normalized difference vegetation index). Due to the temporal difference between the field data and satellite images, the LAI was approximated for the imagery dates, using the empirical model. LAI explained variation in the NDVI values well (R 2 adj. 0.42-0.92). Of the plant functional types, the graminoid LAI showed the largest seasonal amplitudes and was the main cause of the varying spatial patterns of the NDVI and the related LAI between the two images. Our results illustrate how the short growing season, rapid development of the LAI, yearly climatic variation, and timing of the satellite data should be accounted for in matching imagery and field verification data in the Arctic region.

  19. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography

    USGS Publications Warehouse

    Bridges, A.S.; Vaughan, M.R.; Klenzendorf, S.

    2004-01-01

    Activity pattern plasticity may serve as an evolutionary adaptation to optimize fitness in an inconstant environment, however, quantifying patterns and demonstrating variation can be problematic. For American black bears Ursus americanus, wariness and habitat inaccessibility further complicate quantification. Radio telemetry has been the primary technique used to examine activity, however, interpretation error and limitation on numbers of animals available to monitor prevent extrapolation to unmarked or untransmittered members of the population. We used remote cameras to quantify black bear activity patterns and examined differences by season, sex and reproductive class in the Alleghany Mountains of western Virginia, USA. We used 1,533 pictures of black bears taken during 1998-2002 for our analyses. Black bears generally were diurnal in summer and nocturnal in autumn with a vespertine activity peak during both seasons. Bear-hound training seasons occurred during September and may offer explanation for the observed shift towards nocturnal behaviour. We found no substantial differences in activity patterns between sex and reproductive classes. Use of remote cameras allowed us to efficiently sample larger numbers of individual animals and likely offered a better approximation of population-level activity patterns than individual-level, telemetry-based methodologies.

  20. Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa

    NASA Astrophysics Data System (ADS)

    Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika

    2015-02-01

    Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.

  1. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Persson, P. Ola G.; Uttal, Taneil; Akish, Elena A.; Cox, Christopher J.; Morris, Sara M.; Fairall, Christopher W.; Stone, Robert S.; Lesins, Glen; Makshtas, Alexander P.; Repina, Irina A.

    2017-11-01

    This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 71.6°N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10° north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures

  2. Seasonal variations of isoprene emissions from deciduous trees

    NASA Astrophysics Data System (ADS)

    Xiaoshan, Zhang; Yujing, Mu; Wenzhi, Song; Yahui, Zhuang

    Isoprene emission fluxes were investigated for 12 tree species in and around Beijing city. Bag-enclosure method was used to collect the air sample and GC-PID was used to directly analyze isoprene. Ginkgo and Magnolia denudata had negligible isoprene emissions, while significant emissions were observed for Platanus orientalis, Pendula loud, Populus simonii, and Salix matsudana koidz, and other remaining trees showed no sign of isoprene emission. Variations in isoprene emission with changes in light, temperature and season were investigated for Platanus orientalis and Pendula loud. Isoprene emission rates strongly depended on light, temperature and leaf age. The maximum emission rates for the two trees were observed in summer with values of about 232 and 213 μg g -1 dw h -1, respectively. The measured emission fluxes were used to evaluate "Guenther" emission algorithm. The emission fluxes predicted by the algorithm were in relatively good agreement with field measurements. However, there were large differences for the calculated median emission factors during spring, summer and fall. The 25-75 percentiles span of the emission factor data sets ranged from -33 to +15% of the median values.

  3. Variations of annual and seasonal runoff in Guangdong Province, south China: spatiotemporal patterns and possible causes

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Xiao, Mingzhong; Singh, Vijay P.; Xu, Chong-Yu; Li, Jianfeng

    2015-06-01

    In this study, we thoroughly analyzed spatial and temporal distributions of runoff and their relation with precipitation changes based on monthly runoff dataset at 25 hydrological stations and monthly precipitation at 127 stations in Guangdong Province, south China. Trends of the runoff and precipitation are detected using Mann-Kendall trend test technique. Correlations between runoff and precipitation are tested using Spearman's and Pearson's correlation coefficients. The results indicate that: (1) annual maximum monthly runoff is mainly in decreasing tendency and significant increasing annual minimum monthly runoff is observed in the northern and eastern Guangdong Province. In addition, annual mean runoff is observed to be increasing at the stations located in the West and North Rivers and the coastal region; (2) analysis of seasonal runoff variations indicates increasing runoff in spring, autumn and winter. Wherein, significant increase of runoff is found at 8 stations and only 3 stations are dominated by decreasing runoff in winter; (3) runoff changes of the Guangdong Province are mainly the results of precipitation changes. The Guangdong Province is wetter in winter, spring and autumn. Summer is coming to be drier as reflected by decreasing runoff in the season; (4) both precipitation change and water reservoirs also play important roles in the increasing of annual minimum monthly streamflow. Seasonal shifts of runoff variations may pose new challenges for the water resources management under the influences of climate changes and intensifying human activities.

  4. Intra-seasonal rainfall variability during the maize growing season in the northern lowlands of Lesotho

    NASA Astrophysics Data System (ADS)

    Tongwane, Mphethe Isaac; Moeletsi, Mokhele Edmond

    2015-05-01

    Intra-seasonal rainfall distribution was identified as a priority gap that needs to be addressed for southern Africa to cope with agro-meteorological risks. The region in the northwest of Lesotho is appropriate for crop cultivation due to its relatively favourable climatic conditions and soils. High rainfall variability is often blamed for poor agricultural production in this region. This study aims to determine the onset of rains, cessation of rains and rainy season duration using historical climate data. Temporal variability of these rainy season characteristics was also investigated. The earliest and latest onset dates of the rainy season are during the last week of October at Butha-Buthe and the third week of November at Mapoteng, respectively. Cessation of the season is predominantly in the first week of April making the season approximately 137-163 days long depending on the location. Average seasonal rainfall ranged from 474 mm at Mapoteng to 668 mm at Butha-Buthe. Onset and cessation of the rainfall season vary by 4-7 weeks and 1 week, respectively. Mean coefficient of variation of seasonal rainfall is 39 %, but monthly variations are higher. These variations make annual crop management and planning difficult each year. Trends show a decrease in the rainfall amounts but improvements in both the temporal distribution of annual rainfall, onset and cessation dates.

  5. Seasonal variation of the water exchange through the Bohai Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2016-02-01

    Seasonal variations of the Lubei coastal current off the northern Shandong Peninsula and water exchange between the Bohai and Yellow seas were analyzed, based on current and salinity data measured mainly in 2006, 2007 and 2012. In winter and autumn, the Lubei coastal current flows eastward through the Bohai Strait before ultimately heading southward into the waters off Chengshantou in the east of the Shandong Peninsula. In spring and summer, the Lubei coastal current disappears. There are three kinds of patterns of water exchange between the Bohai and Yellow seas. The first is the "inflow in the north and outflow in the south of the Bohai Strait" in winter and autumn, which is regarded as the permanent pattern during the whole year from literature. The second is "outflow in the surface layer and inflow in the underlying layer" in summer, where the outflow is significantly greater than the inflow related with increased runoff and precipitation. The third is "inflow together in the southern and northern channels of the Bohai Strait" in spring. The low mean sea level and N-S sea-level incline formed in winter in the Bohai Sea lose their dynamic balance because of the reversal of the northeast monsoon in spring. This forces the water from the northern Yellow Sea into the Bohai Sea via the southern and northern channels of the Bohai Strait, which constitutes the largest net inflow of the four seasons.

  6. Variation in testosterone and corticosterone in amphibians and reptiles: relationships with latitude, elevation, and breeding season length.

    PubMed

    Eikenaar, Cas; Husak, Jerry; Escallón, Camilo; Moore, Ignacio T

    2012-11-01

    Latitudinal variation in life-history traits has been the focus of numerous investigations, but underlying hormonal mechanisms have received much less attention. Steroid hormones play a central role in vertebrate reproduction and may be associated with life-history trade-offs. Consequently, circulating concentrations of these hormones vary tremendously across vertebrates, yet interspecific geographic variation in male hormone concentrations has been studied in detail only in birds. We here report on such variation in amphibians and reptiles, confirming patterns observed in birds. Using phylogenetic comparative analyses, we found that in amphibians, but not in reptiles, testosterone and baseline corticosterone were positively related to latitude. Baseline corticosterone was negatively related to elevation in amphibians but not in reptiles. For both groups, testosterone concentrations were negatively related to breeding-season length. In addition, testosterone concentrations were positively correlated with baseline corticosterone in both groups. Our findings may best be explained by the hypothesis that shorter breeding seasons increase male-male competition, which may favor increased testosterone concentrations that modulate secondary sexual traits. Elevated energetic demands resulting from greater reproductive intensity may require higher baseline corticosterone. Thus, the positive relationship between testosterone and corticosterone in both groups suggests an energetic demand for testosterone-regulated behavior that is met with increased baseline glucocorticoid concentrations.

  7. Seasonal variation of the Beaufort shelfbreak jet and its relationship to Arctic cetacean occurrence

    NASA Astrophysics Data System (ADS)

    Lin, Peigen; Pickart, Robert S.; Stafford, Kathleen M.; Moore, G. W. K.; Torres, Daniel J.; Bahr, Frank; Hu, Jianyu

    2016-12-01

    Using mooring time series from September 2008 to August 2012, together with ancillary atmospheric and satellite data sets, we quantify the seasonal variations of the shelfbreak jet in the Alaskan Beaufort Sea and explore connections to the occurrences of bowhead and beluga whales. Wind patterns during the 4 year study period are different from the long-term climatological conditions that the springtime peak in easterly winds shifted from May to June and the autumn peak was limited to October instead of extending farther into the fall. These changes were primarily due to the behavior of the two regional atmospheric centers of action, the Aleutian Low and Beaufort High. The volume transport of the shelfbreak jet, which peaks in the summer, was decomposed into a background (weak wind) component and a wind-driven component. The wind-driven component is correlated to the Pt. Barrow, AK alongcoast wind speed record although a more accurate prediction is obtained when considering the ice thickness at the mooring site. An upwelling index reveals that wind-driven upwelling is enhanced in June and October when storms are stronger and longer-lasting. The seasonal variation of Arctic cetacean occurrence is dominated by the eastward migration in spring, dictated by pack-ice patterns, and westward migration in fall, coincident with the autumn peak in shelfbreak upwelling intensity.

  8. Intersexual and temporal variation in foraging ecology of prothonotary warblers during the breeding season

    USGS Publications Warehouse

    Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.

    1990-01-01

    We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) over four breeding seasons to determine if this species exhibited sex-specific or temporal variation in foraging behavior. Significant differences between sexes during the prenestling period were found for foraging height and substrate height (foraging method, plant species/substrate, perch diameter, horizontal location from trunk, and prey location were not significantly different). During the nestling period, this divergence between sexes was evident for foraging height, substrate height, substrate / tree species, and prey location. Additionally, male warblers significantly altered their behavior for all seven foraging variables between the two periods, whereas females exhibited changes similar to those of males for five of the foraging variables. This parallel shift suggests a strong behavioral response by both sexes to proximate factors (such as vegetation structure, and prey abundance and distribution) that varied throughout the breeding season. Sex-specific foraging behavior during the prenestling period was best explained by differences in reproductive responsibilities rather than by the theory of intersexual competition for limited resources. During the nestling period, neither hypothesis by itself explained foraging divergences adequately. However, when integrated with the temporal responses of the warblers to changes in prey availability, reproductive responsibilities seemed to be of primary importance in explaining intersexual niche partitioning during the nestling period. We emphasize the importance of considering both intersexual and intraseasonal variation when quantifying a species' foraging ecology.

  9. Purification and identification of 25-hydroxycholesterol in a reptile: Seasonal variation and hormonal regulation.

    PubMed

    Singh, Varsha; Priyam, Manisha; Tripathy, Mamta; Rai, Umesh

    2017-06-01

    The present in vitro study, for the first time, demonstrates the production of 25-hydroxycholestrol (25-HC) by testicular macrophages of a non-mammalian vertebrate. The ether extracts of testicular macrophage-conditioned medium (TMCM) were fractionated on a C18 reversed phase high-performance liquid chromatography (HPLC) column using methanol as the mobile phase. The mass spectrometry (MS) fragmentation pattern of HPLC-purified 25-HC was found to be identical to that of authentic 25-HC. Further, a significant seasonal variation in 25-HC concentration was observed with maximal level in regressed and minimal during breeding phase. To understand the hormonal control of 25-HC production, testicular macrophages from regressed phase testes were incubated with 0.5μg/ml of ovine follicle stimulating hormone (FSH) and 0.1, 1 and 10μg/ml of testosterone (T). FSH considerably enhanced 25-HC production by testicular macrophages. In contrast, T markedly inhibited 25-HC production in a dose-dependent manner. In addition, T significantly inhibited FSH-induced 25-HC production, though pre-treatment with T was more effective as compared to post-treatment with T to FSH. Our findings on production, seasonal variation and hormonal control of 25-HC suggest the functional significance of 25-HC in the testis of reptiles. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.

    2017-01-01

    We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.

  11. [Seasonality and contribution to acid rain of the carbon abundance in rainwater].

    PubMed

    Xu, Tao; Song, Zhi-guang; Liu, Jun-feng; Wang, Cui-ping

    2008-02-01

    This paper reports the results from a study of the carbon abundance in rainwater of Guangzhou city, China. The determination of TOC, DOC, POC and PEC helps to study the seasonality of carbon abundance and its contribution to the acid rain. The results display the fact that the average contents of TOC, DOC, POC and PEC are 7.10 mg/L, 3.58 mg/L, 3.60 mg/L and 0.72 mg/L, respectively. These results confirm the deep effect of the organic pollutant to the rain. The seasonality exists in the carbon abundance of rainwater. The contents of TOC and DOC are up to the maximum in spring and the minimum in summer; the contribution of POC to TOC in summer is obviously higher than that in other seasons; and the relative content of POC is clearly higher in dry season than that in wet season. The seasonality reflects the more emission of the total pollutant in spring and the solid particle pollutant in summer than those in other seasons. Moreover, the emission of the organic pollutant from the mobile vehicles is more obvious in dry season than that in wet season. The contents of TOC and DOC have the negative correlation to the pH values, which confirms the contribution effect of the organic pollutant, such as vehicle emission, to the acid rain.

  12. Cytokine release from alveolar macrophages exposed to ambient particulate matter: Heterogeneity in relation to size, city and season

    PubMed Central

    Hetland, Ragna B; Cassee, Flemming R; Låg, Marit; Refsnes, Magne; Dybing, Erik; Schwarze, Per E

    2005-01-01

    Background Several studies have demonstrated an association between exposure to ambient particulate matter (PM) and respiratory and cardiovascular diseases. Inflammation seems to play an important role in the observed health effects. However, the predominant particle component(s) that drives the inflammation is still not fully clarified. In this study representative coarse (2.5–10 μm) and fine (0.1–2.5 μm) particulate samples from a western, an eastern, a northern and a southern European city (Amsterdam, Lodz, Oslo and Rome) were collected during three seasons (spring, summer and winter). All fractions were investigated with respect to cytokine-inducing potential in primary macrophages isolated from rat lung. The results were related to the physical and chemical parameters of the samples in order to disclose possible connections between inflammatory potential and specific characteristics of the particles. Results Compared on a gram-by gram basis, both site-specific and seasonal variations in the PM-induced cytokine responses were demonstrated. The samples collected in the eastern (Lodz) and southern (Rome) cities appeared to be the most potent. Seasonal variation was most obvious with the samples from Lodz, with the highest responses induced by the spring and summer samples. The site-specific or seasonal variation in cytokine release could not be attributed to variations in any of the chemical parameters. Coarse fractions from all cities were more potent to induce the inflammatory cytokines interleukin-6 and tumour necrosis factor-α than the corresponding fine fractions. Higher levels of specific elements such as iron and copper, some polycyclic aromatic hydrocarbons (PAHs) and endotoxin/lipopolysaccaride seemed to be prevalent in the coarse fractions. However, variations in the content of these components did not reflect the variation in cytokine release induced by the different coarse fractions. Addition of polymyxin B did not affect the particle

  13. Histological and morphometric analyses of seasonal testicular variations in the Jungle Crow (Corvus macrorhynchos).

    PubMed

    Islam, Muhammad Nazrul; Zhu, Xiao Bo; Zhu, Ziao Bo; Aoyama, Masato; Sugita, Shoei

    2010-09-01

    A histological and morphometric study was conducted to examine the seasonal testicular variations in the Jungle Crow (Corvus macrorhynchos) of the Kanto area, Japan, from January to July. The paired testes mass, diameter and number of germ cells of the seminiferous tubules, and proportion of seminiferous tubule area and interstitium were examined. Hematoxylin and eosin-stained testis sections and ImageJ Software were used. Paired testes weight was found to increase by 55-fold from January to late March-early May, thereafter declining by 18-fold by June-July. Seminiferous tubule diameter increased fivefold from January to late March-early May, followed a fourfold decrease in June-July. The increase in testes weight correlated well with the increase in the diameter of the seminiferous tubule. In January, the seminiferous tubules constituted 56% of the testicular tissue and the interstitium 44%. During late March-early May, there was very little testicular interstitium (7.9%), and the seminiferous tubules were significantly enlarged (P < 0.05) (92%); this was followed by a gradual increase in the interstitial regression of testes. In January, the seminiferous epithelium contained a single layer of spermatogonia and Sertoli cells. The number of spermatogonia, primary and secondary spermatocytes, spermatids, and maturing spermatozoa were significantly increased (P < 0.05) in late March-early May, followed by regression from mid May. Our results indicate that the Jungle Crow has a non-breeding season in January, a pre-breeding season during February-mid March, a main breeding season during late March-early May, a transition period during mid May-late May, and a post-breeding season beginning in June.

  14. Seasonal variation in sensitivity of larval sea lampreys to the lampricide 3-trifluoromethyl-4-nitrophenol

    USGS Publications Warehouse

    Scholefield, R.J.; Slaght, K.S.; Stephens, B.E.

    2008-01-01

    We evaluated the sensitivity of larval sea lampreys Petromyzon marinus to the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) in a series of toxicity tests in spring and summer. Although noted previously, the seasonal variation in sensitivity to TFM had never been tested as a means of reducing TFM usage in stream treatments. A preliminary study consisted of three spring and four summer static toxicity tests conducted at 12??C. A more comprehensive study consisted of 12 spring and summer paired flow-through toxicity tests conducted both at seasonal water temperatures and at 12??C. The sensitivity of larval sea lampreys to TFM was greater in spring than in summer. The preliminary static toxicity tests indicated that the concentration of TFM needed to kill larval sea lampreys in spring (May and June) was about one-half that required in summer (August); the concentrations lethal to 50% and 99.9% of the test animals (the LC50 and LC99.9 values) were less in spring than in summer. Analysis of variance of the flow-through toxicity data indicated that season significantly affected both the LC50 and LC99.9 values. For all 12 paired flow-through toxicity tests, the spring LC50 and LC99.9 values were less than the corresponding summer values. For 9 of the 12 paired flow-through toxicity tests, the dose-response toxicity lines were parallel and allowed statistical comparison of the LC50 values. The spring LC50 values were significantly lower than the summer values in eight of the nine tests. Verification of a seasonal variation in the sensitivity of larval sea lampreys to TFM will allow inclusion of this factor in the selection model currently used by both the U.S. Fish and Wildlife Service and the Department of Fisheries and Oceans-Canada to schedule lampricide stream treatments. ?? Copyright by the American Fisheries Society 2008.

  15. Seasonal variations of 25-OH vitamin D serum levels are associated with clinical disease activity in multiple sclerosis patients.

    PubMed

    Hartl, Christina; Obermeier, Viola; Gerdes, Lisa Ann; Brügel, Mathias; von Kries, Rüdiger; Kümpfel, Tania

    2017-04-15

    Low 25-hydroxy vitamin D (25-[OH]-D) serum concentrations have been associated with higher disease activity in multiple sclerosis (MS) patients. In a large cross-sectional study we assessed the vitamin D status in MS patients in relation to seasonality and relapse rate. 415 MS-patients (355 relapsing-remitting MS and 60 secondary-progressive, 282 female, mean age 39.1years) of whom 25-(OH)-D serum concentrations were determined at visits between 2010 and 2013 were included in the study. All clinical data including relapse at visit and expanded disability status scale were recorded in a standardized manner by an experienced neurologist. Seasonal variations of 25-(OH)-D serum concentrations were modelled by sinusoidal regression and seasonal variability in the prevalence of relapse by cubic regression. The mean 25-(OH)-D serum concentration was 24.8ng/ml (range 8.3-140ng/ml) with peak levels of 32.2ng/ml in July/August and nadir in January/February (17.2ng/ml). The lowest modelled prevalence of relapse was in September/October (28%) and the highest modelled prevalence in March/April (47%). The nadir of 25-(OH)-D serum concentrations preceded the peak in prevalence of relapses by two months. In summary, seasonal variation of 25-(OH)-D serum levels were inversely associated with clinical disease activity in MS patients. Future studies should investigate whether vitamin D supplementation in MS patients may decrease the seasonal risk for MS relapses. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Homestead Food Production and Maternal and Child Dietary Diversity in Nepal: Variations in Association by Season and Agroecological Zone.

    PubMed

    Dulal, Bishnu; Mundy, Gary; Sawal, Rojee; Rana, Pooja Pandey; Cunningham, Kenda

    2017-09-01

    Suaahara, a large-scale integrated program, aimed to improve diets and nutritional status among women and children, in part by facilitating enhanced homestead food production (EHFP). This study examines associations between EHFP and maternal and child dietary diversity and variations by season and agroecological zone (AEZ): mountains and terai. We used data from household monitoring surveys (n = 2101 mothers; n = 994 children, 6-23 months), which included a 7-day dietary recall and maternal report on participation in 5 EHFP activities-received vegetable seeds, chicks, and technical support and participated in training and EHFP groups. We constructed binary variables for each activity and a scale (0-5) summing participation. For dietary diversity, we used the Women's Dietary Diversity Score using 10 food groups and 7 food groups for child diets. Multivariable linear regression analyses were used to assess associations between EHFP participation and dietary diversity by season and AEZ, controlling for potential confounders and clustering. In adjusted models, we found positive associations between dietary diversity and chicks, technical support, and EHFP beneficiary groups; the magnitude of the associations varied by season and AEZ. The degree of participation in 5 EHFP activities was positively associated with maternal dietary diversity in the terai (β = .24, P < .001) and mountains (β = .12, P = .01) and child dietary diversity in the terai (β = .35, P < .001) during the winter. No associations were found in the rainy season. Our findings highlight the potential for EHFP to address dietary diversity constraints among this population. Variation by subnational setting and seasonality suggest that policies and programs should be contextualized.

  17. Seasonal variation in the acute effect of particulate air pollution on mortality in the China Air Pollution and Health Effects Study (CAPES)

    PubMed Central

    Chen, Renjie; Peng, Roger D.; Meng, Xia; Zhou, Zhijun; Chen, Bingheng; Kan, Haidong

    2013-01-01

    Epidemiological findings concerning the seasonal variation in the acute effect of particulate matter (PM) are inconsistent. We investigated the seasonality in the association between PM with an aerodynamic diameter of less than 10 μm (PM10) and daily mortality in 17 Chinese cities. We fitted the “main” time-series model after adjustment for time-varying confounders using smooth functions with natural splines. We established a “seasonal” model to obtain the season-specific effect estimates of PM10, and a “harmonic” model to show the seasonal pattern that allows PM10 effects to vary smoothly with the day in a year. At the national level, a 10 μg/m3 increase in the two-day moving average concentrations (lag 01) of PM10 was associated with 0.45% [95% posterior interval (PI), 0.15% to 0.76%], 0.17% (95% PI, −0.09% to 0.43%), 0.55% (95% PI, 0.15% to 0.96%) and 0.25% (95%PI, −0.05% to 0.56%) increases in total mortality for winter, spring, summer and fall, respectively. For the smoothly-varying plots of seasonality, we identified a two-peak pattern in winter and summer. The observed seasonal pattern was generally insensitive to model specifications. Our analyses suggest that the acute effect of particulate air pollution could vary by seasons with the largest effect in winter and summer in China. To our knowledge, this is the first multicity study in developing countries to analyze the seasonal variations of PM-related health effects. PMID:23500824

  18. Seasonal variations of all-cause and cause-specific mortality by age, gender, and socioeconomic condition in urban and rural areas of Bangladesh.

    PubMed

    Burkart, Katrin; Khan, Mobarak H; Krämer, Alexander; Breitner, Susanne; Schneider, Alexandra; Endlicher, Wilfried R

    2011-08-04

    Mortality exhibits seasonal variations, which to a certain extent can be considered as mid-to long-term influences of meteorological conditions. In addition to atmospheric effects, the seasonal pattern of mortality is shaped by non-atmospheric determinants such as environmental conditions or socioeconomic status. Understanding the influence of season and other factors is essential when seeking to implement effective public health measures. The pressures of climate change make an understanding of the interdependencies between season, climate and health especially important. This study investigated daily death counts collected within the Sample Vital Registration System (VSRS) established by the Bangladesh Bureau of Statistics (BBS). The sample was stratified by location (urban vs. rural), gender and socioeconomic status. Furthermore, seasonality was analyzed for all-cause mortality, and several cause-specific mortalities. Daily deviation from average mortality was calculated and seasonal fluctuations were elaborated using non parametric spline smoothing. A seasonality index for each year of life was calculated in order to assess the age-dependency of seasonal effects. We found distinctive seasonal variations of mortality with generally higher levels during the cold season. To some extent, a rudimentary secondary summer maximum could be observed. The degree and shape of seasonality changed with the cause of death as well as with location, gender, and SES and was strongly age-dependent. Urban areas were seen to be facing an increased summer mortality peak, particularly in terms of cardiovascular mortality. Generally, children and the elderly faced stronger seasonal effects than youths and young adults. This study clearly demonstrated the complex and dynamic nature of seasonal impacts on mortality. The modifying effect of spatial and population characteristics were highlighted. While tropical regions have been, and still are, associated with a marked excess of

  19. Seasonality of Suicidal Behavior

    PubMed Central

    Woo, Jong-Min; Okusaga, Olaoluwa; Postolache, Teodor T.

    2012-01-01

    A seasonal suicide peak in spring is highly replicated, but its specific cause is unknown. We reviewed the literature on suicide risk factors which can be associated with seasonal variation of suicide rates, assessing published articles from 1979 to 2011. Such risk factors include environmental determinants, including physical, chemical, and biological factors. We also summarized the influence of potential demographic and clinical characteristics such as age, gender, month of birth, socioeconomic status, methods of prior suicide attempt, and comorbid psychiatric and medical diseases. Comprehensive evaluation of risk factors which could be linked to the seasonal variation in suicide is important, not only to identify the major driving force for the seasonality of suicide, but also could lead to better suicide prevention in general. PMID:22470308

  20. Seasonal and spatial variation of arsenic in groundwater in a rhyolithic volcanic area of Lesvos Island, Greece.

    PubMed

    Zkeri, Eirini; Aloupi, Maria; Gaganis, Petros

    2017-12-23

    A survey conducted in water wells located in the rhyolithic volcanic area of Mandamados, Lesvos Island, Greece, indicated that significant seasonal variation of arsenic concentration in groundwater exists mainly in wells near the coastal zone. However, there were differences among those coastal wells with regard to the processes and factors responsible for the observed seasonal variability of the element, although they are all located in a small homogeneous area. These processes and factors include (a) a higher rate of silicate weathering and ion exchange during the dry period followed by the dilution by the recharge water during the wet period, (b) enhanced desorption promoted by higher pH in summer and subsequent dilution of As by rainwater infiltration during the wet period, and (c) reductive dissolution of Mn during the wet period and by desorption under high pH values during the dry period. On the other hand, in wells located in higher-relief regions, the concentration of As in groundwater followed a fairly constant pattern throughout the year, which is probably related to the faster flow of groundwater in this part of the area due to a higher hydraulic gradient. In general, seasonal variation of As in groundwater in the study area was found to be related to geology, recharge rate, topography-distance from coast, and well depth.

  1. Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India.

    PubMed

    Diwan, Vishal; Hanna, Nada; Purohit, Manju; Chandran, Salesh; Riggi, Emilia; Parashar, Vivek; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2018-06-17

    To characterize the seasonal variation, over one year, in water-quality, antibiotic residue levels, antibiotic resistance genes and antibiotic resistance in Escherichia coli isolates from water and sediment of the Kshipra River in Central India. Water and sediment samples were collected from seven selected points from the Kshipra River in the Indian city of Ujjain in the summer, rainy season, autumn and winter seasons in 2014. Water quality parameters (physical, chemical and microbiological) were analyzed using standard methods. High-performance liquid chromatography⁻tandem mass spectrometry was used to determine the concentrations of antibiotic residues. In river water and sediment samples, antibiotic resistance and multidrug resistance patterns of isolated E. coli to 17 antibiotics were tested and genes coding for resistance and phylogenetic groups were detected using multiplex polymerase chain reaction. One-way analysis of variance (ANOVA) and Fisher tests were applied to determine seasonal variation. In river water, seasonal variation was significantly associated with various water quality parameters, presence of sulfamethoxazole residues, bacteria resistant to ampicillin, cefepime, meropenem, amikacin, gentamicin, tigecycline, multidrug resistance and CTX-M-1 gene. The majority of the Extended Spectrum Beta-Lactamase (ESBL)-producing E. coli isolates from river water and sediment in all different seasons belonged to phylogenetic group A or B1. Antibiotic pollution, resistance and resistance genes in the Kshipra River showed significant seasonal variation. Guidelines and regulatory standards are needed to control environmental dissemination of these “pollutants” in this holy river.

  2. Localization and seasonal variation of blue pigment (sandercyanin) in walleye (Sander vitreus)

    USGS Publications Warehouse

    Schaefer, Wayne; Schmitz, Mark; Blazer, Vicki S.; Ehlinger, Tim; Berges, John

    2015-01-01

    Several fish species, including the walleye (Sander vitreus), have “yellow” and “blue” color morphs. In S. vitreus, one source of the blue color has been identified as a bili-binding protein pigment (sandercyanin), found in surface mucus of the fish. Little is known about the production of the pigment or about its functions. We examined the anatomical localization and seasonal variation of sandercyanin in S. vitreus from a population in McKim Lake, northwestern Ontario, Canada. Skin sections were collected from 20 fish and examined histologically. Mucus was collected from 306 fish over 6 years, and the amount of sandercyanin was quantified spectrophotometrically. Sandercyanin was found solely on dorsal surfaces of the fish and was localized to novel cells in the epidermis, similar in appearance to secretory sacciform cells. Sandercyanin concentrations were significantly higher in fish collected in summer versus other seasons. Yellow and blue morphs did not differ in amounts of sandercyanin, suggesting that the observed blue color, in fact, arises from lack of yellow pigmentation in blue morphs. The function of the sandercyanin remains unclear, but roles in photoprotection and countershading are consistent with available data.

  3. Seasonal variations of mesopause temperature and the amplitude of the VLF signals of the Novosibirsk radio station during 2009-2016

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexey; Kozlov, Vladimir; Ammosova, Anastasia; Ammosov, Petr; Gavrilyeva, Galina; Koltovskoi, Igor; Pavlov, Yegor

    2017-10-01

    Dynamics of seasonal variations of the amplitude of the VLF radio signal received in Yakutsk from the navigation station near Novosibirsk and the P-branches of the OH band (6-2) radiation intensity in the wavelength range 835 - 853 nm are considered. The radiation variations give information about mesopause region measured at the Maimaga station (130 km from Yakutsk). The observation from 2009 to 2016 covers period with minimum and maximum solar activity. The mesopause temperature and the VLF signal increase with increasing solar flux F10.7 in winter. The mesopause temperature seasonal variations and the VLF signal strength for the Novosibirsk-Yakutsk path are regularly inverted from year to year. By decade data averaging the VLF radio signal strength dependence on the temperature of the atmosphere at the OH excitation height can be expressed by a linear function. The coefficient of determination: R2 = 0.59, the anticorrelation coefficient: r10 = - 0.77. The variations of the VLF radio noise and the radio station signal for the eight-year interval are similar to solar activity (F10.7 index). The signal level of the radio station and radio noise registered in the winter is more sensitive to variations of F10.7 index in 24th solar cycle activity.

  4. Seasonal variations of carbonate system parameters and nutrients at the shellfish-farming bays along the south coast of Korea

    NASA Astrophysics Data System (ADS)

    Shim, JeongHee; Shim, Jeong-Min; Lee, Yong-Hwa

    2017-04-01

    About 80 90% of the annual mass production of shellfish in Korea are cultured at the inner bays including Jinhae, Tongyeong and Geoje regions, along the south coast of Korea. To understand coastal carbon and nutrients cycles and those effects/feedbacks on shellfish farming, carbonate (DIC, TA and pH) and environmental parameters were observed at Jinhae, Tongyeong and Geoje Bays 4 times (in Feb., Aug. 2014, Apr. and Oct. 2015 and are considered representative of winter, summer, spring and fall respectively). Surface temperature in the bays showed clear seasonal variation with about 6 12°C and 24 29°C in Feb. and Aug. 2014, respectively and 14 18°C and 22 26°C in Apr. and in Oct. 2015, respectively. Surface pHNBS also ranged with about 8.20 8.53 and 7.28 8.95 in Feb. and Aug. 2014, and 8.04 8.40 and 7.91 8.32 in Apr. and in Oct. 2015. High pH with low salinity in summer resulted from input of land discharge in rainy seasons, however high pH at small bays in Apr. and Oct. 2015 resulted from massive primary production by phytoplankton bloom, supported by high chlorophyll a concentrations. Seasonal variations of DIC and phosphate in the surface and bottom waters correlated largely with salinity, higher in winter and lower in summer. Specifically in shellfish (specially, oyster and mussel) growing season, aragonite saturation state (Ωarag) in bottom water ranged about 0.2 2.9 (mean 2.1) and 2.2 5.0 (mean 3.2) in Feb. 2014 and Oct. 2015, respectively, suggesting low pH environments arose seasonally in coastal area due to some mechanisms. These results suggest that seasonal ocean acidification state might seriously affect shell growth, mass production and thus shellfish industry along the south coast of Korea.

  5. Defining microbial community composition and seasonal variation in a sewage treatment plant in India using a down-flow hanging sponge reactor.

    PubMed

    Nomoto, Naoki; Hatamoto, Masashi; Hirakata, Yuga; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki

    2018-05-01

    The characteristics of the microbial community in a practical-scale down-flow hanging sponge (DHS) reactor, high in organic matter and sulfate ion concentration, and the seasonal variation of the microbial community composition were investigated. Microorganisms related to sulfur oxidation and reduction (2-27%), as well as Leucobacter (7.50%), were abundant in the reactor. Anaerobic bacteria (27-38% in the first layer) were also in abundance and were found to contribute to the removal of organic matter from the sewage in the reactor. By comparing the Simpson index, the abundance-based coverage estimator (ACE) index, and the species composition of the microbial community across seasons (summer/dry, summer/rainy, autumn/dry, and winter/dry), the microbial community was found to change in composition only during the winter season. In addition to the estimation of seasonal variation, the difference in the microbial community composition along the axes of the DHS reactor was investigated for the first time. Although the abundance of each bacterial species differed along both axes of the reactor, the change of the community composition in the reactor was found to be greater along the vertical axis than the horizontal axis of the DHS reactor.

  6. Seasonal variation and trends in stroke hospitalizations and mortality in a South American community hospital.

    PubMed

    Díaz, Alejandro; Gerschcovich, Eliana Roldan; Díaz, Adriana A; Antía, Fabiana; Gonorazky, Sergio

    2013-10-01

    Numerous studies have reported the presence of temporal variations in biological processes. Seasonal variation (SV) in stroke has been widely studied, but little data have been published on this phenomenon in the Southern Hemisphere, and there have been no studies reported from Argentina. The goals of the present study were to describe the SV of admissions and deaths for stroke and examine trends in stroke morbidity and mortality over a 3-year period in a community hospital in Argentina. Hospital discharge reports from the electronic database of vital statistics between 1999 and 2001 were examined retrospectively. Patients who had a main discharge diagnosis of stroke (ischemic or hemorrhagic) or cerebrovascular accident (International Classification of Diseases, Ninth Revision codes 431, 432, 434, and 436) were selected. The study sample included 1382 hospitalizations by stroke (3.5% of all admissions). In-hospital mortality demonstrated a winter peak (25.5% vs 17% in summer; P = .001). The crude seasonal stroke attack rate (ischemic and hemorrhagic) was highest in winter (164 per 100,000 population; 95% CI, 159-169 per 100,000) and lowest in summer (124 per 100,000; 95% CI, 120-127 per 100,000; P = .008). Stroke admissions followed a seasonal pattern, with a winter-spring predominance (P = .008). Our data indicate a clear SV in stroke deaths and admissions in this region of Argentina. The existence of SV in stroke raises a different hypothesis about the rationale of HF admissions and provides information for the organization of care and resource allocation. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. [Age dynamics and seasonal variations of parameters of cerebral circulation in children and adolescents from European north].

    PubMed

    Soroko, S I; Rozhkov, V P

    2014-10-01

    Age dynamics and seasonal variations in cerebral blood flow was studied by means of transcranial Doppler in 95 the natives of the Arkhangelsk region school students aged 7 to 18 years. The results of longitudinal (from 2005 to 2014) study of students are presented. The linear blood flow velocity (BFV) showed gradual declining from junior to senior school age, and BFV were in the middle cerebral artery below average, and in the basilar artery--above mid latitude standards. The influence of the seasonal factor is more pronounced in the younger (for boys) and intermediate (for girls) age group and leveled in the older group. The largest seasonal changes were obtained in BFV in carotid arteries, the relative constancy--in BFV in the basilar artery. Estimated by the resistivity index RI circulatory resistance in the younger and intermediate school students groups decreased in the carotid arteries in the spring and summer, and in the posterior cerebral artery territory--in the winter. BFV rate variability identifies groups of children with varying degrees of "sensitivity" to the influence of seasonal factors.

  8. Seasonal and daily variations in concentrations of methyl-tertiary-butyl ether (MTBE) at Cranberry Lake, New Jersey

    USGS Publications Warehouse

    Toran, L.; Lipka, C.; Baehr, A.; Reilly, T.; Baker, R.

    2003-01-01

    Methyl-tertiary-butyl ether (MTBE), an additive used to oxygenate gasoline, has been detected in lakes in northwestern New Jersey. This occurrence has been attributed to the use of gasoline-powered watercraft. This paper documents and explains both seasonal and daily variations in MTBE concentrations at Cranberry Lake. During a recent boating season (late April to September 1999), concentrations of MTBE typically exceeded 20??g/L. MTBE concentrations varied daily from 12 to 24??g/L over a 2-week period that included the Labor Day holiday. Concentrations were highest on weekends when there is more boat traffic, which had an immediate effect on MTBE mass throughout the lake. MTBE concentrations decreased to about 2??g/L shortly after the end of the summer recreational season. The loss of MTBE can be accounted for by volatilization, with a half-life on the order of 10 days. The volatilization rate was modeled with the daily decrease in MTBE then the modeled rate was validated using the data from the seasonal decline. ?? 2003 Elsevier Science Ltd. All rights reserved.

  9. Seasonal variation of activity patterns in roe deer in a temperate forested area.

    PubMed

    Pagon, Nives; Grignolio, Stefano; Pipia, Anna; Bongi, Paolo; Bertolucci, Cristiano; Apollonio, Marco

    2013-07-01

    We investigated the activity patterns of a European roe deer (Capreolus capreolus) population living in a forested Apennine area in central Italy, in order to shed light on the environmental and biological factors that were expected to account for the observed activity patterns on daily and yearly bases. Daily and seasonal activity patterns of 31 radio-collared roe deer were assessed through sessions of radio tracking for a total period of 18 consecutive months. Roe deer showed bimodal activity patterns throughout the year, with the two highest peaks of activity recorded at dawn and dusk. Activity patterns of males and females differed during the territorial period (from early spring to late summer), whereas they did not during the nonterritorial period. Most likely, behavioral thermoregulation can be held responsible for variation of daily activity patterns in different seasons. In winter, for instance, activity during the dawn period was significantly higher than in other seasons and daylight activity was significantly higher than at night. Nocturnal activity was highest in summer and lowest in winter. During the hunting season, moreover, roe deer showed lower activity levels than during the rest of the year. The prediction that roe deer would show lower activity levels during full moon nights, when the predation risk was assumed to be higher, was not confirmed by our data. Activity rhythms in roe deer were thus subjected to both endogenous and environmental factors, the latter working as exogenous synchronization cues. Accordingly, in changing environmental and ecological conditions, a circadian cycle of activity could be seen as the result of complex interactions among daily behavioral rhythm, digestive physiology, and external modifying factors.

  10. Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion.

    PubMed

    Villegas-Amtmann, Stella; Atkinson, Shannon; Paras-Garcia, Alberto; Costa, Daniel P

    2012-08-01

    Survival depends on an animal's ability to find and acquire prey. In diving vertebrates, this ability is directly related to their physiological capability (e.g. oxygen stores). We studied the seasonal variation in oxygen stores, body temperature and body condition in California sea lions (Zalophus californianus) (CSL) as a function of seasonal variation in temperature, primary productivity, diving behavior and reproductive stage. During summer, blood oxygen stores were significantly greater and muscle oxygen stores were significantly lower than in winter. Total oxygen stores, body condition and body temperature did not change between seasons but variations in body temperature were greater during summer. Changes in oxygen stores are partly attributed to diving behavior, temperature and pregnancy that could increase oxygen consumption. Blood and muscle oxygen stores appear to be influenced by reproductive state. Blood oxygen stores are more likely influenced by diving behavior and temperature than muscle oxygen stores. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Insights into Seasonal Variations in Phosphorus Concentrations and Cycling in Monterey Bay

    NASA Astrophysics Data System (ADS)

    Kong, M.; Defforey, D.; Paytan, A.; Roberts, K.

    2014-12-01

    Phosphorus (P) is an essential nutrient for life as it is a structural constituent in many cell components and a key player in cellular energy metabolism. Therefore, P availability can impact primary productivity. Here we quantify dissolved and particulate P compounds and trace P sources and cycling in Monterey Bay over the course of a year. This time series gives insights into monthly and seasonal variations in the surface water chemistry of this region. Preliminary characterization of seawater samples involves measuring total P and soluble reactive P (SRP) concentrations. 31P nuclear magnetic resonance spectroscopy (31P NMR) is used to determine the chemical structure of organic phosphorus compounds present in surface seawater. The isotopic signature of phosphatic oxygen (δ18Op) is used as a proxy for studying P cycling and sources. Oxygen isotope ratios in phosphate are determined by continuous-flow isotope mass ratio spectrometry (CF-IRMS) following purification of dissolved P from seawater samples and precipitation as silver phosphate. We expect to observe seasonal changes in P concentrations, as well as differences in organic P composition and P sources. The chemical structure of organic P compounds will affect their bioavailability and thus the extent to which they can fuel primary productivity in Monterey Bay. δ18Op will reflect source signatures and provide information on turnover rates of P in surface waters. Results from this work will provide valuable insights into seasonal changes in P cycling in surface waters and have important implications for understanding primary productivity in the Monterey Bay ecosystem.

  12. Facts and myths about seasonal variation in suicide.

    PubMed

    Voracek, Martin; Tran, Ulrich S; Sonneck, Gernot

    2007-06-01

    The prevalence of suicide presents a universal seasonal pattern. In the Northern hemisphere, suicides peak during spring and early summer and the trough occurs during winter. This peculiar pattern might be counterintuitive for everyday reasoning. Data from 1,093 medical and psychology undergraduates from Austria (382 men and 711 women; M age 25.0 yr., SD=6.6) indicated an almost perfectly reversed pattern of beliefs about suicide seasonality compared with the actual seasonal distribution. The vast majority of respondents believed the peak to be located in late autumn and early winter and the trough occurring in late spring and the summer months. Implications for education and practice are discussed.

  13. Tidal and seasonal variations in the quantity and composition of seston in a North American, mid-Atlantic saltmarsh

    NASA Astrophysics Data System (ADS)

    Huang, S.-C.; Kreeger, D. A.; Newell, R. I. E.

    2003-03-01

    We determined the concentration of seston, particulate organic matter, and biological components (chlorophyll a, bacteria, and heterotrophic nanoflagellates) for <25 μm size fraction seston over five seasons in Canary Creek saltmarsh, Delaware Bay, USA. This material is the potential food resource for suspension-feeding ribbed mussels, Geukensia demissa, that inhabit the marsh intertidal zone. For eight tidal cycles each season we collected water six times at hourly intervals from mid-flood tide to mid-ebb tide. Although the concentration of seston did not vary seasonally, there were significant seasonal variations (analysis of variance, P<0.05) in seston components, with chlorophyll a concentration being highest in May and bacteria and heterotrophic nanoflagellates most abundant in August. Seston composition also varied within each tidal cycle with a magnitude as great as the seasonal variation. We conclude that ribbed mussels are subject to an unpredictable food supply that varies in composition and concentration on the order of hours and days. In contrast to the pronounced temporal changes, seston characteristics did not differ significantly among sampling locations within the marsh, or between samples collected close to the sediment surface and from the upper water column. Resuspension of sediment particles caused by tidal flow was not evident in tidal creeks and there were no dominant patterns in total seston concentration corresponding to tidal stages (flood tide, high slack water, and ebb tide) over the five sampling months. The abundance of biological components in the seston, including chlorophyll a, bacteria, and heterotrophic nanoflagellates, were significantly greater during high flood tide and high slack water than during ebb tide. The decline of biological components, particularly chlorophyll a in the ebb tide, indicates that this temperate saltmarsh imported organic material produced in the Delaware estuary.

  14. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.

    PubMed

    Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús

    2016-04-01

    Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. The Variation of Hydrocarbon Abundances with Latitude and Season in Saturn's Stratosphere

    NASA Technical Reports Server (NTRS)

    Moses, J. I.; Greathouse, T. K.

    2005-01-01

    We have developed a realistic, time-variable, one-dimensional, seasonal model for stratospheric photochemistry on Saturn using the Caltech/ JPL KINETICS code [1,2,3]. The model accounts for variations in ultraviolet flux due to orbital position, solar-cycle variations, and ring-shadowing effects. The results for two Saturnian years, starting at Ls = 0 in 1950 and running until the upcoming northern vernal equinox in 2009, are presented for numerous latitudes. The same two model years are run over and over again until the model convergences to make sure that high-altitude effects have had a chance to propagate down through the atmosphere. We use the SOLAR2000 model [4,5], in combination with the spectra presented in [6], to predict the ultraviolet flux at any wavelength and any point in time during the simulation. Saturn's orbital position during the simulation was taken from the ephemeris calculator at http://ssd.jpl.nasa.gov/horizons.html [7]. The photochemical model is derived from "Model C" of [8] and uses a hydrocarbon reaction list that has been extensively updated from that presented in [3].

  16. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Hewen; Kang, Shichang; Wang, Hailong

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32μg m -3, respectively. Although the annual mean OC/EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a.s.l.) of Mt. Yulong. Strong photochemical reactions and local tourism activitiesmore » were likely the main factors inducing high OC/EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m 2g -1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50%) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.« less

  17. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacieri region of the southeastern Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Hewen; Kang, Shichang; Wang, Hailong

    2018-05-07

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities weremore » likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.« less

  18. Seasonal and Solar Activity Variations of f3 Layer and StF-4 F-Layer Quadruple Stratification) Near the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Tardelli, A.; Fagundes, P. R.; Pezzopane, M.; Kavutarapu, V.

    2016-12-01

    The ionospheric F-layer shape and electron density peak variations depend on local time, latitude, longitude, season, solar cycle, geomagnetic activity, and electrodynamic conditions. In particular, the equatorial and low latitude F-layer may change its shape and peak height in a few minutes due to electric fields induced by propagation of medium-scale traveling ionospheric disturbances (MSTIDs) or thermospheric - ionospheric coupling. This F-layer electrodynamics feature characterizing the low latitudes is one of the most remarkable ionospheric physics research field. The study of multiple-stratification of the F-layer has the initial records in the mid of the 20th century. Since then, many studies were focused on F3 layer. The diurnal, seasonal and solar activity variations of the F3 layer characteristics have been investigated by several researchers. Recently, investigations on multiple-stratifications of F-layer received an important boost after the quadruple stratification (StF-4) was observed at Palmas (10.3°S, 48.3°W; dip latitude 5.5°S - near equatorial region), Brazil (Tardelli & Fagundes, JGR, 2015). This study present the latest findings related with the seasonal and solar activity characteristics of the F3 layer and StF-4 near the equatorial region during the period from 2002 to 2006. A significant connection between StF-4 and F3 layer has been noticed, since the StF-4 is always preceded and followed by an F3 layer appearance. However, the F3 layer and StF-4 present different seasonal and solar cycle variations. At a near equatorial station Palmas, the F3 layer shows the maximum and minimum occurrence during summer and winter seasons respectively. On the contrary, the StF-4 presents the maximum and minimum occurrence during winter and summer seasons respectively. While the F3 layer occurrence is not affected by solar cycle, the StF-4 appearance is instead more frequent during High Solar Activity (HSA).

  19. Seasonal variation of upper mesospheric temperatures from the OH and O2 nightglow over King Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Kim, Y. H.; Moon, B.-K.; Chung, J.-K.; Won, Y.-I.

    A spectral airglow temperature imager SATI was operated at King Sejong Station 62 22 r S 301 2 r E Korea Antarctic Research Station during a period of 2002 - 2005 Rotational temperatures from the OH 6-2 and O 2 0-1 band airglow were obtained for more than 600 nights during the 4 year operation Both the OH and O 2 temperatures show similar seasonal variations which change significantly year by year A maximum temperature occurred early May in 2003 and 2004 whereas two maxima appeared in April and August in 2002 The 2005 data show only a broad and weak maximum during months of April and May The data also show oscillations with periods of hours that seem to relate to tides and gravity waves and fluctuations with timescales of days that could be due to planetary waves Detailed analysis will be performed to the data set to identify major atmospheric oscillations or variation over hours days and seasons

  20. The effect of seasonal variation on biomethane production from seaweed and on application as a gaseous transport biofuel.

    PubMed

    Tabassum, Muhammad Rizwan; Xia, Ao; Murphy, Jerry D

    2016-06-01

    Biomethane produced from seaweed may be used as a transport biofuel. Seasonal variation will have an effect on this industry. Laminaria digitata, a typical Irish brown seaweed species, shows significant seasonal variation both in proximate, ultimate and biochemical composition. The characteristics in August were optimal with the lowest level of ash (20% of volatile solids), a C:N ratio of 32 and the highest specific methane yield measured at 327LCH4kgVS(-1), which was 72% of theoretical yield. The highest yield per mass collected of 53m(3)CH4t(-1) was achieved in August, which is 4.5 times higher than the lowest value, obtained in December. A seaweed cultivation area of 11,800ha would be required to satisfy the 2020 target for advanced biofuels in Ireland, of 1.25% renewable energy supply in transport (RES-T) based on the optimal gross energy yield obtained in August (200GJha(-1)yr(-1)). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Seasonal and Non-Seasonal Generalized Pareto Distribution to Estimate Extreme Significant Wave Height in The Banda Sea

    NASA Astrophysics Data System (ADS)

    Nursamsiah; Nugroho Sugianto, Denny; Suprijanto, Jusup; Munasik; Yulianto, Bambang

    2018-02-01

    The information of extreme wave height return level was required for maritime planning and management. The recommendation methods in analyzing extreme wave were better distributed by Generalized Pareto Distribution (GPD). Seasonal variation was often considered in the extreme wave model. This research aims to identify the best model of GPD by considering a seasonal variation of the extreme wave. By using percentile 95 % as the threshold of extreme significant wave height, the seasonal GPD and non-seasonal GPD fitted. The Kolmogorov-Smirnov test was applied to identify the goodness of fit of the GPD model. The return value from seasonal and non-seasonal GPD was compared with the definition of return value as criteria. The Kolmogorov-Smirnov test result shows that GPD fits data very well both seasonal and non-seasonal model. The seasonal return value gives better information about the wave height characteristics.

  2. Seasonal and spatial variations of macro- and megabenthic community characteristics in two sections of the East China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Li, Xinzheng; Ma, Lin; Dong, Dong; Kou, Qi; Sui, Jixing; Gan, Zhibin; Wang, Hongfa

    2017-09-01

    In spring and summer 2011, the macro- and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables. The total number of species increased slightly from spring (131 species) to summer (133) whereas the percentage of Mollusca decreased significantly. The index of relative importance (IRI) indicated that the top five important species changed completely from spring to summer. Species number, abundance and biomass in summer were significantly higher than in spring, but no significant difference was observed among areas (coastal, transitional and oceanic areas, divided basically from inshore to offshore). Species richness ( d), diversity ( H') and evenness ( J') showed no significant seasonal or spatial variations. Cluster analysis and nMDS ordination identified three benthic communities from inshore to offshore, corresponding to the three areas. Analysis of Similarity (ANOSIM) indicated the overall significant difference in community structure between seasons and among areas. K-dominance curves revealed the high intrinsic diversity in the offshore area. Canonical correspondence analysis showed that the coastal community was positively correlated to total nitrogen and total organic carbon in spring, but negatively in summer; oceanic community was positively correlated to total nitrogen and total organic carbon in both seasons. Species such as Coelorhynchus multispinulosus, Neobythites sivicola, Lepidotrigla alata, Solenocera melantho, Parapenaeus fissuroides, Oratosquilla gonypetes and Spiropagurus spiriger occurred exclusively in the offshore oceanic area and their presence may reflect the influence of the offshore Kuroshio Current.

  3. Analyzing Seasonal Variations in Suicide With Fourier Poisson Time-Series Regression: A Registry-Based Study From Norway, 1969-2007.

    PubMed

    Bramness, Jørgen G; Walby, Fredrik A; Morken, Gunnar; Røislien, Jo

    2015-08-01

    Seasonal variation in the number of suicides has long been acknowledged. It has been suggested that this seasonality has declined in recent years, but studies have generally used statistical methods incapable of confirming this. We examined all suicides occurring in Norway during 1969-2007 (more than 20,000 suicides in total) to establish whether seasonality decreased over time. Fitting of additive Fourier Poisson time-series regression models allowed for formal testing of a possible linear decrease in seasonality, or a reduction at a specific point in time, while adjusting for a possible smooth nonlinear long-term change without having to categorize time into discrete yearly units. The models were compared using Akaike's Information Criterion and analysis of variance. A model with a seasonal pattern was significantly superior to a model without one. There was a reduction in seasonality during the period. Both the model assuming a linear decrease in seasonality and the model assuming a change at a specific point in time were both superior to a model assuming constant seasonality, thus confirming by formal statistical testing that the magnitude of the seasonality in suicides has diminished. The additive Fourier Poisson time-series regression model would also be useful for studying other temporal phenomena with seasonal components. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Seasonal variations in larval biomass and biochemical composition of brown shrimp, Crangon crangon (Decapoda, Caridea), at hatching

    NASA Astrophysics Data System (ADS)

    Urzúa, Ángel; Anger, Klaus

    2013-06-01

    The "brown shrimp", Crangon crangon (Linnaeus 1758), is a benthic key species in the North Sea ecosystem, supporting an intense commercial fishery. Its reproductive pattern is characterized by a continuous spawning season from mid-winter to early autumn. During this extended period, C. crangon shows significant seasonal variations in egg size and embryonic biomass, which may influence larval quality at hatching. In the present study, we quantified seasonal changes in dry weight (W) and chemical composition (CHN, protein and lipid) of newly hatched larvae of C. crangon. Our data revealed significant variations, with maximum biomass values at the beginning of the hatching season (February-March), a decrease throughout spring (April-May) and a minimum in summer (June-September). While all absolute values of biomass and biochemical constituents per larva showed highly significant differences between months ( P < 0.001), CHN, protein and lipid concentrations (expressed as percentage values of dry weight) showed only marginally significant differences ( P < 0.05). According to generalized additive models (GAM), key variables of embryonic development exerted significant effects on larval condition at hatching: The larval carbon content (C) was positively correlated with embryonic carbon content shortly after egg-laying ( r 2 = 0.60; P < 0.001) and negatively with the average incubation temperature during the period of embryonic development ( r 2 = 0.35; P < 0.001). Additionally, water temperature ( r 2 = 0.57; P < 0.001) and food availability (phytoplankton C; r 2 = 0.39; P < 0.001) at the time of hatching were negatively correlated with larval C content at hatching. In conclusion, "winter larvae" hatching from larger "winter eggs" showed higher initial values of biomass compared to "summer larvae" originating from smaller "summer eggs". This indicates carry-over effects persisting from the embryonic to the larval phase. Since "winter larvae" are more likely exposed to

  5. Seasonal and spatial variation in broadleaf forest model parameters

    NASA Astrophysics Data System (ADS)

    Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.

    2009-04-01

    Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and

  6. A study on the seasonal variation of the essential oil composition from Plectranthus hadiensis and its antibacterial activity.

    PubMed

    Sripathi, Raju; Jayagopal, Dharani; Ravi, Subban

    2018-04-01

    The chemical composition and seasonal variation of the essential oil from the aerial parts of Plectranthus hadiensis grown during the rainy and summer seasons in the Western Ghats of India was analysed by GC-MS technique. The analysis of rainy season oil led to the identification of 31 compounds, representing 96.4% of the essential oil and the winter season oil led to 25 compounds, representing 95.1% of the oil. Most of the compounds were sesquiterpenes and oxygenated monoterpenes. The major components of the rainy season oil were L-fenchone (30.42%), β-farnesene (11.87%), copaene(11.10%), 2,3-dimethyl hydroquinone (10.78%), α-caryophyllene(8.41%) and piperitone oxide (3.94%) and of the summer season oil are L-fenchone (31.55%), copaene(11.93%), β-farnesene (10.45%), 1,8-naphthalenedione, 8a-ethylperhydro (10.06%), α-caryophyllene(6.36%), piperitone oxide (5.79%) and limonene(4.63%). Antibacterial activity of the essential oil of P. hadiensis was tested using zone of inhibition and minimum inhibition concentration methods. Both the oils inhibited the organisms and showed the zone of inhibition in the range of 20-35 mm with MIC values between 32 and 64 mg/dL.

  7. PM2.5 source apportionment in the southeastern U.S.: Spatial and seasonal variations during 2001-2005

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Zheng, Mei; Edgerton, Eric S.; Ke, Lin; Sheng, Guoying; Fu, Jiamo

    2012-04-01

    The seasonal and spatial variations of source contributions of 112 composite fine particulate matter (PM2.5) samples collected in the Southeastern Aerosol Research and Characterization Study (SEARCH) monitoring network during 2001-2005 using molecular marker-based chemical mass balance (CMB-MM) model were determined. The lowest PM2.5 concentration occurs in January with higher values in warm months (maxima in July at four inland sites versus October at the coastal sites). Sulfate shows a similar pattern and plays a primary role in PM2.5 seasonality. Carbonaceous material (organic matter plus EC) exhibits less seasonality, but more spatial variations between the inland and coastal sites. Compared with the data at coastal sites, source attributions of diesel exhaust, gasoline exhaust, other organic matter (other OM), secondary sulfate, nitrate, and ammonium in PM2.5 mass at inland sites are higher. The difference in source attributions of wood combustion, meat cooking, vegetative detritus, and road dust among the eight sites is not significant. Contributions of eight primary sources to fine OC are wood burning (17 ± 19%), diesel exhaust (9 ± 4%), gasoline exhaust (5 ± 7%), meat cooking (5 ± 5%), road dust (2 ± 3%), vegetative detritus (2 ± 2%), cigarette smoke (2 ± 2% at four urban sites), and coke production (2 ± 1% only at BHM). Primary and secondary sources explain 82-100% of measured PM2.5 mass at the eight sites, including secondary ionic species (SO42-, NH4+, and NO3-; 41.4 ± 5.7%), identified OM (24.9 ± 11.3%), "other OM" (unexplained OM, 23.3 ± 10.3%), and "other mass" (11.4 ± 9.6%). Vehicle exhaust from both diesel and gasoline contributes the lowest fraction to PM2.5 mass in July and higher fractions at BHM and JST than other sites. Wood combustion, in contrast, contributes significantly to a larger fraction in winter than in summer. Road dust shows relatively high levels in July and April across the eight sites, while minor sources such as meat

  8. Seasonal variation of the upper digestive tract yeast flora of feral pigeons

    USGS Publications Warehouse

    Kocan, R.M.; Hasenclever, H.F.

    1974-01-01

    Feral pigeons were sampled over a 16-month period to determine whether their normal yeast flora varied according to season. Candida albicans and Saccharomyces telluris occurred during the entire sampling period, with C. albicans reaching its highest levels between August and January and S. telluris peaking from March through May. Candida krusei was present for 10 months but exhibited no predictable variation in density. Candida tropicalis, C. guilliermondii and Geotrichum were isolated on several occasions while C. lusitaniae, C. pseudotropicalis and Torulopsis glabrata were each isolated once. The high levels of infection and frequency of occurrence of some yeast species make the feral pigeon highly suspect as a carrier and disseminator of potentially pathogenic yeast.

  9. Seasonal variation and hospital utilization for tuberculosis in Russia: hospitals as social care institutions.

    PubMed

    Atun, R A; Samyshkin, Y A; Drobniewski, F; Kuznetsov, S I; Fedorin, I M; Coker, R J

    2005-08-01

    Clinical management of tuberculosis in Russia involves lengthy hospitalizations, in contrast to the recommended strategy advocated by the World Health Organization. We used Fourier transform, spectral analysis and Student's t-test to analyse periodic and seasonal variations in admission and discharge rates for tuberculosis hospitalizations in 1999-2002, using routinely captured data from the Samara Region, Russia. Hospital admissions in colder months were significantly higher than in warmer months. The mean monthly adjusted number of admissions in colder and warmer months for all adults was 413 and 372 (P < 0.01), for unemployed adults 218 and 198 (P < 0.02) and for pensioners 104 and 82 (P < 0.05). Hospital discharges varied seasonally. Maximum differences between admissions and discharges occurred in colder months and minimum differences were observed in warmer months. As hospitalizations of tuberculosis patients in colder months fulfil an important social need, shifts to ambulatory care must be carefully managed.

  10. Seasonal variations of Manning's coefficient depending on vegetation conditions in Tärnsjö, Sweden

    NASA Astrophysics Data System (ADS)

    Plakane, Rūta; Di Baldassarre, Giuliano; Okoli, Kenechukwu

    2017-04-01

    Hydrological modelling and water resources management require observations of high and low river flows. To estimate them, rating curves based on the characteristics of the river channel and floodplain are often used. Yet, multiple factors can cause uncertainties in rating curves, one of them being the variability of the Manning's roughness coefficient due to seasonal changes of vegetation. Determining this uncertainty has been a challenge, and depending on vegetation conditions on a stream, values can temporarily show an important deviation from the calibrated rating curve, enhancing the importance to understand changes in Manning's roughness coefficient. Examining the aquatic vegetation on the site throughout different seasonal conditions allows one to observe changes within the channel. By depending on cyclical changes in Manning's roughness coefficient values, different discharges may correspond to the same stage conditions. In this context, we present a combination of field work and modelling exercise to the variation of the rating curve due to vegetation changes in a Swedish stream.

  11. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands.

    PubMed

    He, Yuling; Tao, Wendong; Wang, Ziyuan; Shayya, Walid

    2012-11-15

    Design considerations to enhance simultaneous partial nitrification and anammox in constructed wetlands are largely unknown. This study examined the effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in two free-water surface wetlands. In order to enhance partial nitrification and inhibit nitrite oxidation, furnace slag was placed on the rooting substrate to maintain different pH levels in the wetland water. The wetlands were batch operated for dairy wastewater treatment under oxygen-limited conditions at a cycle time of 7 d. Fluorescence in situ hybridization analysis found that aerobic ammonium oxidizing bacteria and anammox bacteria accounted for 42-73% of the bacterial populations in the wetlands, which was the highest relative abundance of ammonium oxidizing and anammox bacteria in constructed wetlands enhancing simultaneous partial nitrification and anammox. The two wetlands removed total inorganic nitrogen efficiently, 3.36-3.38 g/m(2)/d in the warm season with water temperatures at 18.9-24.9 °C and 1.09-1.50 g/m(2)/d in the cool season at 13.8-18.9 °C. Plant uptake contributed 2-45% to the total inorganic nitrogen removal in the growing season. A seasonal temperature variation of more than 6 °C would affect simultaneous partial nitrification and anammox significantly. Significant pH effects were identified only when the temperatures were below 18.9 °C. Anammox was the limiting stage of simultaneous partial nitrification and anammox in the wetlands. Water pH should be controlled along with influent ammonium concentration and temperature to avoid toxicity of free ammonia to anammox bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Melanopsin-Mediated Acute Light Responses Measured in Winter and in Summer: Seasonal Variations in Adults with and without Cataracts.

    PubMed

    Münch, Mirjam; Ladaique, Myriam; Roemer, Ségolène; Hashemi, Kattayoon; Kawasaki, Aki

    2017-01-01

    Seasonal adaptation is a ubiquitous behavior seen in many species on both global hemispheres and is conveyed by changing photoperiods. In humans this seasonal adaptation is less apparent, in part because changes in daylength are masked by the use of electrical lighting at night. On the other hand, cataracts which reduce light transmission, may compound seasonal changes related to the reduced daylength of winter. To better understand the effects of different photoperiod lengths in healthy adults without and with cataracts, we tested their melanopsin-mediated light responses in summer vs. winter. Fifty-two participants (mean age 67.4 years; 30 with bilateral cataracts and 22 age-matched controls with clear lenses; pseudophakes) were tested twice, once in summer and once in winter. At each test session we assessed the electroretinogram and pupil responses during daytime and we determined melatonin suppression, subjective sleepiness and mood in response to light exposure in the evening. Circadian rest-activity cycles and sleep from activity recordings were also analyzed for both seasons. Both groups had similar visual function. There were no seasonal differences in the electroretinogram. For the pupil responses to bright blue light, the post-illumination pupil response (PIPR) was greater in winter than summer in pseudophakes, but not in cataract participants, whereas melatonin suppression to acute light exposure showed no differences between both groups and seasons. Overall, intra-daily variability of rest-activity was worse in winter but participants felt sleepier and reported worse mood at the laboratory in evening time in the summer. Those with cataracts had poorer sleep quality with lower sleep efficiency, and higher activity during sleep in winter than summer. In this study, the PIPR showed a seasonal variation in which a larger response was found during winter. This variation was only detected in participants with a clear intraocular lens. In the cataract group

  13. Melanopsin-Mediated Acute Light Responses Measured in Winter and in Summer: Seasonal Variations in Adults with and without Cataracts

    PubMed Central

    Münch, Mirjam; Ladaique, Myriam; Roemer, Ségolène; Hashemi, Kattayoon; Kawasaki, Aki

    2017-01-01

    Seasonal adaptation is a ubiquitous behavior seen in many species on both global hemispheres and is conveyed by changing photoperiods. In humans this seasonal adaptation is less apparent, in part because changes in daylength are masked by the use of electrical lighting at night. On the other hand, cataracts which reduce light transmission, may compound seasonal changes related to the reduced daylength of winter. To better understand the effects of different photoperiod lengths in healthy adults without and with cataracts, we tested their melanopsin-mediated light responses in summer vs. winter. Fifty-two participants (mean age 67.4 years; 30 with bilateral cataracts and 22 age-matched controls with clear lenses; pseudophakes) were tested twice, once in summer and once in winter. At each test session we assessed the electroretinogram and pupil responses during daytime and we determined melatonin suppression, subjective sleepiness and mood in response to light exposure in the evening. Circadian rest-activity cycles and sleep from activity recordings were also analyzed for both seasons. Both groups had similar visual function. There were no seasonal differences in the electroretinogram. For the pupil responses to bright blue light, the post-illumination pupil response (PIPR) was greater in winter than summer in pseudophakes, but not in cataract participants, whereas melatonin suppression to acute light exposure showed no differences between both groups and seasons. Overall, intra-daily variability of rest-activity was worse in winter but participants felt sleepier and reported worse mood at the laboratory in evening time in the summer. Those with cataracts had poorer sleep quality with lower sleep efficiency, and higher activity during sleep in winter than summer. In this study, the PIPR showed a seasonal variation in which a larger response was found during winter. This variation was only detected in participants with a clear intraocular lens. In the cataract group

  14. Seasonal variation in vitamin D status of beef cattle reared in the midwest and Fed to NRC recommendations.

    USDA-ARS?s Scientific Manuscript database

    The objective was to measure seasonal variation in concentration of circulating 25-hydroxyvitamin D (25OHD) in beef cattle reared in the Midwest and fed to NRC recommendations. The concentration of 25OHD reflects adequacy of vitamin D intake and indicates vitamin D status. Vitamin D is an important ...

  15. Seasonal station variations in the Vienna VLBI terrestrial reference frame VieTRF16a

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; Madzak, Matthias

    2017-04-01

    The special analysis center of the International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS) at TU Wien (VIE) routinely analyses the VLBI measurements and estimates its own Terrestrial Reference Frame (TRF) solutions. We present our latest solution VieTRF16a (1979.0 - 2016.5) computed with the software VieVS version 3.0. Several recent updates of the software have been applied, e.g., the estimation of annual and semi-annual station variations as global parameters. The VieTRF16a is determined in the form of the conventional model (station position and its linear velocity) simultaneously with the celestial reference frame and Earth orientation parameters. In this work, we concentrate on the seasonal station variations in the residual time series and compare our TRF with the three combined TRF solutions ITRF2014, DTRF2014 and JTRF2014.

  16. Polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries of China: Distribution, seasonal variations and ecological risk assessment.

    PubMed

    Yan, Jinxia; Liu, Jingling; Shi, Xuan; You, Xiaoguang; Cao, Zhiguo

    2016-08-15

    The distribution, seasonal variations and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries in Hai River Basin of China, which has been suffering from different anthropogenic pressures, were investigated. In three estuaries, the average concentration of ΣPAHs was the lowest in Luan River estuary, followed by Hai River estuary, and the highest in Zhangweixin River estuary. There were significant seasonal variations in ΣPAHs, the concentrations of ΣPAHs were higher in November than in May and August. The composition profiles of PAHs in different sites were significantly different, and illustrated seasonal variations. Generally, 2-ring (Nap) and 3-ring PAHs (Acp, Fl and Phe) were the most abundant components at most sampling sites in three estuaries. The PAHs in three estuaries were mainly originated from pyrogenic sources. A method based on toxic equivalency factors (TEFs) and risk quotient (RQ) was proposed to assess the ecological risk of ΣPAHs, with the ecological risk of individual PAHs being considered separately. The results showed that the ecological risks caused by ΣPAHs were high in Hai River estuary and Zhangweixin River estuary, and moderate in Luan River estuary. The mean values of ecological risk in August were lower than those in November. The contributions of individual PAHs to ecological risk were different in May, August and November. 3-ring and 4-ring PAHs accounted for much more ecological risk than 2-ring, 5-ring and 6-ring, although the contributions of 5-ring and 6-ring to ecological risk were higher than these to PAHs concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Seasonal variation of air temperature at the Mendel Station, James Ross Island in the period of 2006-2009

    NASA Astrophysics Data System (ADS)

    Laska, Kamil; Prošek, Pavel; Budík, Ladislav

    2010-05-01

    Key words: air temperature, seasonal variation, James Ross Island, Antarctic Peninsula Recently, significant role of the atmospheric and oceanic circulation variation on positive trend of near surface air temperature along the Antarctic Peninsula has been reported by many authors. However, small number of the permanent meteorological stations located on the Peninsula coast embarrasses a detail analysis. It comprises analysis of spatiotemporal variability of climatic conditions and validation of regional atmospheric climate models. However, geographical location of the Czech Johann Gregor Mendel Station (hereafter Mendel Station) newly established on the northern ice-free part of the James Ross Island provides an opportunity to fill the gap. There are recorded important meteorological characteristics which allow to evaluate specific climatic regime of the region and their impact on the ice-shelf disintegration and glacier retreat. Mendel Station (63°48'S, 57°53'W) is located on marine terrace at the altitude of 7 m. In 2006, a monitoring network of several automatic weather stations was installed at different altitudes ranging from the seashore level up to mesas and tops of glaciers (514 m a.s.l.). In this contribution, a seasonal variation of near surface air temperature at the Mendel Station in the period of 2006-2009 is presented. Annual mean air temperature was -7.2 °C. Seasonal mean temperature ranged from +1.4 °C (December-February) to -17.7 °C (June-August). Frequently, the highest temperature occurred in the second half of January. It reached maximum of +8.1 °C. Sudden changes of atmospheric circulation pattern during winter caused a large interdiurnal variability of air temperature with the amplitude of 30 °C.

  18. Seasonal and Inter-annual Variation in Wood Production in Tropical Trees on Barro Colorado Island, Panama, is Related to Local Climate and Species Functional Traits

    NASA Astrophysics Data System (ADS)

    Cushman, K.; Muller-Landau, H. C.; Kellner, J. R.; Wright, S. J.; Condit, R.; Detto, M.; Tribble, C. M.

    2015-12-01

    Tropical forest carbon budgets play a major role in global carbon dynamics, but the responses of tropical forests to current and future inter-annual climatic variation remains highly uncertain. Better predictions of future tropical forest carbon fluxes require an improved understanding of how different species of tropical trees respond to changes in climate at seasonal and inter-annual temporal scales. We installed dendrometer bands on a size-stratified sample of 2000 trees in old growth forest on Barro Colorado Island, Panama, a moist lowland forest that experiences an annual dry season of approximately four months. Tree diameters were measured at the beginning and end of the rainy season since 2008. Additionally, we recorded the canopy illumination level, canopy intactness, and liana coverage of all trees during each census. We used linear mixed-effects models to evaluate how tree growth was related to seasonal and interannual variation in local climate, tree condition, and species identity, and how species identity effects related to tree functional traits. Climatic variables considered included precipitation, solar radiation, soil moisture, and climatological water deficit, and were all calculated from high-quality on-site measurements. Functional traits considered included wood density, maximum adult stature, deciduousness, and drought tolerance. We found that annual wood production was positively related to water availability, with higher growth in wetter years. Species varied in their response to seasonal water availability, with some species showing more pronounced reduction of growth during the dry season when water availability is limited. Interspecific variation in seasonal and interannual growth patterns was related to life-history strategies and species functional traits. The finding of higher growth in wetter years is consistent with previous tree ring studies conducted on a small subset of species with reliable annual rings. Together with previous

  19. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment.

    PubMed

    Goodale, Christine L; Fredriksen, Guinevere; Weiss, Marissa S; McCalley, K; Sparks, Jed P; Thomas, Steven A

    2015-10-01

    Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing- season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with > 90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO3- to soil leachate and seasonal increases in soil and stream NO3- concentrations, although leaching accounted for only a small fraction of the lost 15N (< 0.2%). Uptake of 15N into roots did not vary by season and accounted for < 4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils.

  20. Predicting large wildfires across western North America by modeling seasonal variation in soil water balance.

    PubMed

    Waring, Richard H; Coops, Nicholas C

    A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial resolution <10 km 2 have generally been unsuccessful. We hypothesized that predictions of fires might be improved if depletion of soil water reserves were coupled more directly to maximum leaf area index (LAI max ) and stomatal behavior. In an earlier publication, we used LAI max and a process-based forest growth model to derive and map the maximum available soil water storage capacity (ASW max ) of forested lands in western North America at l km resolution. To map large fires, we used data products acquired from NASA's Moderate Resolution Imaging Spectroradiometers (MODIS) over the period 2000-2009. To establish general relationships that incorporate the major biophysical processes that control evaporation and transpiration as well as the flammability of live and dead trees, we constructed a decision tree model (DT). We analyzed seasonal variation in the relative availability of soil water ( fASW ) for the years 2001, 2004, and 2007, representing respectively, low, moderate, and high rankings of areas burned. For these selected years, the DT predicted where forest fires >1 km occurred and did not occur at ~100,000 randomly located pixels with an average accuracy of 69 %. Extended over the decade, the area predicted burnt varied by as much as 50 %. The DT identified four seasonal combinations, most of which included exhaustion of ASW during the summer as critical; two combinations involving antecedent conditions the previous spring or fall accounted for 86 % of the predicted fires. The approach introduced in this paper can help identify forested areas where management efforts to reduce fire hazards might prove most beneficial.

  1. Seasonal variation of Brazilian red propolis: Antibacterial activity, synergistic effect and phytochemical screening.

    PubMed

    Regueira, M S; Tintino, Saulo Relison; da Silva, Ana Raquel Pereira; Costa, Maria do Socorro; Boligon, Aline Augusti; Matias, Edinardo F F; de Queiroz Balbino, Valdir; Menezes, Irwin R A; Melo Coutinho, Henrique Douglas

    2017-09-01

    The aim of this study was to investigate the effect of the dry and rainy season on the antibacterial activity and chemical composition of the Brazilian red propolis. The samples were collected in rainy (RP-PER) and dry (RP-PED) seasons and analyzed by HPLC-DAD. The extracts were tested alone and in association with antibiotics against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The HPLC analysis identified luteolin and quercetin as the main compounds. Seasonal variation was observed according to concentrations of the compounds. The MIC values against E. coli ranged from 128 μg/mL to 512 μg/mL (EC 06 and EC ATCC). The red propolis showed MIC values of 512 μg/mL against both strains of P. aeruginosa used in our study (PA03 and PA24) and against strains of Gram-positive bacteria S. aureus the MICs ranged from 64 μg/mL to ≥1024 μg/mL (SA10). A synergistic effect was observed when we combined the RP-PED with gentamicin against all the strains tested. When we combined the RP-PED with Imipenem, we only observed synergistic effect against P. aeruginosa. According to our synergistic activity results, the utilization of red propolis collected in the drier periods can be used as an adjuvant against multiresistant bacterial infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Seasonal variations of thermocline circulation and ventilation in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    1997-05-01

    Two seasonal hydrographic data sets, including temperature, salinity, dissolved oxygen, and nutrients, are used in a mixing model which combines cluster analysis with optimum multiparameter analysis to determine the spreading and mixing of the thermocline waters in the Indian Ocean. The mixing model comprises a system of four major source water masses, which were identified in the thermocline through cluster analysis. They are Indian Central Water (ICW), North Indian Central Water (NICW) interpreted as aged ICW, Australasian Mediterranean Water (AAMW), and Red Sea Water (RSW)/Persian Gulf Water (PGW). The mixing ratios of these water masses are quantified and mapped on four isopycnal surfaces which span the thermocline from 150 to 600 m in the northern Indian Ocean, on two meridional sections along 60°E and 90°E, and on two zonal sections along 10°S and 6°N. The mixing ratios and pathways of the thermocline water masses show large seasonal variations, particularly in the upper 400-500 m of the thermocline. The most prominent signal of seasonal variation occurs in the Somali Current, the western boundary current, which appears only during the SW (summer) monsoon. The northward spreading of ICW into the equatorial and northern Indian Ocean is by way of the Somali Current centered at 300-400 m on the σθ=26.7 isopycnal surface during the summer monsoon and of the Equatorial Countercurrent during the NE (winter) monsoon. More ICW carried into the northern Indian Ocean during the summer monsoon is seen clearly in the zonal section along 6°N. NICW spreads southward through the western Indian Ocean and is stronger during the winter monsoon. AAMW appears in both seasons but is slightly stronger during the summer in the upper thermocline. The westward flow of AAMW is by way of the South Equatorial Current and slightly bends to the north on the σθ=26.7 isopycnal surface during the summer monsoon, indicative of its contribution to the western boundary current. Outflow

  3. Seasonal variations in methane and nitrous oxide emissions factors in northern Australian savanna woodlands

    NASA Astrophysics Data System (ADS)

    Meyer, C. P.(Mick); Cook, Garry; Reisen, Fabienne; Russell-Smith, Jeremy; Maier, Stefan; Schatz, Jon; Yates, Cameron; Watt, Felicity

    2010-05-01

    to 0.15% in the sandstone heathland and pure Spinifex and Sorghum swords. The lower emission factors from the grasses compared to leaf litter can be entirely explained by higher combustion efficiency of grass fires. Emission of N2O were less dependent on combustion conditions; approximately 0.5% of fuel nitrogen was emitted as N2O, however there were no differences between early and late season fires or between vegetation classes. These results compare favorably with previous studies; the CH4-EF is similar to earlier measurements in open woodland, although the N2O-EF is lower than the value of 0.8% reported in previous work. Therefore we conclude that the proposed mitigation strategy is feasible and but the variation in EF with vegetation class calls for further quantification of EFs across all major vegetation types in the savanna regions.

  4. Seasonal variation, sources and gas/particle partitioning of polycyclic aromatic hydrocarbons in Guangzhou, China.

    PubMed

    Yang, Yunyun; Guo, Pengran; Zhang, Qian; Li, Deliang; Zhao, Lan; Mu, Dehai

    2010-05-15

    Air samples were collected weekly at an urban site and a suburban site in Guangzhou City, China, from April 2005 to March 2006, to measure the concentrations of polycyclic aromatic hydrocarbons (PAHs) in the ambient air and study their seasonal variations, gas/particle partitioning, origins and sources. The concentrations of summation Sigma16-PAHs (particle+gas) were 129.9+/-73.1 ng m(-)(3) at the urban site and 120.4+/-48.5 ng m(-)(3) at the suburban site, respectively. It was found that there was no significant difference in PAH concentrations between the urban and suburban sites. Seasonal variations of PAH concentrations at the two sampling sites were similar, with higher levels in the winter that gradually decreased to the lowest levels in the summer. The average concentrations of summation Sigma16-PAHs in the winter samples were approximately three times higher than those of the summer samples because in the summer local emissions dominated, and in the winter the contribution from outside sources or transported PAHs is increased. The plot of logK(p) versus logP(L)(0) for the data sets of summer and winter season samples had significantly different slopes at both sampling sites. The slopes for the winter samples were steeper than those for the summer samples. It was also observed that gas/particle partitioning of PAHs showed different characteristics depending on air parcel trajectories. Steeper slopes were obtained for an air parcel that traveled across the continent to the sampling site from the northern or northeastern sector, whereas shallower slopes were obtained for air masses that traveled across the sea from the southern or eastern sector. Diagnostic ratio analytical results imply that the origins of PAHs were mainly from petroleum combustion and coal/biomass burning. The anthracene/phenanthrene and benzo[a]anthracene/chrysene ratios in the winter were significantly lower than those in the summer, which indicate that there might be long

  5. Seasonal variation in the thermal biology of a terrestrial toad, Rhinella icterica (Bufonidae), from the Brazilian Atlantic Forest.

    PubMed

    Anderson, Rodolfo César de Oliveira; Bovo, Rafael Parelli; Andrade, Denis Vieira

    2018-05-01

    As ectotherms, amphibians may exhibit changes in their thermal biology associated with spatial and temporal environmental contingencies. However, our knowledge on how amphibian´s thermal biology responds to seasonal changes in the environment is restricted to a few species, mostly from temperate regions, in a marked contrast with the high species diversity found in the Neotropics. We investigated whether or not the seasonal variation in climatic parameters from a high-montane ombrophilous forest in the Brazilian Atlantic Forest could lead to concurrent adjustments in the thermal biology of the terrestrial toad Rhinella icterica. We measured active body temperature (T b ) in the field, and preferred body temperature (T pref ) and thermal tolerance (critical thermal minimum, CT min , and maximum, CT max ) in the laboratory, for toads collected at two distinct seasons: warm/wet and cold/dry. We also measured operative environmental temperatures (T e ) using agar toad models coupled with dataloggers distributed in different microhabitats in the field to estimate accuracy (d b ) and effectiveness (E) of thermoregulation of the toads for both seasons. Toads had higher T pref in the warm/wet season compared to the cold/dry season, even though no seasonal change occurred in field T b 's. In the warm/wet season, toads decreased the accuracy of thermoregulation and avoided thermally favorable microhabitats, while in the cold/dry season they increased the accuracy of thermoregulation and exhibited high degree of thermoconformity. This result may encompass thermoregulatory adjustments to seasonal changes in T e 's, but may also reflect seasonal differences in compromises between T b regulation and other ecologically relevant activities (reproduction, foraging). Toads did not exhibit changes in CT min or CT max , which indicates a low risk of exposure to extreme temperatures in this particular habitat, at both seasons, possibly combined with a low flexibility of this trait

  6. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.

    PubMed

    Chen, Dingjiang; Lu, Jun; Wang, Hailong; Shen, Yena; Kimberley, Mark O

    2010-02-01

    Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China. Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically. Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads. Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52

  7. Ecophysiological response to seasonal variations in water availability in the arborescent, endemic plant Vellozia gigantea.

    PubMed

    Morales, Melanie; Garcia, Queila S; Munné-Bosch, Sergi

    2015-03-01

    The physiological response of plants growing in their natural habitat is strongly determined by seasonal variations in environmental conditions and the interaction of abiotic and biotic stresses. Here, leaf water and nutrient contents, changes in cellular redox state and endogenous levels of stress-related phytohormones (abscisic acid (ABA), salicylic acid and jasmonates) were examined during the rainy and dry season in Vellozia gigantea, an endemic species growing at high elevations in the rupestrian fields of the Espinhaço Range in Brazil. Enhanced stomatal closure and increased ABA levels during the dry season were associated with an efficient control of leaf water content. Moreover, reductions in 12-oxo-phytodienoic acid (OPDA) levels during the dry season were observed, while levels of other jasmonates, such as jasmonic acid and jasmonoyl-isoleucine, were not affected. Changes in ABA and OPDA levels correlated with endogenous concentrations of iron and silicon, hydrogen peroxide, and vitamin E, thus indicating complex interactions between water and nutrient contents, changes in cellular redox state and endogenous hormone concentrations. Results also suggested crosstalk between activation of mechanisms for drought stress tolerance (as mediated by ABA) and biotic stress resistance (mediated by jasmonates), in which vitamin E levels may serve as a control point. It is concluded that, aside from a tight ABA-associated regulation of stomatal closure during the dry season, crosstalk between activation of abiotic and biotic defences, and nutrient accumulation in leaves may be important modulators of plant stress responses in plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions

    PubMed Central

    Godbold, Jasmin A.; Solan, Martin

    2013-01-01

    Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete (Alitta virens) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing. PMID:23980249

  9. Seasonal and interannual variations of carbon exchange over a rice-wheat rotation system on the North China Plain

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Li, Dan; Gao, Zhiqiu; Tang, Jianwu; Guo, Xiaofeng; Wang, Linlin; Wan, Bingcheng

    2015-10-01

    Rice-wheat (R-W) rotation systems are ubiquitous in South and East Asia, and play an important role in modulating the carbon cycle and climate. Long-term, continuous flux measurements help in better understanding the seasonal and interannual variation of the carbon budget over R-W rotation systems. In this study, measurements of CO2 fluxes and meteorological variables over an R-W rotation system on the North China Plain from 2007 to 2010 were analyzed. To analyze the abiotic factors regulating Net Ecosystem Exchange (NEE), NEE was partitioned into gross primary production (GPP) and ecosystem respiration. Nighttime NEE or ecosystem respiration was controlled primarily by soil temperature, while daytime NEE was mainly determined by photosythetically active radiation (PAR). The responses of nighttime NEE to soil temperature and daytime NEE to light were closely associated with crop development and photosynthetic activity, respectively. Moreover, the interannual variation in GPP and NEE mainly depended on precipitation and PAR. Overall, NEE was negative on the annual scale and the rotation system behaved as a carbon sink of 982 g C m-2 per year over the three years. The winter wheat field took up more CO2 than the rice paddy during the longer growing season, while the daily NEE for wheat and rice were -2.35 and -3.96 g C m-2, respectively. After the grain harvest was subtracted from the NEE, the winter wheat field became a moderately strong carbon sink of 251-334 g C m-2 per season, whereas the rice paddy switched to a weak carbon sink of 107-132 per season.

  10. Radar measurement of the seasonal variation in the velocity of the sunrise terminator

    NASA Astrophysics Data System (ADS)

    Meehan, D. H.

    1990-03-01

    The HF phased-array radar at Bribie Island, Australia, used to measure horizontal movements of the ionosphere, has been calibrated using the known velocity of the sunrise terminator. The seasonal variation in the velocity of the terminator has been resolved, both in magnitud and direction. The technique uses single-station ionospheric sounding, and requires the angle of arrival and Doppler shift of ionospheric echoes to be measured as the terminator passes overhead. Pfister's (1971) theorem allows calculation of the velocity of the reflecting surface. The difference between theory and experiment is less than 3 percent in speed and 2 degrees in direction on average.

  11. Nutrition Smoothing: Can Proximity to Towns and Cities Protect Rural Children against Seasonal Variation in Agroclimatic Conditions at Birth?

    PubMed

    Darrouzet-Nardi, Amelia F; Masters, William A

    2017-01-01

    A large literature links early-life environmental shocks to later outcomes. This paper uses seasonal variation across the Democratic Republic of the Congo to test for nutrition smoothing, defined here as attaining similar height, weight and mortality outcomes despite different agroclimatic conditions at birth. We find that gaps between siblings and neighbors born at different times of year are larger in more remote rural areas, farther from the equator where there are greater seasonal differences in rainfall and temperature. For those born at adverse times in places with pronounced seasonality, the gains associated with above-median proximity to nearby towns are similar to rising one quintile in the national distribution of household wealth for mortality, and two quintiles for attained height. Smoothing of outcomes could involve a variety of mechanisms to be addressed in future work, including access to food markets, health services, public assistance and temporary migration to achieve more uniform dietary intake, or less exposure and improved recovery from seasonal diseases.

  12. Seasonal responses of terrestrial ecosystem water-use efficiency to climate change.

    PubMed

    Huang, Mengtian; Piao, Shilong; Zeng, Zhenzhong; Peng, Shushi; Ciais, Philippe; Cheng, Lei; Mao, Jiafu; Poulter, Ben; Shi, Xiaoying; Yao, Yitong; Yang, Hui; Wang, Yingping

    2016-06-01

    Ecosystem water-use efficiency (EWUE) is an indicator of carbon-water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long-term trend in annual EWUE over many regions and is largely attributed to the physiological effects of rising CO2 . The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982-2008. The seasonal cycle for two variants of EWUE, water-use efficiency (WUE, GPP/ET), and transpiration-based WUE (WUEt , the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process-based models and satellite-based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite-based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite-based products. Trend analysis, based on process-model factorial simulations separating effects of climate, CO2 , and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid- and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m(-2)  mm(-1)  yr(-1) for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2, and NDEP.

  13. Seasonal Responses of Terrestrial Ecosystem Water-use Efficiency to Climate Change

    NASA Astrophysics Data System (ADS)

    Huang, M.; Piao, S.; Zeng, Z.; Peng, S.; Ciais, P.; Cheng, L.; Mao, J.; Poulter, B.; Shi, X.; Yao, Y.; Yang, H.; Wang, Y.

    2016-12-01

    Ecosystem water-use efficiency (EWUE) is an indicator of carbon-water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long-term trend in annual EWUE over many regions, and is largely attributed to the physiological effects of rising CO2. The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982-2008. The seasonal cycle for two variants of EWUE, water-use efficiency (WUE, GPP/ET) and transpiration-based WUE (WUEt, the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process-based models and satellite-based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite-based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite-based products. Trend analysis, based on process-model factorial simulations separating effects of climate, CO2 and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid- and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m-2 mm-1 yr-1 for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2 and NDEP.

  14. Seasonal variation in the spatial distribution of aerosol black carbon over Bay of Bengal: A synthesis of multi-campaign measurements

    NASA Astrophysics Data System (ADS)

    Kompalli, Sobhan Kumar; Suresh Babu, S.; Krishna Moorthy, K.; Nair, Vijayakumar S.; Gogoi, Mukunda M.; Chaubey, Jai Prakash

    2013-01-01

    Synthesizing data from several cruise experiments over the Bay of Bengal (BoB), the seasonal characterization of aerosol black carbon (BC) mass concentration was made. The study indicated that the BC mass concentration (MBC) showed significant seasonal variation over the oceanic region with MBC being the highest during the winter season (˜2407 ± 1756 ng m-3) and lowest in summer monsoon (˜765 ± 235 ng m-3). The seasonal changes in the BC mass concentration were more prominent over the northern BoB (having an annual amplitude of ˜4) compared to southern BoB (amplitude ˜ 2). Significant spatial gradients in MBC, latitudinal as well as longitudinal, existed in all the seasons. Latitudinal gradients, despite being consistently increasing northwards, were found to be sharper during winter and weakest during summer monsoon with e-fold scaling distances of ˜7.7° and ˜15.6° during winter and summer monsoon seasons respectively. Longitudinally, BC concentrations tend to increase toward east during winter and premonsoon seasons, but an opposite trend was seen in monsoon season highlighting the seasonally changing source impacts on BC loading over BoB. Examination of the results in light of possible role of transport from adjoining landmasses, using airmass back trajectory cluster analysis, also supported spatially and temporally varying source influence on oceanic region.

  15. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton.

    PubMed

    Zhao, Dayong; Shen, Feng; Zeng, Jin; Huang, Rui; Yu, Zhongbo; Wu, Qinglong L

    2016-12-15

    Association network approaches have recently been proposed as a means for exploring the associations between bacterial communities. In the present study, high-throughput sequencing was employed to investigate the seasonal variations in the composition of bacterioplankton communities in six eutrophic urban lakes of Nanjing City, China. Over 150,000 16S rRNA sequences were derived from 52 water samples, and correlation-based network analyses were conducted. Our results demonstrated that the architecture of the co-occurrence networks varied in different seasons. Cyanobacteria played various roles in the ecological networks during different seasons. Co-occurrence patterns revealed that members of Cyanobacteria shared a very similar niche and they had weak positive correlations with other phyla in summer. To explore the effect of environmental factors on species-species co-occurrence networks and to determine the most influential environmental factors, the original positive network was simplified by module partitioning and by calculating module eigengenes. Module eigengene analysis indicated that temperature only affected some Cyanobacteria; the rest were mainly affected by nitrogen associated factors throughout the year. Cyanobacteria were dominant in summer which may result from strong co-occurrence patterns and suitable living conditions. Overall, this study has improved our understanding of the roles of Cyanobacteria and other bacterioplankton in ecological networks. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Intra-Seasonal Rainfall Variations and Linkage with Kharif Crop Production: An Attempt to Evaluate Predictability of Sub-Seasonal Rainfall Events

    NASA Astrophysics Data System (ADS)

    Singh, Ankita; Ghosh, Kripan; Mohanty, U. C.

    2018-03-01

    The sub-seasonal variation of Indian summer monsoon rainfall highly impacts Kharif crop production in comparison with seasonal total rainfall. The rainfall frequency and intensity corresponding to various rainfall events are found to be highly related to crop production and therefore, the predictability of such events are considered to be diagnosed. Daily rainfall predictions are made available by one of the coupled dynamical model National Centers for Environmental Prediction Climate Forecast System (NCEPCFS). A large error in the simulation of daily rainfall sequence influences to take up a bias correction and for that reason, two approaches are used. The bias-corrected GCM is able to capture the inter-annual variability in rainfall events. Maximum prediction skill of frequency of less rainfall (LR) event is observed during the month of September and a similar result is also noticed for moderate rainfall event with maximum skill over the central parts of the country. On the other hand, the impact of rainfall weekly rainfall intensity is evaluated against the Kharif rice production. It is found that weekly rainfall intensity during July is having a significant impact on Kharif rice production, but the corresponding skill was found very low in GCM. The GCM are able to simulate the less and moderate rainfall frequency with significant skill.

  17. Impact of seasonal variation on Escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-12-15

    Many South Africans living in resource-poor settings with little or no access to pipe-borne water still rely on rivers as alternative water sources for drinking and other purposes. The poor microbial quality of such water bodies calls for appropriate monitoring. However, routine monitoring only takes into consideration the microbial quality of the water column, and does not include monitoring of the riverbed sediments for microbial pollution. This study sought to investigate the microbial quality of riverbed sediments in the Apies River, Gauteng Province, South Africa, using Escherichia coli as a faecal indicator organism and to investigate the impact of seasonal variation on its abundance. Weekly samples were collected at 10 sampling sites on the Apies River between May and August 2013 (dry season) and between January and February 2014 (wet season). E. coli was enumerated using the Colilert®-18 Quanti-Tray® 2000 system. All sites tested positive for E. coli. Wastewater treatment work effluents had the highest negative impact on the river water quality. Seasonal variations had an impact on the concentration of E. coli both in water and sediments with concentrations increasing during the wet season. A strong positive correlation was observed between temperature and the E. coli concentrations. We therefore conclude that the sediments of the Apies River are heavily polluted with faecal indicator bacteria and could also harbour other microorganisms including pathogens. The release of such pathogens into the water column as a result of the resuspension of sediments due to extreme events like floods or human activities could increase the health risk of the populations using the untreated river water for recreation and other household purposes. There is therefore an urgent need to reconsider and review the current South African guidelines for water quality monitoring to include sediments, so as to protect human health and other aquatic lives. Copyright © 2015 Elsevier

  18. Simulation of Asian monsoon seasonal variations with climate model R42L9/LASG

    NASA Astrophysics Data System (ADS)

    Wang, Zaizhi; Wu, Guoxiong; Wu, Tongwen; Yu, Rucong

    2004-12-01

    The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979 1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP) II in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model’s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exist in this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.

  19. Seasonal variation of oxygen-18 in precipitation and surface water of the Poyang Lake Basin, China.

    PubMed

    Hu, Chunhua; Froehlich, Klaus; Zhou, Peng; Lou, Qian; Zeng, Simiao; Zhou, Wenbin

    2013-06-01

    Based on the monthly δ(18)O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ(18)O in precipitation (δ(18)OPPT) and runoff (δ(18)OSUR) are discussed. The δ(18)OPPT and δ(18)OSUR values range from-2.75 to-14.12 ‰ (annual mean value=-7.13 ‰ ) and from-2.30 to-8.56 ‰, respectively. The seasonal variation of δ(18)OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ(18)OSUR in runoff of the rivers and δ(18)OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period.

  20. Allergenic pollen season variations in the past two decades under changing climate in the United States

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2014-01-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001–2010) across the contiguous United States have been observed to start 3.0 (95% Confidence Interval (CI), 1.1–4.9) days earlier on average than in the 1990s (1994–2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9%–62.9%) and 46.0% (95% CI, 21.5%–70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States. PMID:25266307

  1. [Seasonal and interannual variations of sockeye salmon (Oncorhynchus nerka) microsatellite DNA in two Kamchatka lake-river systems].

    PubMed

    Khrustaleva, A M; Zelenina, D A

    2008-07-01

    Seasonal and interannual variations in the sockeye salmon populations from two lake-river systems of the East and West Kamchatka were studied. Stability of allele and genotypic frequencies of six microsatellite DNA loci in the adjacent generations and spawning populations of the sockeye salmon of the Bol'shaya River was confirmed experimentally. The pairwise intersample differentiation (F(st)) of the local sockeye salmon populations from the southwestern Kamchatka coast (Ozernaya and Bol'shaya Rivers)was almost 7 times higher than the corresponding values for the spawning populations of the Bol'shaya River sockeye salmon of the adjacent years; 15 times, for the adjacent Bol'shaya River sockeye salmon generations; and four times, for the seasonal races within the Kamchatka River.

  2. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China.

    PubMed

    Li, Nan; Zhang, Xinbo; Wu, Wei; Zhao, Xinhua

    2014-09-01

    The occurrence and seasonal variability of five groups (tetracycline, quinolone, chloramphenicol, macrolide and sulfonamide) of antibiotics were investigated in the surface water of four reservoirs. The dissolved concentrations of 29 antibiotics were in the ngL(-1) level. Trace levels of all target antibiotics were analyzed using solid-phase extraction followed by liquid chromatography electrospray tandem mass spectrometry. All of the antibiotics were detected at all sampling sites, indicating widespread occurrence of antibiotics in the study area. The detection of florfenicol, josamycin, kitasamycin, spiramycin and sulfameter is the first report of these compounds in reservoir samples. The results showed an association between the presence of some antibiotics at Panjiakou reservoir and cage culture of fish. Twenty-three types of antibiotics showed significant seasonal variations (p<0.001) due to human activities and flow conditions. A risk assessment showed that all antibiotics detected could cause very low risk to algae, daphnid and fish. Further health risk need to be investigated because these reservoirs are drinking water sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Identification of a potential toxic hot spot associated with AVS spatial and seasonal variation.

    PubMed

    Campana, O; Rodríguez, A; Blasco, J

    2009-04-01

    In risk assessment of aquatic sediments, much attention is paid to the difference between acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) as indicators of metal availability. Ten representative sampling sites were selected along the estuary of the Guadalete River. Surficial sediments were sampled in winter and summer to better understand SEM and AVS spatial and seasonal distributions and to establish priority risk areas. Total SEM concentration (SigmaSEM) ranged from 0.3 to 4.7 micromol g(-1). It was not significantly different between seasons, however, it showed a significant difference between sampling stations. AVS concentrations were much more variable, showing significant spatial and temporal variations. The values ranged from 0.8 to 22.4 micromol g(-1). The SEM/AVS ratio was found to be <1 at all except one station located near the mouth of the estuary. The results provided information on a potential pollution source near the mouth of the estuary, probably associated with vessel-related activities carried out in a local harbor area located near the station.

  4. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms.

    PubMed

    Llusia, Diego; Márquez, Rafael; Beltrán, Juan F; Benítez, Maribel; do Amaral, José P

    2013-09-01

    Calling behaviour is strongly temperature-dependent and critical for sexual selection and reproduction in a variety of ectothermic taxa, including anuran amphibians, which are the most globally threatened vertebrates. However, few studies have explored how species respond to distinct thermal environments at time of displaying calling behaviour, and thus it is still unknown whether ongoing climate change might compromise the performance of calling activity in ectotherms. Here, we used new audio-trapping techniques (automated sound recording and detection systems) between 2006 and 2009 to examine annual calling temperatures of five temperate anurans and their patterns of geographical and seasonal variation at the thermal extremes of species ranges, providing insights into the thermal breadths of calling activity of species, and the mechanisms that enable ectotherms to adjust to changing thermal environments. All species showed wide thermal breadths during calling behaviour (above 15 °C) and increases in calling temperatures in extremely warm populations and seasons. Thereby, calling temperatures differed both geographically and seasonally, both in terrestrial and aquatic species, and were 8-22 °C below the specific upper critical thermal limits (CTmax ) and strongly associated with the potential temperatures of each thermal environment (operative temperatures during the potential period of breeding). This suggests that calling behaviour in ectotherms may take place at population-specific thermal ranges, diverging when species are subjected to distinct thermal environments, and might imply plasticity of thermal adjustment mechanisms (seasonal and developmental acclimation) that supply species with means of coping with climate change. Furthermore, the thermal thresholds of calling at the onset of the breeding season were dissimilar between conspecific populations, suggesting that other factors besides temperature are needed to trigger the onset of reproduction. Our

  5. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations.

    PubMed

    Sehgal, Vinay Kumar; Dhakar, Rajkumar

    2016-03-01

    The study presents a methodology to assess and map agricultural drought vulnerability during main kharif crop season at local scale and compare its intra-seasonal variations. A conceptual model of vulnerability based on variables of exposure, sensitivity, and adaptive capacity was adopted, and spatial datasets of key biophysical factors contributing to vulnerability were generated using remote sensing and GIS for Rajasthan State of India. Hazard exposure was based on frequency and intensity of gridded standardized precipitation index (SPI). Agricultural sensitivity was based on soil water holding capacity as well as on frequency and intensity of normalized difference vegetation index (NDVI)-derived trend adjusted vegetation condition index (VCITadj). Percent irrigated area was used as a measure of adaptive capacity. Agricultural drought vulnerability was derived separately for early, mid, late, and whole kharif seasons by composting rating of factors using linear weighting scheme and pairwise comparison of multi-criteria evaluation. The regions showing very low to extreme rating of hazard exposure, drought sensitivity, and agricultural vulnerability were identified at all four time scales. The results indicate that high to extreme vulnerability occurs in more than 50% of net sown area in the state and such areas mostly occur in western, central, and southern parts. The higher vulnerability is on account of non-irrigated croplands, moderate to low water holding capacity of sandy soils, resulting in higher sensitivity, and located in regions with high probability of rainfall deficiency. The mid and late season vulnerability has been found to be much higher than that during early and whole season. Significant correlation of vulnerability rating with food grain productivity, drought recurrence period, crop area damaged in year 2009 and socioeconomic indicator of human development index (HDI) proves the general soundness of methodology. Replication of this methodology

  6. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  7. Seasonal variation of bacterial endophytes in urban trees

    PubMed Central

    Shen, Shu Yi; Fulthorpe, Roberta

    2015-01-01

    Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila, and Ulmus parvifolia were sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons). The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus, and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia, and Sanguibacter spp. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests studies on endophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly. PMID:26042095

  8. Seasonal Variation in Biting Rates of Simulium damnosum sensu lato, Vector of Onchocerca volvulus, in Two Sudanese Foci

    PubMed Central

    Zarroug, Isam M. A.; Hashim, Kamal; Elaagip, Arwa H.; Samy, Abdallah M.; Frah, Ehab A.; ElMubarak, Wigdan A.; Mohamed, Hanan A.; Deran, Tong Chor M.; Aziz, Nabil; Higazi, Tarig B.

    2016-01-01

    collection from April to June. There was a significant difference in mean monthly density of S. damnosum s.l. across the two foci in 2007–2008 (df = 3, F = 3.91, P = 0.011). Minimum temperature showed significant correlation with adult flies counts in four areas sampled; the adult counts were increased in Nady village (rs = 0.799) and were decreased in Kalasecal (rs = - 0.676), Gumaiza (rs = - 0.585), and Hilat Khateir (rs = - 0.496). Maximum temperature showed positive correlation with black fly counts only in Galabat focus. Precipitation was significantly correlated with adult flies counts in Nady village, Abu-Hamed, but no significance was found in the rest of the sampled villages in both foci. Hourly-based distribution of black flies showed a unimodal pattern in Abu-Hamed with one peak (10:00–18:00), while a bimodal pattern with two peaks (07:00–10:00) and (14:00–18:00) was exhibited in Galabat. Conclusion Transmission of onchocerciasis in both foci showed marked differences in seasonality, which may be attributed to ecology, microclimate and proximity of breeding sites to collection sites. The seasonal shifts between the two foci might be related to variations in climate zones. This information on black fly vector seasonality, ecology, distribution and biting activity has obvious implications in monitoring transmission levels to guide the national and regional onchocerciasis elimination programs in Sudan. PMID:26943668

  9. Blunted seasonal variation in serum 25-hydroxy vitamin D and increased risk of osteomalacia in vegetarian London Asians.

    PubMed

    Finch, P J; Ang, L; Colston, K W; Nisbet, J; Maxwell, J D

    1992-07-01

    Serum 25-hydroxy vitamin D levels were measured in 297 adult Asians and 68 white subjects at different times of year and seasonal variation compared between subjects grouped according to ethnic origin, religion and dietary habit. A sub-group of Asians with symptoms and biochemical changes suggestive of osteomalacia underwent bone biopsy, and static bone histomorphometry was performed. Histological osteomalacia was detected in 15 Asians and borderline changes in 13. The majority of these cases were among vegetarian Hindus. Significant seasonal variation in 25-hydroxy vitamin D was observed in all groups, but with lower peak and trough levels among Asians, and especially the Hindus and vegetarian Asians. Summer rises in 25-hydroxy vitamin D levels were blunted among Hindus and vegetarian Asians, compared to whites, Muslims and non-vegetarian Asians. Vegetarian Asians had significantly lower serum calcium and higher PTH levels than non-vegetarians, but multivariate analysis indicated that this was an effect of osteomalacia, not vegetarianism. We conclude that solar exposure has a significant effect on vitamin D status in Asians resident in London. Non-vegetarian Asians have similar rise and peak levels to whites, but those taking a vegetarian diet (in particular, Hindus) have an impaired seasonal rise in 25-hydroxy vitamin D levels, and are at particular risk of metabolic bone disease. This effect did not appear to be mediated through secondary hyperparathyroidism consequent on a vegetarian diet.

  10. Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghim, Young Sung; Oh, Hyun Sun; Kim, Jin Young

    Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of 66 ng/m2-day wasmore » about twice as large as the dry deposition flux of 32 ng/m2-day, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.« less

  11. Seasonal variation in family member perceptions of physician competence in the intensive care unit: findings from one academic medical center.

    PubMed

    Stevens, Jennifer P; Kachniarz, Bart; O'Reilly, Kristin; Howell, Michael D

    2015-04-01

    Researchers have found mixed results about the risk to patient safety in July, when newly minted physicians enter U.S. hospitals to begin their clinical training, the so-called "July effect." However, patient and family satisfaction and perception of physician competence during summer months remain unknown. The authors conducted a retrospective observational cohort study of 815 family members of adult intensive care unit (ICU) patients who completed the Family Satisfaction with Care in the Intensive Care Unit instrument from eight ICUs at Beth Israel Deaconess Medical Center, Boston, Massachusetts, between April 2008 and June 2011. The association of ICU care in the summer months (July-September) versus other seasons and family perception of physician competence was examined in univariable and multivariable analyses. A greater proportion of family members described physicians as competent in summer months as compared with winter months (odds ratio [OR] 1.9; 95% confidence interval [CI] 1.2-3.0; P = .003). After adjustment for patient and proxy demographics, severity of illness, comorbidities, and features of the admission in a multivariable model, seasonal variation of family perception of physician competence persisted (summer versus winter, OR of judging physicians competent 2.4; 95% CI 1.3-4.4; P = .004). Seasonal variation exists in family perception of physician competence in the ICU, but opposite to the "July effect." The reasons for this variation are not well understood. Further research is necessary to explore the role of senior provider involvement, trainee factors, system factors such as handoffs, or other possible contributors.

  12. Seasonal and spatial variation of topside He+ column density obtained from Extreme Ultra Violet Imager onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Y.; Saito, A.; Murakami, G.; Yamazaki, A.; Yoshikawa, I.

    2016-12-01

    The seasonal, longitudinal and latitudinal variations of He+ distribution in the topside ionosphere in 2013 are elucidated with data of He+ resonant scattering obtained by Extreme Ultra Violet Imager (EUVI) onboard the International Space Station (ISS). EUVI provides a data set of the column density of He+ above the ISS orbit altitude. The data set provides a unique opportunity to study He+ distribution in the topside ionosphere from a different perspective of past studies using in-situ measurement data. During the solstice seasons, an enhancement of He+ column density in the winter hemisphere is observed. The magnitude of this hemispheric asymmetry shows a longitudinal variability. Around the June solstice, the hemispheric asymmetry was greater in the longitude sector where the geomagnetic declination angle is negative and smaller in the longitude sector where the geomagnetic declination angle is positive. Around the December solstice, on the other hand, this longitudinal variation of the asymmetry magnitude had opposite tendency. The hemispheric asymmetry of the effective neutral wind well explains this behavior of He+. The field-aligned component of neutral wind in the F-region is varied in longitude under the presence of finite geomagnetic declination angle and large zonal wind. In the equinox seasons, two longitudinal maxima were observed at around 140ºE and 30ºE. The longitudinal variation of the effective neutral wind is a candidate of these two maxima of He+ concentration. These results suggest that the transport of ions in the topside ionosphere is strongly affected by the F-region neutral wind.

  13. Annual and seasonal variation and the effects of hydroperiod on benthic macroinvertebrates of seasonal forest (

    Treesearch

    Robert T. Brooks

    2000-01-01

    Seasonal forest ponds (SFPs) are isolated, ephemeral lentic habitats in upland forest ecosystems. These ponds occur commonly throughout temperate forests. Faunal communities of these ponds are dominated by invertebrates. Composition of these communities varies temporally both between years and also seasonally within a single hydrologic year, composition is most...

  14. Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using co2 assessment

    NASA Astrophysics Data System (ADS)

    Peyraube, Nicolas; Lastennet, Roland; Villanueva, Jessica Denila; Houillon, Nicolas; Malaurent, Philippe; Denis, Alain

    2017-08-01

    Cussac cave was investigated to assess the cave air temperature variations and to understand its ventilation regime. This cave is located in an active karst system in the south west part of France. It has a single entrance and is considered as a cold air trap. In this study, air mass exchanges were probed. Measurements of temperature and Pco2 with a 30-min frequency were made in several locations close to the cave entrance. Speed of the air flow was also measured at the door of cave entrance. Results show that cave air Pco2 varies from 0.18 to 3.33 %. This cave appears to be a CO2 source with a net mass of 2319 tons blown in 2009. Carbon-stable isotope of CO2 (13Cco2) ranges from -20.6 ‰ in cold season to -23.8 ‰ in warm season. Cave air is interpreted as a result of a mix between external air and an isotopically depleted air, coming from the rock environment. The isotopic value of the light member varies through time, from -23.9 to -22.5 ‰. Furthermore, this study ascertains that the cave never stops in communicating with the external air. The ventilation regime is identified. (1) In cold season, the cave inhales at night and blows a little at the warmest hours. However, in warm season, (2) cave blows at night, but (3) during the day, a convection loop takes place in the entrance area and prevents the external air from entering the cave, confirming the cold air trap.

  15. [Synthetic duration curve method for the design of the lowest navigable water level with inconsistent characters in dry seasons].

    PubMed

    Zhao, Jiang Yan; Xie, Ping; Sang, Yan Fang; Xui, Qiang Qiang; Wu, Zi Yi

    2018-04-01

    Under the influence of both global climate change and frequent human activities, the variability of second-moment in hydrological time series become obvious, indicating changes in the consistency of hydrological data samples. Therefore, the traditional hydrological series analysis methods, which only consider the variability of mean values, are not suitable for handling all hydrological non-consistency problems. Traditional synthetic duration curve methods for the design of the lowest navigable water level, based on the consistency of samples, would cause more risks to navigation, especially under low water level in dry seasons. Here, we detected both mean variation and variance variation using the hydrological variation diagnosis system. Furthermore, combing the principle of decomposition and composition of time series, we proposed the synthetic duration curve method for designing the lowest navigable water level with inconsistent characters in dry seasons. With the Yunjinghong Station in the Lancang River Basin as an example, we analyzed its designed water levels in the present, the distant past and the recent past, as well as the differences among three situations (i.e., considering second moment variation, only considering mean variation, not considering any variation). Results showed that variability of the second moment changed the trend of designed water levels alteration in the Yunjinghong Station. When considering the first two moments or just considering the mean variation, the difference ofdesigned water levels was as bigger as -1.11 m. When considering the first two moments or not, the difference of designed water levels was as bigger as -1.01 m. Our results indicated the strong effects of variance variation on the designed water levels, and highlighted the importance of the second moment variation analysis for the channel planning and design.

  16. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    DOE PAGES

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan; ...

    2016-11-16

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. Here, a set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  17. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan

    2016-01-01

    This study describes the characteristics of large-scale vertical velocity, apparent heating source ( Q 1) and apparent moisture sink ( Q 2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wetmore » seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia – i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems – is also conducted to investigate the variability of the large-scale environment with different types of convective systems.« less

  18. Seasonal variations in the fatty acid composition of Greek wild rabbit meat.

    PubMed

    Papadomichelakis, G; Zoidis, E; Pappas, A C; Hadjigeorgiou, I

    2017-12-01

    The fatty acid (FA) profile of the Longissimus thoracis et lumborum muscle (LL) was used to investigate seasonal variation (September, November and March) in wild rabbits from Lemnos Island (Greece). The n-3 FA were particularly high during early March in comparison (P<0.05) with late September and late November. Thrombogenicity index (TI) values were lower in March (P<0.05) compared to the other periods. High concentrations of odd- and branched-chain FA were found in the meat of wild rabbits; however, they were not different among the considered periods of the year. The present results showed that wild rabbit meat has a desirable FA profile, particularly during early spring, and it could be a good source of bioactive FA in human nutrition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment of northern China.

    PubMed

    Chen, Li-ding; Peng, Hong-jia; Fu, Bo-Jie; Qiu, Jun; Zhang, Shu-rong

    2005-01-01

    Surface waters can be contaminated by human activities in two ways: (1) by point sources, such as sewage treatment discharge and storm-water runoff; and (2) by non-point sources, such as runoff from urban and agricultural areas. With point-source pollution effectively controlled, non-point source pollution has become the most important environmental concern in the world. The formation of non-point source pollution is related to both the sources such as soil nutrient, the amount of fertilizer and pesticide applied, the amount of refuse, and the spatial complex combination of land uses within a heterogeneous landscape. Land-use change, dominated by human activities, has a significant impact on water resources and quality. In this study, fifteen surface water monitoring points in the Yuqiao Reservoir Basin, Zunhua, Hebei Province, northern China, were chosen to study the seasonal variation of nitrogen concentration in the surface water. Water samples were collected in low-flow period (June), high-flow period (July) and mean-flow period (October) from 1999 to 2000. The results indicated that the seasonal variation of nitrogen concentration in the surface water among the fifteen monitoring points in the rainfall-rich year is more complex than that in the rainfall-deficit year. It was found that the land use, the characteristics of the surface river system, rainfall, and human activities play an important role in the seasonal variation of N-concentration in surface water.

  20. Spatial-temporal variations of phosphorus fractions in surface water and suspended particles in the Daliao River Estuary, Northeast China.

    PubMed

    Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen

    2016-08-01

    The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.

  1. Seasonal variation in the abundance of marine plastic debris in the estuary of a subtropical macro-scale drainage basin in South China.

    PubMed

    Cheung, Pui Kwan; Cheung, Lewis Ting On; Fok, Lincoln

    2016-08-15

    Marine plastic debris, including microplastic debris (0.315-5mm) and large plastic debris (>5mm), was collected from 25 beaches in Hong Kong during a wet summer season (June-August 2014) and the following dry winter season (January-March 2015). Wilcoxon signed rank tests were used to compare the abundances and weights of seven categories of plastic debris between the two seasons. The results showed that the abundances and weights were significantly higher (p<0.05) in the wet season than in the dry season. Additionally, seasonal differences were detected only at the sites that were located on the west coast of Hong Kong and not at the sites on the east coast. These results suggest that the Pearl River Estuary on the west of Hong Kong plays a prominent role in the abundance and distribution of plastic debris in Hong Kong. In addition, the study indicates that estimates of microplastic abundance may be biased if samples are collected only during the wet or dry season if the sample locations are strongly influenced by a seasonal variation of riverine inputs, such as from the Pearl River. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Wet-dry seasonal and vertical geochemical variations in soil water and their driving forces under different land covers in southwest China karst

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Hu, Bill X.; Wu, Chuanhao; Xu, Kai

    2017-04-01

    Karst aquifers supply drinking water for 25% of the world's population, and they are, however, vulnerable to climate change. Bimonthly hydrochemical data in karst soil water samples from July 2010 to July 2011 were obtained to reveal the seasonal and vertical geochemical variations in soil water under five vegetation types in Qingmuguan, a small karst catchment in southwest China. Soil water chemistry was dominated by Ca2+, HCO3-, and SO42- because of the dissolution of limestone, dolomite, and gypsum minerals in the strata. The predominant hydrochemical types in soil water were Ca2+-HCO3-, Ca2+-SO42-, and mixed Ca2+-HCO3-SO42-. Ca2+ and HCO3- concentrations ranked in the following order: shrub land > dry land > afforestation farmland > bamboo land > grassland. In warm and wet seasons, the main ion concentrations in soil water from grasslands were low. Na+, K+, Ca2+, Mg2+, HCO3-, SO42-, and Cl- concentrations in soil water from other lands were high. An opposite trend was observed in cold and dry seasons. Marked seasonal variations were observed in Ca2+, HCO3-, and NO3- in soil water from dry land. The main ion concentrations in soil water from bamboo lands decreased as soil depth increased. By contrast, the chemistry of soil water from other lands increased as soil depth increased. Their ions were accumulated in depth. A consistent high and low variation between the main ions in soil water and the contents of carbonate and CO2 was found in the soil. Hydrochemical changes in soil water were regulated by the effects of dilution and soil CO2.

  3. Spatial and seasonal variations of fish assemblages in mangrove creek systems in Zanzibar (Tanzania)

    NASA Astrophysics Data System (ADS)

    Mwandya, Augustine W.; Gullström, Martin; Andersson, Mathias H.; Öhman, Marcus C.; Mgaya, Yunus D.; Bryceson, Ian

    2010-11-01

    Spatial and seasonal variations of fish assemblage composition were studied in three non-estuarine mangrove creeks of Zanzibar (Tanzania). Fish were collected monthly for one year at three sites (lower, intermediate and upper reaches) in each creek using a seine net (each haul covering 170 m 2). Density, species number and diversity of fish were all higher at sites with dense cover of macrophytes (seagrass and macroalgae) than over unvegetated sandy sites. In general, fish assemblages mainly comprised juveniles of a few abundant taxa, e.g. Mugil cephalus, Mugilidae spp. and Leiognathus equulus at sites with mud substratum and Gerres oyena, Lethrinus harak and Sillago sihama at sites dominated by macrophytes. Multivariate analyses revealed significant separations in fish assemblage composition within the two creeks where the bottom substratum differed among sites. Overall, season seemed to have little effect on density, species number, diversity index ( H') and assemblage structure of fish. Water condition variables were also relatively stable across the season, although a short-term fluctuation primarily induced by decreased salinity, occurred during the heavy rains in April and May. Fish assemblage structure was not significantly affected by any of the abiotic factors tested. However, significant regressions were found between the other fish variables and environmental variables, but since these associations were mostly species-specific and generally inconsistent, we suggest that the overall distribution patterns of fish were mainly an effect of particular substrate preferences of fish species rather than contemporary water conditions.

  4. Latitudinal variation in seasonal activity and mortality in ratsnakes (Elaphe obsoleta).

    PubMed

    Sperry, Jinelle H; Blouin-Demers, Gabriel; Carfagno, Gerardo L F; Weatherhead, Patrick J

    2010-06-01

    The ecology of ectotherms should be particularly affected by latitude because so much of their biology is temperature dependent. Current latitudinal patterns should also be informative about how ectotherms will have to modify their behavior in response to climate change. We used data from a total of 175 adult black ratsnakes (Elaphe obsoleta) radio-tracked in Ontario, Illinois, and Texas, a latitudinal distance of >1500 km, to test predictions about how seasonal patterns of activity and mortality should vary with latitude. Despite pronounced differences in temperatures among study locations, and despite ratsnakes in Texas not hibernating and switching from diurnal to nocturnal activity in the summer, seasonal patterns of snake activity were remarkably similar during the months that snakes in all populations were active. Rather than being a function of temperature, activity may be driven by the timing of reproduction, which appears similar among populations. Contrary to the prediction that mortality should be highest in the most active population, overall mortality did not follow a clinal pattern. Winter mortality did increase with latitude, however, consistent with temperature limiting the northern distribution of ratsnakes. This result was opposite that found in the only previous study of latitudinal variation in winter mortality in reptiles, which may be a consequence of whether or not the animals exhibit true hibernation. Collectively, these results suggest that, at least in the northern part of their range, ratsnakes should be able to adjust easily to, and may benefit from, a warmer climate, although climate-based changes to the snakes' prey or habitat, for example, could alter that prediction.

  5. Seasonal Variations in Ash Content of Some Michigan Forest Floor Fuels

    Treesearch

    Robert M. Loomis

    1982-01-01

    Samples from the forest floor litter layer were collected seasonally from under medium to fully stocked larger sapling to sawtimber stands in Lower Michigan to study seasonal ash content changes. The total ash and silica-free ash content of tree foliage in the upper part of the litter layer differed little from season to season. Differences in ash content due to...

  6. Air-surface exchange of nonmethane organic compounds at a grassland site: Seasonal variations and stressed emissions

    NASA Astrophysics Data System (ADS)

    Fukui, Yoshiko; Doskey, Paul V.

    1998-06-01

    Emissions of nonmethane organic compounds (NMOCs) were measured by a static enclosure technique at a grassland site in the midwestern United States during the growing seasons over a 2-year period. A mixture of nonmethane hydrocarbons (NMHCs) and oxygenated hydrocarbons (OxHCs) was emitted from the surface at rates exhibiting large seasonal and year-to-year variations. The average emission rate (and standard error) of the total NMOCs around noontime on sunny days during the growing seasons for the 2-year period was 1,300±170 μg m-2 h-1 (mass of the total NMOCs per area of enclosed soil surface per hour) or 5.5±0.9 μg g-1 h-1 (mass of the total NMOCs per mass of dry plant biomass in an enclosure per hour), with about 10% and 70% of the emissions being composed of tentatively identified NMHCs and OxHCs, respectively. Methanol was apparently derived from both the soil and vegetation and exhibited an average emission rate of 460±73 μg m-2 h-1 (1.4±0.2 μg g-1 h-1), which was the largest emission among the NMOCs. The year-to-year variation in the precipitation pattern greatly affected the NMOC emission rates. Emission rates normalized to biomass density exhibited a linear decrease as the growing season progressed. The emission rates of some NMOCs, particularly the OxHCs, from vegetation subjected to hypoxia, frost, and physical stresses were significantly greater than the average values observed at the site. Emissions of monoterpenes (α- and β-pinene, limonene, and myrcene) and cis-3-hexen-l-ol were accelerated during the flowering of the plants and were much greater than those predicted by algorithms that correlated emission rates with temperature. Herbaceous vegetation is estimated to contribute about 40% and 50% of the total NMOC and monoterpene emissions, respectively, in grasslands; the remaining contributions are from woody species within grasslands. Contributions of isoprene emissions from herbaceous vegetation in grasslands are negligible. Grasslands are

  7. Measuring the potential utility of seasonal climate predictions

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Kleeman, Richard; Tang, Youmin

    2004-11-01

    Variation of sea surface temperature (SST) on seasonal-to-interannual time-scales leads to changes in seasonal weather statistics and seasonal climate anomalies. Relative entropy, an information theory measure of utility, is used to quantify the impact of SST variations on seasonal precipitation compared to natural variability. An ensemble of general circulation model (GCM) simulations is used to estimate this quantity in three regions where tropical SST has a large impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We find the yearly variation of relative entropy is strongly correlated with shifts in ensemble mean precipitation and weakly correlated with ensemble variance. Relative entropy is also found to be related to measures of the ability of the GCM to reproduce observations.

  8. Integrated analysis of gene expression from carbon metabolism, proteome and metabolome, reveals altered primary metabolism in Eucalyptus grandis bark, in response to seasonal variation.

    PubMed

    Budzinski, Ilara Gabriela Frasson; Moon, David H; Morosini, Júlia Silva; Lindén, Pernilla; Bragatto, Juliano; Moritz, Thomaz; Labate, Carlos Alberto

    2016-07-01

    Seasonal variation is presumed to play an important role in the regulation of tree growth, especially for Eucalyptus grandis, a fast-growing tree. This variation may induce changes in the whole tree at transcriptional, protein and metabolite levels. Bark represents an important group of tissues that protect trees from desiccation and pathogen attack, and it has been identified as potential feedstock for lignocellulosic derived biofuels. Despite the growing interest, little is known about the molecular mechanisms that regulates bark metabolism, particularly in tropical countries. In this study we report the changes observed in the primary metabolism of E. grandis bark during two contrasting seasons in Brazil, summer (wet) and winter (dry), through the combination of transcripts (RT-qPCR), proteome (2-DE gels) and metabolome (GC-MS) analysis, in an integrated manner. Twenty-four genes, involved in carbon metabolism, were analyzed in the two seasons. Eleven were up-regulated in summer, three were up-regulated in winter and ten did not show statistical differences in the expression pattern. The proteomic analysis using 2-DE gels showed 77 proteins expressing differences in abundance, with 38 spots up-regulated in summer and 37 in winter. Different metabolites significantly accumulated during winter. This study revealed a metabolic reconfiguration in the primary metabolism of E. grandis bark, triggered by seasonal variation. Transcripts and protein data suggests that during winter carbohydrate formation seems to be favored by tree metabolism. Glucose, fructose and sucrose accumulated at significant levels during the winter.

  9. Using large scale surveys to investigate seasonal variations in seabird distribution and abundance. Part I: The North Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Pettex, Emeline; David, Léa; Authier, Matthieu; Blanck, Aurélie; Dorémus, Ghislain; Falchetto, Hélène; Laran, Sophie; Monestiez, Pascal; Van Canneyt, Olivier; Virgili, Auriane; Ridoux, Vincent

    2017-07-01

    Scientific investigation in offshore areas are logistically challenging and expensive, therefore the available knowledge on seabird at sea distribution and abundance, as well as their seasonal variations, remains limited. To investigate the seasonal variability in seabird distribution and abundance in the North-Western Mediterranean Sea (NWMS), we conducted two large-scale aerial surveys in winter 2011-12 and summer 2012, covering a 181,400 km2 area. Following a strip-transect method, observers recorded a total of 4141 seabird sightings in winter and 2334 in summer, along 32,213 km. Using geostatistical methods, we generated sightings density maps for both seasons, as well as estimates of density and abundance. Most taxa showed seasonal variations in their density and distribution patterns, as they used the area either for wintering or for breeding. Highest densities of seabirds were recorded during winter, although large-sized shearwaters, storm petrels and terns were more abundant during summer. Consequently, with nearly 170,000 seabirds estimated in winter, the total abundance was twice higher in winter. Coastal waters of the continental shelf were generally more exploited by seabirds, even though some species, such as Mediterranean gulls, black-headed gulls, little gulls and storm petrels were found at high densities in highly offshore waters. Our results revealed areas highly exploited by the seabird community in the NWMS, such as the Gulf of Lion, the Tuscan region, and the area between Corsica and Sardinia. In addition, these large-scale surveys provide a baseline for the monitoring of seabird at sea distribution, and could inform the EU Marine Strategy Framework Directive.

  10. Seasonal variation of human sperm cells among 4,422 semen samples: A retrospective study in Turkey.

    PubMed

    Ozelci, Runa; Yılmaz, Saynur; Dilbaz, Berna; Akpınar, Funda; Akdag Cırık, Derya; Dilbaz, Serdar; Ocal, Aslı

    2016-12-01

    We aimed to assess the possible presence of a seasonal pattern in three parameters of semen analysis: sperm concentration, morphology, and motility as a function of the time of ejaculation and sperm production (spermatogenesis) in normal and oligozoospermic men. This retrospective study included a consecutive series of 4,422 semen samples that were collected from patients as a part of the basic evaluation of the infertile couples attending the Reproductive Endocrine Outpatient Clinic of a tertiary women's hospital in Ankara, Turkey, between January 1, 2012 and December 31, 2013. The samples were classified according to sperm concentration: ≥15 x10 6 /mL as normozoospermic samples and 4 -14.99 x10 6 /mL as oligozoospermic samples and seasonal analysis of the semen samples were carried out separately. When the data was analyzed according to the season of semen production, there was no seasonal effect on the sperm concentration. A gradual and consistent decrease in the rate of sperm with fast forward motility was observed from spring to fall with a recovery noticed during the winter. The percentage of sperms with normal morphology was found to be statistically significantly higher in the spring samples compared with the summer samples (p=0.001). Both normozoospermic and oligozoospermic semen samples appeared to have better sperm parameters in spring and winter. The circannual variation of semen parameters may be important in diagnosis and treatment desicions. WHO: World Health Organization; mRNA:messenger ribonucleic acid.

  11. Correlation of seasonal variations in phosphorous and nitrogen species in upper Black Warrior River with duckweed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabrielson, F.C. Jr.; Malatino, A.M.; Santa Cruz, G.J.

    1980-10-01

    Water samples taken throughout the year from a drainage system that had supported giant duckweed blooms were analyzed for nitrogen and phosphorus. Although seasonal separation of the data indicates possible differences within an imppoundment (Bayview Lake), extreme variations make meaningful conclusions difficult. Daily discharge from a large number of points may have masked seasonal differences. Extensive plant mats were present at minimal levels of nitrogen and phosphorus. The growth rate seemed to be governed more by climate than nutrient conditions. Laboratory investigations indicate that giant duckweed can grow under a wide range of nutrient conditions including high heavy metal concentrations.more » Growth rate data show that without a continual input of nutrients, maximum growth rates do not usually continue beyond 14 to 20 days regardless of the initial single element concentration. With a continuous nutrient input, growth would probably only be inhibited by extreme climate conditions.« less

  12. Cyclic variation in seasonal recruitment and the evolution of the seasonal decline in Ural owl clutch size.

    PubMed Central

    Brommer, Jon E; Pietiäinen, Hannu; Kokko, Hanna

    2002-01-01

    Plastic life-history traits can be viewed as adaptive responses to environmental conditions, described by a reaction norm. In birds, the decline in clutch size with advancing laying date has been viewed as a reaction norm in response to the parent's own (somatic or local environmental) condition and the seasonal decline in its offspring's reproductive value. Theory predicts that differences in the seasonal recruitment are mirrored in the seasonal decrease in clutch size. We tested this prediction in the Ural owl. The owl's main prey, voles, show a cycle of low, increase and peak phases. Recruitment probability had a humped distribution in both increase and peak phases. Average recruitment probability was two to three times higher in the increase phase and declined faster in the latter part of the season when compared with the peak phase. Clutch size decreased twice as steep in the peak (0.1 eggs day-1) as in the increase phase (0.05 eggs day-1). This result appears to refute theoretical predictions of seasonal clutch size declines. However, a re-examination of current theory shows that the predictions of modelling are less robust to details of seasonal condition accumulation in birds than originally thought. The observed pattern can be predicted, assuming specifically shaped seasonal increases in condition across individuals. PMID:11916482

  13. Seasonality of suicides: environmental, sociological and biological covariations.

    PubMed

    Souêtre, E; Salvati, E; Belugou, J L; Douillet, P; Braccini, T; Darcourt, G

    1987-01-01

    The monthly rates of completed suicides in France from 1978 until 1982 were analyzed. The seasonal variations of environmental (daylight and sunlight durations, mean temperature, geomagnetism), sociological (unemployment, deaths of all causes, birth and conception rates), and biological (melatonin, cortisol and serotonin circannual rhythms) factors were compared to the seasonal patterns of suicides. A clear seasonal variation (with peaks in May and September) in suicidal behavior was detected. These patterns tended to differ as a function of age (bimodal in young, unimodal in old people). The component analysis clearly pointed out that seasonal patterns of suicides may be considered as the sum of two components, unimodal and bimodal. Almost similar covariations were found between the main seasonal (unimodal) component of suicides and environmental (daylight duration and mean monthly temperature) or sociological factors whereas the secondary component was more correlated to variations in environmental factors and, to some extent, to biological parameters.

  14. Seasonal variations in behaviour of thermoregulation in juveniles and adults Liolaemus lutzae (Squamata, Liolaemidae) in a remnant of Brazilian restinga.

    PubMed

    Maia-Carneiro, Thiago; Rocha, Carlos Frederico Duarte

    2013-11-01

    Adaptations of lizards inhabiting hot arid environments should include mechanisms of behavioural thermoregulation. In contrast, in environments with lower temperatures lizards tend to behave as thermoconformers. Herein we aim to infer thermoregulatory behaviours exhibited by Liolaemus lutzae (a lizard species endemic to restingas in the coast of the state of Rio de Janeiro, Brazil) in two different seasonal thermal environments. In the dry season, the body temperatures (Tb) of the lizards were higher than air temperature (Ta) and similar to substrate temperature (Ts), suggesting thermoconformer thermoregulatory behaviour using Ts. During the rainy season, the higher percentage of negative values of ΔTs (=Tb-Ts) and ΔTa (=Tb-Ta) and the tendency for lower Tb compared to Ts suggest a more active behavioural thermoregulation in that season. The ΔTs was higher for juveniles in the rainy season, suggesting that youngest lizards tended to thermoregulate more actively regarding to Ts than adults. L. lutzae probably survives under high Ts due to the behaviour of the individuals sheltering inside burrows or under detritus and burying themselves into the sand. This behavioural flexibility may potentially reduce variations in Tb of active lizards in changing thermal environments both during the daily cycle and between seasons. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. 8-Year ground-based observational analysis about the seasonal variation of the aerosol-cloud droplet effective radius relationship at SGP site

    NASA Astrophysics Data System (ADS)

    Qiu, Yanmei; Zhao, Chuanfeng; Guo, Jianping; Li, Jiming

    2017-09-01

    Previous studies have shown the negative or positive relationship between cloud droplet effective radius (re) and aerosol amount based on limited observations, indicative of the uncertainties of this relationship caused by many factors. Using 8-year ground-based cloud and aerosol observations at Southern Great Plain (SGP) site in Oklahoma, US, we here analyze the seasonal variation of aerosol effect on low liquid cloud re . It shows positive instead of negative AOD- re relationship in all seasons except summer. Potential contribution to AOD- re relationship from the precipitable water vapor (PWV) has been analyzed. Results show that the AOD- re relationship is indeed negative in low PWV condition regardless of seasonality, but it turns positive in high PWV condition for all seasons other than summer. The most likely explanation for the positive AOD-re relationship in high PWV condition for spring, fall and winter is that high PWV could promote the growth of cloud droplets by providing sufficient water vapor. The different performance of AOD- re relationship in summer could be related to the much heavier aerosol loading, which makes the PWV not sufficient any more so that the droplets compete water with each other. By limiting the variation of other meteorological conditions such as low tropospheric stability and wind speed near cloud bases, further analysis shows that higher PWVs not only help change AOD- re relationship from negative to positive, but also make cloud depth and cloud top height higher.

  16. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    NASA Astrophysics Data System (ADS)

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p < 0.05). Both PM deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  17. Seasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau.

    PubMed

    Shang, Lunyu; Zhang, Yu; Lyu, Shihua; Wang, Shaoying

    2016-01-01

    This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photosynthetic activity is also responsible for the variation of daily ecosystem respiration other than environmental factors. No clear correlation between net ecosystem exchange and environmental factors was observed at daily scale. Temperature sensitive coefficient was observed to increase with larger soil water content. High values of temperature sensitive coefficient occurred during the periods when soil water content was high and grass was active. Annual integrated net ecosystem exchange, gross primary production and ecosystem respiration were -191, 1145 and 954 g C m-2 for 2010, and -250, 975 and 725 g C m-2 for 2011, respectively. Thus, this alpine grassland was a moderate carbon sink in both of the two years. Compared to alpine grasslands on the Qinghai-Tibetan Plateau, this alpine grassland demonstrated a much greater potential for carbon sequestration than others. Annual precipitation is a dominant factor controlling the variation of annual net ecosystem exchange over this grassland. The difference in gross primary production between the two years was not caused by the variation in annual precipitation. Instead, air temperature and the length of growing season had an important impact on annual gross primary production. Variation of annual ecosystem respiration was closely related to annual gross primary production and soil water content during the growing season.

  18. Seasonal variation in the nature of DOM in a river and drinking water reservoir of a closed catchment.

    PubMed

    Awad, John; van Leeuwen, John; Chow, Christopher W K; Smernik, Ronald J; Anderson, Sharolyn J; Cox, Jim W

    2017-01-01

    Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character depending on its source within catchments and the timing and intensity of rainfall events. Here we report the findings of a study on the character and concentration of DOM in waters collected during different seasons from Myponga River and Reservoir, South Australia. The character of DOM was assessed in terms of its treatability by enhanced coagulation and potential for disinfection by-product i.e. trihalomethane (THM) formation. During the wet seasons (winter and spring), water samples from the river had higher DOC concentrations (X¯: 21 mg/L) and DOM of higher average molecular weight (AMW: 1526 Da) than waters collected during the dry seasons (summer and autumn: DOC: 13 mg/L; AMW: 1385 Da). Even though these features led to an increase in the percentage removal of organics by coagulation with alum (64% for wet compared with 53% for dry season samples) and a lower alum dose rate (10 versus 15 mg alum/mg DOC removal), there was a higher THM formation potential (THMFP) from wet season waters (treated waters: 217 μg/L vs 172 μg/L). For reservoir waters, samples collected during the wet seasons had an average DOC concentration (X¯: 15 mg/L), percentage removal of organics by alum (54%), alum dose rates (13 mg/mg DOC) and THMFP (treated waters: 207 μg/L) that were similar to samples collected during the dry seasons (mean DOC: 15 mg/L; removal of organics: 52%; alum dose rate: 13 mg/mg DOC; THMFP: 212 μg/L for treated waters). These results show that DOM present in river waters and treatability by alum are highly impacted by seasonal environmental variations. However these in reservoir waters exhibit less seasonal variability. Storage of large volumes of water in the reservoir enables mixing of influent waters and stabilization of water quality. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Analysis of smoke and cloud impact on seasonal and interannual variations in normalized difference vegetation index in Amazon

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Dye, D. G.

    2004-12-01

    Normalized difference vegetation index (NDVI) derived from National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) is a unique measurement of long-term variations in global vegetation dynamics. The NDVI data have been used for the detection of the seasonal and interannual variations in vegetation. However, as reported in several studies, NDVI decreases with the increase in clouds and/or smoke aerosol contaminated in the pixels. This study assesses the smoke and clouds effect on long-term Global Inventory Modeling and Mapping Studies (GIMMS) and Pathfinder AVHRR Land (PAL) NDVI data in Amazon. This knowledge will help developing the correction method in the tropics in the future. To assess the smoke and cloud effects on GIMMS and PAL, we used another satellite-derived data sets; NDVI derived from SPOT/VEGETATION (VGT) data and Aerosol Index (AI) derived from Total Ozone Mapping Spectrometer (TOMS). Since April 1998, VGT has measured the earth surface globally including in Amazon. The advantage of the VGT is that it has blue channel where the smoke and cloud can be easily detected. By analyzing the VGT NDVI and comparing with the AVHRR-based NDVI, we inferred smoke and cloud effect on the AVHRR-based NDVI. From the results of the VGT analysis, we found the large NDVI seasonality in South and Southeastern Amazon. In these areas, the NDVI gradually increased from April to July and decreased from August to October. However the sufficient NDVI data were not existed from August to November when the smoke and cloud pixels were masked using blue reflectance. Thus it is said that the smoke and clouds mainly cause the large decreases in NDVI between August and November and NDVI has little vegetation signature in these months. Also we examined the interannual variations in NDVI and smoke aerosol. Then the decrease in NDVI is well consistent with the increase in the increase in AI. Our results suggest that the months between April

  20. Seasonal variations of Saanen goat milk composition and the impact of climatic conditions.

    PubMed

    Kljajevic, Nemanja V; Tomasevic, Igor B; Miloradovic, Zorana N; Nedeljkovic, Aleksandar; Miocinovic, Jelena B; Jovanovic, Snezana T

    2018-01-01

    The aim of this research was to investigate the effect of climatic conditions and their impact on seasonal variations of physico-chemical characteristics of Saanen goat milk produced over a period of 4 years. Lactation period (early, mid and late) and year were considered as factors that influence physico-chemical composition of milk. Pearson's coefficient of correlation was calculated between the physico-chemical characteristics of milk (fat, proteins, lactose, non-fat dry matter, density, freezing point, pH, titrable acidity) and climatic condition parameters (air temperature, temperature humidity index-THI, solar radiation duration, relative humidity). Results showed that all physico-chemical characteristics of Saanen goat milk varied significantly throughout the lactation period and years. The decrease of fat, protein, non-fat dry matter and lactose content in goat milk during the mid-lactation period was more pronounced than was previously reported in the literature. The highest values for these characteristics were recorded in the late lactation period. Observed variations were explained by negative correlation between THI and the physico-chemical characteristics of Saanen goat milk. This indicated that Saanen goats were very prone to heat stress, which implied the decrease of physico-chemical characteristics during hot summers.

  1. Inbreeding Avoidance Drives Consistent Variation of Fine-Scale Genetic Structure Caused by Dispersal in the Seasonal Mating System of Brandt’s Voles

    PubMed Central

    Liu, Xiao Hui; Yue, Ling Fen; Wang, Da Wei; Li, Ning; Cong, Lin

    2013-01-01

    Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species. PMID:23516435

  2. Numerical simulations of the seasonal/latitudinal variations of atomic oxygen and nitric oxide in the lower thermosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Rees, D.; Fuller-Rowell, T. J.

    1989-01-01

    A 2-Dimensional zonally-averaged thermospheric model and the global University College London (UCL) thermospheric model have been used to investigate the seasonal, solar activity and geomagnetic variation of atomic oxygen and nitric oxide. The 2-dimensional model includes detailed oxygen and nitrogen chemistry, with appropriate completion of the energy equation, by adding the thermal infrared cooling by O and NO. This solution includes solar and auroral production of odd nitrogen compounds and metastable species. This model has been used for three investigations; firstly, to study the interactions between atmospheric dynamics and minor species transport and density; secondly, to examine the seasonal variations of atomic oxygen and nitric oxide within the upper mesosphere and thermosphere and their response to solar and geomagnetic activity variations; thirdly, to study the factor of 7 to 8 peak nitric oxide density increase as solar F sub 10.7 cm flux increases from 70 to 240 reported from the Solar Mesospheric Explorer. Auroral production of NO is shown to be the dominant source at high latitudes, generating peak NO densities a factor of 10 greater than typical number densities at low latitudes. At low latitudes, the predicted variation of the peak NO density, near 110 km, with the solar F sub 10.7 cm flux is rather smaller than is observed. This is most likely due to an overestimate of the soft X-ray flux at low solar activity, for times of extremely low support number, as occurred in June 1986. As observed on pressure levels, the variation of O density is small. The global circulation during solstice and periods of elevated geomagnetic activity causes depletion of O in regions of upwelling, and enhancements in regions of downwelling.

  3. Spatiotemporal Variation and the Role of Wildlife in Seasonal Water Quality Declines in the Chobe River, Botswana

    PubMed Central

    Fox, J. Tyler; Alexander, Kathleen A.

    2015-01-01

    Sustainable management of dryland river systems is often complicated by extreme variability of precipitation in time and space, especially across large catchment areas. Understanding regional water quality changes in southern African dryland rivers and wetland systems is especially important because of their high subsistence value and provision of ecosystem services essential to both public and animal health. We quantified seasonal variation of Escherichia coli (E. coli) and Total Suspended Solids (TSS) in the Chobe River using spatiotemporal and geostatistical modeling of water quality time series data collected along a transect spanning a mosaic of protected, urban, and developing urban land use. We found significant relationships in the dry season between E. coli concentrations and protected land use (p = 0.0009), floodplain habitat (p = 0.016), and fecal counts from elephant (p = 0.017) and other wildlife (p = 0.001). Dry season fecal loading by both elephant (p = 0.029) and other wildlife (p = 0.006) was also an important predictor of early wet season E. coli concentrations. Locations of high E. coli concentrations likewise showed close spatial agreement with estimates of wildlife biomass derived from aerial survey data. In contrast to the dry season, wet season bacterial water quality patterns were associated only with TSS (p<0.0001), suggesting storm water and sediment runoff significantly influence E. coli loads. Our data suggest that wildlife populations, and elephants in particular, can significantly modify river water quality patterns. Loss of habitat and limitation of wildlife access to perennial rivers and floodplains in water-restricted regions may increase the impact of species on surface water resources. Our findings have important implications to land use planning in southern Africa’s dryland river ecosystems. PMID:26460613

  4. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    PubMed

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  5. Altitudinal and Seasonal Variation in Drosophila Species on Mount Japfu of Nagaland, a Sub-Himalayan Hilly State of India

    PubMed Central

    Achumi, Bovito; Hegde, Shridhar N.; Lal, Pardeshi; Yenisetti, Sarat Chandra

    2013-01-01

    Drosophila (L.) (Diptera: Drosophilidae) has richly contributed to the understanding of patterns of inheritance, variation, speciation, and evolution. Drosophila, with its cosmopolitan nature and complexities in species compositions, is an excellent model for studying the eco-distributional patterns of various species. This study analyzed the altitudinal and seasonal variation in Drosophila species of Mount Japfu in Nagaland, a sub-Himalayan hilly state of northeast India, over the course of one year. A total of 4,680 Drosophila flies belonging to 19 species of 4 subgenera were collected at altitudes of 1500, 1800, 2100, 2400, and 2700 m a.s.l. The subgenus Sophophora Sturtevant was predominant, with 10 species, followed by subgenus Drosophila, with 4 species. Subgenus Dorsilopha and subgenus Scaptodrosophila were represented by 1 species each. The remaining 3 species were not identified. Cluster analysis and constancy methods were used to analyze the species occurrence qualitatively. Altitudinal changes in the population densities and relative abundances of the different species at different seasons were also studied. The diversity of the Drosophila community was assessed by applying Simpson's diversity index. At 1800 m a.s.l., the Simpson's index was low (0.09301), suggesting high Drosophila diversity at this altitude. The density of Drosophila changed significantly during different seasons (F = 26.72; df = 2; p < 0.0001). The results suggest the distributional pattern of a species or related group of species was uneven in space and time. PMID:24773245

  6. Characterization and tropical seasonal variation of leachate: results from landfill lysimeter studied.

    PubMed

    Rafizul, Islam M; Alamgir, Muhammed

    2012-11-01

    This study aims to characterize the leachate and to investigate the tropical climatic influence on leachate characteristics of lysimeter studies under different seasonal variations at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored since June 2008 to May 2010, these periods cover both the dry and rainy season. The leachate generation had followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have highest leachate generation. Moreover, the open dump lysimeter-A had lower total kjeldahl nitrogen (TKN), ammonia nitrogen (NH(4)-N) and TKN load, while both the COD concentration and load was higher compared with sanitary landfill lysimeter-B and C. In addition, sanitary landfill lysimeter-B, not only had lowest leachate generation, but also produces reasonable low COD concentration and load compared with open dump lysimeter-A. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and providing remedial measures of proper liner system in sanitary landfill design and leachate treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues.

    PubMed

    Williams, Laura J; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2008-03-01

    Seasonal tropical forests exhibit a great diversity of leaf exchange patterns. Within these forests variation in the timing and intensity of leaf exchange may occur within and among individual trees and species, as well as from year to year. Understanding what generates this diversity of phenological behaviour requires a mechanistic model that incorporates rate-limiting physiological conditions, environmental cues, and their interactions. In this study we examined long-term patterns of leaf flushing for a large proportion of the hundreds of tree species that co-occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide variation in deciduousness and tested competing hypotheses regarding the timing and triggers of leaf flushing in seasonal tropical forests. We developed metrics to quantify the nature of deciduousness (its magnitude, timing and duration) and its variability among survey years and across a range of taxonomic levels. Tree species varied widely in the magnitude, duration, and variability of leaf loss within species and across years. The magnitude of deciduousness ranged from complete crown loss to no crown loss. Among species that lost most of their crown, the duration of deciduousness ranged from 2 to 21 weeks. The duration of deciduousness in the majority of species was considerably shorter than in neotropical forests with similar rainfall periodicity. While the timing of leaf flushing varied among species, most ( approximately 70%) flushed during the dry season. Leaf flushing was associated with changes in photoperiod in some species and the timing of rainfall in other species. However, more than a third of species showed no clear association with either photoperiod or rainfall, despite the considerable length and depth of the dataset. Further progress in resolving the underlying internal and external mechanisms controlling leaf exchange will require targeting these species for detailed physiological

  8. Detecting seasonal variations of soil parameters via field measurements and stochastic simulations in the hillslope

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun

    2015-04-01

    Soil moisture, a critical factor in hydrologic systems, plays a key role in synthesizing interactions among soil, climate, hydrological response, solute transport and ecosystem dynamics. The spatial and temporal distribution of soil moisture at a hillslope scale is essential for understanding hillslope runoff generation processes. In this study, we implement Monte Carlo simulations in the hillslope scale using a three-dimensional surface-subsurface integrated model (3D model). Numerical simulations are compared with multiple soil moistures which had been measured using TDR(Mini_TRASE) for 22 locations in 2 or 3 depths during a whole year at a hillslope (area: 2100 square meters) located in Bongsunsa Watershed, South Korea. In stochastic simulations via Monte Carlo, uncertainty of the soil parameters and input forcing are considered and model ensembles showing good performance are selected separately for several seasonal periods. The presentation will be focused on the characterization of seasonal variations of model parameters based on simulations with field measurements. In addition, structural limitations of the contemporary modeling method will be discussed.

  9. Seasonal variation in composition and abundance of harmful dinoflagellates in Yemeni waters, southern Red Sea.

    PubMed

    Alkawri, Abdulsalam

    2016-11-15

    General abundance and species composition of a dinoflagellate community in Yemeni coastal waters of Al Salif (southern Red Sea) were studied with a view to understand the annual variations in particular the toxic species. Dinoflagellates were more abundant among phytoplankton. Thirty five dinoflagellate taxa were identified, among which 12 were reported as potentially toxic species. A significant change in seasonal abundance was recorded with the maximum (2.27∗10 6 cellsl -1 ) in May, and the minimum (2.50∗10 2 cellsl -1 ) recorded in January. Kryptoperidinium foliaceum, which was reported for the first time from the Red Sea, was the most abundant species with a maximum in May 2013 (2.26∗10 6 cellsl -1 ). Spearman's rank correlation analysis indicates that, total harmful dinoflagellate cells, K. foliaceum, Prorocentrum gracile and Prorocentrum micans were significantly correlated with temperature. This study suggests that Yemeni waters should be monitored to investigate harmful species and to identify areas and seasons at higher risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Seasonal and spatial variations of marine litter on the south-eastern Black Sea coast.

    PubMed

    Terzi, Yahya; Seyhan, Kadir

    2017-07-15

    The south-eastern Black Sea coast in Turkey was evaluated for marine litter composition and density covering nine beaches during four seasons. The marine litter (>2cm in size), was collected from the coast and categorized into material and usage categories. The data analysis showed that plastic was the most abundant litter (≥61.65%) by count and weight followed by styrofoam and fabric. The marine litter density ranged from 0.03 to 0.58 with a mean (±SD) of 0.16±0.02 items/m 2 by count. Based on weight, it varied between 0.44 and 14.74g/m 2 with 3.35±1.63. The east side had a higher marine litter density than the west side with significant differences between beaches. The variations due to different seasons were not significant for any beach. The results of this study should provide baseline information about the coastal marine pollution and will assist the mitigation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Advising caution in studying seasonal oscillations in crime rates.

    PubMed

    Dong, Kun; Cao, Yunbai; Siercke, Beatrice; Wilber, Matthew; McCalla, Scott G

    2017-01-01

    Most types of crime are known to exhibit seasonal oscillations, yet the annual variations in the amplitude of this seasonality and their causes are still uncertain. Using a large collection of data from the Houston and Los Angeles Metropolitan areas, we extract and study the seasonal variations in aggravated assault, break in and theft from vehicles, burglary, grand theft auto, rape, robbery, theft, and vandalism for many years from the raw daily data. Our approach allows us to see various long term and seasonal trends and aberrations in crime rates that have not been reported before. We then apply an ecologically motivated stochastic differential equation to reproduce the data. Our model relies only on social interaction terms, and not on any exigent factors, to reproduce both the seasonality, and the seasonal aberrations observed in our data set. Furthermore, the stochasticity in the system is sufficient to reproduce the variations seen in the seasonal oscillations from year to year. Researchers should be very careful about trying to correlate these oscillations with external factors.

  12. Advising caution in studying seasonal oscillations in crime rates

    PubMed Central

    Dong, Kun; Cao, Yunbai; Siercke, Beatrice; Wilber, Matthew

    2017-01-01

    Most types of crime are known to exhibit seasonal oscillations, yet the annual variations in the amplitude of this seasonality and their causes are still uncertain. Using a large collection of data from the Houston and Los Angeles Metropolitan areas, we extract and study the seasonal variations in aggravated assault, break in and theft from vehicles, burglary, grand theft auto, rape, robbery, theft, and vandalism for many years from the raw daily data. Our approach allows us to see various long term and seasonal trends and aberrations in crime rates that have not been reported before. We then apply an ecologically motivated stochastic differential equation to reproduce the data. Our model relies only on social interaction terms, and not on any exigent factors, to reproduce both the seasonality, and the seasonal aberrations observed in our data set. Furthermore, the stochasticity in the system is sufficient to reproduce the variations seen in the seasonal oscillations from year to year. Researchers should be very careful about trying to correlate these oscillations with external factors. PMID:28938022

  13. Evaluation of the psychological status in seasonal allergic rhinitis patients.

    PubMed

    Lv, Xiaofei; Xi, Lin; Han, Demin; Zhang, Luo

    2010-01-01

    To investigate the psychological status of Chinese adults with seasonal allergic rhinitis (SAR) in the allergic season, and evaluate the effects of nasal symptoms on their psychological status. The Symptom Checklist 90 (SCL-90) or Self-Reporting Inventory was employed to analyze the psychological status of 337 SAR patients. The SCL-90 scores of the SAR patients were statistically higher than those of nonallergic adults in terms of somatization, depression, anxiety, hostility and psychosis. No statistical discrepancies existed in gender or age, the impact of disease course was limited to somatization, compulsion and phobic disorders and the impact of the educational level was that the lower the level of education, the more obvious the hostility. The behavior of somatization, compulsion, depression and anxiety in patients with a history of eczema or asthma was much more obvious than in patients without such a history. Nasal obstruction had a conspicuous impact on somatization, compulsion, interpersonal sensitivity, depression, anxiety and psychosis, while nasal itching contributed to somatization, depression and anxiety. The psychological status of SAR patients is evidently worse than that of nonallergic adults. Symptoms such as nasal obstruction and nasal itching had an obvious impact on the psychological status of the patients. Copyright 2010 S. Karger AG, Basel.

  14. Seasonal and Non-Seasonal Variations of Jupiter's Atmosphere from Observations of Thermal Emission, 1994-2011

    NASA Technical Reports Server (NTRS)

    Orton, G.; Fletcher, L.; Yanamandra-Fisher, P.; Greathouse, T.; Fisher, B.; Greco, J.; Wakefield, L.; Snead, E.; Boydstun, K.; Simon-Miller, A.; hide

    2012-01-01

    We analyzed mid-infrared images of Jupiter's thermal emission, covering approx.1.5 Jovian years, acquired in discrete filters between 7.8 and 24.5 microns. The behavior of stratospheric (approx.10-mbar) and tropospheric (approx.100-400 mbar) temperatures is generally consistent with predictions of seasonal variability, with differences between 100-mbar temperatures +/-50-60deg from the equator on the order of +/-2. Removing this effect, there appear to be long-term quasi-periodic variability of tropospheric temperatures, whose amplitude, phase and period depend on latitude. The behavior of temperatures in the Equatorial Zone (EZ) suggests a approx.4-6-year period with amplitude of about +/-1-1.5 K in temperature. At mid-latitudes, the periodicity is more distinct with amplitudes around +/-1.5-2.5 K and 4-8 year periods. The 4.2-year variation of stratospheric temperatures known as the quasiquadrennial oscillation or "QQO" (Leovy et al. 1991, Nature 354, 380) continued during this period. There were no variations of zonal mean temperatures associated with any of the "global upheaval" events that have produced dramatic changes of jupiter's visible appearance and cloud cover, although there are colder discrete regions associated with updrafts, e.g. the early stages of the re-darkening ("revival") of the South Equatorial Belt (SEB) in late 2010. On the other hand increases in the visible albedos ("fades") of belts are accompanied by increases in the thickness of a 700-mbar cloud layer (most likely NH3 ice) and clouds at higher pressures, together with the mixing ratio of NH3 gas near 400 mbar (above its condensation level). These quantities decrease during re-darkening ("revival") episodes, during which we note discrete features that are exceptions to the general correlation between dark albedos and minimal cloudiness. In contrast to all these changes, the meridional distribution of the 240-mbar para-H2 fraction appears to be invariant in time.

  15. An evaluation of seasonal variations in footwear worn by adults with inflammatory arthritis: a cross-sectional observational study using a web-based survey.

    PubMed

    Brenton-Rule, Angela; Hendry, Gordon J; Barr, Georgina; Rome, Keith

    2014-01-01

    Foot problems are common in adults with inflammatory arthritis and therapeutic footwear can be effective in managing arthritic foot problems. Accessing appropriate footwear has been identified as a major barrier, resulting in poor adherence to treatment plans involving footwear. Indeed, previous New Zealand based studies found that many people with rheumatoid arthritis and gout wore inappropriate footwear. However, these studies were conducted in a single teaching hospital during the New Zealand summer therefore the findings may not be representative of footwear styles worn elsewhere in New Zealand, or reflect the potential influence of seasonal climate changes. The aim of the study was to evaluate seasonal variations in footwear habits of people with inflammatory arthritic conditions in New Zealand. A cross-sectional study design using a web-based survey. The survey questions were designed to elicit demographic and clinical information, features of importance when choosing footwear and seasonal footwear habits, including questions related to the provision of therapeutic footwear/orthoses and footwear experiences. One-hundred and ninety-seven participants responded who were predominantly women of European descent, aged between 46-65 years old, from the North Island of New Zealand. The majority of participants identified with having either rheumatoid arthritis (35%) and/or osteoarthritis (57%) and 68% reported established disease (>5 years duration). 18% of participants had been issued with therapeutic footwear. Walking and athletic shoes were the most frequently reported footwear type worn regardless of the time of year. In the summer, 42% reported wearing sandals most often. Comfort, fit and support were reported most frequently as the footwear features of greatest importance. Many participants reported difficulties with footwear (63%), getting hot feet in the summer (63%) and the need for a sandal which could accommodate a supportive insole (73%). Athletic and

  16. An evaluation of seasonal variations in footwear worn by adults with inflammatory arthritis: a cross-sectional observational study using a web-based survey

    PubMed Central

    2014-01-01

    Background Foot problems are common in adults with inflammatory arthritis and therapeutic footwear can be effective in managing arthritic foot problems. Accessing appropriate footwear has been identified as a major barrier, resulting in poor adherence to treatment plans involving footwear. Indeed, previous New Zealand based studies found that many people with rheumatoid arthritis and gout wore inappropriate footwear. However, these studies were conducted in a single teaching hospital during the New Zealand summer therefore the findings may not be representative of footwear styles worn elsewhere in New Zealand, or reflect the potential influence of seasonal climate changes. The aim of the study was to evaluate seasonal variations in footwear habits of people with inflammatory arthritic conditions in New Zealand. Methods A cross-sectional study design using a web-based survey. The survey questions were designed to elicit demographic and clinical information, features of importance when choosing footwear and seasonal footwear habits, including questions related to the provision of therapeutic footwear/orthoses and footwear experiences. Results One-hundred and ninety-seven participants responded who were predominantly women of European descent, aged between 46–65 years old, from the North Island of New Zealand. The majority of participants identified with having either rheumatoid arthritis (35%) and/or osteoarthritis (57%) and 68% reported established disease (>5 years duration). 18% of participants had been issued with therapeutic footwear. Walking and athletic shoes were the most frequently reported footwear type worn regardless of the time of year. In the summer, 42% reported wearing sandals most often. Comfort, fit and support were reported most frequently as the footwear features of greatest importance. Many participants reported difficulties with footwear (63%), getting hot feet in the summer (63%) and the need for a sandal which could accommodate a supportive

  17. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    PubMed

    Domec, J C; Scholz, F G; Bucci, S J; Meinzer, F C; Goldstein, G; Villalobos-Vega, R

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occurring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (psi root) was about -2.6 MPa, and recovered to 25-40% loss of conductivity in the morning when psi root was about -1.0 MPa. Daily variation in psi root decreased, and root xylem vulnerability and capacitance increased with rooting depth. However, all species experienced seasonal minimum psi root close to complete hydraulic failure independent of their rooting depth or resistance to embolism. Predawn psi root was lower than psi soil when psi soil was relatively high (> -0.7 MPa) but became less negative than psi soil, later in the dry season, consistent with a transition from a disequilibrium between plant and soil psi induced by nocturnal transpiration to one induced by hydraulic redistribution of water from deeper soil layers. Shallow longitudinal root incisions external to the xylem prevented reversal of embolism overnight, suggesting that root mechanical integrity was necessary for recovery, consistent with the hypothesis that if embolism is a function of tension, refilling may be a function of internal pressure imbalances. All species shared a common relationship in which maximum daily stomatal conductance declined linearly with increasing afternoon loss of root conductivity over the course of the dry season. Daily embolism and refilling in roots is a common occurrence and thus may be an inherent component of a hydraulic signaling mechanism enabling stomata to maintain the integrity of the hydraulic pipeline in long-lived structures such as stems.

  18. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  19. The seasonal variation in skin hydration, sebum, scaliness, brightness and elasticity in Korean females.

    PubMed

    Nam, G W; Baek, J H; Koh, J S; Hwang, J-K

    2015-02-01

    Age, gender, regional, and ethnic differences influence skin conditions. The purpose of this study was to observe the effects of environments, especially the air temperature, relative humidity, air pressure, duration of sunshine, and precipitation on skin, and the seasonal variation in skin hydration, sebum, scales, brightness, and elasticity in Korean females. The study included 89 Korean subjects, aged 29.7 ± 6.2 years. The five skin biophysical parameters (skin hydration, sebum, scales, brightness, and elasticity) were measured at six sites: forehead, under the eye, frontal cheek, crow's foot, lateral cheek, and inner forearm. Skin hydration was measured using the Corneometer® CM 825. Skin sebum was measured with Sebumeter® SM 815. Skin scaliness was measured with Visioscan® VC 98. Skin brightness (L* value) was measured by using Spectrophotometer. A suction chamber device, Cutometer® MPA 580, was used to measure the skin elasticity. The measurements were performed every month for 13 months, from April 2007 to April 2008. There were significantly seasonal variations in environmental factors. The air temperature was the lowest in January (-1.7°C), and the highest in August (26.5°C). The relative humidity was the lowest in February (46%), and the highest in July and August (75%). There was a negative correlation between skin scaliness and three environmental factors such as air temperature, relative humidity, and highest precipitation. There was a positive correlation between skin scaliness and two environmental factors such as air pressure and duration of sunshine. Elasticity was correlated with air temperature positively and with air pressure negatively. The correlations shown between the skin biophysical parameters and environmental factors demonstrate that the skin biophysical parameters are affected by environmental factors. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Variations in snow cover seasonality across the Kyrgyz Republic from 2000 to 2016 revealed through MODIS Terra and Aqua snow products

    NASA Astrophysics Data System (ADS)

    Tomaszewska, M. A.; Henebry, G. M.

    2017-12-01

    The vertical transhumance practiced by herders in the highlands of Kyrgyzstan is vulnerable to environmental change. Herd movements and pasture conditions are both affected by spatial and temporal variations in snow cover and the timing of snowmelt. Early growing season soil moisture conditions affect the phenology and growth of vegetation, especially in the high elevation pastures used for summer forage. To evaluate snow seasonality, we examined three snow cover variables—the first day of snow (FDoS), the last day of snow (LDoS), and the duration of snow cover (DoSC) over 17 years based on 8-day snow product from MODIS Terra and Aqua (MOD/MYD10A2) across the Kyrgyz Republic (KYR). To track the "snow season" efficiently in the presence of snow-capped peaks, we start each snow season at day of year (DOY) 169, approximately the summer solstice, and extend to DOY 168 of the following year. To track the interannual variation of these variables, we applied two nonparametric statistics: the Mann-Kendall trend test and the Theil-Sen linear trend estimator. Our preliminary results focusing on four rayons in two oblasts indicate both large swaths of positive and negative significant trends over the different regions of the country. Positive trends in FDoS, meaning later snow arrival, were detected in parts of central KYR. Negative trends in FDoS meaning earlier arrival were detected at lower elevations in southwestern KYR. Earlier snowmelt (negative trend in LDoS) in eastern KYR resulted in a shorter snow season (negative trend in DoSC); in contrast, later snowmelt in southwestern KYR (positive trend in LDoS) resulted in a longer period of snow cover (positive trend of DoSC). We extend the analysis to the entire country and explore the influence of terrain attribites (elevation, slope, and aspect) and MODIS IGBP land cover type (MCD12Q1) on trends in snow cover seasonality. Additionally, we ran the trend tests for the Terra and Aqua snow products separately to evaluate

  1. Socioeconomic Status Modifies the Seasonal Effect on Blood Pressure

    PubMed Central

    Cois, Annibale; Ehrlich, Rodney

    2015-01-01

    Abstract Seasonal variations in blood pressure have been consistently reported. However, uncertainty remains about the size of the seasonal effect in different regions, and about factors that explain the differences observed across and within populations. Using data from a national panel study, we investigated seasonal variations in blood pressure in the South African adult population, and whether these variations differed across socioeconomic strata. We estimated age-specific seasonal effects on blood pressure using a multilevel structural equation model, with repeated measurements nested within subjects. Effect modification by socioeconomic status was assessed by repeating the analyses in the subpopulations defined by levels of education, household income per capita, and type of housing. In men and women, season had a statistically significant effect on blood pressure, with higher levels in winter and lower levels in summer. For systolic blood pressure, the magnitude of the seasonal effect was 4.25/4.21 mmHg (women/men) and was higher in the older age groups. For diastolic blood pressure, the effect size was 4.00/4.01 mmHg, with no evident age trend. Seasonal effects were higher among subjects in the lowest socioeconomic classes than in the highest, with differences between 2.4 and 7.7 mmHg, depending on gender, whether systolic or diastolic blood pressure, and socioeconomic status indicator. In the South African adult population, blood pressure shows seasonal variation modified by age and socioeconomic status. These variations have epidemiological, clinical, and public health implications, including the prospect of population level intervention to reduce elevated risk of cold weather cardiovascular morbidity. PMID:26334893

  2. SEASONAL AND REGIONAL VARIATIONS OF PRIMARY AND SECONDARY ORGANIC AEROSOLS OVER THE CONTINENTAL UNITED STATES: SEMI-EMPIRICAL ESTIMATES AND MODEL EVALUATION

    EPA Science Inventory

    Seasonal and regional variations of primary (OCpri) and secondary (OCsec) organic carbon aerosols across the continental U.S. for the year 2001 were examined by a semi-empirical technique using observed OC and elemental carbon (EC) data from 142 routine moni...

  3. Melanopsin gene variations interact with season to predict sleep onset and chronotype.

    PubMed

    Roecklein, Kathryn A; Wong, Patricia M; Franzen, Peter L; Hasler, Brant P; Wood-Vasey, W Michael; Nimgaonkar, Vishwajit L; Miller, Megan A; Kepreos, Kyle M; Ferrell, Robert E; Manuck, Stephen B

    2012-10-01

    The human melanopsin gene has been reported to mediate risk for seasonal affective disorder (SAD), which is hypothesized to be caused by decreased photic input during winter when light levels fall below threshold, resulting in differences in circadian phase and/or sleep. However, it is unclear if melanopsin increases risk of SAD by causing differences in sleep or circadian phase, or if those differences are symptoms of the mood disorder. To determine if melanopsin sequence variations are associated with differences in sleep-wake behavior among those not suffering from a mood disorder, the authors tested associations between melanopsin gene polymorphisms and self-reported sleep timing (sleep onset and wake time) in a community sample (N = 234) of non-Hispanic Caucasian participants (age 30-54 yrs) with no history of psychological, neurological, or sleep disorders. The authors also tested the effect of melanopsin variations on differences in preferred sleep and activity timing (i.e., chronotype), which may reflect differences in circadian phase, sleep homeostasis, or both. Daylength on the day of assessment was measured and included in analyses. DNA samples were genotyped for melanopsin gene polymorphisms using fluorescence polarization. P10L genotype interacted with daylength to predict self-reported sleep onset (interaction p < .05). Specifically, sleep onset among those with the TT genotype was later in the day when individuals were assessed on longer days and earlier in the day on shorter days, whereas individuals in the other genotype groups (i.e., CC and CT) did not show this interaction effect. P10L genotype also interacted in an analogous way with daylength to predict self-reported morningness (interaction p < .05). These results suggest that the P10L TT genotype interacts with daylength to predispose individuals to vary in sleep onset and chronotype as a function of daylength, whereas other genotypes at P10L do not seem to have effects that vary by

  4. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Jiang, Nan; Yin, Shasha; Li, Xiao; Yu, Fei; Guo, Yue; Zhang, Ruiqin

    2017-07-01

    PM2.5 and PM10 samples were simultaneously collected in an urban site in Zhengzhou, China from October 2014 to July 2015 representing the four seasons. Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (C8-C40) and polycyclic aromatic hydrocarbons (PAHs) were quantified. The characteristics of their concentrations, seasonal variations, and sources of n-alkanes and PAHs were investigated. Diagnostic ratios and positive matrix factorization (PMF) were used to characterize carbonaceous species, identify their possible sources, and apportion the contributions from each possible source. The concentrations of the components exhibited distinct seasonal variation, that is, the concentrations are high in winter and low in summer. This finding could be associated with increase in air pollutant emissions during heating season and stable weather condition. The estimated total carbonaceous aerosol accounts for 32% of PM2.5 and 30% of PM10. Hence, carbonaceous compounds were the major components of particulate matter in the study area. Moreover, OC, EC, PAHs, and n-alkanes preferentially accumulated into fine particles. The carbonaceous components exhibited high correlation in PM2.5 and PM10, thereby indicating that their sources were similar. The PMF results revealed that the main sources of PAHs were coal combustion (40%) and motor vehicles (29%); n-alkanes were mainly from burning of fossil fuel (48%). These sources were consistent with the diagnostic ratios obtained. This study provides guidance for improving air quality and reducing human exposure to toxic air pollutants.

  5. Seasonal Variations of Atmospheric Black Carbon Concentrations and Implications for Nutrient Inputs and Organic Carbon Partitioning in the Marine Coastal Ecosystem of Halong Bay, North Vietnam

    NASA Astrophysics Data System (ADS)

    Mari, X.; Thuoc, C. V.; Guinot, B. P.; Brune, J.; Lefebvre, J. P.; Raimbault, P.; Niggemann, J.; Dittmar, T.

    2016-02-01

    Black Carbon (BC) is an aerosol emitted during biomass burning and fossil fuel combustion. On a global scale, BC deposits on the ocean at a rate of 12-45 Tg per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of hotspots of atmospheric BC concentration. In the present study conducted in a coastal site located in a regional hotspot of atmospheric BC concentration, North Vietnam, we monitored the seasonal variations of atmospheric and marine BC during an annual cycle. Atmospheric BC followed a seasonal pattern characterized by high concentrations during the dry season, i.e. from October to April, and low concentrations during the wet season, i.e. from May to September. This trend is linked to a change in wind regime, with air masses originating from the North during the dry season and from the South during the wet season. On average, the contribution of BC to the particulate and the dissolved organic carbon pools was 43% and 3%, respectively. The concentration of particulate BC (PBC) was on average 50 times higher in the surface microlayer (SML) than in the water column. In the water column, the concentration of PBC was higher during the dry season than the wet season, which is consistent with variations of atmospheric BC concentrations. On the contrary, the concentration of dissolved BC (DBC) was lower during the dry season than the wet season. This seasonal pattern suggests that PBC concentration in coastal marine systems depends upon atmospheric BC concentration, while increased DBC concentration is linked to rainy conditions. The deposition of BC during the dry season was concomitant with a strong enrichment of organic phosphorus in the SML. During the annual cycle, the POC:DOC ratio was positively correlated with the concentration of PBC, suggesting adsorption of DOC onto BC particles and formation of POC via stimulation of aggregation processes.

  6. Seasonal and spatial variations in rare earth elements and yttrium of dissolved load in the middle, lower reaches and estuary of the Minjiang River, southeastern China

    NASA Astrophysics Data System (ADS)

    Zhu, Xuxu; Gao, Aiguo; Lin, Jianjie; Jian, Xing; Yang, Yufeng; Zhang, Yanpo; Hou, Yuting; Gong, Songbai

    2017-09-01

    With the aim of elucidating the spatial and seasonal behaviors of rare earth elements (REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower reaches and estuary of the Minjiang River, southeastern China. The results display that the REE abundances in Minjiang River, ranging from 3.3-785.9 ng/L, were higher than those of many of the major global rivers. The total REE concentrations (ΣREE) were seasonally variable, averaging in 5 937.30, 863.79, 825.65 and 1 065.75 ng/L during second highest flow (SHF), normal flow (NF), low flow (LF) and high flow (HF) season, respectively. The R (L/M) and R (H/M) ratios reveal the spatial and temporal variations of REE patterns, and particularly vary apparently in the maximum turbidity zone and estuary. REE patterns of dissolved loads are characterized by progressing weaker LREEs-enrichment and stronger HREEs-enrichment downstream from middle reaches to estuary during all four seasons. Comparing with NF and LF seasons, in which REE patterns are relatively flat, samples of SHF season have more LREE-enriched and HREE-depleted patterns that close to parent rocks, while samples of HF season are more LREEs-depleted and HREE-enriched. REE fractionations from the middle to lower reaches are stronger in the SHF and HF seasons than those in NF and LF seasons. Generally, spatial and seasonal variations in REE abundance and pattern are presumably due to several factors, such as chemical weathering, mixture with rainfall and groundwater, estuarine mixing, runoff, biological production and mountain river characters, such as strong hydrodynamic forces and steep slopes. The highest Gd/Gd* always occurs at north ports during all four seasons, where most of the large hospitals are located. This suggests Gd anomalies are depended on the density of modern medical facilities. Y/Ho ratios fluctuate and positively correlate to salinity in estuary, probably because of the geochemical

  7. Seasonal variations of the backscattering coefficient measured by radar altimeters over the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Ibrahime Adodo, Fifi; Remy, Frédérique; Picard, Ghislain

    2018-05-01

    Spaceborne radar altimeters are a valuable tool for observing the Antarctic Ice Sheet. The radar wave interaction with the snow provides information on both the surface and the subsurface of the snowpack due to its dependence on the snow properties. However, the penetration of the radar wave within the snowpack also induces a negative bias on the estimated surface elevation. Empirical corrections of this space- and time-varying bias are usually based on the backscattering coefficient variability. We investigate the spatial and seasonal variations of the backscattering coefficient at the S (3.2 GHz ˜ 9.4 cm), Ku (13.6 GHz ˜ 2.3 cm) and Ka (37 GHz ˜ 0.8 cm) bands. We identified that the backscattering coefficient at Ku band reaches a maximum in winter in part of the continent (Region 1) and in the summer in the remaining (Region 2), while the evolution at other frequencies is relatively uniform over the whole continent. To explain this contrasting behavior between frequencies and between regions, we studied the sensitivity of the backscattering coefficient at three frequencies to several parameters (surface snow density, snow temperature and snow grain size) using an electromagnetic model. The results show that the seasonal cycle of the backscattering coefficient at Ka frequency is dominated by the volume echo and is mainly driven by snow temperature evolution everywhere. In contrast, at S band, the cycle is dominated by the surface echo. At Ku band, the seasonal cycle is dominated by the volume echo in Region 1 and by the surface echo in Region 2. This investigation provides new information on the seasonal dynamics of the Antarctic Ice Sheet surface and provides new clues to build more accurate corrections of the radar altimeter surface elevation signal in the future.

  8. Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia.

    PubMed

    Suepa, Tanita; Qi, Jiaguo; Lawawirojwong, Siam; Messina, Joseph P

    2016-05-01

    The spatio-temporal characteristics of remote sensing are considered to be the primary advantage in environmental studies. With long-term and frequent satellite observations, it is possible to monitor changes in key biophysical attributes such as phenological characteristics, and relate them to climate change by examining their correlations. Although a number of remote sensing methods have been developed to quantify vegetation seasonal cycles using time-series of vegetation indices, there is limited effort to explore and monitor changes and trends of vegetation phenology in the Monsoon Southeast Asia, which is adversely affected by changes in the Asian monsoon climate. In this study, MODIS EVI and TRMM time series data, along with field survey data, were analyzed to quantify phenological patterns and trends in the Monsoon Southeast Asia during 2001-2010 period and assess their relationship with climate change in the region. The results revealed a great regional variability and inter-annual fluctuation in vegetation phenology. The phenological patterns varied spatially across the region and they were strongly correlated with climate variations and land use patterns. The overall phenological trends appeared to shift towards a later and slightly longer growing season up to 14 days from 2001 to 2010. Interestingly, the corresponding rainy season seemed to have started earlier and ended later, resulting in a slightly longer wet season extending up to 7 days, while the total amount of rainfall in the region decreased during the same time period. The phenological shifts and changes in vegetation growth appeared to be associated with climate events such as EL Niño in 2005. Furthermore, rainfall seemed to be the dominant force driving the phenological changes in naturally vegetated areas and rainfed croplands, whereas land use management was the key factor in irrigated agricultural areas. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Seasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau

    PubMed Central

    Shang, Lunyu; Zhang, Yu; Lyu, Shihua; Wang, Shaoying

    2016-01-01

    This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photosynthetic activity is also responsible for the variation of daily ecosystem respiration other than environmental factors. No clear correlation between net ecosystem exchange and environmental factors was observed at daily scale. Temperature sensitive coefficient was observed to increase with larger soil water content. High values of temperature sensitive coefficient occurred during the periods when soil water content was high and grass was active. Annual integrated net ecosystem exchange, gross primary production and ecosystem respiration were -191, 1145 and 954 g C m-2 for 2010, and -250, 975 and 725 g C m-2 for 2011, respectively. Thus, this alpine grassland was a moderate carbon sink in both of the two years. Compared to alpine grasslands on the Qinghai-Tibetan Plateau, this alpine grassland demonstrated a much greater potential for carbon sequestration than others. Annual precipitation is a dominant factor controlling the variation of annual net ecosystem exchange over this grassland. The difference in gross primary production between the two years was not caused by the variation in annual precipitation. Instead, air temperature and the length of growing season had an important impact on annual gross primary production. Variation of annual ecosystem respiration was closely related to annual gross primary production and soil water content during the growing season. PMID:27861616

  10. Seasonal variation of leaf traits in two woody species of an urban park

    NASA Astrophysics Data System (ADS)

    Kim, H.; Ryu, Y.

    2013-12-01

    Leaf traits are important for understanding physiology of woody plants. Some leaf traits such as maximum carboxylation rate (Vcamx) and maximum electron transport rate (Jmax) are especially crucial parameters for photosynthesis modelling. In this study, we report leaf traits (leaf mass per unit area, leaf carbon and nitrogen contents and C:N, Vcmax, Jmax) of two species (Zelkova serrata and Prunus yedoensis) in the Seoul Forest Park in 2013. From May to July, Vcmax and Jmax show gradual increase. In contrast, N concentration and C:N show the opposite pattern. Also we find that the ratio of Jmax to Vcmax was 1.05, which is substantially lower than many previous studies. We discuss main factors that control seasonal variation of leaf traits and correlation between Vcmax and Jmax.

  11. TNFα and IL-6 Responses to Particulate Matter in Vitro: Variation According to PM Size, Season, and Polycyclic Aromatic Hydrocarbon and Soil Content

    PubMed Central

    Manzano-León, Natalia; Serrano-Lomelin, Jesús; Sánchez, Brisa N.; Quintana-Belmares, Raúl; Vega, Elizabeth; Vázquez-López, Inés; Rojas-Bracho, Leonora; López-Villegas, Maria Tania; Vadillo-Ortega, Felipe; De Vizcaya-Ruiz, Andrea; Perez, Irma Rosas; O’Neill, Marie S.; Osornio-Vargas, Alvaro R.

    2015-01-01

    Background: Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. Objectives: We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. Methods: We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. Results: PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. Conclusions: Variations in PM soil and PAH content underlie seasonal and PM size–related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some

  12. [Seasonal variations in Aedes Aegypti populations in Monterrey, Mexico].

    PubMed

    Salas-Luévano, M A; Reyes-Villanueva, F

    1994-01-01

    Seasonal variation of the populations of the dengue vector mosquito Aedes aegypti, in the city of Monterrey, N.L., Mexico, showed a bimodal pattern. The first peak is lower and appeared at early June, while the second and higher one was observed in the second week of October. 1,419 female mosquitoes were caught in this study. Females with fresh red blood in the stomach were present in all the catches, gravid females (mature eggs in the ovaries) being more abundant than the non-gravid ones. The gravid females with red blood are the oldest of the vector population. Nevertheless, in October, 40 per cent of females had red blood and of these, 37 per cent were gravid. In relation to the biting rate, a 10 females/hour-man rate was recorded for the first peak and a 13.3 females/hour-man rate for the second one. There were 32 per cent of females involved in multiple feedings during the weekly catches. This incidence increases to 40 per cent in October. These rates were calculated on the basis of females with fresh blood in the stomach; from these the gravids and non-gravids have at least three and two multiple feedings, respectively. Finally the epidemiological importance of these multiple feedings on dengue transmission is discussed.

  13. Effects of source and seasonal variations of natural organic matters on the fate and transport of CeO2 nanoparticles in the environment

    EPA Science Inventory

    Natural organic matter (NOM) affects the stability and transport of nanoparticles (NPs) in natural waters by modifying their physiochemical properties. Source location, and seasonal variations, influence their molecular, physical and electrical charge properties. To understand th...

  14. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    NASA Astrophysics Data System (ADS)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  15. Regional seasonal warming anomalies and land-surface feedbacks

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  16. The current impact flux on Mars and its seasonal variation

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, Renu

    2015-12-01

    We calculate the present-day impact flux on Mars and its variation over the martian year, using the current data on the orbital distribution of known Mars-crossing minor planets. We adapt the Öpik-Wetherill formulation for calculating collision probabilities, paying careful attention to the non-uniform distribution of the perihelion longitude and the argument of perihelion owed to secular planetary perturbations. We find that, at the current epoch, the Mars crossers have an axial distribution of the argument of perihelion, and the mean direction of their eccentricity vectors is nearly aligned with Mars' eccentricity vector. These previously neglected angular non-uniformities have the effect of depressing the mean annual impact flux by a factor of about 2 compared to the estimate based on a uniform random distribution of the angular elements of Mars-crossers; the amplitude of the seasonal variation of the impact flux is likewise depressed by a factor of about 4-5. We estimate that the flux of large impactors (of absolute magnitude H < 16) within ±30° of Mars' aphelion is about three times larger than when the planet is near perihelion. Extrapolation of our results to a model population of meter-size Mars-crossers shows that if these small impactors have a uniform distribution of their angular elements, then their aphelion-to-perihelion impact flux ratio would be 11-15, but if they track the orbital distribution of the large impactors, including their non-uniform angular elements, then this ratio would be about 3. Comparison of our results with the current dataset of fresh impact craters on Mars (detected with Mars-orbiting spacecraft) appears to rule out the uniform distribution of angular elements.

  17. Seasonal variation of polycyclic aromatic hydrocarbons concentrations in urban streams at Niterói City, RJ, Brazil.

    PubMed

    Ribeiro, Angelo Morgado; da Rocha, Camila Coimbra Martins; Franco, Caroline Fernandes Jaegger; Fontana, Luiz Francisco; Pereira Netto, Annibal D

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) were determined in water samples collected in two streams and a lake located at Niteroi City, Rio de Janeiro State, Brazil between October 2008 and September 2009. Samples were extracted using liquid-liquid extraction and analyzed using high performance liquid chromatography with fluorescence detection. The limits of quantification were sufficiently low to accomplish PAH determination below the maximum concentration levels established by the Brazilian (50 ng/L) and USEPA legislations, with recoveries larger than 81.6%. Phenanthrene, fluoranthene, pyrene and benz[a]anthracene predominated among PAHs. Total concentrations of PAHs were well correlated with rainfall indicating a possible role of runoff to local pollution of water by PAHs and showed a seasonal variation in wet and dry seasons. Our results highlight the contribution of the widespread streams located around Guanabara Bay to the PAH burden found in its waters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Volatile Transport in Pluto's Super Seasons

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard; Young, Leslie; Stern, S. Alan; Olkin, Catherine B.; Ennico, Kimberly; Moore, Jeffrey M.; Weaver, Harold A.; NASA New Horizons Composition Team, The NASA New Horizons GGI Team

    2016-10-01

    The data returned from NASA's New Horizons' reconnaissance of the Pluto system shows striking albedo variations from polar to equatorial latitudes as well as sharp boundaries for longitudinal variations. Pluto has a high obliquity (currently around 119 degrees) which varies by more than 23 degrees (between roughly 103 and 127 degrees) over a period of less than 3 million years. These obliquity properties, combined with Pluto's orbital regression in longitude of perihelion (360 degrees over 3.7 million years), create epochs of "Super Seasons" on Pluto. A "Super Season" occurs, for example, when Pluto happens to be pole-on towards the Sun at the same time as perihelion. In such a case, one pole experiences a short, intense summer (relative to its long-term average) followed by a longer than average period of winter darkness. By complement, the other pole experiences a much longer, but less intense summer and short winter season. We explore the relationship between albedo variations and volatile transport for the current epoch as well as historical epochs during which Pluto experienced these "Super Seasons". Our investigation suggests Pluto's orbit creates the potential for runaway albedo variations, particularly in the equatorial region, which would create and support stark longitudinal contrasts like the ones we see between the informally named Tombaugh and Cthulhu Regios.This work was supported by the NASA New Horizons mission.

  19. Seasonal Variation in Dissolved Organic Matter Composition and Photoreactivity within a Small Sub-arctic Stream.

    NASA Astrophysics Data System (ADS)

    Guerard, J.; Osborne, R.

    2015-12-01

    Dissolved organic matter (DOM) is a complex heterogeneous mixture, ubiquitous to all natural surface waters, uniquely composed of source inputs specific to spatial, temporal, and ecological circumstances. In arctic and sub-arctic regions, elucidating DOM composition and reactivity is complicated by seasonal variations. These include changes in productivity and source inputs to the water column, as well as winter overflow events that may contribute allochthonous organic material. DOM from a small boreal stream in a watershed of discontinuous permafrost in the Goldstream Valley of interior Alaska was isolated by solid-phase extraction (PPL) at multiple points during the year - late spring, late summer, and in the winter during an active overflow event. Compositional characteristics of each of the isolates were characterized by SPR-W5-WATERGATE 1H NMR spectroscopy, specific UV-Vis absorbance, and excitation emission matrix (EEM) fluorescence spectroscopy and compared against end-member reference DOM isolates. Kinetics of photobleaching experiments reveal the influence of compositional differences among the isolated DOMs on their chemical reactivity, and offer insight into potential differences in their source materials and ecological function throughout the year. Photobleaching studies were conducted using a variety of reactive species quenchers or sensitizers in order to assess susceptibility of oxidative transformation mechanisms on the different DOM isolates, which were then analyzed by 1H NMR, UV-Vis degradation kinetics, and parallel factor analysis (PARAFAC) of fluorescence EEMs. Better understanding of the seasonal variations of boreal DOM character and function on a molecular level is critical to assessing alterations in its ecological role and cycling in the face of current and future ecosystem perturbations in arctic and sub-arctic regions.

  20. Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms.

    PubMed

    Sui, Qianwen; Zhang, Junya; Tong, Juan; Chen, Meixue; Wei, Yuansong

    2017-04-01

    The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health.