Science.gov

Sample records for occipital cortex loc

  1. Neurochemical changes within human early blind occipital cortex.

    PubMed

    Weaver, K E; Richards, T L; Saenz, M; Petropoulos, H; Fine, I

    2013-11-12

    Early blindness results in occipital cortex neurons responding to a wide range of auditory and tactile stimuli. These changes in tuning properties are accompanied by an extensive reorganization of the occipital cortex that includes alterations in anatomical structure, neurochemical and metabolic pathways. Although it has been established in animal models that neurochemical pathways are heavily affected by early visual deprivation, the effects of blindness on these pathways in humans is still not well characterized. Here, using (1)H magnetic resonance spectroscopy in nine early blind and normally sighted subjects, we find that early blindness is associated with higher levels of creatine, choline and myo-Inositol and indications of lower levels of GABA within the occipital cortex. These results suggest that the cross-modal responses associated with early blindness may, at least in part, be driven by changes within occipital biochemical pathways.

  2. Neural Responses to Central and Peripheral Objects in the Lateral Occipital Cortex

    PubMed Central

    Wang, Bin; Guo, Jiayue; Yan, Tianyi; Ohno, Seiichiro; Kanazawa, Susumu; Huang, Qiang; Wu, Jinglong

    2016-01-01

    Human object recognition and classification depend on the retinal location where the object is presented and decrease as eccentricity increases. The lateral occipital complex (LOC) is thought to be preferentially involved in the processing of objects, and its neural responses exhibit category biases to objects presented in the central visual field. However, the nature of LOC neural responses to central and peripheral objects remains largely unclear. In the present study, we used functional magnetic resonance imaging (fMRI) and a wide-view presentation system to investigate neural responses to four categories of objects (faces, houses, animals, and cars) in the primary visual cortex (V1) and the lateral visual cortex, including the LOC and the retinotopic areas LO-1 and LO-2. In these regions, the neural responses to objects decreased as the distance between the location of presentation and center fixation increased, which is consistent with the diminished perceptual ability that was found for peripherally presented images. The LOC and LO-2 exhibited significantly positive neural responses to all eccentricities (0–55°), but LO-1 exhibited significantly positive responses only to central eccentricities (0–22°). By measuring the ratio relative to V1 (RRV1), we further demonstrated that eccentricity, category and the interaction between them significantly affected neural processing in these regions. LOC, LO-1, and LO-2 exhibited larger RRV1s when stimuli were presented at an eccentricity of 0° compared to when they were presented at the greater eccentricities. In LOC and LO-2, the RRV1s for images of faces, animals and cars showed an increasing trend when the images were presented at eccentricities of 11 to 33°. However, the RRV1s for houses showed a decreasing trend in LO-1 and no difference in the LOC and LO-2. We hypothesize, that when houses and the images in the other categories were presented in the peripheral visual field, they were processed via

  3. Neural Responses to Central and Peripheral Objects in the Lateral Occipital Cortex.

    PubMed

    Wang, Bin; Guo, Jiayue; Yan, Tianyi; Ohno, Seiichiro; Kanazawa, Susumu; Huang, Qiang; Wu, Jinglong

    2016-01-01

    Human object recognition and classification depend on the retinal location where the object is presented and decrease as eccentricity increases. The lateral occipital complex (LOC) is thought to be preferentially involved in the processing of objects, and its neural responses exhibit category biases to objects presented in the central visual field. However, the nature of LOC neural responses to central and peripheral objects remains largely unclear. In the present study, we used functional magnetic resonance imaging (fMRI) and a wide-view presentation system to investigate neural responses to four categories of objects (faces, houses, animals, and cars) in the primary visual cortex (V1) and the lateral visual cortex, including the LOC and the retinotopic areas LO-1 and LO-2. In these regions, the neural responses to objects decreased as the distance between the location of presentation and center fixation increased, which is consistent with the diminished perceptual ability that was found for peripherally presented images. The LOC and LO-2 exhibited significantly positive neural responses to all eccentricities (0-55°), but LO-1 exhibited significantly positive responses only to central eccentricities (0-22°). By measuring the ratio relative to V1 (RRV1), we further demonstrated that eccentricity, category and the interaction between them significantly affected neural processing in these regions. LOC, LO-1, and LO-2 exhibited larger RRV1s when stimuli were presented at an eccentricity of 0° compared to when they were presented at the greater eccentricities. In LOC and LO-2, the RRV1s for images of faces, animals and cars showed an increasing trend when the images were presented at eccentricities of 11 to 33°. However, the RRV1s for houses showed a decreasing trend in LO-1 and no difference in the LOC and LO-2. We hypothesize, that when houses and the images in the other categories were presented in the peripheral visual field, they were processed via different

  4. Visual object agnosia is associated with a breakdown of object-selective responses in the lateral occipital cortex.

    PubMed

    Ptak, Radek; Lazeyras, François; Di Pietro, Marie; Schnider, Armin; Simon, Stéphane R

    2014-07-01

    Patients with visual object agnosia fail to recognize the identity of visually presented objects despite preserved semantic knowledge. Object agnosia may result from damage to visual cortex lying close to or overlapping with the lateral occipital complex (LOC), a brain region that exhibits selectivity to the shape of visually presented objects. Despite this anatomical overlap the relationship between shape processing in the LOC and shape representations in object agnosia is unknown. We studied a patient with object agnosia following isolated damage to the left occipito-temporal cortex overlapping with the LOC. The patient showed intact processing of object structure, yet often made identification errors that were mainly based on the global visual similarity between objects. Using functional Magnetic Resonance Imaging (fMRI) we found that the damaged as well as the contralateral, structurally intact right LOC failed to show any object-selective fMRI activity, though the latter retained selectivity for faces. Thus, unilateral damage to the left LOC led to a bilateral breakdown of neural responses to a specific stimulus class (objects and artefacts) while preserving the response to a different stimulus class (faces). These findings indicate that representations of structure necessary for the identification of objects crucially rely on bilateral, distributed coding of shape features.

  5. Impossible expectations: fMRI adaptation in the lateral occipital complex (LOC) is modulated by the statistical regularities of 3D structural information.

    PubMed

    Freud, Erez; Ganel, Tzvi; Avidan, Galia

    2015-11-15

    fMRI adaptation (fMRIa), the attenuation of fMRI signal which follows repeated presentation of a stimulus, is a well-documented phenomenon. Yet, the underlying neural mechanisms supporting this effect are not fully understood. Recently, short-term perceptual expectations, induced by specific experimental settings, were shown to play an important modulating role in fMRIa. Here we examined the role of long-term expectations, based on 3D structural statistical regularities, in the modulation of fMRIa. To this end, human participants underwent fMRI scanning while performing a same-different task on pairs of possible (regular, expected) objects and spatially impossible (irregular, unexpected) objects. We hypothesized that given the spatial irregularity of impossible objects in relation to real-world visual experience, the visual system would always generate a prediction which is biased to the possible version of the objects. Consistently, fMRIa effects in the lateral occipital cortex (LOC) were found for possible, but not for impossible objects. Additionally, in alternating trials the order of stimulus presentation modulated LOC activity. That is, reduced activation was observed in trials in which the impossible version of the object served as the prime object (i.e. first object) and was followed by the possible version compared to the reverse order. These results were also supported by the behavioral advantage observed for trials that were primed by possible objects. Together, these findings strongly emphasize the importance of perceptual expectations in object representation and provide novel evidence for the role of real-world statistical regularities in eliciting fMRIa.

  6. Representation of the visual field in the occipital striate cortex.

    PubMed Central

    McFadzean, R; Brosnahan, D; Hadley, D; Mutlukan, E

    1994-01-01

    The representation of the field of vision in the human striate cortex is based on the Holmes map in which about 25% of the surface area of the striate cortex is allocated to the central 15 degrees of vision. Following the introduction of computed tomography of the brain, the accuracy of the Holmes map was apparently confirmed by clinical/radiological correlation, but a revision has been proposed by Horton and Hoyt based on a magnetic resonance imaging study of three patients with visual field defects due to striate lesions. They propose that the central cortical representation of vision occupies a much larger area. This study reviews the perimetric and imaging findings in a larger series of patients with striate cortical disease and provides support for the revised representation. The clinical phenomenon of macular sparing and its relation to representation of the macula at the occipital pole is also discussed. Images PMID:8148333

  7. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.

    PubMed

    Ptito, M; Fumal, A; de Noordhout, A Martens; Schoenen, J; Gjedde, A; Kupers, R

    2008-01-01

    Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex. The number of cortical sites inducing tactile sensations appeared to be related to the number of hours of Braille reading per day, Braille reading speed and dexterity. These data, taken in conjunction with previous anatomical, behavioural and functional imaging results, suggest the presence of a polysynaptic cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference hypothesis.

  8. The causal role of the occipital face area (OFA) and lateral occipital (LO) cortex in symmetry perception.

    PubMed

    Bona, Silvia; Cattaneo, Zaira; Silvanto, Juha

    2015-01-14

    Symmetry is an important cue in face and object perception. Here we used fMRI-guided transcranial magnetic stimulation (TMS) to shed light on the role of the occipital face area (OFA), a key region in face processing, and the lateral occipital (LO) cortex, a key area in object processing, in symmetry detection. In the first experiment, we applied TMS over the rightOFA, its left homolog (leftOFA), rightLO, and vertex (baseline) while participants were discriminating between symmetric and asymmetric dot patterns. Stimulation of rightOFA and rightLO impaired performance, causally implicating these two regions in detection of symmetry in low-level dot configurations. TMS over rightLO but not rightOFA also significantly impaired detection of nonsymmetric shapes defined by collinear Gabor patches, demonstrating that rightOFA responds to symmetry but not to all cues mediating figure-ground segregation. The second experiment showed a causal role for rightOFA but not rightLO in facial symmetry detection. Overall, our results demonstrate that both the rightOFA and rightLO are sensitive to symmetry in dot patterns, whereas only rightOFA is causally involved in facial symmetry detection.

  9. Right Occipital Cortex Activation Correlates with Superior Odor Processing Performance in the Early Blind

    PubMed Central

    Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.

    2013-01-01

    Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263

  10. Role of the human retrosplenial cortex/parieto-occipital sulcus in perspective priming.

    PubMed

    Sulpizio, Valentina; Committeri, Giorgia; Lambrey, Simon; Berthoz, Alain; Galati, Gaspare

    2016-01-15

    The ability to imagine the world from a different viewpoint is a fundamental competence for spatial reorientation and for imagining what another individual sees in the environment. Here, we investigated the neural bases of such an ability using functional magnetic resonance imaging. Healthy participants detected target displacements across consecutive views of a familiar virtual room, either from the perspective of an avatar (primed condition) or in the absence of such a prime (unprimed condition). In the primed condition, the perspective at test always corresponded to the avatar's perspective, while in the unprimed condition it was randomly chosen as 0, 45 or 135deg of viewpoint rotation. We observed a behavioral advantage in performing a perspective transformation during the primed condition as compared to an equivalent amount of unprimed perspective change. Although many cortical regions (dorsal parietal, parieto-temporo-occipital junction, precuneus and retrosplenial cortex/parieto-occipital sulcus or RSC/POS) were involved in encoding and retrieving target location from different perspectives and were modulated by the amount of viewpoint rotation, the RSC/POS was the only area showing decreased activity in the primed as compared to the unprimed condition, suggesting that this region anticipates the upcoming perspective change. The retrosplenial cortex/parieto-occipital sulcus appears to play a special role in the allocentric coding of heading directions.

  11. Role of the human retrosplenial cortex/parieto-occipital sulcus in perspective priming.

    PubMed

    Sulpizio, Valentina; Committeri, Giorgia; Lambrey, Simon; Berthoz, Alain; Galati, Gaspare

    2016-01-15

    The ability to imagine the world from a different viewpoint is a fundamental competence for spatial reorientation and for imagining what another individual sees in the environment. Here, we investigated the neural bases of such an ability using functional magnetic resonance imaging. Healthy participants detected target displacements across consecutive views of a familiar virtual room, either from the perspective of an avatar (primed condition) or in the absence of such a prime (unprimed condition). In the primed condition, the perspective at test always corresponded to the avatar's perspective, while in the unprimed condition it was randomly chosen as 0, 45 or 135deg of viewpoint rotation. We observed a behavioral advantage in performing a perspective transformation during the primed condition as compared to an equivalent amount of unprimed perspective change. Although many cortical regions (dorsal parietal, parieto-temporo-occipital junction, precuneus and retrosplenial cortex/parieto-occipital sulcus or RSC/POS) were involved in encoding and retrieving target location from different perspectives and were modulated by the amount of viewpoint rotation, the RSC/POS was the only area showing decreased activity in the primed as compared to the unprimed condition, suggesting that this region anticipates the upcoming perspective change. The retrosplenial cortex/parieto-occipital sulcus appears to play a special role in the allocentric coding of heading directions. PMID:26484830

  12. MRI in occipital lobe infarcts: classification by involvement of the striate cortex.

    PubMed

    Kitajima, M; Korogi, Y; Kido, T; Ikeda, O; Morishita, S; Takahashi, M

    1998-11-01

    We reviewed the MRI studies of 25 patients with occipital lobe infarcts to clarify the distribution of infarcts in the posterior cerebral arterial territory, focussing on their relationship to the striate cortex. Visual field defects and MRI findings were also correlated in 16 patients. On coronal and/or sagittal images, the distribution of the infarct and its relationship to the striate cortex were classified. Involvement of the cortex of both upper and lower lips of the calcarine fissure was observed in 10 patients, and involvement of the lower lip alone in 15. The upper cortical lesions were always accompanied by lower cortical lesions. The visual field defects were complete hemianopia in nine patients, superior quadrantanopia in six and hemianopia with a preserved temporal crescent in one. All patients with superior quadrantanopia had involvement of the lower cortex alone; there were no cases of inferior quadrantanopia. The characteristic vascular anatomy, and poor development of the collateral circulation in the lower cortical area, may explain the vulnerability of this area to infarcts.

  13. Early coding of reaching: frontal and parietal association connections of parieto-occipital cortex.

    PubMed

    Caminiti, R; Genovesio, A; Marconi, B; Mayer, A B; Onorati, P; Ferraina, S; Mitsuda, T; Giannetti, S; Squatrito, S; Maioli, M G; Molinari, M

    1999-09-01

    The ipsilateral association connections of the cortex of the dorsal part of the rostral bank of the parieto-occipital sulcus and of the adjoining posterior part of the superior parietal lobule were studied by using different retrograde fluorescent tracers. Fluoro-Ruby, Fast blue and Diamidino yellow were injected into visual area V6A, and dorso-caudal (PMdc, F2) and dorso-rostral (PMdr, F7) premotor cortex, respectively. The parietal area of injection had been previously characterized physiologically in behaving monkeys, through a variety of oculomotor and visuomanual tasks. Area V6A is mainly linked by reciprocal projections to parietal areas 7m, MIP (medial intraparietal) and PEa, and, to a lesser extent, to frontal areas PMdr (rostral dorsal premotor cortex, F7) and PMdc (F2). All these areas project to that part of the dorsocaudal premotor cortex that has a direct access to primary motor cortex. V6A is also connected to area F5 and, to a lesser extent, to 7a, ventral (VIP) and lateral (LIP) intraparietal areas. This pattern of association connections may explain the presence of visually-related and eye-position signals in premotor cortex, as well as the influence of information concerning arm position and movement direction on V6A neural activity. Area V6A emerges as a potential 'early' node of the distributed network underlying visually-guided reaching. In this network, reciprocal association connections probably impose, through re-entrant signalling, a recursive property to the operations leading to the composition of eye and hand motor commands.

  14. Oxidative and glicolytic metabolism of the frontal cortex (latero-frontal) and of the posterior cortex (latero-occipital) in relation with the sexual activity of the rat.

    PubMed

    Menéndez-Patterson, A; Florez-Lozano, J A; Marin, B

    1976-01-01

    The authors of this paper have ascertained the glycolytic metabolism and the oxidative metabolism (intake of QO2), of the frontal and posterior cortex in female rats at different stages of the sexual cycle, as also in ovariectomized animals, by the intake of glucose and the production of lactates. The results indicate a statistically significant increase of the oxidative metabolism of the posterior cortex (latero-occipital) in the estrual and proestrual phases, in comparisons with the diestral phase. The frontal cortex (latero-frontal) did not show any significant difference; moreover, the glycolitic metabolism did not alter in any of the tissues under observation. These findings, seem to suggest possible participation of the posterior cortex (latero-occipital) on the regulation of sexual cycle of the rat. The activation of this cortex occurs through the preponderant imbricantion of the tri-carboxylic acid cycle.

  15. Recruitment of Occipital Cortex during Sensory Substitution Training Linked to Subjective Experience of Seeing in People with Blindness

    PubMed Central

    Ortiz, Tomás; Poch, Joaquín; Santos, Juan M.; Requena, Carmen; Martínez, Ana M.; Ortiz-Terán, Laura; Turrero, Agustín; Barcia, Juan; Nogales, Ramón; Calvo, Agustín; Martínez, José M.; Córdoba, José L.; Pascual-Leone, Alvaro

    2011-01-01

    Over three months of intensive training with a tactile stimulation device, 18 blind and 10 blindfolded seeing subjects improved in their ability to identify geometric figures by touch. Seven blind subjects spontaneously reported ‘visual qualia’, the subjective sensation of seeing flashes of light congruent with tactile stimuli. In the latter subjects tactile stimulation evoked activation of occipital cortex on electroencephalography (EEG). None of the blind subjects who failed to experience visual qualia, despite identical tactile stimulation training, showed EEG recruitment of occipital cortex. None of the blindfolded seeing humans reported visual-like sensations during tactile stimulation. These findings support the notion that the conscious experience of seeing is linked to the activation of occipital brain regions in people with blindness. Moreover, the findings indicate that provision of visual information can be achieved through non-visual sensory modalities which may help to minimize the disability of blind individuals, affording them some degree of object recognition and navigation aid. PMID:21853098

  16. Increased BOLD Variability in the Parietal Cortex and Enhanced Parieto-Occipital Connectivity during Tactile Perception in Congenitally Blind Individuals

    PubMed Central

    Leo, Andrea; Bernardi, Giulio; Handjaras, Giacomo; Bonino, Daniela; Ricciardi, Emiliano; Pietrini, Pietro

    2012-01-01

    Previous studies in early blind individuals posited a possible role of parieto-occipital connections in conveying nonvisual information to the visual occipital cortex. As a consequence of blindness, parietal areas would thus become able to integrate a greater amount of multimodal information than in sighted individuals. To verify this hypothesis, we compared fMRI-measured BOLD signal temporal variability, an index of efficiency in functional information integration, in congenitally blind and sighted individuals during tactile spatial discrimination and motion perception tasks. In both tasks, the BOLD variability analysis revealed many cortical regions with a significantly greater variability in the blind as compared to sighted individuals, with an overlapping cluster located in the left inferior parietal/anterior intraparietal cortex. A functional connectivity analysis using this region as seed showed stronger correlations in both tasks with occipital areas in the blind as compared to sighted individuals. As BOLD variability reflects neural integration and processing efficiency, these cross-modal plastic changes in the parietal cortex, even if described in a limited sample, reinforce the hypothesis that this region may play an important role in processing nonvisual information in blind subjects and act as a hub in the cortico-cortical pathway from somatosensory cortex to the reorganized occipital areas. PMID:22792493

  17. Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individuals.

    PubMed

    Leo, Andrea; Bernardi, Giulio; Handjaras, Giacomo; Bonino, Daniela; Ricciardi, Emiliano; Pietrini, Pietro

    2012-01-01

    Previous studies in early blind individuals posited a possible role of parieto-occipital connections in conveying nonvisual information to the visual occipital cortex. As a consequence of blindness, parietal areas would thus become able to integrate a greater amount of multimodal information than in sighted individuals. To verify this hypothesis, we compared fMRI-measured BOLD signal temporal variability, an index of efficiency in functional information integration, in congenitally blind and sighted individuals during tactile spatial discrimination and motion perception tasks. In both tasks, the BOLD variability analysis revealed many cortical regions with a significantly greater variability in the blind as compared to sighted individuals, with an overlapping cluster located in the left inferior parietal/anterior intraparietal cortex. A functional connectivity analysis using this region as seed showed stronger correlations in both tasks with occipital areas in the blind as compared to sighted individuals. As BOLD variability reflects neural integration and processing efficiency, these cross-modal plastic changes in the parietal cortex, even if described in a limited sample, reinforce the hypothesis that this region may play an important role in processing nonvisual information in blind subjects and act as a hub in the cortico-cortical pathway from somatosensory cortex to the reorganized occipital areas.

  18. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    PubMed

    Lieblein-Boff, Jacqueline C; Johnson, Elizabeth J; Kennedy, Adam D; Lai, Chron-Si; Kuchan, Matthew J

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  19. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain

    PubMed Central

    Lieblein-Boff, Jacqueline C.; Johnson, Elizabeth J.; Kennedy, Adam D.; Lai, Chron-Si; Kuchan, Matthew J.

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development. PMID:26317757

  20. Repetition suppression for speech processing in the associative occipital and parietal cortex of congenitally blind adults.

    PubMed

    Arnaud, Laureline; Sato, Marc; Ménard, Lucie; Gracco, Vincent L

    2013-01-01

    In the congenitally blind (CB), sensory deprivation results in cross-modal plasticity, with visual cortical activity observed for various auditory tasks. This reorganization has been associated with enhanced auditory abilities and the recruitment of visual brain areas during sound and language processing. The questions we addressed are whether visual cortical activity might also be observed in CB during passive listening to auditory speech and whether cross-modal plasticity is associated with adaptive differences in neuronal populations compared to sighted individuals (SI). We focused on the neural substrate of vowel processing in CB and SI adults using a repetition suppression (RS) paradigm. RS has been associated with enhanced or accelerated neural processing efficiency and synchronous activity between interacting brain regions. We evaluated whether cortical areas in CB were sensitive to RS during repeated vowel processing and whether there were differences across the two groups. In accordance with previous studies, both groups displayed a RS effect in the posterior temporal cortex. In the blind, however, additional occipital, temporal and parietal cortical regions were associated with predictive processing of repeated vowel sounds. The findings suggest a more expanded role for cross-modal compensatory effects in blind persons during sound and speech processing and a functional transfer of specific adaptive properties across neural regions as a consequence of sensory deprivation at birth.

  1. Imagery of a moving object: the role of occipital cortex and human MT/V5+.

    PubMed

    Kaas, Amanda; Weigelt, Sarah; Roebroeck, Alard; Kohler, Axel; Muckli, Lars

    2010-01-01

    Visual imagery--similar to visual perception--activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral-occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1-3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences. PMID:19646536

  2. rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects.

    PubMed

    Kupers, R; Pappens, M; de Noordhout, A Maertens; Schoenen, J; Ptito, M; Fumal, A

    2007-02-27

    To study the functional involvement of the visual cortex in Braille reading, we applied repetitive transcranial magnetic stimulation (rTMS) over midoccipital (MOC) and primary somatosensory (SI) cortex in blind subjects. After rTMS of MOC, but not SI, subjects made significantly more errors and showed an abolishment of the improvement in reading speed following repetitive presentation of the same word list, suggesting a role of the visual cortex in repetition priming in the blind.

  3. Gene expression in the rat brain: High similarity but unique differences between frontomedial-, temporal- and occipital cortex

    PubMed Central

    2011-01-01

    Background The six-layered neocortex of the mammalian brain may appear largely homologous, but is in reality a modular structure of anatomically and functionally distinct areas. However, global gene expression seems to be almost identical across the cerebral cortex and only a few genes have so far been reported to show regional enrichment in specific cortical areas. Results In the present study on adult rat brain, we have corroborated the strikingly similar gene expression among cortical areas. However, differential expression analysis has allowed for the identification of 30, 24 and 11 genes enriched in frontomedial -, temporal- or occipital cortex, respectively. A large proportion of these 65 genes appear to be involved in signal transduction, including the ion channel Fxyd6, the neuropeptide Grp and the nuclear receptor Rorb. We also find that the majority of these genes display increased expression levels around birth and show distinct preferences for certain cortical layers and cell types in rodents. Conclusions Since specific patterns of expression often are linked to equally specialised biological functions, we propose that these cortex sub-region enriched genes are important for proper functioning of the cortical regions in question. PMID:21269499

  4. Alfred Walter Campbell and the visual functions of the occipital cortex.

    PubMed

    Macmillan, Malcolm

    2014-07-01

    In his pioneering cytoarchitectonic studies of the human brain, Alfred Walter Campbell identified two structurally different areas in the occipital lobes and assigned two different kinds of visual functions to them. The first area, the visuosensory, was essentially on the mesial surface of the calcarine fissure. It was the terminus of nervous impulses generated in the retina and was where simple visual sensations arose. The second area, the visuopsychic, which surrounded or invested the first, was where sensations were interpreted and elaborated into visual perceptions. I argue that Campbell's distinction between the two areas was the starting point for the eventual differentiation of areas V1-V5. After a brief outline of Campbell's early life and education in Australia and of his Scottish medical education and early work as a pathologist at the Lancashire County Lunatic Asylum at Rainhill near Liverpool, I summarise his work on the human brain. In describing the structures he identified in the occipital lobes, I analyse the similarities and differences between them and the related structures identified by Joseph Shaw Bolton. I conclude by proposing some reasons for how that work came to be overshadowed by the later studies of Brodmann and for the more general lack of recognition given Campbell and his work. Those reasons include the effect of the controversies precipitated by Campbell's alliance with Charles Sherrington over the functions of the sensory and motor cortices.

  5. Neural mechanisms of feature conjunction learning: enduring changes in occipital cortex after a week of training.

    PubMed

    Frank, Sebastian M; Reavis, Eric A; Tse, Peter U; Greenlee, Mark W

    2014-04-01

    Most visual activities, whether reading, driving, or playing video games, require rapid detection and identification of learned patterns defined by arbitrary conjunctions of visual features. Initially, such detection is slow and inefficient, but it can become fast and efficient with training. To determine how the brain learns to process conjunctions of visual features efficiently, we trained participants over eight consecutive days to search for a target defined by an arbitrary conjunction of color and location among distractors with a different conjunction of the same features. During each training session, we measured brain activity with functional magnetic resonance imaging (fMRI). The speed of visual search for feature conjunctions improved dramatically within just a few days. These behavioral improvements were correlated with increased neural responses to the stimuli in visual cortex. This suggests that changes in neural processing in visual cortex contribute to the speeding up of visual feature conjunction search. We find evidence that this effect is driven by an increase in the signal-to-noise ratio (SNR) of the BOLD signal for search targets over distractors. In a control condition where target and distractor identities were exchanged after training, learned search efficiency was abolished, suggesting that the primary improvement was perceptual learning for the search stimuli, not task-learning. Moreover, when participants were retested on the original task after nine months without further training, the acquired changes in behavior and brain activity were still present, showing that this can be an enduring form of learning and neural reorganization.

  6. Shape from sound: evidence for a shape operator in the lateral occipital cortex

    PubMed Central

    James, Thomas W.; Stevenson, Ryan A.; Kim, Sunah; VanDerKlok, Ross M.; James, Karin Harman

    2011-01-01

    A recent view of cortical functional specialization suggests that the primary organizing principle of the cortex is based on task requirements, rather than sensory modality. Consistent with this view, recent evidence suggests that a region of the lateral occipitotemporal cortex (LO) may process object shape information regardless of the modality of sensory input. There is considerable evidence that area LO is involved in processing visual and haptic shape information. However, sound can also carry acoustic cues to an object’s shape, for example, when a sound is produced by an object’s impact with a surface. Thus, the current study used auditory stimuli that were created from recordings of objects impacting a hard surface to test the hypothesis that area LO is also involved in auditory shape processing. The objects were of two shapes, rods and balls, and of two materials, metal and wood. Subjects were required to categorize the impact sounds in one of three tasks, 1) by the shape of the object while ignoring material, 2) by the material of the object while ignoring shape, or 3) by using all the information available. Area LO was more strongly recruited when subjects discriminated impact sounds based on the shape of the object that made them, compared to when subjects discriminated those same sounds based on material. The current findings suggest that activation in area LO is shape selective regardless of sensory input modality, and are consistent with an emerging theory of perceptual functional specialization of the brain that is task-based rather than sensory modality-based. PMID:21397616

  7. Shape from sound: evidence for a shape operator in the lateral occipital cortex.

    PubMed

    James, Thomas W; Stevenson, Ryan A; Kim, Sunah; Vanderklok, Ross M; James, Karin Harman

    2011-06-01

    A recent view of cortical functional specialization suggests that the primary organizing principle of the cortex is based on task requirements, rather than sensory modality. Consistent with this view, recent evidence suggests that a region of the lateral occipitotemporal cortex (LO) may process object shape information regardless of the modality of sensory input. There is considerable evidence that area LO is involved in processing visual and haptic shape information. However, sound can also carry acoustic cues to an object's shape, for example, when a sound is produced by an object's impact with a surface. Thus, the current study used auditory stimuli that were created from recordings of objects impacting a hard surface to test the hypothesis that area LO is also involved in auditory shape processing. The objects were of two shapes, rods and balls, and of two materials, metal and wood. Subjects were required to categorize the impact sounds in one of three tasks, (1) by the shape of the object while ignoring material, (2) by the material of the object while ignoring shape, or (3) by using all the information available. Area LO was more strongly recruited when subjects discriminated impact sounds based on the shape of the object that made them, compared to when subjects discriminated those same sounds based on material. The current findings suggest that activation in area LO is shape selective regardless of sensory input modality, and are consistent with an emerging theory of perceptual functional specialization of the brain that is task-based rather than sensory modality-based.

  8. Dynamic Modulation of Local Population Activity by Rhythm Phase in Human Occipital Cortex During a Visual Search Task

    PubMed Central

    Miller, Kai J.; Hermes, Dora; Honey, Christopher J.; Sharma, Mohit; Rao, Rajesh P. N.; den Nijs, Marcel; Fetz, Eberhard E.; Sejnowski, Terrence J.; Hebb, Adam O.; Ojemann, Jeffrey G.; Makeig, Scott; Leuthardt, Eric C.

    2010-01-01

    Brain rhythms are more than just passive phenomena in visual cortex. For the first time, we show that the physiology underlying brain rhythms actively suppresses and releases cortical areas on a second-to-second basis during visual processing. Furthermore, their influence is specific at the scale of individual gyri. We quantified the interaction between broadband spectral change and brain rhythms on a second-to-second basis in electrocorticographic (ECoG) measurement of brain surface potentials in five human subjects during a visual search task. Comparison of visual search epochs with a blank screen baseline revealed changes in the raw potential, the amplitude of rhythmic activity, and in the decoupled broadband spectral amplitude. We present new methods to characterize the intensity and preferred phase of coupling between broadband power and band-limited rhythms, and to estimate the magnitude of rhythm-to-broadband modulation on a trial-by-trial basis. These tools revealed numerous coupling motifs between the phase of low-frequency (δ, θ, α, β, and γ band) rhythms and the amplitude of broadband spectral change. In the θ and β ranges, the coupling of phase to broadband change is dynamic during visual processing, decreasing in some occipital areas and increasing in others, in a gyrally specific pattern. Finally, we demonstrate that the rhythms interact with one another across frequency ranges, and across cortical sites. PMID:21119778

  9. Bodies are Represented as Wholes Rather Than Their Sum of Parts in the Occipital-Temporal Cortex.

    PubMed

    Brandman, Talia; Yovel, Galit

    2016-02-01

    Behavioral studies suggested that bodies are represented as wholes rather than in a part-based manner. However, neural selectivity for body stimuli is found for both whole bodies and body parts. It is therefore undetermined whether the neural representation of bodies is configural or part-based. We used functional MRI to test the role of first-order configuration on body representation in the human occipital-temporal cortex by comparing the response to a whole body versus the sum of its parts. Results show that body-selective areas, whether defined by selectivity to headless bodies or body parts, preferred whole bodies over their sum of parts and successfully decoded body configuration. This configural representation was specific to body stimuli and not found for faces. In contrast, general object areas showed no preference for wholes over parts and decoded the configuration of both bodies and faces. Finally, whereas effects of inversion on configural face representation were specific to face-selective mechanisms, effects of body inversion were not unique to body-selective mechanisms. We conclude that the neural representation of body parts is strengthened by their arrangement into an intact body, thereby demonstrating a central role of first-order configuration in the neural representation of bodies in their category-selective areas.

  10. Optical topography guided semi-three-dimensional diffuse optical tomography for a multi-layer model of occipital cortex: a pilot methodological study

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng

    2016-03-01

    In this paper, an optical topography (OT) guided diffuse optical tomography (DOT) scheme is developed for functional imaging of the occipital cortex. The method extends the previously proposed semi-three-dimensional DOT methodology to reconstruction of two-dimensional extracerebral and cerebral images using a visual cortex oriented five-layered slab geometry, and incorporate the OT localization regularization in the cerebral reconstruction to achieve enhanced quantitative accuracy and spatial resolution. We validate the methodology using simulated data and demonstrate its merits in comparison to the standalone OT and DOT.

  11. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES-fMRI approach.

    PubMed

    Alekseichuk, Ivan; Diers, Kersten; Paulus, Walter; Antal, Andrea

    2016-10-15

    The aim of this study was to investigate if the blood oxygenation level-dependent (BOLD) changes in the visual cortex can be used as biomarkers reflecting the online and offline effects of transcranial electrical stimulation (tES). Anodal transcranial direct current stimulation (tDCS) and 10Hz transcranial alternating current stimulation (tACS) were applied for 10min duration over the occipital cortex of healthy adults during the presentation of different visual stimuli, using a crossover, double-blinded design. Control experiments were also performed, in which sham stimulation as well as another electrode montage were used. Anodal tDCS over the visual cortex induced a small but significant further increase in BOLD response evoked by a visual stimulus; however, no aftereffect was observed. Ten hertz of tACS did not result in an online effect, but in a widespread offline BOLD decrease over the occipital, temporal, and frontal areas. These findings demonstrate that tES during visual perception affects the neuronal metabolism, which can be detected with functional magnetic resonance imaging (fMRI). PMID:26608246

  12. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES-fMRI approach.

    PubMed

    Alekseichuk, Ivan; Diers, Kersten; Paulus, Walter; Antal, Andrea

    2016-10-15

    The aim of this study was to investigate if the blood oxygenation level-dependent (BOLD) changes in the visual cortex can be used as biomarkers reflecting the online and offline effects of transcranial electrical stimulation (tES). Anodal transcranial direct current stimulation (tDCS) and 10Hz transcranial alternating current stimulation (tACS) were applied for 10min duration over the occipital cortex of healthy adults during the presentation of different visual stimuli, using a crossover, double-blinded design. Control experiments were also performed, in which sham stimulation as well as another electrode montage were used. Anodal tDCS over the visual cortex induced a small but significant further increase in BOLD response evoked by a visual stimulus; however, no aftereffect was observed. Ten hertz of tACS did not result in an online effect, but in a widespread offline BOLD decrease over the occipital, temporal, and frontal areas. These findings demonstrate that tES during visual perception affects the neuronal metabolism, which can be detected with functional magnetic resonance imaging (fMRI).

  13. Unedited in vivo detection and quantification of γ-aminobutyric acid in the occipital cortex using short-TE MRS at 3 T.

    PubMed

    Near, Jamie; Andersson, Jesper; Maron, Eduard; Mekle, Ralf; Gruetter, Rolf; Cowen, Philip; Jezzard, Peter

    2013-11-01

    Short-TE MRS has been proposed recently as a method for the in vivo detection and quantification of γ-aminobutyric acid (GABA) in the human brain at 3 T. In this study, we investigated the accuracy and reproducibility of short-TE MRS measurements of GABA at 3 T using both simulations and experiments. LCModel analysis was performed on a large number of simulated spectra with known metabolite input concentrations. Simulated spectra were generated using a range of spectral linewidths and signal-to-noise ratios to investigate the effect of varying experimental conditions, and analyses were performed using two different baseline models to investigate the effect of an inaccurate baseline model on GABA quantification. The results of these analyses indicated that, under experimental conditions corresponding to those typically observed in the occipital cortex, GABA concentration estimates are reproducible (mean reproducibility error, <20%), even when an incorrect baseline model is used. However, simulations indicate that the accuracy of GABA concentration estimates depends strongly on the experimental conditions (linewidth and signal-to-noise ratio). In addition to simulations, in vivo GABA measurements were performed using both spectral editing and short-TE MRS in the occipital cortex of 14 healthy volunteers. Short-TE MRS measurements of GABA exhibited a significant positive correlation with edited GABA measurements (R = 0.58, p < 0.05), suggesting that short-TE measurements of GABA correspond well with measurements made using spectral editing techniques. Finally, within-session reproducibility was assessed in the same 14 subjects using four consecutive short-TE GABA measurements in the occipital cortex. Across all subjects, the average coefficient of variation of these four GABA measurements was 8.7 ± 4.9%. This study demonstrates that, under some experimental conditions, short-TE MRS can be employed for the reproducible detection of GABA at 3 T, but that the technique

  14. Reduced repetition suppression in the occipital visual cortex during repeated negative Chinese personality-trait word processing.

    PubMed

    Qiao, Fuqiang; Zheng, Li; Li, Lin; Zhu, Lei; Wang, Qianfeng

    2014-12-01

    Reduced neural activation have been consistently observed during repeated items processing, a phenomenon termed repetition suppression. The present study used functional magnetic resonance imaging (fMRI) to investigate whether and how stimuli of emotional valence affects repetition suppression by adopting Chinese personality-trait words as materials. Seventeen participants were required to read the negative and neutral Chinese personality-trait words silently. And then they were presented with repeated and novel items during scanning. Results showed significant repetition suppression in the inferior occipital gyrus only for neutral personality-trait words, whereas similar repetition suppression in the left inferior temporal gyrus and left middle temporal gyrus was revealed for both the word types. These results indicated common and distinct neural substrates during processing Chinese repeated negative and neutral personality-trait words.

  15. The role of the lateral occipital cortex in aesthetic appreciation of representational and abstract paintings: a TMS study.

    PubMed

    Cattaneo, Zaira; Lega, Carlotta; Ferrari, Chiara; Vecchi, Tomaso; Cela-Conde, Camilo José; Silvanto, Juha; Nadal, Marcos

    2015-04-01

    Neuroimaging studies of aesthetic appreciation have shown that activity in the lateral occipital area (LO)-a key node in the object recognition pathway-is modulated by the extent to which visual artworks are liked or found beautiful. However, the available evidence is only correlational. Here we used transcranial magnetic stimulation (TMS) to investigate the putative causal role of LO in the aesthetic appreciation of paintings. In our first experiment, we found that interfering with LO activity during aesthetic appreciation selectively reduced evaluation of representational paintings, leaving appreciation of abstract paintings unaffected. A second experiment demonstrated that, although the perceived clearness of the images overall positively correlated with liking, the detrimental effect of LO TMS on aesthetic appreciation does not owe to TMS reducing perceived clearness. Taken together, our findings suggest that object-recognition mechanisms mediated by LO play a causal role in aesthetic appreciation of representational art.

  16. Task-Related Dynamic Division of Labor Between Anterior Temporal and Lateral Occipital Cortices in Representing Object Size

    PubMed Central

    2016-01-01

    Object size is represented by functionally distinct sectors along the ventral visual pathway. The early visual cortex encodes objects' sensory-retinal size. Subsequently, the occipitotemporal cortex computes objects' canonical size based on statistical regularities of visual features. Although the neurocomputation of size has been studied in a “bottom-up” sensory-driven framework, little is known about how perceptual size information is transformed into conceptual knowledge and how this computation is modulated by “top-down” goal-driven signals. Using continuous theta burst stimulation, we demonstrated that behavioral goal shapes the neurocognitive network underpinning object size. We manipulated the congruency of perceptual versus conceptual object size, which provides a robust behavioral probe reflecting implicit size knowledge. Neurostimulation was targeted at the lateral occipital cortex (LOC), a key region for object perception, or the anterior temporal lobe (ATL), a “hub” of supramodal conceptual processing. We observed striking contextual modulation of the neurocognitive architecture: when human participants judged perceptual size, the congruency effect was significantly attenuated by LOC stimulation but stayed resilient to ATL stimulation. By contrast, when they judged conceptual size, both LOC and ATL stimulation eradicated the otherwise robust effect. Our findings demonstrate disparate functional profiles of the LOC and ATL, providing the first evidence of a malleable network adaptively altering its division of labor with top-down states. The LOC, regardless of task demand, automatically represents “bottom-up” statistical regularities of visual conformation (reflecting typical object size), whereas the ATL contributes to this computation when the context requires semantically based linkage of visual attributes to object recognition. SIGNIFICANCE STATEMENT In the present study, we provide compelling evidence that the

  17. Category-Selectivity in Human Visual Cortex Follows Cortical Topology: A Grouped icEEG Study

    PubMed Central

    Conner, Christopher Richard; Whaley, Meagan Lee; Baboyan, Vatche George; Tandon, Nitin

    2016-01-01

    Neuroimaging studies suggest that category-selective regions in higher-order visual cortex are topologically organized around specific anatomical landmarks: the mid-fusiform sulcus (MFS) in the ventral temporal cortex (VTC) and lateral occipital sulcus (LOS) in the lateral occipital cortex (LOC). To derive precise structure-function maps from direct neural signals, we collected intracranial EEG (icEEG) recordings in a large human cohort (n = 26) undergoing implantation of subdural electrodes. A surface-based approach to grouped icEEG analysis was used to overcome challenges from sparse electrode coverage within subjects and variable cortical anatomy across subjects. The topology of category-selectivity in bilateral VTC and LOC was assessed for five classes of visual stimuli—faces, animate non-face (animals/body-parts), places, tools, and words—using correlational and linear mixed effects analyses. In the LOC, selectivity for living (faces and animate non-face) and non-living (places and tools) classes was arranged in a ventral-to-dorsal axis along the LOS. In the VTC, selectivity for living and non-living stimuli was arranged in a latero-medial axis along the MFS. Written word-selectivity was reliably localized to the intersection of the left MFS and the occipito-temporal sulcus. These findings provide direct electrophysiological evidence for topological information structuring of functional representations within higher-order visual cortex. PMID:27272936

  18. Impaired Visual Object Processing Across an Occipital- Frontal-Hippocampal Brain Network in Schizophrenia: An integrated neuroimaging study

    PubMed Central

    Sehatpour, Pejman; Dias, Elisa C.; Butler, Pamela D.; Revheim, Nadine; Guilfoyle, David N.; Foxe, John J.; Javitt, Daniel C.

    2013-01-01

    Background Perceptual closure refers to the ability to identify objects with partial information. Deficits in schizophrenia are indexed by impaired generation of the closure-related negativity (NCL) from ventral stream visual cortex (lateral occipital complex, LOC), as part of a network of brain regions that also includes dorsal stream visual regions, prefrontal cortex (PFC) and hippocampus. This study evaluates network-level interactions during perceptual closure in schizophrenia using parallel ERP, fMRI and neuropsychological assessment. Methods ERP were obtained from 24 patients and 20 healthy volunteers in response to fragmented (closeable) and control scrambled (noncloseable) line drawings. fMRI were obtained from 11 patients and 12 controls. Patterns of between group differences for predefined ERP components and fMRI regions of interest were determined using both analysis of variance and structural equation modeling. Global neuropsychological performance was assessed using elements of the WAIS-III, WMS-III and MATRICS batteries. Results Patients showed impaired visual P1 generation, reflecting dorsal stream dysfunction, along with impaired generation of NCL components over PFC and LOC. In fMRI, patients showed impaired activation of dorsal and ventral visual regions, PFC and hippocampus. Impaired activation of dorsal stream visual regions contributed significantly to impaired PFC activation. Impaired PFC activation contributed significantly to impaired activation of hippocampus and LOC. Impaired LOC and hippocampal activation contributed significantly to deficits on WAIS-III Perceptual Organization Index (POI) and other tests of impaired perceptual processing in schizophrenia. Conclusion Schizophrenia is associated with severe activation deficits across a distributed network of sensory and higher order cognitive regions. Deficit in early visual processing within the dorsal visual stream contributes significantly to impaired frontal activation which, in turn

  19. Structural and functional changes across the visual cortex of a patient with visual form agnosia.

    PubMed

    Bridge, Holly; Thomas, Owen M; Minini, Loredana; Cavina-Pratesi, Cristiana; Milner, A David; Parker, Andrew J

    2013-07-31

    Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements. We present the first accurate quantification of the changes in thickness across DF's occipital cortex, finding the most substantial loss in the lateral occipital cortex (LOC). There are reduced white matter connections between LOC and other areas. Functional measures show pockets of activity that survive within structurally damaged areas. The topographic mapping of visual areas showed that ordered retinotopic maps were evident for DF in the ventral portions of visual cortical areas V1, V2, V3, and hV4. Although V1 shows evidence of topographic order in its dorsal portion, such maps could not be found in the dorsal parts of V2 and V3. We conclude that it is not possible to understand fully the deficits in object perception in visual-form agnosia without the exploitation of both structural and functional measurements. Our results also highlight for DF the cortical routes through which visual information is able to pass to support her well-documented abilities to use visual information to guide actions.

  20. The Lateral Occipital Complex shows no net response to object familiarity.

    PubMed

    Margalit, Eshed; Shah, Manan P; Tjan, Bosco S; Biederman, Irving; Keller, Brenton; Brenner, Rorry

    2016-09-01

    In 1995, Malach et al. discovered an area whose fMRI BOLD response was greater when viewing intact, familiar objects than when viewing their scrambled versions (resembling texture). Since then hundreds of studies have explored this late visual region termed the Lateral Occipital Complex (LOC), which is now known to be critical for shape perception (James, Culham, Humphrey, Milner, & Goodale, 2003). Malach et al. (1995) discounted a role of familiarity by showing that "abstract" Henry Moore sculptures, unfamiliar to the subjects, also activated this region. This characterization of LOC as a region that responds to shape independently of familiarity has been accepted but never tested with control of the same low-level features. We assessed LOC's response to objects that had identical parts in two different arrangements, one familiar and the other novel. Malach was correct: There is no net effect of familiarity in LOC. However, a multivoxel correlation analysis showed that LOC does distinguish familiar from novel objects. PMID:27599373

  1. Occipital neuralgia: anatomic considerations.

    PubMed

    Cesmebasi, Alper; Muhleman, Mitchel A; Hulsberg, Paul; Gielecki, Jerzy; Matusz, Petru; Tubbs, R Shane; Loukas, Marios

    2015-01-01

    Occipital neuralgia is a debilitating disorder first described in 1821 as recurrent headaches localized in the occipital region. Other symptoms that have been associated with this condition include paroxysmal burning and aching pain in the distribution of the greater, lesser, or third occipital nerves. Several etiologies have been identified in the cause of occipital neuralgia and include, but are not limited to, trauma, fibrositis, myositis, fracture of the atlas, and compression of the C-2 nerve root, C1-2 arthrosis syndrome, atlantoaxial lateral mass osteoarthritis, hypertrophic cervical pachymeningitis, cervical cord tumor, Chiari malformation, and neurosyphilis. The management of occipital neuralgia can include conservative approaches and/or surgical interventions. Occipital neuralgia is a multifactorial problem where multiple anatomic areas/structures may be involved with this pathology. A review of these etiologies may provide guidance in better understanding occipital neuralgia.

  2. The evolution of a disparity decision in human visual cortex

    PubMed Central

    Cottereau, Benoit R.; Ales, Justin M.; Norcia, Anthony M.

    2015-01-01

    We used fMRI-informed EEG source-imaging in humans to characterize the dynamics of cortical responses during a disparity-discrimination task. After the onset of a disparity-defined target, decision-related activity was found within an extended cortical network that included several occipital regions of interest (ROIs): V4, V3A, hMT+ and the Lateral Occipital Complex (LOC). By using a response-locked analysis, we were able to determine the timing relationships in this network of ROIs relative to the subject's behavioral response. Choice-related activity appeared first in the V4 ROI almost 200 ms before the button press and then subsequently in the V3A ROI. Modeling of the responses in the V4 ROI suggests that this area provides an early contribution to disparity discrimination. Choice-related responses were also found after the button-press in ROIs V4, V3A, LOC and hMT+. Outside the visual cortex, choice-related activity was found in the frontal and temporal pole before the button-press. By combining the spatial resolution of fMRI-informed EEG source imaging with the ability to sort out neural activity occurring before, during and after the behavioral manifestation of the decision, our study is the first to assign distinct functional roles to the extra-striate ROIs involved in perceptual decisions based on disparity, the primary cue for depth. PMID:24513152

  3. Occipital lobe infarction after open heart surgery.

    PubMed

    Smith, J L; Cross, S A

    1983-03-01

    The most common permanent neuro-ophthalmologic complication of cardiopulmonary bypass surgery is visual loss. Bilateral lower altitudinal visual field defects were documented in a patient who noted blurred vision following open heart surgery. A difference of opinion existed as to whether the field defects were due to retina-optic nerve or occipital lobe lesions. Two points are emphasized in this report: 1) the field defects were much easier to define on the tangent screen than on Goldman perimetry, and 2) occipital coronal high resolution CT scan confirmed bilateral upper bank calcarine cortex infarctions in this patient. Occipital coronal, thin-section, high-resolution computed tomographic scans are helpful in studying patients with occipital lobe visual field defects.

  4. Occipital bending in depression.

    PubMed

    Maller, Jerome J; Thomson, Richard H S; Rosenfeld, Jeffrey V; Anderson, Rodney; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2014-06-01

    There are reports of differences in occipital lobe asymmetry within psychiatric populations when compared with healthy control subjects. Anecdotal evidence and enlarged lateral ventricles suggests that there may also be a different pattern of curvature whereby one occipital lobe wraps around the other, termed 'occipital bending'. We investigated the prevalence of occipital bending in 51 patients with major depressive disorder (males mean age = 41.96 ± 14.00 years, females mean age = 40.71 ± 12.41 years) and 48 age- and sex-matched healthy control subjects (males mean age = 40.29 ± 10.23 years, females mean age = 42.47 ± 14.25 years) and found the prevalence to be three times higher among patients with major depressive disorder (18/51, 35.3%) when compared with control subjects (6/48, 12.5%). The results suggest that occipital bending is more common among patients with major depressive disorder than healthy subjects, and that occipital asymmetry and occipital bending are separate phenomena. Incomplete neural pruning may lead to the cranial space available for brain growth being restricted, or ventricular enlargement may exacerbate the natural occipital curvature patterns, subsequently causing the brain to become squashed and forced to 'wrap' around the other occipital lobe. Although the clinical implications of these results are unclear, they provide an impetus for further research into the relevance of occipital bending in major depression disorder.

  5. Early occipital injury affects numerosity counting but not simple arithmetic.

    PubMed

    Zhang, Han; Chen, Chuansheng; Sun, Zhaohui; Lin, Jiuluan; Zhou, Wenjing; Zhou, Xinlin

    2016-01-01

    This study investigated the effects of early occipital injury on the development of counting and simple arithmetic abilities in an occipital epileptic patient. This patient had obvious softening lesions in the bilateral occipital regions due to viral encephalitis at the age of 1.5 years. Results showed that she could perform subitizing and simple arithmetic very well, but could not perform numerosity counting tasks. These results suggest that the occipital cortex plays an important role in the development of numerosity counting skills, but not in the development of subitizing and simple arithmetic. PMID:25771703

  6. Epileptiform transients of the occipital lobe in pediatrics.

    PubMed

    Campbell, Stefan

    2013-09-01

    Differentiating between benign occipital transients and epileptic discharges from the occipital lobes is imperative. Focal occipital spikes and sharp waves are not always associated with benign disorders. The occurrence of occipital spikes and spike and wave complexes depends on the child's age, the maturation of the occipital cortex, and the cortex's connection with other structures (Beaumanoir et al. 1993). Clinical manifestations also evolve as the patient ages. Seizure semiology is due to the maturation of the visual system and its connections. An infant from birth to twelve months of age could experience autonomic symptoms such as pallor and vomiting with possible minor motor movements. Visual symptoms and/or headaches are usually not noticed until between five and seven years of age. These visual phenomena can continue into adulthood.

  7. 48 CFR 732.406-74 - Revocation of the LOC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... during the term of the contract FM/CMP believes that the LOC should be revoked, FM/CMP may, after consultation with the cognizant contracting officer(s) and GC, revoke the LOC by written notification to...

  8. 48 CFR 732.406-72 - Establishing an LOC.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., the LOC is a separate agreement between the contractor and FM/CMP, acting on behalf of the USAID Controller. The terms and conditions of the LOC are established by FM/CMP/GIB. (b) In order to establish or amend an LOC, the contracting officer shall provide FM/CMP with the following information: (1) The...

  9. 48 CFR 732.406-72 - Establishing an LOC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., the LOC is a separate agreement between the contractor and FM/CMP, acting on behalf of the USAID Controller. The terms and conditions of the LOC are established by FM/CMP/GIB. (b) In order to establish or amend an LOC, the contracting officer shall provide FM/CMP with the following information: (1) The...

  10. 48 CFR 732.406-72 - Establishing an LOC.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., the LOC is a separate agreement between the contractor and FM/CMP, acting on behalf of the USAID Controller. The terms and conditions of the LOC are established by FM/CMP/GIB. (b) In order to establish or amend an LOC, the contracting officer shall provide FM/CMP with the following information: (1) The...

  11. Effects of post-traumatic stress disorder on occipital lobe function and structure.

    PubMed

    Chao, Linda L; Lenoci, Maryann; Neylan, Thomas C

    2012-05-01

    Although there is evidence for strong connectivity between the amygdala and the visual cortex and some evidence for reduced occipital lobe gray matter volume in patients with post-traumatic stress disorder (PTSD), few studies have directly examined the effects of PTSD on occipital function. The current study used functional and structural MRI to examine occipital cortex function and structure in male combat veterans with and without PTSD. Left occipital gray matter volume was reduced in PTSD patients relative to the controls and correlated negatively with the severity of PTSD symptoms. Functional activity in the lateral occipital complex to aversive and nonaversive pictures presented in novel and repeated presentations was not altered by PTSD. These findings suggest that PTSD adversely affects occipital lobe volume but not the reactivity of the lateral occipital complex to generally aversive, trauma nonspecific stimuli.

  12. Altitudinal neglect in a patient with occipital infarction.

    PubMed

    Ergun-Marterer, A; Ergun, E; Mentes, M; Oder, W

    2001-04-01

    Visual neglect has been frequently described in a horizontal direction. Altitudinal neglect, however, has rarely been described and has been associated with bilateral lesions in the parieto-occipital or temporo-occipital region. The following case report presents a patient with marked altitudinal neglect of the inferior space which was elicited using a line bisection test. The previously healthy patient had well-defined lesions solely in the occipital cortex following an embolic infarction. The present case report underlines the possibility that bioccipital lesions themselves can be responsible for altitudinal neglect.

  13. Occipital lobe seizures and epilepsies.

    PubMed

    Adcock, Jane E; Panayiotopoulos, Chrysostomos P

    2012-10-01

    Occipital lobe epilepsies (OLEs) manifest with occipital seizures from an epileptic focus within the occipital lobes. Ictal clinical symptoms are mainly visual and oculomotor. Elementary visual hallucinations are common and characteristic. Postictal headache occurs in more than half of patients (epilepsy-migraine sequence). Electroencephalography (EEG) is of significant diagnostic value, but certain limitations should be recognized. Occipital spikes and/or occipital paroxysms either spontaneous or photically induced are the main interictal EEG abnormalities in idiopathic OLE. However, occipital epileptiform abnormalities may also occur without clinical relationship to seizures particularly in children. In cryptogenic/symptomatic OLE, unilateral posterior EEG slowing is more common than occipital spikes. In neurosurgical series of symptomatic OLE, interictal EEG abnormalities are rarely strictly occipital. The most common localization is in the posterior temporal regions and less than one-fifth show occipital spikes. In photosensitive OLE, intermittent photic stimulation elicits (1) spikes/polyspikes confined in the occipital regions or (2) generalized spikes/polyspikes with posterior emphasis. In ictal EEG, a well-localized unifocal rhythmic ictal discharge during occipital seizures is infrequent. A bioccipital field spread to the temporal regions is common. Frequency, severity, and response to treatment vary considerably from good to intractable and progressive mainly depending on underlying causes.

  14. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking

    PubMed Central

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous “standard” definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity

  15. The Lateral Occipital Complex shows no net response to object familiarity

    PubMed Central

    Margalit, Eshed; Shah, Manan P.; Tjan, Bosco S.; Biederman, Irving; Keller, Brenton; Brenner, Rorry

    2016-01-01

    In 1995, Malach et al. discovered an area whose fMRI BOLD response was greater when viewing intact, familiar objects than when viewing their scrambled versions (resembling texture). Since then hundreds of studies have explored this late visual region termed the Lateral Occipital Complex (LOC), which is now known to be critical for shape perception (James, Culham, Humphrey, Milner, & Goodale, 2003). Malach et al. (1995) discounted a role of familiarity by showing that “abstract” Henry Moore sculptures, unfamiliar to the subjects, also activated this region. This characterization of LOC as a region that responds to shape independently of familiarity has been accepted but never tested with control of the same low-level features. We assessed LOC's response to objects that had identical parts in two different arrangements, one familiar and the other novel. Malach was correct: There is no net effect of familiarity in LOC. However, a multivoxel correlation analysis showed that LOC does distinguish familiar from novel objects. PMID:27599373

  16. Crystal structure of Homo sapiens protein LOC79017

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Aceti, David J.; Phillips, Jr., George N.

    2010-02-08

    LOC79017 (MW 21.0 kDa, residues 1-188) was annotated as a hypothetical protein encoded by Homo sapiens chromosome 7 open reading frame 24. It was selected as a target by the Center for Eukaryotic Structural Genomics (CESG) because it did not share more than 30% sequence identity with any protein for which the three-dimensional structure is known. The biological function of the protein has not been established yet. Parts of LOC79017 were identified as members of uncharacterized Pfam families (residues 1-95 as PB006073 and residues 104-180 as PB031696). BLAST searches revealed homologues of LOC79017 in many eukaryotes, but none of them have been functionally characterized. Here, we report the crystal structure of H. sapiens protein LOC79017 (UniGene code Hs.530024, UniProt code O75223, CESG target number go.35223).

  17. Complications of occipital bone pneumatization.

    PubMed

    Moss, Mary; Biggs, Michael; Fagan, Paul; Forer, Martin; Davis, Martin; Roche, Jim

    2004-06-01

    Four cases of occipital bone pneumatization and subsequent complications are described, which include a pathological fracture of C1 and the occipital bone, spontaneous subcutaneous emphysema and pneumatocele formation. Reviews of the published literature and possible aetiological factors have been discussed. PMID:15230770

  18. Human V4 and ventral occipital retinotopic maps.

    PubMed

    Winawer, Jonathan; Witthoft, Nathan

    2015-01-01

    The ventral surface of the human occipital lobe contains multiple retinotopic maps. The most posterior of these maps is considered a potential homolog of macaque V4, and referred to as human V4 ("hV4"). The location of the hV4 map, its retinotopic organization, its role in visual encoding, and the cortical areas it borders have been the subject of considerable investigation and debate over the last 25 years. We review the history of this map and adjacent maps in ventral occipital cortex, and consider the different hypotheses for how these ventral occipital maps are organized. Advances in neuroimaging, computational modeling, and characterization of the nearby anatomical landmarks and functional brain areas have improved our understanding of where human V4 is and what kind of visual representations it contains. PMID:26241699

  19. Occipital seizures imitating migraine aura.

    PubMed Central

    Panayiotopoulos, C P; Sharoqi, I A; Agathonikou, A

    1997-01-01

    Three cases are reported in which symptoms of occipital seizures resembled the visual aura of migraine. Careful recording of the characteristics and timing of such visual effects will often resolve the diagnostic dilemma. PMID:9204019

  20. A preliminary examination of Loss of Control Eating Disorder (LOC-ED) in middle childhood.

    PubMed

    Matherne, Camden E; Tanofsky-Kraff, Marian; Altschul, Anne M; Shank, Lisa M; Schvey, Natasha A; Brady, Sheila M; Galescu, Ovidiu; Demidowich, Andrew P; Yanovski, Susan Z; Yanovski, Jack A

    2015-08-01

    Loss of Control Eating Disorder (LOC-ED) has been proposed as a diagnostic category for children 6-12years with binge-type eating. However, characteristics of youth with LOC-ED have not been examined. We tested the hypothesis that the proposed criteria for LOC-ED would identify children with greater adiposity, more disordered eating attitudes, and greater mood disturbance than those without LOC-ED. Participants were 251 youth (10.29years±1.54, 53.8% female, 57.8% White, 35.5% Black, 2.0% Asian, 4.8% Hispanic, 53.0% overweight). Youth were interviewed regarding eating attitudes and behaviors, completed questionnaires to assess general psychopathology, and underwent measurements of body fat mass. Using previously proposed criteria for LOC-ED, children were classified as LOC-ED (n=19), LOC in the absence of the full disorder (subLOC, n=33), and youth not reporting LOC (noLOC, n=199). LOC-ED youth had higher BMIz (p=0.001) and adiposity (p=0.003) and reported greater disordered eating concerns (p<0.001) compared to noLOC youth. Compared to subLOC youth, LOC-ED youth had non-significantly higher BMIz (p=0.11), and significantly higher adiposity (p=0.04) and disordered eating attitudes (p=0.02). SubLOC youth had greater disordered eating concerns (p<0.001) and BMIz (p=0.03) but did not differ in adiposity (p=0.33) compared to noLOC youth. These preliminary data suggest that LOC-ED youth are elevated on disordered eating cognitions and anthropometric measures compared to youth without LOC-ED. Longitudinal studies are needed to determine if those with LOC-ED are at particularly increased risk for progression of disordered eating and excess weight gain.

  1. A Preliminary Examination of Loss of Control Eating Disorder (LOC-ED) in Middle Childhood

    PubMed Central

    Matherne, Camden E.; Tanofsky-Kraff, Marian; Altschul, Anne M.; Shank, Lisa M.; Schvey, Natasha A.; Brady, Sheila M.; Galescu, Ovidiu; Demidowich, Andrew P.; Yanovski, Susan Z.; Yanovski, Jack A.

    2015-01-01

    Loss of Control Eating Disorder (LOC-ED) has been proposed as a diagnostic category for children 6–12y with binge-type eating. However, characteristics of youth with LOC-ED have not been examined. We tested the hypothesis that the proposed criteria for LOC-ED would identify children with greater adiposity, more disordered eating attitudes, and greater mood disturbance than those without LOC-ED. Participants were 251 youth (10.29y ± 1.54, 53.8% female, 57.8 % White, 35.5% Black, 2.0% Asian, 4.8% Hispanic, 53.0% overweight). Youth were interviewed regarding eating attitudes and behaviors, completed questionnaires to assess general psychopathology, and underwent measurements of body fat mass. Using previously proposed criteria for LOC-ED, children were classified as LOC-ED (n = 19), LOC in the absence of the full disorder (subLOC, n = 33), and youth not reporting LOC (noLOC, n = 199). LOC-ED youth had higher BMIz (p = 0.001) and adiposity (p = 0.003) and reported greater disordered eating concerns (p < 0.001) compared to noLOC youth. Compared to subLOC youth, LOC-ED youth had non-significantly higher BMIz (p = 0.11), and significantly higher adiposity (p = 0.04) and disordered eating attitudes (p = 0.02). SubLOC youth had greater disordered eating concerns (p < 0.001) and BMIz (p = 0.03) but did not differ in adiposity (p = 0.33) compared to noLOC youth. These preliminary data suggest that LOC-ED youth are elevated on disordered eating cognitions and anthropometric measures compared to youth without LOC-ED. Longitudinal studies are needed to determine if those with LOC-ED are at particularly increased risk for progression of disordered eating and excess weight gain. PMID:25913008

  2. Enhanced visual perception with occipital transcranial magnetic stimulation.

    PubMed

    Mulckhuyse, Manon; Kelley, Todd A; Theeuwes, Jan; Walsh, Vincent; Lavie, Nilli

    2011-10-01

    Transcranial magnetic stimulation (TMS) over the occipital pole can produce an illusory percept of a light flash (or 'phosphene'), suggesting an excitatory effect. Whereas previous reported effects produced by single-pulse occipital pole TMS are typically disruptive, here we report the first demonstration of a location-specific facilitatory effect on visual perception in humans. Observers performed a spatial cueing orientation discrimination task. An orientation target was presented in one of two peripheral placeholders. A single pulse below the phosphene threshold applied to the occipital pole 150 or 200 ms before stimulus onset was found to facilitate target discrimination in the contralateral compared with the ipsilateral visual field. At the 150-ms time window contralateral TMS also amplified cueing effects, increasing both facilitation effects for valid cues and interference effects for invalid cues. These results are the first to show location-specific enhanced visual perception with single-pulse occipital pole stimulation prior to stimulus presentation, suggesting that occipital stimulation can enhance the excitability of visual cortex to subsequent perception. PMID:21848918

  3. Sex differences in interactions between nucleus accumbens and visual cortex by explicit visual erotic stimuli: an fMRI study.

    PubMed

    Lee, S W; Jeong, B S; Choi, J; Kim, J-W

    2015-01-01

    Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level. PMID:25971857

  4. Relative scotoma and statokinetic dissociation (Riddoch's phenomenon) from occipital lobe dysfunction.

    PubMed

    Finkelstein, J I; Johnson, L N

    1989-01-01

    Riddoch's phenomenon, in which a stimulus is perceived during movement but not with static presentation, has been reported for occipital lobe and anterior visual pathway disorders. To our knowledge, a threshold for movement detection in the affected hemifield has not been reported. A case of statokinetic dissociation from occipital lobe infarction is presented in which a threshold range for movement detection was identified. The possible role of separate channels in the visual cortex for analysis of kinetic and static stimuli is suggested.

  5. An ELISA Lab-on-a-Chip (ELISA-LOC).

    PubMed

    Rasooly, Avraham; Bruck, Hugh A; Kostov, Yordan

    2013-01-01

    Laminated object manufacturing (LOM) technology using polymer sheets is an easy and affordable method for rapid prototyping of Lab-on-a-Chip (LOC) systems. It has recently been used to fabricate a miniature 96 sample ELISA lab-on-a-chip (ELISA-LOC) by integrating the washing step directly into an ELISA plate. LOM has been shown to be capable of creating complex 3D microfluidics through the assembly of a stack of polymer sheets with features generated by laser micromachining and by bonding the sheets together with adhesive. A six layer ELISA-LOC was fabricated with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO(2) laser with simple microfluidic features including a miniature 96-well sample plate. Immunological assays can be carried out in several configurations (1 × 96 wells, 2 × 48 wells, or 4 × 24 wells). The system includes three main functional elements: (1) a reagent loading fluidics module, (2) an assay and detection wells plate, and (3) a reagent removal fluidics module. The ELISA-LOC system combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected Staphylococcal enterotoxin B (SEB) at concentrations as low as 0.1 ng/ml, a detection level similar to that reported for conventional ELISA. ELISA-LOC can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without the laboratory required for conventional ELISA, and therefore may be more useful for global healthcare delivery. PMID:23329460

  6. Double dissociating effects of sensory stimulation and cocaine on serotonin activity in the occipital and temporal cortices.

    PubMed

    Müller, Christian P; De Souza Silva, Maria A; Huston, Joseph P

    2007-03-01

    Visual cues that become associated with the consumption of psychostimulant drugs energize craving and the intake of the drug by mechanisms of which little is known. In two experiments using in vivo microdialysis in freely moving rats we compared the effects of visual and auditory stimulation with that of cocaine (0, 5, 10, 20mg/kg; i.p.) on the extracellular serotonin (5-HT) activity in the occipital and temporal cortices in relation to behavior. Visual stimulation increased 5-HT in the occipital, but not temporal cortex, parallel to an increase in locomotion. Auditory stimulation decreased 5-HT in the auditory, but not occipital cortex, thus, showing a double dissociated 5-HT response. These data suggest that a locally restricted 5-HT response to sensory stimulation may gate behavioral activity sense-modality selectively. Cocaine affected 5-HT in the occipital cortex and behavioral activity in the same direction as visual stimulation, but in an amplified and prolonged way. In the temporal cortex cocaine also caused an increase in 5-HT. The findings demonstrate common effects of visual stimulation and cocaine on 5-HT activity in the occipital cortex in relation to locomotor activity. The results suggest that concepts of how neutral visual cues become powerful energizers of addiction-related behaviors should be expanded to incorporate not only an acute enhancement of reward processing mechanisms, but, in parallel, also an amplified processing of visual stimuli in the occipital cortex. PMID:17116310

  7. Unconscious errors enhance prefrontal-occipital oscillatory synchrony.

    PubMed

    Cohen, Michael X; van Gaal, Simon; Ridderinkhof, K Richard; Lamme, Victor A F

    2009-01-01

    The medial prefrontal cortex (MFC) is critical for our ability to learn from previous mistakes. Here we provide evidence that neurophysiological oscillatory long-range synchrony is a mechanism of post-error adaptation that occurs even without conscious awareness of the error. During a visually signaled Go/No-Go task in which half of the No-Go cues were masked and thus not consciously perceived, response errors enhanced tonic (i.e., over 1-2 s) oscillatory synchrony between MFC and occipital cortex (OCC) leading up to and during the subsequent trial. Spectral Granger causality analyses demonstrated that MFC --> OCC directional synchrony was enhanced during trials following both conscious and unconscious errors, whereas transient stimulus-induced occipital --> MFC directional synchrony was independent of errors in the previous trial. Further, the strength of pre-trial MFC-occipital synchrony predicted individual differences in task performance. Together, these findings suggest that synchronous neurophysiological oscillations are a plausible mechanism of MFC-driven cognitive control that is independent of conscious awareness. PMID:19956401

  8. Alexia for Braille following bilateral occipital stroke in an early blind woman.

    PubMed

    Hamilton, R; Keenan, J P; Catala, M; Pascual-Leone, A

    2000-02-01

    Recent functional imaging and neurophysiologic studies indicate that the occipital cortex may play a role in Braille reading in congenitally and early blind subjects. We report on a woman blind from birth who sustained bilateral occipital damage following an ischemic stroke. Prior to the stroke, the patient was a proficient Braille reader. Following the stroke, she was no longer able to read Braille yet her somatosensory perception appeared otherwise to be unchanged. This case supports the emerging evidence for the recruitment of striate and prestriate cortex for Braille reading in early blind subjects.

  9. Occipital lobe infarction caused by tentorial herniation.

    PubMed

    Sato, M; Tanaka, S; Kohama, A; Fujii, C

    1986-03-01

    Occipital lobe infarction caused by tentorial herniation was described based on computed tomography findings in nine patients. The whole area of the occipital lobe was involved in five patients; some areas were spared in the others. Infarction other than the ipsilateral occipital lobe was seen in four areas of nine patients: the ispsilateral posterior limb of the internal capsule, contralateral Ammon's horn, and two contralateral occipital lobes. Hemorrhagic infarction was seen in two patients.

  10. Nurse-led treatment for occipital neuralgia.

    PubMed

    Pike, Denise; Amphlett, Alexander; Weatherby, Stuart

    Occipital neuralgia is a headache resulting from dysfunction of the occipital nerves. Medically resistant occipital neuralgia is treated by greater occipital nerve injection, which is traditionally performed by neurologists. A nurse-led clinic was developed to try to improve the service. Patient feedback showed that the clinic was positively perceived by patients, with most stating the nurse-led model was more efficient than the previous one, which had been led by consultants.

  11. Decoding the content of visual short-term memory under distraction in occipital and parietal areas.

    PubMed

    Bettencourt, Katherine C; Xu, Yaoda

    2016-01-01

    Recent studies have provided conflicting accounts regarding where in the human brain visual short-term memory (VSTM) content is stored, with strong univariate fMRI responses being reported in superior intraparietal sulcus (IPS), but robust multivariate decoding being reported in occipital cortex. Given the continuous influx of information in everyday vision, VSTM storage under distraction is often required. We found that neither distractor presence nor predictability during the memory delay affected behavioral performance. Similarly, superior IPS exhibited consistent decoding of VSTM content across all distractor manipulations and had multivariate responses that closely tracked behavioral VSTM performance. However, occipital decoding of VSTM content was substantially modulated by distractor presence and predictability. Furthermore, we found no effect of target-distractor similarity on VSTM behavioral performance, further challenging the role of sensory regions in VSTM storage. Overall, consistent with previous univariate findings, our results indicate that superior IPS, but not occipital cortex, has a central role in VSTM storage. PMID:26595654

  12. Decoding the content of visual short-term memory under distraction in occipital and parietal areas.

    PubMed

    Bettencourt, Katherine C; Xu, Yaoda

    2016-01-01

    Recent studies have provided conflicting accounts regarding where in the human brain visual short-term memory (VSTM) content is stored, with strong univariate fMRI responses being reported in superior intraparietal sulcus (IPS), but robust multivariate decoding being reported in occipital cortex. Given the continuous influx of information in everyday vision, VSTM storage under distraction is often required. We found that neither distractor presence nor predictability during the memory delay affected behavioral performance. Similarly, superior IPS exhibited consistent decoding of VSTM content across all distractor manipulations and had multivariate responses that closely tracked behavioral VSTM performance. However, occipital decoding of VSTM content was substantially modulated by distractor presence and predictability. Furthermore, we found no effect of target-distractor similarity on VSTM behavioral performance, further challenging the role of sensory regions in VSTM storage. Overall, consistent with previous univariate findings, our results indicate that superior IPS, but not occipital cortex, has a central role in VSTM storage.

  13. SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins.

    PubMed

    Briesemeister, Sebastian; Blum, Torsten; Brady, Scott; Lam, Yin; Kohlbacher, Oliver; Shatkay, Hagit

    2009-11-01

    SherLoc2 is a comprehensive high-accuracy subcellular localization prediction system. It is applicable to animal, fungal, and plant proteins and covers all main eukaryotic subcellular locations. SherLoc2 integrates several sequence-based features as well as text-based features. In addition, we incorporate phylogenetic profiles and Gene Ontology (GO) terms derived from the protein sequence to considerably improve the prediction performance. SherLoc2 achieves an overall classification accuracy of up to 93% in 5-fold cross-validation. A novel feature, DiaLoc, allows users to manually provide their current background knowledge by describing a protein in a short abstract which is then used to improve the prediction. SherLoc2 is available both as a free Web service and as a stand-alone version at http://www-bs.informatik.uni-tuebingen.de/Services/SherLoc2.

  14. Concurrent occipital hypoplasia, occipital dysplasia, syringohydromyelia, and hydrocephalus in a Yorkshire terrier.

    PubMed

    Cagle, Laura

    2010-08-01

    Magnetic resonance imaging of a 7.5-year-old neutered male Yorkshire terrier with mild generalized ataxia and intermittent neck scratching led to a diagnosis of caudal occipital malformation and syringohydromyelia. Surgical exploration led to a diagnosis of occipital dysplasia with concurrent occipital hypoplasia. Following a dorsal laminectomy of the first cervical vertebra there was no progression or improvement a month later.

  15. Occipital Cortical Thickness Predicts Performance on Pitch and Musical Tasks in Blind Individuals

    PubMed Central

    Zatorre, Robert J.

    2012-01-01

    The behavioral and neurofunctional consequences of blindness often include performance enhancements and recruitment of occipital regions for nonvisual tasks. How the neuroanatomical changes resulting from this sensory loss relate to these functional changes is, however, less clear. Previous studies using cortical thickness (CT) measures have shown thicker occipital cortex in early-blind (EB) individuals compared with sighted controls. We hypothesized that this finding reflects the crossmodal plasticity often observed in blind individuals and thus could reflect behavioral adaptations. To address this issue, CT measures in blind (early and late) and sighted subjects were obtained along with several auditory behavioral measures in an attempt to relate behavioral and neuroanatomical changes. Group contrasts confirmed previous results in showing thicker occipital cortex in the EB. Regression analyses between CT measures across the whole brain of all blind individuals with the behavioral scores from 2 tasks in which EB subjects were superior (pitch and melody discrimination) showed that CT of occipital areas was directly related to behavioral enhancements. These findings constitute a compelling demonstration that anatomical changes in occipital areas are directly related to heightened behavioral abilities in the blind and hence support the idea that these anatomical features reflect adaptive compensatory plasticity. PMID:22095215

  16. Alterations of the occipital lobe in schizophrenia

    PubMed Central

    Tohid, Hassaan; Faizan, Muhammad; Faizan, Uzma

    2015-01-01

    The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia. PMID:26166588

  17. Alterations of the occipital lobe in schizophrenia.

    PubMed

    Tohid, Hassaan; Faizan, Muhammad; Faizan, Uzma

    2015-07-01

    The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia.

  18. Visual evoked potentials in occipital lobe lesions.

    PubMed

    Streletz, L J; Bae, S H; Roeshman, R M; Schatz, N J; Savino, P J

    1981-02-01

    Recording of visual evoked potentials (VEPs) to pattern reversal is considered to be a reliable diagnostic procedure for examining patients with anterior visual pathway lesions (optic nerves and chiasm). Less consistent results have been reported in studies of more posterior lesions. The VEPs were recorded in 20 patients with occipital lobe lesions. A maximal VEP response (P94) was recorded at the scalp electrodes situated over the involved occipital lobes and contralateral to the hemianoptic visual field defect, indicating a positive correlation of unilateral occipital lobe lesions, homonymous visual field loss, and the VEP abnormality.

  19. Distribution of the occipital branches of the posterior cerebral artery. Correlation with occipital lobe infarcts.

    PubMed

    Marinković, S V; Milisavljević, M M; Lolić-Draganić, V; Kovacević, M S

    1987-01-01

    The occipital branches of the posterior cerebral artery were examined in 31 human brains. The authors determined the origin, course, and region of supply of each occipital branch: the parieto-occipital, calcarine, posterior temporal, and common temporal arteries, as well as the lingual gyrus artery. These vessels were found in all the brains examined except the lingual gyrus artery, which was present in only 8.3%. The occipital branches were noted to supply variable cortical regions. In addition, they sometimes took part in irrigation of deep forebrain structures. It was concluded that occlusion of a certain occipital artery may cause varying clinical signs and symptoms in different patients. The neurologic deficits that may occur following the isolated occlusion of individual occipital branches of the posterior cerebral artery are discussed.

  20. [Bilateral occipital infarction with central homonymous hemianopia].

    PubMed

    Ishikawa, H; Tanabe, Y

    1991-09-01

    A 45-year-old man of bilateral occipital infarction with central homonymous hemianopia is reported. He was admitted to our hospital with complaints of visual loss and large central scotoma on both eyes. Pupillary light reaction and ocular fundi were normal. On admission, bilateral retrobulbar optic neuritis was suspected. However, congruous, irregular central scotomas with vertical step were observed in both eyes with Goldmann perimetry. X-ray computed tomography (CT) and magnetic resonance imaging (MRI) revealed the infarction in bilateral occipital tips. Bilateral central homonymous hemianopia is considered to be rare and a case in which occipital lobe lesions were detected with X-ray CT and MRI has not been reported. We stress that bilateral central scotomas with vertical step indicate bilateral occipital lesions.

  1. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells

    SciTech Connect

    Shi, Yongguo; Lu, Jianwei; Zhou, Jing; Tan, Xueming; He, Ye; Ding, Jie; Tian, Yun; Wang, Li; Wang, Keming

    2014-04-04

    Highlights: • First, we have shown that upregulated of the Loc554202 in breast cancer tissues. • Second, we demonstrated the function of Loc554202 in breast cancer cell. • Finally, we demonstrated that LOC554202 knockdown could inhibit tumor growth in vivo. - Abstract: Data derived from massive cloning and traditional sequencing methods have revealed that long non-coding RNAs (lncRNA) play important roles in the development and progression of cancer. Although many studies suggest that the lncRNAs have different cellular functions, many of them are not yet to be identified and characterized for the mechanism of their functions. To address this question, we assay the expression level of lncRNAs–Loc554202 in breast cancer tissues and find that Loc554202 is significantly increased compared with normal control, and associated with advanced pathologic stage and tumor size. Moreover, knockdown of Loc554202 decreased breast cancer cell proliferation, induced apoptosis and inhibits migration/invasion in vitro and impeded tumorigenesis in vivo. These data suggest an important role of Loc554202 in breast tumorigenesis.

  2. Occipital bending (Yakovlevian torque) in bipolar depression.

    PubMed

    Maller, Jerome J; Anderson, Rodney; Thomson, Richard H; Rosenfeld, Jeffrey V; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2015-01-30

    Differing levels of occipital lobe asymmetry and enlarged lateral ventricles have been reported within patients with bipolar disorder (BD) compared with healthy controls, suggesting different rates of occipital bending (OB). This may exert pressure on subcortical structures, such as the hippocampus, reduced among psychiatric patients. We investigated OB prevalence in 35 patients with BD and 36 healthy controls, and ventricular and occipital volumes. Prevalence was four times higher among BD patients (12/35 [34.3%]) than in control subjects (3/36 [8.3%]), as well as larger lateral ventricular volumes (LVVs). Furthermore, we found OB to relate to left-to-right ventricular and occipital lobe volume (OLV) ratios. Those with OB also had reduced left-to-right hippocampal volume ratios. The results suggest that OB is more common among BD patients than healthy subjects, and prevalent in both BD Type I and Type II patients. We posit that anomalies in neural pruning or ventricular enlargement may precipitate OB, consequently resulting in one occipital lobe twisting around the other. Although the clinical implications of these results are unclear, the study suggests that asymmetrical ventricular volume matched with a pattern of oppositely asymmetrical occipital volume is related to OB and may be a marker of psychiatric illness.

  3. Multiple routes from occipital to temporal cortices during reading

    PubMed Central

    Richardson, Fiona M.; Seghier, Mohamed L.; Leff, Alex P.; Thomas, Michael S.C.; Price, Cathy J.

    2013-01-01

    Contemporary models of the neural system that supports reading propose that activity in a ventral occipital-temporal area (vOT) drives activity in higher order language areas, for example, those in the posterior and anterior superior temporal sulcus (pSTS and aSTS). We used fMRI with dynamic causal modelling (DCM) to investigate evidence for other routes from visual cortex to the left temporal lobe language areas. First we identified activations in posterior inferior occipital (iO) and vOT areas that were more activated for silent reading than listening to words and sentences; and in pSTS and aSTS areas that were commonly activated for reading relative to false-fonts and listening to words relative to reversed words. Second, in 3 different DCM analyses, we tested whether visual processing of words modulates activity from (1) iO→ vOT, iO→ pSTS, both or neither; (2) vOT→ pSTS, iO→pSTS, both or neither; and (3) pSTS→ aSTS, vOT→ aSTS, both or neither. We found that reading words increased connectivity (1) from iO to both pSTS and vOT; (2) to pSTS from both iO and vOT; and (3) to aSTS from both vOT and pSTS. These results highlight three potential processing streams in the occipito-temporal cortex: iO→pSTS→aSTS; iO→vOT→aSTS; and iO→vOT→pSTS→aSTS. We discuss these results in terms of cognitive models of reading and propose that efficient reading relies on the integrity of all these pathways. PMID:21632945

  4. Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion

    PubMed Central

    Xiu, Daiming; Geiger, Maximilian J.; Klaver, Peter

    2015-01-01

    This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive (“happy”), neutral and negative (“angry” or “fearful”) faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion. PMID:25954169

  5. MolLoc: a web tool for the local structural alignment of molecular surfaces.

    PubMed

    Angaran, Stefano; Bock, Mary Ellen; Garutti, Claudio; Guerra, Concettina

    2009-07-01

    MolLoc stands for Molecular Local surface comparison, and is a web server for the structural comparison of molecular surfaces. Given two structures in PDB format, the user can compare their binding sites, cavities or any arbitrary residue selection. Moreover, the web server allows the comparison of a query structure with a list of structures. Each comparison produces a structural alignment that maximizes the extension of the superimposition of the surfaces, and returns the pairs of atoms with similar physicochemical properties that are close in space after the superimposition. Based on this subset of atoms sharing similar physicochemical properties a new rototranslation is derived that best superimposes them. MolLoc approach is both local and surface-oriented, and therefore it can be particularly useful when testing if molecules with different sequences and folds share any local surface similarity. The MolLoc web server is available at http://bcb.dei.unipd.it/MolLoc.

  6. Occipital and occipital "plus" epilepsies: A study of involved epileptogenic networks through SEEG quantification.

    PubMed

    Marchi, Angela; Bonini, Francesca; Lagarde, Stanislas; McGonigal, Aileen; Gavaret, Martine; Scavarda, Didier; Carron, Romain; Aubert, Sandrine; Villeneuve, Nathalie; Médina Villalon, Samuel; Bénar, Christian; Trebuchon, Agnes; Bartolomei, Fabrice

    2016-09-01

    Compared with temporal or frontal lobe epilepsies, the occipital lobe epilepsies (OLE) remain poorly characterized. In this study, we aimed at classifying the ictal networks involving OLE and investigated clinical features of the OLE network subtypes. We studied 194 seizures from 29 consecutive patients presenting with OLE and investigated by stereoelectroencephalography (SEEG). Epileptogenicity of occipital and extraoccipital regions was quantified according to the 'epileptogenicity index' (EI) method. We found that 79% of patients showed widespread epileptogenic zone organization, involving parietal or temporal regions in addition to the occipital lobe. Two main groups of epileptogenic zone organization within occipital lobe seizures were identified: a pure occipital group and an occipital "plus" group, the latter including two further subgroups, occipitotemporal and occipitoparietal. In 29% of patients, the epileptogenic zone was found to have a bilateral organization. The most epileptogenic structure was the fusiform gyrus (mean EI: 0.53). Surgery was proposed in 18/29 patients, leading to seizure freedom in 55% (Engel Class I). Results suggest that, in patient candidates for surgery, the majority of cases are characterized by complex organization of the EZ, corresponding to the occipital plus group. PMID:27454330

  7. Occipital and occipital "plus" epilepsies: A study of involved epileptogenic networks through SEEG quantification.

    PubMed

    Marchi, Angela; Bonini, Francesca; Lagarde, Stanislas; McGonigal, Aileen; Gavaret, Martine; Scavarda, Didier; Carron, Romain; Aubert, Sandrine; Villeneuve, Nathalie; Médina Villalon, Samuel; Bénar, Christian; Trebuchon, Agnes; Bartolomei, Fabrice

    2016-09-01

    Compared with temporal or frontal lobe epilepsies, the occipital lobe epilepsies (OLE) remain poorly characterized. In this study, we aimed at classifying the ictal networks involving OLE and investigated clinical features of the OLE network subtypes. We studied 194 seizures from 29 consecutive patients presenting with OLE and investigated by stereoelectroencephalography (SEEG). Epileptogenicity of occipital and extraoccipital regions was quantified according to the 'epileptogenicity index' (EI) method. We found that 79% of patients showed widespread epileptogenic zone organization, involving parietal or temporal regions in addition to the occipital lobe. Two main groups of epileptogenic zone organization within occipital lobe seizures were identified: a pure occipital group and an occipital "plus" group, the latter including two further subgroups, occipitotemporal and occipitoparietal. In 29% of patients, the epileptogenic zone was found to have a bilateral organization. The most epileptogenic structure was the fusiform gyrus (mean EI: 0.53). Surgery was proposed in 18/29 patients, leading to seizure freedom in 55% (Engel Class I). Results suggest that, in patient candidates for surgery, the majority of cases are characterized by complex organization of the EZ, corresponding to the occipital plus group.

  8. Headache Following Occipital Brain Lesion: A Case of Migraine Triggered by Occipital Spikes?

    PubMed

    Vollono, Catello; Mariotti, Paolo; Losurdo, Anna; Giannantoni, Nadia Mariagrazia; Mazzucchi, Edoardo; Valentini, Piero; De Rose, Paola; Della Marca, Giacomo

    2015-10-01

    This study describes the case of an 8-year-old boy who developed a genuine migraine after the surgical excision, from the right occipital lobe, of brain abscesses due to selective infestation of the cerebrum by Entamoeba histolytica. After the surgical treatment, the boy presented daily headaches with typical migraine features, including right-side parieto-temporal pain, nausea, vomiting, and photophobia. Electroencephalography (EEG) showed epileptiform discharges in the right occipital lobe, although he never presented seizures. Clinical and neurophysiological observations were performed, including video-EEG and polygraphic recordings. EEG showed "interictal" epileptiform discharges in the right occipital lobe. A prolonged video-EEG recording performed before, during, and after an acute attack ruled out ictal or postictal migraine. In this boy, an occipital lesion caused occipital epileptiform EEG discharges without seizures, probably prevented by the treatment. We speculate that occipital spikes, in turn, could have caused a chronic headache with features of migraine without aura. Occipital epileptiform discharges, even in absence of seizures, may trigger a genuine migraine, probably by means of either the trigeminovascular or brainstem system.

  9. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    PubMed

    Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke

    2014-01-01

    A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  10. Occipital lobe infarction and positron emission tomography.

    PubMed

    Tagawa, K; Nagata, K; Shishido, F

    1990-08-01

    Even though the PET study revealed a total infarct in the territory of the left PCA in our 3 cases of pure alexia, it is still obscure which part of the left occipital lobe is most closely associated with the occurrence of the pure alexia. In order to elucidate the intralobar localization of the pure alexia, it is needed to have an ideal case who shows an pure alexia due to the localized lesion within the left occipital lobe. Furthermore, high-resolution PET scanner will circumvent the problem in detecting the metabolism and blood flow in the corpus callosum which plays an important role in the pathogenesis. We have shown that the occlusion of the right PCA also produced a left unilateral agnosia which is one of the common neurological signs in the right MCA infarction. To tell whether the responsible lesion for the unilateral spatial agnosia differs between the PCA occlusion and the MCA occlusion, the correlation study should be carried out in a greater number of the subjects. Two distinctive neuropsychological manifestations, cerebral color blindness and prosopagnosia, have been considered to be produced by the bilateral occipital lesion. The PET studies disclosed reduction of blood flow and oxygen metabolism in both occipital lobes in our particular patient who exhibited cerebral color blindness and prosopagnosia.

  11. Neuralgias of the Head: Occipital Neuralgia

    PubMed Central

    2016-01-01

    Occipital neuralgia is defined by the International Headache Society as paroxysmal shooting or stabbing pain in the dermatomes of the greater or lesser occipital nerve. Various treatment methods exist, from medical treatment to open surgical procedures. Local injection with corticosteroid can improve symptoms, though generally only temporarily. More invasive procedures can be considered for cases that do not respond adequately to medical therapies or repeated injections. Radiofrequency lesioning of the greater occipital nerve can relieve symptoms, but there is a tendency for the pain to recur during follow-up. There also remains a substantial group of intractable patients that do not benefit from local injections and conventional procedures. Moreover, treatment of occipital neuralgia is sometimes challenging. More invasive procedures, such as C2 gangliotomy, C2 ganglionectomy, C2 to C3 rhizotomy, C2 to C3 root decompression, neurectomy, and neurolysis with or without sectioning of the inferior oblique muscle, are now rarely performed for medically refractory patients. Recently, a few reports have described positive results following peripheral nerve stimulation of the greater or lesser occipital nerve. Although this procedure is less invasive, the significance of the results is hampered by the small sample size and the lack of long-term data. Clinicians should always remember that destructive procedures carry grave risks: once an anatomic structure is destroyed, it cannot be easily recovered, if at all, and with any destructive procedure there is always the risk of the development of painful neuroma or causalgia, conditions that may be even harder to control than the original complaint. PMID:27051229

  12. Neuralgias of the Head: Occipital Neuralgia.

    PubMed

    Choi, Il; Jeon, Sang Ryong

    2016-04-01

    Occipital neuralgia is defined by the International Headache Society as paroxysmal shooting or stabbing pain in the dermatomes of the greater or lesser occipital nerve. Various treatment methods exist, from medical treatment to open surgical procedures. Local injection with corticosteroid can improve symptoms, though generally only temporarily. More invasive procedures can be considered for cases that do not respond adequately to medical therapies or repeated injections. Radiofrequency lesioning of the greater occipital nerve can relieve symptoms, but there is a tendency for the pain to recur during follow-up. There also remains a substantial group of intractable patients that do not benefit from local injections and conventional procedures. Moreover, treatment of occipital neuralgia is sometimes challenging. More invasive procedures, such as C2 gangliotomy, C2 ganglionectomy, C2 to C3 rhizotomy, C2 to C3 root decompression, neurectomy, and neurolysis with or without sectioning of the inferior oblique muscle, are now rarely performed for medically refractory patients. Recently, a few reports have described positive results following peripheral nerve stimulation of the greater or lesser occipital nerve. Although this procedure is less invasive, the significance of the results is hampered by the small sample size and the lack of long-term data. Clinicians should always remember that destructive procedures carry grave risks: once an anatomic structure is destroyed, it cannot be easily recovered, if at all, and with any destructive procedure there is always the risk of the development of painful neuroma or causalgia, conditions that may be even harder to control than the original complaint. PMID:27051229

  13. LocNES: a computational tool for locating classical NESs in CRM1 cargo proteins

    PubMed Central

    Xu, Darui; Marquis, Kara; Pei, Jimin; Fu, Szu-Chin; Cağatay, Tolga; Grishin, Nick V.

    2015-01-01

    Motivation: Classical nuclear export signals (NESs) are short cognate peptides that direct proteins out of the nucleus via the CRM1-mediated export pathway. CRM1 regulates the localization of hundreds of macromolecules involved in various cellular functions and diseases. Due to the diverse and complex nature of NESs, reliable prediction of the signal remains a challenge despite several attempts made in the last decade. Results: We present a new NES predictor, LocNES. LocNES scans query proteins for NES consensus-fitting peptides and assigns these peptides probability scores using Support Vector Machine model, whose feature set includes amino acid sequence, disorder propensity, and the rank of position-specific scoring matrix score. LocNES demonstrates both higher sensitivity and precision over existing NES prediction tools upon comparative analysis using experimentally identified NESs. Availability and implementation: LocNES is freely available at http://prodata.swmed.edu/LocNES Contact: yuhmin.chook@utsouthwestern.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25515756

  14. Autism and visual agnosia in a child with right occipital lobectomy

    PubMed Central

    Jambaque, I; Mottron, L; Ponsot, G; Chiron, C

    1998-01-01

    OBJECTIVES—Autistic disorder is a developmental handicap with an unknown neurological basis. Current neuropsychological models for autism suggest an abnormal construction of visual perceptual representation or a deficit in executive functions. These models predict cerebral lesions in the temporo-occipital or frontal regions of autistic patients. The present study aimed at studying the presence of symptoms of autism and visual agnosia in a 13 year old girl who had a right temporo-occipital cortical dysplasia that was surgically removed at the age of 7.
METHODS—Neuropsychological evaluation included Wechsler and Kaufman intelligence scales, a test of word fluency, digit span, Corsi block, California verbal learning, Trail making, Benton facial recognition, Snoodgrass object recognition tests, Rivermead face learning subtest, and developmental test of visual perception. The ADI-R was used to show current and retrospective diagnosis of autistic disorder. Neuroimagery included brain MRI, single photon emission computed tomography (SPECT), and PET.
RESULTS—Brain MRI showed a right occipital defect and an abnormal hyperintensity of the right temporal cortex. PET and SPECT disclosed a left frontal hypometabolism together with the right occipital defect. Neuropsychological testing showed a visual apperceptive agnosia and executive function deficits. Psychiatric study confirmed the diagnosis of autistic disorder.
CONCLUSIONS—Although the possibilty that autism and visual agnosia were dissociable factors in this patient cannot be excluded, the finding of both deficits supports the possibility that occipito-temporal lesions can predispose to the development of autism.

 PMID:9771784

  15. Rapid distributed fronto-parieto-occipital processing stages during working memory in humans.

    PubMed

    Halgren, E; Boujon, C; Clarke, J; Wang, C; Chauvel, P

    2002-07-01

    Cortical potentials were recorded from implanted electrodes during a difficult working memory task requiring rapid storage, modification and retrieval of multiple memoranda. Synchronous event-related potentials were generated in distributed occipital, parietal, Rolandic and prefrontal sites beginning approximately 130 ms after stimulus onset and continuing for >500 ms. Coherent phase-locked, event-related oscillations supported interaction between these dorsal stream structures throughout the task period. The Rolandic structures generated early as well as sustained potentials to sensory stimuli in the absence of movement. Activation peaks and phase lags between synaptic populations suggested that perceptual processing occurred exclusively in the visual association cortex from approximately 90 to 130 ms, with its results projected to fronto-parietal areas for interpretation from approximately 130 to 280 ms. The direction of interaction then appeared to reverse from approximately 300 to 400 ms, consistent with mental arithmetic being performed by fronto-parietal areas operating upon a visual scratch pad in the dorsolateral occipital cortex. A second reversal, from approximately 420 to 600 ms, may have represented an updating of memoranda stored in fronto-parietal sites. Lateralized perisylvian oscillations suggested an articulatory loop. Anterior cingulate activity was evoked by feedback signals indicating errors. These results indicate how a fronto-centro-parietal 'central executive' might interact with an occipital visual scratch pad, perisylvian articulatory loop and limbic monitor to implement the sequential stages of a complex mental operation.

  16. The medial parietal occipital areas in the macaque monkey.

    PubMed

    Gamberini, Michela; Fattori, Patrizia; Galletti, Claudio

    2015-01-01

    The number, location, extent, and functional properties of the cortical areas that occupy the medial parieto-occipital cortex (mPOC) have been, and still is, a matter of scientific debate. The mPOC is a convoluted region of the brain that presents a high level of individual variability, and the fact that many areas of mPOC are located within very deep sulci further limits the possibility to investigate their anatomo-functional properties. In the present review, we summarize the location and extent of mPOC areas in the macaque brain as obtained by architectural, connectional, and functional data. The different approaches lead to a subdivision of mPOC that includes areas V2, V3, V6, V6Av, and V6Ad. Extrastriate areas V2 and V3 occupy the posterior wall of the parieto-occipital sulcus (POs). The fundus of POs and the ventralmost part of the anterior wall of the sulcus are occupied by a retinotopically organized visual area, called V6, which represents the contralateral part of the visual field and emphasizes its periphery. The remaining part of the anterior wall of POs is occupied by two areas, V6Av and V6Ad, which contain visual as well as arm reaching neurons. Our analyses suggest that areas V6 and V6Av, together, occupy the cortical territory previously described as area PO. Functionally, area V6 is a motion area particularly sensitive to the real motion of objects in the animal's field of view, while V6Av and V6Ad are visuomotor areas likely involved in the visual guidance of arm movement and object prehension. PMID:26241957

  17. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology.

    PubMed

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-10-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject's body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a

  18. A household LOC device for online monitoring bacterial pathogens in drinking water with green design concept.

    PubMed

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    Bacterial waterborne pathogens often threaten the water safety of the drinking water system. In order to protect the health of home users, a household lab-on-a-chip (LOC) device was developed for online monitoring bacterial pathogens in drinking water, which are in accord with green design concept. The chip integrated counter-flow micromixers, a T-junction droplet generator and time-delay channels (TD-Cs), which can mix water sample and reactants into droplets in air flow and incubate the droplets in the LOC for about 18 hours before observation. The detection module was simplified into a transparent observation chamber, from which the home users can evaluate the qualitative result by naked eyes. The liquid waste generated by the LOC system was sterilized and absorbed by quicklime powders. No secondary pollution was found. The preliminary test of the prototype system met its design requirements.

  19. Occipital lobe infarction following cardiac ablation.

    PubMed

    Mirza, Rukhsana G; Biller, Jose; Jay, Walter M

    2004-01-01

    A 60-year-old man presented with the chief complaint of seeing a blurred area just up and to the left of the center of his vision. The patient noted this visual field defect immediately after he awoke from a cardiac electrophysiologic study with a catheter ablation procedure. On neuro-ophthalmologic testing, a small scotoma was present superior and left of fixation in both eyes. MRI showed a small irregular area of abnormal signal in the right occipital lobe consistent with an ischemic lesion. To the best of our knowledge, this represents the first case report of a homonymous visual field defect secondary to an occipital lobe infarction following a cardiac catheter ablation procedure.

  20. [A case of left occipital lobe hemorrhage in a patient with progressive systemic sclerosis: evaluation of cerebral angiography and histology].

    PubMed

    Yukawa, H; Kubo, Y; Otawara, Y; Kudo, A; Tomitsuka, N; Yoshida, K; Ogawa, A; Kurose, K; Suzuki, M; Chiba, S

    2000-11-01

    Involvement of the central nervous system is uncommon in progressive systemic sclerosis, with only 2 reported cases associated with intracerebral hemorrhage detected by neuroimaging. A 55-year-old woman with a 10-year history of scleroderma presented with left occipital lobe hemorrhage manifesting as headache and vomiting. She had no signs of hypertension, diabetes mellitus and hyperlipidemia. CT and MRI, on admission, showed left occipital lobe hemorrhage with ventricular rupture and acute left subdural hematoma. Serial cerebral angiography was performed on day 0, day 7 and day 14, and found no evidence of aneurysm, arteriovenous multiformation or tumor stain in the left occipital lobe. However, the bilateral anterior cerebral arteries showed increasing segmental narrowing suggestive of vasculitis. Histological examination of a section from the brain cortex adjacent to the hemorrhage revealed no evidence of vasculitis, fibrinoid degeneration or amyloid deposition. Focal vasculitis may have occurred secondary to the homorrhagic lesion.

  1. Occipital gamma activation during Vipassana meditation.

    PubMed

    Cahn, B Rael; Delorme, Arnaud; Polich, John

    2010-02-01

    Long-term Vipassana meditators sat in meditation vs. a control rest (mind-wandering) state for 21 min in a counterbalanced design with spontaneous EEG recorded. Meditation state dynamics were measured with spectral decomposition of the last 6 min of the eyes-closed silent meditation compared to control state. Meditation was associated with a decrease in frontal delta (1-4 Hz) power, especially pronounced in those participants not reporting drowsiness during meditation. Relative increase in frontal theta (4-8 Hz) power was observed during meditation, as well as significantly increased parieto-occipital gamma (35-45 Hz) power, but no other state effects were found for the theta (4-8 Hz), alpha (8-12 Hz), or beta (12-25 Hz) bands. Alpha power was sensitive to condition order, and more experienced meditators exhibited no tendency toward enhanced alpha during meditation relative to the control task. All participants tended to exhibit decreased alpha in association with reported drowsiness. Cross-experimental session occipital gamma power was the greatest in meditators with a daily practice of 10+ years, and the meditation-related gamma power increase was similarly the strongest in such advanced practitioners. The findings suggest that long-term Vipassana meditation contributes to increased occipital gamma power related to long-term meditational expertise and enhanced sensory awareness.

  2. Disentangling scene content from spatial boundary: complementary roles for the parahippocampal place area and lateral occipital complex in representing real-world scenes.

    PubMed

    Park, Soojin; Brady, Timothy F; Greene, Michelle R; Oliva, Aude

    2011-01-26

    Behavioral and computational studies suggest that visual scene analysis rapidly produces a rich description of both the objects and the spatial layout of surfaces in a scene. However, there is still a large gap in our understanding of how the human brain accomplishes these diverse functions of scene understanding. Here we probe the nature of real-world scene representations using multivoxel functional magnetic resonance imaging pattern analysis. We show that natural scenes are analyzed in a distributed and complementary manner by the parahippocampal place area (PPA) and the lateral occipital complex (LOC) in particular, as well as other regions in the ventral stream. Specifically, we study the classification performance of different scene-selective regions using images that vary in spatial boundary and naturalness content. We discover that, whereas both the PPA and LOC can accurately classify scenes, they make different errors: the PPA more often confuses scenes that have the same spatial boundaries, whereas the LOC more often confuses scenes that have the same content. By demonstrating that visual scene analysis recruits distinct and complementary high-level representations, our results testify to distinct neural pathways for representing the spatial boundaries and content of a visual scene.

  3. Mirror focus in a patient with intractable occipital lobe epilepsy.

    PubMed

    Kim, Jiyoung; Shin, Hae Kyung; Hwang, Kyoung Jin; Choi, Su Jung; Joo, Eun Yeon; Hong, Seung Bong; Hong, Seung Chul; Seo, Dae-Won

    2014-06-01

    Mirror focus is one of the evidence of progression in epilepsy, and also has practical points for curative resective epilepsy surgery. The mirror foci are related to the kindling phenomena that occur through interhemispheric callosal or commissural connections. A mirror focus means the secondary epileptogenic foci develop in the contralateral hemispheric homotopic area. Thus mirror foci are mostly reported in patients with temporal or frontal lobe epilepsy, but not in occipital lobe epilepsy. We have observed occipital lobe epilepsy with mirror focus. Before epilepsy surgery, the subject's seizure onset zone was observed in the left occipital area by ictal studies. Her seizures abated for 10 months after the resection of left occipital epileptogenic focus, but recurred then. The recurred seizures were originated from the right occipital area which was in the homotopic contralateral area. This case can be an evidence that occipital lobe epilepsy may have mirror foci, even though each occipital lobe has any direct interhemispheric callosal connections between them.

  4. Credit Card Misuse, Money Attitudes, and Compulsive Buying Behaviors: A Comparison of Internal and External Locus of Control (LOC) Consumers

    ERIC Educational Resources Information Center

    Watson, Stevie

    2009-01-01

    This study examined attitudinal and behavioral differences between internal and external locus of control (LOC) consumers on credit card misuse, the importance of money, and compulsive buying. Using multiple analysis of variance and separate analyses of variance, internal LOC consumers were found to have lower scores on credit card misuse and…

  5. Reconstruction of undersampled radial PatLoc imaging using Total Generalized Variation

    PubMed Central

    Knoll, Florian; Schultz, Gerrit; Bredies, Kristian; Gallichan, Daniel; Zaitsev, Maxim; Hennig, Jürgen; Stollberger, Rudolf

    2016-01-01

    In the case of radial imaging with nonlinear spatial encoding fields, a prominent star-shaped artifact has been observed if a spin distribution is encoded with an undersampled trajectory. This work presents a new iterative reconstruction method based on the total generalized variation (TGV), which reduces this artifact. For this approach, a sampling operator (as well as its adjoint) is needed that maps data from PatLoc k-space to the final image space. It is shown that this can be realized as a Type-3 non-uniform FFT, which is implemented by a combination of a Type-1 and Type-2 non-uniform FFT. Using this operator, it is also possible to implement an iterative conjugate gradient (CG) SENSE based method for PatLoc reconstruction, which leads to a significant reduction of computation time in comparison to conventional PatLoc image reconstruction methods. Results from numerical simulations and in-vivo PatLoc measurements with as few as 16 radial projections are presented, which demonstrate significant improvements in image quality with the TGV based approach. PMID:22847824

  6. 48 CFR 732.406-71 - Circumstances for use of an LOC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Circumstances for use of an LOC. 732.406-71 Section 732.406-71 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL... guidance provided in FAR 32.4; (b) USAID has, or expects to have, a continuing relationship of at least...

  7. Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume.

    PubMed

    Kühn, S; Gallinat, J

    2014-07-01

    Playing video games is a popular leisure activity among children and adults, and may therefore potentially influence brain structure. We have previously shown a positive association between probability of gray matter (GM) volume in the ventral striatum and frequent video gaming in adolescence. Here we set out to investigate structural correlates of video gaming in adulthood, as the effects observed in adolescents may reflect only a fraction of the potential neural long-term effects seen in adults. On magnetic resonance imaging (MRI) scans of 62 male adults, we computed voxel-based morphometry to explore the correlation of GM with the lifetime amount of video gaming (termed joystick years). We found a significant positive association between GM in bilateral parahippocamal region (entorhinal cortex) and left occipital cortex/inferior parietal lobe and joystick years (P<0.001, corrected for multiple comparisons). An exploratory analysis showed that the entorhinal GM volume can be predicted by the video game genres played, such as logic/puzzle games and platform games contributing positively, and action-based role-playing games contributing negatively. Furthermore, joystick years were positively correlated with hippocampus volume. The association of lifetime amount of video game playing with bilateral entorhinal cortex, hippocampal and occipital GM volume could reflect adaptive neural plasticity related to navigation and visual attention.

  8. Detection of G-Induced Loss of Consciousness (G-LOC) prognosis through EMG monitoring on gastrocnemius muscle in flight.

    PubMed

    Booyong Choi; Yongkyun Lee; Taehwan Cho; Hyojin Koo; Dongsoo Kim

    2015-08-01

    G-Induced Loss of Consciousness (G-LOC) is mainly caused by the sudden acceleration in the direction of +Gz axis from the fighter pilots, and is considered as an emergent situation of which fighter pilots are constantly aware. In order to resist against G-LOC, fighter pilots are subject to run Anti-G straining maneuver (AGSM), which includes L-1 respiration maneuvering and muscular contraction of the whole body. The purpose of this study is to create a G-LOC warning alarm prior to G-LOC by monitoring the Electromyogram (EMG) of the gastrocnemius muscle on the calf, which goes under constant muscular contraction during the AGSM process. EMG data was retrieved from pilots and pilot trainees of the Korean Air Force, during when subjects were under high G-trainings on a human centrifugal simulator. Out of the EMG features, integrated absolute value (IAV), reflecting muscle contraction, and waveform length (WL), reflecting muscle contraction and fatigue, have shown a rapid decay during the alarm phase, 3 seconds before G-LOC, compared to that of a normal phase withstanding G-force. Such results showed consistency amongst pilots and pilot trainees who were under G-LOC. Based on these findings, this study developed an algorithm which can detect G-LOC prognosis during flight, and at the same time, generate warning signals. The probability of G-LOC occurrence is detected through monitoring the decay trend and degree of the IVA and WL value of when the pilot initiates AGSM during sudden acceleration above 6G. Conclusively, this G-LOC prognosis detecting and warning system is a customized, real-time countermeasure which enhanced the accuracy of detecting G-LOC. PMID:26737905

  9. Detection of G-Induced Loss of Consciousness (G-LOC) prognosis through EMG monitoring on gastrocnemius muscle in flight.

    PubMed

    Booyong Choi; Yongkyun Lee; Taehwan Cho; Hyojin Koo; Dongsoo Kim

    2015-08-01

    G-Induced Loss of Consciousness (G-LOC) is mainly caused by the sudden acceleration in the direction of +Gz axis from the fighter pilots, and is considered as an emergent situation of which fighter pilots are constantly aware. In order to resist against G-LOC, fighter pilots are subject to run Anti-G straining maneuver (AGSM), which includes L-1 respiration maneuvering and muscular contraction of the whole body. The purpose of this study is to create a G-LOC warning alarm prior to G-LOC by monitoring the Electromyogram (EMG) of the gastrocnemius muscle on the calf, which goes under constant muscular contraction during the AGSM process. EMG data was retrieved from pilots and pilot trainees of the Korean Air Force, during when subjects were under high G-trainings on a human centrifugal simulator. Out of the EMG features, integrated absolute value (IAV), reflecting muscle contraction, and waveform length (WL), reflecting muscle contraction and fatigue, have shown a rapid decay during the alarm phase, 3 seconds before G-LOC, compared to that of a normal phase withstanding G-force. Such results showed consistency amongst pilots and pilot trainees who were under G-LOC. Based on these findings, this study developed an algorithm which can detect G-LOC prognosis during flight, and at the same time, generate warning signals. The probability of G-LOC occurrence is detected through monitoring the decay trend and degree of the IVA and WL value of when the pilot initiates AGSM during sudden acceleration above 6G. Conclusively, this G-LOC prognosis detecting and warning system is a customized, real-time countermeasure which enhanced the accuracy of detecting G-LOC.

  10. The occipital place area represents the local elements of scenes.

    PubMed

    Kamps, Frederik S; Julian, Joshua B; Kubilius, Jonas; Kanwisher, Nancy; Dilks, Daniel D

    2016-05-15

    Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents is not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found that OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements - both in spatial boundary and scene content representation - while PPA and RSC represent global scene properties. PMID:26931815

  11. Occipital γ response to auditory stimulation in patients with schizophrenia.

    PubMed

    Basar-Eroglu, Canan; Mathes, Birgit; Brand, Andreas; Schmiedt-Fehr, Christina

    2011-01-01

    This study investigated changes in gamma oscillations during auditory sensory processing (auditory-evoked gamma responses, AEGR) and target detection (auditory event-related gamma responses, AERGR) in healthy controls (n=10) and patients with schizophrenia (n=10) using both single-trial and averaged time-frequency data analysis. The results show that single-trial gamma responses in patients were altered in magnitude and topographic pattern for both the AEGR and the AERGR experimental conditions, whereas no differences were found for the averaged evoked gamma response. At the single-trial level, auditory stimuli elicited higher gamma responses at both anterior and occipital sites in patients with schizophrenia compared to controls. Furthermore, in patients with schizophrenia target detection compared to passive listening to stimuli was related to increased single-trial gamma power at frontal sites. In controls enhancement of the gamma response was only apparent for the averaged gamma response, with a distribution largely restricted to anterior sites. The differences in oscillatory activity between healthy controls and patients with schizophrenia were not reflected in the behavioral measure (i.e., counting targets). We conclude that gamma activity triggered by auditory stimuli in schizophrenic patients might have less selectivity in timing and alterations in topography and may show changes in amplitude modulation with task demands. The present study may indicate that in patients with schizophrenia neuronal information is not adequately transferred, possibly due to an over-excitability of neuronal networks and excessive pruning of local connections in association cortex. PMID:21056599

  12. Differential distribution of NADPH-diaphorase histochemistry in human cerebral cortex.

    PubMed

    Garbossa, Diego; Fontanella, Marco; Tomasi, Simone; Ducati, Alessandro; Vercelli, Alessandro

    2005-02-01

    Beta-nicotinamidedinucleotide phosphate diaphorase (NADPH-d) colocalizes with NOS in the central nervous system. Two types of NADPH-d-positive neurons are present in the primate cerebral cortex: type 1, intensely and Golgi-like labeled neurons, a subset of GABAergic interneurons; type 2, lightly labeled neurons (divided into two subclasses, a first one having a lightly stained cell body bearing only one short process, and a second one showing intense NADPH-d staining with short processes extending radially). We have analyzed the distribution of NADPH-d activity in human frontal, temporal, and occipital cortical areas, finding remarkable laminar and interareal differences in cell size and distribution of the different cell types. There was a clear bias for type 1 neurons in infragranular layers in all areas considered; both in supra- and infragranular layers, their density was highest in frontal, and lowest in temporal cortex. The density of type 2 neurons was lower supragranularly in temporal cortex and infragranularly in occipital cortex. The overall density of type 2 cells was remarkably higher in occipital cortex than in the temporal and frontal ones. Type 1 neurons were significantly larger than type 2, and were smaller in the supragranular than in the infragranular subzone in occipital and temporal cortex. Type 1 cells were significantly larger in frontal cortex than in occipital and temporal cortex, and type 2 cells were significantly smaller in occipital than in temporal and frontal cortex. These area-related differences might reflect differences between heterotypic and homotypic cortex in the regulation of cortical blood flow.

  13. Visual localisation in patients with occipital infarction.

    PubMed

    Ross Russell, R W; Bharucha, N

    1984-02-01

    Visually directed pointing has been examined in a group of patients with occipital lobe infarction and in an age-matched control group. The visual field ipsilateral to the infarct showed normal localisation; there was no evidence that right sided infarction produced a bilateral disturbance. In quadrantanopia the spared quadrant on the affected side showed abnormal localisation in a few patients but this was not consistently associated with right or left sided defects. The majority of patients were able to detect a flashing light within the blind portion of the field although the same stimulus could not be seen during conventional perimetry. Some patients could localise the stimulus normally.

  14. The influence of posterior parietal cortex on extrastriate visual activity: A concurrent TMS and fast optical imaging study.

    PubMed

    Parks, Nathan A; Mazzi, Chiara; Tapia, Evelina; Savazzi, Silvia; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M

    2015-11-01

    The posterior parietal cortex (PPC) is a critical node in attentional and saccadic eye movement networks of the cerebral cortex, exerting top-down control over activity in visual cortex. Here, we sought to further elucidate the properties of PPC feedback by providing a time-resolved map of functional connectivity between parietal and occipital cortex using single-pulse TMS to stimulate the left PPC while concurrently recording fast optical imaging data from bilateral occipital cortex. Magnetic stimulation of the PPC induced transient ipsilateral occipital activations (BA 18) 24-48ms post-TMS. Concurrent TMS and fast optical imaging results demonstrate a clear influence of PPC stimulation on activity within human extrastriate visual cortex and further extend this time- and space-resolved method for examining functional connectivity. PMID:26449990

  15. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2015-01-01

    There is a new potential to address needs for medical diagnostics in Point-of-Care (PoC) applications using mHealth (Mobile computing, medical sensors, and communications technologies for health care), a mHealth based lab test will require a LOC to perform clinical analysis. In this work, we describe the design of a simple Lab-on-a-chip (LOC) platform for mHealth medical diagnostics. The LOC utilizes a passive capillary valve with no moving parts for fluid control using channels with very low aspect ratios cross sections (i.e., channel width ≫ height) achieved through transitions in the channel geometry via that arrest capillary flow. Using a CO2 laser in raster engraving mode, we have designed and fabricated an eight-channel LOC for fluorescence signal detection fabricated by engraving and combining just two polymer layers. Each of the LOC channels is capable of mixing two reagents (e.g., enzyme and substrate) for various assays. For mHealth detection, we used a mobile CCD detector equipped with LED multispectral illumination in the red, green, blue, and white range. This technology enables the development of low-cost LOC platforms for mHealth whose fabrication is compatible with standard industrial plastic fabrication processes to enable mass production of mHealth diagnostic devices, which may broaden the use of LOCs in PoC applications, especially in global health settings.

  16. Subdivision of the occipital lobes: an anatomical and functional MRI connectivity study.

    PubMed

    Thiebaut de Schotten, Michel; Urbanski, Marika; Valabregue, Romain; Bayle, Dimitri J; Volle, Emmanuelle

    2014-07-01

    Exploring brain connectivity is fundamental to understanding the functional architecture of the cortex. In our study we employed tractography-based parcellation, combined with the principal component analysis statistical framework, to divide the occipital lobes into seven areas in a group of eighteen healthy participants. Tractography-based parcellation is a method based on diffusion imaging tractography, which segregates the living human brain into distinctive areas showing sharp differences in their anatomical connectivity. The results were compared to covarying functional networks involving distinct areas within the occipital lobes, that we obtained using resting state functional magnetic resonance imaging (fMRI), as well as to other existing subdivisions of the occipital lobes. Our results showed similarities with functional imaging data in healthy controls and cognitive profiles in brain-damaged patients, although several differences with cytoarchitectonic, myelogenetic, myeloarchitectonic and functional maps were reported. While the similarities are encouraging, the potential validity and limitations of the differences observed are discussed. Taken together these results suggest that tractography-based parcellation may provide a new promising anatomical subdivision of the living human brain based on its anatomical connectivity, which may benefit the understanding of clinical-neuroanatomical dissociations and functional neuroimaging results.

  17. Hemodynamic change in occipital lobe during visual search: visual attention allocation measured with NIRS.

    PubMed

    Kojima, Haruyuki; Suzuki, Takeshi

    2010-01-01

    We examined the changes in regional cerebral blood volume (rCBV) around visual cortex using Near Infrared Spectroscopy (NIRS) when observers attended to visual scenes. The oxygenated and deoxygenated hemoglobin (Oxy-Hb and Deoxy-Hb) concentration changes at occipital lobe were monitored during a dual task. Observers were asked to name a digit superimposed on a scenery picture, while in parallel, they had to detect an on-and-off flickering object in a Change Blindness paradigm. Results showed the typical activation patterns in and around the visual cortex with increases in Oxy-Hb and decreases in Deoxy-Hb. The Oxy-Hb increase doubled when observers could not find the target, as opposed to trials in which they could. The results strongly suggest that active attention to a visual scene enhances Oxy-Hb change much stronger than passive watching, and that attention and Oxy-Hb increases are possibly correlated.

  18. Development of polymer lab-on-a-chip (LOC) for oxidation-reduction potential (ORP) measurement.

    PubMed

    Jang, A; Lee, K K; Bishop, P L; Kim, I S; Ahn, C H

    2011-01-01

    Reverse osmosis (RO) desalination has been recognized as a promising method to solve the water shortage problem. Nevertheless, since it is energy intensive and has many problems associated with biofouling/fouling of RO membranes in RO plants, its commercial acceptance is still slow. Especially, as high levels of oxidizing agents negatively affect RO membrane efficiency and life span. So, there is a need to develop sensitive, selective, portable and rapid methods to determine oxidation-reduction potential (ORP) in feed solution. For developing a polymer ORP lab-on-a-chip (LOC), a microchannel patterned on a polymer substrate was successfully filled with 800 nm diameter silica beads using self-assembly bead packing technology. The measured ORPs using the three kinds of redox potential solutions were typically slightly lower than those of the nominal redox potential. But, all of the measurements should be deemed acceptable. The ORP LOC has also a much shorter response time than the conventional potentiometric sensor.

  19. Local Protein Structure Refinement via Molecular Dynamics Simulations with locPREFMD.

    PubMed

    Feig, Michael

    2016-07-25

    A method for the local refinement of protein structures that targets improvements in local stereochemistry while preserving the overall fold is presented. The method uses force field-based minimization and sampling via molecular dynamics simulations with a modified force field to bring bonds, angles, and torsion angles into an acceptable range for high-resolution protein structures. The method is implemented in the locPREFMD web server and was tested on computational models submitted to CASP11. Using MolProbity scores as the main assessment criterion, the locPREFMD method significantly improves the stereochemical quality of given input models close to the quality expected for experimental structures while maintaining the Cα coordinates of the initial model.

  20. Local Protein Structure Refinement via Molecular Dynamics Simulations with locPREFMD.

    PubMed

    Feig, Michael

    2016-07-25

    A method for the local refinement of protein structures that targets improvements in local stereochemistry while preserving the overall fold is presented. The method uses force field-based minimization and sampling via molecular dynamics simulations with a modified force field to bring bonds, angles, and torsion angles into an acceptable range for high-resolution protein structures. The method is implemented in the locPREFMD web server and was tested on computational models submitted to CASP11. Using MolProbity scores as the main assessment criterion, the locPREFMD method significantly improves the stereochemical quality of given input models close to the quality expected for experimental structures while maintaining the Cα coordinates of the initial model. PMID:27380201

  1. Coherent Activity in Bilateral Parieto-Occipital Cortices during P300-BCI Operation.

    PubMed

    Takano, Kouji; Ora, Hiroki; Sekihara, Kensuke; Iwaki, Sunao; Kansaku, Kenji

    2014-01-01

    The visual P300 brain-computer interface (BCI), a popular system for electroencephalography (EEG)-based BCI, uses the P300 event-related potential to select an icon arranged in a flicker matrix. In earlier studies, we used green/blue (GB) luminance and chromatic changes in the P300-BCI system and reported that this luminance and chromatic flicker matrix was associated with better performance and greater subject comfort compared with the conventional white/gray (WG) luminance flicker matrix. To highlight areas involved in improved P300-BCI performance, we used simultaneous EEG-fMRI recordings and showed enhanced activities in bilateral and right lateralized parieto-occipital areas. Here, to capture coherent activities of the areas during P300-BCI, we collected whole-head 306-channel magnetoencephalography data. When comparing functional connectivity between the right and left parieto-occipital channels, significantly greater functional connectivity in the alpha band was observed under the GB flicker matrix condition than under the WG flicker matrix condition. Current sources were estimated with a narrow-band adaptive spatial filter, and mean imaginary coherence was computed in the alpha band. Significantly greater coherence was observed in the right posterior parietal cortex under the GB than under the WG condition. Re-analysis of previous EEG-based P300-BCI data showed significant correlations between the power of the coherence of the bilateral parieto-occipital cortices and their performance accuracy. These results suggest that coherent activity in the bilateral parieto-occipital cortices plays a significant role in effectively driving the P300-BCI.

  2. TMS to the "occipital face area" affects recognition but not categorization of faces.

    PubMed

    Solomon-Harris, Lily M; Mullin, Caitlin R; Steeves, Jennifer K E

    2013-12-01

    The human cortical system for face perception is comprised of a network of connected regions including the middle fusiform gyrus ("fusiform face area" or FFA), the inferior occipital cortex ("occipital face area" or OFA), and the superior temporal sulcus. The traditional hierarchical feedforward model of visual processing suggests information flows from early visual cortex to the OFA for initial face feature analysis to higher order regions including the FFA for identity recognition. However, patient data suggest an alternative model. Patients with acquired prosopagnosia, an inability to visually recognize faces, have been documented with lesions to the OFA but who nevertheless show face-selective activation in the FFA. Moreover, their ability to categorize faces remains intact. This suggests that the FFA is not solely responsible for face recognition and the network is not strictly hierarchical, but may be organized in a reverse hierarchical fashion. We used transcranial magnetic stimulation (TMS) to temporarily disrupt processing in the OFA in neurologically-intact individuals and found participants' ability to categorize intact versus scrambled faces was unaffected, however face identity discrimination was significantly impaired. This suggests that face categorization but not recognition can occur without the "earlier" OFA being online and indicates that "lower level" face category processing may be assumed by other intact face network regions such as the FFA. These results are consistent with the patient data and support a non-hierarchical, global-to-local model with re-entrant connections between the OFA and other face processing areas.

  3. Fabrication and testing of a PDMS multi-stacked hand-operated LOC for use in portable immunosensing systems.

    PubMed

    Park, Sin Wook; Lee, Jun Hwang; Yoon, Hyun C; Kim, Byung Woo; Sim, Sang Jun; Chae, Heeyeop; Yang, Sang Sik

    2008-12-01

    This paper presents the development of a reliable multi-liquid lab-on-a-chip (LOC), with a hand-operated mechanism, for the application in portable immunosensing systems. To control the transport of multiple liquids without any external equipment, we utilize capillary attraction force for filling and surface tension for stopping liquid flow. As a driving force, hydraulic pressure caused by the elastic deformation of a liquid reservoir transfers liquid stopped at passive valves. The proposed LOC successfully demonstrates a reliable sequential liquid transfer within the reaction channel. To highlight its feasibility as a portable diagnostic system, we performed the electrochemical immunoassay measuring antibody concentrations within the fabricated LOC. As a test biorecognition reaction, the anti-dinitrophenyl (DNP) antibody with an enzymatic catalysis was selected as the target analyte. The amplified signals obtained from this experiment indicated a high selectivity of the immunosensing LOC. PMID:18553169

  4. LocARNAscan: Incorporating thermodynamic stability in sequence and structure-based RNA homology search

    PubMed Central

    2013-01-01

    Background The search for distant homologs has become an import issue in genome annotation. A particular difficulty is posed by divergent homologs that have lost recognizable sequence similarity. This same problem also arises in the recognition of novel members of large classes of RNAs such as snoRNAs or microRNAs that consist of families unrelated by common descent. Current homology search tools for structured RNAs are either based entirely on sequence similarity (such as blast or hmmer) or combine sequence and secondary structure. The most prominent example of the latter class of tools is Infernal. Alternatives are descriptor-based methods. In most practical applications published to-date, however, the information contained in covariance models or manually prescribed search patterns is dominated by sequence information. Here we ask two related questions: (1) Is secondary structure alone informative for homology search and the detection of novel members of RNA classes? (2) To what extent is the thermodynamic propensity of the target sequence to fold into the correct secondary structure helpful for this task? Results Sequence-structure alignment can be used as an alternative search strategy. In this scenario, the query consists of a base pairing probability matrix, which can be derived either from a single sequence or from a multiple alignment representing a set of known representatives. Sequence information can be optionally added to the query. The target sequence is pre-processed to obtain local base pairing probabilities. As a search engine we devised a semi-global scanning variant of LocARNA’s algorithm for sequence-structure alignment. The LocARNAscan tool is optimized for speed and low memory consumption. In benchmarking experiments on artificial data we observe that the inclusion of thermodynamic stability is helpful, albeit only in a regime of extremely low sequence information in the query. We observe, furthermore, that the sensitivity is bounded in

  5. [Surgical treatment of the occipital condyle fracture: case report].

    PubMed

    Gusmão, S S; Silveira, R L; Arantes, A

    2001-03-01

    We present a case of fracture of the occipital condyle showing neck pain, lesion of IX, X and XII cranial nerves and pyramidal syndrome of the four members. A review of the literature about the surgical treatment of the occipital condyle fracture is done.

  6. dLocAuth: a dynamic multifactor authentication scheme for mCommerce applications using independent location-based obfuscation

    NASA Astrophysics Data System (ADS)

    Kuseler, Torben; Lami, Ihsan A.

    2012-06-01

    This paper proposes a new technique to obfuscate an authentication-challenge program (named LocProg) using randomly generated data together with a client's current location in real-time. LocProg can be used to enable any handsetapplication on mobile-devices (e.g. mCommerce on Smartphones) that requires authentication with a remote authenticator (e.g. bank). The motivation of this novel technique is to a) enhance the security against replay attacks, which is currently based on using real-time nonce(s), and b) add a new security factor, which is location verified by two independent sources, to challenge / response methods for authentication. To assure a secure-live transaction, thus reducing the possibility of replay and other remote attacks, the authors have devised a novel technique to obtain the client's location from two independent sources of GPS on the client's side and the cellular network on authenticator's side. The algorithm of LocProg is based on obfuscating "random elements plus a client's data" with a location-based key, generated on the bank side. LocProg is then sent to the client and is designed so it will automatically integrate into the target application on the client's handset. The client can then de-obfuscate LocProg if s/he is within a certain range around the location calculated by the bank and if the correct personal data is supplied. LocProg also has features to protect against trial/error attacks. Analysis of LocAuth's security (trust, threat and system models) and trials based on a prototype implementation (on Android platform) prove the viability and novelty of LocAuth.

  7. LocZ Is a New Cell Division Protein Involved in Proper Septum Placement in Streptococcus pneumoniae

    PubMed Central

    Holečková, Nela; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel

    2014-01-01

    ABSTRACT How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division. PMID:25550321

  8. Timing of emotion representation in right and left occipital region: Evidence from combined TMS-EEG.

    PubMed

    Mattavelli, Giulia; Rosanova, Mario; Casali, Adenauer G; Papagno, Costanza; Romero Lauro, Leonor J

    2016-07-01

    Neuroimaging and electrophysiological studies provide evidence of hemispheric differences in processing faces and, in particular, emotional expressions. However, the timing of emotion representation in the right and left hemisphere is still unclear. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) was used to explore cortical responsiveness during behavioural tasks requiring processing of either identity or expression of faces. Single-pulse TMS was delivered 100ms after face onset over the medial prefrontal cortex (mPFC) while continuous EEG was recorded using a 60-channel TMS-compatible amplifier; right premotor cortex (rPMC) was also stimulated as control site. The same face stimuli with neutral, happy and fearful expressions were presented in separate blocks and participants were asked to complete either a facial identity or facial emotion matching task. Analyses performed on posterior face specific EEG components revealed that mPFC-TMS reduced the P1-N1 component. In particular, only when an explicit expression processing was required, mPFC-TMS interacted with emotion type in relation to hemispheric side at different timing; the first P1-N1 component was affected in the right hemisphere whereas the later N1-P2 component was modulated in the left hemisphere. These findings support the hypothesis that the frontal cortex exerts an early influence on the occipital cortex during face processing and suggest a different timing of the right and left hemisphere involvement in emotion discrimination.

  9. Internal Occipital Crest Misalignment with Internal Occipital Protuberance: A Case Report of Posterior Cranial Fossa Anatomic Variations

    PubMed Central

    Kim, Jae Ha

    2016-01-01

    During gross anatomy head and neck laboratory session, one dissection group observed an abnormal anatomic variation in the posterior cranial fossa of a 94-year-old male cadaver. The internal occipital crest was not aligned with internal occipital protuberance and groove for superior sagittal sinus. It seemed that the internal occipital protuberance was shifted significantly to the right side. As a result the skull was overly stretched in order to connect with the internal occipital ridge. These internal skull variations of occipital bone landmarks can influence the location of adjacent dural venous sinuses and possibly influence cerebrospinal fluid flow. Similar anatomical anomalies have been attributed to presence of hydrocephalus and abnormalities in cisterna magna. PMID:27648322

  10. Internal Occipital Crest Misalignment with Internal Occipital Protuberance: A Case Report of Posterior Cranial Fossa Anatomic Variations

    PubMed Central

    Kim, Jae Ha

    2016-01-01

    During gross anatomy head and neck laboratory session, one dissection group observed an abnormal anatomic variation in the posterior cranial fossa of a 94-year-old male cadaver. The internal occipital crest was not aligned with internal occipital protuberance and groove for superior sagittal sinus. It seemed that the internal occipital protuberance was shifted significantly to the right side. As a result the skull was overly stretched in order to connect with the internal occipital ridge. These internal skull variations of occipital bone landmarks can influence the location of adjacent dural venous sinuses and possibly influence cerebrospinal fluid flow. Similar anatomical anomalies have been attributed to presence of hydrocephalus and abnormalities in cisterna magna.

  11. Internal Occipital Crest Misalignment with Internal Occipital Protuberance: A Case Report of Posterior Cranial Fossa Anatomic Variations.

    PubMed

    Kim, Jae Ha; Ahmad, Maha

    2016-01-01

    During gross anatomy head and neck laboratory session, one dissection group observed an abnormal anatomic variation in the posterior cranial fossa of a 94-year-old male cadaver. The internal occipital crest was not aligned with internal occipital protuberance and groove for superior sagittal sinus. It seemed that the internal occipital protuberance was shifted significantly to the right side. As a result the skull was overly stretched in order to connect with the internal occipital ridge. These internal skull variations of occipital bone landmarks can influence the location of adjacent dural venous sinuses and possibly influence cerebrospinal fluid flow. Similar anatomical anomalies have been attributed to presence of hydrocephalus and abnormalities in cisterna magna. PMID:27648322

  12. Occipital neuromodulation for refractory headache in the Chiari malformation population.

    PubMed

    Vadivelu, Sudhakar; Bolognese, Paolo; Milhorat, Thomas H; Mogilner, Alon Y

    2011-01-01

    Chronic occipital and suboccipital headache is a common symptom in patients with Chiari I malformation (CMI). These headaches may persist despite appropriate surgical treatment of the underlying pathology via suboccipital decompression, duraplasty and related procedures. Occipital stimulation has been shown to be effective in the treatment of a variety of occipital headache/pain syndromes. We present our series of 18 patients with CMI and persistent occipital headaches who underwent occipital neurostimulator trials and, following successful trials, permanent stimulator placement. Seventy-two percent (13/18) of patients had a successful stimulator trial and proceeded to permanent implant. Of those implanted, 11/13 (85%) reported continued pain relief at a mean follow-up of 23 months. Device-related complications requiring additional surgeries occurred in 31% of patients. Occipital neuromodulation may provide significant long-term pain relief in selected CMI patients with persistent occipital pain. Larger and longer-term studies are needed to further define appropriate patient selection criteria as well as to refine the surgical technique to minimize device-related complications. PMID:21422782

  13. Intractable occipital lobe epilepsy: clinical characteristics and surgical treatment.

    PubMed

    Jobst, Barbara C; Williamson, Peter D; Thadani, Vijay M; Gilbert, Karen L; Holmes, Gregory L; Morse, Richard P; Darcey, Terrance M; Duhaime, Ann-Christine; Bujarski, Krysztof A; Roberts, David W

    2010-11-01

    Intractable occipital lobe epilepsy remains a surgical challenge. Clinical characteristics of 14 patients were analyzed. Twelve patients had surgery, seven patients had visual auras (50%) and only eight patients (57%) had posterior scalp EEG changes. Ictal single-proton emission computed tomography (SPECT) incorrectly localized in 7 of 10 patients. Six patients (50%) had Engel's class I outcome. Patients with inferior occipital seizure onset appeared to fare better (three of four class I) than patients with lateral or medial occipital seizure onset (three of eight class I). Patients who had all three occipital surfaces covered with electrodes had a better outcome (four of five class I) than patients who had limited electroencephalography (EEG) coverage (two of seven class I). Magnetic resonance imaging (MRI) lesions did not guarantee a seizure free outcome. In conclusion, visual auras, scalp EEG, and imaging findings are not reliable for correct identification of occipital onset. Occipital seizure onset can be easily missed in nonlesional epilepsy. Comprehensive intracranial EEG coverage of all three occipital surfaces leads to better outcomes.

  14. The Roles of Puf6 and Loc1 in 60S Biogenesis Are Interdependent, and Both Are Required for Efficient Accommodation of Rpl43.

    PubMed

    Yang, Yi-Ting; Ting, Ya-Han; Liang, Kei-Jen; Lo, Kai-Yin

    2016-09-01

    Puf6 and Loc1 have two important functional roles in the cells, asymmetric mRNA distribution and ribosome biogenesis. Puf6 and Loc1 are localized predominantly in the nucleolus. They bind ASH1 mRNA, repress its translation, and facilitate the transport to the daughter cells. Asymmetric mRNA distribution is important for cell differentiation. Besides their roles in mRNA localization, Puf6 and Loc1 have been shown to be involved in 60S biogenesis. In puf6Δ or loc1Δ cells, pre-rRNA processing and 60S export are impaired and 60S subunits are underaccumulated. The functional studies of Puf6 and Loc1 have been focused on ASH1 mRNA pathway, but their roles in 60S biogenesis are still not clear. In this study, we found that Puf6 and Loc1 interact directly with each other and both proteins interact with the ribosomal protein Rpl43 (L43e). Notably, the roles of Puf6 and Loc1 in 60S biogenesis are interdependent, and both are required for efficient accommodation of Rpl43. Loc1 is further required to maintain the protein level of Rpl43. Additionally, the recruitment of Rpl43 is required for the release of Puf6 and Loc1. We propose that Puf6 and Loc1 facilitate Rpl43 loading and are sequentially released from 60S after incorporation of Rpl43 into ribosomes in yeast. PMID:27458021

  15. LOC283731 promoter hypermethylation prognosticates survival after radiochemotherapy in IDH1 wild-type glioblastoma patients.

    PubMed

    Mock, Andreas; Geisenberger, Christoph; Orlik, Christian; Warta, Rolf; Schwager, Christian; Jungk, Christine; Dutruel, Céline; Geiselhart, Lea; Weichenhan, Dieter; Zucknick, Manuela; Nied, Ann-Katrin; Friauf, Sara; Exner, Janina; Capper, David; Hartmann, Christian; Lahrmann, Bernd; Grabe, Niels; Debus, Jürgen; von Deimling, Andreas; Popanda, Odilia; Plass, Christoph; Unterberg, Andreas; Abdollahi, Amir; Schmezer, Peter; Herold-Mende, Christel

    2016-07-15

    MGMT promoter methylation status is currently the only established molecular prognosticator in IDH wild-type glioblastoma multiforme (GBM). Therefore, we aimed to discover novel therapy-associated epigenetic biomarkers. After enrichment for hypermethylated fractions using methyl-CpG-immunoprecipitation (MCIp), we performed global DNA methylation profiling for 14 long-term (LTS; >36 months) and 15 short-term (STS; 6-10 months) surviving GBM patients. Even after exclusion of the G-CIMP phenotype, we observed marked differences between the LTS and STS methylome. A total of 1,247 probes in 706 genes were hypermethylated in LTS and 463 probes in 305 genes were found to be hypermethylated in STS patients (p values < 0.05, log2 fold change ± 0.5). We identified 13 differentially methylated regions (DMRs) with a minimum of four differentially methylated probes per gene. Indeed, we were able to validate a subset of these DMRs through a second, independent method (MassARRAY) in our LTS/STS training set (ADCY1, GPC3, LOC283731/ISLR2). These DMRs were further assessed for their prognostic capability in an independent validation cohort (n = 62) of non-G-CIMP GBMs from the TCGA. Hypermethylation of multiple CpGs mapping to the promoter region of LOC283731 correlated with improved patient outcome (p = 0.03). The prognostic performance of LOC283731 promoter hypermethylation was confirmed in a third independent study cohort (n = 89), and was independent of gender, performance (KPS) and MGMT status (p = 0.0485, HR = 0.63). Intriguingly, the prediction was most pronounced in younger GBM patients (<60 years). In conclusion, we provide compelling evidence that promoter methylation status of this novel gene is a prognostic biomarker in IDH1 wild-type/non-G-CIMP GBMs. PMID:26934681

  16. Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia.

    PubMed

    Coullon, Gaelle S L; Emir, Uzay E; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-09-01

    Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, (1)H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex.

  17. Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia

    PubMed Central

    Coullon, Gaelle S. L.; Emir, Uzay E.; Fine, Ione; Watkins, Kate E.

    2015-01-01

    Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, 1H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. PMID:26180125

  18. LACEwING: LocAting Constituent mEmbers In Nearby Groups

    NASA Astrophysics Data System (ADS)

    Riedel, Adric R.

    2016-01-01

    LACEwING (LocAting Constituent mEmbers In Nearby Groups) uses the kinematics (positions and motions) of stars to determine if they are members of one of 10 nearby young moving groups or 4 nearby open clusters within 100 parsecs. It is written for Python 2.7 and depends upon Numpy, Scipy, and Astropy (ascl:1304.002) modules. LACEwING can be used as a stand-alone code or as a module in other code. Additional python programs are present in the repository for the purpose of recalibrating the code and producing other analyses, including a traceback analysis.

  19. Anton's Syndrome due to Bilateral Ischemic Occipital Lobe Strokes.

    PubMed

    Zukić, Sanela; Sinanović, Osman; Zonić, Lejla; Hodžić, Renata; Mujagić, Svjetlana; Smajlović, Edina

    2014-01-01

    We present a case of a patient with Anton's syndrome (i.e., visual anosognosia with confabulations), who developed bilateral occipital lobe infarct. Bilateral occipital brain damage results in blindness, and patients start to confabulate to fill in the missing sensory input. In addition, the patient occasionally becomes agitated and talks to himself, which indicates that, besides Anton's syndrome, he might have had Charles Bonnet syndrome, characterized by both visual loss and hallucinations. Anton syndrome, is not so frequent condition and is most commonly caused by ischemic stroke. In this particular case, the patient had successive bilateral occipital ischemia as a result of massive stenoses of head and neck arteries.

  20. Occipital lobe epilepsy with fear as leading ictal symptom.

    PubMed

    Oehl, Bernhard; Schulze-Bonhage, Andreas; Lanz, Michael; Brandt, Armin; Altenmüller, Dirk-Matthias

    2012-03-01

    Ictal fear is a semiological feature which is commonly associated with mesial temporal lobe epilepsy. Here, we describe fear as a leading symptom in cryptogenic occipital lobe epilepsy. In a patient with negative MRI findings, intracranial EEG recordings documented a strict correlation between habitual ictal anxiety attacks and both spontaneous and stimulation-induced epileptic activity in a right occipital epileptogenic area with subsequent spreading to the symptomatogenic zone in the amygdala. Circumscribed occipital topectomy led to seizure freedom. Episodes of non-epileptic fear ceased shortly afterwards. This report provides insight into pathways of propagation of epileptic activity, illustrates different etiologies of pathologic fear and underlines the importance of ictal EEG recordings.

  1. Visual interhemispheric communication and callosal connections of the occipital lobes.

    PubMed

    Berlucchi, Giovanni

    2014-07-01

    Callosal connections of the occipital lobes, coursing in the splenium of the corpus callosum, have long been thought to be crucial for interactions between the cerebral hemispheres in vision in both experimental animals and humans. Yet the callosal connections of the temporal and parietal lobes appear to have more important roles than those of the occipital callosal connections in at least some high-order interhemispheric visual functions. The partial intermixing and overlap of temporal, parietal and occipital callosal connections within the splenium has made it difficult to attribute the effects of splenial pathological lesions or experimental sections to splenial components specifically related to select cortical areas. The present review describes some current contributions from the modern techniques for the tracking of commissural fibers within the living human brain to the tentative assignation of specific visual functions to specific callosal tracts, either occipital or extraoccipital.

  2. LocTree2 predicts localization for all domains of life

    PubMed Central

    Goldberg, Tatyana; Hamp, Tobias; Rost, Burkhard

    2012-01-01

    Motivation: Subcellular localization is one aspect of protein function. Despite advances in high-throughput imaging, localization maps remain incomplete. Several methods accurately predict localization, but many challenges remain to be tackled. Results: In this study, we introduced a framework to predict localization in life's three domains, including globular and membrane proteins (3 classes for archaea; 6 for bacteria and 18 for eukaryota). The resulting method, LocTree2, works well even for protein fragments. It uses a hierarchical system of support vector machines that imitates the cascading mechanism of cellular sorting. The method reaches high levels of sustained performance (eukaryota: Q18=65%, bacteria: Q6=84%). LocTree2 also accurately distinguishes membrane and non-membrane proteins. In our hands, it compared favorably with top methods when tested on new data. Availability: Online through PredictProtein (predictprotein.org); as standalone version at http://www.rostlab.org/services/loctree2. Contact: localization@rostlab.org Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22962467

  3. Development of polymer lab-on-a-chip (LOC) for oxidation-reduction potential (ORP) measurement.

    PubMed

    Jang, A; Lee, K K; Bishop, P L; Kim, I S; Ahn, C H

    2011-01-01

    Reverse osmosis (RO) desalination has been recognized as a promising method to solve the water shortage problem. Nevertheless, since it is energy intensive and has many problems associated with biofouling/fouling of RO membranes in RO plants, its commercial acceptance is still slow. Especially, as high levels of oxidizing agents negatively affect RO membrane efficiency and life span. So, there is a need to develop sensitive, selective, portable and rapid methods to determine oxidation-reduction potential (ORP) in feed solution. For developing a polymer ORP lab-on-a-chip (LOC), a microchannel patterned on a polymer substrate was successfully filled with 800 nm diameter silica beads using self-assembly bead packing technology. The measured ORPs using the three kinds of redox potential solutions were typically slightly lower than those of the nominal redox potential. But, all of the measurements should be deemed acceptable. The ORP LOC has also a much shorter response time than the conventional potentiometric sensor. PMID:21977654

  4. Giant Atretic Occipital Lipoencephalocele in an Adult with Bony Outgrowth

    PubMed Central

    Nimkar, Kshama; Sood, Dinesh; Soni, Pawan; Chauhan, Narvir; Surya, Mukesh

    2016-01-01

    Summary Background We present unique case of a giant extracranial atretic occipital lipoencephalocele in an adult patient with new bone formation within it which was not associated with any developmental malformation of brain. Resection of the lipoencephalocele was performed for esthetic reasons. Case Report 18 year old female patient presented to the surgery OPD with complains of a large mass in the occipital region present since birth. It was of size of a betel nut at the time of birth and gradually increased in size over a long period of time. It was painless and not associated with any other constitutional symptoms. On examination the rounded fluctuant mass was present in the midline in occipital region covered with alopecic skin with dimpling in the overlying skin. On MRI there was mass showing both T1 and T2 hyperintense signal area suggestive of fat component. Herniation of meninges and atretic brain parenchyma was also seen through a defect in the occipital bone in the midline. There was a Y shaped bony outgrowth seen arising from occipital bone into the mass which was quite unusual in association with an atretic lipoencephalocele. Conclusions A large lipoencephalocele with bony outgrowth in an adult patient is a rare presentation of atreic occipital encephalocele.

  5. Giant Atretic Occipital Lipoencephalocele in an Adult with Bony Outgrowth

    PubMed Central

    Nimkar, Kshama; Sood, Dinesh; Soni, Pawan; Chauhan, Narvir; Surya, Mukesh

    2016-01-01

    Summary Background We present unique case of a giant extracranial atretic occipital lipoencephalocele in an adult patient with new bone formation within it which was not associated with any developmental malformation of brain. Resection of the lipoencephalocele was performed for esthetic reasons. Case Report 18 year old female patient presented to the surgery OPD with complains of a large mass in the occipital region present since birth. It was of size of a betel nut at the time of birth and gradually increased in size over a long period of time. It was painless and not associated with any other constitutional symptoms. On examination the rounded fluctuant mass was present in the midline in occipital region covered with alopecic skin with dimpling in the overlying skin. On MRI there was mass showing both T1 and T2 hyperintense signal area suggestive of fat component. Herniation of meninges and atretic brain parenchyma was also seen through a defect in the occipital bone in the midline. There was a Y shaped bony outgrowth seen arising from occipital bone into the mass which was quite unusual in association with an atretic lipoencephalocele. Conclusions A large lipoencephalocele with bony outgrowth in an adult patient is a rare presentation of atreic occipital encephalocele. PMID:27617049

  6. [A case of occipital lobe epilepsy following cerebral infarction].

    PubMed

    Iijima, M; Shibata, K; Murakami, H; Sasaki, S; Maruyama, S

    1994-09-01

    We report a rare case of occipital lobe epilepsy following cerebral infarction in bilateral occipital lobes. The patient is a seventeen-year-old female, who had cerebral infarction in bilateral occipital regions a few days after an open-heart surgery at 15 years of age. Thereafter she sometimes complained of visual field defects and ictal amaurosis. Seventeen months later, she developed a tonic seizure with ictal amaurosis, visual field defects and head deviation. On admission, results of the neurological examinations were all normal with the exception of peripheral visual field defects. Scalp electroencephalographic (EEG) findings showed paroxysmal discharges that were more prominent in the frontal to parietal leads than in the occipital leads. Sometimes the laterality of paroxysmal discharges changed. Her visual defects were diagnosed as psychogenic activity by the ophthalmological visual fields test. Simultaneous recordings of pattern reversal visual evoked potential (VEP) and electroretinograms (ERG) showed normal in 15 minute checks, but prolongation of bilateral P100 latency in 30 minute checks. These findings suggested that peripheral visual fields were disturbed. In this case, EEG findings and the initial symptoms of amaurosis and visual fields defect suggested occipital epilepsy following cerebral infarction in bilateral occipital lobes. We wish to emphasize that simultaneous VEP and ERG recording is a useful diagnostic tool for estimating visual functions.

  7. Neonatal apneic seizure of occipital lobe origin: continuous video-EEG recording.

    PubMed

    Castro Conde, José Ramón; González-Hernández, Tomás; González Barrios, Desiré; González Campo, Candelaria

    2012-06-01

    We present 2 term newborn infants with apneic seizure originating in the occipital lobe that was diagnosed by video-EEG. One infant had ischemic infarction in the distribution of the posterior cerebral artery, extending to the cingulate gyrus. In the other infant, only transient occipital hyperechogenicity was observed by using neurosonography. In both cases, although the critical EEG discharge was observed at the occipital level, the infants presented no clinical manifestations. In patient 1, the discharge extended to the temporal lobe first, with subtle motor manifestations and tachycardia, then synchronously to both hemispheres (with bradypnea/hypopnea), and the background EEG activity became suppressed, at which point the infant experienced apnea. In patient 2, background EEG activity became suppressed right at the end of the focal discharge, coinciding with the appearance of apnea. In neither case did the clinical description by observers coincide with video-EEG findings. The existence of connections between the posterior limbic cortex and the temporal lobe and midbrain respiratory centers may explain the clinical symptoms recorded in these 2 cases. The novel features reported here include video-EEG capture of apneic seizure, ischemic lesion in the territory of the posterior cerebral artery as the cause of apneic seizure, and the appearance of apnea when the epileptiform ictal discharge extended to other cerebral areas or when EEG activity became suppressed. To date, none of these clinical findings have been previously reported. We believe this pathology may in fact be fairly common, but that video-EEG monitoring is essential for diagnosis.

  8. Positive affect modulates activity in the visual cortex to images of high calorie foods.

    PubMed

    Killgore, William D S; Yurgelun-Todd, Deborah A

    2007-05-01

    Activity within the visual cortex can be influenced by the emotional salience of a stimulus, but it is not clear whether such cortical activity is modulated by the affective status of the individual. This study used functional magnetic resonance imaging (fMRI) to examine the relationship between affect ratings on the Positive and Negative Affect Schedule and activity within the occipital cortex of 13 normal-weight women while viewing images of high calorie and low calorie foods. Regression analyses revealed that when participants viewed high calorie foods, Positive Affect correlated significantly with activity within the lingual gyrus and calcarine cortex, whereas Negative Affect was unrelated to visual cortex activity. In contrast, during presentations of low calorie foods, affect ratings, regardless of valence, were unrelated to occipital cortex activity. These findings suggest a mechanism whereby positive affective state may affect the early stages of sensory processing, possibly influencing subsequent perceptual experience of a stimulus. PMID:17464782

  9. Severe, persistent visual impairment associated with occipital calcification and coeliac disease.

    PubMed

    Millington, Rebecca S; James-Galton, Merle; Barbur, John L; Plant, Gordon T; Bridge, Holly

    2015-09-01

    While coeliac disease is primarily a disease of the digestive system, there have been several reports of neurological effects, both motor and cognitive. Here, we present the case of a woman with coeliac disease, under dietary control, in whom there is profound long-standing visual disturbance including reduction of visual fields, loss of rapid flicker and colour sensitivity and severe deficits in acuity. Structural magnetic resonance imaging (MRI) indicates large regions of calcification and abnormal tissue that is restricted to the occipital cortex, particularly the posterior region. Functional MRI indicates an absence of normal visual activation in the primary visual cortex, but at least in one hemisphere, there is neural activity to moving stimuli in visual motion area hMT+. White matter microstructure in the pathway between the lateral geniculate nucleus and hMT+ is normal compared to healthy control subjects, but is severely abnormal between the lateral geniculate nucleus and primary visual cortex. This case study illustrates the very specific nature of cortical deficit that can arise in association with coeliac disease, and highlights the importance of early dietary control for the disease.

  10. The Classical Pathways of Occipital Lobe Epileptic Propagation Revised in the Light of White Matter Dissection

    PubMed Central

    Latini, Francesco; Hjortberg, Mats; Aldskogius, Håkan; Ryttlefors, Mats

    2015-01-01

    The clinical evidences of variable epileptic propagation in occipital lobe epilepsy (OLE) have been demonstrated by several studies. However the exact localization of the epileptic focus sometimes represents a problem because of the rapid propagation to frontal, parietal, or temporal regions. Each white matter pathway close to the supposed initial focus can lead the propagation towards a specific direction, explaining the variable semiology of these rare epilepsy syndromes. Some new insights in occipital white matter anatomy are herein described by means of white matter dissection and compared to the classical epileptic patterns, mostly based on the central position of the primary visual cortex. The dissections showed a complex white matter architecture composed by vertical and longitudinal bundles, which are closely interconnected and segregated and are able to support specific high order functions with parallel bidirectional propagation of the electric signal. The same sublobar lesions may hyperactivate different white matter bundles reemphasizing the importance of the ictal semiology as a specific clinical demonstration of the subcortical networks recruited. Merging semiology, white matter anatomy, and electrophysiology may lead us to a better understanding of these complex syndromes and tailored therapeutic options based on individual white matter connectivity. PMID:26063964

  11. The Classical Pathways of Occipital Lobe Epileptic Propagation Revised in the Light of White Matter Dissection.

    PubMed

    Latini, Francesco; Hjortberg, Mats; Aldskogius, Håkan; Ryttlefors, Mats

    2015-01-01

    The clinical evidences of variable epileptic propagation in occipital lobe epilepsy (OLE) have been demonstrated by several studies. However the exact localization of the epileptic focus sometimes represents a problem because of the rapid propagation to frontal, parietal, or temporal regions. Each white matter pathway close to the supposed initial focus can lead the propagation towards a specific direction, explaining the variable semiology of these rare epilepsy syndromes. Some new insights in occipital white matter anatomy are herein described by means of white matter dissection and compared to the classical epileptic patterns, mostly based on the central position of the primary visual cortex. The dissections showed a complex white matter architecture composed by vertical and longitudinal bundles, which are closely interconnected and segregated and are able to support specific high order functions with parallel bidirectional propagation of the electric signal. The same sublobar lesions may hyperactivate different white matter bundles reemphasizing the importance of the ictal semiology as a specific clinical demonstration of the subcortical networks recruited. Merging semiology, white matter anatomy, and electrophysiology may lead us to a better understanding of these complex syndromes and tailored therapeutic options based on individual white matter connectivity.

  12. Alexia Without Agraphia in a Right-Handed Individual Following Right Occipital Stroke.

    PubMed

    Robinson, Jordan S; Collins, Robert L; Mukhi, Shalini V

    2016-01-01

    Alexia without agraphia is a disconnection syndrome that typically involves damage to the occipital lobe, with splenium involvement, in the dominant left hemisphere. We describe an exceptionally rare case of a right-handed individual displaying this deficit following a right-sided occipital stroke. A report of a single case of a 65-year-old man is presented with data from appointments with the neurology and neuropsychology departments that occurred approximately 10 and 12 months following the patient's stroke. During the evaluation, he exhibited a marked deficit in his ability to read, with vision grossly intact. His ability to write single words and short phrases from dictation was intact, but he was later unable to read them. This case demonstrates the complexity of the organization of language in the human brain. Although a large majority of individuals exhibit language dominance in their left hemispheres, it remains possible that some right-handed individuals may show atypical organization of language. This highlights the need for clinicians to consider atypical cortical organization when observed deficits may not necessarily match expected lesions within the cortex. PMID:26397830

  13. Occipital long-interval paired pulse TMS leads to slow wave components in NREM sleep.

    PubMed

    Stamm, Mihkel; Aru, Jaan; Rutiku, Renate; Bachmann, Talis

    2015-09-01

    Neural correlates of conscious vs unconscious states can be studied by contrasting EEG markers of brain activity between those two states. Here, a task-free experimental setup was used to study the state dependent effects of occipital transcranial magnetic stimulation (TMS). EEG responses to single and paired pulse TMS with an inter-stimulus-interval (ISI) of 100 ms were investigated under Non-REM (NREM) sleep and wakefulness. In the paired pulse TMS condition adopting this long ISI, a robust positive deflection starting around 200 ms after the second pulse was found. This component was not obtained under wakefulness or when a single TMS pulse was applied in sleep. These findings are discussed in the context of NREM sleep slow waves. The present results indicate that the long interval paired-pulse paradigm could be used to manipulate plasticity processes in the visual cortex. The present setup might also become useful for evaluating states of consciousness.

  14. Reduced occipital and prefrontal brain volumes in dysbindin-associated schizophrenia.

    PubMed

    Donohoe, Gary; Frodl, Thomas; Morris, Derek; Spoletini, Ilaria; Cannon, Dara M; Cherubini, Andrea; Caltagirone, Carlo; Bossù, Paola; McDonald, Colm; Gill, Michael; Corvin, Aiden P; Spalletta, Gianfranco

    2010-01-01

    A three-marker C-A-T dysbindin haplotype identified by Williams et al (PMID: 15066891) is associated with increased risk for schizophrenia, decreased mRNA expression, poorer cognitive performance, and early sensory processing deficits. We investigated whether this same dysbindin risk haplotype was also associated with structural variation in the gray matter volume (GMV). Using voxel-based morphometry, whole-volume analysis revealed significantly reduced GMVs in both the right dorsolateral prefrontal and left occipital cortex, corresponding to the behavioral findings of impaired spatial working memory and EEG findings of impaired visual processing already reported. These data provide important evidence of the influence of dysbindin risk variants on brain structure, and suggest a possible mechanism by which disease risk is being increased. PMID:19794403

  15. GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments.

    PubMed

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    Local dipole moments (i.e., dipole moments of atomic or molecular subsystems) are essential for understanding various phenomena in nanoscience, such as solvent effects on the conductance of single molecules in break junctions or the interaction between the tip and the adsorbate in atomic force microscopy. We introduce GenLocDip, a program for calculating and visualizing local dipole moments of molecular subsystems. GenLocDip currently uses the Atoms-In-Molecules (AIM) partitioning scheme and is interfaced to various AIM programs. This enables postprocessing of a variety of electronic structure output formats including cube and wavefunction files, and, in general, output from any other code capable of writing the electron density on a three-dimensional grid. It uses a modified version of Bader's and Laidig's approach for achieving origin-independence of local dipoles by referring to internal reference points which can (but do not need to be) bond critical points (BCPs). Furthermore, the code allows the export of critical points and local dipole moments into a POVray readable input format. It is particularly designed for fragments of large systems, for which no BCPs have been calculated for computational efficiency reasons, because large interfragment distances prevent their identification, or because a local partitioning scheme different from AIM was used. The program requires only minimal user input and is written in the Fortran90 programming language. To demonstrate the capabilities of the program, examples are given for covalently and non-covalently bound systems, in particular molecular adsorbates. © 2016 Wiley Periodicals, Inc. PMID:27416879

  16. Versive seizures in occipital lobe epilepsy: lateralizing value and pathophysiology.

    PubMed

    Usui, Naotaka; Mihara, Tadahiro; Baba, Koichi; Matsuda, Kazumi; Tottori, Takayasu; Umeoka, Shuichi; Kondo, Akihiko; Nakamura, Fumihiro; Terada, Kiyohito; Usui, Keiko; Inoue, Yushi

    2011-11-01

    To clarify the value of versive seizures in lateralizing and localizing the epileptogenic zone in patients with occipital lobe epilepsy, we studied 13 occipital lobe epilepsy patients with at least one versive seizure recorded during preoperative noninvasive video-EEG monitoring, who underwent occipital lobe resection, and were followed postoperatively for more than 2 years with Engel's class I outcome. The videotaped versive seizures were analyzed to compare the direction of version and the side of surgical resection in each patient. Moreover, we examined other motor symptoms (partial somatomotor manifestations such as tonic and/or clonic movements of face and/or limbs, automatisms, and eyelid blinking) associated with version. Forty-nine versive seizures were analyzed. The direction of version was always contralateral to the side of resection except in one patient. Among accompanying motor symptoms, partial somatomotor manifestations were observed in only five patients. In conclusion, versive seizure is a reliable lateralizing sign indicating contralateral epileptogenic zone in occipital lobe epilepsy. Since versive seizures were accompanied by partial somatomotor manifestations in less than half of the patients, it is suggested that the mechanism of version in occipital lobe epilepsy is different from that in frontal lobe epilepsy.

  17. Benign occipital lobe seizures: Natural progression and atypical evolution.

    PubMed

    Chary, Prithika; Rajendran, Bhuvaneshwari

    2013-10-01

    Benign occipital seizure syndromes are benign childhood epilepsy syndromes and are mainly of two types, Panayiotopoulos syndrome, an autonomic epilepsy and idiopathic childhood occipital epilepsy of Gastaut (ICOE-G) including the idiopathic photosensitive occipital lobe epilepsy. Although both these types are categorized as occipital seizures, they are distinct in presentation and management. They can also be tricky to diagnose as visual symptoms may not always be the presenting feature and it is also not very easy to elicit visual hallucinations during history taking. These seizures have a good response to treatment; however, there could be atypical evolution and refractoriness to treatment especially with ICOE-G. We describe three children who presented with visual and non-visual symptoms and the electroencephalography (EEG) in all the three cases showed occipital paroxysms. We have emphasized the clues in the clinical history and EEG leading to the diagnosis of these distinct epilepsy syndromes. We have also discussed the natural course of these epilepsy syndromes with some atypical evolution, which clinicians need to be aware of during treatment of these children.

  18. Evidence for intact local connectivity but disrupted regional function in the occipital lobe in children and adolescents with schizophrenia.

    PubMed

    White, Tonya; Moeller, Steen; Schmidt, Marcus; Pardo, Jose V; Olman, Cheryl

    2012-08-01

    It has long been known that specific visual frequencies result in greater blood flow to the striate cortex. These peaks are thought to reflect synchrony of local neuronal firing that is reflective of local cortical networks. Since disrupted neural connectivity is a possible etiology for schizophrenia, our goal was to investigate whether localized connectivity, as measured by aberrant synchrony, is abnormal in children and adolescents with schizophrenia. Subjects included 25 children and adolescents with schizophrenia and 39 controls matched for age and gender. Subjects were scanned on a Siemens 3 Tesla Trio scanner while observing flashing checkerboard presented at either 1, 4, 8, or 12 Hz. Image processing included both a standard GLM model and a Fourier transform analysis. Patients had significantly smaller volume of activation in the occipital lobe compared to controls. There were no differences in the integral or percent signal change of the hemodynamic response function for each of the four frequencies. Occipital activation was stable during development between childhood and late adolescence. Finally, both patients and controls demonstrated an increased response between 4 and 8 Hz consistent with synchrony or entrainment in the neuronal response. Children and adolescents with schizophrenia had a significantly lower volume of activation in the occipital lobe in response to the flashing checkerboard task. However, features of intact local connectivity in patients, such as the hemodynamic response function and maximal response at 8 Hz, were normal. These results are consistent with abnormalities in regional connectivity with preserved local connectivity in early-onset schizophrenia.

  19. Graphical Analysis of Electromagnetic Coupling on B-737 and B-757 Aircraft for VOR and LOC IPL Data

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2005-01-01

    Electromagnetic coupling measurements were performed from numerous passenger cabin locations to aircraft instrument landing system localizer (LOC) and VHF Omni-Ranging (VOR) systems. This paper presents and compares the data for B-757 and B-737 airplanes, and provides a basis for fuzzy modeling of coupling patterns in different types of airplanes and airplanes with different antenna locations.

  20. Investigating and Promoting Trainee Science Teachers' Conceptual Change of the Nature of Science with Digital Dialogue Games `InterLoc'

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser; Wegerif, Rupert; Skinner, Nigel; Postlethwaite, Keith; Hetherington, Lindsay

    2016-04-01

    The purpose of this study is to explore how an online-structured dialogue environment supported (OSDE) collaborative learning about the nature of science among a group of trainee science teachers in the UK. The software used (InterLoc) is a linear text-based tool, designed to support structured argumentation with openers and `dialogue moves'. A design-based research approach was used to investigate multiple sessions using InterLoc with 65 trainee science teachers. Five participants who showed differential conceptual change in terms of their Nature of Science (NOS) views were purposively selected and closely followed throughout the study by using key event recall interviews. Initially, the majority of participants held naïve views of NOS. Substantial and favourable changes in these views were evident as a result of the OSDE. An examination of the development of the five participants' NOS views indicated that the effectiveness of the InterLoc discussions was mediated by cultural, cognitive, and experiential factors. The findings suggest that InterLoc can be effective in promoting reflection and conceptual change.

  1. Investigating and Promoting Trainee Science Teachers' Conceptual Change of the Nature of Science with Digital Dialogue Games `InterLoc'

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser; Wegerif, Rupert; Skinner, Nigel; Postlethwaite, Keith; Hetherington, Lindsay

    2016-10-01

    The purpose of this study is to explore how an online-structured dialogue environment supported (OSDE) collaborative learning about the nature of science among a group of trainee science teachers in the UK. The software used (InterLoc) is a linear text-based tool, designed to support structured argumentation with openers and `dialogue moves'. A design-based research approach was used to investigate multiple sessions using InterLoc with 65 trainee science teachers. Five participants who showed differential conceptual change in terms of their Nature of Science (NOS) views were purposively selected and closely followed throughout the study by using key event recall interviews. Initially, the majority of participants held naïve views of NOS. Substantial and favourable changes in these views were evident as a result of the OSDE. An examination of the development of the five participants' NOS views indicated that the effectiveness of the InterLoc discussions was mediated by cultural, cognitive, and experiential factors. The findings suggest that InterLoc can be effective in promoting reflection and conceptual change.

  2. Cranio-vertebral junction anomaly: atlanto-occipital assimilation.

    PubMed

    Pooja Jain, -; Khursheed Raza, -; Chiman Kumari, -; Manisha Hansda, -; Sb Ray, -

    2016-01-01

    Cranio-vertebral junction is a pivot which holds the globe of the head. Bony anomalies at this point are particularly significant because they lodge the spinal cord and lower part of the brain stem. Clinically fusion of the atlas with the lower part of the occiput is known as Atlanto-occipital assimilation or atlas occipitalization, which can be either partial or complete depending upon the extent of fusion. It can present as totally asymptomatic accidental finding or can be a cause behind major neuro-vascular compression. The present case study is an endeavor to explain occipitalization of atlas bone on the basis of embryology and explain its clinical relevance. PMID:27424507

  3. Exploratory metabolomic analyses reveal compounds correlated with lutein concentration in frontal cortex, hippocampus, and occipital cortex of human infant brain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with...

  4. Grievous Temporal and Occipital Injury Caused by a Bear Attack

    PubMed Central

    Thada, Nikhil Dinaker; Rao, Pallavi; Thada, Smitha Rani; Prasad, Kishore Chandra

    2013-01-01

    Bear attacks are reported from nearly every part of the world. The chance of a human encountering a bear increases as the remote bear territory diminishes. The sloth bear is one of the three species of bears found in India, which inhabits the forests of India and its neighboring countries. Here we describe a teenager who came to us with a critical injury involving the face, temporal and occipital bones inflicted by a sloth bear attack. He underwent a temporal exploration, facial nerve decompression, pinna reconstruction, and occipital bone repair to save him from fatality. PMID:24396623

  5. Occipital infarction with hemianopsia from carotid occlusive disease.

    PubMed

    Pessin, M S; Kwan, E S; Scott, R M; Hedges, T R

    1989-03-01

    Extracranial internal carotid artery occlusive disease usually produces stroke in the middle cerebral artery territory or the border zone between the middle and anterior cerebral arteries. It is unusual for occipital infarction in the posterior cerebral artery territory to be caused by internal carotid artery disease despite the fact that the posterior cerebral artery may arise directly from the internal carotid artery as an anatomic variation. We describe a patient with a fetal posterior cerebral artery originating from the internal carotid artery, and the initial manifestation of his extracranial internal carotid artery occlusive disease was hemianopsia from occipital infarction.

  6. Recurrent bilateral occipital infarct with cortical blindness and anton syndrome.

    PubMed

    Kwong Yew, Kiu; Abdul Halim, Sanihah; Liza-Sharmini, Ahmad Tajudin; Tharakan, John

    2014-01-01

    Bilateral cortical blindness and Anton syndrome, are most commonly caused by ischaemic stroke. In this condition, patients have loss of vision but deny their blindness despite objective evidence of visual loss. We report a case of a patient with multiple cardiovascular risk factors who developed recurrent bilateral occipital lobe infarct with Anton syndrome. A suspicion of this condition should be raised when the patient has denial of blindness in the presence of clinical and radiological evidence of occipital lobe injury. Management of this condition should focus on the underlying cause, in which our patient requires secondary stroke prevention and rehabilitation. PMID:24744933

  7. MetaLocGramN: A meta-predictor of protein subcellular localization for Gram-negative bacteria.

    PubMed

    Magnus, Marcin; Pawlowski, Marcin; Bujnicki, Janusz M

    2012-12-01

    Subcellular localization is a key functional characteristic of proteins. It is determined by signals encoded in the protein sequence. The experimental determination of subcellular localization is laborious. Thus, a number of computational methods have been developed to predict the protein location from sequence. However predictions made by different methods often disagree with each other and it is not always clear which algorithm performs best for the given cellular compartment. We benchmarked primary subcellular localization predictors for proteins from Gram-negative bacteria, PSORTb3, PSLpred, CELLO, and SOSUI-GramN, on a common dataset that included 1056 proteins. We found that PSORTb3 performs best on the average, but is outperformed by other methods in predictions of extracellular proteins. This motivated us to develop a meta-predictor, which combines the primary methods by using the logistic regression models, to take advantage of their combined strengths, and to eliminate their individual weaknesses. MetaLocGramN runs the primary methods, and based on their output classifies protein sequences into one of five major localizations of the Gram-negative bacterial cell: cytoplasm, plasma membrane, periplasm, outer membrane, and extracellular space. MetaLocGramN achieves the average Matthews correlation coefficient of 0.806, i.e. 12% better than the best individual primary method. MetaLocGramN is a meta-predictor specialized in predicting subcellular localization for proteins from Gram-negative bacteria. According to our benchmark, it performs better than all other tools run independently. MetaLocGramN is a web and SOAP server available for free use by all academic users at the URL http://iimcb.genesilico.pl/MetaLocGramN. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction. PMID:22705560

  8. Memory-reliant Post-error Slowing Is Associated with Successful Learning and Fronto-occipital Activity.

    PubMed

    Schiffler, Björn C; Almeida, Rita; Granqvist, Mathias; Bengtsson, Sara L

    2016-10-01

    Negative feedback after an action in a cognitive task can lead to devaluing that action on future trials as well as to more cautious responding when encountering that same choice again. These phenomena have been explored in the past by reinforcement learning theories and cognitive control accounts, respectively. Yet, how cognitive control interacts with value updating to give rise to adequate adaptations under uncertainty is less clear. In this fMRI study, we investigated cognitive control-based behavioral adjustments during a probabilistic reinforcement learning task and studied their influence on performance in a later test phase in which the learned value of items is tested. We provide support for the idea that functionally relevant and memory-reliant behavioral adjustments in the form of post-error slowing during reinforcement learning are associated with test performance. Adjusting response speed after negative feedback was correlated with BOLD activity in right inferior frontal gyrus and bilateral middle occipital cortex during the event of receiving the feedback. Bilateral middle occipital cortex activity overlapped partly with activity reflecting feedback deviance from expectations as measured by unsigned prediction error. These results suggest that cognitive control and feature processing cortical regions interact to implement feedback-congruent adaptations beneficial to learning. PMID:27243614

  9. Memory-reliant Post-error Slowing Is Associated with Successful Learning and Fronto-occipital Activity.

    PubMed

    Schiffler, Björn C; Almeida, Rita; Granqvist, Mathias; Bengtsson, Sara L

    2016-10-01

    Negative feedback after an action in a cognitive task can lead to devaluing that action on future trials as well as to more cautious responding when encountering that same choice again. These phenomena have been explored in the past by reinforcement learning theories and cognitive control accounts, respectively. Yet, how cognitive control interacts with value updating to give rise to adequate adaptations under uncertainty is less clear. In this fMRI study, we investigated cognitive control-based behavioral adjustments during a probabilistic reinforcement learning task and studied their influence on performance in a later test phase in which the learned value of items is tested. We provide support for the idea that functionally relevant and memory-reliant behavioral adjustments in the form of post-error slowing during reinforcement learning are associated with test performance. Adjusting response speed after negative feedback was correlated with BOLD activity in right inferior frontal gyrus and bilateral middle occipital cortex during the event of receiving the feedback. Bilateral middle occipital cortex activity overlapped partly with activity reflecting feedback deviance from expectations as measured by unsigned prediction error. These results suggest that cognitive control and feature processing cortical regions interact to implement feedback-congruent adaptations beneficial to learning.

  10. The Involvement of Occipital and Inferior Frontal Cortex in the Phonological Learning of Chinese Characters

    PubMed Central

    Deng, Yuan; Chou, Tai-li; Ding, Guo-sheng; Peng, Dan-ling; Booth, James R.

    2016-01-01

    Neural changes related to the learning of the pronunciation of Chinese characters in English speakers were examined using fMRI. We examined the item-specific learning effects for trained characters and the generalization of phonetic knowledge to novel transfer characters that shared a phonetic radical (part of a character that gives a clue to the whole character’s pronunciation) with trained characters. Behavioral results showed that shared phonetic information improved performance for transfer characters. Neuroimaging results for trained characters over learning found increased activation in the right lingual gyrus, and greater activation enhancement in the left inferior frontal gyrus (Brodmann’s area 44) was correlated with higher accuracy improvement. Moreover, greater activation for transfer characters in these two regions at the late stage of training was correlated with better knowledge of the phonetic radical in a delayed recall test. The current study suggests that the right lingual gyrus and the left inferior frontal gyrus are crucial for the learning of Chinese characters and the generalization of that knowledge to novel characters. Left inferior frontal gyrus is likely involved in phonological segmentation, whereas right lingual gyrus may subserve processing visual–orthographic information. PMID:20807053

  11. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex.

    PubMed

    Jiang, Fang; Stecker, G Christopher; Boynton, Geoffrey M; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness-competition across different cortical areas for functional role. PMID:27458357

  12. The Involvement of Occipital and Inferior Frontal Cortex in the Phonological Learning of Chinese Characters

    ERIC Educational Resources Information Center

    Deng, Yuan; Chou, Tai-li; Ding, Guo-sheng; Peng, Dan-ling; Booth, James R.

    2011-01-01

    Neural changes related to the learning of the pronunciation of Chinese characters in English speakers were examined using fMRI. We examined the item-specific learning effects for trained characters and the generalization of phonetic knowledge to novel transfer characters that shared a phonetic radical (part of a character that gives a clue to the…

  13. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  14. The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements

    PubMed Central

    Yeatman, Jason D.; Weiner, Kevin S.; Pestilli, Franco; Rokem, Ariel; Mezer, Aviv; Wandell, Brian A.

    2014-01-01

    The vertical occipital fasciculus (VOF) is the only major fiber bundle connecting dorsolateral and ventrolateral visual cortex. Only a handful of studies have examined the anatomy of the VOF or its role in cognition in the living human brain. Here, we trace the contentious history of the VOF, beginning with its original discovery in monkey by Wernicke (1881) and in human by Obersteiner (1888), to its disappearance from the literature, and recent reemergence a century later. We introduce an algorithm to identify the VOF in vivo using diffusion-weighted imaging and tractography, and show that the VOF can be found in every hemisphere (n = 74). Quantitative T1 measurements demonstrate that tissue properties, such as myelination, in the VOF differ from neighboring white-matter tracts. The terminations of the VOF are in consistent positions relative to cortical folding patterns in the dorsal and ventral visual streams. Recent findings demonstrate that these same anatomical locations also mark cytoarchitectonic and functional transitions in dorsal and ventral visual cortex. We conclude that the VOF is likely to serve a unique role in the communication of signals between regions on the ventral surface that are important for the perception of visual categories (e.g., words, faces, bodies, etc.) and regions on the dorsal surface involved in the control of eye movements, attention, and motion perception. PMID:25404310

  15. Benign Occipital Epilepsies of Childhood: Clinical Features and Genetics

    ERIC Educational Resources Information Center

    Taylor, Isabella; Berkovic, Samuel F.; Kivity, Sara; Scheffer, Ingrid E.

    2008-01-01

    The early and late benign occipital epilepsies of childhood (BOEC) are described as two discrete electro-clinical syndromes, eponymously known as Panayiotopoulos and Gastaut syndromes. Our aim was to explore the clinical features, classification and clinical genetics of these syndromes using twin and multiplex family studies to determine whether…

  16. Refractory headaches treated with bilateral occipital and temporal region stimulation

    PubMed Central

    Zach, Kelly J; Trentman, Terrence L; Zimmerman, Richard S; Dodick, David W

    2014-01-01

    Objectives To describe use of bilateral temporal and occipital stimulator leads for a refractory headache disorder. Materials and methods A 31-year-old female had a 10-year history of chronic, severe occipital and temporal region headaches. The patient underwent permanent implant of an occipital stimulator system that resulted in sustained, compete resolution of her occipital pain. However, she continued to suffer disabling (10/10) temporal region headaches and was bedbound most days of the week. Therefore, bilateral temporal stimulator leads were implanted and tunneled to her internal pulse generator. Results At 12-month follow-up, the patient enjoyed sustained improvement in her pain scores (8/10) and marked increase in her level of functioning. Taking into account increased activity level, she rated her overall improvement at 50%. Unfortunately, infection and erosion of her right temporal lead necessitated temporal stimulator removal. Conclusion Headache disorders may require stimulation of all painful cephalic regions. However, our success in this case must be considered in light of the technical challenges and expense of placing stimulator leads subcutaneously around the head and neck, including the risk of infection, lead breakage, erosion, and migration. PMID:24707189

  17. Idiopathic childhood occipital epilepsy of Gastaut: report of 12 patients.

    PubMed

    Wakamoto, Hiroyuki; Nagao, Hideo; Fukuda, Mitsumasa; Watanabe, Shohei; Motoki, Takahiro; Ohmori, Hiromitsu; Ishii, Eiichi

    2011-03-01

    This study sought to present clinical and outcome data of patients with idiopathic childhood occipital epilepsy of Gastaut, to validate previously reported characteristics of this epilepsy. The study group was comprised of 12 affected children (three boys and nine girls), with a median age of onset at 10.3 years. Common ictal manifestations included elementary visual hallucinations (75.0%), blindness or blurring of vision (50.0%), headache (50.0%), and secondarily generalized tonic-clonic seizures (58.3%). Interictal electroencephalography revealed occipital spike-wave paroxysms reactive to eye closure and opening in all patients, accompanied by spike-wave activity in the extra-occipital areas in four (33.3%), and by generalized spike-wave discharges in two (16.7%). One patient exhibited the onset of occipital lobe seizures 1 year after manifesting absence epilepsy. Seizure remission occurred in 81.8% of cases, in half of which medication was discontinued by late adolescence. This study confirmed the previously delineated electroclinical features of epilepsy syndrome, with additional aspects including the frequent association of generalized tonic-clonic seizures and atypical evolution from childhood absence epilepsy.

  18. Epilepsy, occipital calcifications, and oligosymptomatic celiac disease in childhood.

    PubMed

    Arroyo, Hugo A; De Rosa, Susana; Ruggieri, Victor; de Dávila, María T G; Fejerman, Natalio

    2002-11-01

    The association of epilepsy, occipital calcifications, and celiac disease has been recognized as a distinct syndrome. The objective of this study was to present the clinical, electrophysiologic, and neuroradiologic features in a series of patients with this syndrome. Thirty-two patients with the constellation of epilepsy, occipital calcifications, and celiac disease were identified in our epilepsy clinic. The mean age was 11 years and the mean length of follow-up was 7.4 years. The 1990 criteria of the European Society of Pediatric Gastroenterology and Nutrition were used to diagnose celiac disease. The Kruskal-Wallis statistics test was employed with a signficance of P < .05. Thirty-one patients had partial seizures, 21 of them with symptoms related to the occipital lobe. In most patients, the epilepsy was controlled or the seizures were sporadic. Three developed severe epilepsy. Occipital calcifications were present in all cases. Computed tomography in 7 patients showed hypodense areas in the white matter around calcifications, which decreased or disappeared after a period of gluten-free diet in 3 patients. A favorable outcome of epilepsy was detected in patients with the earliest dietary therapy. This study presents the largest series of children with this syndrome outside Italy. White-matter hypodensities surrounding calcifications are rarely reported. A prompt diagnosis of celiac disease might improve the evolution of the epilepsy and may improve cognitive status. PMID:12585717

  19. Anatomic basis for localized occipital thinning: a normal anatomic variant

    SciTech Connect

    Haden, M.A.; Keats, T.E.

    1982-06-01

    The radiographic evidence presented in this case confirms that the asymptomatic, incidentally found occipital radiolucencies previously described by Keats are not a problem in differential diagnosis of inner table erosion. The entity appears to be a developmental variant with typical features and occurring in a characteristic location.

  20. Remodeling patterns of occipital growth: a preliminary report.

    PubMed

    Kranioti, Elena F; Rosas, Antonio; García-Vargas, Samuel; Estalrrich, Almudena; Bastir, Markus; Peña-Melián, Angel

    2009-11-01

    Occipital growth depends on coordinated deposition and resorption on the external and internal surface and includes interrelated processes of movement: cortical drift, displacement, and relocation. The current work aspires to map patterns of remodeling activity on the endocranial surface of the occipital bone from childhood to adulthood using a larger study sample compared with previous studies. The study sample consists of 5 adult and 10 immature (2(1/4) to 8 years old) occipital bones from skeletal remains from the eighteenth and nineteenth century. Preparation of the samples includes the elaboration of negative impressions, positive replicas coated with gold, and observed with the reflected light microscope. Cerebellar fossae are typically resorptive in both immature and adult specimens. Cerebral fossae, on the other hand, exhibit a resorptive surface in early childhood and turn into depository around the age of 7 years, which places this transition within the age interval of the completion of cerebral development. Depository fields are also observed in adult cerebral fossae. The remodeling map presented here is consistent with the results of Mowbray (Anat Rec B New Anat 2005;283B:14-22) and differs from cellular patterns described by Enlow. Future research implicating more elements of the neurocapsule can shed light on the factors affecting and driving occipital growth.

  1. Language Networks in Anophthalmia: Maintained Hierarchy of Processing in "Visual" Cortex

    ERIC Educational Resources Information Center

    Watkins, Kate E.; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M.; Smith, Stephen M.; Ragge, Nicola; Bridge, Holly

    2012-01-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an…

  2. Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection.

    PubMed

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yunjie; Wang, Yibao

    2016-09-01

    The temporo-parieto-occipital (TPO) junction plays a unique role in human high-level neurological functions. Long-range fibers from and to this area have been described in detail but little is known about short TPO tracts mediating local connectivity. In this study, we performed high angular diffusion spectrum imaging (DSI) analyses to visualize the short TPO connections in the human brain. Fiber tracking was conducted on a subject-specific approach (10 subjects) and a template of 90 subjects (NTU-90 Atlas). Three tracts were identified: posterior segment of the superior longitudinal fasciculus (SLF-V), connecting the posterior part of the middle and inferior temporal gyri with the angular gyrus and supramarginal gyrus, vertical occipital fasciculus (VOF), connecting the inferior parietal with the lower temporal and occipital lobe, and a novel temporo-parietal (TP) connection, interconnecting the inferior temporal gyrus, middle temporal gyrus and fusiform gyrus, and inferior occipital lobe with the superior parietal lobe. These studies were complemented by fiber dissection techniques. It is the first study that demonstrated the trajectory and connectivity of the VOF using fiber dissection, as well as displayed the spatial relationship of the SLF-V with the cortex and the adjacent fiber bundles on one dissecting hemisphere. By providing a more accurate and detailed description of the local connectivity of the TPO junction, our findings help to develop new insights into its functional role in the human brain. PMID:27235864

  3. [A patient with prosopagnosia which developed after an infarction in the left occipital lobe in addition to an old infarction in the right occipital lobe].

    PubMed

    Iwanaga, Keisuke; Satoh, Akira; Satoh, Hideyo; Seto, Makiko; Ochi, Makoto; Tsujihata, Mitsuhiro

    2011-05-01

    A 66-year-old, right-handed male, was admitted to our hospital with difficulty in recognizing faces and colors. He had suffered a stroke in the right occipital region three years earlier that had induced left homonymous hemianopsia, but not prosopagnosia. A neurological examination revealed prosopagnosia, color agnosia, constructional apraxia, and topographical disorientation, but not either hemineglect or dressing apraxia. The patient was unable to distinguish faces of familiar persons such as his family and friends, as well as those of unfamiliar persons such as doctors and nurses. Brain MRI demonstrated an old infarction in the right medial occipital lobe and a new hemorrhagic infarction in the left medial occipital lobe, including the fusiform and lingual gyrus. It is unclear whether a purely right medial occipital lesion can be responsible for prosopagnosia, or whether bilateral medial occipital lesions are necessary for this occurrence. The current case indicated that bilateral medial occipital lesions play an important role in inducing porsopagnosia.

  4. Early (N170/M170) Face-Sensitivity Despite Right Lateral Occipital Brain Damage in Acquired Prosopagnosia

    PubMed Central

    Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno

    2011-01-01

    Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect

  5. Electrochemical dissolved oxygen removal from microfluidic streams for LOC sample pretreatment.

    PubMed

    Marei, Mohamed M; Roussel, Thomas J; Keynton, Robert S; Baldwin, Richard P

    2014-09-01

    Current water quality monitoring for heavy metal contaminants largely results in analytical snapshots at a particular time and place. Therefore, we have been interested in miniaturized and inexpensive sensors suitable for long-term, real-time monitoring of the drinking water distribution grid, industrial wastewater effluents, and even rivers and lakes. Among the biggest challenges for such sensors are the issues of in-field device calibration and sample pretreatment. Previously, we have demonstrated use of coulometric stripping analysis for calibration-free determination of copper and mercury. For more negatively reduced metals, O2 reduction interferes with stripping analysis; hence, most electroanalysis techniques rely on pretreatments to remove dissolved oxygen (DO). Current strategies for portable DO removal offer limited practicality, because of their complexity, and often cause inadvertent sample alterations. Therefore, we have designed an indirect in-line electrochemical DO removal device (EDOR), utilizing a silver cathode to reduce DO in a chamber that is fluidically isolated from the sample stream by an O2-permeable membrane. The resulting concentration gradient supports passive DO diffusion from the sample stream into the deoxygenation chamber. The DO levels in the sample stream were determined by cyclic voltammetry (CV) and amperometry at a custom thin-layer cell (TLC) detector. Results show removal of 98% of the DO in a test sample at flow rates approaching 50 μL/min and power consumption as low as 165 mW h L(-1) at steady state. Besides our specific stripping application, this device is well-suited for LOC applications where miniaturized DO removal and/or regulation are desirable.

  6. Electrochemical dissolved oxygen removal from microfluidic streams for LOC sample pretreatment.

    PubMed

    Marei, Mohamed M; Roussel, Thomas J; Keynton, Robert S; Baldwin, Richard P

    2014-09-01

    Current water quality monitoring for heavy metal contaminants largely results in analytical snapshots at a particular time and place. Therefore, we have been interested in miniaturized and inexpensive sensors suitable for long-term, real-time monitoring of the drinking water distribution grid, industrial wastewater effluents, and even rivers and lakes. Among the biggest challenges for such sensors are the issues of in-field device calibration and sample pretreatment. Previously, we have demonstrated use of coulometric stripping analysis for calibration-free determination of copper and mercury. For more negatively reduced metals, O2 reduction interferes with stripping analysis; hence, most electroanalysis techniques rely on pretreatments to remove dissolved oxygen (DO). Current strategies for portable DO removal offer limited practicality, because of their complexity, and often cause inadvertent sample alterations. Therefore, we have designed an indirect in-line electrochemical DO removal device (EDOR), utilizing a silver cathode to reduce DO in a chamber that is fluidically isolated from the sample stream by an O2-permeable membrane. The resulting concentration gradient supports passive DO diffusion from the sample stream into the deoxygenation chamber. The DO levels in the sample stream were determined by cyclic voltammetry (CV) and amperometry at a custom thin-layer cell (TLC) detector. Results show removal of 98% of the DO in a test sample at flow rates approaching 50 μL/min and power consumption as low as 165 mW h L(-1) at steady state. Besides our specific stripping application, this device is well-suited for LOC applications where miniaturized DO removal and/or regulation are desirable. PMID:25082792

  7. Enhanced effective connectivity in mild occipital stroke patients with hemianopia.

    PubMed

    Guo, Xiaoli; Jin, Zheng; Feng, Xinyang; Tong, Shanbao

    2014-11-01

    Plasticity-based spontaneous recovery and rehabilitation intervention of stroke-induced hemianopia have drawn great attention in recent years. However, the underlying neural mechanism remains unknown. This study aims to investigate brain network disruption and reorganization in hemianopia patients due to mild occipital stroke. Resting-state networks were constructed from 12 hemianopia patients with right occipital infarct by partial directed coherence analysis of multi-channel electroencephalograms. Compared with control subjects, the patients presented enhanced connectivity owing to newly formed connections. Compensational connections mostly originated from the peri-infarct area and targeted contralesional frontal, central, and parietal cortices. These new ipsilesional-to-contralesional inter-hemispheric connections coordinately presented significant correlation with the extent of vision loss. The enhancement of connectivity might be the neural substrate for brain plasticity in stroke-induced hemianopia and may shed light on plasticity-based recovery or rehabilitation. PMID:24876132

  8. A case of achondrogenesis type IA with an occipital encephalocele.

    PubMed

    Chen, C P; Liu, F F; Jan, S W; Lin, Y N; Lan, C C

    1996-01-01

    We report on a case of achondrogenesis type IA (Houston-Harris) with an occipital encephalocele. Prenatal sonograms revealed polyhydramnios, subgaleal edema, microcephaly, a narrow thorax, pericardial effusion, and a severe short-limbed dwarfism with unossified tubular bones and vertebral bodies. Postmortem examination demonstrated additional findings of hydrops fetalis, a membranous calvarium with a defect, an occipital encephalocele, hypoplastic lungs, and wedge-like tubular bones. Whole body radiography revealed no ossification of the bones except some small identified foci of calcification in the base of the skull, clavicles, and pelvic bones. Histological examination of the growth plate showed hypercellularity and enlarged vacuolated chondrocytes with PAS-positive diastase-resistant cytoplasmic inclusions. Various abnormalities have been reported in association with achondrogenesis type IA, however, an associated neural tube defect has not previously been described in the literature. We report on an infant with both of these disorders. PMID:8897040

  9. Anatomic and Compression Topography of the Lesser Occipital Nerve

    PubMed Central

    Pietramaggiori, Giorgio; Scherer, Saja

    2016-01-01

    Background: The surgical treatment of occipital headaches focuses on the greater, lesser, and third occipital nerves. The lesser occipital nerve (LON) is usually transected with relatively limited available information regarding the compression topography thereof and how such knowledge may impact surgical treatment. Methods: Eight fresh frozen cadavers were dissected focusing on the LON in relation to 3 clinically relevant compression zones. The x axis was a line drawn through the occipital protuberance (OP) and the y axis, the posterior midline (PM). In addition, a prospectively collected cohort of 36 patients who underwent decompression of the LON is presented with their clinical results, including migraine headache index scores. Results: The LON was found in compression zone 1, with a mean of 7.8 cm caudal to the OP and 6.3 cm lateral to the PM. The LON was found at the midpoint of compression zone 2, with an average of 5.5 cm caudal to the OP and 6.2 cm lateral to the PM. At compression zone 3, the medial-most LON branch was located approximately 1 cm caudal to the OP and 5.35 cm lateral to the PM, whereas the lateral-most branch was identified 1 cm caudal to the OP and 6.5 cm lateral to the PM. Of the 36 decompression patients analyzed, only 5 (14%) required neurectomy as the remainder achieved statistically significant improvements in migraine headache index scores postoperatively. Conclusion: The knowledge of LON anatomy can aid in nerve dissection and preservation, thereby leading to successful outcomes without requiring neurectomy. PMID:27257569

  10. Occipital condyle fractures: report of five cases and literature review.

    PubMed

    Caroli, Emanuela; Rocchi, Giovanni; Orlando, Epimenio Ramundo; Delfini, Roberto

    2005-06-01

    Occipital condyle fractures (OCFs) are uncommon and potentially fatal lesions. After the advent of CT, prompt diagnosis can be readily made and consequently better prognosis of these patients is expected. Early recognition of some types of OCF is imperative to avoid fatal results. We analyzed 121 cases of OCF (116 from the literature and five of our own). Rarely patients with a deficit of the lower cranial nerves make a complete recovery. However, quoad vitam prognosis of patients with "pure OCFs" remains good. Immobilization provides good recovery of most OCFs, but delay of treatment can lead to serious morbidity. We want to emphasize that not only an OCF with instability of O-C1-C2 can be a fatal injury unless prompt surgical intervention, but a displacement and migration of the fractured condylar fragment can also result in a fatal outcome. A high level of suspicion is fundamental for the early diagnosis of these fractures, so that when a posterior basal cranial or occipital squama fracture occurs, a CT study of the occipital condyles becomes imperative.

  11. Long non-coding RNA LOC572558 inhibits bladder cancer cell proliferation and tumor growth by regulating the AKT-MDM2-p53 signaling axis.

    PubMed

    Zhu, Yiping; Dai, Bo; Zhang, Hailiang; Shi, Guohai; Shen, Yijun; Ye, Dingwei

    2016-10-01

    Long non-coding RNAs (lncRNAs) have been suggested to play important roles in the progression of many cancers such as bladder cancer. However, the detailed mechanism has not been fully understood. We have previously identified a collection of aberrantly expressed lncRNAs in bladder cancer using microarray gene profiling assay. In the current study, we aim to further explore the expression profile and the function of LOC572558, one of the most deregulated lncRNAs in bladder cancer. A large cohort of human bladder cancer tissue samples with benign controls, as well as established human bladder cancer cell lines, has been examined for the expression of LOC572558. The biological functions of LOC572558 were examined by CCK-8 assay, flow cytometry analysis, and wound healing and transwell assays. Using a high-throughput phospho-proteome array, we identified proteins that were ectopic phosphorylated in bladder cancer cells where LOC572558 expression was upregulated. We demonstrated that LOC572558 expression was markedly decreased in bladder cancer tissues and bladder cancer cell lines. Moreover, ectopic expression of LOC572558 inhibited cell proliferation and motility, induced S phase arrest of the cell cycle and promoted cell apoptosis in T24 and 5637 bladder cancer cell lines. We further verified that overexpression of LOC572558 was associated with dephosphorylation of AKT, MDM2 and phosphorylation of p53 protein. Our data clearly demonstrated that LOC572558 is a tumor suppressor and regulates the p53 signaling pathway in bladder cancer. Thus, it may serve as a promising new diagnostic marker and therapeutic target in bladder cancer.

  12. Pathways of seizure propagation from the temporal to the occipital lobe.

    PubMed

    Jacobs, Julia; Dubeau, François; Olivier, André; Andermann, Frederick

    2008-12-01

    Propagation of ictal epileptic discharges influences the clinical appearance of seizures. Fast propagation from the occipital to temporal lobe has been well described, but until now the reverse direction of spread has not been emphasized. We describe two patients who experienced ictal propagation from temporal to occipital regions. One case presented with amaurosis during a seizure with temporal onset and temporal-occipital spread. In the second, temporal-occipital spread was documented during a seizure, which continued in the occipital lobe for six minutes. Depth electrode studies suggested the temporal ictal onset of seizures in both patients. Propagation from temporal to occipital lobe structures must be considered in the assessment of patients who have seizures with both temporal and occipital features. The propagation may have predictive value for their surgical outcome. The underlying anatomical structure might be the inferior longitudinal fasciculus.

  13. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading.

    PubMed

    Kim, You Na; Park, Jin Hyoung; Tchah, Hungwon

    2016-01-01

    Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT) with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III) lens grading and corrected distance visual acuity (BCVA). Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU) and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R (2) = 0.187, p < 0.01) and nuclear density (R (2) = 0.316, p < 0.01) obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R (2) = 0.454, p < 0.01). Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts.

  14. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading.

    PubMed

    Kim, You Na; Park, Jin Hyoung; Tchah, Hungwon

    2016-01-01

    Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT) with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III) lens grading and corrected distance visual acuity (BCVA). Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU) and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R (2) = 0.187, p < 0.01) and nuclear density (R (2) = 0.316, p < 0.01) obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R (2) = 0.454, p < 0.01). Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts. PMID:27651952

  15. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading

    PubMed Central

    Park, Jin Hyoung

    2016-01-01

    Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT) with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III) lens grading and corrected distance visual acuity (BCVA). Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU) and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R2 = 0.187, p < 0.01) and nuclear density (R2 = 0.316, p < 0.01) obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R2 = 0.454, p < 0.01). Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts.

  16. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT) with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading

    PubMed Central

    Park, Jin Hyoung

    2016-01-01

    Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT) with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III) lens grading and corrected distance visual acuity (BCVA). Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU) and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R2 = 0.187, p < 0.01) and nuclear density (R2 = 0.316, p < 0.01) obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R2 = 0.454, p < 0.01). Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts. PMID:27651952

  17. [A case of pseudoxanthoma elasticum showing various heteroptics due to infarction of right parieto-occipital lobe].

    PubMed

    Maeda, Y; Uchiyama, S; Soma, Y; Aikawa, T; Kobayashi, I; Maruyama, S

    1987-03-01

    A case of pseudoxanthoma elasticum showing various heteroptics due to infarction of the right parieto-occipital lobe was reported. The patient was 48-year-old male. Angiography revealed an obstruction of the right internal carotid artery, aneurysmal dilation of the right posterior communicating artery, and obstructions of the right parieto-occipital artery and calcarine artery. A low density area was found in right occipital lobe by CT. MRI clearly identified lesions in the right cuneus and precuneus. Pseudopsia in the left homonymous quadrantanopsia, various types of visual illusion in the remaining visual field, and moreover, palinopsia were existed. Visual illusion was recognized in the early stage after the onset, while the pseudopsia was recognized about one month after the onset. Both abnormalities tended to improve from the peripheral region with the improvement of the defect in the visual field. Administration of phenytoin resulted in an improvement in the pseudopsia but it resulted in an aggravation in the visual illusion. Thus, the mechanisms of development of this phenomena were thought to be different from each other. It was found by dynamic CT that the blood flow in the primary visual cortex was rather increased in the affected site in comparison with that in the healthy site. It was speculated that the pseudopsia in the defective region of the visual field reflected a pathological repair process represented by a development of the collateral circulation. On the other hand, the visual illusion was thought to originate from visual unstability due to incomplete damage of the visual pathway at the affected site.

  18. Perimetric visual field and functional MRI correlation: implications for image-guided surgery in occipital brain tumours

    PubMed Central

    Roux, F; Ibarrola, D; Lotterie, J; Chollet, F; Berry, I

    2001-01-01

    OBJECTIVE—To compare the results of visual functional MRI with those of perimetric evaluation in patients with visual field defects and retrochiasmastic tumours and in normal subjects without visual field defect. The potential clinical usefulness of visual functional MRI data during resective surgery was evaluated in patients with occipital lobe tumours.
METHODS—Eleven patients with various tumours and visual field defects and 12 normal subjects were studied by fMRI using bimonocular or monocular repetitive photic stimulation (8 Hz). The data obtained were analyzed with the statistical parametric maps software (p<10-8) and were compared with the results of Goldmann visual field perimetric evaluation. In patients with occipital brain tumours undergoing surgery, the functional data were registered in a frameless stereotactic device and the images fused into anatomical three standard planes and three dimensional reconstructions of the brain surface.
RESULTS—Two studies of patients were discarded, one because of head motion and the other because of badly followed instructions. On the remaining patients the functional activations found in the visual cortex were consistent with the results of perimetric evaluation in all but one of the patients and all the normal subjects although the results of fMRI were highly dependent on the choices of the analysis thresholds. Visual functional MRI image guided data were used in five patients with occipital brain tumours. No added postoperative functional field defect was detected.
CONCLUSIONS—There was a good correspondence between fMRI data and the results of perimetric evaluation although dependent on the analysis thresholds. Visual fMRI data registered into a frameless stereotactic device may be useful in surgical planning and tumour removal.

 PMID:11561035

  19. Pre-cue fronto-occipital alpha phase and distributed cortical oscillations predict failures of cognitive control.

    PubMed

    Hamm, Jordan P; Dyckman, Kara A; McDowell, Jennifer E; Clementz, Brett A

    2012-05-16

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor response (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on poststimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period before antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (1) ongoing oscillatory beta (20-30 Hz) power in anterior cingulate before trial initiation (lower for error trials); (2) instantaneous phase of ongoing alpha/theta (7 Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types); (3) gamma power (35-60 Hz) in posterior parietal cortex 100 ms before cue onset (greater for error trials); and (4) phase locking of alpha (5-12 Hz) in parietal and occipital cortices immediately before cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes and help identify the cortical generators of such phase effects.

  20. Regional Gray Matter Atrophy Coexistent with Occipital Periventricular White Matter Hyper Intensities.

    PubMed

    Duan, Dazhi; Li, Congyang; Shen, Lin; Cui, Chun; Shu, Tongsheng; Zheng, Jian

    2016-01-01

    White matter hyperintensities (WMHs) and brain atrophy often coexist in the elderly. Additionally, WMH is often observed as occipital periventricular hyperintensities (OPVHs) with low-grade periventricular (PV) white matter (WM) lesions and is usually confined within an anatomical structure. However, the effects of OPVHs on gray matter (GM) atrophy remain largely unknown. In this study, we investigated GM atrophy in OPVHs patients and explored the relationship between such atrophy and clinical risk factors. T1-weighted and T2-weighted Magnetic resonance imaging (MRI) were acquired, and voxel-based morphometry (VBM) analysis was applied. The clinical (demographic and cardiovascular) risk factors of the OPVHs patients and healthy controls were then compared. Lastly, scatter plots and correlation analysis were applied to explore the relationship between the MRI results and clinical risk factors in the OPVHs patients. OPVHs patients had significantly reduced GM in the right supramarginal gyrus, right angular gyrus, right middle temporal gyrus, right anterior cingulum and left insula compared to healthy controls. Additionally, OPVHs patients had GM atrophy in the left precentral gyrus and left insula cortex, and such atrophy is associated with a reduction in low-density lipoprotein cholesterol (LDL-C) and apolipoprotein-B (Apo-B). PMID:27656141

  1. Regional Gray Matter Atrophy Coexistent with Occipital Periventricular White Matter Hyper Intensities

    PubMed Central

    Duan, Dazhi; Li, Congyang; Shen, Lin; Cui, Chun; Shu, Tongsheng; Zheng, Jian

    2016-01-01

    White matter hyperintensities (WMHs) and brain atrophy often coexist in the elderly. Additionally, WMH is often observed as occipital periventricular hyperintensities (OPVHs) with low-grade periventricular (PV) white matter (WM) lesions and is usually confined within an anatomical structure. However, the effects of OPVHs on gray matter (GM) atrophy remain largely unknown. In this study, we investigated GM atrophy in OPVHs patients and explored the relationship between such atrophy and clinical risk factors. T1-weighted and T2-weighted Magnetic resonance imaging (MRI) were acquired, and voxel-based morphometry (VBM) analysis was applied. The clinical (demographic and cardiovascular) risk factors of the OPVHs patients and healthy controls were then compared. Lastly, scatter plots and correlation analysis were applied to explore the relationship between the MRI results and clinical risk factors in the OPVHs patients. OPVHs patients had significantly reduced GM in the right supramarginal gyrus, right angular gyrus, right middle temporal gyrus, right anterior cingulum and left insula compared to healthy controls. Additionally, OPVHs patients had GM atrophy in the left precentral gyrus and left insula cortex, and such atrophy is associated with a reduction in low-density lipoprotein cholesterol (LDL-C) and apolipoprotein-B (Apo-B).

  2. Association and dissociation of visual functions in a case of bilateral occipital lobe infarction.

    PubMed

    Pöppel, E; Brinkmann, R; von Cramon, D; Singer, W

    1978-03-01

    A severe restriction of the visual field was observed in a patient suffering a bilateral occipital lobe infarction. Soon after the lesion, the visual field had an angle of approx. 4 degrees. Some recovery was observed within the following months. Within the restricted visual field, several visual functions were tested. Increment threshold, for instance, was found to be one log unit higher than would normally be expected. Color vision was completely lost soon after the lesion, but some recovery was later observed. Although binocular interaction was demonstrated by the interocular transfer of after-effects, the patient never experienced steropsis. He also seemed unable to recognize faces. Dsepite the small visual field, optokinetic nystagmus could be elicited. A notable slowing down of visual analyses was observed in experiments on visual reaction time, on the inversion of the Necker cube, and on binocular rivalry. The complete loss of certain functions like steropsis or face recognition in contrast to a quantitative reduction of other functions like visual acuity or color perception can be discussed in the light of two conceptual models of perceptual processing. One model suggests the representation of different visual functions within one neuronal network, each function represented by a different number of neurons or a different algorithm within the network. The second model suggests a spatial segregation of different visual functions in different cortical areas that receive input from one common structure, presumably the striate cortex.

  3. Occipital and orbitofrontal hemodynamics during naturally paced reading: an fNIRS study.

    PubMed

    Hofmann, Markus J; Dambacher, Michael; Jacobs, Arthur M; Kliegl, Reinhold; Radach, Ralph; Kuchinke, Lars; Plichta, Michael M; Fallgatter, Andreas J; Herrmann, Martin J

    2014-07-01

    Humans typically read at incredibly fast rates, because they predict likely occurring words from a given context. Here, we used functional near-infrared spectroscopy (fNIRS) to track the ultra-rapid hemodynamic responses of words presented every 280 ms in a naturally paced sentence context. We found a lower occipital deoxygenation to unpredictable than to predictable words. The greater hemodynamic responses to unexpected words suggest that the visual features of expected words have been pre-activated previous to stimulus presentation. Second, we tested opposing theoretical proposals about the role of the medial orbitofrontal cortex (OFC): Either OFC may respond to the breach of expectation; or OFC is activated when the present stimulus matches the prediction. A significant interaction between word frequency and predictability indicated OFC responses to breaches of expectation for low- but not for high-frequency words: OFC is sensitive to both, bottom-up processing as mediated by word frequency, as well as top-down predictions. Particularly, when a rare word is unpredictable, OFC becomes active. Finally, we discuss how a high temporal resolution can help future studies to disentangle the hemodynamic responses of single trials in such an ultra-rapid event succession as naturally paced reading.

  4. Regional Gray Matter Atrophy Coexistent with Occipital Periventricular White Matter Hyper Intensities

    PubMed Central

    Duan, Dazhi; Li, Congyang; Shen, Lin; Cui, Chun; Shu, Tongsheng; Zheng, Jian

    2016-01-01

    White matter hyperintensities (WMHs) and brain atrophy often coexist in the elderly. Additionally, WMH is often observed as occipital periventricular hyperintensities (OPVHs) with low-grade periventricular (PV) white matter (WM) lesions and is usually confined within an anatomical structure. However, the effects of OPVHs on gray matter (GM) atrophy remain largely unknown. In this study, we investigated GM atrophy in OPVHs patients and explored the relationship between such atrophy and clinical risk factors. T1-weighted and T2-weighted Magnetic resonance imaging (MRI) were acquired, and voxel-based morphometry (VBM) analysis was applied. The clinical (demographic and cardiovascular) risk factors of the OPVHs patients and healthy controls were then compared. Lastly, scatter plots and correlation analysis were applied to explore the relationship between the MRI results and clinical risk factors in the OPVHs patients. OPVHs patients had significantly reduced GM in the right supramarginal gyrus, right angular gyrus, right middle temporal gyrus, right anterior cingulum and left insula compared to healthy controls. Additionally, OPVHs patients had GM atrophy in the left precentral gyrus and left insula cortex, and such atrophy is associated with a reduction in low-density lipoprotein cholesterol (LDL-C) and apolipoprotein-B (Apo-B). PMID:27656141

  5. Extracting quantitative information from single-molecule super-resolution imaging data with LAMA – LocAlization Microscopy Analyzer

    PubMed Central

    Malkusch, Sebastian; Heilemann, Mike

    2016-01-01

    Super-resolution fluorescence microscopy revolutionizes cell biology research and provides novel insights on how proteins are organized at the nanoscale and in the cellular context. In order to extract a maximum of information, specialized tools for image analysis are necessary. Here, we introduce the LocAlization Microscopy Analyzer (LAMA), a comprehensive software tool that extracts quantitative information from single-molecule super-resolution imaging data. LAMA allows characterizing cellular structures by their size, shape, intensity, distribution, as well as the degree of colocalization with other structures. LAMA is freely available, platform-independent and designed to provide direct access to individual analysis of super-resolution data. PMID:27703238

  6. iLoc-Gpos: a multi-layer classifier for predicting the subcellular localization of singleplex and multiplex Gram-positive bacterial proteins.

    PubMed

    Wu, Zhi-Cheng; Xiao, Xuan; Chou, Kuo-Chen

    2012-01-01

    By introducing the "multi-layer scale", as well as hybridizing the information of gene ontology and the sequential evolution information, a novel predictor, called iLoc-Gpos, has been developed for predicting the subcellular localization of Gram positive bacterial proteins with both single-location and multiple-location sites. For facilitating comparison, the same stringent benchmark dataset used to estimate the accuracy of Gpos-mPLoc was adopted to demonstrate the power of iLoc-Gpos. The dataset contains 519 Gram-positive bacterial proteins classified into the following four subcellular locations: (1) cell membrane, (2) cell wall, (3) cytoplasm, and (4) extracell; none of proteins included has ≥25% pairwise sequence identity to any other in a same subset (subcellular location). The overall success rate by jackknife test on such a stringent benchmark dataset by iLoc-Gpos was over 93%, which is about 11% higher than that by GposmPLoc. As a user-friendly web-server, iLoc-Gpos is freely accessible to the public at http://icpr.jci.edu.cn/bioinfo/iLoc- Gpos or http://www.jci-bioinfo.cn/iLoc-Gpos. Meanwhile, a step-by-step guide is provided on how to use the web-server to get the desired results. Furthermore, for the user � s convenience, the iLoc-Gpos web-server also has the function to accept the batch job submission, which is not available in the existing version of Gpos-mPLoc web-server.

  7. The human cerebral cortex flattens during adolescence.

    PubMed

    Alemán-Gómez, Yasser; Janssen, Joost; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Immaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2013-09-18

    The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter.

  8. The human cerebral cortex flattens during adolescence.

    PubMed

    Alemán-Gómez, Yasser; Janssen, Joost; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Immaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2013-09-18

    The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter. PMID:24048830

  9. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    PubMed

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC.

  10. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    PubMed

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC. PMID:27318139

  11. Sensitivity to syntax in visual cortex

    PubMed Central

    Dikker, Suzanne; Rabagliati, Hugh; Pylkkänen, Liina

    2009-01-01

    One of the most intriguing findings on language comprehension is that violations of syntactic predictions can affect event-related potentials as early as 120 ms, in the same time-window as early sensory processing. This effect, the so-called early left-anterior negativity (ELAN), has been argued to reflect word category access and initial syntactic structure building (Friederici, 2002). In two experiments, we used magnetoencephalography to investigate whether (a) rapid word category identification relies on overt category-marking closed-class morphemes and (b) whether violations of word category predictions affect modality-specific sensory responses. Participants read sentences containing violations of word category predictions. Unexpected items varied in whether or not their word category was marked by an overt function morpheme. In Experiment 1, the amplitude of the visual evoked M100 component was increased for unexpected items, but only when word category was overtly marked by a function morpheme. Dipole modeling localized the generator of this effect to the occipital cortex. Experiment 2 replicated the main results of Experiment 1 and eliminated two non-morphology-related explanations of the M100 contrast we observed between targets containing overt category-marking and targets that lacked such morphology. Our results show that during reading, syntactically relevant cues in the input can affect activity in occipital regions at around 125 ms, a finding that may shed new light on the remarkable rapidity of language processing. PMID:19121826

  12. Atlantoaxial Chordoma in Two Patients with Occipital Neuralgia and Cervicalgia

    PubMed Central

    Kim, Won Seop; Park, Jong Taek; Lee, Young Bok; Park, Woo Young

    2014-01-01

    Chordoma arises from cellular remnants of the notochord. It is the most common primary malignancy of the spine in adults. Approximately 50% of chordomas arise from the sacrococcygeal area with other areas of the spine giving rise to another 15% of chordomas. Following complete resection, patients can expect a 5-year survival rate of 85%. Chordoma has a recurrence rate of 40%, which leads to a less favorable prognosis. Here, we report two cases of chordoma presenting with occipital neuralgia and cervicalgia. The first patient presented with a C1–C2 chordoma. He rejected surgical intervention and ultimately died of respiratory failure. The second patient had an atlantoaxial chordoma and underwent surgery because of continued occipital neuralgia and cervicalgia despite nerve block. This patient has remained symptom-free since his operation. The presented cases show that the patients’ willingness to participate in treatment can lead to appropriate and aggressive management of cancer pain, resulting in better outcomes in cancer treatment. PMID:26064862

  13. Acoustic noise improves visual perception and modulates occipital oscillatory states.

    PubMed

    Gleiss, Stephanie; Kayser, Christoph

    2014-04-01

    Perception is a multisensory process, and previous work has shown that multisensory interactions occur not only for object-related stimuli but also for simplistic and apparently unrelated inputs to the different senses. We here compare the facilitation of visual perception induced by transient (target-synchronized) sounds to the facilitation provided by continuous background noise like sounds. Specifically, we show that continuous acoustic noise improves visual contrast detection by systematically shifting psychometric curves in an amplitude-dependent manner. This multisensory benefit was found to be both qualitatively and quantitatively similar to that induced by a transient and target synchronized sound in the same paradigm. Studying the underlying neural mechanisms using electric neuroimaging (EEG), we found that acoustic noise alters occipital alpha (8-12 Hz) power and decreases beta-band (14-20 Hz) coupling of occipital and temporal sites. Task-irrelevant and continuous sounds thereby have an amplitude-dependent effect on cortical mechanisms implicated in shaping visual cortical excitability. The same oscillatory mechanisms also mediate visual facilitation by transient sounds, and our results suggest that task-related sounds and task-irrelevant background noises could induce perceptually and mechanistically similar enhancement of visual perception. Given the omnipresence of sounds and noises in our environment, such multisensory interactions may affect perception in many everyday scenarios. PMID:24236698

  14. Spheno-Occipital Synchondrosis Fusion Correlates with Cervical Vertebrae Maturation

    PubMed Central

    Fernández-Pérez, María José; McNamara, James A.; Velasco-Torres, Miguel; Benavides, Erika; Galindo-Moreno, Pablo; Catena, Andrés

    2016-01-01

    The aim of this study was to determine the relationship between the closure stage of the spheno-occipital synchondrosis and the maturational stage of the cervical vertebrae (CVM) in growing and young adult subjects using cone beam computed tomography (CBCT). CBCT images with an extended field of view obtained from 315 participants (148 females and 167 males; mean age 15.6 ±7.3 years; range 6 to 23 years) were analyzed. The fusion status of the synchondrosis was determined using a five-stage scoring system; the vertebral maturational status was evaluated using a six-stage stratification (CVM method). Ordinal regression was used to study the ability of the synchondrosis stage to predict the vertebral maturation stage. Vertebrae and synchondrosis had a strong significant correlation (r = 0.89) that essential was similar for females (r = 0.88) and males (r = 0.89). CVM stage could be accurately predicted from synchondrosis stage by ordinal regression models. Prediction equations of the vertebral stage using synchondrosis stage, sex and biological age as predictors were developed. Thus this investigation demonstrated that the stage of spheno-occipital synchondrosis, as determined in CBCT images, is a reasonable indicator of growth maturation. PMID:27513752

  15. Spheno-Occipital Synchondrosis Fusion Correlates with Cervical Vertebrae Maturation.

    PubMed

    Fernández-Pérez, María José; Alarcón, José Antonio; McNamara, James A; Velasco-Torres, Miguel; Benavides, Erika; Galindo-Moreno, Pablo; Catena, Andrés

    2016-01-01

    The aim of this study was to determine the relationship between the closure stage of the spheno-occipital synchondrosis and the maturational stage of the cervical vertebrae (CVM) in growing and young adult subjects using cone beam computed tomography (CBCT). CBCT images with an extended field of view obtained from 315 participants (148 females and 167 males; mean age 15.6 ±7.3 years; range 6 to 23 years) were analyzed. The fusion status of the synchondrosis was determined using a five-stage scoring system; the vertebral maturational status was evaluated using a six-stage stratification (CVM method). Ordinal regression was used to study the ability of the synchondrosis stage to predict the vertebral maturation stage. Vertebrae and synchondrosis had a strong significant correlation (r = 0.89) that essential was similar for females (r = 0.88) and males (r = 0.89). CVM stage could be accurately predicted from synchondrosis stage by ordinal regression models. Prediction equations of the vertebral stage using synchondrosis stage, sex and biological age as predictors were developed. Thus this investigation demonstrated that the stage of spheno-occipital synchondrosis, as determined in CBCT images, is a reasonable indicator of growth maturation. PMID:27513752

  16. Bony tubercle at external occipital protuberance and prominent ridges.

    PubMed

    Singh, Rajani

    2012-11-01

    During the examination of skulls in the osteology laboratory of the Department of Anatomy, CSM Medical University, Lucknow, UP, India, a skull was detected having exostosis projecting from the external occipital protuberance along with prominent superior nuchal lines appearing as ridges. Measurements of the tubercle were taken by vernier calipers, and possible causes and clinical implications were analyzed.The length of this tubercle was 8 mm; width was 6 mm and thickness 1.5 mm. The superior nuchal lines appeared as prominent ridges. The height of the ridges was 5 mm on both sides; the thickness was 10 mm and 8 mm, respectively, on both the right and left sides. The length of the ridges was 4.8 cm on the right side and 4.4 cm on the left side.The tubercle may cause occipital headache in general but especially in tree climbers and basketball/volleyball players during vertical biomechanical movements of the neck. The knowledge of this tubercle is of paramount importance to anatomists, neurosurgeons, sports physicians, radiologists, forensic experts, and anthropologists. PMID:23172430

  17. Neuropsychological profile of adult patients with nonsymptomatic occipital lobe epilepsies.

    PubMed

    Bilo, Leonilda; Santangelo, Gabriella; Improta, Ilaria; Vitale, Carmine; Meo, Roberta; Trojano, Luigi

    2013-02-01

    To explore the neuropsychological and neurobehavioral profile in adult patients affected by nonsymptomatic (cryptogenic and idiopathic) occipital lobe epilepsy (OLE), with normal intelligence, we enrolled 20 adult patients with nonsymptomatic OLE and 20 age-, sex-, and education-matched healthy subjects. All participants underwent neuropsychiatric assessment scales, and standardized neuropsychological tests tapping memory, executive functions, constructional, visuospatial and visuoperceptual skills. After Bonferroni correction for multiple comparisons, patients performed significantly worse than controls on several tests tapping complex visuospatial skills and frontal lobe functions. The analysis of single patients' performance revealed that a significantly higher number of OLE patients achieved age- and education-adjusted pathological scores on three tests (Benton Judgment of Line Orientation Test, Freehand Copying of Drawings Test, color-word interference task of Stroop test) with respect to controls. Patients did not differ from control subjects on neuropsychiatric aspects. The direct comparison between OLE subtypes showed that cryptogenetic OLE patients tended to achieve lower scores than idiopathic OLE patients on most tests, but no difference between the two groups was fully significant. In summary, patients with nonsymptomatic OLE can be affected by clinically relevant impairments in selected neuropsychological domains: complex visuospatial skills and executive functions. It could be speculated that frontal and visuospatial cognitive deficits might be the result of epileptic activity spreading within a neural network that includes structures far beyond the occipital lobe.

  18. Bony tubercle at external occipital protuberance and prominent ridges.

    PubMed

    Singh, Rajani

    2012-11-01

    During the examination of skulls in the osteology laboratory of the Department of Anatomy, CSM Medical University, Lucknow, UP, India, a skull was detected having exostosis projecting from the external occipital protuberance along with prominent superior nuchal lines appearing as ridges. Measurements of the tubercle were taken by vernier calipers, and possible causes and clinical implications were analyzed.The length of this tubercle was 8 mm; width was 6 mm and thickness 1.5 mm. The superior nuchal lines appeared as prominent ridges. The height of the ridges was 5 mm on both sides; the thickness was 10 mm and 8 mm, respectively, on both the right and left sides. The length of the ridges was 4.8 cm on the right side and 4.4 cm on the left side.The tubercle may cause occipital headache in general but especially in tree climbers and basketball/volleyball players during vertical biomechanical movements of the neck. The knowledge of this tubercle is of paramount importance to anatomists, neurosurgeons, sports physicians, radiologists, forensic experts, and anthropologists.

  19. The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [(1)H]-MRS.

    PubMed

    Valentine, Gerald W; Mason, Graeme F; Gomez, Rosane; Fasula, Madonna; Watzl, June; Pittman, Brian; Krystal, John H; Sanacora, Gerard

    2011-02-28

    The NMDA receptor antagonist ketamine can induce a rapid improvement in depressive symptoms that often endures for days after a single intravenous dose. The pharmacodynamic basis for this effect is poorly understood. Using a proton magnetic resonance spectroscopy ([(1)H]-MRS) method that previously detected a normalization of amino acid neurotransmitter (AANt) content after chronic treatment with conventional antidepressant treatments, we examined whether the acute action of ketamine is associated with alterations in AANt content as well. Ten subjects with major depressive disorder (MDD) received saline, then ketamine in a fixed order, one week apart, under single-blind conditions. Each infusion was associated with three [(1)H] MRS scans (baseline, 3h and 48 h post-infusion) that measured glutamate, GABA and glutamine within the occipital cortex. Rating scales were administered before, during and after each infusion. The rapid (1h) and sustained (at least 7 days) antidepressant effect we observed after ketamine infusion was not associated with either baseline measures of, or changes in, occipital AANt content. Dissociative symptoms were not correlated with changes in depression scores. While our results indicate that changes in occipital AANt content are not a correlate of ketamine's antidepressant action, this may only apply to the regional and temporal windows of our MRS measurements.

  20. APFiLoc: An Infrastructure-Free Indoor Localization Method Fusing Smartphone Inertial Sensors, Landmarks and Map Information.

    PubMed

    Shang, Jianga; Gu, Fuqiang; Hu, Xuke; Kealy, Allison

    2015-01-01

    The utility and adoption of indoor localization applications have been limited due to the complex nature of the physical environment combined with an increasing requirement for more robust localization performance. Existing solutions to this problem are either too expensive or too dependent on infrastructure such as Wi-Fi access points. To address this problem, we propose APFiLoc-a low cost, smartphone-based framework for indoor localization. The key idea behind this framework is to obtain landmarks within the environment and to use the augmented particle filter to fuse them with measurements from smartphone sensors and map information. A clustering method based on distance constraints is developed to detect organic landmarks in an unsupervised way, and the least square support vector machine is used to classify seed landmarks. A series of real-world experiments were conducted in complex environments including multiple floors and the results show APFiLoc can achieve 80% accuracy (phone in the hand) and around 70% accuracy (phone in the pocket) of the error less than 2 m error without the assistance of infrastructure like Wi-Fi access points.

  1. APFiLoc: An Infrastructure-Free Indoor Localization Method Fusing Smartphone Inertial Sensors, Landmarks and Map Information.

    PubMed

    Shang, Jianga; Gu, Fuqiang; Hu, Xuke; Kealy, Allison

    2015-01-01

    The utility and adoption of indoor localization applications have been limited due to the complex nature of the physical environment combined with an increasing requirement for more robust localization performance. Existing solutions to this problem are either too expensive or too dependent on infrastructure such as Wi-Fi access points. To address this problem, we propose APFiLoc-a low cost, smartphone-based framework for indoor localization. The key idea behind this framework is to obtain landmarks within the environment and to use the augmented particle filter to fuse them with measurements from smartphone sensors and map information. A clustering method based on distance constraints is developed to detect organic landmarks in an unsupervised way, and the least square support vector machine is used to classify seed landmarks. A series of real-world experiments were conducted in complex environments including multiple floors and the results show APFiLoc can achieve 80% accuracy (phone in the hand) and around 70% accuracy (phone in the pocket) of the error less than 2 m error without the assistance of infrastructure like Wi-Fi access points. PMID:26516858

  2. Back-side wear in HexLoc cups clinico-radiological, immunohistopathological, finite element, and retrieval analysis studies.

    PubMed

    Kawaji, Hiroyuki; Koistinen, Arto; Korhonen, Rami; Lappalainen, Reijo; Lohman, Martina; Soininen, Antti; Gomez Barrena, Enrique; Konttinen, Yrjo T; Ylinen, Pekka; Tallroth, Kaj

    2014-01-01

    The HexLoc locking system was designed to prevent back-side wear of the polyethylene liner in the modular cementless metal-backed acetabular cup, but failed. Back-side wear was analyzed using clinico-radiological data, immunohistopathology, finite element modeling (FEM, and retrieval analysis. Screw holes allowed entry of titanium oxide and exit of polyethylene particles. Birefringent polyethylene wear particles were found behind the metal cup in macrophages containing pro-inflammatory tumor necrosis factor-α and interleukin-1β, whereas fibroblast-like cells stained for osteoclastogenic receptor activator of nuclear factor kappa B ligand (RANKL). Computerized tomography revealed granulomas (83% versus 17 %) and cortical destruction (50% versus 5%) better than radiographs. In FEM, a change of the abduction angle from 45 to 60 deg, and liner thickness from 4.8 mm to 2.5 mm, increased the back-side wear by 90% and 120%, respectively. Screw holes were stress concentration areas; their removal decreased wear by 40%. Modeling results were validated in retrieved implants, which demonstrated extensive back-side wear damage of liners with a high abduction angle. Combined clinico-radiological, immunohistopathological, FEM, and retrieval analysis disclosed that back-side wear in the HexLoc design is sensitive to the abduction angle, liner thickness, and presence of screw holes. PMID:25747033

  3. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex

    PubMed Central

    Raz, Aeyal; Grady, Sean M.; Krause, Bryan M.; Uhlrich, Daniel J.; Manning, Karen A.; Banks, Matthew I.

    2014-01-01

    The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up “core” thalamo-cortical (TC) vs. top-down cortico-cortical (CC) and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural basis of

  4. Bridging the gap: global disparity processing in the human visual cortex

    PubMed Central

    McKee, Suzanne P.; Norcia, Anthony M.

    2012-01-01

    The human stereoscopic system is remarkable in its ability to utilize widely separated features as references to support fine depth discrimination. In a search for possible neural substrates of this ability, we recorded high-density EEG and used a distributed inverse technique to estimate population-level disparity responses in five regions of interest (ROIs): V1, V3A, hMT+, V4, and lateral occipital complex (LOC). The stimulus was a central modulating disk surrounded by a correlated “reference” annulus presented in the fixation plane. We varied a gap separating the disk from the annulus parametrically from 0 to 5.5° as a test of long-range disparity integration. In the V1, LOC, and hMT+ ROIs, the responses with gaps >0.5° were equal to those obtained in a control condition where the surround was composed of uncorrelated noise (no reference). By contrast, in the V4 and V3A ROIs, responses with gaps as large as 5.5° were still significantly higher than the control. As a test of the spatial distribution of the disparity reference information, we manipulated the properties of the stimulus by placing noise between the center and the surround or throughout the surround. The V3A ROI was particularly sensitive to disparity noise between the center and annulus regions, suggesting an important contribution of disparity edge detectors in this ROI. PMID:22323636

  5. Benign childhood epilepsy with occipital paroxysms: neuropsychological findings.

    PubMed

    Germanò, Eva; Gagliano, Antonella; Magazù, Angela; Sferro, Caterina; Calarese, Tiziana; Mannarino, Erminia; Calamoneri, Filippo

    2005-05-01

    Benign childhood epilepsy with occipital paroxysms is classified among childhood benign partial epilepsies. The absence of neurological and neuropsychological deficits has long been considered as a prerequisite for a diagnosis of benign childhood partial epilepsy. Much evidence has been reported in literature in the latest years suggesting a neuropsychological impairment in this type of epilepsy, particularly in the type with Rolandic paroxysms. The present work examines the neuropsychological profiles of a sample of subjects affected by the early-onset benign childhood occipital seizures (EBOS) described by Panayotopulos. The patient group included 22 children (14 males and 8 females; mean age 10.1+/-3.3 years) diagnosed as having EBOS. The patients were examined with a set of tests investigating neuropsychological functions: memory, attention, perceptive, motor, linguistic and academic (reading, writing, arithmetic) abilities. The same instruments have been given to a homogeneous control group as regards sex, age, level of education and socio-economic background. None of the subjects affected by EBOS showed intellectual deficit (mean IQ in Wechsler Full Scale 91.7; S.D. 8.9). Results show a widespread cognitive dysfunction in the context of a focal epileptogenic process in EBOS. In particular, children with EBOS show a significant occurrence of specific learning disabilities (SLD) and other subtle neuropsychological deficits. We found selective dysfunctions relating to perceptive-visual attentional ability (p<0.05), verbal and visual-spatial memory abilities (p<0.01), visual perception and visual-motor integration global abilities (p<0.01), manual dexterity tasks (p<0.05), some language tasks (p<0.05), reading and writing abilities (p<0.01) and arithmetic ability (p<0.01). The presence of cognitive dysfunctions in subjects with EBOS supports the hypothesis that epilepsy itself plays a role in the development of neuropsychological impairment. Supported by other

  6. Scene-Selectivity and Retinotopy in Medial Parietal Cortex

    PubMed Central

    Silson, Edward H.; Steel, Adam D.; Baker, Chris I.

    2016-01-01

    Functional imaging studies in human reliably identify a trio of scene-selective regions, one on each of the lateral [occipital place area (OPA)], ventral [parahippocampal place area (PPA)], and medial [retrosplenial complex (RSC)] cortical surfaces. Recently, we demonstrated differential retinotopic biases for the contralateral lower and upper visual fields within OPA and PPA, respectively. Here, using functional magnetic resonance imaging, we combine detailed mapping of both population receptive fields (pRF) and category-selectivity, with independently acquired resting-state functional connectivity analyses, to examine scene and retinotopic processing within medial parietal cortex. We identified a medial scene-selective region, which was contained largely within the posterior and ventral bank of the parieto-occipital sulcus (POS). While this region is typically referred to as RSC, the spatial extent of our scene-selective region typically did not extend into retrosplenial cortex, and thus we adopt the term medial place area (MPA) to refer to this visually defined scene-selective region. Intriguingly MPA co-localized with a region identified solely on the basis of retinotopic sensitivity using pRF analyses. We found that MPA demonstrates a significant contralateral visual field bias, coupled with large pRF sizes. Unlike OPA and PPA, MPA did not show a consistent bias to a single visual quadrant. MPA also co-localized with a region identified by strong differential functional connectivity with PPA and the human face-selective fusiform face area (FFA), commensurate with its functional selectivity. Functional connectivity with OPA was much weaker than with PPA, and similar to that with face-selective occipital face area (OFA), suggesting a closer link with ventral than lateral cortex. Consistent with prior research, we also observed differential functional connectivity in medial parietal cortex for anterior over posterior PPA, as well as a region on the lateral

  7. Scene-Selectivity and Retinotopy in Medial Parietal Cortex.

    PubMed

    Silson, Edward H; Steel, Adam D; Baker, Chris I

    2016-01-01

    Functional imaging studies in human reliably identify a trio of scene-selective regions, one on each of the lateral [occipital place area (OPA)], ventral [parahippocampal place area (PPA)], and medial [retrosplenial complex (RSC)] cortical surfaces. Recently, we demonstrated differential retinotopic biases for the contralateral lower and upper visual fields within OPA and PPA, respectively. Here, using functional magnetic resonance imaging, we combine detailed mapping of both population receptive fields (pRF) and category-selectivity, with independently acquired resting-state functional connectivity analyses, to examine scene and retinotopic processing within medial parietal cortex. We identified a medial scene-selective region, which was contained largely within the posterior and ventral bank of the parieto-occipital sulcus (POS). While this region is typically referred to as RSC, the spatial extent of our scene-selective region typically did not extend into retrosplenial cortex, and thus we adopt the term medial place area (MPA) to refer to this visually defined scene-selective region. Intriguingly MPA co-localized with a region identified solely on the basis of retinotopic sensitivity using pRF analyses. We found that MPA demonstrates a significant contralateral visual field bias, coupled with large pRF sizes. Unlike OPA and PPA, MPA did not show a consistent bias to a single visual quadrant. MPA also co-localized with a region identified by strong differential functional connectivity with PPA and the human face-selective fusiform face area (FFA), commensurate with its functional selectivity. Functional connectivity with OPA was much weaker than with PPA, and similar to that with face-selective occipital face area (OFA), suggesting a closer link with ventral than lateral cortex. Consistent with prior research, we also observed differential functional connectivity in medial parietal cortex for anterior over posterior PPA, as well as a region on the lateral

  8. LOC401317, a p53-Regulated Long Non-Coding RNA, Inhibits Cell Proliferation and Induces Apoptosis in the Nasopharyngeal Carcinoma Cell Line HNE2

    PubMed Central

    Gong, Zhaojian; Zhang, Shanshan; Zeng, Zhaoyang; Wu, Hanjiang; Yang, Qian; Xiong, Fang; Shi, Lei; Yang, Jianbo; Zhang, Wenling; Zhou, Yanhong; Zeng, Yong; Li, Xiayu; Xiang, Bo; Peng, Shuping; Zhou, Ming; Li, Xiaoling; Tan, Ming; Li, Yong; Xiong, Wei; Li, Guiyuan

    2014-01-01

    Recent studies have revealed that long non-coding RNAs participate in all steps of cancer initiation and progression by regulating protein-coding genes at the epigenetic, transcriptional, and post-transcriptional levels. Long non-coding RNAs are in turn regulated by other genes, forming a complex regulatory network. The regulation networks between the p53 tumor suppressor and these RNAs in nasopharyngeal carcinoma remains unclear. The aims of this study were to investigate the regulatory roles of the TP53 gene in regulating long non-coding RNA expression profiles and to study the function of a TP53-regulated long non-coding RNA (LOC401317) in the nasopharyngeal carcinoma cell line HNE2. Long non-coding RNA expression profiling indicated that 133 long non-coding RNAs were upregulated in the human NPC cell line HNE2 cells following TP53 overexpression, while 1057 were downregulated. Among these aberrantly expressed long non-coding RNAs, LOC401317 was the most significantly upregulated one. Further studies indicated that LOC401317 is directly regulated by p53 and that ectopic expression of LOC401317 inhibits HNE2 cell proliferation in vitro and in vivo by inducing cell cycle arrest and apoptosis. LOC401317 inhibited cell cycle progression by increasing p21 expression and decreasing cyclin D1 and cyclin E1 expression and promoted apoptosis through the induction of poly(ADP-ribose) polymerase and caspase-3 cleavage. Collectively, these results suggest that LOC401317 is directly regulated by p53 and exerts antitumor effects in HNE2 nasopharyngeal carcinoma cells. PMID:25422887

  9. iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites.

    PubMed

    Xiao, Xuan; Wu, Zhi-Cheng; Chou, Kuo-Chen

    2011-09-01

    In the last two decades or so, although many computational methods were developed for predicting the subcellular locations of proteins according to their sequence information, it is still remains as a challenging problem, particularly when the system concerned contains both single- and multiple-location proteins. Also, among the existing methods, very few were developed specialized for dealing with viral proteins, those generated by viruses. Actually, knowledge of the subcellular localization of viral proteins in a host cell or virus-infected cell is very important because it is closely related to their destructive tendencies and consequences. In this paper, by introducing the "multi-label scale" and by hybridizing the gene ontology information with the sequential evolution information, a predictor called iLoc-Virus is developed. It can be utilized to identify viral proteins among the following six locations: (1) viral capsid, (2) host cell membrane, (3) host endoplasmic reticulum, (4) host cytoplasm, (5) host nucleus, and (6) secreted. The iLoc-Virus predictor not only can more accurately predict the location sites of viral proteins in a host cell, but also have the capacity to deal with virus proteins having more than one location. As a user-friendly web-server, iLoc-Virus is freely accessible to the public at http://icpr.jci.edu.cn/bioinfo/iLoc-Virus. Meanwhile, a step-by-step guide is provided on how to use the web-server to get the desired results. Furthermore, for the user's convenience, the iLoc-Virus web-server also has the function to accept the batch job submission. It is anticipated that iLoc-Virus may become a useful high throughput tool for both basic research and drug development.

  10. The causal role of the lateral occipital complex in visual mirror symmetry detection and grouping: an fMRI-guided TMS study.

    PubMed

    Bona, Silvia; Herbert, Andrew; Toneatto, Carlo; Silvanto, Juha; Cattaneo, Zaira

    2014-02-01

    Despite the fact that bilateral mirror symmetry is an important characteristic of the visual world, few studies have investigated its neural basis. Here we addressed this issue by investigating whether the object-selective lateral occipital (LO) cortex, a key brain region in object and shape processing, is causally involved in bilateral symmetry detection. Participants were asked to discriminate between symmetric and asymmetric dot patterns, while fMRI-guided repetitive TMS was delivered online over either the left LO, the right LO or two control sites in the occipital cortex. We found that the application of TMS over both right and left LO impaired symmetry judgments, with disruption being greater following right LO than left LO TMS, indicative of right hemisphere lateralization in symmetry processing. TMS over LO bilaterally also affected a visual contour detection task, with no evidence for hemispheric difference in this task. Overall, our results demonstrates that LO bilaterally plays a causal role in symmetry detection possibly due to symmetry acting as a strong cue in Gestalt processes mediating object recognition. PMID:24360359

  11. The causal role of the lateral occipital complex in visual mirror symmetry detection and grouping: an fMRI-guided TMS study.

    PubMed

    Bona, Silvia; Herbert, Andrew; Toneatto, Carlo; Silvanto, Juha; Cattaneo, Zaira

    2014-02-01

    Despite the fact that bilateral mirror symmetry is an important characteristic of the visual world, few studies have investigated its neural basis. Here we addressed this issue by investigating whether the object-selective lateral occipital (LO) cortex, a key brain region in object and shape processing, is causally involved in bilateral symmetry detection. Participants were asked to discriminate between symmetric and asymmetric dot patterns, while fMRI-guided repetitive TMS was delivered online over either the left LO, the right LO or two control sites in the occipital cortex. We found that the application of TMS over both right and left LO impaired symmetry judgments, with disruption being greater following right LO than left LO TMS, indicative of right hemisphere lateralization in symmetry processing. TMS over LO bilaterally also affected a visual contour detection task, with no evidence for hemispheric difference in this task. Overall, our results demonstrates that LO bilaterally plays a causal role in symmetry detection possibly due to symmetry acting as a strong cue in Gestalt processes mediating object recognition.

  12. Occipital infarction revealed by quadranopsia following snakebite by Bothrops lanceolatus.

    PubMed

    Merle, Harold; Donnio, Angélique; Ayeboua, Lucas; Plumelle, Yves; Smadja, Didier; Thomas, Laurent

    2005-09-01

    We report a case of snakebite in which envenomation was manifested through impairment of the visual field. The patient, a 46-year-old man, was bitten on the right thumb by Bothrops lanceolatus. Treatment with a specific equine antivenom (Bothrofav) was administered one hour after the bite. With the exception of fang marks, the results of a clinical examination, particularly the neurologic component, were normal. The day after the bite, the patient developed an inferior left lateral homonymous quadranopsia with macular epargne. T2 magnetic resonance imaging showed a right occipital infarction. His condition improved clinically and biologically. This observation of snakebite is the first in which envenomation was accompanied exclusively by an impairment of the visual field. Envenomation by B. lanceolatus is distinct in its incidence of significant thrombotic complications at a distance from the site of the bite. PMID:16172485

  13. [Occipital dermal sinus associated to a cerebellar abscess. Case].

    PubMed

    Costa, J M; de Reina, L; Guillén, A; Claramunt, E

    2004-10-01

    Congenital dermal sinuses are tubular tracts which communicate the skin with deeper structures. It is a manifestation of defective separation of the ectoderm and neuroderm. The incidence is 1/2500-3000 births alive. Almost 10 % of congenital dermal sinuses are localized in the occipitocervical region. They are usually asymptomatic, unless an infectious process is concurrent (meningitis, abscess). We are presenting the case of a 12 months girl with unnoticed cutaneous stigmata in the occipital region, who was admitted with a meningeal syndrome and secondary neurological impairment. She had a cerebellar abscess and was treated with decompression by puncture of the abscess and antibiotics. When infection was resolved, congenital dermal sinus was excised. Process solves without morbidity. We reviewed the clinical and therapeutic features in cases reported previously in the literature.

  14. Occipital lobe epilepsy presenting as Charles Bonnet syndrome.

    PubMed

    Brown-Vargas, Damaris; Cienki, John J

    2012-11-01

    Charles Bonnet syndrome describes visual field or acuity loss with complex hallucinations. This typically occurs in the elderly with preexisting visual impairment. We describe a patient who presented to the emergency department with acute hemianopsia and intermittent complex hallucinations. A 57-year-old man was referred for visual field loss and hallucinations. Chief complaint was “seeing little heads of people” and a right-sided visual loss. The patient was alert, oriented, and able to repeat and name and had fluent speech. On cranial nerve examination, he had 20/20 visual acuity and right homonymous hemianopsia. The patient had normal laboratory examination and electrocardiogram results. Results of computed tomography and magnetic resonance imaging of the head with contrast were negative. Standard 30-minute electroencephalography revealed near-continuous epileptiform discharges in the left occipital lobe. To our knowledge, this is the first case report of new-onset seizure presenting as Charles Bonnet syndrome.

  15. Disorders of the optic tract, radiation, and occipital lobe.

    PubMed

    Fraser, J Alexander; Newman, Nancy J; Biousse, Valérie

    2011-01-01

    Disorders of the optic tract, lateral geniculate nucleus, optic radiation, and occipital lobe - collectively called the retrochiasmal visual pathways - are commonly encountered in neurological practice, and may result from a number of causes. The major visual morbidity of retrochiasmal disease is the homonymous visual field defect, which is found in approximately 8% of stroke patients. A homonymous visual field defect may have profound legal, occupational, and financial consequences for patients, with many patients unable to read, drive, or return to work after sustaining retrochiasmal damage. Some homonymous hemianopias may improve, usually within days of a cerebral infarction, but remain stable after 3 months. Although treatment options are limited to those of the underlying cause, appropriate counseling and low-vision rehabilitation may be helpful.

  16. Kernohan's phenomenon associated with left ruptured occipital arteriovenous malformation.

    PubMed

    Fujimoto, A; Sato, H; Katayama, W; Nakai, K; Tsunoda, T; Kobayashi, E; Nose, T

    2004-05-01

    A 23-year-old woman presented with ipsilateral hemiparesia due to rupture of a left occipital arteriovenous malformation (AVM). Emergency decompression (the onset-operation interval was 46 minutes,) was carried out and the patient could leave the hospital upon recovery without neurological deficits. In general, Kernohan's phenomenon is caused by the gradual displacement of the cerebral peduncle against the tentorial edge caused by compression by the contralateral mass. This phenomenon is very rare among the cases with spontaneous intracranial hemorrhage and only three cases including the present one have been reported in the literature. In all cases the onset-operation intervals of were very short. Kernohan's phenomenon associated with a ruptured AVM is a rare condition and emergency decompression is required. PMID:15080971

  17. Modelling and simulation of passive Lab-on-a-Chip (LoC) based micromixer for clinical application

    NASA Astrophysics Data System (ADS)

    Saikat, Chakraborty; Sharath, M.; Srujana, M.; Narayan, K.; Pattnaik, Prasant Kumar

    2016-03-01

    In biomedical application, micromixer is an important component because of many processes requires rapid and efficient mixing. At micro scale, the flow is Laminar due to small channel size which enables controlled rapid mixing. The reduction in analysis time along with high throughput can be achieved with the help of rapid mixing. In LoC application, micromixer is used for mixing of fluids especially for the devices which requires efficient mixing. Micromixer of this type of microfluidic devices with a rapid mixing is useful in application such as DNA/RNA synthesis, drug delivery system & biological agent detection. In this work, we design and simulate a microfluidic based passive rapid micromixer for lab-on-a-chip application.

  18. Occipital seizures and subcortical T2 hypointensity in the setting of hyperglycemia

    PubMed Central

    Putta, Swapna L.; Weisholtz, Daniel; Milligan, Tracey A.

    2014-01-01

    Introduction Occipital lobe seizures are a recognized manifestation of diabetic nonketotic hyperglycemia, though not as common as focal motor seizures. Occipital lobe white matter T2 hypointensity may suggest this diagnosis. Methods We present a case of a 66-year-old man with hyperglycemia-related occipital lobe seizures who presented with confusion, intermittent visual hallucinations, and homonymous hemianopia. Results Magnetic resonance imaging showed subcortical T2 hypointensity within the left occipital lobe with adjacent leptomeningeal enhancement. These findings were transient with disappearance in a follow-up MRI. The EEG captured frequent seizures originating in the left occipital region. HbA1c level was 13.4% on presentation, and finger stick blood glucose level was 400 mg/dl. Conclusion Hyperglycemia should be considered in the etiology of differential diagnosis of patients with visual abnormalities suspicious for seizures, especially when the MRI shows focal subcortical T2 hypointensity with or without leptomeningeal enhancement. PMID:25667880

  19. Dandy-Walker syndrome forming a giant occipital meningocele--case report.

    PubMed

    Todo, T; Usui, M; Araki, F

    1993-12-01

    A boy was born with Dandy-Walker syndrome associated with a giant occipital meningocele, cleft lip, and cleft palate. The meningocele was actually a component of the giant posterior fossa cyst which communicated with the fourth ventricle. A cyst-peritoneal shunt achieved a considerable decrease in the size of the meningocele, but decubital ulcers developed due to restricted head movement caused by the occipital lesion. Cranioplasty removed a wide area of the inferior occipital bone, and the boundary between the superior occipital and parietal bones was thinned to allow free bending of the bone flap. The meningocele was removed totally in the third operation, but infection of the wound and pneumonia developed, causing death. The coexistence of Dandy-Walker syndrome and occipital meningocele, together with midline facial anomalies, may suggest a later pathogenesis of Dandy-Walker syndrome than previously believed. PMID:7512233

  20. Brain mapping of epileptic activity in a case of idiopathic occipital lobe epilepsy (Panayiotopoulos syndrome).

    PubMed

    Leal, Alberto J R; Nunes, Sofia; Martins, António; Secca, Mário Forjaz; Jordão, Constança

    2007-06-01

    The Panayiotopoulos type of occipital lobe epilepsy has generated great interest, but the particular brain areas involved in the peculiar seizure manifestations have not been established. We studied a patient with the syndrome, using high-resolution EEG and simultaneous EEG and functional magnetic resonance imaging (fMRI). Resolution of the scalp EEG was improved using a realistic spline Laplacian algorithm, and produced a complex distribution of current sinks and sources over the occipital lobe. The spike-related blood oxygen level dependent (BOLD) effect was multifocal, with clusters in lateral and inferior occipital lobe and lateral and anterior temporal lobe. We also performed regional dipole seeding in BOLD clusters to determine their relative contribution to generation of scalp spikes. The integrated model of the neurophysiologic and vascular data strongly suggests that the epileptic activity originates in the lateral occipital area, spreading to the occipital pole and lateral temporal lobe.

  1. A New Role for LOC101928437 in Non-Syndromic Intellectual Disability: Findings from a Family-Based Association Test

    PubMed Central

    Zhou, Shaohe; Shi, Zhangyan; Cui, Meng; Li, Junlin; Ma, Zhe; Shi, Yuanyu; Zheng, Zijian; Zhang, Fuchang; Jin, Tianbo; Geng, Tingting; Chen, Chao; Guo, Yale; Zhou, Jianping; Huang, Shaoping; Guo, Xingli; Gao, Lin; Gong, Pingyuan; Gao, Xiaocai; Zhang, Kejin

    2015-01-01

    Non-syndromic intellectual disability (NSID) is mental retardation in persons of normal physical appearance who have no recognisable features apart from obvious deficits in intellectual functioning and adaptive ability; however, its genetic etiology of most patients has remained unknown. The main purpose of this study was to fine map and identify specific causal gene(s) by genotyping a NSID family cohort using a panel of markers encompassing a target region reported in a previous work. A total of 139 families including probands, parents and relatives were included in the household survey, clinical examinations and intelligence tests, recruited from the Qinba mountain region of Shannxi province, western China. A collection of 34 tagged single nucleotide polymorphisms (tSNPs) spanning five microsatellite marker (STR) loci were genotyped using an iPLEX Gold assay. The association between tSNPs and patients was analyzed by family-based association testing (FBAT) and haplotype analysis (HBAT). Four markers (rs5974392, rs12164331, rs5929554 and rs3116911) in a block that showed strong linkage disequilibrium within the first three introns of the LOC101928437 locus were found to be significantly associated with NSID (all P<0.01) by the FBAT method for a single marker in additive, dominant and recessive models. The results of haplotype tests of this block also revealed a significant association with NSID (all P<0.05) using 2-window and larger HBAT analyses. These results suggest that LOC101928437 is a novel candidate gene for NSID in Han Chinese individuals of the Qinba region of China. Although the biological function of the gene has not been well studied, knowledge about this gene will provide insights that will increase our understanding of NSID development. PMID:26287547

  2. The occipital place area represents first-person perspective motion information through scenes.

    PubMed

    Kamps, Frederik S; Lall, Vishal; Dilks, Daniel D

    2016-10-01

    Neuroimaging studies have identified multiple scene-selective regions in human cortex, but the precise role each region plays in scene processing is not yet clear. It was recently hypothesized that two regions, the occipital place area (OPA) and the retrosplenial complex (RSC), play a direct role in navigation, while a third region, the parahippocampal place area (PPA), does not. Some evidence suggests a further division of labor even among regions involved in navigation: While RSC is thought to support navigation through the broader environment, OPA may be involved in navigation through the immediately visible environment, although this role for OPA has never been tested. Here we predict that OPA represents first-person perspective motion information through scenes, a critical cue for such "visually-guided navigation", consistent with the hypothesized role for OPA. Response magnitudes were measured in OPA (as well as RSC and PPA) to i) video clips of first-person perspective motion through scenes ("Dynamic Scenes"), and ii) static images taken from these same movies, rearranged such that first-person perspective motion could not be inferred ("Static Scenes"). As predicted, OPA responded significantly more to the Dynamic than Static Scenes, relative to both RSC and PPA. The selective response in OPA to Dynamic Scenes was not due to domain-general motion sensitivity or to low-level information inherited from early visual regions. Taken together, these findings suggest the novel hypothesis that OPA may support visually-guided navigation, insofar as first-person perspective motion information is useful for such navigation, while RSC and PPA support other aspects of navigation and scene recognition.

  3. Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study

    PubMed Central

    2011-01-01

    Background Occipital nerve stimulation (ONS) has raised new hope for drug-resistant chronic cluster headache (drCCH), a devastating condition. However its mode of action remains elusive. Since the long delay to meaningful effect suggests that ONS induces slow neuromodulation, we have searched for changes in central pain-control areas using metabolic neuroimaging. Methods Ten drCCH patients underwent an 18FDG-PET scan after ONS, at delays varying between 0 and 30 months. All were scanned with ongoing ONS (ON) and with the stimulator switched OFF. Results After 6-30 months of ONS, 3 patients were pain free and 4 had a ≥ 90% reduction of attack frequency (responders). In all patients compared to controls, several areas of the pain matrix showed hypermetabolism: ipsilateral hypothalamus, midbrain and ipsilateral lower pons. All normalized after ONS, except for the hypothalamus. Switching the stimulator ON or OFF had little influence on brain glucose metabolism. The perigenual anterior cingulate cortex (PACC) was hyperactive in ONS responders compared to non-responders. Conclusions Metabolic normalization in the pain neuromatrix and lack of short-term changes induced by the stimulation might support the hypothesis that ONS acts in drCCH through slow neuromodulatory processes. Selective activation in responders of PACC, a pivotal structure in the endogenous opioid system, suggests that ONS could restore balance within dysfunctioning pain control centres. That ONS is nothing but a symptomatic treatment might be illustrated by the persistent hypothalamic hypermetabolism, which could explain why autonomic attacks may persist despite pain relief and why cluster attacks recur shortly after stimulator arrest. PET studies on larger samples are warranted to confirm these first results. PMID:21349186

  4. Changes in Cerebral Cortex of Children Treated for Medulloblastoma

    SciTech Connect

    Liu, Arthur K. . E-mail: aliu1@partners.org; Marcus, Karen J.; Fischl, Bruce; Grant, P. Ellen; Young Poussaint, Tina; Rivkin, Michael J.; Davis, Peter; Tarbell, Nancy J.; Yock, Torunn I.

    2007-07-15

    Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from a larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications.

  5. The cerebral cortex of spontaneously hypertensive rats: a quantitative microanatomical study.

    PubMed

    Mignini, Fiorenzo; Vitaioli, Lucia; Sabbatini, Maurizio; Tomassoni, Daniele; Amenta, Francesco

    2004-05-01

    The morphology of cerebral cortex was investigated in male spontaneously hypertensive rats (SHR) aged 2, 4 and 6 months (pre-hypertensive, developing hypertension and established hypertension respectively) and in age-matched normotensive Wistar-Kyoto (WKY) rats using quantitative microanatomical techniques. Analysis included frontal and occipital cortex as a paradigm of motor and sensory cerebrocortical areas respectively. Values of systolic pressure were slightly higher in 2-month-old SHR compared to age-matched WKY rats and augmented progressively with increasing age in SHR. In frontal cortex of SHR a decrease of nerve cell number and of cortical volume was observed in layers V and VI of 4- and 6- month-old SHR, and in layers I-IV of 6- month-old SHR. In occipital cortex a decrease of the number of nerve cells and of cortical volume was observed in layers V and VI of 2-, 4-, 6- month-old SHR, and in layers I-IV of 6-month-old SHR. Numerical decrease of neurons in SHR affected to a greater extent occipital cortex than frontal cortex. An increase in the number of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes (hyperplasia) as well as in the mean immune reaction area (hypertrophy) was found in the two cerebrocortical areas investigated of 6-month-old SHR. The occurrence of apoptosis and/or necrosis identified using the terminal deoxyribo-nucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) technique was also observed in frontal and occipital cortex of 6-month-old SHR, but not of younger cohorts. These findings indicate the development of microanatomical changes in the cerebral cortex of SHR, the extent of which increases parallel with the progression of hypertension. The occurrence of cerebrocortical apoptosis and/or necrosis as well as the obvious astrogliosis occurring in established hypertension may account for the increased risk of vascular dementia that represents a specific trait of complicated hypertension.

  6. Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain

    PubMed Central

    Martino, Juan; De Witt Hamer, Philip C; Vergani, Francesco; Brogna, Christian; de Lucas, Enrique Marco; Vázquez-Barquero, Alfonso; García-Porrero, Juan A; Duffau, Hugues

    2011-01-01

    Classical fiber dissection of post mortem human brains enables us to isolate a fiber tract by removing the cortex and overlying white matter. In the current work, a modification of the dissection methodology is presented that preserves the cortex and the relationships within the brain during all stages of dissection, i.e. ‘cortex-sparing fiber dissection’. Thirty post mortem human hemispheres (15 right side and 15 left side) were dissected using cortex-sparing fiber dissection. Magnetic resonance imaging study of a healthy brain was analyzed using diffusion tensor imaging (DTI)-based tractography software. DTI fiber tract reconstructions were compared with cortex-sparing fiber dissection results. The fibers of the superior longitudinal fasciculus (SLF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) were isolated so as to enable identification of their cortical terminations. Two segments of the SLF were identified: first, an indirect and superficial component composed of a horizontal and vertical segment; and second, a direct and deep component or arcuate fasciculus. The IFOF runs within the insula, temporal stem and sagittal stratum, and connects the frontal operculum with the occipital, parietal and temporo-basal cortex. The UF crosses the limen insulae and connects the orbito-frontal gyri with the anterior temporal lobe. Finally, a portion of the ILF was isolated connecting the fusiform gyrus with the occipital gyri. These results indicate that cortex-sparing fiber dissection facilitates study of the 3D anatomy of human brain tracts, enabling the tracing of fibers to their terminations in the cortex. Consequently, it is an important tool for neurosurgical training and neuroanatomical research. PMID:21767263

  7. Differential Contribution of Right and Left Temporo-Occipital and Anterior Temporal Lesions to Face Recognition Disorders

    PubMed Central

    Gainotti, Guido; Marra, Camillo

    2011-01-01

    In the study of prosopagnosia, several issues (such as the specific or non-specific manifestations of prosopagnosia, the unitary or non-unitary nature of this syndrome and the mechanisms underlying face recognition disorders) are still controversial. Two main sources of variance partially accounting for these controversies could be the qualitative differences between the face recognition disorders observed in patients with prevalent lesions of the right or left hemisphere and in those with lesions encroaching upon the temporo-occipital (TO) or the (right) anterior temporal cortex. Results of our review seem to confirm these suggestions. Indeed, they show that (a) the most specific forms of prosopagnosia are due to lesions of a right posterior network including the occipital face area and the fusiform face area, whereas (b) the face identification defects observed in patients with left TO lesions seem due to a semantic defect impeding access to person-specific semantic information from the visual modality. Furthermore, face recognition defects resulting from right anterior temporal lesions can usually be considered as part of a multimodal people recognition disorder. The implications of our review are, therefore, the following: (1) to consider the components of visual agnosia often observed in prosopagnosic patients with bilateral TO lesions as part of a semantic defect, resulting from left-sided lesions (and not from prosopagnosia proper); (2) to systematically investigate voice recognition disorders in patients with right anterior temporal lesions to determine whether the face recognition defect should be considered a form of “associative prosopagnosia” or a form of the “multimodal people recognition disorder.” PMID:21687793

  8. Facial expression recognition takes longer in the posterior superior temporal sulcus than in the occipital face area.

    PubMed

    Pitcher, David

    2014-07-01

    Neuroimaging studies have identified a face-selective region in the right posterior superior temporal sulcus (rpSTS) that responds more strongly during facial expression recognition tasks than during facial identity recognition tasks, but precisely when the rpSTS begins to causally contribute to expression recognition is unclear. The present study addressed this issue using transcranial magnetic stimulation (TMS). In Experiment 1, repetitive TMS delivered over the rpSTS of human participants, at a frequency of 10 Hz for 500 ms, selectively impaired a facial expression task but had no effect on a matched facial identity task. In Experiment 2, participants performed the expression task only while double-pulse TMS (dTMS) was delivered over the rpSTS or over the right occipital face area (rOFA), a face-selective region in lateral occipital cortex, at different latencies up to 210 ms after stimulus onset. Task performance was selectively impaired when dTMS was delivered over the rpSTS at 60-100 ms and 100-140 ms. dTMS delivered over the rOFA impaired task performance at 60-100 ms only. These results demonstrate that the rpSTS causally contributes to expression recognition and that it does so over a longer time-scale than the rOFA. This difference in the length of the TMS induced impairment between the rpSTS and the rOFA suggests that the neural computations that contribute to facial expression recognition in each region are functionally distinct.

  9. Reorganization of retinotopic maps after occipital lobe infarction.

    PubMed

    Vaina, Lucia M; Soloviev, Sergei; Calabro, Finnegan J; Buonanno, Ferdinando; Passingham, Richard; Cowey, Alan

    2014-06-01

    We studied patient JS, who had a right occipital infarct that encroached on visual areas V1, V2v, and VP. When tested psychophysically, he was very impaired at detecting the direction of motion in random dot displays where a variable proportion of dots moving in one direction (signal) were embedded in masking motion noise (noise dots). The impairment on this motion coherence task was especially marked when the display was presented to the upper left (affected) visual quadrant, contralateral to his lesion. However, with extensive training, by 11 months his threshold fell to the level of healthy participants. Training on the motion coherence task generalized to another motion task, the motion discontinuity task, on which he had to detect the presence of an edge that was defined by the difference in the direction of the coherently moving dots (signal) within the display. He was much better at this task at 8 than 3 months, and this improvement was associated with an increase in the activation of the human MT complex (hMT(+)) and in the kinetic occipital region as shown by repeated fMRI scans. We also used fMRI to perform retinotopic mapping at 3, 8, and 11 months after the infarct. We quantified the retinotopy and areal shifts by measuring the distances between the center of mass of functionally defined areas, computed in spherical surface-based coordinates. The functionally defined retinotopic areas V1, V2v, V2d, and VP were initially smaller in the lesioned right hemisphere, but they increased in size between 3 and 11 months. This change was not found in the normal, left hemisphere of the patient or in either hemispheres of the healthy control participants. We were interested in whether practice on the motion coherence task promoted the changes in the retinotopic maps. We compared the results for patient JS with those from another patient (PF) who had a comparable lesion but had not been given such practice. We found similar changes in the maps in the lesioned

  10. Early seizure propagation from the occipital lobe to medial temporal structures and its surgical implication.

    PubMed

    Usui, Naotaka; Mihara, Tadahiro; Baba, Koichi; Matsuda, Kazumi; Tottori, Takayasu; Umeoka, Shuichi; Nakamura, Fumihiro; Terada, Kiyohito; Usui, Keiko; Inoue, Yushi

    2008-12-01

    Intracranial EEG documentation of seizure propagation from the occipital lobe to medial temporal structures is relatively rare. We retrospectively analyzed intracranial EEG recorded with electrodes implanted in the medial temporal lobe in patients who underwent occipital lobe surgery. Four patients with occipital lesions, who underwent intracranial EEG monitoring with intracerebral electrodes implanted in the medial temporal lobe prior to occipital lobe surgery, were studied. Subdural electrodes were placed over the occipital lobe and adjacent areas. Intracerebral electrodes were implanted into bilateral hippocampi and the amygdala in three patients, and in the hippocampus and amygdala ipsilateral to the lesion in one. In light of the intracranial EEG findings, the occipital lobe was resected but the medial temporal lobe was spared in all patients. The follow-up period ranged from six to 16 years, and seizure outcome was Engel Class I in all patients. Sixty six seizures were analyzed. The majority of the seizures originated from the occipital lobe. In complex partial seizures, ictal discharges propagated to the medial temporal lobe. No seizures originating from the temporal lobe were documented. In some seizures, the ictal-onset zone could not be identified. In these seizures, very early propagation to the medial temporal lobe was observed. Interictal spikes were recorded in the medial temporal lobe in all cases. Intracranial EEG revealed very early involvement of the medial temporal lobe in some seizures. Seizure control was achieved without resection of the medial temporal structures.

  11. The course of the greater occipital nerve in the suboccipital region: a proposal for setting landmarks for local anesthesia in patients with occipital neuralgia.

    PubMed

    Natsis, K; Baraliakos, X; Appell, H J; Tsikaras, P; Gigis, I; Koebke, J

    2006-05-01

    The anatomical relationships of the greater occipital nerve (GON) to the semispinalis capitis muscle (SCM) and the trapezius muscle aponeurosis (TMA) were examined to identify topographic landmarks for use in anesthetic blockade of the GON in occipital neuralgia. The course and the diameter of the GON were studied in 40 cadavers (29 females, 11 males), and the points where it pierced the SCM and the TMA were identified. The course of the GON did not differ between males and females. A left-right difference was detected in the site of the GON in the TMA region but not in the SCM region. The nerve became wider towards the periphery. This may be relevant to entrapment of the nerve in the development of occipital neuralgia. In three cases, the GON split into two branches before piercing the TMA and reunited after having passed the TMA, and it pierced the obliquus capitis inferior muscle in another three cases. The GON and the lesser occipital nerve reunited at the level of the occiput in 80% of the specimens. The occiput and the nuchal midline are useful topographic landmarks to guide anesthetic blockade of the GON for diagnosis and therapy of occipital neuralgia. The infiltration is probably best aimed at the site where the SCM is pierced by the GON.

  12. Frontal and occipital perfusion changes in dissociative identity disorder.

    PubMed

    Sar, Vedat; Unal, Seher N; Ozturk, Erdinc

    2007-12-15

    The aim of the study was to investigate if there were any characteristics of regional cerebral blood flow (rCBF) in dissociative identity disorder. Twenty-one drug-free patients with dissociative identity disorder and nine healthy volunteers participated in the study. In addition to a clinical evaluation, dissociative psychopathology was assessed using the Structured Clinical Interview for DSM-IV Dissociative Disorders, the Dissociative Experiences Scale and the Clinician-Administered Dissociative States Scale. A semi-structured interview for borderline personality disorder, the Hamilton Depression Rating Scale, and the Childhood Trauma Questionnaire were also administered to all patients. Normal controls had to be without a history of childhood trauma and without any depressive or dissociative disorder. Regional cerebral blood flow (rCBF) was studied with single photon emission computed tomography (SPECT) with Tc99m-hexamethylpropylenamine (HMPAO) as a tracer. Compared with findings in the control group, the rCBF ratio was decreased among patients with dissociative identity disorder in the orbitofrontal region bilaterally. It was increased in median and superior frontal regions and occipital regions bilaterally. There was no significant correlation between rCBF ratios of the regions of interest and any of the psychopathology scale scores. An explanation for the neurophysiology of dissociative psychopathology has to invoke a comprehensive model of interaction between anterior and posterior brain regions.

  13. [Multiple bladder diverticula caused by occipital horn syndrome].

    PubMed

    Legros, L; Revencu, N; Nassogne, M-C; Wese, F-X; Feyaerts, A

    2015-11-01

    We report on the case of a child who presented with recurrent, multiple, and voluminous bladder diverticula. Bladder diverticula are defined as a herniation of the mucosa through the bladder muscle or the detrusor. Causes are numerous and diverticula can be classified into primary congenital diverticula (para-ureteral - or Hutch diverticula - and posterolateral diverticula); secondary diverticula (resulting from chronic mechanical obstruction or from neurological disease; and diverticula secondary to connective tissue or muscle fragility. The latter is seen in disease entities such as prune belly syndrome, Ehlers-Danlos syndrome, cutis laxa syndrome, OHS (occipital horn syndrome), Menkes disease, and Williams-Beuren syndrome. In this patient, the cause of these diverticula was OHS, a genetic, recessive X-chromosome-linked syndrome, responsible for abnormal tissue caused by a disorder in copper metabolism. This case reminds us of the importance of pushing the diagnostic workup when presented with multiple and/or large bladder diverticula, and in particular to search for rare malformation syndromes after exclusion of an obstacle. PMID:26386812

  14. Visual manifestations of occipital lobe infarction in three patients on a geriatric psychiatry unit.

    PubMed

    La Mancusa, J C; Cole, A R

    1988-01-01

    The authors present three cases of hospitalized patients on a geriatric psychiatry floor who were found to have previously undiagnosed occipital lobe infarctions associated with visual manifestations. The manifestations discussed are visual field defects, visual hallucinations, and color anomia. The incidence of undiagnosed occipital lobe infarctions and the contribution of these infarctions to visual perception changes in this patient population are unknown. The authors suggest that for patients who present with visual perception changes, a high index of suspicion for occipital lobe infarction should be maintained. Careful visual field testing is an essential part of the admitting work-up for hospitalized geriatric patients.

  15. Randomized, double-blind, comparative-effectiveness study comparing pulsed radiofrequency to steroid injections for occipital neuralgia or migraine with occipital nerve tenderness

    PubMed Central

    Cohen, Steven P.; Peterlin, B. Lee; Fulton, Larry; Neely, Edward T.; Kurihara, Connie; Gupta, Anita; Mali, Jimmy; Fu, Diana C.; Jacobs, Michael B.; Plunkett, Anthony R.; Verdun, Aubrey J.; Stojanovic, Milan P.; Hanling, Steven; Constantinescu, Octav; White, Ronald L.; McLean, Brian C.; Pasquina, Paul F.; Zhao, Zirong

    2015-01-01

    Occipital neuralgia (ON) is characterized by lancinating pain and tenderness overlying the occipital nerves. Both steroid injections and pulsed radiofrequency (PRF) are used to treat ON, but few clinical trials have evaluated efficacy, and no study has compared treatments. We performed a multicenter, randomized, double-blind, comparative-effectiveness study in 81 participants with ON or migraine with occipital nerve tenderness whose aim was to determine which treatment is superior. Forty-two participants were randomized to receive local anesthetic and saline, and three 120 second cycles of PRF per targeted nerve, and 39 were randomized to receive local anesthetic mixed with deposteroid and 3 rounds of sham PRF. Patients, treating physicians, and evaluators were blinded to interventions. The PRF group experienced a greater reduction in the primary outcome measure, average occipital pain at 6 weeks (mean change from baseline −2.743 ± 2.487 vs −1.377 ± 1.970; P <0.001), than the steroid group, which persisted through the 6-month follow-up. Comparable benefits favoring PRF were obtained for worst occipital pain through 3 months (mean change from baseline−1.925 ± 3.204 vs−0.541 ± 2.644; P = 0.043), and average overall headache pain through 6 weeks (mean change from baseline −2.738 ± 2.753 vs −1.120 ± 2.1; P = 0.037). Adverse events were similar between groups, and few significant differences were noted for nonpain outcomes. We conclude that although PRF can provide greater pain relief for ON and migraine with occipital nerve tenderness than steroid injections, the superior analgesia may not be accompanied by comparable improvement on other outcome measures. PMID:26447705

  16. Randomized, double-blind, comparative-effectiveness study comparing pulsed radiofrequency to steroid injections for occipital neuralgia or migraine with occipital nerve tenderness.

    PubMed

    Cohen, Steven P; Peterlin, B Lee; Fulton, Larry; Neely, Edward T; Kurihara, Connie; Gupta, Anita; Mali, Jimmy; Fu, Diana C; Jacobs, Michael B; Plunkett, Anthony R; Verdun, Aubrey J; Stojanovic, Milan P; Hanling, Steven; Constantinescu, Octav; White, Ronald L; McLean, Brian C; Pasquina, Paul F; Zhao, Zirong

    2015-12-01

    Occipital neuralgia (ON) is characterized by lancinating pain and tenderness overlying the occipital nerves. Both steroid injections and pulsed radiofrequency (PRF) are used to treat ON, but few clinical trials have evaluated efficacy, and no study has compared treatments. We performed a multicenter, randomized, double-blind, comparative-effectiveness study in 81 participants with ON or migraine with occipital nerve tenderness whose aim was to determine which treatment is superior. Forty-two participants were randomized to receive local anesthetic and saline, and three 120 second cycles of PRF per targeted nerve, and 39 were randomized to receive local anesthetic mixed with deposteroid and 3 rounds of sham PRF. Patients, treating physicians, and evaluators were blinded to interventions. The PRF group experienced a greater reduction in the primary outcome measure, average occipital pain at 6 weeks (mean change from baseline -2.743 ± 2.487 vs -1.377 ± 1.970; P < 0.001), than the steroid group, which persisted through the 6-month follow-up. Comparable benefits favoring PRF were obtained for worst occipital pain through 3 months (mean change from baseline -1.925 ± 3.204 vs -0.541 ± 2.644; P = 0.043), and average overall headache pain through 6 weeks (mean change from baseline -2.738 ± 2.753 vs -1.120 ± 2.1; P = 0.037). Adverse events were similar between groups, and few significant differences were noted for nonpain outcomes. We conclude that although PRF can provide greater pain relief for ON and migraine with occipital nerve tenderness than steroid injections, the superior analgesia may not be accompanied by comparable improvement on other outcome measures.

  17. [A case of visual agnosia for picture with right occipital lobe infarction].

    PubMed

    Koide, R; Bandoh, M; Isozaki, E; Hirai, S

    2001-06-01

    We report a 74-year-old right-handed man with visual agnosia for picture due to right occipital lobe infarction. The patient had a remarkable impairment in visual recognition for standardized pictures made by Snodgrass and Vanderwart, in addition to left hemianopsia, left visuospatial neglect, and mild prosopagnosia. The visual agnosia for picture was generally recognized as a mild-type of the visual object agnosia, which was extremely rare in the patients with right occipital lesion. We discussed the mechanism of the visual agnosia in the right occipital lesion. Therefore, it raises the possibility that the broad impairment of the right occipital artery territory including parahippocampal gyrus as well as corpus callosum can cause the visual agnosia for picture.

  18. Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.

    PubMed

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2016-06-01

    The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate.

  19. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS

    PubMed Central

    Thorne, Jeremy D.; Bleichner, Martin G.; Debener, Stefan

    2016-01-01

    Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation. PMID:26819766

  20. A novel technique in airway management of neonates with occipital encephalocele.

    PubMed

    Rangaswamy, N; Pramanik, A K

    2014-11-01

    Airway stabilization in neonates with occipital encephalocele (OE) is critical during surgery or if they develop hypoxic-respiratory failure. Endotracheal intubation can be challenging due to difficulty in positioning the head in a patient with large occipital mass. We describe a novel technique for positioning neonates with large OE using a commonly used hospital apparatus which facilitated appropriate positioning of the baby and successful endotracheal intubation with ease and no additional staff.

  1. Missed Total Occlusion Due to the Occipital Artery Arising from the Internal Carotid Artery

    SciTech Connect

    Ustunsoz, Bahri Gumus, Burcak; Koksal, Ali; Koroglu, Mert; Akhan, Okan

    2007-02-15

    A 56-year-old man was referred for digital subtraction angiography (DSA) with an ultrasound diagnosis of right proximal internal carotid artery (ICA) stenosis for possible carotid artery stenting. DSA revealed total occlusion of the ICA and an occipital artery arising from the stump and simulating continuation of the ICA. An ascending pharyngeal artery also arose from the same occipital artery. This case is of interest because this is a rare variation besides being a cause of misdiagnosis at carotid ultrasound.

  2. Perimetric demonstration of spontaneous visual field recovery following occipital lobe haemorrhage.

    PubMed

    Lin, Siying; George, Badie Z; Wilson-Holt, Nicholas J

    2013-08-29

    A 45-year-old patient on lifelong warfarin therapy after a metal aortic valve replacement developed a homonymous visual field defect following an occipital lobe haemorrhage. The patient received only conservative management and yet described continued improvement in her visual field defect for up to 20 months following the initial cerebral insult. We present the first conclusive illustrative documentation of visual recovery in a patient with an occipital lobe haemorrhage with sequential automated perimetric assessments over an extended period of time.

  3. APFiLoc: An Infrastructure-Free Indoor Localization Method Fusing Smartphone Inertial Sensors, Landmarks and Map Information

    PubMed Central

    Shang, Jianga; Gu, Fuqiang; Hu, Xuke; Kealy, Allison

    2015-01-01

    The utility and adoption of indoor localization applications have been limited due to the complex nature of the physical environment combined with an increasing requirement for more robust localization performance. Existing solutions to this problem are either too expensive or too dependent on infrastructure such as Wi-Fi access points. To address this problem, we propose APFiLoc—a low cost, smartphone-based framework for indoor localization. The key idea behind this framework is to obtain landmarks within the environment and to use the augmented particle filter to fuse them with measurements from smartphone sensors and map information. A clustering method based on distance constraints is developed to detect organic landmarks in an unsupervised way, and the least square support vector machine is used to classify seed landmarks. A series of real-world experiments were conducted in complex environments including multiple floors and the results show APFiLoc can achieve 80% accuracy (phone in the hand) and around 70% accuracy (phone in the pocket) of the error less than 2 m error without the assistance of infrastructure like Wi-Fi access points. PMID:26516858

  4. Ruptured tectal arteriovenous malformation demonstrated angiographically after removal of an unruptured occipital lobe arteriovenous malformation.

    PubMed

    Komatsu, Fuminari; Sakamoto, Seisaburou; Takemura, Yusuke; Nonaka, Masani; Ohta, Mika; Oshiro, Shinya; Tsugu, Hitoshi; Fukushima, Takeo; Inoue, Tooru

    2009-01-01

    We report a case of ruptured tectal arteriovenous malformation (AVM) that was demonstrated angiographically only after removal of an unruptured occipital AVM. A 57-year-old man presented with sudden onset of diplopia and tinnitus. Computed tomography revealed a small hemorrhage in the right tectum mesencephali with intraventricular hemorrhage. Magnetic resonance imaging and angiography disclosed AVM in the right occipital lobe which was separate from the hemorrhagic lesion. Angiography demonstrated that the right occipital AVM was fed by the parieto-occipital artery and drained into the superior sagittal sinus and vein of Galen. However, no abnormal vascular lesion was detected near the tectum mesencephali. As venous hypertension was considered the reason for hemorrhage, the occipital AVM was completely resected. Postoperative angiography demonstrated disappearance of the occipital AVM, but it also disclosed a small tectal AVM fed by branches from the superior cerebellar artery, which had not been detected on preoperative angiography. This was considered the true cause of hemorrhage, and gamma knife surgery was accordingly performed. Even if an AVM is demonstrated, if the lesion does not correspond to the hemorrhage we recommend serial angiographical evaluation so that a small AVM is not missed.

  5. Hemodynamic Response to Featural Changes in the Occipital and Inferior Temporal Cortex in Infants: A Preliminary Methodological Exploration

    ERIC Educational Resources Information Center

    Wilcox, Teresa; Bortfeld, Heather; Woods, Rebecca; Wruck, Eric; Boas, David A.

    2008-01-01

    Over the past 30 years researchers have learned a great deal about the development of object processing in infancy. In contrast, little is understood about the neural mechanisms that underlie this capacity, in large part because there are few techniques available to measure brain functioning in human infants. The present research examined the…

  6. Tactile discrimination activates the visual cortex of the recently blind naive to Braille: a functional magnetic resonance imaging study in humans.

    PubMed

    Sadato, Norihiro; Okada, Tomohisa; Kubota, Kiyokazu; Yonekura, Yoshiharu

    2004-04-01

    The occipital cortex of blind subjects is known to be activated during tactile discrimination tasks such as Braille reading. To investigate whether this is due to long-term learning of Braille or to sensory deafferentation, we used fMRI to study tactile discrimination tasks in subjects who had recently lost their sight and never learned Braille. The occipital cortex of the blind subjects without Braille training was activated during the tactile discrimination task, whereas that of control sighted subjects was not. This finding suggests that the activation of the visual cortex of the blind during performance of a tactile discrimination task may be due to sensory deafferentation, wherein a competitive imbalance favors the tactile over the visual modality.

  7. A sensitive period for language in the visual cortex: Distinct patterns of plasticity in congenitally versus late blind adults

    PubMed Central

    Bedny, Marina; Pascual-Leone, Alvaro; Dravida, Swethasri; Saxe, Rebecca

    2012-01-01

    Recent evidence suggests that blindness enables visual circuits to contribute to language processing. We examined whether this dramatic functional plasticity has a sensitive period. BOLD fMRI signal was measured in congenitally blind, late blind (blindness onset 9-years-old or later) and sighted participants while they performed a sentence comprehension task. In a control condition, participants listened to backwards speech and made match/non-match to sample judgments. In both, congenitally and late blind participants BOLD signal increased in bilateral foveal-pericalcarine cortex during response preparation, irrespective of whether the stimulus was a sentence or backwards speech. However, only in congenitally blind people left occipital areas (pericalcarine, extrastriate, fusiform and lateral) responded more to sentences than backwards speech. We conclude that age of blindness onset constrains the non-visual functions of occipital cortex: while plasticity is present in both congenitally and late blind individuals, recruitment of visual circuits for language depends on blindness during childhood. PMID:22154509

  8. Biomechanical comparison between CentraLoc and Intrafix fixation of quadrupled semitendinosus-gracilis allografts in cadaveric tibiae with low bone mineral density.

    PubMed

    Krupp, R; Nyland, J; Smith, C; Nawab, A; Burden, R; Caborn, D N M

    2007-08-01

    Supplementary or back-up tibial tunnel fixation of a quadruple semitendinosus-gracilis (STG) graft is often performed when the knee surgeon questions the integrity of intra-tunnel fixation. Back-up fixation devices such as staples however may contribute to increased knee pain and dysfunction. Both primary extra-tunnel and intra-tunnel fixation devices may provide sufficient quadruple STG graft fixation in a tibial tunnel to preclude the need for back-up fixation. This biomechanical study compared the fixation of quadruple STG allografts in standard drilled tunnels prepared in low apparent bone mineral density (BMD) cadaveric tibiae using either an Intrafix device with primary intra-tunnel fixation in a region of predominantly cancellous trabecular bone, or a CentraLoc device with primary extra-tunnel fixation in a region of predominantly cortical bone. The study hypothesis was that the CentraLoc device would display superior fixation in these low apparent BMD cadaveric tibiae. Matched pair tibiae and quadruple STG allografts were divided into two groups of seven specimens each. Extraction drilled tunnels matched allograft diameter. Constructs were pretensioned on a servo hydraulic device between 10 and 50 N for 10 cycles and isometric pretensioned at 50 N for 1 min prior to undergoing 500 loading cycles (50-250 N) and load to failure testing (20 mm/min). The CentraLoc group displayed superior load at failure (448.4+/-171 N vs. 338.4+/-119 N, P=0.04) and survived more loading cycles (410+/-154 cycles vs. 196+/-230 cycles, P=0.04) than the Intrafix group. Most CentraLoc group specimens (6/7, 85.7%) failed by device pullout with intact quadruple STG allograft strands while all Intrafix group specimens (7/7, 100%) failed by slippage of one or more strands (P=0.005). PMID:17490882

  9. Experience-related structural changes of degenerated occipital white matter in late-blind humans - a diffusion tensor imaging study.

    PubMed

    Dietrich, Susanne; Hertrich, Ingo; Kumar, Vinod; Ackermann, Hermann

    2015-01-01

    Late-blind humans can learn to understand speech at ultra-fast syllable rates (ca. 20 syllables/s), a capability associated with hemodynamic activation of the central-visual system. Thus, the observed functional cross-modal recruitment of occipital cortex might facilitate ultra-fast speech processing in these individuals. To further elucidate the structural prerequisites of this skill, diffusion tensor imaging (DTI) was conducted in late-blind subjects differing in their capability of understanding ultra-fast speech. Fractional anisotropy (FA) was determined as a quantitative measure of the directionality of water diffusion, indicating fiber tract characteristics that might be influenced by blindness as well as the acquired perceptual skills. Analysis of the diffusion images revealed reduced FA in late-blind individuals relative to sighted controls at the level of the optic radiations at either side and the right-hemisphere dorsal thalamus (pulvinar). Moreover, late-blind subjects showed significant positive correlations between FA and the capacity of ultra-fast speech comprehension within right-hemisphere optic radiation and thalamus. Thus, experience-related structural alterations occurred in late-blind individuals within visual pathways that, presumably, are linked to higher order frontal language areas.

  10. Faciotopy-A face-feature map with face-like topology in the human occipital face area.

    PubMed

    Henriksson, Linda; Mur, Marieke; Kriegeskorte, Nikolaus

    2015-11-01

    The occipital face area (OFA) and fusiform face area (FFA) are brain regions thought to be specialized for face perception. However, their intrinsic functional organization and status as cortical areas with well-defined boundaries remains unclear. Here we test these regions for "faciotopy", a particular hypothesis about their intrinsic functional organisation. A faciotopic area would contain a face-feature map on the cortical surface, where cortical patches represent face features and neighbouring patches represent features that are physically neighbouring in a face. The faciotopy hypothesis is motivated by the idea that face regions might develop from a retinotopic protomap and acquire their selectivity for face features through natural visual experience. Faces have a prototypical configuration of features, are usually perceived in a canonical upright orientation, and are frequently fixated in particular locations. To test the faciotopy hypothesis, we presented images of isolated face features at fixation to subjects during functional magnetic resonance imaging. The responses in V1 were best explained by low-level image properties of the stimuli. OFA, and to a lesser degree FFA, showed evidence for faciotopic organization. When a single patch of cortex was estimated for each face feature, the cortical distances between the feature patches reflected the physical distance between the features in a face. Faciotopy would be the first example, to our knowledge, of a cortical map reflecting the topology, not of a part of the organism itself (its retina in retinotopy, its body in somatotopy), but of an external object of particular perceptual significance. PMID:26235800

  11. Cortex Morphology in First-Episode Psychosis Patients With Neurological Soft Signs

    PubMed Central

    Gay, Olivier; Plaze, Marion; Oppenheim, Catherine; Mouchet-Mages, Sabine; Gaillard, Raphaël; Olié, Jean-Pierre; Krebs, Marie-Odile; Cachia, Arnaud

    2013-01-01

    Schizophrenia is a complex brain disorder associated with numerous etiological factors and pathophysiological pathways leading to multiple clinical outcomes. Compelling evidence suggests that deviations in neurodevelopmental processes are a major risk factor of schizophrenia. The identification of patients with high neurodevelopmental deviance is an important issue as it could help to identify homogeneous subgroups of patients with similar pathophysiological pathways, a key step to decipher the etiology of this complex condition. Several clinical arguments suggest that schizophrenia patients with Neurological Soft Signs (NSS)—ie, observable defects in motor coordination, motor integration, and sensory integration—would have high neurodevelopmental deviance. Based on the analysis of magnetic resonance imaging of 44 first-episode psychosis patients, we compared the cortex morphology, a marker of brain development, in patients with NSS vs patients with nonsignificant NSS. The cortex morphology was automatically assessed from three-dimensional global sulcal index (g-SI, the ratio between total sulcal area and outer cortex area) and regional sulcal indexes (r-SI, the ratio between the area of pooled labeled sulci and the total outer cortex area). Patients with NSS were found to have a lower g-SI in both hemispheres and a lower r-SI in left dorsolateral prefrontal and right lateral occipital cortices. Exploratory analyses revealed correlations between NSS dimensions and r-SI in distinct cortical areas, including dorsolateral and medial prefrontal cortices, lateral temporal, occipital, superior parietal, and medial parieto-occipital cortices. These findings provide evidence of distinct neurodevelopmental pathways in patients with NSS as compared with patients with nonsignificant NSS. PMID:22892556

  12. The Visual Word Form Area remains in the dominant hemisphere for language in late-onset left occipital lobe epilepsies: A postsurgery analysis of two cases.

    PubMed

    Lopes, Ricardo; Nunes, Rita Gouveia; Simões, Mário Rodrigues; Secca, Mário Forjaz; Leal, Alberto

    2015-05-01

    Automatic recognition of words from letter strings is a critical processing step in reading that is lateralized to the left-hemisphere middle fusiform gyrus in the so-called Visual Word Form Area (VWFA). Surgical lesions in this location can lead to irreversible alexia. Very early left hemispheric lesions can lead to transfer of the VWFA to the nondominant hemisphere, but it is currently unknown if this capability is preserved in epilepsies developing after reading acquisition. In this study, we aimed to determine the lateralization of the VWFA in late-onset left inferior occipital lobe epilepsies and also the effect of surgical disconnection from the adjacent secondary visual areas. Two patients with focal epilepsies with onset near the VWFA underwent to surgery for epilepsy, with sparing of this area. Neuropsychology evaluations were performed before and after surgery, as well as quantitative evaluation of the speed of word reading. Comparison of the surgical localization of the lesion, with the BOLD activation associated with the contrast of words-strings, was performed, as well as a study of the associated main white fiber pathways using diffusion-weighted imaging. Neither of the patients developed alexia after surgery (similar word reading speed before and after surgery) despite the fact that the inferior occipital surgical lesions reached the neighborhood (less than 1cm) of the VWFA. Surgeries partly disconnected the VWFA from left secondary visual areas, suggesting that pathways connecting to the posterior visual ventral stream were severely affected but did not induce alexia. The anterior and superior limits of the resection suggest that the critical connection between the VWFA and the Wernicke's Angular Gyrus cortex was not affected, which is supported by the detection of this tract with probabilistic tractography. Left occipital lobe epilepsies developing after reading acquisition did not produce atypical localizations of the VWFA, even with foci in the

  13. [Scalp neuralgia and headache elicited by cranial superficial anatomical causes: supraorbital neuralgia, occipital neuralgia, and post-craniotomy headache].

    PubMed

    Shimizu, Satoru

    2014-01-01

    Most scalp neuralgias are supraorbital or occipital. Although they have been considered idiopathic, recent studies revealed that some were attributable to mechanical irritation with the peripheral nerve of the scalp by superficial anatomical cranial structures. Supraorbital neuralgia involves entrapment of the supraorbital nerve by the facial muscle, and occipital neuralgia involves entrapment of occipital nerves, mainly the greater occipital nerve, by the semispinalis capitis muscle. Contact between the occipital artery and the greater occipital nerve in the scalp may also be causative. Decompression surgery to address these neuralgias has been reported. As headache after craniotomy is the result of iatrogenic injury to the peripheral nerve of the scalp, post-craniotomy headache should be considered as a differential diagnosis.

  14. Occipital sulci patterns in patients with schizophrenia and migraine headache using magnetic resonance imaging (MRI).

    PubMed

    Sulejmanpašić, Gorana; Suljić, Enra; Šabanagić-Hajrić, Selma

    2016-08-01

    Aim To examine the presence of morphologic variations of occipital sulci patternsin patients with schizophrenia and migraine headacheregarding gender and laterality using magnetic resonance imaging (MRI). Methods This study included 80 patients and brain scans were performed to analyze interhemispheric symmetry and the sulcal patterns of the occipital region of both hemispheres. Average total volumes of both hemispheres of the healthy population were used for comparison. Results There was statistically significant difference between subjects considering gender (p=0.012)with no difference regarding age(p=0.1821). Parameters of parieto-occipital fissure (p=0.0314), body of the calcarine sulcus (p=0.0213), inferior sagittal sulcus (p=0.0443), and lateral occipital sulcus (p=0.0411) showed statistically significant difference only of left hemisphere in male patients with schizophrenia with shallowerdepth of the sulcus. Conclusion Representation of neuroanatomical structures suggests the existence of structural neuroanatomic disorders with focal brain changes. Comparative analysis of occipital lobe and their morphologic structures (cortical dysmorphology) in patients with schizophreniausing MRI, according to genderindicates a significant cortical reduction in the left hemisphere only in the group of male patients compared to female patients and the control group. PMID:27313112

  15. Zygomatic arch-atlas wing stabilization in 5 dogs with atlanto-occipital dislocation

    PubMed Central

    DOLERA, Mario; MALFASSI, Luca; BIANCHI, Cristina; CARRARA, Nancy; CORBETTA, Laura; FINESSO, Sara; MARCARINI, Silvia; MAZZA, Giovanni; PAVESI, Simone; SALA, Massimo

    2016-01-01

    The aim of this work was to present a novel minimally invasive surgical stabilization technique for canine atlanto-occipital dislocation and to report the associated magnetic resonance imaging (MRI) findings. All 5 dogs in this case series underwent 1.5 T MRI of the head and neck and 3 underwent both MRI and computed tomography (CT). Atlanto-occipital dislocations were diagnosed based on the increased joint space between the occipital condyles and the atlas on MRI. Surgery was performed immediately with a never previously described fixation technique based on an external ligature. The stabilization was performed via 4 holes drilled in the zygomatic processes and in the atlas wings on each side. A nylon monofilament of 1 mm diameter was inserted in the 4 holes, and an O-shaped ligature was carried out externally to the skin through the ipsilateral zygomatic arch. Ligatures were removed within 2 months. At the postsurgical follow-up examination, 14 days after surgery, all dogs were found to be ambulatory. Atlanto-occipital stability was assessed by clinical examination with an average of 24 months of follow-up. The positive outcomes in this case series suggest that atlanto-occipital dislocation may be surgically treated with this novel technique, irrespective of the severity of the clinical presentation and associated lesions observed on MRI. PMID:26923031

  16. Theta burst stimulation of dorsolateral prefrontal cortex modulates pathological language switching: A case report.

    PubMed

    Nardone, Raffaele; De Blasi, Pierpaolo; Bergmann, Jürgen; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan; Trinka, Eugen

    2011-01-10

    Although different lesion and neuroimaging studies had highlighted the importance of the dorsolateral prefrontal cortex (DLPFC) in language switching, the nature of this higher cortical disorder of communication and its neural correlates have not been clearly established. To further investigate the functional involvement of the DLPFC, we used transcranial magnetic stimulation (TMS) given as theta burst stimulation (TBS) in a bilingual patient showing pathologic language switching after an ischemic stroke involving the left frontal lobe. Inhibitory and excitatory TBS were applied to the left DLPFC, to the right DLPFC, or to an occipital cortical control site. A short-lasting interruption of the pathological language switching occurred after excitatory left DLPFC stimulation, while inhibitory left DLPFC TBS transiently increased the number of utterances produced in the unwanted second language. Effects were non-significant after right DLPFC and occipital TBS. Our findings suggest that left DLPFC is actively involved in language switching. TMS techniques may help in understanding the neural bases of bilingualism.

  17. A Model of Representational Spaces in Human Cortex.

    PubMed

    Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V

    2016-06-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions.

  18. A Model of Representational Spaces in Human Cortex

    PubMed Central

    Guntupalli, J. Swaroop; Hanke, Michael; Halchenko, Yaroslav O.; Connolly, Andrew C.; Ramadge, Peter J.; Haxby, James V.

    2016-01-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. PMID:26980615

  19. Pure tentorial subdural hematoma from rupture of aneurysm along the transmastoid branches of the occipital artery

    PubMed Central

    Nguyen, Ha Son; Doan, Ninh; Shabani, Saman; Gelsomino, Michael; Zaidat, Osama

    2016-01-01

    Background: Pure subdural hematoma (without subarachnoid, intraventricular, or intraparenchymal hemorrhage) due to a ruptured intracranial aneurysm is rare. Most reported cases involve an aneurysm along the internal carotid artery, posterior communicating artery, or middle cerebral artery. No reports have described an aneurysm along the transmastoid branches of the occipital artery. Case Description: A 70-year-old female presented with sudden-onset, excruciating headaches, associated with dizziness, nausea, and emesis. There was no history of trauma. Computed tomography (CT) head demonstrated a pure tentorial subdural hematoma. Vascular imaging revealed bilateral aneurysms along the transmastoid branches of the intracranial portion of both the occipital arteries. Consequently, these branches were embolized, with no residual filling of the aneurysms. After the procedure, the patient remained neurologically well. The patient was monitored appropriately for vasospasm, and was discharged home 10 days after presentation. Conclusion: Rupture of aneurysms along intracranial branches of the occipital artery can lead to pure subdural hematoma along the tentorium. PMID:27583173

  20. [A case of central homonymous hemianopsia due to cerebral infarction of the occipital tip].

    PubMed

    Kiriyama, K; Yoshimura, T; Furuya, H; Kobayashi, T; Hasuo, K

    1996-07-01

    A 54-year-old man was admitted to the hospital because of the restriction of the right visual field. Goldmann's visual field test revealed the right central hemianopsia. MRI showed the infarction of the left occipital lobe tip. Cerebral angiography showed the occlusion of the left calcarine artery but no abnormality in the branches of the middle cerebral artery (MCA). The occipital lobe tip receives the projection from the macular area and is supplied by both calcarine artery and a branch of MCA. Therefore, cases of central homonymous hemianopsia due to vascular disorders have been relatively rare and the macular vision is usually spared. In contrast to the above knowledge, only one artery occlusion resulted in the central hemianopsia in our case. Poor anastomosis between PCA and MCA in the occipital tip of our patient may explain occurrence of the infarction of that area.

  1. Occipital meningoencephalocele with Cleft Lip, Cleft Palate and Limb Abnormalities- A Case Report.

    PubMed

    Ganapathy, Arthi; T, Sadeesh; Swer, Mary Hydrina; Rao, Sudha

    2014-12-01

    A 21-week-old still born female fetus with occipital encepholocele, cleft lip and cleft palate was received from the Department of Obstetrics and Gynecology, Mahatma Gandhi Medical College and Research Institute, Pondicherry and was studied in detail. It was born to Primigravida, of a second degree consanguineous marriage, with unremarkable family history. The biometric measurements were noted which corresponded to the age of the fetus. Further the fetus was embalmed and dissected. On examination an encephalocele of 2.7×1.5 cm was seen in the occipital region with a midline defect in the occipital bone and herniated brain tissue. Other anomalies observed were right unilateral cleft lip, right cleft palate, and bilateral syndactyly of the lower limbs and associated Congenital Talipus Equino Varus of the right foot. Other internal organs were developed appropriate for the age of the fetus.

  2. Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex.

    PubMed

    Watkins, Kate E; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M; Smith, Stephen M; Ragge, Nicola; Bridge, Holly

    2012-05-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an auditory covert naming task in five bilaterally anophthalmic subjects, who have never received visual input. When listening to auditory definitions and covertly retrieving words, these subjects activated lateral occipital cortex bilaterally in addition to the language areas activated in sighted controls. This activity was significantly greater than that present in a control condition of listening to reversed speech. The lateral occipital cortex was also recruited into a left-lateralized resting-state network that usually comprises anterior and posterior language areas. Levels of activation to the auditory naming and reversed speech conditions did not differ in the calcarine (striate) cortex. This primary 'visual' cortex was not recruited to the left-lateralized resting-state network and showed high interhemispheric correlation of activity at rest, as is typically seen in unimodal cortical areas. In contrast, the interhemispheric correlation of resting activity in extrastriate areas was reduced in anophthalmia to the level of cortical areas that are heteromodal, such as the inferior frontal gyrus. Previous imaging studies in the congenitally blind show that primary visual cortex is activated in higher-order tasks, such as language and memory to a greater extent than during more basic sensory processing, resulting in a reversal of the normal hierarchy of functional organization across 'visual' areas. Our data do not support such a pattern of organization in anophthalmia. Instead, the patterns of activity during task and the functional connectivity at rest are consistent with the known hierarchy of processing in these areas

  3. Spatial encoding and underlying circuitry in scene-selective cortex.

    PubMed

    Nasr, Shahin; Devaney, Kathryn J; Tootell, Roger B H

    2013-12-01

    Three cortical areas (Retro-Splenial Cortex (RSC), Transverse Occipital Sulcus (TOS) and Parahippocampal Place Area (PPA)) respond selectively to scenes. However, their wider role in spatial encoding and their functional connectivity remain unclear. Using fMRI, first we tested the responses of these areas during spatial comparison tasks using dot targets on white noise. Activity increased during task performance in both RSC and TOS, but not in PPA. However, the amplitude of task-driven activity and behavioral measures of task demand were correlated only in RSC. A control experiment showed that none of these areas were activated during a comparable shape comparison task. Secondly, we analyzed functional connectivity of these areas during the resting state. Results revealed a significant connection between RSC and frontal association areas (known to be involved in perceptual decision-making). In contrast, TOS showed functional connections dorsally with the Inferior Parietal Sulcus, and ventrally with the Lateral Occipital Complex--but not with RSC and/or frontal association areas. Moreover, RSC and TOS showed differentiable functional connections with the anterior-medial and posterior-lateral parts of PPA, respectively. These results suggest two parallel pathways for spatial encoding, including RSC and TOS respectively. Only the RSC network was involved in active spatial comparisons.

  4. Beyond natural numbers: negative number representation in parietal cortex.

    PubMed

    Blair, Kristen P; Rosenberg-Lee, Miriam; Tsang, Jessica M; Schwartz, Daniel L; Menon, Vinod

    2012-01-01

    Unlike natural numbers, negative numbers do not have natural physical referents. How does the brain represent such abstract mathematical concepts? Two competing hypotheses regarding representational systems for negative numbers are a rule-based model, in which symbolic rules are applied to negative numbers to translate them into positive numbers when assessing magnitudes, and an expanded magnitude model, in which negative numbers have a distinct magnitude representation. Using an event-related functional magnetic resonance imaging design, we examined brain responses in 22 adults while they performed magnitude comparisons of negative and positive numbers that were quantitatively near (difference <4) or far apart (difference >6). Reaction times (RTs) for negative numbers were slower than positive numbers, and both showed a distance effect whereby near pairs took longer to compare. A network of parietal, frontal, and occipital regions were differentially engaged by negative numbers. Specifically, compared to positive numbers, negative number processing resulted in greater activation bilaterally in intraparietal sulcus (IPS), middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity analysis revealed that neural responses in the IPS were more differentiated among positive numbers than among negative numbers, and greater differentiation among negative numbers was associated with faster RTs. Our findings indicate that despite negative numbers engaging the IPS more strongly, the underlying neural representation are less distinct than that of positive numbers. We discuss our findings in the context of the two theoretical models of negative number processing and demonstrate how multivariate approaches can provide novel insights into abstract number representation.

  5. [Occipital neuralgia: clinical and therapeutic characteristics of a series of 14 patients].

    PubMed

    Pedraza, María Isabel; Ruiz, Marina; Rodríguez, Cristina; Muñoz, Irene; Barón, Johanna; Mulero, Patricia; Herrero-Velázquez, Sonia; Guerrero-Peral, Ángel L

    2013-09-01

    INTRODUCTION. Occipital neuralgia is a pain in the distribution of the occipital nerves, accompanied by hypersensitivity to touch in the corresponding territory. AIMS. We present the occipital neuralgia series from the specialised headache unit at a tertiary hospital and analyse its clinical characteristics and its response to therapy. PATIENTS AND METHODS. Variables were collected from the cases of occipital neuralgia diagnosed in the above-mentioned headache unit between January 2008 and April 2013. RESULTS. A series of 14 patients (10 females, 4 males) with occipital neuralgia was obtained out of a total of 2338 (0.59%). Age at onset of the clinical signs and symptoms: 53.4 ± 20.3 years (range: 17-81 years) and time elapsed to diagnosis was 35.5 ± 58.8 months (range: 1-230 months). An intracranial or cervical pathology was ruled out by suitable means in each case. Baseline pain of a generally oppressive nature and an intensity of 5.3 ± 1.3 (4-8) on the verbal analogue scale was observed in 13 of them (92.8%). Eleven (78.5%) presented exacerbations, generally stabbing pains, a variable frequency (4.6 ± 7 a day) and an intensity of 7.8 ± 1.7 (range: 4-10) on the verbal analogue scale. Anaesthetic blockade was not performed in four of them (two due to a remitting pattern and two following the patient's wishes); in the others, blockade was carried out and was completely effective for between two and seven months. Four cases had previously received preventive treatment (amitriptyline in three and gabapentin in one), with no response. CONCLUSIONS. In this series from a specialised headache unit, occipital neuralgia is an infrequent condition that mainly affects patients over 50 years of age. Given its poor response to preventive treatment, the full prolonged response to anaesthetic blockades must be taken into account.

  6. Abnormal Large Central Occipital Emissary Vein: A Case Report and Review of Literature

    PubMed Central

    Dolati, Parviz; Fusco, Matthew R; Ogilvy, Christopher S; Thomas, Ajith J.

    2016-01-01

    A detailed description of the anatomy of the central occipital emissary vein, its embryology, anatomy, and abnormal variations is not available in the literature. This is the first known case report. A 48-year-old female underwent cerebral angiography to rule out dural arterio-venous fistula. Her angiography revealed an abnormally large central occipital emissary vein originating from the torcula, penetrating the cranium and draining into the suboccipital venous plexus. We provide discussion of the case with a review of the related literature. This case and its attached radiological images introduce a new type of entity to the existing data about the cranial emissary veins. PMID:27330871

  7. Font-specific priming following global amnesia and occipital lobe damage.

    PubMed

    Vaidya, C J; Gabrieli, J D; Verfaellie, M; Fleischman, D; Askari, N

    1998-04-01

    Font-specificity in visual word-stem completion priming was examined in patients with global amnesia and Patient M.S., who had a right-occipital lobectomy. Word-stems appeared in the same or different font as study words. Amnesic patients showed normal font-specific priming (greater priming for words studied in the same than different font as test), despite impaired word-stem cued recall. Patient M.S. failed to exhibit font-specific priming, despite preserved declarative memory. Therefore, perceptual specificity in visual priming depends on visual processes mediated by the right-occipital lobe rather than medial temporal and diencephalic regions involved in declarative memory.

  8. Bilateral mesial occipital lobe infarction after cardiogenic hypotension induced by electrical shock.

    PubMed

    Kamyar, Roheena; Trobe, Jonathan D

    2009-06-01

    A 28-year-old man developed cerebral blindness from infarction of both mesial occipital lobes after cardiogenic hypotension induced by electrical shock. He remained globally encephalopathic for several weeks, but his most enduring deficit was bilateral homonymous hemianopias with macular sparing. Cerebral visual loss after electrical injury has been sparsely reported. It has been attributed to direct thermal injury of the skull or posterior dural venous sinuses. We suggest that cerebral blindness after cardiogenic hypotension in which there is no thermal injury to the scalp be attributed to hypotensive infarction of the mesial occipital lobes, which lie in the terminal domain of the posterior cerebral arteries.

  9. Nummular headache in a patient with ipsilateral occipital neuralgia--a case report.

    PubMed

    Iwanowski, Piotr; Kozubski, Wojciech; Losy, Jacek

    2014-01-01

    Nummular headache (NH) is a rarely recognized primary headache, the diagnostic criteria of which are contained in the appendix to the 2nd edition of the International Classification of Headache Disorders (code A13.7.1). We present the case of a 61-year-old female who suffers, regardless of NH, from right-sided occipital neuralgia. The applied treatment - gabapentin and mianserin - had no effect. Injection of bupivacaine twice to the right occipital region resulted in neuralgia resolution up to three months, with no effect on NH. This confirms the independence of two above mentioned head pain conditions.

  10. Brain metabolite changes in alcoholism: localized proton magnetic resonance spectroscopy study of the occipital lobe.

    PubMed

    Modi, Shilpi; Bhattacharya, Manisha; Kumar, Pawan; Deshpande, Smita N; Tripathi, Rajendra Prasad; Khushu, Subash

    2011-07-01

    Chronic alcoholism is associated with altered brain metabolism, morphology and cognitive abilities. Besides deficits in higher order cognitive functions, alcoholics also show a deficit in the processing of basic sensory information viz. visual stimulation. To assess the metabolic changes associated with this deficit, (1)H MRS was carried out in the occipital lobe of alcohol dependents. A significant increase in Cho/Cr ratio (p<0.015) was observed in occipital lobe in the alcoholic group indicating altered cell membrane metabolism, which may probably be associated with the alterations in the cognitive abilities associated with vision.

  11. Attention and sentence processing deficits in Parkinson's disease: the role of anterior cingulate cortex.

    PubMed

    Grossman, M; Crino, P; Reivich, M; Stern, M B; Hurtig, H I

    1992-01-01

    Parkinson's disease (PD) is a complex neurodegenerative condition involving a motor disorder that is related to reduced dopaminergic input to the striatum. Intellectual deficits are also seen in PD, but the pathophysiology of these difficulties is poorly understood. Regional cerebral blood flow (rCBF) was studied in neurologically intact subjects during the performance of attention-demanding, sentence processing tasks using positron emission tomography (PET). The results demonstrated significantly increased rCBF in a distributed set of cerebral regions during the detection of an adjective or a particular agent in a sentence, including anterior cingulate cortex, left inferior and middle frontal cortex, left inferior temporo-occipital cortex, posterolateral temporal cortex, left caudate, and left thalamus. We identified defects in this cerebral network by studying PD patients with two PET techniques. Resting PET studies revealed a significant correlation between regional cerebral glucose metabolism in anterior cingulate cortex and deficits in attending to subtle grammatical aspects of sentences. Studies of PD patients with the PET activation technique revealed little change in anterior cingulate and left frontal CBF during performance of the adjective detection or agent detection tasks. These data suggest that a defect in anterior cingulate cortex contributes to the cognitive impairments observed in PD.

  12. TMS to object cortex affects both object and scene remote networks while TMS to scene cortex only affects scene networks.

    PubMed

    Rafique, Sara A; Solomon-Harris, Lily M; Steeves, Jennifer K E

    2015-12-01

    Viewing the world involves many computations across a great number of regions of the brain, all the while appearing seamless and effortless. We sought to determine the connectivity of object and scene processing regions of cortex through the influence of transient focal neural noise in discrete nodes within these networks. We consecutively paired repetitive transcranial magnetic stimulation (rTMS) with functional magnetic resonance-adaptation (fMR-A) to measure the effect of rTMS on functional response properties at the stimulation site and in remote regions. In separate sessions, rTMS was applied to the object preferential lateral occipital region (LO) and scene preferential transverse occipital sulcus (TOS). Pre- and post-stimulation responses were compared using fMR-A. In addition to modulating BOLD signal at the stimulation site, TMS affected remote regions revealing inter and intrahemispheric connections between LO, TOS, and the posterior parahippocampal place area (PPA). Moreover, we show remote effects from object preferential LO to outside the ventral perception network, in parietal and frontal areas, indicating an interaction of dorsal and ventral streams and possibly a shared common framework of perception and action.

  13. Abnormal Contrast Responses in the Extrastriate Cortex of Blindsight Patients

    PubMed Central

    Rees, Geraint; Kennard, Christopher; Bridge, Holly

    2015-01-01

    When the human primary visual cortex (V1) is damaged, the dominant geniculo-striate pathway can no longer convey visual information to the occipital cortex. However, many patients with such damage retain some residual visual function that must rely on an alternative pathway directly to extrastriate occipital regions. This residual vision is most robust for moving stimuli, suggesting a role for motion area hMT+. However, residual vision also requires high-contrast stimuli, which is inconsistent with hMT+ sensitivity to contrast in which even low-contrast levels elicit near-maximal neural activation. We sought to investigate this discrepancy by measuring behavioral and neural responses to increasing contrast in patients with V1 damage. Eight patients underwent behavioral testing and functional magnetic resonance imaging to record contrast sensitivity in hMT+ of their damaged hemisphere, using Gabor stimuli with a spatial frequency of 1 cycle/°. The responses from hMT+ of the blind hemisphere were compared with hMT+ and V1 responses in the sighted hemisphere of patients and a group of age-matched controls. Unlike hMT+, neural responses in V1 tend to increase linearly with increasing contrast, likely reflecting a dominant parvocellular channel input. Across all patients, the responses in hMT+ of the blind hemisphere no longer showed early saturation but increased linearly with contrast. Given the spatiotemporal parameters used in this study and the known direct subcortical projections from the koniocellular layers of the lateral geniculate nucleus to hMT+, we propose that this altered contrast sensitivity in hMT+ could be consistent with input from the koniocellular pathway. PMID:26019336

  14. The LLNL-G3D global P-wave velocity model and the significance of the BayesLoc multiple-event location procedure

    NASA Astrophysics Data System (ADS)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.

    2011-12-01

    LLNL-G3D is a global-scale model of P-wave velocity designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The underlying goal of the model is to provide enhanced seismic event location capabilities. Previous versions of LLNL-G3D (versions 1 and 2) provide substantial improvements in event location accuracy via 3-D ray tracing. The latest models are based on ~2.7 million P and Pn arrivals that are re-processed using our global multi-event locator known as BayesLoc. Bayesloc is a formulation of the joint probability distribution across multiple-event location parameters, including hypocenters, travel time corrections, pick precision, and phase labels. Modeling the whole multiple-event system results in accurate locations and an internally consistent data set that is ideal for tomography. Our recently developed inversion approach (called Progressive Multi-level Tessellation Inversion or PMTI) captures regional trends and fine details where data warrant. Using PMTI, we model multiple heterogeneity scale lengths without defining parameter grids with variable densities based on some ad hoc criteria. LLNL-G3Dv3 (version 3) is produced with data generated with the BayesLoc procedure, recently modified to account for localized travel time trends via a multiple event clustering technique. We demonstrate the significance of BayesLoc processing, the impact on the resulting tomographic images, and the application of LLNL-G3D to seismic event location. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-491805.

  15. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    SciTech Connect

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  16. Syndrome of agitated delirium and visual impairment: a manifestation of medial temporo-occipital infarction.

    PubMed

    Medina, J L; Chokroverty, S; Rubino, F A

    1977-09-01

    Three patients presented with sudden visual impairment followed by agitated delirium one to three days later. Examination revealed marked agitation, dementia, and loss of vision. Computerised axial tomography demonstrated temporo-occipital infarctions. All recovered from the agitated state in four days to two months, but their visual impairment and dementia persisted one to four years later.

  17. Eight to Twelve Hertz Occipital EEG Training with Moderate and Severely Retarded Epileptic Individuals.

    ERIC Educational Resources Information Center

    Rudrud, Eric; Striefel, Sebastian

    1981-01-01

    Three retarded epileptic individuals (17 to 22 years old) with a variety of seizure disorders were provided with 8 to 12 Hz occipital EEG biofeedback training. While seizures were not totally eliminated in any of the Ss, the results of the study indicated that all Ss exhibited decreases in some aspect of their seizure activity. (Author)

  18. The white matter of the human cerebrum: Part I The occipital lobe by Heinrich Sachs

    PubMed Central

    Forkel, Stephanie J.; Mahmood, Sajedha; Vergani, Francesco; Catani, Marco

    2015-01-01

    This is the first complete translation of Heinrich Sachs' outstanding white matter atlas dedicated to the occipital lobe. This work is accompanied by a prologue by Prof Carl Wernicke who for many years was Sachs' mentor in Breslau and enthusiastically supported his work. PMID:25527430

  19. Irreversible Loss of Vision in a Child due to Occipital Infarction after Gastroenteritis.

    PubMed

    Mansour, Ahmad M; Hasbini, Dana; Younis, Muhammad H; Bhatti, M Tariq

    2015-01-01

    A 2½-year-old girl developed a bilateral occipital infarct following severe gastroenteritis with bilateral vision of light perception. Evaluations for sickle cell anemia, hemolytic anemia and coagulopathies were negative. Cortical blindness is an uncommon but dramatic complication of gastroenteritis, hence the need of prompt hydration and other supportive measures to avoid irreversible visual loss or mental sequela.

  20. Irreversible Loss of Vision in a Child due to Occipital Infarction after Gastroenteritis

    PubMed Central

    Mansour, Ahmad M.; Hasbini, Dana; Younis, Muhammad H.; Bhatti, M. Tariq

    2015-01-01

    A 2½-year-old girl developed a bilateral occipital infarct following severe gastroenteritis with bilateral vision of light perception. Evaluations for sickle cell anemia, hemolytic anemia and coagulopathies were negative. Cortical blindness is an uncommon but dramatic complication of gastroenteritis, hence the need of prompt hydration and other supportive measures to avoid irreversible visual loss or mental sequela. PMID:25960732

  1. Perinatal occipital lobe injury in children: analysis of twenty-one cases.

    PubMed

    Wang, San-Mei; Yang, Chang-Shuan; Hou, Yu; Ma, Xiu-Wei; Feng, Zhi-Chun; Liao, Yu-Zhen

    2012-12-01

    This study used magnetic resonance imaging to analyze causes and clinical courses of pediatric occipital lobe injury. Patients undergoing magnetic resonance imaging for suspected bilateral occipital lobe injury at our Neurodevelopmental Department between July 2007 and June 2011 were included. We evaluated magnetic resonance imaging characteristics, clinical courses, electroencephalogram monitoring, and Denver Development Screen Test scores. Twenty-one infants were examined. Of these, 10 had been born preterm. Thirteen patients demonstrated hypoglycemia. Perinatal period hypoglycemia comprised the most common cause (71.4%) of occipital brain injury. Visual abnormalities were evident in 18 patients. Seventeen (80.9%) patients manifested epilepsy. Infantile spasms were observed in 13 cases (76.5%). According to Denver Development Screen Test assessment, 17 patients demonstrated delayed motor development. Motor function and language improved in 10 patients after effective control of their seizures. Hypoglycemia constitutes the most common cause of occipital injury in infants. Visual impairment, startle episodes, infantile spasms, and motor developmental delay comprise the most common complications, whereas language function is usually spared.

  2. The white matter of the human cerebrum: part I The occipital lobe by Heinrich Sachs.

    PubMed

    Forkel, Stephanie J; Mahmood, Sajedha; Vergani, Francesco; Catani, Marco

    2015-01-01

    This is the first complete translation of Heinrich Sachs' outstanding white matter atlas dedicated to the occipital lobe. This work is accompanied by a prologue by Prof Carl Wernicke who for many years was Sachs' mentor in Breslau and enthusiastically supported his work.

  3. Occipital lobe seizures related to marked elevation of hemoglobin A1C: report of two cases.

    PubMed

    Hung, Wan-Ling; Hsieh, Peiyuan F; Lee, Yi-Chung; Chang, Ming-Hong

    2010-07-01

    Occipital lobe seizures caused by nonketotic hyperglycemia (NKH) have been reported in only a few cases and are not fully characterized. We report two cases of NKH-related occipital lobe seizures with high hemoglobin A1C (HbA1C), epileptiform electroencephalograph (EEG) and MRI abnormalities. Both patients had moderate hyperglycemia (310-372 mg/dl) and mildly elevated serum osmolarity (295-304 mOsm/kg) but markedly elevated HbA1C (13.8-14.4%). One patient had a clinico-EEG seizure originating from the right occipital region during sleep. The other patient had an interictal epileptiform discharge consisting of unilateral occipital beta activity in sleep. None of the previously reported cases fulfilled the criteria of a nonketotic hyperglycemic hyperosmolar (NKHH) state, or showed any interictal beta paroxysms, spikes, sharp waves, or spike/sharp-slow wave complexes. We suggest that prolonged exposure to uncontrolled hyperglycemia, as indicated by HbA1C, rather than an acute NKHH state is crucial in the development of this peculiar seizure. We also suggest clinicians look for the presence of interictal focal beta paroxysms in addition to the usual epileptiform discharges while reading the EEG of these patients.

  4. Faciotopy—A face-feature map with face-like topology in the human occipital face area

    PubMed Central

    Henriksson, Linda; Mur, Marieke; Kriegeskorte, Nikolaus

    2015-01-01

    The occipital face area (OFA) and fusiform face area (FFA) are brain regions thought to be specialized for face perception. However, their intrinsic functional organization and status as cortical areas with well-defined boundaries remains unclear. Here we test these regions for “faciotopy”, a particular hypothesis about their intrinsic functional organisation. A faciotopic area would contain a face-feature map on the cortical surface, where cortical patches represent face features and neighbouring patches represent features that are physically neighbouring in a face. The faciotopy hypothesis is motivated by the idea that face regions might develop from a retinotopic protomap and acquire their selectivity for face features through natural visual experience. Faces have a prototypical configuration of features, are usually perceived in a canonical upright orientation, and are frequently fixated in particular locations. To test the faciotopy hypothesis, we presented images of isolated face features at fixation to subjects during functional magnetic resonance imaging. The responses in V1 were best explained by low-level image properties of the stimuli. OFA, and to a lesser degree FFA, showed evidence for faciotopic organization. When a single patch of cortex was estimated for each face feature, the cortical distances between the feature patches reflected the physical distance between the features in a face. Faciotopy would be the first example, to our knowledge, of a cortical map reflecting the topology, not of a part of the organism itself (its retina in retinotopy, its body in somatotopy), but of an external object of particular perceptual significance. PMID:26235800

  5. Increased occipital delta dipole density in major depressive disorder determined by magnetoencephalography

    PubMed Central

    Fernández, Alberto; Rodriguez-Palancas, Alfonso; López-Ibor, MarÍa; Zuluaga, Pilar; Turrero, AgustÍn; Maestú, Fernando; Amo, Carlos; López-Ibor, Juan José; Ortiz, Tomás

    2005-01-01

    Objective To test the hypothesis that there is increased low-frequency activity located predominantly in the frontal lobe in patients with major depressive disorder using magnetoencephalography. Methods We carried out an unmatched or separate sampling case–control study of 31 medication-free patients who met the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV), criteria for major depressive disorder and were outpatients of the Hospital Central de la Defensa, Madrid, and 22 healthy control subjects with no history of mental illness. A logistic regression analysis was employed to examine the predictive value of magnetoencephalography dipole density scores in the diagnosis of depression. We attempted to locate generators of focal magnetic slow waves by employing a single moving dipole model and by calculating dipole densities in prefrontal, frontal, parietal, temporal and occipital areas. The study lasted from February 2001 to January 2003. Results Only 2 dipole density scores, right occipital delta and left temporal delta, were significantly related to depression. According to the comparison of univariate and multivariate models and odds ratios, the right occipital delta dipole density is the factor with the greatest predictive power for depression, and the only one to show a significant correlation with severity of depression. Conclusions We did not find any frontal lobe functional alteration. Our study provides, to the best of our knowledge, the first evidence of abnormal focal magnetic low-frequency activity in the occipital lobe of untreated patients with depression. Increased occipital lobe delta dipole density seems to be a reliable risk factor for depression, which correlates with disease severity according to the Hamilton Rating Scale for Depression. PMID:15644993

  6. Cognition without Cortex.

    PubMed

    Güntürkün, Onur; Bugnyar, Thomas

    2016-04-01

    Assumptions on the neural basis of cognition usually focus on cortical mechanisms. Birds have no cortex, but recent studies in parrots and corvids show that their cognitive skills are on par with primates. These cognitive findings are accompanied by neurobiological discoveries that reveal avian and mammalian forebrains are homologous, and show similarities in connectivity and function down to the cellular level. But because birds have a large pallium, but no cortex, a specific cortical architecture cannot be a requirement for advanced cognitive skills. During the long parallel evolution of mammals and birds, several neural mechanisms for cognition and complex behaviors may have converged despite an overall forebrain organization that is otherwise vastly different. PMID:26944218

  7. The multifunctional application of microfluidic lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS) within the field of bioanalytics

    NASA Astrophysics Data System (ADS)

    März, Anne; Mönch, Bettina; Walter, Angela; Bocklitz, Thomas; Schumacher, Wilm; Rösch, Petra; Kiehntopf, Michael; Popp, Jürgen

    2011-07-01

    This contribution will present a variety of applications of lab-on-a-chip surface enhanced Raman spectroscopy in the field of bioanalytic. Beside the quantification and online monitoring of drugs and pharmaceuticals, determination of enzyme activity and discrimination of bacteria are successfully carried out utilizing LOC-SERS. The online-monitoring of drugs using SERS in a microfluidic device is demonstrated for nicotine. The enzyme activity of thiopurine methyltransferase (TPMT) in lysed red blood cells is determined by SERS in a lab-on-a-chip device. To analyse the activity of TPMT the metabolism of 6-mercaptopurine to 6-methylmercaptopurine is investigated. The discrimination of bacteria on strain level is carried out with different E. coli strains. For the investigations, the bacteria are busted by ultra sonic to achieve a high information output. This sample preparation provides the possibility to detect SERS spectra containing information of the bacterial cell walls as well as of the cytoplasm. This contribution demonstrates the great potential of LOC-SERS in the field of bioanalytics.

  8. Interim Measures Report for the Headquarters Building Area Location of Concern (LOC) 2E East SWMU 104 John F. Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Sager, Eric D.

    2016-01-01

    The Hazardous and Solid Waste Amendment portion of the National Aeronautics and Space Administration (NASA) Resource Conservation and Recovery Act (RCRA) Permit issued by the Florida Department of Environmental Protection (FDEP), requires identification and evaluation of all known Solid Waste Management Units (SWMUs) and Locations of Concern (LOCs) located on Kennedy Space Center (KSC) property. The KSC Headquarters Building Area (KHQA) has been identified as SWMU 104 under KSC's RCRA Program. This report summarizes the Interim Measure (IM) conducted by Geosyntec Consultants (Geosyntec) for NASA under Indefinite Delivery Indefinite Quantity Contract NNK12CA13B at the KHQA to mitigate potential exposure to polychlorinated biphenyl (PCB)-affected media at the eastern side of LOC 2E. The IM activities were conducted in June and July 2015 to remediate PCBs above the FDEP Residential Direct-Exposure (R-) Soil Cleanup Target Level (SCTL) of 0.5 milligram per kilogram (mg/kg) established by Chapter 62-777, Florida Administrative Code. The IM was performed in accordance with the IM Work Plan (IMWP) approved by the FDEP, dated August 2012. IM activities were conducted in accordance with the KSC Generic PCB Work Plan (NASA 2007).

  9. CX-516 Cortex pharmaceuticals.

    PubMed

    Danysz, Wojciech

    2002-07-01

    CX-516 is one of a series of AMPA modulators under development by Cortex, in collaboration with Shire and Servier, for the potential treatment of Alzheimer's disease (AD), schizophrenia and mild cognitive impairment (MCI) [234221]. By June 2001, CX-516 was in phase II trials for both schizophrenia and attention deficit hyperactivity disorder (ADHD) [412513]. A phase II trial in fragile X syndrome and autism was expected to start in May 2002 [449861]. In October 2001, Cortex was awarded a Phase II SBIR grant of $769,818 from the National Institutes of Mental Health to investigate the therapeutic potential of AMPAkines in schizophrenia. This award was to support a phase IIb study of CX-516 as a combination therapy in schizophrenia patients concomitantly treated with olanzapine. The trial was to enroll 80 patients and employ a randomized, double-blind, placebo-controlled design in which the placebo group was to receive olanzapine plus placebo and the active group was to receive olanzapine plus CX-516 [425982]. In April 2000, Shire and Cortex signed an option agreement in which Shire was to evaluate CX-516for the treatment of ADHD. Under the terms of the agreement, Shire would undertake a double-blind, placebo-controlled evaluation of CX-516 involving ADHD patients. If the study proved effective, Shire would have the right to convert its option into an exclusive worldwide license for the AMPAkines for ADHD under a development and licensing agreement. Should Shire elect to execute this agreement, Shire would bear all future developmental costs [363618]. By February 2002, Cortex and Servier had revealed their intention to begin enrolment for an international study of an AMPAkine compound as a potential treatment for MCI in the near future. Assuming enrollment proceeded as anticipated, results were expected during the second quarter of 2003 [439301]. By May 2002, phase II trials were underway [450134]. In March 2002, Cortex was awarded extended funding under the

  10. Enhanced Awareness Followed Reversible Inhibition of Human Visual Cortex: A Combined TMS, MRS and MEG Study

    PubMed Central

    Allen, Christopher P. G.; Dunkley, Benjamin T.; Muthukumaraswamy, Suresh D.; Edden, Richard; Evans, C. John; Sumner, Petroc; Singh, Krish D.; Chambers, Christopher D.

    2014-01-01

    This series of experiments investigated the neural basis of conscious vision in humans using a form of transcranial magnetic stimulation (TMS) known as continuous theta burst stimulation (cTBS). Previous studies have shown that occipital TMS, when time-locked to the onset of visual stimuli, can induce a phenomenon analogous to blindsight in which conscious detection is impaired while the ability to discriminate ‘unseen’ stimuli is preserved above chance. Here we sought to reproduce this phenomenon using offline occipital cTBS, which has been shown to induce an inhibitory cortical aftereffect lasting 45–60 minutes. Contrary to expectations, our first experiment revealed the opposite effect: cTBS enhanced conscious vision relative to a sham control. We then sought to replicate this cTBS-induced potentiation of consciousness in conjunction with magnetoencephalography (MEG) and undertook additional experiments to assess its relationship to visual cortical excitability and levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA; via magnetic resonance spectroscopy, MRS). Occipital cTBS decreased cortical excitability and increased regional GABA concentration. No significant effects of cTBS on MEG measures were observed, although the results provided weak evidence for potentiation of event related desynchronisation in the β band. Collectively these experiments suggest that, through the suppression of noise, cTBS can increase the signal-to-noise ratio of neural activity underlying conscious vision. We speculate that gating-by-inhibition in the visual cortex may provide a key foundation of consciousness. PMID:24956195

  11. Effects of Visual Cortex Activation on the Nociceptive Blink Reflex in Healthy Subjects

    PubMed Central

    Sava, Simona L.; de Pasqua, Victor; Magis, Delphine; Schoenen, Jean

    2014-01-01

    Bright light can cause excessive visual discomfort, referred to as photophobia. The precise mechanisms linking luminance to the trigeminal nociceptive system supposed to mediate this discomfort are not known. To address this issue in healthy human subjects we modulated differentially visual cortex activity by repetitive transcranial magnetic stimulation (rTMS) or flash light stimulation, and studied the effect on supraorbital pain thresholds and the nociceptive-specific blink reflex (nBR). Low frequency rTMS that inhibits the underlying cortex, significantly decreased pain thresholds, increased the 1st nBR block ipsi- and contralaterally and potentiated habituation contralaterally. After high frequency or sham rTMS over the visual cortex, and rMS over the right greater occipital nerve we found no significant change. By contrast, excitatory flash light stimulation increased pain thresholds, decreased the 1st nBR block of ipsi- and contralaterally and increased habituation contralaterally. Our data demonstrate in healthy subjects a functional relation between the visual cortex and the trigeminal nociceptive system, as assessed by the nociceptive blink reflex. The results argue in favour of a top-down inhibitory pathway from the visual areas to trigemino-cervical nociceptors. We postulate that in normal conditions this visuo-trigeminal inhibitory pathway may avoid disturbance of vision by too frequent blinking and that hypoactivity of the visual cortex for pathological reasons may promote headache and photophobia. PMID:24936654

  12. Effects of visual cortex activation on the nociceptive blink reflex in healthy subjects.

    PubMed

    Sava, Simona L; de Pasqua, Victor; Magis, Delphine; Magis, Delphine; Schoenen, Jean; Schoenen, Jean

    2014-01-01

    Bright light can cause excessive visual discomfort, referred to as photophobia. The precise mechanisms linking luminance to the trigeminal nociceptive system supposed to mediate this discomfort are not known. To address this issue in healthy human subjects we modulated differentially visual cortex activity by repetitive transcranial magnetic stimulation (rTMS) or flash light stimulation, and studied the effect on supraorbital pain thresholds and the nociceptive-specific blink reflex (nBR). Low frequency rTMS that inhibits the underlying cortex, significantly decreased pain thresholds, increased the 1st nBR block ipsi- and contralaterally and potentiated habituation contralaterally. After high frequency or sham rTMS over the visual cortex, and rMS over the right greater occipital nerve we found no significant change. By contrast, excitatory flash light stimulation increased pain thresholds, decreased the 1st nBR block of ipsi- and contralaterally and increased habituation contralaterally. Our data demonstrate in healthy subjects a functional relation between the visual cortex and the trigeminal nociceptive system, as assessed by the nociceptive blink reflex. The results argue in favour of a top-down inhibitory pathway from the visual areas to trigemino-cervical nociceptors. We postulate that in normal conditions this visuo-trigeminal inhibitory pathway may avoid disturbance of vision by too frequent blinking and that hypoactivity of the visual cortex for pathological reasons may promote headache and photophobia. PMID:24936654

  13. Frontal cortex mediates unconsciously triggered inhibitory control.

    PubMed

    van Gaal, Simon; Ridderinkhof, K Richard; Fahrenfort, Johannes J; Scholte, H Steven; Lamme, Victor A F

    2008-08-01

    To further our understanding of the function of conscious experience we need to know which cognitive processes require awareness and which do not. Here, we show that an unconscious stimulus can trigger inhibitory control processes, commonly ascribed to conscious control mechanisms. We combined the metacontrast masking paradigm and the Go/No-Go paradigm to study whether unconscious No-Go signals can actively trigger high-level inhibitory control processes, strongly associated with the prefrontal cortex (PFC). Behaviorally, unconscious No-Go signals sometimes triggered response inhibition to the level of complete response termination and yielded a slow down in the speed of responses that were not inhibited. Electroencephalographic recordings showed that unconscious No-Go signals elicit two neural events: (1) an early occipital event and (2) a frontocentral event somewhat later in time. The first neural event represents the visual encoding of the unconscious No-Go stimulus, and is also present in a control experiment where the masked stimulus has no behavioral relevance. The second event is unique to the Go/No-Go experiment, and shows the subsequent implementation of inhibitory control in the PFC. The size of the frontal activity pattern correlated highly with the impact of unconscious No-Go signals on subsequent behavior. We conclude that unconscious stimuli can influence whether a task will be performed or interrupted, and thus exert a form of cognitive control. These findings challenge traditional views concerning the proposed relationship between awareness and cognitive control and stretch the alleged limits and depth of unconscious information processing. PMID:18685030

  14. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-01

    Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual

  15. Improvement in clinical outcomes after dry needling in a patient with occipital neuralgia.

    PubMed

    Bond, Bryan M; Kinslow, Christopher

    2015-06-01

    The primary purpose of this case report is to outline the diagnosis, intervention and clinical outcome of a patient presenting with occipital neuralgia. Upon initial presentation, the patient described a four-year history of stabbing neck pain and headaches. After providing informed consent, the patient underwent a total of four dry needling (DN) sessions over a two-week duration. During each of the treatment sessions, needles were inserted into the trapezii and suboccipital muscles. Post-intervention, the patient reported a 32-point change in her neck disability index score along with a 28-point change in her headache disability index score. Thus, it appears that subsequent four sessions of DN over two weeks, our patient experienced meaningful improvement in her neck pain and headaches. To the best of our knowledge, this is the first case report describing DN to successfully improve clinical outcomes in a patient diagnosed with occipital neuralgia. PMID:26136602

  16. Neurofibromatosis Type 1: Transcatheter Arterial Embolization for Ruptured Occipital Arterial Aneurysms

    SciTech Connect

    Kanematsu, Masayuki; Kato, Hiroki; Kondo, Hiroshi; Goshima, Satoshi; Tsuge, Yusuke; Kojima, Toshiaki; Watanabe, Haruo

    2011-02-15

    Two cases of ruptured aneurysms in the posterior cervical regions associated with type-1 neurofibromatosis treated by transcatheter embolization are reported. Patients presented with acute onset of swelling and pain in the affected areas. Emergently performed contrast-enhanced CT demonstrated aneurysms and large hematomas widespread in the posterior cervical regions. Angiography revealed aneurysms and extravasations of the occipital artery. Patients were successfully treated by percutaneous transcatheter arterial microcoil embolization. Transcatheter arterial embolization therapy was found to be an effective method for treating aneurysmal rupture in the posterior cervical regions occurring in association with type-1 neurofibromatosis. A literature review revealed that rupture of an occipital arterial aneurysm, in the setting of neurofibromatosis type 1, has not been reported previously.

  17. Bilateral occipital calcification, epilepsy and coeliac disease: clinical and neuroimaging features of a new syndrome.

    PubMed Central

    Magaudda, A; Dalla Bernardina, B; De Marco, P; Sfaello, Z; Longo, M; Colamaria, V; Daniele, O; Tortorella, G; Tata, M A; Di Perri, R

    1993-01-01

    Twenty patients affected by bilateral occipital cortical-subcortical calcification (BOC) are described, 19 (95%) had epilepsy. In 8 of 16 cases studied, intestinal biopsy revealed coeliac disease. Fourteen patients had occipital partial epilepsy with a relatively benign outcome, while 4 patients were affected by a severe form of epilepsy, with very frequent, drug-resistant, generalised and partial seizures with mental deterioration. One patient had a single episode of convulsive status epilepticus at four months of age. The neurological examination was normal in all patients. CT showed flocculo-nodular, cortico-subcortical BOC, without enhancement and without lobar or hemispheric atrophy. MRI was normal. The clinical and neuroimaging features of these patients are different therefore from those with the Sturge-Weber Syndrome. The study confirms a high prevalence of coliac disease in patients with BOC, but the relationship between these two pathologies still needs to be clarified. Images PMID:8350105

  18. Prenatal ultrasound and MRI findings of temporal and occipital lobe dysplasia in a twin with achondroplasia.

    PubMed

    Pugash, D; Lehman, A M; Langlois, S

    2014-09-01

    Thanatophoric dysplasia, hypochondroplasia and achondroplasia are all caused by FGFR3 (fibroblast growth factor receptor 3) mutations. Neuropathological findings of temporal lobe dysplasia are found in thanatophoric dysplasia, and temporal and occipital lobe abnormalities have been described recently in brain imaging studies of children with hypochondroplasia. We describe twins discordant for achondroplasia, in one of whom the prenatal diagnosis was based on ultrasound and fetal MRI documentation of temporal and occipital lobe abnormalities characteristic of hypochondroplasia, in addition to the finding of short long bones. Despite the intracranial findings suggestive of hypochondroplasia, achondroplasia was confirmed following postnatal clinical and genetic testing. These intracranial abnormalities have not been previously described in a fetus with achondroplasia.

  19. Improvement in clinical outcomes after dry needling in a patient with occipital neuralgia

    PubMed Central

    Bond, Bryan M.; Kinslow, Christopher

    2015-01-01

    The primary purpose of this case report is to outline the diagnosis, intervention and clinical outcome of a patient presenting with occipital neuralgia. Upon initial presentation, the patient described a four-year history of stabbing neck pain and headaches. After providing informed consent, the patient underwent a total of four dry needling (DN) sessions over a two-week duration. During each of the treatment sessions, needles were inserted into the trapezii and suboccipital muscles. Post-intervention, the patient reported a 32-point change in her neck disability index score along with a 28-point change in her headache disability index score. Thus, it appears that subsequent four sessions of DN over two weeks, our patient experienced meaningful improvement in her neck pain and headaches. To the best of our knowledge, this is the first case report describing DN to successfully improve clinical outcomes in a patient diagnosed with occipital neuralgia. PMID:26136602

  20. Improvement in clinical outcomes after dry needling in a patient with occipital neuralgia.

    PubMed

    Bond, Bryan M; Kinslow, Christopher

    2015-06-01

    The primary purpose of this case report is to outline the diagnosis, intervention and clinical outcome of a patient presenting with occipital neuralgia. Upon initial presentation, the patient described a four-year history of stabbing neck pain and headaches. After providing informed consent, the patient underwent a total of four dry needling (DN) sessions over a two-week duration. During each of the treatment sessions, needles were inserted into the trapezii and suboccipital muscles. Post-intervention, the patient reported a 32-point change in her neck disability index score along with a 28-point change in her headache disability index score. Thus, it appears that subsequent four sessions of DN over two weeks, our patient experienced meaningful improvement in her neck pain and headaches. To the best of our knowledge, this is the first case report describing DN to successfully improve clinical outcomes in a patient diagnosed with occipital neuralgia.

  1. Occipital lobe seizures: Rare hyperglycemic sequelae of type 1 diabetes mellitus.

    PubMed

    Jalal, Muhammed Jasim Abdul; Menon, Murali Krishna; Kumar, K Arun; Gomez, Ramesh

    2015-01-01

    A 15-year-old boy presented with osmotic symptoms and photopsia. He had short-term memory impairment, visual hallucinations, and headache. His random blood sugar was 474 mg/dl, HbA1c -9.4%, and glutamic acid decarboxylase -65 >2000 IU/ml. Magnetic resonance imaging brain and cerebrospinal fluid study were normal. Digital electroencephalography was suggestive of bilateral hemispheric occipital lobe seizures. He responded well to insulin and antiepileptic medications. PMID:26962348

  2. Occipital lobe seizures: Rare hyperglycemic sequelae of type 1 diabetes mellitus

    PubMed Central

    Jalal, Muhammed Jasim Abdul; Menon, Murali Krishna; Kumar, K. Arun; Gomez, Ramesh

    2015-01-01

    A 15-year-old boy presented with osmotic symptoms and photopsia. He had short-term memory impairment, visual hallucinations, and headache. His random blood sugar was 474 mg/dl, HbA1c −9.4%, and glutamic acid decarboxylase −65 >2000 IU/ml. Magnetic resonance imaging brain and cerebrospinal fluid study were normal. Digital electroencephalography was suggestive of bilateral hemispheric occipital lobe seizures. He responded well to insulin and antiepileptic medications. PMID:26962348

  3. Tc SPECT scan in a patient with occipital lobe infarction and complex visual hallucinations.

    PubMed

    Assadi, Mitra; Baseman, Susan; Hyman, Daniel

    2003-06-01

    We have described a patient with occipital lobe infarction and CVH in the hemianopic field. Increased uptake in the right temporal lobe was documented on the brain Tc SPECT scan. We propose that activation of this area might be the underlying mechanism for visual hallucinations. This case report is a clear example of the wide spectrum of the clinical manifestations in stroke victims. We also emphasize the importance of educating the medical staff about the organic basis for human behavior.

  4. Bilateral occipital lobe infarction in acute migraine: clinical, neurophysiological, and neuroradiological study.

    PubMed

    Ganji, S; Williams, W; Furlow, J

    1992-07-01

    A woman having common migraine attacks coincident with an asymmetrical bilateral occipital lobe infarction that spared the brainstem and cerebellum underwent these studies: serial electroencephalography, brainstem auditory, visual and somatosensory evoked potentials, magnetic resonance imaging of the brain and cerebral arteriography. The patient's vision improved greatly during a one-year follow-up. The absence of risk factors for stroke suggested that migraine caused the infarction in the posterior circulation network. The pathophysiological mechanisms of stroke in migraine remains speculative.

  5. [An unusual case of status epilepticus of simple partial seizure with an occipital lobe focus].

    PubMed

    Yokoyama, E; Hirata, Y; Nagata, K

    1994-08-01

    A 45-year-old man developed generalized convulsion and consciousness disturbance at age 43. An X-ray CT revealed hemorrhagic infarction in the left fronto-parieto-temporal area. A conventional angiography disclosed complete occlusion of the left cortical vein. In the chronic stage of the stroke, he had incomplete right quadrantopsia, a mild right hemiparesis and sensory aphasia. The patient has had partial somatosensory seizures since February 1990. Ictal EEG recordings showed epileptogenic discharges in the left parietal region. The seizures were adequately controlled with clonazepam. Since July 27, 1993, he has become aware of blurred vision in both eyes accompanied with headache and dizziness. On August 6, he was admitted to the hospital with right homonymons hemianopsia, sensory aphsia and tonic seizures in the right hand. Ictal EEG recordings demonstrated theta waves of the left parieto-occipital region and epileptogenic discharges in the left occipital region which consisted of spikes, sharp waves and spike-wave complexes. Single photon emission computed tomography (SEPCT) images obtained during seizures showed considerable hyperperfusion in the left occipital temporal lobes, while there was hypoperfusion in the left temporo-parietal area corresponding to the lesion of the old cerebral infarction. A T2-weighted MRI scan showed an abnormal high-intensity area in the left occipital lobe that suggested brain edema. After the admission, the patient was treated with additional anticonvulsant drugs. The tonic seizures in the right hand disappeared and right homonymous hemianopsia and sensory aphasia showed gradual improvement in the next four weeks.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Occipital lobe seizures: Rare hyperglycemic sequelae of type 1 diabetes mellitus.

    PubMed

    Jalal, Muhammed Jasim Abdul; Menon, Murali Krishna; Kumar, K Arun; Gomez, Ramesh

    2015-01-01

    A 15-year-old boy presented with osmotic symptoms and photopsia. He had short-term memory impairment, visual hallucinations, and headache. His random blood sugar was 474 mg/dl, HbA1c -9.4%, and glutamic acid decarboxylase -65 >2000 IU/ml. Magnetic resonance imaging brain and cerebrospinal fluid study were normal. Digital electroencephalography was suggestive of bilateral hemispheric occipital lobe seizures. He responded well to insulin and antiepileptic medications.

  7. Neurocontrol in sensory cortex

    NASA Astrophysics Data System (ADS)

    Ritt, Jason; Nandi, Anirban; Schroeder, Joseph; Ching, Shinung

    Technology to control neural ensembles is rapidly advancing, but many important challenges remain in applications, such as design of controls (e.g. stimulation patterns) with specificity comparable to natural sensory encoding. We use the rodent whisker tactile system as a model for active touch, in which sensory information is acquired in a closed loop between feedforward encoding of sensory information and feedback guidance of sensing motions. Motivated by this system, we present optimal control strategies that are tailored for underactuation (a large ratio of neurons or degrees of freedom to stimulation channels) and limited observability (absence of direct measurement of the system state), common in available stimulation technologies for freely behaving animals. Using a control framework, we have begun to elucidate the feedback effect of sensory cortex activity on sensing in behaving animals. For example, by optogenetically perturbing primary sensory cortex (SI) activity at varied timing relative to individual whisker motions, we find that SI modulates future sensing behavior within 15 msec, on a whisk by whisk basis, changing the flow of incoming sensory information based on past experience. J.T.R. and S.C. hold Career Awards at the Scientific Interface from the Burroughs Wellcome Fund.

  8. The Distributed Auditory Cortex

    PubMed Central

    Winer, Jeffery A.; Lee, Charles C.

    2009-01-01

    A synthesis of cat auditory cortex (AC) organization is presented in which the extrinsic and intrinsic connections interact to derive a unified profile of the auditory stream and use it to direct and modify cortical and subcortical information flow. Thus, the thalamocortical input provides essential sensory information about peripheral stimulus events, which AC redirects locally for feature extraction, and then conveys to parallel auditory, multisensory, premotor, limbic, and cognitive centers for further analysis. The corticofugal output influences areas as remote as the pons and the cochlear nucleus, structures whose effects upon AC are entirely indirect, and has diverse roles in the transmission of information through the medial geniculate body and inferior colliculus. The distributed AC is thus construed as a functional network in which the auditory percept is assembled for subsequent redistribution in sensory, premotor, and cognitive streams contingent on the derived interpretation of the acoustic events. The confluence of auditory and multisensory streams likely precedes cognitive processing of sound. The distributed AC constitutes the largest and arguably the most complete representation of the auditory world. Many facets of this scheme may apply in rodent and primate AC as well. We propose that the distributed auditory cortex contributes to local processing regimes in regions as disparate as the frontal pole and the cochlear nucleus to construct the acoustic percept. PMID:17329049

  9. Dissociation between Conceptual and Perceptual Implicit Memory: Evidence from Patients with Frontal and Occipital Lobe Lesions.

    PubMed

    Gong, Liang; Wang, JiHua; Yang, XuDong; Feng, Lei; Li, Xiu; Gu, Cui; Wang, MeiHong; Hu, JiaYun; Cheng, Huaidong

    2015-01-01

    The latest neuroimaging studies about implicit memory (IM) have revealed that different IM types may be processed by different parts of the brain. However, studies have rarely examined what subtypes of IM processes are affected in patients with various brain injuries. Twenty patients with frontal lobe injury, 25 patients with occipital lobe injury, and 29 healthy controls (HC) were recruited for the study. Two subtypes of IM were investigated by using structurally parallel perceptual (picture identification task) and conceptual (category exemplar generation task) IM tests in the three groups, as well as explicit memory (EM) tests. The results indicated that the priming of conceptual IM and EM tasks in patients with frontal lobe injury was poorer than that observed in HC, while perceptual IM was identical between the two groups. By contrast, the priming of perceptual IM in patients with occipital lobe injury was poorer than that in HC, whereas the priming of conceptual IM and EM was similar to that in HC. This double dissociation between perceptual and conceptual IM across the brain areas implies that occipital lobes may participate in perceptual IM, while frontal lobes may be involved in processing conceptual memory. PMID:26793093

  10. Concordant Occipital and Supraorbital Neurostimulation Therapy for Hemiplegic Migraine; Initial Experience; A Case Series

    PubMed Central

    Will, Kelly R.; Conidi, Frank; Bulger, Robert

    2015-01-01

    Introduction Hemiplegic migraine is a particularly severe form of the disease that often evolves to a debilitating chronic illness that is resistant to commonly available therapies. Peripheral neurostimulation has been found to be a beneficial therapy for some patients among several diagnostic classes of migraine, but its potential has not been specifically evaluated for hemiplegic migraine. Materials and Methods Four patients with hemiplegic migraine were treated with concordant, combined occipital and supraorbital neurostimulation over periods ranging 6–92 months. The clinical indicators followed included assessments of headache frequency and severity, frequency of hemiplegic episodes, functional impairment, medication usage, and patient satisfaction. Results All reported a positive therapeutic response, as their average headache frequency decreased by 92% (30 to 2.5 headache days/month); Visual Analog Score by 44% (9.5 to 5.3); frequency of hemiplegic episodes by 96% (7.5 to 0.25 hemiplegic episodes/month); headache medication usage by 96% (6 to 0.25 daily medications); and Migraine Disability Assessment score by 98% (249 to 6). All were satisfied and would recommend the therapy, and all preferred combined occipital–supraorbital neurostimulation to occipital neurostimulation alone. Conclusions Concordant combined occipital and supraorbital neurostimulation may provide effective therapy for both the pain and motor aura in some patients with hemiplegic migraine. PMID:25688595

  11. Inferior fronto-temporo-occipital connectivity: a missing link between maltreated girls and neglectful mothers

    PubMed Central

    León, Inmaculada; Góngora, Daylin; Hernández-Cabrera, Juan A.; Byrne, Sonia; Bobes, María A.

    2016-01-01

    The neurobiological alterations resulting from adverse childhood experiences that subsequently may lead to neglectful mothering are poorly understood. Maternal neglect of an infant’s basic needs is the most prevalent type of child maltreatment. We tested white matter alterations in neglectful mothers, the majority of whom had also suffered maltreatment in their childhood, and compared them to a matched control group. The two groups were discriminated by a structural brain connectivity pattern comprising inferior fronto-temporo-occipital connectivity, which constitutes a major portion of the face-processing network and was indexed by fewer streamlines in neglectful mothers. Mediation and regression analyses showed that fewer streamlines in the right inferior longitudinal fasciculus tract (ILF-R) predicted a poorer quality of mother–child emotional availability observed during cooperative play and that effect depended on the respective interactions with left and right inferior fronto-occipital fasciculi (IFO-R/L), with no significant impact of psychopathological and cognitive conditions. Volume alteration in ILF-R but not in IFO-L modulated the impact of having been maltreated on emotional availability. The findings suggest the altered inferior fronto-temporal-occipital connectivity, affecting emotional visual processing, as a possible common neurological substrate linking a history of childhood maltreatment with maternal neglect. PMID:27342834

  12. Neurological and neuropsychological characteristics of occipital, occipito-temporal and occipito-parietal infarction.

    PubMed

    Kraft, Antje; Grimsen, Cathleen; Kehrer, Stefanie; Bahnemann, Markus; Spang, Karoline; Prass, Maren; Irlbacher, Kerstin; Köhnlein, Martin; Lipfert, Anika; Brunner, Freimuth; Kastrup, Andreas; Fahle, Manfred; Brandt, Stephan A

    2014-07-01

    Neuropsychological deficits after occipital infarction are most often described in case studies and only a small sample of studies has attempted to exactly correlate the anatomical localization of lesions with associated neuropsychological symptoms. The present study investigated a large number of patients (N = 128) in order to provide an overview of neurological and neuropsychological deficits after occipital, occipito-temporal and occipito-parietal infarction. A particular approach of the study was to define exact anatomical correlates of neuropsychological dysfunction by using voxel-based lesion-symptom mapping (VLSM) in 61 patients. In addition to a visual field defect and phosphenes, patients often reported anomia, difficulties in reading and memory deficits. Visual disorders, such as achromatopsia, akinetopsia or prosopagnosia, were rarely reported by the patients. Memory and visual disorders were diagnosed efficiently using simple clinical screening tests, such as the Rey-Osterrieth Complex Figure Test for immediate recall, the Demtect and the Lang Stereo Test. Visual field defects, reading disorders and the perception of phosphenes were associated primarily with lesions of the calcarine sulcus. Anomia and memory deficits were related to lesions of the occipital inferior gyrus, the lingual gyrus and hippocampus, as well as to lesions of principal white matter tracts.

  13. [An operated case of bitemporal lobe epilepsy associated with old infarction in the left occipital lobe].

    PubMed

    Kawamura, T; Morioka, T; Nishio, S; Mizokami, K; Sasaki, M; Ishii, K; Fukui, M

    2001-01-01

    A 15-year-old female, who presented with bitemporal lobe epilepsy associated with old infarction in the left occipital lobe, was reported. MRI with fluid attenuated inversion recovery sequence demonstrates cortical atrophy with hyperintensity of the white matter in the left occipital lobe as well as volume loss and hyperintensity of the left hippocampus. Interictal positron emission tomography with [18F]fluorodeoxy glucose (FDG-PET) and single photon emission computed tomography with technetium-99m-ethyl-cysteinate dimer indicate hypometabolism and hypoperfusion in the left occipital lobe and the left temporal lobe, respectively. Scalp recorded EEG did not lateralize the side of the epileptogenic zone. Chronic subdural electrode recording demonstrated that the ictal onset zones were located in the bilateral side of the temporal lobe. Eighty-nine percent of 19 spontaneous seizures were left sided onset. The anterior temporal lobectomy with hippocampectomy was performed for the left side. Although temporal lobe epilepsy is sometimes a bilateral disease, unilateral lobectomy for a strong predominant side, based on the MRI and FDG-PET findings, is effective for some patients.

  14. Inferior fronto-temporo-occipital connectivity: a missing link between maltreated girls and neglectful mothers.

    PubMed

    Rodrigo, María José; León, Inmaculada; Góngora, Daylin; Hernández-Cabrera, Juan A; Byrne, Sonia; Bobes, María A

    2016-10-01

    The neurobiological alterations resulting from adverse childhood experiences that subsequently may lead to neglectful mothering are poorly understood. Maternal neglect of an infant's basic needs is the most prevalent type of child maltreatment. We tested white matter alterations in neglectful mothers, the majority of whom had also suffered maltreatment in their childhood, and compared them to a matched control group. The two groups were discriminated by a structural brain connectivity pattern comprising inferior fronto-temporo-occipital connectivity, which constitutes a major portion of the face-processing network and was indexed by fewer streamlines in neglectful mothers. Mediation and regression analyses showed that fewer streamlines in the right inferior longitudinal fasciculus tract (ILF-R) predicted a poorer quality of mother-child emotional availability observed during cooperative play and that effect depended on the respective interactions with left and right inferior fronto-occipital fasciculi (IFO-R/L), with no significant impact of psychopathological and cognitive conditions. Volume alteration in ILF-R but not in IFO-L modulated the impact of having been maltreated on emotional availability. The findings suggest the altered inferior fronto-temporal-occipital connectivity, affecting emotional visual processing, as a possible common neurological substrate linking a history of childhood maltreatment with maternal neglect. PMID:27342834

  15. Biofidelic neck influences head kinematics of parietal and occipital impacts following short falls in infants.

    PubMed

    Sullivan, Sarah; Coats, Brittany; Margulies, Susan S

    2015-09-01

    Falls are a major cause of traumatic head injury in children. Understanding head kinematics during low height falls is essential for evaluating injury risk and designing mitigating strategies. Typically, these measurements are made with commercial anthropomorphic infant surrogates, but these surrogates are designed based on adult biomechanical data. In this study, we improve upon the state-of-the-art anthropomorphic testing devices by incorporating new infant cadaver neck bending and tensile data. We then measure head kinematics following head-first falls onto 4 impact surfaces from 3 fall heights with occipital and parietal head impact locations. The biofidelic skull compliance and neck properties of the improved infant surrogate significantly influenced the measured kinematic loads, decreasing the measured impact force and peak angular accelerations, lowering the expected injury risk. Occipital and parietal impacts exhibited distinct kinematic responses in primary head rotation direction and the magnitude of the rotational velocities and accelerations, with larger angular velocities as the head rebounded after occipital impacts. Further evaluations of injury risk due to short falls should take into account the impact surface and head impact location, in addition to the fall height.

  16. The Disruption of Geniculocalcarine Tract in Occipital Neoplasm: A Diffusion Tensor Imaging Study.

    PubMed

    Zhang, Yan; Wan, Sihai; Wen, Ge; Zhang, Xuelin

    2016-01-01

    Aim. Investigate the disruption of geniculocalcarine tract (GCT) in different occipital neoplasm by diffusion tensor imaging (DTI). Methods. Thirty-two subjects (44.1 ± 3.6 years) who had single occipital neoplasm (9 gliomas, 6 meningiomas, and 17 metastatic tumors) with ipsilateral GCT involved and thirty healthy subjects (39.2 ± 3.3 years) underwent conventional sequences scanning and diffusion tensor imaging by a 1.5T MR scanner. The diffusion-sensitive gradient direction is 13. Compare the fractional anisotropy (FA) and mean diffusivity (MD) values of healthy GCT with the corresponding values of GCT in peritumoral edema area. Perform diffusion tensor tractography (DTT) on GCT by the line propagation technique in all subjects. Results. The FA values of GCT in peritumoral edema area decreased (P = 0.001) while the MD values increased (P = 0.002) when compared with healthy subjects. There was no difference in the FA values across tumor types (P = 0.114) while the MD values of GCT in the metastatic tumor group were higher than the other groups (P = 0.001). GCTs were infiltrated in all the 9 gliomas cases, with displacement in 2 cases and disruption in 7 cases. GCTs were displaced in 6 meningiomas cases. GCTs were displaced in all the 7 metastatic cases, with disruption in 7 cases. Conclusions. DTI represents valid markers for evaluating GCT's disruption in occipital neoplasm. The disruption of GCT varies according to the properties of neoplasm. PMID:27610244

  17. Inferior fronto-temporo-occipital connectivity: a missing link between maltreated girls and neglectful mothers.

    PubMed

    Rodrigo, María José; León, Inmaculada; Góngora, Daylin; Hernández-Cabrera, Juan A; Byrne, Sonia; Bobes, María A

    2016-10-01

    The neurobiological alterations resulting from adverse childhood experiences that subsequently may lead to neglectful mothering are poorly understood. Maternal neglect of an infant's basic needs is the most prevalent type of child maltreatment. We tested white matter alterations in neglectful mothers, the majority of whom had also suffered maltreatment in their childhood, and compared them to a matched control group. The two groups were discriminated by a structural brain connectivity pattern comprising inferior fronto-temporo-occipital connectivity, which constitutes a major portion of the face-processing network and was indexed by fewer streamlines in neglectful mothers. Mediation and regression analyses showed that fewer streamlines in the right inferior longitudinal fasciculus tract (ILF-R) predicted a poorer quality of mother-child emotional availability observed during cooperative play and that effect depended on the respective interactions with left and right inferior fronto-occipital fasciculi (IFO-R/L), with no significant impact of psychopathological and cognitive conditions. Volume alteration in ILF-R but not in IFO-L modulated the impact of having been maltreated on emotional availability. The findings suggest the altered inferior fronto-temporal-occipital connectivity, affecting emotional visual processing, as a possible common neurological substrate linking a history of childhood maltreatment with maternal neglect.

  18. Dissociation between Conceptual and Perceptual Implicit Memory: Evidence from Patients with Frontal and Occipital Lobe Lesions

    PubMed Central

    Gong, Liang; Wang, JiHua; Yang, XuDong; Feng, Lei; Li, Xiu; Gu, Cui; Wang, MeiHong; Hu, JiaYun; Cheng, Huaidong

    2016-01-01

    The latest neuroimaging studies about implicit memory (IM) have revealed that different IM types may be processed by different parts of the brain. However, studies have rarely examined what subtypes of IM processes are affected in patients with various brain injuries. Twenty patients with frontal lobe injury, 25 patients with occipital lobe injury, and 29 healthy controls (HC) were recruited for the study. Two subtypes of IM were investigated by using structurally parallel perceptual (picture identification task) and conceptual (category exemplar generation task) IM tests in the three groups, as well as explicit memory (EM) tests. The results indicated that the priming of conceptual IM and EM tasks in patients with frontal lobe injury was poorer than that observed in HC, while perceptual IM was identical between the two groups. By contrast, the priming of perceptual IM in patients with occipital lobe injury was poorer than that in HC, whereas the priming of conceptual IM and EM was similar to that in HC. This double dissociation between perceptual and conceptual IM across the brain areas implies that occipital lobes may participate in perceptual IM, while frontal lobes may be involved in processing conceptual memory. PMID:26793093

  19. The Disruption of Geniculocalcarine Tract in Occipital Neoplasm: A Diffusion Tensor Imaging Study

    PubMed Central

    Zhang, Yan; Wan, Sihai; Wen, Ge

    2016-01-01

    Aim. Investigate the disruption of geniculocalcarine tract (GCT) in different occipital neoplasm by diffusion tensor imaging (DTI). Methods. Thirty-two subjects (44.1 ± 3.6 years) who had single occipital neoplasm (9 gliomas, 6 meningiomas, and 17 metastatic tumors) with ipsilateral GCT involved and thirty healthy subjects (39.2 ± 3.3 years) underwent conventional sequences scanning and diffusion tensor imaging by a 1.5T MR scanner. The diffusion-sensitive gradient direction is 13. Compare the fractional anisotropy (FA) and mean diffusivity (MD) values of healthy GCT with the corresponding values of GCT in peritumoral edema area. Perform diffusion tensor tractography (DTT) on GCT by the line propagation technique in all subjects. Results. The FA values of GCT in peritumoral edema area decreased (P = 0.001) while the MD values increased (P = 0.002) when compared with healthy subjects. There was no difference in the FA values across tumor types (P = 0.114) while the MD values of GCT in the metastatic tumor group were higher than the other groups (P = 0.001). GCTs were infiltrated in all the 9 gliomas cases, with displacement in 2 cases and disruption in 7 cases. GCTs were displaced in 6 meningiomas cases. GCTs were displaced in all the 7 metastatic cases, with disruption in 7 cases. Conclusions. DTI represents valid markers for evaluating GCT's disruption in occipital neoplasm. The disruption of GCT varies according to the properties of neoplasm. PMID:27610244

  20. [Transient charles bonnet syndrome after excision of a right occipital meningioma: a case report].

    PubMed

    Arai, Takao; Hasegawa, Yuzuru; Tanaka, Toshihide; Kato, Naoki; Watanabe, Mitsuyoshi; Nakamura, Aya; Murayama, Yuichi

    2014-05-01

    Charles Bonnet syndrome is a condition characterized by visual hallucinations. These simple or complex visual hallucinations are more common in elderly individuals with impaired peripheral vision. The current report describes a case of transient Charles Bonnet syndrome appearing after the removal of a meningioma. The patient was a 61-year-old man who already had impaired visual acuity due to diabetic retinopathy. Brain MRI revealed a cystic tumor severely compressing the right occipital lobe. Starting on day 2 postoperatively, the patient was troubled by recurring visual hallucinations involving people, flowers, pictures, and familiar settings(the train and a coffee shop). These continued for 3.5 months. This period roughly coincided with the time for the occipital lobe to recover from the compression caused by the tumor, a fact that was confirmed by several MRI scans. ¹²³I-IMP SPECT performed 1 month after the surgical operation showed an area of hypoperfusion in the right parieto-occipital lobe. Based on the patient's clinical course and MRI findings, the mechanism of onset of visual hallucinations in this patient was put forward. The release of pressure in the brain by tumor removal and subsequent recovery changed the blood flow to the brain. This triggered visual hallucinations in the patient, who was already predisposed to developing Charles Bonnet syndrome because of diabetic retinopathy. This case is interesting since it indicates that central neurological factors, as well as visual deficits, may induce the appearance of visual hallucinations in Charles Bonnet syndrome.

  1. Dissociation between Conceptual and Perceptual Implicit Memory: Evidence from Patients with Frontal and Occipital Lobe Lesions.

    PubMed

    Gong, Liang; Wang, JiHua; Yang, XuDong; Feng, Lei; Li, Xiu; Gu, Cui; Wang, MeiHong; Hu, JiaYun; Cheng, Huaidong

    2015-01-01

    The latest neuroimaging studies about implicit memory (IM) have revealed that different IM types may be processed by different parts of the brain. However, studies have rarely examined what subtypes of IM processes are affected in patients with various brain injuries. Twenty patients with frontal lobe injury, 25 patients with occipital lobe injury, and 29 healthy controls (HC) were recruited for the study. Two subtypes of IM were investigated by using structurally parallel perceptual (picture identification task) and conceptual (category exemplar generation task) IM tests in the three groups, as well as explicit memory (EM) tests. The results indicated that the priming of conceptual IM and EM tasks in patients with frontal lobe injury was poorer than that observed in HC, while perceptual IM was identical between the two groups. By contrast, the priming of perceptual IM in patients with occipital lobe injury was poorer than that in HC, whereas the priming of conceptual IM and EM was similar to that in HC. This double dissociation between perceptual and conceptual IM across the brain areas implies that occipital lobes may participate in perceptual IM, while frontal lobes may be involved in processing conceptual memory.

  2. The Disruption of Geniculocalcarine Tract in Occipital Neoplasm: A Diffusion Tensor Imaging Study

    PubMed Central

    Zhang, Yan; Wan, Sihai; Wen, Ge

    2016-01-01

    Aim. Investigate the disruption of geniculocalcarine tract (GCT) in different occipital neoplasm by diffusion tensor imaging (DTI). Methods. Thirty-two subjects (44.1 ± 3.6 years) who had single occipital neoplasm (9 gliomas, 6 meningiomas, and 17 metastatic tumors) with ipsilateral GCT involved and thirty healthy subjects (39.2 ± 3.3 years) underwent conventional sequences scanning and diffusion tensor imaging by a 1.5T MR scanner. The diffusion-sensitive gradient direction is 13. Compare the fractional anisotropy (FA) and mean diffusivity (MD) values of healthy GCT with the corresponding values of GCT in peritumoral edema area. Perform diffusion tensor tractography (DTT) on GCT by the line propagation technique in all subjects. Results. The FA values of GCT in peritumoral edema area decreased (P = 0.001) while the MD values increased (P = 0.002) when compared with healthy subjects. There was no difference in the FA values across tumor types (P = 0.114) while the MD values of GCT in the metastatic tumor group were higher than the other groups (P = 0.001). GCTs were infiltrated in all the 9 gliomas cases, with displacement in 2 cases and disruption in 7 cases. GCTs were displaced in 6 meningiomas cases. GCTs were displaced in all the 7 metastatic cases, with disruption in 7 cases. Conclusions. DTI represents valid markers for evaluating GCT's disruption in occipital neoplasm. The disruption of GCT varies according to the properties of neoplasm.

  3. Biofidelic neck influences head kinematics of parietal and occipital impacts following short falls in infants

    PubMed Central

    Sullivan, Sarah; Coats, Brittany; Margulies, Susan S.

    2015-01-01

    Falls are a major cause of traumatic head injury in children. Understanding head kinematics during low height falls is essential for evaluating injury risk and designing mitigating strategies. Typically, these measurements are made with commercial anthropomorphic infant surrogates, but these surrogates are designed based on adult biomechanical data. In this study, we improve upon the state-of-the-art anthropomorphic testing devices by incorporating new infant cadaver neck bending and tensile data. We then measure head kinematics following head-first falls onto 4 impact surfaces from 3 fall heights with occipital and parietal head impact locations. The biofidelic skull compliance and neck properties of the improved infant surrogate significantly influenced the measured kinematic loads, decreasing the measured impact force and peak angular accelerations, lowering the expected injury risk. Occipital and parietal impacts exhibited distinct kinematic responses in primary head rotation direction and the magnitude of the rotational velocities and accelerations, with larger angular velocities as the head rebounded after occipital impacts. Further evaluations of injury risk due to short falls should take into account the impact surface and head impact location, in addition to the fall height. PMID:26072183

  4. A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals.

    PubMed

    Gougoux, Frédéric; Zatorre, Robert J; Lassonde, Maryse; Voss, Patrice; Lepore, Franco

    2005-02-01

    Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged), the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life. PMID:15678166

  5. Interhemispheric connections in the visual cortex of the squirrel monkey (Saimiri sciureus).

    PubMed

    Gould, H J; Weber, J T; Rieck, R W

    1987-02-01

    The callosal connections within the posterior parietal and occipital cortices were studied in the squirrel monkey with horseradish peroxidase tracing techniques. The data were evaluated with particular emphasis on the relationship of major callosal connections along the 17-18 border. The overall pattern of callosal connections in the squirrel monkey also was compared with callosal patterns in other New World simians. Our results show that the dense band of callosal connections along the 17-18 border in the squirrel monkey differs from the connections observed in other New World monkeys in that it is virtually confined to area 18 and avoids area 17. In addition to a continuous band of callosal connections in area 18 that parallels the 17-18 border, rostral extensions of the band are oriented perpendicular to the 17-18 border and present an obvious periodicity. The remaining parieto-occipital cortex contains a complex pattern of callosal connections that is strikingly similar to patterns reported for other New World monkeys. Thus, it is likely that the dorsolateral extrastriate visual cortex in the squirrel monkey is organized in a manner similar to that found within other New World monkeys.

  6. Visual cortex activation in bilingual blind individuals during use of native and second language.

    PubMed

    Ofan, Renana H; Zohary, Ehud

    2007-06-01

    Recent neuroimaging and transcranial magnetic stimulation studies indicate that the occipital cortex of congenitally blind humans is functionally relevant for nonvisual tasks. There are suggestions that the underlying cortical reorganization is restricted by a critical period. These results were based on comparison between early and late blind groups, thereby facing the problem of great variability among individuals within each group. Using functional magnetic resonance imaging, we studied bilingual congenitally blind individuals during use of 2 languages: one acquired early (Hebrew), the other later in life (English, at approximately 10 years). The subjects listened to chimeric words consisting of superimposed Hebrew and English nouns. They were instructed to either covertly generate a verb to the heard noun or repeat the noun, in either Hebrew or English. Lateralized activation during verb generation (vs. repeat) was found in classical language areas, in congruence with previous studies in sighted subjects. Critically, in our study, the blind participants typically also had robust left lateralized occipital differential activation during verb generation (vs. repeat), in both languages. This suggests that the critical period for plasticity persists beyond 10 years or that the visual cortex of the blind might be engaged in abstract levels of language processing, common to the 2 languages.

  7. Modified skin incision for avoiding the lesser occipital nerve and occipital artery during retrosigmoid craniotomy: potential applications for enhancing operative working distance and angles while minimizing the risk of postoperative neuralgias and intraoperative hemorrhage.

    PubMed

    Tubbs, R Shane; Fries, Fabian N; Kulwin, Charles; Mortazavi, Martin M; Loukas, Marios; Cohen-Gadol, Aaron A

    2016-10-01

    Chronic postoperative neuralgias and headache following retrosigmoid craniotomy can be uncomfortable for the patient. We aimed to better elucidate the regional nerve anatomy in an effort to minimize this postoperative complication. Ten adult cadaveric heads (20 sides) were dissected to observe the relationship between the lesser occipital nerve and a traditional linear versus modified U incision during retrosigmoid craniotomy. Additionally, the relationship between these incisions and the occipital artery were observed. The lesser occipital nerve was found to have two types of course. Type I nerves (60%) remained close to the posterior border of the sternocleidomastoid muscle and some crossed anteriorly over the sternocleidomastoid muscle near the mastoid process. Type II nerves (40%) left the posterior border of the sternocleidomastoid muscle and swung medially (up to 4.5cm posterior to the posterior border of the sternocleidomastoid muscle) as they ascended over the occiput. The lesser occipital nerve was near a midpoint of a line between the external occipital protuberance and mastoid process in all specimens with the type II nerve configuration. Based on our findings, the inverted U incision would be less likely to injure the type II nerves but would necessarily cross over type I nerves, especially more cranially on the nerve at the apex of the incision. As the more traditional linear incision would most likely transect the type I nerves and more so near their trunk, the U incision may be the overall better choice in avoiding neural and occipital artery injury during retrosigmoid approaches. PMID:27396377

  8. Juvenile myoclonic epilepsy and idiopathic photosensitive occipital lobe epilepsy: is there overlap?

    PubMed

    Taylor, Isabella; Marini, Carla; Johnson, Michael R; Turner, Samantha; Berkovic, Samuel F; Scheffer, Ingrid E

    2004-08-01

    Although epileptic photosensitivity is well known, its genetics and syndromic associations are incompletely understood. Seizures triggered by photic stimulation are usually a manifestation of the idiopathic generalized epilepsies, especially juvenile myoclonic epilepsy (JME), or of the occipital epilepsies. Idiopathic photosensitive occipital epilepsy (IPOE) is a focal epilepsy with colourful elementary visual auras, often with conscious tonic head and eye version; myoclonus is not a feature. All seizures are induced by photic stimuli. We describe four families with phenotypic overlap between JME and IPOE. Families were identified if two or more affected individuals had visual auras and electro-clinical features of an idiopathic epilepsy. Family members underwent detailed electro-clinical assessment. In addition, 40 unrelated JME probands were investigated systematically for unrecognized features of IPOE (visual aura and conscious head version). There were 12 affected individuals in four families; 11 were female. Clinical onset was at 8-21 years of age. Of 10 patients with visual auras, six had conscious head version and five also experienced myoclonic jerks; eight had non-photic induced tonic-clonic seizures (TCS). Of the remaining individuals, one had myoclonic jerks and occipital spikes; the other had TCS without visual aura or myoclonic jerks. Of 10 patients with EEG studies, eight had generalized spike and wave (GSW) and six had occipital spikes. All had photosensitivity with GSW and four had additional occipital spikes. Of the 40 JME probands, six had visual aura and/or conscious head version; five of these were photosensitive. There is overlap between the clusters of clinical features used to diagnose IPOE and JME. Half of the affected individuals in our families with visual aura had myoclonic jerks; the former is characteristic of IPOE and the latter of JME. Importantly, visual aura is not regarded as part of JME, nor myoclonus part of IPOE, but our data

  9. The neural representation of Arabic digits in visual cortex

    PubMed Central

    Peters, Lien; De Smedt, Bert; Op de Beeck, Hans P.

    2015-01-01

    In this study, we investigated how Arabic digits are represented in the visual cortex, and how their representation changes throughout the ventral visual processing stream, compared to the representation of letters. We probed these questions with two functional magnetic resonance imaging (fMRI) experiments. In Experiment 1, we explored whether we could find brain regions that were more activated for digits than for number words in a subtraction task. One such region was detected in lateral occipital cortex. However, the activity in this region might have been confounded by string length—number words contain more characters than digits. We therefore conducted a second experiment in which string length was systematically controlled. Experiment 2 revealed that the findings of the first experiment were task dependent (as it was only observed in a task in which numerosity was relevant) or stimulus dependent (as it was only observed when the number of characters of a stimulus was not controlled). We further explored the characteristics of the activation patterns for digit and letter strings across the ventral visual processing stream through multi-voxel pattern analyses. We found an alteration in representations throughout the ventral processing stream from clustering based on amount of visual information in primary visual cortex (V1) towards clustering based on symbolic stimulus category higher in the visual hierarchy. The present findings converge to the conclusion that in the ventral visual system, as far as can be detected with fMRI, the distinction between Arabic digits and letter strings is represented in terms of distributed patterns rather than separate regions. PMID:26441613

  10. Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques.

    PubMed

    Stepniewska, Iwona; Collins, Christine E; Kaas, Jon H

    2005-06-01

    We placed injections of 3-5 distinguishable tracers in different dorsolateral locations in the visual cortex of four macaque monkeys to help define the extent of the dorsolateral visual complex (DL) commonly known as area V4. Injections well within DL/V4 region labeled neurons in V2, V3, MT, IT, and sometimes V1. In contrast, injections in caudal area 7a dorsal to current descriptions of DL/V4 produced a different pattern of labeled neurons largely involving posterior parietal and adjoining occipital cortex, as well as cortex of the medial wall. Injections placed in the dorsal prelunate cortex (DP), near the expected location of the dorsal border of DL/V4, labeled neurons in a third pattern, including regions of the posterior parietal and occipital cortex, inferior temporal (IT) cortex, and sometimes parts of dorsal area V2, DL/V4 complex and MT. Injections placed near or ventral to previous estimates of the ventral border of the rostral divisions of DL (DLr) and near the expected rostroventral border of V4 with TEO labeled cells in a pattern distinctively different from either central DL/V4 injections or those dorsal to DL/V4. Injections placed rostroventral to DL/V4 labeled neurons over a large extent of the IT cortex, while failing to label neurons in V1, V2 and MT. Injections that partially involved the rostroventral border of DL/V4 produced a similar pattern of labeled neurons, but also labeled a few cells in ventral V1 and V2, as well as many in DL/V4. Dorsal and rostroventral injections also labeled different regions of the prefrontal cortex, but only DL/V4 injections that included area DP labeled neurons in the prefrontal cortex. The results revealed contrasting and transitional connection patterns for four regions of the dorsolateral visual cortex, and they provided evidence for the locations of dorsal and rostroventral borders of the DL/V4 complex. PMID:15459077

  11. Occipital gamma-oscillations modulated during eye movement tasks: simultaneous eye tracking and electrocorticography recording in epileptic patients.

    PubMed

    Nagasawa, Tetsuro; Matsuzaki, Naoyuki; Juhász, Csaba; Hanazawa, Akitoshi; Shah, Aashit; Mittal, Sandeep; Sood, Sandeep; Asano, Eishi

    2011-10-15

    We determined the spatio-temporal dynamics of cortical gamma-oscillations modulated during eye movement tasks, using simultaneous eye tracking and intracranial electrocorticography (ECoG) recording. Patients with focal epilepsy were instructed to follow a target moving intermittently and unpredictably from one place to another either in an instantaneous or smooth fashion during extraoperative ECoG recording. Target motion elicited augmentation of gamma-oscillations in the lateral, inferior and polar occipital regions in addition to portions of parietal and frontal regions; subsequent voluntary eye movements elicited gamma-augmentation in the medial occipital region. Such occipital gamma-augmentations could not be explained by contaminations of ocular or myogenic artifacts. The degree of gamma-augmentation was generally larger during saccade compared to pursuit trials, while a portion of the polar occipital region showed pursuit-preferential gamma-augmentations. In addition to the aforementioned eye movement task, patients were asked to read a single word popping up on the screen. Gamma-augmentation was elicited in widespread occipital regions following word presentation, while gamma-augmentation in the anterior portion of the medial occipital region was elicited by an involuntary saccade following word presentation rather than word presentation itself. Gamma-augmentation in the lateral, inferior and polar occipital regions can be explained by increased attention to a moving target, whereas gamma-augmentation in the anterior-medial occipital region may be elicited by images in the peripheral field realigned following saccades. In functional studies comparing brain activation between two tasks, eye movement patterns during tasks may need to be considered as confounding factors.

  12. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  13. Representational Similarity of Body Parts in Human Occipitotemporal Cortex.

    PubMed

    Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V

    2015-09-23

    Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex

  14. Representational Similarity of Body Parts in Human Occipitotemporal Cortex.

    PubMed

    Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V

    2015-09-23

    Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex

  15. Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103

    PubMed Central

    He, Baoyu; Li, Weiming; Wu, Yingfen; Wei, Fang; Gong, Zhaojian; Bo, Hao; Wang, Yumin; Li, Xiayu; Xiang, Bo; Guo, Can; Liao, Qianjin; Chen, Pan; Zu, Xuyu; Zhou, Ming; Ma, Jian; Li, Xiaoling; Li, Yong; Li, Guiyuan; Xiong, Wei; Zeng, Zhaoyang

    2016-01-01

    Epstein-Barr virus (EBV) infection is causatively related to a variety of human cancers, including nasopharyngeal carcinoma (NPC) and gastric cancer (GC). EBV encodes 44 mature miRNAs, a number of which have been proven to promote carcinogenesis by targeting host genes or self-viral genes. However, in this study, we found that an EBV-encoded microRNA, termed EBV-miR-BART6-3p, inhibited EBV-associated cancer cell migration and invasion including NPC and GC by reversing the epithelial–mesenchymal transition (EMT) process. Using microarray analysis, we identified and validated that a novel long non-coding RNA (lncRNA) LOC553103 was downregulated by EBV-miR-BART6-3p, and LOC553103 knockdown by specific siRNAs phenocopied the effect of EBV-miR-BART6-3p, while LOC553103 overexpression promoted cancer cell migration and invasion to facilitate EMT. In conclusion, we determined that EBV-miR-BART6-3p, a microRNA encoded by oncogenic EBV, inhibited EBV-associated cancer cell migration and invasion by targeting and downregulating a novel lncRNA LOC553103. Thus, our study presents an unreported mechanism underlying EBV infection in EBV-associated cancer carcinogenesis, and provides a potential novel diagnosis and treatment biomarker for NPC and other EBV-related cancers. PMID:27584792

  16. Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103.

    PubMed

    He, Baoyu; Li, Weiming; Wu, Yingfen; Wei, Fang; Gong, Zhaojian; Bo, Hao; Wang, Yumin; Li, Xiayu; Xiang, Bo; Guo, Can; Liao, Qianjin; Chen, Pan; Zu, Xuyu; Zhou, Ming; Ma, Jian; Li, Xiaoling; Li, Yong; Li, Guiyuan; Xiong, Wei; Zeng, Zhaoyang

    2016-01-01

    Epstein-Barr virus (EBV) infection is causatively related to a variety of human cancers, including nasopharyngeal carcinoma (NPC) and gastric cancer (GC). EBV encodes 44 mature miRNAs, a number of which have been proven to promote carcinogenesis by targeting host genes or self-viral genes. However, in this study, we found that an EBV-encoded microRNA, termed EBV-miR-BART6-3p, inhibited EBV-associated cancer cell migration and invasion including NPC and GC by reversing the epithelial-mesenchymal transition (EMT) process. Using microarray analysis, we identified and validated that a novel long non-coding RNA (lncRNA) LOC553103 was downregulated by EBV-miR-BART6-3p, and LOC553103 knockdown by specific siRNAs phenocopied the effect of EBV-miR-BART6-3p, while LOC553103 overexpression promoted cancer cell migration and invasion to facilitate EMT. In conclusion, we determined that EBV-miR-BART6-3p, a microRNA encoded by oncogenic EBV, inhibited EBV-associated cancer cell migration and invasion by targeting and downregulating a novel lncRNA LOC553103. Thus, our study presents an unreported mechanism underlying EBV infection in EBV-associated cancer carcinogenesis, and provides a potential novel diagnosis and treatment biomarker for NPC and other EBV-related cancers. PMID:27584792

  17. Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaillon, Franck; Li, Jun; Dietsche, Gregor; Elbert, Thomas; Gisler, Thomas

    2007-05-01

    Activity of the human visual cortex, elicited by steady-state flickering at 8Hz, is non-invasively probed by multi-speckle diffusingwave spectroscopy (DWS). Parallel detection of the intensity fluctuations of statistically equivalent, but independent speckles allows to resolve stimulation-induced changes in the field autocorrelation of multiply scattered light of less than 2%. In a group of 9 healthy subjects we find a faster decay of the field autocorrelation function during the stimulation periods for data measured with a long-distance probe (30mm source-receiver distance) at 2 positions over the occipital cortex (t-test: t(8) = -2.672, p = 0.028 < 0.05 for position 1, t(8) = -2.874, p = 0.021 < 0.05 for position 2). In contrast, no statistically significant change is seen when a short-distance probe (16mm source-receiver distance) is used (t-test: t(8) = -2.043, p = 0.075 > 0.05 for position 1, t(8) = -2.146, p = 0.064 > 0.05 for position 2). The enhanced dynamics observed with DWS is positively correlated with the functional increase of blood volume in the visual cortex, while the heartbeat rate is not affected by stimulation. Our results indicate that the DWS signal from the visual cortex is governed by the regional cerebral blood flow velocity.

  18. The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae): MRI, cytoarchitecture, and neuronal morphology.

    PubMed

    Butti, Camilla; Ewan Fordyce, R; Ann Raghanti, Mary; Gu, Xiaosi; Bonar, Christopher J; Wicinski, Bridget A; Wong, Edmund W; Roman, Jessica; Brake, Alanna; Eaves, Emily; Spocter, Muhammad A; Tang, Cheuk Y; Jacobs, Bob; Sherwood, Chet C; Hof, Patrick R

    2014-04-01

    The structure of the hippopotamus brain is virtually unknown because few studies have examined more than its external morphology. In view of their semiaquatic lifestyle and phylogenetic relatedness to cetaceans, the brain of hippopotamuses represents a unique opportunity for better understanding the selective pressures that have shaped the organization of the brain during the evolutionary process of adaptation to an aquatic environment. Here we examined the histology of the cerebral cortex of the pygmy hippopotamus (Hexaprotodon liberiensis) by means of Nissl, Golgi, and calretinin (CR) immunostaining, and provide a magnetic resonance imaging (MRI) structural and volumetric dataset of the anatomy of its brain. We calculated the corpus callosum area/brain mass ratio (CCA/BM), the gyrencephalic index (GI), the cerebellar quotient (CQ), and the cerebellar index (CI). Results indicate that the cortex of H. liberiensis shares one feature exclusively with cetaceans (the lack of layer IV across the entire cerebral cortex), other features exclusively with artiodactyls (e.g., the morphologiy of CR-immunoreactive multipolar neurons in deep cortical layers, gyrencephalic index values, hippocampus and cerebellum volumetrics), and others with at least some species of cetartiodactyls (e.g., the presence of a thick layer I, the pattern of distribution of CR-immunoreactive neurons, the presence of von Economo neurons, clustering of layer II in the occipital cortex). The present study thus provides a comprehensive dataset of the neuroanatomy of H. liberiensis that sets the ground for future comparative studies including the larger Hippopotamus amphibius.

  19. The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae): MRI, cytoarchitecture, and neuronal morphology.

    PubMed

    Butti, Camilla; Ewan Fordyce, R; Ann Raghanti, Mary; Gu, Xiaosi; Bonar, Christopher J; Wicinski, Bridget A; Wong, Edmund W; Roman, Jessica; Brake, Alanna; Eaves, Emily; Spocter, Muhammad A; Tang, Cheuk Y; Jacobs, Bob; Sherwood, Chet C; Hof, Patrick R

    2014-04-01

    The structure of the hippopotamus brain is virtually unknown because few studies have examined more than its external morphology. In view of their semiaquatic lifestyle and phylogenetic relatedness to cetaceans, the brain of hippopotamuses represents a unique opportunity for better understanding the selective pressures that have shaped the organization of the brain during the evolutionary process of adaptation to an aquatic environment. Here we examined the histology of the cerebral cortex of the pygmy hippopotamus (Hexaprotodon liberiensis) by means of Nissl, Golgi, and calretinin (CR) immunostaining, and provide a magnetic resonance imaging (MRI) structural and volumetric dataset of the anatomy of its brain. We calculated the corpus callosum area/brain mass ratio (CCA/BM), the gyrencephalic index (GI), the cerebellar quotient (CQ), and the cerebellar index (CI). Results indicate that the cortex of H. liberiensis shares one feature exclusively with cetaceans (the lack of layer IV across the entire cerebral cortex), other features exclusively with artiodactyls (e.g., the morphologiy of CR-immunoreactive multipolar neurons in deep cortical layers, gyrencephalic index values, hippocampus and cerebellum volumetrics), and others with at least some species of cetartiodactyls (e.g., the presence of a thick layer I, the pattern of distribution of CR-immunoreactive neurons, the presence of von Economo neurons, clustering of layer II in the occipital cortex). The present study thus provides a comprehensive dataset of the neuroanatomy of H. liberiensis that sets the ground for future comparative studies including the larger Hippopotamus amphibius. PMID:24474726

  20. Phosphene Perception Relates to Visual Cortex Glutamate Levels and Covaries with Atypical Visuospatial Awareness

    PubMed Central

    Terhune, Devin B.; Murray, Elizabeth; Near, Jamie; Stagg, Charlotte J.; Cowey, Alan; Cohen Kadosh, Roi

    2015-01-01

    Phosphenes are illusory visual percepts produced by the application of transcranial magnetic stimulation to occipital cortex. Phosphene thresholds, the minimum stimulation intensity required to reliably produce phosphenes, are widely used as an index of cortical excitability. However, the neural basis of phosphene thresholds and their relationship to individual differences in visual cognition are poorly understood. Here, we investigated the neurochemical basis of phosphene perception by measuring basal GABA and glutamate levels in primary visual cortex using magnetic resonance spectroscopy. We further examined whether phosphene thresholds would relate to the visuospatial phenomenology of grapheme-color synesthesia, a condition characterized by atypical binding and involuntary color photisms. Phosphene thresholds negatively correlated with glutamate concentrations in visual cortex, with lower thresholds associated with elevated glutamate. This relationship was robust, present in both controls and synesthetes, and exhibited neurochemical, topographic, and threshold specificity. Projector synesthetes, who experience color photisms as spatially colocalized with inducing graphemes, displayed lower phosphene thresholds than associator synesthetes, who experience photisms as internal images, with both exhibiting lower thresholds than controls. These results suggest that phosphene perception is driven by interindividual variation in glutamatergic activity in primary visual cortex and relates to cortical processes underlying individual differences in visuospatial awareness. PMID:25725043

  1. Mechanisms of migraine aura revealed by functional MRI in human visual cortex

    PubMed Central

    Hadjikhani, Nouchine; Sanchez del Rio, Margarita; Wu, Ona; Schwartz, Denis; Bakker, Dick; Fischl, Bruce; Kwong, Kenneth K.; Cutrer, F. Michael; Rosen, Bruce R.; Tootell, Roger B. H.; Sorensen, A. Gregory; Moskowitz, Michael A.

    2001-01-01

    Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex. PMID:11287655

  2. Phosphene Perception Relates to Visual Cortex Glutamate Levels and Covaries with Atypical Visuospatial Awareness.

    PubMed

    Terhune, Devin B; Murray, Elizabeth; Near, Jamie; Stagg, Charlotte J; Cowey, Alan; Cohen Kadosh, Roi

    2015-11-01

    Phosphenes are illusory visual percepts produced by the application of transcranial magnetic stimulation to occipital cortex. Phosphene thresholds, the minimum stimulation intensity required to reliably produce phosphenes, are widely used as an index of cortical excitability. However, the neural basis of phosphene thresholds and their relationship to individual differences in visual cognition are poorly understood. Here, we investigated the neurochemical basis of phosphene perception by measuring basal GABA and glutamate levels in primary visual cortex using magnetic resonance spectroscopy. We further examined whether phosphene thresholds would relate to the visuospatial phenomenology of grapheme-color synesthesia, a condition characterized by atypical binding and involuntary color photisms. Phosphene thresholds negatively correlated with glutamate concentrations in visual cortex, with lower thresholds associated with elevated glutamate. This relationship was robust, present in both controls and synesthetes, and exhibited neurochemical, topographic, and threshold specificity. Projector synesthetes, who experience color photisms as spatially colocalized with inducing graphemes, displayed lower phosphene thresholds than associator synesthetes, who experience photisms as internal images, with both exhibiting lower thresholds than controls. These results suggest that phosphene perception is driven by interindividual variation in glutamatergic activity in primary visual cortex and relates to cortical processes underlying individual differences in visuospatial awareness. PMID:25725043

  3. Experience-Related Structural Changes of Degenerated Occipital White Matter in Late-Blind Humans – A Diffusion Tensor Imaging Study

    PubMed Central

    Dietrich, Susanne; Hertrich, Ingo; Kumar, Vinod; Ackermann, Hermann

    2015-01-01

    Late-blind humans can learn to understand speech at ultra-fast syllable rates (ca. 20 syllables/s), a capability associated with hemodynamic activation of the central-visual system. Thus, the observed functional cross-modal recruitment of occipital cortex might facilitate ultra-fast speech processing in these individuals. To further elucidate the structural prerequisites of this skill, diffusion tensor imaging (DTI) was conducted in late-blind subjects differing in their capability of understanding ultra-fast speech. Fractional anisotropy (FA) was determined as a quantitative measure of the directionality of water diffusion, indicating fiber tract characteristics that might be influenced by blindness as well as the acquired perceptual skills. Analysis of the diffusion images revealed reduced FA in late-blind individuals relative to sighted controls at the level of the optic radiations at either side and the right-hemisphere dorsal thalamus (pulvinar). Moreover, late-blind subjects showed significant positive correlations between FA and the capacity of ultra-fast speech comprehension within right-hemisphere optic radiation and thalamus. Thus, experience-related structural alterations occurred in late-blind individuals within visual pathways that, presumably, are linked to higher order frontal language areas. PMID:25830371

  4. Entorhinal cortex and consolidated memory.

    PubMed

    Takehara-Nishiuchi, Kaori

    2014-07-01

    The entorhinal cortex is thought to support rapid encoding of new associations by serving as an interface between the hippocampus and neocortical regions. Although the entorhinal-hippocampal interaction is undoubtedly essential for initial memory acquisition, the entorhinal cortex contributes to memory retrieval even after the hippocampus is no longer necessary. This suggests that during memory consolidation additional synaptic reinforcement may take place within the cortical network, which may change the connectivity of entorhinal cortex with cortical regions other than the hippocampus. Here, I outline behavioral and physiological findings which collectively suggest that memory consolidation involves the gradual strengthening of connection between the entorhinal cortex and the medial prefrontal/anterior cingulate cortex (mPFC/ACC), a region that may permanently store the learned association. This newly formed connection allows for close interaction between the entorhinal cortex and the mPFC/ACC, through which the mPFC/ACC gains access to neocortical regions that store the content of memory. Thus, the entorhinal cortex may serve as a gatekeeper of cortical memory network by selectively interacting either with the hippocampus or mPFC/ACC depending on the age of memory. This model provides a new framework for a modification of cortical memory network during systems consolidation, thereby adding a fresh dimension to future studies on its biological mechanism.

  5. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    PubMed

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain.

  6. Failure of ossification of the occipital bone in mandibuloacral dysplasia type B.

    PubMed

    Haye, Damien; Dridi, Hend; Levy, Jonathan; Lambert, Véronique; Lambert, Maurice; Agha, Mohamed; Adjimi, Frédéric; Kohlhase, Jürgen; Lipsker, Dan; Verloes, Alain

    2016-10-01

    Mandibuloacral dysplasia with type B lipodystrophy is a rare autosomal recessive disease characterized by atrophic skin, lipodystrophy, and skeletal features. It is caused by mutations in ZMPSTE24, a gene encoding a zinc metalloproteinase involved in the post-translational modification of lamin. Nine distinct pathogenic variants have been identified in 11 patients from nine unrelated families with this disorder. We report a 12-year-old boy with mandibuloacral dysplasia with type B lipodystrophy and a novel homozygous c.1196A>G; p.(Tyr399Cys) mutation in ZMPSTE24. The patient had typical dermatological and skeletal features of mandibuloacral dysplasia with type B lipodystrophy, sparse hair, short stature, mild microcephaly, facial dysmorphism, and a striking failure of ossification of the interparietal region of the occipital bone, up to the position where transverse occipital suture can be observed. Newly recognized signs for mandibuloacral dysplasia with type B lipodystrophy were gaze palsy and ptosis. Delayed closure of cranial sutures and Wormian bones have been described in three patients, but an ossification failure strictly limited to the occipital bone, as seen in the present patient, appears to be unique for mandibuloacral dysplasia with type B lipodystrophy. This observation illustrates that ZMPSTE24 could play a specific role in membranous ossification in the interparietal part of the squama (Inca bone) but not in the intracartilaginous ossification of the supraoccipital. This failure of ossification in the squama appears to be a useful feature for the radiological diagnosis of mandibuloacral dysplasia with type B lipodystrophy. © 2016 Wiley Periodicals, Inc. PMID:27410998

  7. Abnormal activation of the occipital lobes during emotion picture processing in major depressive disorder patients.

    PubMed

    Li, Jianying; Xu, Cheng; Cao, Xiaohua; Gao, Qiang; Wang, Yan; Wang, Yanfang; Peng, Juyi; Zhang, Kerang

    2013-06-25

    A large number of studies have demonstrated that depression patients have cognitive dysfunction. With recently developed brain functional imaging, studies have focused on changes in brain function to investigate cognitive changes. However, there is still controversy regarding abnormalities in brain functions or correlation between cognitive impairment and brain function changes. Thus, it is important to design an emotion-related task for research into brain function changes. We selected positive, neutral, and negative pictures from the International Affective Picture System. Patients with major depressive disorder were asked to judge emotion pictures. In addition, functional MRI was performed to synchronously record behavior data and imaging data. Results showed that the total correct rate for recognizing pictures was lower in patients compared with normal controls. Moreover, the consistency for recognizing pictures for depressed patients was worse than normal controls, and they frequently recognized positive pictures as negative pictures. The consistency for recognizing pictures was negatively correlated with the Hamilton Depression Rating Scale. Functional MRI suggested that the activation of some areas in the frontal lobe, temporal lobe, parietal lobe, limbic lobe, and cerebellum was enhanced, but that the activation of some areas in the frontal lobe, parietal lobe and occipital lobe was weakened while the patients were watching positive and neutral pictures compared with normal controls. The activation of some areas in the frontal lobe, temporal lobe, parietal lobe, and limbic lobe was enhanced, but the activation of some areas in the occipital lobe were weakened while the patients were watching the negative pictures compared with normal controls. These findings indicate that patients with major depressive disorder have negative cognitive disorder and extensive brain dysfunction. Thus, reduced activation of the occipital lobe may be an initiating factor for

  8. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    PubMed

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain. PMID:26072125

  9. Where are inion and endinion? Variations of the exo- and endocranial morphology of the occipital bone during hominin evolution.

    PubMed

    Balzeau, Antoine; Grimaud-Hervé, Dominique; Gilissen, Emmanuel

    2011-10-01

    The occipital bone is frequently investigated in paleoanthropological studies because it has several features that help to differentiate various fossil hominin species. Among these features is the separation between inion and endinion, which has been proposed to be an autapomorphic trait in (Asian) Homo erectus. Methodologies are developed here to quantify for the first time the location of these anatomical points, and to interpret their variation due to the complex interactions between exocranial and endocranial size and shape of the occipital and nuchal planes, as well as the occipital lobes and cerebellum. On the basis of our analysis, neither 'the separation between inion and endinion' nor 'endinion below inion' can be considered as an autapomorphic trait in H. erectus, since this feature is a condition shared by extant African great apes and fossil hominins. Moreover, our results show that the exo- and endocranial anatomy of the occipital bone differs between hominins (except Paranthropus boisei specimens and KNM-ER 1805) and great apes. For example, chimpanzees and bonobos are characterized by a very high position of inion and their occipital bone shows an antero-posterior compression. However, these features are partly correlated with their small size when compared with hominins. Asian H. erectus specimens have a thick occipital torus, but do not differ from other robust specimens, neither in this feature nor in the analysed exo- and endocranial proportions of the occipital bone. Finally, the apparent brain size reduction during the Late Pleistocene and variation between the sexes in anatomically modern humans (AMH) reflect that specimens with smaller brains have a relatively larger posterior height of the cerebellum. However, this trend is not the sole explanation for the 'vertical shift' of endinion above inion that appears occasionally and exclusively in AMH. PMID:21855115

  10. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks. PMID:26230367

  11. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study.

    PubMed

    Pinsk, Mark A; Arcaro, Michael; Weiner, Kevin S; Kalkus, Jan F; Inati, Souheil J; Gross, Charles G; Kastner, Sabine

    2009-05-01

    Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part-selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part-selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between

  12. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  13. Maps of the Auditory Cortex.

    PubMed

    Brewer, Alyssa A; Barton, Brian

    2016-07-01

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration. PMID:27145914

  14. Age estimation of immature human skeletal remains using the post-natal development of the occipital bone.

    PubMed

    Cardoso, H F V; Gomes, J; Campanacho, V; Marinho, L

    2013-09-01

    Whenever age cannot be estimated from dental formation in immature human skeletal remains, other methods are required. In the post-natal period, development of the skeleton provides alternative age indicators, namely, those associated with skeletal maturity of the cranium. This study wishes to document the age at which the various ossification centres in the occipital bone fuse and provide readily available developmental probabilistic information for use in age estimation. A sample of 64 identified immature skeletons between birth and 8 years of age from the Lisbon collection was used (females = 29, males = 35). Results show that fusion occurs first in the posterior intra-occipital synchondrosis and between the jugular and condylar limbs of the lateral occipital to form the hypoglossal canal (1-4 years), followed by the anterior intra-occipital (3-7 years). Fusion of the post-natal occipital does not show differences in timing between males and females. Relative to other published sources, this study documents first and last ages of fusion of several ossification centres and the posterior probabilities of age given a certain stage of fusion. Given the least amount of overlap in stages of fusion, the closure of the hypoglossal canal provides the narrowest estimated age with the highest probability of age.

  15. MRI volumetry of prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was cortex boundaries on 3D images was critical to obtaining accurate measurements. MR prefrontal cortex volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  16. The Gravettian occipital bone from the site of Malladetes (Barx, Valencia, Spain).

    PubMed

    Arsuaga, Juan Luis; Villaverde, Valentín; Quam, Rolf; Gracia, Ana; Lorenzo, Carlos; Martínez, Ignacio; Carretero, José-Miguel

    2002-09-01

    The juvenile occipital bone from the site of Malladetes in Valencia (Spain) is described and compared with other European Pleistocene representatives of the genus Homo. This specimen derives from a Gravettian cultural context and has been AMS radiocarbon-dated to 25,120 +/- 240 years BP. As such, it provides evidence on early modern human anatomy from the Central Mediterranean region of the Iberian peninsula. The clear evidence for a late survival of Neandertals in southern Iberia, has led to considerable debate surrounding the biological and cultural interactions between these Pleistocene humans and their early modern human successors, and it is within this context that the Malladetes specimen represents an important contribution to the discussion. The recently discovered Upper Paleolithic infant from the site of Lagar Velho in Portugal is said to show a mosaic of Neandertal and early modern human characteristics throughout the skeleton and is argued to represent the strongest evidence yet recovered in favor of hybridization between these two Pleistocene populations. Our analysis of the Malladetes occipital, however, reveals no evidence of Neandertal genetic influence. PMID:12234549

  17. Distinctive Menkes disease variant with occipital horns: Delineation of natural history and clinical phenotype

    SciTech Connect

    Proud, V.K.; Mussell, H.G.; Percy, A.K.

    1996-10-02

    To delineate further the clinical spectrum of Menkes disease, an X-linked recessive disorder of copper transport, we studied 4 related males, ranging in age from 4-38 years, with a unique phenotype that combines manifestations of classical and mild Menkes disease and occipital horn syndrome (OHS). The propositus, an 18-year-old man, was evaluated following an intracerebral hemorrhage at age 15 years and was noted to have marked hypotonia, motor delay with mental retardation, bladder diverticula, failure to thrive, and diarrhea from infancy; seizures from age 3 years; and abnormal hair (pili torti) and face, cutis laxa, and multiple joint dislocations. Radiographic abnormalities included occipital exostoses, tortuous cerebral blood vessels with multiple branch occlusions, and hammer-shaped clavicles. Biochemical studies demonstrated reduced copper and ceruloplasmin levels in serum, and abnormal plasma catecholamine ratios. We reported previously the molecular defect in this family, a splice-site mutation that predicts formation of approximately 20% of the normal Menkes gene product. Here, we detail the clinical course and physical features and radiographic findings in these 4 individuals, and compare their phenotype with classical and mild Menkes and OHS. Unusual Menkes disease variants such as this may escape recognition due to anomalies that appear inconsistent with the diagnosis, particularly prolonged survival and later onset of seizures. Males with mental retardation and connective tissue abnormalities should be evaluated for biochemical evidence of defective copper transport. 28 refs., 8 figs.

  18. Impaired delayed but preserved immediate grasping in a neglect patient with parieto-occipital lesions.

    PubMed

    Rossit, Stéphanie; Fraser, J Alexander; Teasell, Robert; Malhotra, Paresh A; Goodale, Melvyn A

    2011-07-01

    Patients with optic ataxia, a deficit in visually guided action, paradoxically improve when pantomiming an action towards memorized stimuli. Visual form agnosic patient D.F. shows the exact opposite pattern of results: although being able to grasp objects in real-time she loses grip scaling when grasping an object from memory. Here we explored the dissociation between immediate and delayed grasping in a patient (F.S.) who after a parietal-occipital stroke presented with severe left visual neglect, a loss of awareness of the contralesional side of space. Although F.S. had preserved grip scaling even in his neglected field, he was markedly impaired when asked to pretend to grasp a leftward object from memory. Critically, his deficit cannot be simply explained by the absence of continuous on-line visual feedback, as F.S. was also able to grasp leftward objects in real-time when vision was removed. We suggest that regions surrounding the parietal-occipital sulcus, typically damaged in patients with optic ataxia but spared in F.S., seem to be essential for real-time actions. On the other hand, our data indicates that regions in the ventral visual stream, damaged in D.F but intact in F.S., would appear to be necessary but not sufficient for memory-guided action. PMID:21569783

  19. Imaging of Atlanto-Occipital and Atlantoaxial Traumatic Injuries: What the Radiologist Needs to Know.

    PubMed

    Riascos, Roy; Bonfante, Eliana; Cotes, Claudia; Guirguis, Mary; Hakimelahi, Reza; West, Clark

    2015-01-01

    Approximately one-third of all cervical spine injuries involve the craniocervical junction (CCJ). Composed of the occiput and the first two cervical vertebrae, this important anatomic landmark, in conjunction with an intricate ligamentous complex, is essential to maintaining the stability of the cervical spine. The atlantoaxial joint is the most mobile portion of the spine, predominantly relying on the ligamentous framework for stability at that level. As acute onsite management of trauma patients continues to improve, CCJ injuries, which often lead to death onsite where the injury occurred, are increasingly being encountered in the emergency department. Understanding the anatomy of the CCJ is crucial in properly evaluating the cervical spine, allowing the radiologist to assess its stability in the trauma setting. The imaging findings of important CCJ injuries, such as atlanto-occipital dissociation, occipital condyle fractures, atlas fractures with transverse ligament rupture, atlantoaxial distraction, and traumatic rotatory subluxation, are important to recognize in the acute setting, often dictating patient management. Thin-section multidetector computed tomography with sagittal and coronal reformats is the study of choice in evaluating the extent of injury, allowing the radiologist to thoroughly evaluate the stability of the cervical spine. Furthermore, magnetic resonance (MR) imaging is increasingly being used to evaluate the spinal soft tissues and ligaments, and to identify associated spinal cord injury, if present. MR imaging is also indicated in patients whose neurologic status cannot be evaluated within 48 hours of injury. . PMID:26562241

  20. A Patient with Giant Rippled-Pattern Sebaceoma in the Occipital Region

    PubMed Central

    Takahashi, Masayuki; Arima, Masaru; Iwata, Yohei; Suzuki, Kayoko; Mizoguchi, Yoshikazu; Kuroda, Makoto; Matsunaga, Kayoko

    2016-01-01

    A 72-year-old male visited a nearby hospital with a large tumor in his occipital region, which had existed since 20 years. Since malignant tumor was suspected, he was referred to our department. At the initial consultation, an elastic-hard, yellow-brown, sessile tumor, measuring 8 × 7 × 5 cm and with a flat surface, was observed in the occipital region. The tumor was resected and covered with artificial dermis. Histopathologically, the lesion was composed of basal-cell-like cells with nest formation in the dermis. A rippled pattern, or the single-line arrangement of tumor cells involving the stroma, was present. In addition, some tumor clusters revealed the differentiation to sebaceous glands, and these cells were positive for cytokeratin (AE1/AE3) and epithelial membrane antigen, which is consistent with the staining of sebaceous glands. On the contrary, tumor cells were negative for epithelial antigen (Ber-EP4), and Ki67 (MIB1) index was 5% or lower. Therefore, we diagnosed the tumor as rippled-pattern sebaceoma and not as basal cell carcinoma. Although this case was quite unique in its large size, immunostaining was useful for the definite diagnosis. PMID:27462217

  1. A Patient with Giant Rippled-Pattern Sebaceoma in the Occipital Region.

    PubMed

    Takahashi, Masayuki; Arima, Masaru; Iwata, Yohei; Suzuki, Kayoko; Mizoguchi, Yoshikazu; Kuroda, Makoto; Matsunaga, Kayoko

    2016-01-01

    A 72-year-old male visited a nearby hospital with a large tumor in his occipital region, which had existed since 20 years. Since malignant tumor was suspected, he was referred to our department. At the initial consultation, an elastic-hard, yellow-brown, sessile tumor, measuring 8 × 7 × 5 cm and with a flat surface, was observed in the occipital region. The tumor was resected and covered with artificial dermis. Histopathologically, the lesion was composed of basal-cell-like cells with nest formation in the dermis. A rippled pattern, or the single-line arrangement of tumor cells involving the stroma, was present. In addition, some tumor clusters revealed the differentiation to sebaceous glands, and these cells were positive for cytokeratin (AE1/AE3) and epithelial membrane antigen, which is consistent with the staining of sebaceous glands. On the contrary, tumor cells were negative for epithelial antigen (Ber-EP4), and Ki67 (MIB1) index was 5% or lower. Therefore, we diagnosed the tumor as rippled-pattern sebaceoma and not as basal cell carcinoma. Although this case was quite unique in its large size, immunostaining was useful for the definite diagnosis. PMID:27462217

  2. Connection of the Posterior Occipital Muscle and Dura Mater of the Siamese Crocodile.

    PubMed

    Zhang, Jing-Hui; Tang, Wei; Zhang, Zhao-Xi; Luan, Bing-Yi; Yu, Sheng-Bo; Sui, Hong-Jin

    2016-10-01

    The myodural bridge was proposed initially in 1995. The myodural bridge is a connective tissue bridge that connects a pair of deep muscles at the suboccipital region to the dura mater. There have been numerous studies concerning the morphology and function of the myodural bridge. To determine whether a myodural bridge exists in reptiles, six Siamese crocodiles were investigated using gross anatomy dissection and P45 sheet plastination technologies. As a result, we demonstrated that the posterior occipital muscles of the Siamese crocodile are directly or indirectly connected to the proatlas, atlas, and intermembrane between them. Multiple trabeculae existing in the posterior epidural space extended from the ventral surface of the proatlas, atlas, and intermembrane between them to the dorsal surface of the spinal dura mater. This study showed that the posterior occipital muscle in the suboccipital region of the Siamese crocodile is connected to the spinal dura mater through the proatlas, atlas, and the trabeculae. In conclusion, a myodural bridge-like structure exists in reptiles. This connection may act as a pump to provide cerebrospinal fluid (CSF) circulation at the occipitocervical junction. We hypothesize that a physiologic role of the Siamese crocodile's myodural bridge may be analogous to the human myodural bridge. Anat Rec, 299:1402-1408, 2016. © 2016 Wiley Periodicals, Inc. PMID:27507762

  3. [Chronic subdural hematoma (CSH) complicated by bilateral occipital lobe infarction: two case reports].

    PubMed

    Kudo, Kanae; Naraoka, Masato; Shimamura, Norihito; Ohkuma, Hiroki

    2013-04-01

    Chronic subdural hematoma (CSH) is a common disease that is treated with burr hole drainage by neurosurgeons. The outcome of CSH is mostly favorable. We treated 2 cases with bilateral occipital lobe infarction due to CSH. A 57-year-old woman was ambulatory when she visited a clinic for evaluation of headache. One hour after the CT was taken, she developed acute impairment of consciousness, so that she was referred to our hospital. The second patient was a 73-year-old woman with a history of depression who was involved in a traffic accident 5 weeks before admission to our hospital. She was at first admitted to a psychiatric hospital for evaluation of gait disturbance. Three weeks after she was admitted to the psychiatric hospital, she fell into a coma. She was referred to our hospital. Their brain CT on admission revealed compressed ambient and interpeduncular cistern and bilateral CSH. Although burr hole drainage surgery was performed, the 2 patients developed severe sequelae due to occipital lobe infarction caused by central transtentorial herniation.

  4. Improvement of Glucose Metabolism in the Visual Cortex Accompanies Visual Field Recovery in a Patient with Hemianopia.

    PubMed

    Suzuki, Yukihisa; Kiyosawa, Motohiro; Oda, Keiichi; Ishiwata, Kiich; Ishii, Kenji

    2016-01-01

    Damage to the visual cortex or the geniculostriatal pathways could cause homonymous visual field (VF) defects at the contralateral side of the lesion. In clinical practice, it is known that the VF defects are gradually recovered over months on the cases. We report a case with recovered homonymous hemianopia following an infarction in the visual cortex by positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) and (11)C-flumazenil (FMZ). A 58-year-old man experienced defect of left VF, and magnetic resonance imaging (MRI) revealed a localized infarction in the right occipital lobe. Goldmann VF perimetry revealed left homonymous hemianopia, but central VF was intact. Three months after the onset of infarction, we measured cerebral glucose metabolism with FDG and FMZ binding using PET. FMZ binding reflects the density of surviving neurons. Moreover, eight months after the onset, FDG-PET scan was performed. Goldmann VF perimetry was also performed at the same times of PET examinations. Decrease of cerebral glucose metabolism in the right anterior striate cortex was observed at three months after onset, while FMZ binding in the same area did not decrease in the patient. At eight months after onset, we observed recovery of VF and improvement of cerebral glucose metabolism in the anterior striate cortex. We presented change of cerebral glucose metabolism using PET accompanying improvement of VF. Evaluation of cerebral glucose metabolism and FMZ binding in the striate cortex is useful for estimating the prognosis of hemianopia caused by organic brain damage. PMID:27039943

  5. Improvement of Glucose Metabolism in the Visual Cortex Accompanies Visual Field Recovery in a Patient with Hemianopia.

    PubMed

    Suzuki, Yukihisa; Kiyosawa, Motohiro; Oda, Keiichi; Ishiwata, Kiich; Ishii, Kenji

    2016-01-01

    Damage to the visual cortex or the geniculostriatal pathways could cause homonymous visual field (VF) defects at the contralateral side of the lesion. In clinical practice, it is known that the VF defects are gradually recovered over months on the cases. We report a case with recovered homonymous hemianopia following an infarction in the visual cortex by positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) and (11)C-flumazenil (FMZ). A 58-year-old man experienced defect of left VF, and magnetic resonance imaging (MRI) revealed a localized infarction in the right occipital lobe. Goldmann VF perimetry revealed left homonymous hemianopia, but central VF was intact. Three months after the onset of infarction, we measured cerebral glucose metabolism with FDG and FMZ binding using PET. FMZ binding reflects the density of surviving neurons. Moreover, eight months after the onset, FDG-PET scan was performed. Goldmann VF perimetry was also performed at the same times of PET examinations. Decrease of cerebral glucose metabolism in the right anterior striate cortex was observed at three months after onset, while FMZ binding in the same area did not decrease in the patient. At eight months after onset, we observed recovery of VF and improvement of cerebral glucose metabolism in the anterior striate cortex. We presented change of cerebral glucose metabolism using PET accompanying improvement of VF. Evaluation of cerebral glucose metabolism and FMZ binding in the striate cortex is useful for estimating the prognosis of hemianopia caused by organic brain damage.

  6. Flood risk analysis and adaptive strategy in context of uncertainties: a case study of Nhieu Loc Thi Nghe Basin, Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Ho, Long-Phi; Chau, Nguyen-Xuan-Quang; Nguyen, Hong-Quan

    2013-04-01

    The Nhieu Loc - Thi Nghe basin is the most important administrative and business area of Ho Chi Minh City. Due to system complexity of the basin such as the increasing trend of rainfall intensity, (tidal) water level and land subsidence, the simulation of hydrological, hydraulic variables for flooding prediction seems rather not adequate in practical projects. The basin is still highly vulnerable despite of multi-million USD investment for urban drainage improvement projects since the last decade. In this paper, an integrated system analysis in both spatial and temporal aspects based on statistical, GIS and modelling approaches has been conducted in order to: (1) Analyse risks before and after projects, (2) Foresee water-related risk under uncertainties of unfavourable driving factors and (3) Develop a sustainable flood risk management strategy for the basin. The results show that given the framework of risk analysis and adaptive strategy, certain urban developing plans in the basin must be carefully revised and/or checked in order to reduce the highly unexpected loss in the future

  7. Temperature Instability of ReNu with MoistureLoc: A New Theory to Explain the Worldwide Fusarium Keratitis Epidemic of 2004–2006

    PubMed Central

    Bullock, John D.; Warwar, Ronald E.; Elder, B. Laurel; Northern, William I.

    2008-01-01

    Purpose A 2006 US Food and Drug Administration (FDA) inspection of Bausch & Lomb’s (B&L's) Greenville, South Carolina, manufacturing site indicated that B&L failed to regulate storage and transport temperatures of their products. The present study investigated the effect of storage temperature on the ability of contact lens solutions to inhibit growth of Fusarium species. Methods Six contact lens solutions were studied: ReNu with MoistureLoc (ReNu ML), ReNu MultiPlus, Complete Moistureplus, AQuify, Clear Care, and OPTI-FREE RepleniSH. Two bottles of each solution were separately stored at room temperature and 60°C for 4 weeks, serially diluted, then tested for their ability to inhibit growth of 11 Fusarium isolates (7 of which were associated with the keratitis epidemic). Results ReNu ML demonstrated the greatest decline in efficacy after 60°C storage. Clear Care and ReNu MultiPlus performed the best. Regarding the keratitis epidemic isolates only, the ReNu ML bottle stored at room temperature allowed growth in 27 of 84 combinations vs 67 of 84 combinations with the 60°C stored bottle. Conclusions When exposed to prolonged temperature elevation, ReNu ML loses its in vitro fungistatic activity to a much greater extent than other products. Improper temperature control of ReNu ML may have contributed to the Fusarium keratitis epidemic of 2004–2006. PMID:19277227

  8. Natural evolution from idiopathic photosensitive occipital lobe epilepsy to idiopathic generalized epilepsy in an untreated young patient.

    PubMed

    Bonini, Francesca; Egeo, Gabriella; Fattouch, Jinan; Fanella, Martina; Morano, Alessandra; Giallonardo, Anna Teresa; di Bonaventura, Carlo

    2014-04-01

    Idiopathic photosensitive occipital lobe epilepsy (IPOE) is an idiopathic localization-related epilepsy characterized by age-related onset, specific mode of precipitation, occipital photic-induced seizures--frequently consisting of visual symptoms--and good prognosis. This uncommon epilepsy, which usually starts in childhood or adolescence, has rarely been observed in families in which idiopathic generalized epilepsy also affects other members. We describe a nuclear family in which the proband showed electro-clinical features of idiopathic photosensitive occipital lobe epilepsy in childhood, which subsequently evolved into absences and a single generalized tonico-clonic seizure in early adolescence. His mother had features suggestive of juvenile myoclonic epilepsy. This case illustrates a continuum between focal and generalized entities in the spectrum of the so-called idiopathic (genetically determined) epileptic syndromes. PMID:23815968

  9. Natural evolution from idiopathic photosensitive occipital lobe epilepsy to idiopathic generalized epilepsy in an untreated young patient.

    PubMed

    Bonini, Francesca; Egeo, Gabriella; Fattouch, Jinan; Fanella, Martina; Morano, Alessandra; Giallonardo, Anna Teresa; di Bonaventura, Carlo

    2014-04-01

    Idiopathic photosensitive occipital lobe epilepsy (IPOE) is an idiopathic localization-related epilepsy characterized by age-related onset, specific mode of precipitation, occipital photic-induced seizures--frequently consisting of visual symptoms--and good prognosis. This uncommon epilepsy, which usually starts in childhood or adolescence, has rarely been observed in families in which idiopathic generalized epilepsy also affects other members. We describe a nuclear family in which the proband showed electro-clinical features of idiopathic photosensitive occipital lobe epilepsy in childhood, which subsequently evolved into absences and a single generalized tonico-clonic seizure in early adolescence. His mother had features suggestive of juvenile myoclonic epilepsy. This case illustrates a continuum between focal and generalized entities in the spectrum of the so-called idiopathic (genetically determined) epileptic syndromes.

  10. Reading without the left ventral occipito-temporal cortex

    PubMed Central

    Seghier, Mohamed L.; Neufeld, Nicholas H.; Zeidman, Peter; Leff, Alex P.; Mechelli, Andrea; Nagendran, Arjuna; Riddoch, Jane M.; Humphreys, Glyn W.; Price, Cathy J.

    2012-01-01

    The left ventral occipito-temporal cortex (LvOT) is thought to be essential for the rapid parallel letter processing that is required for skilled reading. Here we investigate whether rapid written word identification in skilled readers can be supported by neural pathways that do not involve LvOT. Hypotheses were derived from a stroke patient who acquired dyslexia following extensive LvOT damage. The patient followed a reading trajectory typical of that associated with pure alexia, re-gaining the ability to read aloud many words with declining performance as the length of words increased. Using functional MRI and dynamic causal modelling (DCM), we found that, when short (three to five letter) familiar words were read successfully, visual inputs to the patient’s occipital cortex were connected to left motor and premotor regions via activity in a central part of the left superior temporal sulcus (STS). The patient analysis therefore implied a left hemisphere “reading-without-LvOT” pathway that involved STS. We then investigated whether the same reading-without-LvOT pathway could be identified in 29 skilled readers and whether there was inter-subject variability in the degree to which skilled reading engaged LvOT. We found that functional connectivity in the reading-without-LvOT pathway was strongest in individuals who had the weakest functional connectivity in the LvOT pathway. This observation validates the findings of our patient’s case study. Our findings highlight the contribution of a left hemisphere reading pathway that is activated during the rapid identification of short familiar written words, particularly when LvOT is not involved. Preservation and use of this pathway may explain how patients are still able to read short words accurately when LvOT has been damaged. PMID:23017598

  11. Retinotopically defined primary visual cortex in Williams syndrome

    PubMed Central

    Olsen, Rosanna K.; Kippenhan, J. Shane; Japee, Shruti; Kohn, Philip; Mervis, Carolyn B.; Saad, Ziad S.; Morris, Colleen A.; Meyer-Lindenberg, Andreas

    2009-01-01

    Williams syndrome, caused by a hemizygous microdeletion on chromosome 7q11.23, is characterized by severe impairment in visuospatial construction. To examine potential contributions of early visual processing to this cognitive problem, we functionally mapped the size and neuroanatomical variability of primary visual cortex (V1) in high-functioning adults with Williams syndrome and age- and IQ-matched control participants from the general population by using fMRI-based retinotopic mapping and cortical surface models generated from high-resolution structural MRI. Visual stimulation, consisting of rotating hemicircles and expanding rings, was used to retinotopically define early visual processing areas. V1 boundaries based on computed phase and field sign maps were used to calculate the functional area of V1. Neuroanatomical variability was assessed by computing overlap maps of V1 location for each group on standardized cortical surfaces, and non-parametric permutation test methods were used for statistical inference. V1 did not differ in size between groups, although its anatomical boundaries were more variable in the group with Williams syndrome. V1 overlap maps showed that the average centres of gravity for the two groups were similarly located near the fundus of the calcarine fissure, ∼25 mm away from the most posterior aspect of the occipital lobe. In summary, our functional definition of V1 size and location indicates that recruitment of primary visual cortex is grossly normal in Williams syndrome, consistent with the notion that neural abnormalities underlying visuospatial construction arise at later stages in the visual processing hierarchy. PMID:19255058

  12. Aversive learning shapes neuronal orientation tuning in human visual cortex

    PubMed Central

    McTeague, Lisa M.; Gruss, L. Forest; Keil, Andreas

    2015-01-01

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top–down projections as well as local inhibitory interactions. PMID:26215466

  13. Creating Concepts from Converging Features in Human Cortex.

    PubMed

    Coutanche, Marc N; Thompson-Schill, Sharon L

    2015-09-01

    To make sense of the world around us, our brain must remember the overlapping features of millions of objects. Crucially, it must also represent each object's unique feature-convergence. Some theories propose that an integration area (or "convergence zone") binds together separate features. We report an investigation of our knowledge of objects' features and identity, and the link between them. We used functional magnetic resonance imaging to record neural activity, as humans attempted to detect a cued fruit or vegetable in visual noise. Crucially, we analyzed brain activity before a fruit or vegetable was present, allowing us to interrogate top-down activity. We found that pattern-classification algorithms could be used to decode the detection target's identity in the left anterior temporal lobe (ATL), its shape in lateral occipital cortex, and its color in right V4. A novel decoding-dependency analysis revealed that identity information in left ATL was specifically predicted by the temporal convergence of shape and color codes in early visual regions. People with stronger feature-and-identity dependencies had more similar top-down and bottom-up activity patterns. These results fulfill three key requirements for a neural convergence zone: a convergence result (object identity), ingredients (color and shape), and the link between them.

  14. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans.

    PubMed

    Jindahra, Panitha; Petrie, Aviva; Plant, Gordon T

    2012-02-01

    Following damage to the human post-geniculate visual pathway retrograde trans-synaptic degeneration of the optic nerve fibres occurs. It has been known for some time from investigations carried out in primates that a decline in the number of retinal ganglion cells follows occipital lobectomy. However, this is not detectable in all species studied and whether this occurs in humans was controversial until recent studies that have shown that following lesions of the occipital lobe, the retinal nerve fibre layer thickness measured by optical coherence tomography is reduced and corresponding shrinkage of the optic tract can be demonstrated by magnetic resonance imaging. The time course of the degeneration in humans is, however, unknown. In the present study, we have used optical coherence tomography to demonstrate for the first time progressive thinning of the retinal nerve fibre layer following occipital lobe/optic radiation damage due to stroke. First, in a group of 38 patients the measurement was taken on a single occasion at a known time interval since the stroke, ranging from 6 days to 67 years. Here, a negative straight line relationship (linear regression r = 0.54, P < 0.001) was found between nerve fibre layer thickness and elapsed time since injury in log years, giving a rate of decline of 9.08 µm per log year after adjusting for age. This indicates a decelerating rate of loss that differs from the rate of decline found with chronological age in this same group, which shows a steady rate of thinning by 0.4 µm per year (P = 0.006) after adjusting for duration of the disease. In a second study serial measurements were taken following the acute event in a group of seven patients with homonymous hemianopia; here a negative straight line relationship was found between time and nerve fibre layer thickness in micrometres over a period of data collection beginning at a mean of 36.9 days post-stroke (range 5-112) and ending at a mean of 426.6 days post

  15. Early suppression effect in human primary visual cortex during Kanizsa illusion processing: A magnetoencephalographic evidence.

    PubMed

    Chernyshev, Boris V; Pronko, Platon K; Stroganova, Tatiana A

    2016-01-01

    Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40-120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect-a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection. PMID:27485162

  16. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    PubMed Central

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). “Depression–Dejection” and “Confusion” POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered

  17. [Trajectories of alpha rhythm dipoles shifting over the human brain cortex].

    PubMed

    Bark, E D; Shevelev, I A; Kulikov, M A; Kamenkovich, V M; Pokazan'eva, L N

    2005-01-01

    Dynamic study of 3D localization of the equivalent current dipoles (ECD)--sources of the EEG alpha rhythm in the human brain was performed in seven subjects with closed eyes using a one-dipole model. An exact localization of ECDs was obtained by combination of EEG and MRI mapping that allowed tracing of ECD shifts over the cortex with 4 ms step. Our data confirmed localization of these ECDs mainly in the occipital cortex and revealed their successive shift over this area during generation of each alpha-wave. Typical trajectories of these shifts were revealed and quantitatively compared by the hierarchical cluster analysis. The data obtained directly proved periodical rhythmic alpha-wave spreading process in the human visual cortex and an external control of this process. The data are discussed in terms of the "scanning hypothesis" (Pitts W., McCulloch W.H. Bull. Math. Biophys. 1947. V. 9. P. 127) which predicted a certain functional meaning of the alpha activity for cortical processing of sensory information in the human brain.

  18. Haloperidol abolished glutamate release evoked by photic stimulation of the visual cortex in rats.

    PubMed

    Reyes, Elbert; Rossell, Sergio; Paredes, Daniel; Rada, Pedro; Tucci, Sonia; Gonzalez, Luis E; Hernández, Luis

    2002-07-26

    There is evidence that systemic administration of haloperidol, a dopamine receptor blocker, attenuates visual cortex evoked potentials. However, there is scarce information on cortical neurochemical changes associated with haloperidol effects on visual function. The present experiment was designed to investigate: (1) the effect of photic stimulation on glutamate release in the visual cortex; and (2) whether systemic administration of haloperidol would affect those neurochemical changes. Microdialysis probes were implanted in the occipital cortex. Glutamate levels were measured every 30 s using capillary zone electrophoresis. Extracellular glutamate levels increased to about 282% 30 s after photic stimulation started and remain elevated for the 3 min that the photic stimulation lasted. Haloperidol (1.5 and 5 mg/kg, i.p.) completely suppressed the increased of glutamate efflux during photic stimulation. Finally, it was also found that the highest dose of haloperidol (5 mg/kg) did not change glutamate basal levels. The results are discussed with reference to possible dopaminergic actions on the visual system function.

  19. NMDA Receptor Antagonist Ketamine Distorts Object Recognition by Reducing Feedback to Early Visual Cortex.

    PubMed

    van Loon, Anouk M; Fahrenfort, Johannes J; van der Velde, Bauke; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Scholte, H Steven; Lamme, Victor A F

    2016-05-01

    It is a well-established fact that top-down processes influence neural representations in lower-level visual areas. Electrophysiological recordings in monkeys as well as theoretical models suggest that these top-down processes depend on NMDA receptor functioning. However, this underlying neural mechanism has not been tested in humans. We used fMRI multivoxel pattern analysis to compare the neural representations of ambiguous Mooney images before and after they were recognized with their unambiguous grayscale version. Additionally, we administered ketamine, an NMDA receptor antagonist, to interfere with this process. Our results demonstrate that after recognition, the pattern of brain activation elicited by a Mooney image is more similar to that of its easily recognizable grayscale version than to the pattern evoked by the identical Mooney image before recognition. Moreover, recognition of Mooney images decreased mean response; however, neural representations of separate images became more dissimilar. So from the neural perspective, unrecognizable Mooney images all "look the same", whereas recognized Mooneys look different. We observed these effects in posterior fusiform part of lateral occipital cortex and in early visual cortex. Ketamine distorted these effects of recognition, but in early visual cortex only. This suggests that top-down processes from higher- to lower-level visual areas might operate via an NMDA pathway. PMID:25662715

  20. Giant Prolactinoma Presenting with Neck Pain and Structural Compromise of the Occipital Condyles.

    PubMed

    Yecies, Derek; Ajlan, Abdulrazag; Ratliff, John; Ziskin, Jennifer; Hwang, Peter; Vogel, Hannes; Katznelson, Laurence; Harsh, Griffith

    2015-11-01

    Prolactinomas are the most common form of endocrinologically active pituitary adenoma; they account for ∼ 45% of pituitary adenomas encountered in clinical practice. Giant adenomas are those > 4 cm in diameter. Less than 0.5% of pituitary adenomas encountered in neurosurgical practice are giant prolactinomas. Patients with giant prolactinomas typically present with highly elevated prolactin levels, endocrinologic disturbances, and neurologic symptoms from mass-induced pressure. Described here is an unusual case of a giant prolactinoma presenting with neck pain and structural compromise of the occipital condyles. Transnasal biopsy of the nasopharyngeal portion of the mass obtained tissue consistent with an atypical prolactinoma with p53 reactivity and a high Ki-67 index of 5%. Despite the size and invasiveness of the tumor, the patient had resolution of his clinical symptoms, dramatic reduction of his hyperprolactinemia, and near-complete disappearance of his tumor following medical treatment.

  1. Surgical stabilization of the atlanto-occipital overlap with atlanto-axial instability in a dog.

    PubMed

    Fujita, Atsushi; Nishimura, Ryohei

    2016-05-01

    The atlanto-occipital (AO) overlap in combination with atlanto-axial (AA) instability was found in a dog. We hypothesized that ventral fixation of the AA junction can stabilize the atlas and prevent AO overlap by reviewing our past cases with AA instability. A standard ventral fixation of the AA junction using stainless k-wires and polymethyl methacrylate (PMMA) was performed. The dog fully recovered, and no complication was noted. The results of the postoperative CT imaging supported our hypothesis. The ventral fixation of the AA junction is a feasible treatment option for similar cases, although craniocervical junction abnormalities (CJA) including AA instability are varied, and careful consideration is required for each case. PMID:27506088

  2. Alexia without agraphia: lateral and medial infarction of left occipital lobe.

    PubMed

    Johansson, T; Fahlgren, H

    1979-03-01

    Four cases of alexia without agraphia were studied by 99m-technetium pertechnetate brain scan. Two types of increased uptake were seen. One was of the triangular type near the midline in the posterior view, said to characterize an infarction in the distribution area of the posterior cerebral artery. This was associated with the well-known clinical picture of alexia without agraphia accompanied by hemianopia and color-naming defect, and was confirmed by postmortem examination. The other type of pathologic isotope uptake, observed in three patients, was more laterally placed, in the basal part of the left occipital lobe, and did not reach the midline. In these cases the alexia was transient and not associated with color-naming defects.

  3. Parietal and bi-occipital lobe infarction confounded by ethanol-induced optic neuropathy.

    PubMed

    Tornatore, C W; Townsend, J C; Selvin, G J

    1991-08-01

    A frequent occurrence in geriatric and chronically ill patients is the exhibition of several simultaneously occurring and confounding health problems. This paper reports the case of a 61-year-old-white male who presented with an extensive history of multiple brain infarcts, hemiparesis, personality changes and varied visual complaints. Tests in the neurooptometric work-up for this patient included static automated perimetry, stereoacuity and optokinetic nystagmus evaluation. The results were suggestive of multiple cerebrovascular accidents which included the right and left occipital lobes as well as the right parietal lobe. This clinical picture was complicated by the presence of nutritional or ethanol-induced optic neuropathy. Emphasis was placed on a detailed sequential history of events and a complete neurological and optometric evaluation to ascertain the multiple foci of cortical infarction. Corroboration of clinical findings was obtained by computerized axial tomography (CT scan).

  4. Giant Prolactinoma Presenting with Neck Pain and Structural Compromise of the Occipital Condyles

    PubMed Central

    Yecies, Derek; Ajlan, Abdulrazag; Ratliff, John; Ziskin, Jennifer; Hwang, Peter; Vogel, Hannes; Katznelson, Laurence; Harsh, Griffith

    2015-01-01

    Prolactinomas are the most common form of endocrinologically active pituitary adenoma; they account for ∼ 45% of pituitary adenomas encountered in clinical practice. Giant adenomas are those > 4 cm in diameter. Less than 0.5% of pituitary adenomas encountered in neurosurgical practice are giant prolactinomas. Patients with giant prolactinomas typically present with highly elevated prolactin levels, endocrinologic disturbances, and neurologic symptoms from mass-induced pressure. Described here is an unusual case of a giant prolactinoma presenting with neck pain and structural compromise of the occipital condyles. Transnasal biopsy of the nasopharyngeal portion of the mass obtained tissue consistent with an atypical prolactinoma with p53 reactivity and a high Ki-67 index of 5%. Despite the size and invasiveness of the tumor, the patient had resolution of his clinical symptoms, dramatic reduction of his hyperprolactinemia, and near-complete disappearance of his tumor following medical treatment. PMID:26623246

  5. Intradiploic occipital pseudomeningocele in a patient with remote history of surgical treatment of Chiari malformation.

    PubMed

    Mahaney, Kelly B; Menezes, Arnold H

    2014-11-01

    An intradiploic CSF pseudocyst is a rare entity that has been described in association with trauma, as a sequela of untreated hydrocephalus, or occasionally as a congenital finding in older adults. The authors present the case of a woman with a remote history of a posterior fossa intradural procedure, in which she underwent Chiari malformation decompression, Silastic substitute-assisted duraplasty, and occipitocervical fusion; she presented 19 years later with recurrent symptoms of Chiari malformation. She was found to have an occipital intradiploic pseudomeningocele, arising within her dorsal occipitocervical fusion mass and resulting in dorsal hindbrain compression. She underwent a posterior fossa decompression and revision of her failed duraplasty, and she had a good recovery. This case demonstrates intradiploic CSF pseudomeningocele as a rare potential delayed complication of an intradural procedure for the treatment of Chiari malformation with occipitocervical fusion.

  6. Chiari I malformation associated with atlanto-occipital assimilation presenting as orthopnea and cough syncope.

    PubMed

    Mangubat, Erwin Zeta; Wilson, Tom; Mitchell, Brian A; Byrne, Richard W

    2014-02-01

    Although it is not uncommon for patients with Chiari I malformations to present with respiratory complaints, cough syncope is a rare presenting symptom. We report an adult patient who had both a Chiari I malformation and atlanto-occipital assimilation, and complained of cough syncope, orthopnea, and central sleep apnea. The patient underwent decompressive craniectomy of the posterior fossa and a cervical level 2 laminectomy. However, due to an initial under-appreciation of the profound narrowing of the foramen magnum as a result of these concomitant pathologies, the patient had continued impaired cerebrospinal fluid flow, leading to a symptomatic pseudomeningocele and required a more extensive decompression that included a cervical level 3 laminectomy as well as a temporary lumbar drain. On 2 year follow-up, he remained asymptomatic.

  7. Surgical stabilization of the atlanto-occipital overlap with atlanto-axial instability in a dog.

    PubMed

    Fujita, Atsushi; Nishimura, Ryohei

    2016-05-01

    The atlanto-occipital (AO) overlap in combination with atlanto-axial (AA) instability was found in a dog. We hypothesized that ventral fixation of the AA junction can stabilize the atlas and prevent AO overlap by reviewing our past cases with AA instability. A standard ventral fixation of the AA junction using stainless k-wires and polymethyl methacrylate (PMMA) was performed. The dog fully recovered, and no complication was noted. The results of the postoperative CT imaging supported our hypothesis. The ventral fixation of the AA junction is a feasible treatment option for similar cases, although craniocervical junction abnormalities (CJA) including AA instability are varied, and careful consideration is required for each case.

  8. Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex.

    PubMed

    Silson, Edward H; Groen, Iris I A; Kravitz, Dwight J; Baker, Chris I

    2016-01-01

    The organization of human lateral occipitotemporal cortex (lOTC) has been characterized largely according to two distinct principles: retinotopy and category-selectivity. Whereas category-selective regions were originally thought to exist beyond retinotopic maps, recent evidence highlights overlap. Here, we combined detailed mapping of retinotopy, using population receptive fields (pRF), and category-selectivity to examine and contrast the retinotopic profiles of scene- (occipital place area, OPA), face- (occipital face area, OFA) and object- (lateral occipital cortex, LO) selective regions of lOTC. We observe striking differences in the relationship each region has to underlying retinotopy. Whereas OPA overlapped multiple retinotopic maps (including V3A, V3B, LO1, and LO2), and LO overlapped two maps (LO1 and LO2), OFA overlapped almost none. There appears no simple consistent relationship between category-selectivity and retinotopic maps, meaning category-selective regions are not constrained spatially to retinotopic map borders consistently. The multiple maps that overlap OPA suggests it is likely not appropriate to conceptualize it as a single scene-selective region, whereas the inconsistency in any systematic map overlapping OFA suggests it may constitute a more uniform area. Beyond their relationship to retinotopy, all three regions evidenced strongly retinotopic voxels, with pRFs exhibiting a significant bias towards the contralateral lower visual field, despite differences in pRF size, contributing to an emerging literature suggesting this bias is present across much of lOTC. Taken together, these results suggest that whereas category-selective regions are not constrained to consistently contain ordered retinotopic maps, they nonetheless likely inherit retinotopic characteristics of the maps from which they draw information. PMID:27105060

  9. Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex

    PubMed Central

    Silson, Edward H.; Groen, Iris I. A.; Kravitz, Dwight J.; Baker, Chris I.

    2016-01-01

    The organization of human lateral occipitotemporal cortex (lOTC) has been characterized largely according to two distinct principles: retinotopy and category-selectivity. Whereas category-selective regions were originally thought to exist beyond retinotopic maps, recent evidence highlights overlap. Here, we combined detailed mapping of retinotopy, using population receptive fields (pRF), and category-selectivity to examine and contrast the retinotopic profiles of scene- (occipital place area, OPA), face- (occipital face area, OFA) and object- (lateral occipital cortex, LO) selective regions of lOTC. We observe striking differences in the relationship each region has to underlying retinotopy. Whereas OPA overlapped multiple retinotopic maps (including V3A, V3B, LO1, and LO2), and LO overlapped two maps (LO1 and LO2), OFA overlapped almost none. There appears no simple consistent relationship between category-selectivity and retinotopic maps, meaning category-selective regions are not constrained spatially to retinotopic map borders consistently. The multiple maps that overlap OPA suggests it is likely not appropriate to conceptualize it as a single scene-selective region, whereas the inconsistency in any systematic map overlapping OFA suggests it may constitute a more uniform area. Beyond their relationship to retinotopy, all three regions evidenced strongly retinotopic voxels, with pRFs exhibiting a significant bias towards the contralateral lower visual field, despite differences in pRF size, contributing to an emerging literature suggesting this bias is present across much of lOTC. Taken together, these results suggest that whereas category-selective regions are not constrained to consistently contain ordered retinotopic maps, they nonetheless likely inherit retinotopic characteristics of the maps from which they draw information. PMID:27105060

  10. Essential role of the right superior parietal cortex in Japanese kana mirror reading: An fMRI study.

    PubMed

    Dong, Y; Fukuyama, H; Honda, M; Okada, T; Hanakawa, T; Nakamura, K; Nagahama, Y; Nagamine, T; Konishi, J; Shibasaki, H

    2000-04-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates responsible for Japanese kana mirror reading. Japanese kana words, arranged vertically from top to bottom, were used in the mirror reading task in 10 normal right-handed Japanese adults. Since both mirror-reversed and normally oriented kana items are read in the same (top to bottom) direction, it was possible to minimize the oculomotor effects which often occur in the process of mirror reading of alphabetical language. By using the SPM96 random effect analysis method, a significant increase in the blood oxygen level-dependent signal during mirror reading relative to normal reading was detected in multiple brain regions, including the bilateral superior occipital gyri, bilateral middle occipital gyri corresponding to Brodmann area (BA) 18/19, bilateral lingual gyri (BA 19), left inferior occipital gyrus (BA 18), left inferior temporal cortex (BA 37), bilateral fusiform gyri (BA 19), right superior parietal cortex (SPC) (BA 7), left inferior frontal gyrus (BA 44/45) and an inferior part of the left BA 6. In addition to these cortical regions, the right caudate nucleus and right cerebellum were also activated. The activation found in the right SPC and the left inferior temporal region is consistent with the hypothesis that mirror reading involves both the dorsal visuospatial and ventral object recognition pathways. In particular, a significant correlation was found between the fMRI signal change in the right SPC and the behavioural performance (error index) in the task. This may reflect increased demand on the right SPC for the spatial transformation which is required for the accurate recognition of mirror-reversed kana items. This relationship between the haemodynamic response in a specific brain area and the behavioural data provides new evidence for the essential role of the right SPC in Japanese kana mirror reading.

  11. Evolution of cranial blood drainage in hominids: enlarged occipital/marginal sinuses and emissary foramina.

    PubMed

    Falk, D

    1986-07-01

    Physiological studies of cranial blood flow in humans in reclining vs. upright postures suggest that selection for bipedalism was correlated with the establishment of epigenetic adaptations for delivering blood preferentially to the vertebral plexus of veins, depending upon momentary respiratory and postural constraints. The frequencies of vascular/osteological channels used to deliver blood to the vertebral plexus of veins were determined for samples of African pongids, various taxa of fossil hominids, and extant Homo sapiens. These channels include an enlarged occipital/marginal (O/M) sinus system, multiple hypoglossal canals, and foramina that conduct emissary veins: posterior condyloid, mastoid, occipital, and parietal. The African pongid, and therefore presumably the ancestral prebipedal hominoid, condition is characterized by low frequencies of all of these routes except multiple hypoglossal canals. The earliest known bipeds (Australopithecus afarensis) and robust australopithecines are characterized by fixation of enlarged O/M sinus systems. Robust australopithecines are also characterized by apparently low frequencies of mastoid and parietal foramina, and high frequencies of multiple hypoglossal canals and posterior condyloid foramina. In gracile australopithecines and subsequently living hominids, trends towards increased frequencies of mastoid and (later) parietal emissary foramina coincide with a trend towards decreased frequencies of an enlarged O/M sinus system and multiple hypoglossal canals. These findings suggest that selection for bipedalism initially resulted in epigenetic adaptations for routes to deliver blood to the vertebral plexus including an enlarged O/M sinus system and hypoglossal canals, but that the pressures underlying these adaptations relaxed as bipedalism became established, and other routes for delivering blood to the vertebral plexus of veins were either directly or indirectly selected for, perhaps in conjunction with a changing

  12. The intention to conceal activates the right prefrontal cortex: an event-related potential study.

    PubMed

    Matsuda, Izumi; Nittono, Hiroshi

    2015-03-01

    Recent studies on deception have shown that a late positive potential (LPP), a component of event-related brain potentials, is elicited when a participant wishes to conceal recognition of the eliciting stimulus. The LPP occurs about 500 ms after stimulus onset and has an occipital scalp distribution with concurrent negativity at frontal sites. The present study investigated the cortical sources of the LPP associated with the intention to conceal. Standardized low-resolution electromagnetic tomography analysis was applied on previously published concealment-related LPP data (Matsuda, Nittono, and Ogawa, 2013, N=30). The cortical sources of the LPP were estimated in the right middle frontal gyrus and the right inferior frontal gyrus, which fits well with the findings of fMRI studies. Previous research suggests that activities in the middle frontal gyrus and the right inferior frontal gyrus are associated with cognitive control and that greater relative right than left frontal activities are associated with withdrawal motivation. On the basis of these findings, it is concluded that the LPP may reflect cognitive control with withdrawal motivation that is recruited by the participants' goal of concealing their recognition and avoiding disclosure. A positive potential at occipital sites can be a sign of the activation in the prefrontal cortex.

  13. Surgical Treatment for Occipital Condyle Fracture, C1 Dislocation, and Cerebellar Contusion with Hemorrhage after Blunt Head Trauma

    PubMed Central

    Sasaki, Nobuhiro; Fukuda, Miyuki; Hoshimaru, Minoru

    2016-01-01

    Occipital condyle fractures (OCFs) have been treated as rare traumatic injuries, but the number of reported OCFs has gradually increased because of the popularization of computed tomography (CT) and magnetic resonance imaging (MRI). The patient in this report presented with OCFs and C1 dislocation, along with traumatic cerebellar hemorrhage, which led to craniovertebral junction instability. This case was also an extremely rare clinical condition in which the patient presented with traumatic lower cranial nerve palsy secondary to OCFs. When the patient was transferred to our hospital, the occipital bone remained defective extensively due to surgical treatment of cerebellar hemorrhage. For this reason, concurrent cranioplasty was performed with resin in order to fix the occipital bone plate strongly. The resin-made occipital bone was used to secure a titanium plate and screws enabled us to perform posterior fusion of the craniovertebral junction. Although the patient wore a halo vest for 3 months after surgery, lower cranial nerve symptoms, including not only neck pain but also paralysis of the throat and larynx, improved postoperatively. No complications were detected during outpatient follow-up, which continued for 5 years postoperatively. PMID:27800203

  14. Smooth versus Textured Surfaces: Feature-Based Category Selectivity in Human Visual Cortex

    PubMed Central

    Tootell, Roger

    2016-01-01

    Abstract In fMRI studies, human lateral occipital (LO) cortex is thought to respond selectively to images of objects, compared with nonobjects. However, it remains unresolved whether all objects evoke equivalent levels of activity in LO, and, if not, which image features produce stronger activation. Here, we used an unbiased parametric texture model to predict preferred versus nonpreferred stimuli in LO. Observation and psychophysical results showed that predicted preferred stimuli (both objects and nonobjects) had smooth (rather than textured) surfaces. These predictions were confirmed using fMRI, for objects and nonobjects. Similar preferences were also found in the fusiform face area (FFA). Consistent with this: (1) FFA and LO responded more strongly to nonfreckled (smooth) faces, compared with otherwise identical freckled (textured) faces; and (2) strong functional connections were found between LO and FFA. Thus, LO and FFA may be part of an information-processing stream distinguished by feature-based category selectivity (smooth > textured).

  15. Smooth versus Textured Surfaces: Feature-Based Category Selectivity in Human Visual Cortex

    PubMed Central

    Tootell, Roger

    2016-01-01

    Abstract In fMRI studies, human lateral occipital (LO) cortex is thought to respond selectively to images of objects, compared with nonobjects. However, it remains unresolved whether all objects evoke equivalent levels of activity in LO, and, if not, which image features produce stronger activation. Here, we used an unbiased parametric texture model to predict preferred versus nonpreferred stimuli in LO. Observation and psychophysical results showed that predicted preferred stimuli (both objects and nonobjects) had smooth (rather than textured) surfaces. These predictions were confirmed using fMRI, for objects and nonobjects. Similar preferences were also found in the fusiform face area (FFA). Consistent with this: (1) FFA and LO responded more strongly to nonfreckled (smooth) faces, compared with otherwise identical freckled (textured) faces; and (2) strong functional connections were found between LO and FFA. Thus, LO and FFA may be part of an information-processing stream distinguished by feature-based category selectivity (smooth > textured). PMID:27699206

  16. Visual cortex: suppression by depression?

    PubMed

    Mrsic-Flogel, Thomas; Hübener, Mark

    2002-08-20

    The response of a neuron in the visual cortex to an oriented light bar is strongly reduced by concurrent presentation of a stimulus with a different orientation. New data suggest this 'cross-orientation suppression' is caused, not by intracortical inhibition, but by rapid depression of thalamocortical synapses.

  17. Dose-Dependent Changes in Auditory Sensory Gating in the Prefrontal Cortex of the Cynomolgus Monkey

    PubMed Central

    Huang, Hui; Ya, Jinrong; Wu, Zhe; Wen, Chunmei; Zheng, Suyue; Tian, Chaoyang; Ren, Hui; Carlson, Synnöve; Yu, Hualin; Chen, Feng; Wang, Jianhong

    2016-01-01

    Background Sensory gating, often described as the ability to filter out irrelevant information that is repeated in close temporal proximity, is essential for the selection, processing, and storage of more salient information. This study aimed to test the effect of sensory gating under anesthesia in the prefrontal cortex (PFC) of monkeys following injection of bromocriptine, haloperidol, and phencyclidine (PCP). Material/Methods We used an auditory evoked potential that can be elicited by sound to examine sensory gating during treatment with haloperidol, bromocriptine, and PCP in the PFC in the cynomolgus monkey. Scalp electrodes were located in the bilateral PFC and bilateral temporal, bilateral parietal, and occipital lobes. Administration of bromocriptine (0.313 mg/kg, 0.625 mg/kg, and 1.25 mg/kg), haloperidol (0.001 mg/kg, 0.01 mg/kg, and 0.05 mg/kg), and the N-methyl-D-aspartic acid receptor antagonist PCP (0.3 mg/kg) influenced sensory gating. Results We demonstrated the following: (1) Administration of mid-dose bromocriptine disrupted sensory gating (N100) in the right temporal lobe, while neither low-dose nor high-dose bromocriptine impaired gating. (2) Low-dose haloperidol impaired gating in the right prefrontal cortex. Mid-dose haloperidol disrupted sensory gating in left occipital lobe. High-dose haloperidol had no obvious effect on sensory gating. (3) Gating was impaired by PCP in the left parietal lobe. Conclusions Our studies showed that information processing was regulated by the dopaminergic system, which might play an important role in the PFC. The dopaminergic system influenced sensory gating in a dose- and region-dependent pattern, which might modulate the different stages that receive further processing due to novel information. PMID:27218151

  18. Dose-Dependent Changes in Auditory Sensory Gating in the Prefrontal Cortex of the Cynomolgus Monkey.

    PubMed

    Huang, Hui; Ya, Jinrong; Wu, Zhe; Wen, Chunmei; Zheng, Suyue; Tian, Chaoyang; Ren, Hui; Carlson, Synnöve; Yu, Hualin; Chen, Feng; Wang, Jianhong

    2016-01-01

    BACKGROUND Sensory gating, often described as the ability to filter out irrelevant information that is repeated in close temporal proximity, is essential for the selection, processing, and storage of more salient information. This study aimed to test the effect of sensory gating under anesthesia in the prefrontal cortex (PFC) of monkeys following injection of bromocriptine, haloperidol, and phencyclidine (PCP). MATERIAL AND METHODS We used an auditory evoked potential that can be elicited by sound to examine sensory gating during treatment with haloperidol, bromocriptine, and PCP in the PFC in the cynomolgus monkey. Scalp electrodes were located in the bilateral PFC and bilateral temporal, bilateral parietal, and occipital lobes. Administration of bromocriptine (0.313 mg/kg, 0.625 mg/kg, and 1.25 mg/kg), haloperidol (0.001 mg/kg, 0.01 mg/kg, and 0.05 mg/kg), and the N-methyl-D-aspartic acid receptor antagonist PCP (0.3 mg/kg) influenced sensory gating. RESULTS We demonstrated the following: (1) Administration of mid-dose bromocriptine disrupted sensory gating (N100) in the right temporal lobe, while neither low-dose nor high-dose bromocriptine impaired gating. (2) Low-dose haloperidol impaired gating in the right prefrontal cortex. Mid-dose haloperidol disrupted sensory gating in left occipital lobe. High-dose haloperidol had no obvious effect on sensory gating. (3) Gating was impaired by PCP in the left parietal lobe. CONCLUSIONS Our studies showed that information processing was regulated by the dopaminergic system, which might play an important role in the PFC. The dopaminergic system influenced sensory gating in a dose- and region-dependent pattern, which might modulate the different stages that receive further processing due to novel information. PMID:27218151

  19. The insular cortex: a review.

    PubMed

    Nieuwenhuys, Rudolf

    2012-01-01

    The human insular cortex forms a distinct, but entirely hidden lobe, situated in the depth of the Sylvian fissure. Here, we first review the recent literature on the connectivity and the functions of this structure. It appears that this small lobe, taking up less than 2% of the total cortical surface area, receives afferents from some sensory thalamic nuclei, is (mostly reciprocally) connected with the amygdala and with many limbic and association cortical areas, and is implicated in an astonishingly large number of widely different functions, ranging from pain perception and speech production to the processing of social emotions. Next, we embark on a long, adventurous journey through the voluminous literature on the structural organization of the insular cortex. This journey yielded the following take-home messages: (1) The meticulous, but mostly neglected publications of Rose (1928) and Brockhaus (1940) are still invaluable for our understanding of the architecture of the mammalian insular cortex. (2) The relation of the insular cortex to the adjacent claustrum is neither ontogenetical nor functional, but purely topographical. (3) The insular cortex has passed through a spectacular progressive differentiation during hominoid evolution, but the assumption of Craig (2009) that the human anterior insula has no homologue in the rhesus monkey is untenable. (4) The concept of Mesulam and Mufson (1985), that the primate insula is essentially composed of three concentrically arranged zones, agranular, dysgranular, and granular, is presumably correct, but there is at present much confusion concerning the more detailed architecture of the anterior insular cortex. (5) The large spindle-shaped cells in the fifth layer of the insular cortex, currently known as von Economo neurons (VENs), are not only confined to large-brained mammals, such as whales, elephants, apes, and humans, but also occur in monkeys and prosimians, as well as in the pygmy hippopotamus, the Atlantic

  20. OCCIPITAL SOURCES OF RESTING STATE ALPHA RHYTHMS ARE RELATED TO LOCAL GRAY MATTER DENSITY IN SUBJECTS WITH AMNESIC MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

    PubMed Central

    Claudio, Babiloni; Claudio, Del Percio; Marina, Boccardi; Roberta, Lizio; Susanna, Lopez; Filippo, Carducci; Nicola, Marzano; Andrea, Soricelli; Raffaele, Ferri; Ivano, Triggiani Antonio; Annapaola, Prestia; Serenella, Salinari; Rasser Paul, E; Erol, Basar; Francesco, Famà; Flavio, Nobili; Görsev, Yener; Durusu, Emek-Savaş Derya; Gesualdo, Loreto; Ciro, Mundi; Thompson Paul, M; Rossini Paolo, M.; Frisoni Giovanni, B

    2014-01-01

    Occipital sources of resting state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Here we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging (MRI). Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density (GMD), estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8–10.5 Hz) and alpha 2 (10.5–13 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic tomography (LORETA). Results showed a positive correlation between occipital GMD and amplitude of occipital alpha 1 sources in Nold, MCI and AD subjects as a whole group (r=0.3, p=0.000004, N=235). Furthermore, there was a positive correlation between amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Evaluation (MMSE) score across all subjects (r=0.38, p=0.000001, N=235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the Receiver Operating Characteristic (ROC) curve: 0.81). These results suggest that the amplitude of occipital sources of resting state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathological aging. PMID:25442118

  1. Occipital sources of resting-state alpha rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer's disease.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Boccardi, Marina; Lizio, Roberta; Lopez, Susanna; Carducci, Filippo; Marzano, Nicola; Soricelli, Andrea; Ferri, Raffaele; Triggiani, Antonio Ivano; Prestia, Annapaola; Salinari, Serenella; Rasser, Paul E; Basar, Erol; Famà, Francesco; Nobili, Flavio; Yener, Görsev; Emek-Savaş, Derya Durusu; Gesualdo, Loreto; Mundi, Ciro; Thompson, Paul M; Rossini, Paolo M; Frisoni, Giovanni B

    2015-02-01

    Occipital sources of resting-state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer's disease (AD). Here, we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging. Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density, estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8-10.5 Hz) and alpha 2 (10.5-13 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography. Results showed a positive correlation between occipital gray matter density and amplitude of occipital alpha 1 sources in Nold, MCI, and AD subjects as a whole group (r = 0.3, p = 0.000004, N = 235). Furthermore, there was a positive correlation between the amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Examination score across all subjects (r = 0.38, p = 0.000001, N = 235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the receiver operating characteristic curve: 0.81). These results suggest that the amplitude of occipital sources of resting-state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathologic aging.

  2. Clinical and Anatomical Features as well as Pathological Conditions of Surgically Treated Adult Patients with Occipitalization of the Atlas

    PubMed Central

    Shimizu, Takachika; Fueki, Keisuke; Ino, Masatake; Toda, Naofumi; Tanouchi, Tetsu; Manabe, Nodoka

    2016-01-01

    Background This paper intends to clarify clinical and anatomical features as well as pathological conditions of surgically treated adult patients with occipitalization of the atlas. Methods The authors reviewed 12 consecutive adult patients with occipitalization of the atlas who underwent surgery for myleopathy in our hospital. Mainly using preoperative computed tomography and three-dimensional computed tomography angiography, we investigated their anomalies of the osseous structures and vertebral artery at the cervical spine including the craniovertebral junction (CVJ). We also developed a new classification system for occipitalization of the atlas. Results Atlantoaxial subluxation (AAS) was detected in 9 patients (75%). The condition of AAS was irreducible in 7 patients. Among these 7 patients, deformity at the lateral atlantoaxial joints was detected in 2 patients. C2-3 fusion was detected in 6 patients (67%) among 9 patients with AAS. Anomalies of the VA were detected in 11 patients (92%). Occipitalization of the atlas was classified into three types according to their pathological conditions. In type 1 (2 patients) the medial atlantoaxial joint is semi-dislocated and the lateral atlantoaxial joints are severely deformed. Type 2 (7 patients) exhibits AAS but the lateral atlantoaxial joints are not deformed. Type 3 (3 patients) is not associated with AAS and therefore does not exhibit osseous stenosis at the CVJ. In type 3 the myelopathy was caused by another coexisting condition. Conclusions Occipitalization of the atlas is classified into three types. The main pathological condition in both types 1 and 2 is AAS. Reduction of AAS is essential in both; however, reduction of AAS in type 1 is more technically demanding than in type 2. The pathological conditions of type 3 are completely different from those of the others, so an accurate diagnosis must be made. The new classification system is a useful guide for surgeons when planning surgical strategies. PMID

  3. Dissociable neural responses to hands and non-hand body parts in human left extrastriate visual cortex.

    PubMed

    Bracci, Stefania; Ietswaart, Magdalena; Peelen, Marius V; Cavina-Pratesi, Cristiana

    2010-06-01

    Accumulating evidence points to a map of visual regions encoding specific categories of objects. For example, a region in the human extrastriate visual cortex, the extrastriate body area (EBA), has been implicated in the visual processing of bodies and body parts. Although in the monkey, neurons selective for hands have been reported, in humans it is unclear whether areas selective for individual body parts such as the hand exist. Here, we conducted two functional MRI experiments to test for hand-preferring responses in the human extrastriate visual cortex. We found evidence for a hand-preferring region in left lateral occipitotemporal cortex in all 14 participants. This region, located in the lateral occipital sulcus, partially overlapped with left EBA, but could be functionally and anatomically dissociated from it. In experiment 2, we further investigated the functional profile of hand- and body-preferring regions by measuring responses to hands, fingers, feet, assorted body parts (arms, legs, torsos), and non-biological handlike stimuli such as robotic hands. The hand-preferring region responded most strongly to hands, followed by robotic hands, fingers, and feet, whereas its response to assorted body parts did not significantly differ from baseline. By contrast, EBA responded most strongly to body parts, followed by hands and feet, and did not significantly respond to robotic hands or fingers. Together, these results provide evidence for a representation of the hand in extrastriate visual cortex that is distinct from the representation of other body parts.

  4. The Functions of the Orbitofrontal Cortex

    ERIC Educational Resources Information Center

    Rolls, Edmund T.

    2004-01-01

    The orbitofrontal cortex contains the secondary taste cortex, in which the reward value of taste is represented. It also contains the secondary and tertiary olfactory cortical areas, in which information about the identity and also about the reward value of odours is represented. The orbitofrontal cortex also receives information about the sight…

  5. The time course of shape discrimination in the human brain.

    PubMed

    Ales, Justin M; Appelbaum, L Gregory; Cottereau, Benoit R; Norcia, Anthony M

    2013-02-15

    The lateral occipital cortex (LOC) activates selectively to images of intact objects versus scrambled controls, is selective for the figure-ground relationship of a scene, and exhibits at least some degree of invariance for size and position. Because of these attributes, it is considered to be a crucial part of the object recognition pathway. Here we show that human LOC is critically involved in perceptual decisions about object shape. High-density EEG was recorded while subjects performed a threshold-level shape discrimination task on texture-defined figures segmented by either phase or orientation cues. The appearance or disappearance of a figure region from a uniform background generated robust visual evoked potentials throughout retinotopic cortex as determined by inverse modeling of the scalp voltage distribution. Contrasting responses from trials containing shape changes that were correctly detected (hits) with trials in which no change occurred (correct rejects) revealed stimulus-locked, target-selective activity in the occipital visual areas LOC and V4 preceding the subject's response. Activity that was locked to the subjects' reaction time was present in the LOC. Response-locked activity in the LOC was determined to be related to shape discrimination for several reasons: shape-selective responses were silenced when subjects viewed identical stimuli but their attention was directed away from the shapes to a demanding letter discrimination task; shape-selectivity was present across four different stimulus configurations used to define the figure; LOC responses correlated with participants' reaction times. These results indicate that decision-related activity is present in the LOC when subjects are engaged in threshold-level shape discriminations.

  6. [Frontal cerebral cortex and photic epilepsy of the baboon Papio papio (author transl)].

    PubMed

    Ménini, C

    1976-03-01

    It was discovered in 1966 that the senegalese baboon (Papio papio) exhibits a photosensitive epilepsy. This finding has led, among other work, to the neurophysiological study of this epilepsy. Although in some characteristics the baboon's photosensitive epilepsy differs from that of man, it can be considered that this animal presents a real model of essential epilepsy, for the study of the human disease. 2. In the baboon, the EEG disturbances triggered by intermittent light stimulation at 25 Hz appear first at the level of the frontal cortex (area 6). At this level, recordings of single unit discharges show an activation of cortical neurones similar to that observed in human patients with focal epileptic lesions ; at the occipital level, the only modification observed is a change in the resting membrane potentials, in the direction of disinhibition. 3. The analysis of cortical visual evoked responses demonstrated the presence of short latency visual afferents at the frontal cortex level, as well as a high level of hyperexcitability for the visual modality. The most photosensitive animals can be distinguished by a more marked frontal hyperexcitability and by slight differences in the form of both the occipital evoked responses (decrease in amplitude of the early part of the response, frequent absence of wave IV) and the frontal ones (higher amplitude of the later part of the responses). In some of the animals, whether they were photosensitive or not, we found high amplitude frontal visual evoked responses resembling spikes and waves. 4. Certain observations in both man and the photosensitive baboon suggested the possible involvement of periocular somatic afferents in the triggering of paroxysmal manifestations. The study of these cortical projections in the baboon showed that they possess certain specific characteristics which distinguish them from the other somatic projections (short latency, large frontal spread and ipsilateral responses of higher amplitude than

  7. Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex

    PubMed Central

    Jeong, Su Keun

    2016-01-01

    associated with human occipital and temporal cortices, here we show, by measuring fMRI response patterns, that a region in the human parietal cortex can robustly represent task-relevant object identities. These representations are invariant to changes in a host of visual features, such as viewpoint, and reflect an abstract level of representation that has not previously been reported in the human parietal cortex. Critically, these neural representations are behaviorally relevant as they closely track the perceived object identities. Human parietal cortex thus participates in the moment-to-moment goal-directed visual information representation in the brain. PMID:26843642

  8. Insular cortex epilepsy: an overview.

    PubMed

    Nguyen, Dang Khoa; Nguyen, Dong Bach; Malak, Ramez; Bouthillier, Alain

    2009-08-01

    In this review the authors discuss insular cortex epilepsy, an under-recognized localization-related syndrome that may explain some temporal (but also frontal and parietal lobe) epilepsy surgery failures. The insula may generate a variety of symptoms (including visceral, motor and somatosensory) that mimic temporal, frontal or parietal lobe onset seizures. Intracerebral electrodes directly implanted in the insula are currently the only way to confirm insular seizures. Consideration should be given to exploration of the insular cortex in MRI negative patients with seizure semiology consistent with insular onset seizures. Electroencephalographers should have a low threshold to sample this region, especially in the absence of a structural lesion. Microneurosurgical technical advances allow resective surgery of the insula with relatively low morbidity. PMID:19760905

  9. Traveling waves in visual cortex.

    PubMed

    Sato, Tatsuo K; Nauhaus, Ian; Carandini, Matteo

    2012-07-26

    Electrode recordings and imaging studies have revealed that localized visual stimuli elicit waves of activity that travel across primary visual cortex. Traveling waves are present also during spontaneous activity, but they can be greatly reduced by widespread and intensive visual stimulation. In this Review, we summarize the evidence in favor of these traveling waves. We suggest that their substrate may lie in long-range horizontal connections and that their functional role may involve the integration of information over large regions of space.

  10. Frontal and occipital-parietal alpha oscillations distinguish between stimulus conflict and response conflict

    PubMed Central

    Tang, Dandan; Hu, Li; Lei, Yi; Li, Hong; Chen, Antao

    2015-01-01

    Conflicts between target and distraction can occur at the level of both stimulus and response processing. However, the neural oscillations underlying occurrence of the interference in different levels have not been understood well. Here, we reveal such a neural oscillation modulation by combining a 4:2 mapping design (two targets are mapped into one response key) with a practice paradigm (pretest, practice, and posttest) when healthy human participants were performing a novel color-word flanker task. Response time (RT) results revealed constant stimulus conflict (SC, stimulus incongruent minus congruent, SI-CO) but increased response conflict (RC, response incongruent minus stimulus incongruent, RI-SI) with practice. Event-related potential (ERP) results demonstrated stable P3 amplitude differences for the SI-CO in the centro-parietal region across practice, which may reflect maintenance of the stimulus processing; and significantly larger P3 amplitudes in the same region for the RI relative to SI trial type in posttest, which may reflect inhibition of the distraction response. Further, neural oscillatory results showed that with practice, the lower alpha band in the frontal region and the upper alpha band in the occipital-parietal region distinguished between stimulus- and response-conflicts, respectively, suggesting that practice reduces the alertness (sensitiveness) of the brain to conflict occurrence, and enhances stimulus-response associations. PMID:26300758

  11. Tonic inhibition and ponto-geniculo-occipital-related activities shape abducens motoneuron discharge during REM sleep.

    PubMed

    Escudero, Miguel; Márquez-Ruiz, Javier

    2008-07-15

    Eye movements, ponto-geniculo-occipital (PGO) waves, muscular atonia and desynchronized cortical activity are the main characteristics of rapid eye movement (REM) sleep. Although eye movements designate this phase, little is known about the activity of the oculomotor system during REM sleep. In this work, we recorded binocular eye movements by the scleral search-coil technique and the activity of identified abducens (ABD) motoneurons along the sleep-wake cycle in behaving cats. The activity of ABD motoneurons during REM sleep was characterized by a tonic decrease of their mean firing rate throughout this period, and short bursts and pauses coinciding with the occurrence of PGO waves. We demonstrate that the decrease in the mean firing discharge was due to an active inhibition of ABD motoneurons, and that the occurrence of primary and secondary PGO waves induced a pattern of simultaneous but opposed phasic activation and inhibition on each ABD nucleus. With regard to eye movements, during REM sleep ABD motoneurons failed to codify eye position as during alertness, but continued to codify eye velocity. The pattern of tonic inhibition and the phasic activations and inhibitions shown by ABD motoneurons coincide with those reported in other non-oculomotor motoneurons, indicating that the oculomotor system - contrary to what has been accepted until now - is not different from other motor systems during REM sleep, and that all motor systems are receiving similar command signals during this period.

  12. [A case of topographical disturbance following a left medial parieto-occipital lobe infarction].

    PubMed

    Obi, T; Bando, M; Takeda, K; Sakuta, M

    1992-04-01

    A 59-year-old man was admitted to our hospital for his sudden-onset right hemianopsia. Thirty days after the onset, neuropsychological examination revealed obvious topographical disorientation and mild optic ataxia. Magnetic resonance imaging showed abnormal intensity area at the left medial parietooccipital region and left splenium of the corpus callosum. Although single photon emission CT showed uptake decrement in the left hemisphere, almost normal uptake was observed in the right hemisphere. He could recognize landmarks, but fail to recognize the relative position of landmarks. Therefore, his topographical disorientation was considered to be due to perceptual disturbance, memory disturbance of relative position of landmarks, or both. He was right-handed with no sinistral relative, and showed dyslexia and dysgraphia early in his clinical course. The laterality index of the dichotic listening test revealed the right ear dominance. These results indicated that his left hemisphere was language dominant. His topographical disorientation could be caused by the medial parieto-occipital lesion in the dominant hemisphere.

  13. Homonymous hemianopia caused by occipital lobe infarction in heparin-induced thrombocytopenia and thrombosis syndrome.

    PubMed

    Mizrachi, Iris Ben-Bassat; Schmaier, Alvin H; Trobe, Jonathan D

    2005-09-01

    A 73-year-old woman developed mental confusion and finger pain after treatment with enoxaparin following arthroplasty. A platelet count was 163,000/microL. Because digital embolism was suspected, she was emergently treated with heparin and recombinant tissue plasminogen activator (rTPA). During rTPA infusion, she reported sudden hemifield loss, so the infusion was aborted. Brain CT disclosed a non-hemorrhagic occipital infarct. Platelets had fallen to 63,000 over eight days, and antibodies against a complex of heparin and platelet factor 4 were detected. These findings led to the diagnosis of heparin-induced thrombocytopenia and thrombosis syndrome (HITTS), an immune-mediated disorder in which venous and arterial thromboses occur. Right lower extremity deep venous thromboses were later diagnosed, and an MRI disclosed multiple cerebral infarcts of recent onset but different ages. Previous reports have documented brain arterial strokes in HITTS, mostly in the distribution of the middle cerebral artery, but clinical documentation is sparse, and there have been no imaging reports. This is the first report to document the clinical and imaging features of a HITTS stroke and the first to describe a stroke presumptively caused by a low molecular weight heparin. It emphasizes that HITTS may cause stroke even when the platelet count is normal. Diagnosis of HITTS should prompt immediate cessation of heparin treatment and substitution of a direct thrombin inhibitor or fondaparinux.

  14. Frontal and occipital-parietal alpha oscillations distinguish between stimulus conflict and response conflict.

    PubMed

    Tang, Dandan; Hu, Li; Lei, Yi; Li, Hong; Chen, Antao

    2015-01-01

    Conflicts between target and distraction can occur at the level of both stimulus and response processing. However, the neural oscillations underlying occurrence of the interference in different levels have not been understood well. Here, we reveal such a neural oscillation modulation by combining a 4:2 mapping design (two targets are mapped into one response key) with a practice paradigm (pretest, practice, and posttest) when healthy human participants were performing a novel color-word flanker task. Response time (RT) results revealed constant stimulus conflict (SC, stimulus incongruent minus congruent, SI-CO) but increased response conflict (RC, response incongruent minus stimulus incongruent, RI-SI) with practice. Event-related potential (ERP) results demonstrated stable P3 amplitude differences for the SI-CO in the centro-parietal region across practice, which may reflect maintenance of the stimulus processing; and significantly larger P3 amplitudes in the same region for the RI relative to SI trial type in posttest, which may reflect inhibition of the distraction response. Further, neural oscillatory results showed that with practice, the lower alpha band in the frontal region and the upper alpha band in the occipital-parietal region distinguished between stimulus- and response-conflicts, respectively, suggesting that practice reduces the alertness (sensitiveness) of the brain to conflict occurrence, and enhances stimulus-response associations. PMID:26300758

  15. Monostotic fibrous dysplasia involving occipital bone: a case report and review of literature

    PubMed Central

    Basaran, Recep; Kaksi, Mustafa; Gur, Erdal; Efendioglu, Mustafa; Balkuv, Ece; Sav, Aydin

    2014-01-01

    Fibrous dysplasia (FD) is a progressive systemic bone tumour of young and it can be seen on cranial bones. FD is divided into three types according to radiological features. The second most common subtype is polyostotic subtype. With this article, we aimed to review and present clinical features, radiological examination, differential diagnosis and treatment management of a case of solitary monostotic fibrous dysplasia of occipital bone. 15 years old female patient admitted to our hospital for a bump and in the back of his head that she noticed 1 month ago. Her physical and neurological examination was normal. On cranial CT examination we detected a bony defect. Her gadolinium enhanced cranial MRI revealed bony defect along with massive gadolinium enhancement in adjacent tissue. On histopathologic examination; PANCK, CD68, CD1a were found negative and CD45, S-100, Vimentine were found positive. Ki-67 was 4,8%. In conclusion, fibrous dysplasia is a progressive bone disease of the young patients. Despite its resemblance to a benign lesion by not being symptomatic it can progress and cause severe bony defects and skin lesions. Total surgical resection is necessary and sufficient for total treatment. PMID:25745531

  16. Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep.

    PubMed

    Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A; Zennig, Corinna; Benca, Ruth M; Lutz, Antoine; Davidson, Richard J; Tononi, Giulio

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25-40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.

  17. First-drug treatment failures in 42 Turkish children with idiopathic childhood occipital epilepsies

    PubMed Central

    Incecik, Faruk; Herguner, Ozlem M.; Altunbasak, Sakir

    2015-01-01

    Background: The early and late benign occipital epilepsies of childhood (BOEC) are described as two discrete electro-clinical syndromes, eponymously known as Panayiotopoulos and Gastaut syndromes. The purpose of this study was to identify predictors of failure to respond to the initial antiepileptic drug (AED). Materials and Methods: A total of 42 children with BOEC were enrolled. Predictive factors were analyzed by survival methods. Results: Among the 42, 25 patients (59.5%) were boys and 17 (40.5%) were girls and the mean age at the seizure onset was 7.46 ± 2.65 years (4–14 years). Of the 42 patients, 34 (81.0%) were treated relatively successfully with the first AED treatment, and 8 (19.0%) were not responded initial AED treatment. There was no correlation between response to initial AED treatment and sex, consanguinity, epilepsy history of family, age of seizure onset, frequency of seizures, history of status epilepticus, duration of starting first treatment, findings on electroencephalogram. However, history of febrile seizure and type of BOEC were significantly associated with failure risk. Conclusions: Factors predicting failure to respond to the AED were history of febrile seizure and type of BOEC in children with BOEC. PMID:26167008

  18. Altered spontaneous neural activity in the occipital face area reflects behavioral deficits in developmental prosopagnosia.

    PubMed

    Zhao, Yuanfang; Li, Jingguang; Liu, Xiqin; Song, Yiying; Wang, Ruosi; Yang, Zetian; Liu, Jia

    2016-08-01

    Individuals with developmental prosopagnosia (DP) exhibit severe difficulties in recognizing faces and to a lesser extent, also exhibit difficulties in recognizing non-face objects. We used fMRI to investigate whether these behavioral deficits could be accounted for by altered spontaneous neural activity. Two aspects of spontaneous neural activity were measured: the intensity of neural activity in a voxel indexed by the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), and the connectivity of a voxel to neighboring voxels indexed by regional homogeneity (ReHo). Compared with normal adults, both the fALFF and ReHo values within the right occipital face area (rOFA) were significantly reduced in DP subjects. Follow-up studies on the normal adults revealed that these two measures indicated further functional division of labor within the rOFA. The fALFF in the rOFA was positively correlated with behavioral performance in recognition of non-face objects, whereas ReHo in the rOFA was positively correlated with processing of faces. When considered together, the altered fALFF and ReHo within the same region (rOFA) may account for the comorbid deficits in both face and object recognition in DPs, whereas the functional division of labor in these two measures helps to explain the relative independency of deficits in face recognition and object recognition in DP. PMID:27475965

  19. Multifocal epilepsy: the role of palliative resection - intractable frontal and occipital lobe epilepsy secondary to radiotherapy for acute lymphoblastic leukaemia.

    PubMed

    Radhakrishnan, Ashalatha; Sithinamsuwan, Pasiri; Harvey, A Simon; Flanagan, Danny; Fitt, Gregory; Berlangieri, Sam; Jackson, Graeme D; Berkovic, Samuel F; Scheffer, Ingrid E

    2008-12-01

    Patients with multifocal epilepsy are often considered unsuitable for epilepsy surgery. We report an adolescent with intractable frontal and occipital lobe seizures, secondary to complications of treatment for acute lymphoblastic leukaemia as a young child. Chemotherapy and radiotherapy were complicated by bilateral, posterior leukoencephalopathy and later an acquired frontal cerebral cavernous malformation (CCM). Detailed electro-clinical and imaging studies showed multiple, frontal lobe seizures per day with less frequent and non-debilitating, simple, occipital lobe seizures. Focal resection of the frontal CCM abolished the socially-disabling seizures with resultant marked improvement in the patient's quality of life at 12 months. Careful analysis of the type and impact of focal seizures in the setting of multifocal epilepsy may demonstrate that one seizure type is more deleterious to quality of life and may be amenable to surgery. In this situation, the patient may benefit significantly from surgery to resect the more active epileptic focus.

  20. Low-dose aripiprazole resolved complex hallucinations in the left visual field after right occipital infarction (Charles Bonnet syndrome).

    PubMed

    Chen, Cheng-Che; Liu, Hsing-Cheng

    2011-06-01

    We reported a patient who suffered from complex visual hallucinations with left homonymous hemianopsia. Brain imaging showed an acute haemorrhage infarct at the right occipital lobe. Charles Bonnet syndrome (CBS) was suspected and aripiprazole was prescribed at 5 mg daily. After 3 weeks, the symptoms of hallucinations and anxiety were relieved. Although some CBS patients might be self-limited without discomfort, low-dose aripiprazole can be considered as a safe medication for significantly anxious patients with CBS.

  1. Phenotypic and Genetic Correlations Between the Lobar Segments of the Inferior Fronto-occipital Fasciculus and Attention

    PubMed Central

    Leng, Yuan; Shi, Yonggang; Yu, Qiaowen; Van Horn, John Darrell; Tang, Haiyan; Li, Junning; Xu, Wenjian; Ge, Xinting; Tang, Yuchun; Han, Yan; Zhang, Dong; Xiao, Min; Zhang, Huaqiang; Pang, Zengchang; Toga, Arthur W.; Liu, Shuwei

    2016-01-01

    Attention deficits may present dysfunctions in any one or two components of attention (alerting, orienting, and executive control (EC)). However, these various forms of attention deficits generally have abnormal microstructure integrity of inferior fronto-occipital fasciculus (IFOF). In this work, we aim to deeply explore: (1) associations between microstructure integrities of IFOF (including frontal, parietal, temporal, occipital, and insular segments) and attention by means of structural equation models and multiple regression analyses; (2) genetic/environmental effects on IFOF, attention, and their correlations using bivariate genetic analysis. EC function was attributed to the fractional anisotropy (FA) of left (correlation was driven by genetic and environmental factors) and right IFOF (correlation was driven by environmental factors), especially to left frontal part and right occipital part (correlation was driven by genetic factors). Alerting was associated with FA in parietal and insular parts of left IFOF. No significant correlation was found between orienting and IFOF. This study revealed the advantages of lobar-segmental analysis in structure-function correlation study and provided the anatomical basis for kinds of attention deficits. The common genetic/environmental factors implicated in the certain correlations suggested the common physiological mechanisms for two traits, which should promote the discovery of single-nucleotide polymorphisms affecting IFOF and attention. PMID:27597294

  2. Phenotypic and Genetic Correlations Between the Lobar Segments of the Inferior Fronto-occipital Fasciculus and Attention.

    PubMed

    Leng, Yuan; Shi, Yonggang; Yu, Qiaowen; Van Horn, John Darrell; Tang, Haiyan; Li, Junning; Xu, Wenjian; Ge, Xinting; Tang, Yuchun; Han, Yan; Zhang, Dong; Xiao, Min; Zhang, Huaqiang; Pang, Zengchang; Toga, Arthur W; Liu, Shuwei

    2016-01-01

    Attention deficits may present dysfunctions in any one or two components of attention (alerting, orienting, and executive control (EC)). However, these various forms of attention deficits generally have abnormal microstructure integrity of inferior fronto-occipital fasciculus (IFOF). In this work, we aim to deeply explore: (1) associations between microstructure integrities of IFOF (including frontal, parietal, temporal, occipital, and insular segments) and attention by means of structural equation models and multiple regression analyses; (2) genetic/environmental effects on IFOF, attention, and their correlations using bivariate genetic analysis. EC function was attributed to the fractional anisotropy (FA) of left (correlation was driven by genetic and environmental factors) and right IFOF (correlation was driven by environmental factors), especially to left frontal part and right occipital part (correlation was driven by genetic factors). Alerting was associated with FA in parietal and insular parts of left IFOF. No significant correlation was found between orienting and IFOF. This study revealed the advantages of lobar-segmental analysis in structure-function correlation study and provided the anatomical basis for kinds of attention deficits. The common genetic/environmental factors implicated in the certain correlations suggested the common physiological mechanisms for two traits, which should promote the discovery of single-nucleotide polymorphisms affecting IFOF and attention. PMID:27597294

  3. Prefrontal cortex white matter tracts in prodromal Huntington disease

    PubMed Central

    Matsui, Joy T.; Vaidya, Jatin G.; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A.; Johnson, Hans J.; Paulsen, Jane S.

    2015-01-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e. prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATR), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. PMID:26179962

  4. Different mean thickness implicates involvement of the cortex in migraine.

    PubMed

    Yu, Zhi-Bo; Peng, Jing; Lv, Yan-Bing; Zhao, Ming; Xie, Bing; Liang, Ming-Long; Li, Hai-Tao; Zhou, Zhen-Hua

    2016-09-01

    The results of neuroimaging studies on migraines have shown that the functions and functional connectivity networks of some brain regions are altered in migraine patients, and different brain structure volumes have also been observed in recent years. However, it is still not known whether the mean thickness of the cortex is different in migraine patients.A total of 48 migraine without aura (MWoA) patients in interictal phase and 48 healthy controls were enrolled in this study. All subjects received neurological and magnetic resonance imaging (MRI) examinations. Automatic segmentation processing of high-resolution MRI structure images was performed using FreeSurfer software.The mean cortical thickness of many brain regions in the frontal lobe, temporal lobe, occipital lobe, parietal lobe, and insula in the migraine patient group was significantly decreased compared with that in the healthy control group. The mean cortical thickness of the insula anterior was positively correlated with the duration of the disease course, while the mean cortical thickness of insula superior and insula inferior was negatively correlated with the duration of the disease course.The results showed that MWoA results from a complex interactive reaction involving many brain regions and many brain network systems together. However, it is still not clear whether the difference in the brain structure of migraine patients is the result or the cause of headache, which is a topic that must be better elucidated. Therefore, longitudinal neuroimaging studies on migraine patients with large samples sizes should be performed using more advanced neuroimaging techniques. PMID:27631235

  5. Prefrontal cortex white matter tracts in prodromal Huntington disease.

    PubMed

    Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A; Johnson, Hans J; Paulsen, Jane S

    2015-10-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc.

  6. A cardinal orientation bias in scene-selective visual cortex.

    PubMed

    Nasr, Shahin; Tootell, Roger B H

    2012-10-24

    It has long been known that human vision is more sensitive to contours at cardinal (horizontal and vertical) orientations, compared with oblique orientations; this is the "oblique effect." However, the real-world relevance of the oblique effect is not well understood. Experiments here suggest that this effect is linked to scene perception, via a common bias in the image statistics of scenes. This statistical bias for cardinal orientations is found in many "carpentered environments" such as buildings and indoor scenes, and some natural scenes. In Experiment 1, we confirmed the presence of a perceptual oblique effect in a specific set of scene stimuli. Using those scenes, we found that a well known "scene-selective" visual cortical area (the parahippocampal place area; PPA) showed distinctively higher functional magnetic resonance imaging (fMRI) activity to cardinal versus oblique orientations. This fMRI-based oblique effect was not observed in other cortical areas (including scene-selective areas transverse occipital sulcus and retrosplenial cortex), although all three scene-selective areas showed the expected inversion effect to scenes. Experiments 2 and 3 tested for an analogous selectivity for cardinal orientations using computer-generated arrays of simple squares and line segments, respectively. The results confirmed the preference for cardinal orientations in PPA, thus demonstrating that the oblique effect can also be produced in PPA by simple geometrical images, with statistics similar to those in scenes. Thus, PPA shows distinctive fMRI selectivity for cardinal orientations across a broad range of stimuli, which may reflect a perceptual oblique effect.

  7. Functional Mapping of Face-Selective Regions in the Extrastriate Visual Cortex of the Marmoset

    PubMed Central

    Hung, Chia-Chun; Yen, Cecil C.; Ciuchta, Jennifer L.; Papoti, Daniel; Bock, Nicholas A.; Leopold, David A.

    2015-01-01

    The cerebral cortex of humans and macaques has specialized regions for processing faces and other visual stimulus categories. It is unknown whether a similar functional organization exists in New World monkeys, such as the common marmoset (Callithrix jacchus), a species of growing interest as a primate model in neuroscience. To address this question, we measured selective neural responses in the brain of four awake marmosets trained to fix their gaze upon images of faces, bodies, objects, and control patterns. In two of the subjects, we measured high gamma-range field potentials from electrocorticography arrays implanted over a large portion of the occipital and inferotemporal cortex. In the other two subjects, we measured BOLD fMRI responses across the entire brain. Both techniques revealed robust, regionally specific patterns of category-selective neural responses. We report that at least six face-selective patches mark the occipitotemporal pathway of the marmoset, with the most anterior patches showing the strongest preference for faces over other stimuli. The similar appearance of these patches to previous findings in macaques and humans, including their apparent arrangement in two parallel pathways, suggests that core elements of the face processing network were present in the common anthropoid primate ancestor living ∼35 million years ago. The findings also identify the marmoset as a viable animal model system for studying specialized neural mechanisms related to high-level social visual perception in humans. PMID:25609630

  8. Lateralization of the posterior parietal cortex for internal monitoring of self- versus externally generated movements.

    PubMed

    Ogawa, Kenji; Inui, Toshio

    2007-11-01

    Internal monitoring or state estimation of movements is essential for human motor control to compensate for inherent delays and noise in sensorimotor loops. Two types of internal estimation of movements exist: self-generated movements, and externally generated movements. We used functional magnetic resonance imaging to investigate differences in brain activity for internal monitoring of self- versus externally generated movements during visual occlusion. Participants tracked a sinusoidally moving target with a mouse cursor. On some trials, vision of either target (externally generated) or cursor (self-generated) movement was transiently occluded, during which subjects continued tracking by estimating current position of either the invisible target or cursor on screen. Analysis revealed that both occlusion conditions were associated with increased activity in the presupplementary motor area and decreased activity in the right lateral occipital cortex compared to a control condition with no occlusion. Moreover, the right and left posterior parietal cortex (PPC) showed greater activation during occlusion of target and cursor movements, respectively. This study suggests lateralization of the PPC for internal monitoring of internally versus externally generated movements, fully consistent with previously reported clinical findings. PMID:17958485

  9. Orbitofrontal Cortex and the Early Processing of Visual Novelty in Healthy Aging.

    PubMed

    Kaufman, David A S; Keith, Cierra M; Perlstein, William M

    2016-01-01

    Event-related potential (ERP) studies have previously found that scalp topographies of attention-related ERP components show frontal shifts with age, suggesting an increased need for compensatory frontal activity to assist with top-down facilitation of attention. However, the precise neural time course of top-down attentional control in aging is not clear. In this study, 20 young (mean: 22 years) and 14 older (mean: 64 years) adults completed a three-stimulus visual oddball task while high-density ERPs were acquired. Colorful, novel distracters were presented to engage early visual processing. Relative to young controls, older participants exhibited elevations in occipital early posterior positivity (EPP), approximately 100 ms after viewing colorful distracters. Neural source models for older adults implicated unique patterns of orbitofrontal cortex (OFC; BA 11) activity during early visual novelty processing (100 ms), which was positively correlated with subsequent activations in primary visual cortex (BA 17). Older adult EPP amplitudes and OFC activity were associated with performance on tests of complex attention and executive function. These findings are suggestive of age-related, compensatory neural changes that may driven by a combination of weaker cortical efficiency and increased need for top-down control over attention. Accordingly, enhanced early OFC activity during visual attention may serve as an important indicator of frontal lobe integrity in healthy aging. PMID:27199744

  10. Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex.

    PubMed

    Jonas, Jacques; Frismand, Solène; Vignal, Jean-Pierre; Colnat-Coulbois, Sophie; Koessler, Laurent; Vespignani, Hervé; Rossion, Bruno; Maillard, Louis

    2014-07-01

    Electrical brain stimulation can provide important information about the functional organization of the human visual cortex. Here, we report the visual phenomena evoked by a large number (562) of intracerebral electrical stimulations performed at low-intensity with depth electrodes implanted in the occipito-parieto-temporal cortex of 22 epileptic patients. Focal electrical stimulation evoked primarily visual hallucinations with various complexities: simple (spot or blob), intermediary (geometric forms), or complex meaningful shapes (faces); visual illusions and impairments of visual recognition were more rarely observed. With the exception of the most posterior cortical sites, the probability of evoking a visual phenomenon was significantly higher in the right than the left hemisphere. Intermediary and complex hallucinations, illusions, and visual recognition impairments were almost exclusively evoked by stimulation in the right hemisphere. The probability of evoking a visual phenomenon decreased substantially from the occipital pole to the most anterior sites of the temporal lobe, and this decrease was more pronounced in the left hemisphere. The greater sensitivity of the right occipito-parieto-temporal regions to intracerebral electrical stimulation to evoke visual phenomena supports a predominant role of right hemispheric visual areas from perception to recognition of visual forms, regardless of visuospatial and attentional factors. PMID:24733699

  11. The role of prefrontal cortex in visuo-spatial planning: A repetitive TMS study.

    PubMed

    Basso, Demis; Lotze, Martin; Vitale, Lavinia; Ferreri, Florinda; Bisiacchi, Patrizia; Olivetti Belardinelli, Marta; Rossini, Paolo Maria; Birbaumer, Niels

    2006-05-01

    The visuo-spatial planning process is based on an "opportunistic" combination of heuristics and strategies, carried out in small units during the execution of plans. In order to investigate the functional role of the prefrontal cortex in heuristic switching, 42 healthy controls performed a labyrinth crossing task (the Maps Test). During this computerized version of the Travelling Salesperson Problem, subjects had to decide which order of locations optimizes total travel time and distance. This task was performed with and without 1 Hz repetitive transcranial magnetic stimulation (rTMS), which exerts an inhibitory action on the targeted area, applied during the task over bilateral frontal sites (active stimulation) and parieto-occipital site (sham stimulation). Only repetitive bilateral rTMS over F3 and F4 significantly decreased the number of strategies with changes of heuristics, and increased the number of movements required to solve the task. This behaviour contrasts with the performance of healthy subjects in the planning task, but is consistent with the performance of frontal traumatic brain injury patients. The results indicate that, in a visuo-spatial problem-solving task, the prefrontal cortex is involved in the switching between heuristics during the execution of a plan.

  12. Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory.

    PubMed

    Ester, Edward F; Sprague, Thomas C; Serences, John T

    2015-08-19

    Working memory (WM) enables the storage and manipulation of information in an active state. WM storage has long been associated with sustained increases in activation across a network of frontal and parietal cortical regions. However, recent evidence suggests that these regions primarily encode information related to general task goals rather than feature-selective representations of specific memoranda. These goal-related representations are thought to provide top-down feedback that coordinates the representation of fine-grained details in early sensory areas. Here, we test this model using fMRI-based reconstructions of remembered visual details from region-level activation patterns. We could reconstruct high-fidelity representations of a remembered orientation based on activation patterns in occipital visual cortex and in several sub-regions of frontal and parietal cortex, independent of sustained increases in mean activation. These results challenge models of WM that postulate disjoint frontoparietal "top-down control" and posterior sensory "feature storage" networks. PMID:26257053

  13. Contour junctions underlie neural representations of scene categories in high-level human visual cortex.

    PubMed

    Choo, Heeyoung; Walther, Dirk B

    2016-07-15

    Humans efficiently grasp complex visual environments, making highly consistent judgments of entry-level category despite their high variability in visual appearance. How does the human brain arrive at the invariant neural representations underlying categorization of real-world environments? We here show that the neural representation of visual environments in scene-selective human visual cortex relies on statistics of contour junctions, which provide cues for the three-dimensional arrangement of surfaces in a scene. We manipulated line drawings of real-world environments such that statistics of contour orientations or junctions were disrupted. Manipulated and intact line drawings were presented to participants in an fMRI experiment. Scene categories were decoded from neural activity patterns in the parahippocampal place area (PPA), the occipital place area (OPA) and other visual brain regions. Disruption of junctions but not orientations led to a drastic decrease in decoding accuracy in the PPA and OPA, indicating the reliance of these areas on intact junction statistics. Accuracy of decoding from early visual cortex, on the other hand, was unaffected by either image manipulation. We further show that the correlation of error patterns between decoding from the scene-selective brain areas and behavioral experiments is contingent on intact contour junctions. Finally, a searchlight analysis exposes the reliance of visually active brain regions on different sets of contour properties. Statistics of contour length and curvature dominate neural representations of scene categories in early visual areas and contour junctions in high-level scene-selective brain regions.

  14. Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex.

    PubMed

    Jonas, Jacques; Frismand, Solène; Vignal, Jean-Pierre; Colnat-Coulbois, Sophie; Koessler, Laurent; Vespignani, Hervé; Rossion, Bruno; Maillard, Louis

    2014-07-01

    Electrical brain stimulation can provide important information about the functional organization of the human visual cortex. Here, we report the visual phenomena evoked by a large number (562) of intracerebral electrical stimulations performed at low-intensity with depth electrodes implanted in the occipito-parieto-temporal cortex of 22 epileptic patients. Focal electrical stimulation evoked primarily visual hallucinations with various complexities: simple (spot or blob), intermediary (geometric forms), or complex meaningful shapes (faces); visual illusions and impairments of visual recognition were more rarely observed. With the exception of the most posterior cortical sites, the probability of evoking a visual phenomenon was significantly higher in the right than the left hemisphere. Intermediary and complex hallucinations, illusions, and visual recognition impairments were almost exclusively evoked by stimulation in the right hemisphere. The probability of evoking a visual phenomenon decreased substantially from the occipital pole to the most anterior sites of the temporal lobe, and this decrease was more pronounced in the left hemisphere. The greater sensitivity of the right occipito-parieto-temporal regions to intracerebral electrical stimulation to evoke visual phenomena supports a predominant role of right hemispheric visual areas from perception to recognition of visual forms, regardless of visuospatial and attentional factors.

  15. Orbitofrontal Cortex and the Early Processing of Visual Novelty in Healthy Aging

    PubMed Central

    Kaufman, David A. S.; Keith, Cierra M.; Perlstein, William M.

    2016-01-01

    Event-related potential (ERP) studies have previously found that scalp topographies of attention-related ERP components show frontal shifts with age, suggesting an increased need for compensatory frontal activity to assist with top-down facilitation of attention. However, the precise neural time course of top-down attentional control in aging is not clear. In this study, 20 young (mean: 22 years) and 14 older (mean: 64 years) adults completed a three-stimulus visual oddball task while high-density ERPs were acquired. Colorful, novel distracters were presented to engage early visual processing. Relative to young controls, older participants exhibited elevations in occipital early posterior positivity (EPP), approximately 100 ms after viewing colorful distracters. Neural source models for older adults implicated unique patterns of orbitofrontal cortex (OFC; BA 11) activity during early visual novelty processing (100 ms), which was positively correlated with subsequent activations in primary visual cortex (BA 17). Older adult EPP amplitudes and OFC activity were associated with performance on tests of complex attention and executive function. These findings are suggestive of age-related, compensatory neural changes that may driven by a combination of weaker cortical efficiency and increased need for top-down control over attention. Accordingly, enhanced early OFC activity during visual attention may serve as an important indicator of frontal lobe integrity in healthy aging. PMID:27199744

  16. Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus.

    PubMed

    Hendry, S H; Jones, E G; Hockfield, S; McKay, R D

    1988-02-01

    The monoclonal antibody Cat-301 was used to examine neurons in the cerebral cortex and dorsal thalamus of several mammalian species, including Old World monkeys, cats, bush babies, guinea pigs, and rats. In each species, subpopulations of cortical and thalamic neurons are stained along the surfaces of their somata and proximal dendrites. Cat-301-positive cortical neurons include specific groups of pyramidal cells (e.g., corticospinal but not corticobulbar or callosal neurons in the monkey sensory-motor areas) and certain GABA-immunoreactive nonpyramidal cells. In the thalamus, the relay neurons projecting to the cortex and not the intrinsic neurons are stained. The Cat-301-positive neurons are nonhomogeneously distributed in the cat and monkey cortex and thalamus. In the cortex, they are densely packed in 2 bands that in most areas include layers III and V, but that in primary sensory areas include layers IV and VI. Because the density of stained neurons, their distribution, and the intensity of their staining vary among cortical areas, the borders between neighboring areas can often be detected by the differences in Cat-301 staining. Broader, regional differences are also readily apparent, for areas in the parietal and occipital lobes contain large numbers of intensely stained cells, but most areas in the frontal and temporal lobes contain fewer, more lightly stained neurons. The same broad differences are seen within the thalamus: only those nuclei reciprocally connected with intensely stained cortical areas contain large numbers of Cat-301-positive neurons. Differences among species include variations in cell density and distribution when a given cortical area or thalamic nucleus is compared between cats and monkeys. Greater differences are seen among the other species. Immunoreactive neurons in the cerebral cortex are sparse and lightly stained in guinea pigs, are restricted to the hippocampal formation in rats, and are very rare and isolated in bush babies

  17. Revisiting the cortical system for peripheral reaching at the parieto-occipital junction.

    PubMed

    Martin, Jason A; Karnath, Hans-Otto; Himmelbach, Marc

    2015-03-01

    Optic ataxia (OA) is a neurological disorder that is characterised by misreaching to targets in the visual periphery. The anatomy of OA thus provides important information for the neural representation of visually guided reaching in humans. In 2005 a lesion mapping analysis of OA localised the critical lesion site at the parieto-occipital junction (POJ) (Karnath & Perenin, 2005). This work was accompanied by the discovery of a peripheral reaching module at the POJ in an fMRI study (Prado et al., 2005). The ostensible overlap between the territory typically affected in patients with OA and the findings of Prado et al. (2005) had a tremendous influence on the search for a cortical peripheral reaching module. However, a close inspection of the functional Magnetic Resonance Imaging (fMRI) study revealed that a comparison between reaching towards visible targets in the peripheral visual field and reaching to visible targets in the central visual field--which is the key aspect in clinical examinations of OA--was not conducted. Moreover, whereas main effects of reaching overlapped with the OA lesion site, specific interaction effects did not overlap. We performed a direct comparison between reaching to visible peripheral targets and reaching to visible central targets to address the inconsistencies between the aforementioned studies. Our analysis shows that Prado et al.'s study cannot be taken as evidence for a delineated module for peripheral reaching. In contrast to Prado et al. we found a combined system of POJ, IPS and SPL areas--the posterior human 7A, mIPS, V6A and the posterior IPS--with increased signals during reaching to peripheral targets.

  18. Occipital foramina development involves localised regulation of mesenchyme proliferation and is independent of apoptosis.

    PubMed

    Akbareian, Sophia E; Pitsillides, Andrew A; Macharia, Raymond G; McGonnell, Imelda M

    2015-06-01

    Cranial foramina are holes within the skull, formed during development, allowing entry and exit of blood vessels and nerves. Once formed they must remain open, due to the vital structures they contain, i.e. optic nerves, jugular vein, carotid artery, and other cranial nerves and blood vessels. Understanding cranial foramina development is essential as cranial malformations lead to the stenosis or complete closure of these structures, resulting in blindness, deafness, facial paralysis, raised intracranial pressure and lethality. Here we focus on describing early events in the formation of the jugular, carotid and hypoglossal cranial foramina that form in the mesoderm-derived, endochondral occipital bones at the base of the embryonic chick skull. Whole-mount skeletal staining of skulls indicates the appearance of these foramina from HH32/D7.5 onwards. Haematoxylin & eosin staining of sections shows that the intimately associated mesenchyme, neighbouring the contents of these cranial foramina, is initially very dense and gradually becomes sparser as development proceeds. Histological examination also revealed that these foramina initially contain relatively large-diameter nerves, which later become refined, and are closely associated with the blood vessel, which they also innervate within the confines of the foramina. Interestingly cranial foramina in the base of the skull contain blood vessels lacking smooth muscle actin, which suggests these blood vessels belong to glomus body structures within the foramina. The blood vessel shape also appears to dictate the overall shape of the resulting foramina. We initially hypothesised that cranial foramina development could involve targeted proliferation and local apoptosis to cause 'mesenchymal clearing' and the creation of cavities in a mechanism similar to joint cavitation. We find that this is not the case, and propose that a mechanism reliant upon local nerve/blood vessel-derived restriction of ossification may contribute

  19. Fractures of the occipital condyle clinical spectrum and course in eight patients

    PubMed Central

    Krüger, Antonio; Oberkircher, Ludwig; Frangen, Thomas; Ruchholtz, Steffen; Kühne, Christian; Junge, Andreas

    2013-01-01

    Introduction: Occipital condyle fractures (OCFs) are considered to be rare injuries. OCFs are now diagnosed more often because of the widespread use of computed tomography. Our aim is to report the incidence, treatment and long term outcome of 8 patients with OCFs. Materials and Methods: All patients presenting with multiple trauma from 1993 to 2006 were analyzed retrospectively. Characteristics and course of the treatment were evaluated. Follow-up was performed after 11,7 years (range 5,9 to 19,3 years). Results: Nine cases of OCF in 8 patients were identified. All injuries resulted from high velocity trauma. The average scores on the ISS Scale were 39,6 (24-75) and 7,3 (3-15) on the GCS. According to Anderson's classification, 5 cases of Type III and 4 cases of Type I fractures were identified. According to Tuli's classification, 5 cases of Type IIA and 4 cases of Type I were found. Indications for immobilization with the halo-vest were type III injuries according to Anderson's classification or Tuli's type IIA injuries, respectively. Patients with Tuli's type I injuries were treated with a Philadelphia collar for 6 weeks. In one patient with initial complete tetraplegia and one with incomplete neurological deficits the final follow-up neurologic examination showed no neurological impairment at all (Frankel-grade A to E, respectively B to E). At follow-up, 3 patients were asymptomatic. Four patients suffered from mild pain when turning their head, pain medication was necessary in one case only. Discussion: OCF's are virtually undetectable using conventional radiography. In cases of high velocity, cranio-cervical trauma or impaired consciousness, high resolution CT-scans of the craniocervical junction must be performed. We suggest immobilization using a halo device for type III injuries according to Anderson's classification or Tuli's type IIa injuries, respectively. Patients with Tuli's type I injuries should be treated with a Philadelphia collar. PMID:24744561

  20. Occipital Nerve Stimulation for Chronic Migraine—A Systematic Review and Meta-Analysis

    PubMed Central

    Chen, Yen-Fu; Bramley, George; Unwin, Gemma; Hanu-Cernat, Dalvina; Dretzke, Janine; Moore, David; Bayliss, Sue; Cummins, Carole; Lilford, Richard

    2015-01-01

    Background Chronic migraine is a debilitating headache disorder that has significant impact on quality of life. Stimulation of peripheral nerves is increasingly being used to treat chronic refractory pain including headache disorders. This systematic review examines the effectiveness and adverse effects of occipital nerve stimulation (ONS) for chronic migraine. Methods Databases, including the Cochrane Library, MEDLINE, EMBASE, CINAHL and clinical trial registers were searched to September 2014. Randomized controlled trials (RCTs), other controlled and uncontrolled observational studies and case series (n≥ 10) were eligible. RCTs were assessed using the Cochrane risk of bias tool. Meta-analysis was carried out using a random-effects model. Findings are presented in summary tables and forest plots. Results Five RCTs (total n=402) and seven case series (total n=115) met the inclusion criteria. Pooled results from three multicenter RCTs show that ONS was associated with a mean reduction of 2.59 days (95% CI 0.91 to 4.27, I2=0%) of prolonged, moderate to severe headache per month at 3 months compared with a sham control. Results for other outcomes generally favour ONS over sham controls but quantitative analysis was hampered by incomplete publication and reporting of trial data. Lead migration and infections are common and often require revision surgery. Open-label follow-up of RCTs and case series suggest long-term effectiveness can be maintained in some patients but evidence is limited. Conclusions While the effectiveness of ONS compared to sham control has been shown in multiple RCTs, the average effect size is modest and may be exaggerated by bias as achieving effective blinding remains a methodological challenge. Further measures to reduce the risk of adverse events and revision surgery are needed. Systematic Review Registration this systematic review is an update and expanded work of part of a broader review registered with PROSPERO. Registration No. CRD

  1. The left inferior fronto-occipital fasciculus subserves language semantics: a multilevel lesion study.

    PubMed

    Almairac, Fabien; Herbet, Guillaume; Moritz-Gasser, Sylvie; de Champfleur, Nicolas Menjot; Duffau, Hugues

    2015-07-01

    Consequential works in cognitive neuroscience have led to the formulation of an interactive dual-stream model of language processing: the dorsal stream may process the phonological aspects of language, whereas the ventral stream may process the semantic aspects of language. While it is well-accepted that the dorsal route is subserved by the arcuate fasciculus, the structural connectivity of the semantic ventral stream is a matter of dispute. Here we designed a longitudinal study to gain new insights into this central but controversial question. Thirty-one patients harboring a left diffuse low-grade glioma—a rare neurological condition that infiltrates preferentially white matter associative pathways—were assessed with a prototypical task of language (i.e. verbal fluency) before and after surgery. All were operated under local anesthesia with a cortical and subcortical brain mapping—enabling to identify and preserve eloquent structures for language. We performed voxel-based lesion-symptom (VLSM) analyses on pre- and postoperative behavioral data. Preoperatively, we found a significant relationship between semantic fluency scores and the white matter fibers shaping the ventro-lateral connectivity (P < 0.05 corrected). The statistical map was found to substantially overlap with the spatial position of the inferior fronto-occipital fasciculus (IFOF) (37.7%). Furthermore, a negative correlation was observed between semantic fluency scores and the infiltration volumes in this fasciculus (r = -0.4, P = 0.029). Postoperatively, VLSM analyses were inconclusive. Taken as a whole and when combined with the literature data, our findings strengthen the view that the IFOF plays an essential role in semantic processing and may subserve the direct ventral pathway of language.

  2. Multimap formation in visual cortex

    PubMed Central

    Jain, Rishabh; Millin, Rachel; Mel, Bartlett W.

    2015-01-01

    An extrastriate visual area such as V2 or V4 contains neurons selective for a multitude of complex shapes, all sharing a common topographic organization. Simultaneously developing multiple interdigitated maps—hereafter a “multimap”—is challenging in that neurons must compete to generate a diversity of response types locally, while cooperating with their dispersed same-type neighbors to achieve uniform visual field coverage for their response type at all orientations, scales, etc. Previously proposed map development schemes have relied on smooth spatial interaction functions to establish both topography and columnar organization, but by locally homogenizing cells' response properties, local smoothing mechanisms effectively rule out multimap formation. We found in computer simulations that the key requirements for multimap development are that neurons are enabled for plasticity only within highly active regions of cortex designated “learning eligibility regions” (LERs), but within an LER, each cell's learning rate is determined only by its activity level with no dependence on location. We show that a hybrid developmental rule that combines spatial and activity-dependent learning criteria in this way successfully produces multimaps when the input stream contains multiple distinct feature types, or in the degenerate case of a single feature type, produces a V1-like map with “salt-and-pepper” structure. Our results support the hypothesis that cortical maps containing a fine mixture of different response types, whether in monkey extrastriate cortex, mouse V1 or elsewhere in the cortex, rather than signaling a breakdown of map formation mechanisms at the fine scale, are a product of a generic cortical developmental scheme designed to map cells with a diversity of response properties across a shared topographic space. PMID:26641946

  3. The HOCS paradigm shift from disciplinary knowledge (LOCS)--to interdisciplinary evaluative, system thinking (HOCS): what should it take in science-technology-environment-society oriented courses, curricula and assessment?

    PubMed

    Zoller, U; Scholz, R W

    2004-01-01

    Given the current world state of affairs, striving for sustainability and the consequent paradigm shift: growth-to-sustainable development, correction-to-prevention and options selection-to-options generation: the corresponding paradigm shift in science-technology-environment-society (STES) education is unavoidable. Accordingly, the essence of the current reform in STES education, worldwide, is a purposed effort to develop students' higher-order cognitive skills (HOCS) capability; i.e., question-asking, critical system thinking, decision making and problem solving, at the expense of the "delivery" of lower-order cognitive skills (LOCS)-oriented knowledge. This means a paradigm shift from the contemporary prevalent LOCS algorithmic teaching to HOCS evaluative learning and HOCS-promoting courses, curricula, teaching strategies and assessment methodologies, leading, hopefully to evaluative thinking and transfer. Following the formulation of selected relevant axioms, major paradigm shift in STES research and education for sustainability have been identified. The consequent shift, in the STES context, from disciplinary to inter- and transdisciplinary learning, in science technology and environmental engineering education is discussed, followed by selected examples of successfully implemented HOCS-promoting courses, and assessment methodologies. It is argued, that transferable "HOCS learning" for sustainability can and should be done.

  4. The chronometry of visual perception: review of occipital TMS masking studies.

    PubMed

    de Graaf, Tom A; Koivisto, Mika; Jacobs, Christianne; Sack, Alexander T

    2014-09-01

    Transcranial magnetic stimulation (TMS) continues to deliver on its promise as a research tool. In this review article we focus on the application of TMS to early visual cortex (V1, V2, V3) in studies of visual perception and visual awareness. Depending on the asynchrony between visual stimulus onset and TMS pulse (SOA), TMS can suppress visual perception, allowing one to track the time course of functional relevance (chronometry) of early visual cortex for vision. This procedure has revealed multiple masking effects ('dips'), some consistently (∼+100ms SOA) but others less so (∼-50ms, ∼-20ms, ∼+30ms, ∼+200ms SOA). We review the state of TMS masking research, focusing on the evidence for these multiple dips, the relevance of several experimental parameters to the obtained 'masking curve', and the use of multiple measures of visual processing (subjective measures of awareness, objective discrimination tasks, priming effects). Lastly, we consider possible future directions for this field. We conclude that while TMS masking has yielded many fundamental insights into the chronometry of visual perception already, much remains unknown. Not only are there several temporal windows when TMS pulses can induce visual suppression, even the well-established 'classical' masking effect (∼+100ms) may reflect more than one functional visual process.

  5. Navigating from hippocampus to parietal cortex

    PubMed Central

    Whitlock, Jonathan R.; Sutherland, Robert J.; Witter, Menno P.; Moser, May-Britt; Moser, Edvard I.

    2008-01-01

    The navigational system of the mammalian cortex comprises a number of interacting brain regions. Grid cells in the medial entorhinal cortex and place cells in the hippocampus are thought to participate in the formation of a dynamic representation of the animal's current location, and these cells are presumably critical for storing the representation in memory. To traverse the environment, animals must be able to translate coordinate information from spatial maps in the entorhinal cortex and hippocampus into body-centered representations that can be used to direct locomotion. How this is done remains an enigma. We propose that the posterior parietal cortex is critical for this transformation. PMID:18812502

  6. Dynamics of EEG Rhythms Support Distinct Visual Selection Mechanisms in Parietal Cortex: A Simultaneous Transcranial Magnetic Stimulation and EEG Study

    PubMed Central

    Spadone, Sara; Tosoni, Annalisa; Sestieri, Carlo; Romani, Gian Luca; Della Penna, Stefania; Corbetta, Maurizio

    2015-01-01

    Using repetitive transcranial magnetic stimulation (rTMS), we have recently shown a functional anatomical distinction in human parietal cortex between regions involved in maintaining attention to a location [ventral intraparietal sulcus (vIPS)] and a region involved in shifting attention between locations [medial superior parietal lobule (mSPL)]. In particular, while rTMS interference over vIPS impaired target discrimination at contralateral attended locations, interference over mSPL affected performance following shifts of attention regardless of the visual field (Capotosto et al., 2013). Here, using rTMS interference in conjunction with EEG recordings of brain rhythms during the presentation of cues that indicate to either shift or maintain spatial attention, we tested whether this functional anatomical segregation involves different mechanisms of rhythm synchronization. The transient inactivation of vIPS reduced the amplitude of the expected parieto-occipital low-α (8–10 Hz) desynchronization contralateral to the cued location. Conversely, the transient inactivation of mSPL, compared with vIPS, reduced the high-α (10–12 Hz) desynchronization induced by shifting attention into both visual fields. Furthermore, rTMS induced a frequency-specific delay of task-related modulation of brain rhythms. Specifically, rTMS over vIPS or mSPL during maintenance (stay cues) or shifting (shift cues) of spatial attention, respectively, caused a delay of α parieto-occipital desynchronization. Moreover, rTMS over vIPS during stay cues caused a delay of δ (2–4 Hz) frontocentral synchronization. These findings further support the anatomo-functional subdivision of the dorsal attention network in subsystems devoted to shifting or maintaining covert visuospatial attention and indicate that these mechanisms operate in different frequency channels linking frontal to parieto-occipital visual regions. PMID:25589765

  7. Frontal cortex, timing and memory.

    PubMed

    Olton, D S

    1989-01-01

    Two sets of experiments examine the psychological functions and neural organization of the frontal lobes. The first set investigates the effects of lesions of the frontal cortex (FC) on the ability to perform temporal discriminations, using the techniques and theoretical framework of scalar timing theory. FC lesions changed the reference memory for the expected time of reinforcement, so that rats expected reinforcement later than it actually occurred. These results demonstrate that the FC modulates temporal memory. The second set of experiments examined the behavioral effects of lesions in the nucleus basalis magnocellularis (NBM), an area in the basal forebrain that has a significant projection to the frontal cortex. NBM lesions produced impairments in many different tasks assessing both recent and long-term memory. A comparison of the behavioral and neurochemical effects of different types of lesions in the NBM examines the role of cholinergic and noncholinergic neurotransmitters in these behavioral deficits. These data demonstrate that a "frontal syndrome" can follow selective lesions in the NBM, and indicate that the NBM must have a strong role in frontal lobe function.

  8. Top-down modulation in the infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6 months

    PubMed Central

    Emberson, Lauren L.; Richards, John E.; Aslin, Richard N.

    2015-01-01

    Recent theoretical work emphasizes the role of expectation in neural processing, shifting the focus from feed-forward cortical hierarchies to models that include extensive feedback (e.g., predictive coding). Empirical support for expectation-related feedback is compelling but restricted to adult humans and nonhuman animals. Given the considerable differences in neural organization, connectivity, and efficiency between infant and adult brains, it is a crucial yet open question whether expectation-related feedback is an inherent property of the cortex (i.e., operational early in development) or whether expectation-related feedback develops with extensive experience and neural maturation. To determine whether infants’ expectations about future sensory input modulate their sensory cortices without the confounds of stimulus novelty or repetition suppression, we used a cross-modal (audiovisual) omission paradigm and used functional near-infrared spectroscopy (fNIRS) to record hemodynamic responses in the infant cortex. We show that the occipital cortex of 6-month-old infants exhibits the signature of expectation-based feedback. Crucially, we found that this region does not respond to auditory stimuli if they are not predictive of a visual event. Overall, these findings suggest that the young infant’s brain is already capable of some rudimentary form of expectation-based feedback. PMID:26195772

  9. Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study.

    PubMed

    van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T

    2012-01-01

    The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.

  10. Eccentricity mapping of the human visual cortex to evaluate temporal dynamics of functional T1ρ mapping

    PubMed Central

    Heo, Hye-Young; Wemmie, John A; Johnson, Casey P; Thedens, Daniel R; Magnotta, Vincent A

    2015-01-01

    Recent experiments suggest that T1 relaxation in the rotating frame (T1ρ) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T1ρ is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T1ρ changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using T1ρ, BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T1ρ versus BOLD and ASL. The results suggest that T1ρ changes precede changes in the two blood flow-dependent measures. These observations indicate that T1ρ detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T1ρ is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T1ρ changes. PMID:25966957

  11. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.

    PubMed

    Pigarev, Ivan N; Levichkina, Ekaterina V

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex. PMID:27547179

  12. An analysis of von Economo neurons in the cerebral cortex of cetaceans, artiodactyls, and perissodactyls.

    PubMed

    Raghanti, Mary Ann; Spurlock, Linda B; Treichler, F Robert; Weigel, Sara E; Stimmelmayr, Raphaela; Butti, Camilla; Thewissen, J G M Hans; Hof, Patrick R

    2015-07-01

    Von Economo neurons (VENs) are specialized projection neurons with a characteristic spindle-shaped soma and thick basal and apical dendrites. VENs have been described in restricted cortical regions, with their most frequent appearance in layers III and V of the anterior cingulate cortex, anterior insula, and frontopolar cortex of humans, great apes, macaque monkeys, elephants, and some cetaceans. Recently, a ubiquitous distribution of VENs was reported in various cortical areas in the pygmy hippopotamus, one of the closest living relatives of cetaceans. That finding suggested that VENs might not be unique to only a few species that possess enlarged brains. In the present analysis, we assessed the phylogenetic distribution of VENs within species representative of the superordinal clade that includes cetartiodactyls and perissodactyls, as well as afrotherians. In addition, the distribution of fork cells that are often found in close proximity to VENs was also assessed. Nissl-stained sections from the frontal pole, anterior cingulate cortex, anterior insula, and occipital pole of bowhead whale, cow, sheep, deer, horse, pig, rock hyrax, and human were examined using stereologic methods to quantify VENs and fork cells within layer V of all four cortical regions. VENs and fork cells were found in each of the species examined here with species-specific differences in distributions and densities. The present results demonstrated that VENs and fork cells were not restricted to highly encephalized or socially complex species, and their repeated emergence among distantly related species seems to represent convergent evolution of specialized pyramidal neurons. The widespread phylogenetic presence of VENs and fork cells indicates that these neuron morphologies readily emerged in response to selective forces,whose variety and nature are yet to be identified. PMID:24852852

  13. An analysis of von Economo neurons in the cerebral cortex of cetaceans, artiodactyls, and perissodactyls.

    PubMed

    Raghanti, Mary Ann; Spurlock, Linda B; Treichler, F Robert; Weigel, Sara E; Stimmelmayr, Raphaela; Butti, Camilla; Thewissen, J G M Hans; Hof, Patrick R

    2015-07-01

    Von Economo neurons (VENs) are specialized projection neurons with a characteristic spindle-shaped soma and thick basal and apical dendrites. VENs have been described in restricted cortical regions, with their most frequent appearance in layers III and V of the anterior cingulate cortex, anterior insula, and frontopolar cortex of humans, great apes, macaque monkeys, elephants, and some cetaceans. Recently, a ubiquitous distribution of VENs was reported in various cortical areas in the pygmy hippopotamus, one of the closest living relatives of cetaceans. That finding suggested that VENs might not be unique to only a few species that possess enlarged brains. In the present analysis, we assessed the phylogenetic distribution of VENs within species representative of the superordinal clade that includes cetartiodactyls and perissodactyls, as well as afrotherians. In addition, the distribution of fork cells that are often found in close proximity to VENs was also assessed. Nissl-stained sections from the frontal pole, anterior cingulate cortex, anterior insula, and occipital pole of bowhead whale, cow, sheep, deer, horse, pig, rock hyrax, and human were examined using stereologic methods to quantify VENs and fork cells within layer V of all four cortical regions. VENs and fork cells were found in each of the species examined here with species-specific differences in distributions and densities. The present results demonstrated that VENs and fork cells were not restricted to highly encephalized or socially complex species, and their repeated emergence among distantly related species seems to represent convergent evolution of specialized pyramidal neurons. The widespread phylogenetic presence of VENs and fork cells indicates that these neuron morphologies readily emerged in response to selective forces,whose variety and nature are yet to be identified.

  14. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions

    PubMed Central

    Pigarev, Ivan N.; Levichkina, Ekaterina V.

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex. PMID:27547179

  15. Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.

    PubMed

    Pigarev, Ivan N; Levichkina, Ekaterina V

    2016-01-01

    Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex.

  16. Feasibility of C2 Vertebra Screws Placement in Patient With Occipitalization of Atlas

    PubMed Central

    Ji, Wei; Liu, Xiang; Huang, Wenhan; Huang, Zucheng; Li, Xueshi; Chen, Jianting; Wu, Zenghui; Zhu, Qingan

    2015-01-01

    Abstract Occipitalization of atlas (OA) is a congenital disease with the possibility of anomalous bony anatomies and the C2 pedicle screw insertion is technically challenging. However, there are no existing literatures clarified the dimensions and angulations of the C2 pedicles, lamina and lateral masses for screw insertion in patients with OA. Therefore, the aim of this study was to assess the morphometric features of C2 for screw placement in OA to guide the use of surgical screws. Measurements of the OA patients on the computer tomography (CT) images including lamina angle, length and thickness, pedicle angle, length and thickness, and lateral mass thickness and length of the axis vertebra. The OA patients data were compared with age and gender matched cohort of randomly selected patients in a control group without OA. The picture archiving and communication system was used for all patients who had received cervical CT scanning between January 2001 and January 2015. Measurements were performed independently by 2 experienced observers who reviewed the CT scans and recorded the patients with OA. Statistical analysis was performed at a level of significance P < 0.05. A total of 73 patients (29 males and 44 females) were eligible to be included in the OA group. In most of the measurements the pathological cohort had significantly smaller values compared to the control group (P < 0.05). In the OA group, only 45% of the pedicles and 88% of the lamina had thicknesses bigger than 3.5 mm. Both groups had all pedicle and lamina lengths bigger than 12 mm. Regarding the length of the lateral mass, no value was bigger than 12 mm in the OA group, whereas 40% of the values in the control group were bigger than 12 mm. The average pedicle and laminar angles were 37° and 49° in the patients with OA, respectively. The variable anatomy in patients with OA needs to be taken into account when performing spinal stabilization as the C2 bony architectures are

  17. Mapping Prefrontal Cortex Functions in Human Infancy

    ERIC Educational Resources Information Center

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  18. Subspecialization in the human posterior medial cortex

    PubMed Central

    Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.

    2014-01-01

    The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801

  19. Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex

    PubMed Central

    Rosenthal, Clive R.; Andrews, Samantha K.; Antoniades, Chrystalina A.; Kennard, Christopher; Soto, David

    2016-01-01

    Summary Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol—designed to induce activity in V1, without modulation from visual awareness—to test whether human V1 is implicated in human observers rapidly learning and then later (15–20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of “implicit” sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. PMID:26948883

  20. Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.

    PubMed

    Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David

    2016-03-21

    Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. PMID:26948883

  1. Investigating Representations of Facial Identity in Human Ventral Visual Cortex with Transcranial Magnetic Stimulation

    PubMed Central

    Gilaie-Dotan, Sharon; Silvanto, Juha; Schwarzkopf, Dietrich S.; Rees, Geraint

    2010-01-01

    The occipital face area (OFA) is face-selective. This enhanced activation to faces could reflect either generic face and shape-related processing or high-level conceptual processing of identity. Here we examined these two possibilities using a state-dependent transcranial magnetic stimulation (TMS) paradigm. The lateral occipital (LO) cortex which is activated non-selectively by various types of objects served as a control site. We localized OFA and LO on a per-participant basis using functional MRI. We then examined whether TMS applied to either of these regions affected the ability of participants to decide whether two successively presented and physically different face images were of the same famous person or different famous people. TMS was applied during the delay between first and second face presentations to investigate whether neuronal populations in these regions played a causal role in mediating the behavioral effects of identity repetition. Behaviorally we found a robust identity repetition effect, with shorter reaction times (RTs) when identity was repeated, regardless of the fact that the pictures were physically different. Surprisingly, TMS applied over LO (but not OFA) modulated overall RTs, compared to the No-TMS condition. But critically, we found no effects of TMS to either area that were modulated by identity repetition. Thus, we found no evidence to suggest that OFA or LO contain neuronal representations selective for the identity of famous faces which play a causal role in identity processing. Instead, these brain regions may be involved in the processing of more generic features of their preferred stimulus categories. PMID:20631842

  2. Sensory-specific anomic aphasia following left occipital lesions: data from free oral descriptions of concrete word meanings.

    PubMed

    Mårtensson, F; Roll, M; Lindgren, M; Apt, P; Horne, M

    2014-04-01

    The present study investigated hierarchical lexical semantic structure in oral descriptions of concrete word meanings produced by a subject (ZZ) diagnosed with anomic aphasia due to left occipital lesions. The focus of the analysis was production of a) nouns at different levels of semantic specificity (e.g., "robin"-"bird"-"animal") and b) words describing sensory or motor experiences (e.g., "blue," "soft," "fly"). Results show that in contrast to healthy and aphasic controls, who produced words at all levels of specificity and mainly vision-related sensory information, ZZ produced almost exclusively nouns at the most non-specific levels and words associated with sound and movement.

  3. Acquired Chiari malformation secondary to atlantoaxial vertical subluxation in a patient with rheumatoid arthritis combined with atlanto-occipital assimilation.

    PubMed

    Kimura, Yuiko; Seichi, Atsushi; Gomi, Akira; Kojima, Masahiro; Inoue, Hirokazu; Kimura, Atsushi

    2012-01-01

    A 65-year-old woman with a history of rheumatoid arthritis presented with a rare case of acquired Chiari malformation secondary to atlantoaxial vertical subluxation, associated with congenital atlanto-occipital assimilation. Syringomyelia and tetraparesis improved immediately after posterior fossa decompression and simultaneous occipito-cervical junction fusion. The progression of acquired Chiari malformation is not well known. We concluded that coexisting assimilation accelerated crowded foramen magnum following atlantoaxial vertical subluxation and induced acquired Chiari malformation over the course of a few years.

  4. Morphometric analysis of occipital bone in the domestic cat in comparison with selected skull size parameters and with special regard to skull morphotype.

    PubMed

    Wasowicz, M; Kupczyńska, M; Wieladek, A; Barszcz, K

    2009-01-01

    The aim of this study was to elaborate criteria defining the morphotype and to perform a morphological and morphometric analysis of the squamous part of the occipital bone and of the foramen magnum in the European cat. The study material comprised 50 corpses of European cats of both sexes and of bodyweight from 1.35 to 7.7 kg, aged from 1 year to 17 years. The study material underwent detailed preparation and morphometries of the skull, squamous part of the occipital bone and the foramen magnum were performed. The skull index (IC) data obtained indicate that the European cat represents a mesaticephalic morphotype. In the morphometrical analysis of the foramen magnum the following were included: the foramen magnum index (IFM), the occipital index (IOF), and the index of the squamous part of the occipital bone (ISO). In the morphology of the squamous part of the occipital bone two categories were distinguished: the first was characterized by a form close to an isosceles triangle with its base directed to the bottom. In none of the specimens studied was a dorsal notch in the form of a "keyhole" observed, nor was there any other deformation in the foramen magnum, which takes the form of a slightly crosswise elongated regular oval. The results of this study indicate that in the European cat the foramen magnum is free from any pathology and its shape, in the individual development, is conservative. PMID:19645357

  5. An unusual case of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy with occipital lobe involvement.

    PubMed

    Trikamji, Bhavesh; Thomas, Mariam; Hathout, Gasser; Mishra, Shrikant

    2016-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal dominant angiopathy caused by a mutation in the notch 3 gene on chromosome 19. Clinically, patients may be asymptomatic or can present with recurrent ischemic episodes and strokes leading to dementia, depression, pseudobulbar palsy, and hemi- or quadraplegia. Additional manifestations that have been described include migraine (mostly with aura), psychiatric disturbances, and epileptic seizures. Neuroimaging is essential to the diagnosis of CADASIL. On imaging CADASIL is characterized by symmetric involvement by confluent lesions located subcortically in the frontal and temporal lobes as well as in the insula, periventricularly, in the centrum semiovale, in the internal and external capsule, basal ganglia, and brain stem; with relative sparing of the fronto-orbital and the occipital subcortical regions. We describe a 49 year old male with CADASIL with absence of temporal lobe findings on MRI but predominant lesions within the periventricular white matter, occipital lobes with extension into the subcortical frontal lobes, corpus callosum and cerebellar white matter. Although CADASIL characteristically presents with anterior temporal lobe involvement, these findings may be absent and our case addresses the atypical imaging findings in CADASIL. PMID:27293347

  6. The role of left inferior fronto-occipital fascicle in verbal perseveration: a brain electrostimulation mapping study.

    PubMed

    Khan, Osaama H; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-05-01

    The subcortical connectivity underlying verbal perseveration (VP) remains poorly understood. We have previously reported that intraoperative electrical stimulation of the caudate nucleus during awake surgery resulted in VP. Here, our purpose is to study the white matter pathway underlying VP using subcortical stimulation mapping in a series of patients who underwent glioma resection. Eleven patients with a left hemispheric low grade glioma were operated on while awake. Intraoperative direct electrical stimulation was used both at cortical and subcortical levels while the patients carried out motor and naming tasks during the resection. All patients experienced VP during electrical stimulation performed at the level of different subcortical locations, which corresponded in the 11 cases to different parts of the left inferior fronto-occipital fascicle. Perseveration persisted into the postoperative days, but resolved completely by three months.Our original findings provide further insight into the neuroanatomical basis of VP, by supporting the role of left inferior fronto-occipital fascicle. Such data may have both fundamental and clinical implications.

  7. An unusual case of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy with occipital lobe involvement.

    PubMed

    Trikamji, Bhavesh; Thomas, Mariam; Hathout, Gasser; Mishra, Shrikant

    2016-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal dominant angiopathy caused by a mutation in the notch 3 gene on chromosome 19. Clinically, patients may be asymptomatic or can present with recurrent ischemic episodes and strokes leading to dementia, depression, pseudobulbar palsy, and hemi- or quadraplegia. Additional manifestations that have been described include migraine (mostly with aura), psychiatric disturbances, and epileptic seizures. Neuroimaging is essential to the diagnosis of CADASIL. On imaging CADASIL is characterized by symmetric involvement by confluent lesions located subcortically in the frontal and temporal lobes as well as in the insula, periventricularly, in the centrum semiovale, in the internal and external capsule, basal ganglia, and brain stem; with relative sparing of the fronto-orbital and the occipital subcortical regions. We describe a 49 year old male with CADASIL with absence of temporal lobe findings on MRI but predominant lesions within the periventricular white matter, occipital lobes with extension into the subcortical frontal lobes, corpus callosum and cerebellar white matter. Although CADASIL characteristically presents with anterior temporal lobe involvement, these findings may be absent and our case addresses the atypical imaging findings in CADASIL.

  8. The cognitive profile of occipital lobe epilepsy and the selective association of left temporal lobe hypometabolism with verbal memory impairment.

    PubMed

    Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F

    2014-08-01

    We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy.

  9. Medial perirhinal cortex disambiguates confusable objects.

    PubMed

    Kivisaari, Sasa L; Tyler, Lorraine K; Monsch, Andreas U; Taylor, Kirsten I

    2012-12-01

    Our brain disambiguates the objects in our cluttered visual world seemingly effortlessly, enabling us to understand their significance and to act appropriately. The role of anteromedial temporal structures in this process, particularly the perirhinal cortex, is highly controversial. In some accounts, the perirhinal cortex is necessary for differentiating between perceptually and semantically confusable objects. Other models claim that the perirhinal cortex neither disambiguates perceptually confusable objects nor plays a unique role in semantic processing. One major hurdle to resolving this central debate is the fact that brain damage in human patients typically encompasses large portions of the anteromedial temporal lobe, such that the identification of individual substructures and precise neuroanatomical locus of the functional impairments has been difficult. We tested these competing accounts in patients with Alzheimer's disease with varying degrees of atrophy in anteromedial structures, including the perirhinal cortex. To assess the functional contribution of each anteromedial temporal region separately, we used a detailed region of interest approach. From each participant, we obtained magnetic resonance imaging scans and behavioural data from a picture naming task that contrasted naming performance with living and non-living things as a way of manipulating perceptual and semantic confusability; living things are more similar to one another than non-living things, which have more distinctive features. We manually traced neuroanatomical regions of interest on native-space cortical surface reconstructions to obtain mean thickness estimates for the lateral and medial perirhinal cortex and entorhinal cortex. Mean cortical thickness in each region of interest, and hippocampal volume, were submitted to regression analyses predicting naming performance. Importantly, atrophy of the medial perirhinal cortex, but not lateral perirhinal cortex, entorhinal cortex or

  10. Early lateralization and orientation tuning for face, word, and object processing in the visual cortex.

    PubMed

    Rossion, Bruno; Joyce, Carrie A; Cottrell, Garrison W; Tarr, Michael J

    2003-11-01

    Event-related potential (ERP) studies of the human brain have shown that object categories can be reliably distinguished as early as 130-170 ms on the surface of occipito-temporal cortex, peaking at the level of the N170 component. Consistent with this finding, neuropsychological and neuroimaging studies suggest major functional distinctions within the human object recognition system, particularly in hemispheric advantage, between the processing of words (left), faces (right), and objects (bilateral). Given these observations, our aim was to (1) characterize the differential response properties of the N170 to pictures of faces, objects, and words across hemispheres; and (2) test whether an effect of inversion for highly familiar and monooriented nonface stimuli such as printed words can be observed at the level of the N170. Scalp EEG (53 channels) was recorded in 15 subjects performing an orientation decision task with pictures of faces, words, and cars presented upright or inverted. All three categories elicited at the same latency a robust N170 component associated with a positive counterpart at centro-frontal sites (vertex-positive potential, VPP). While there were minor amplitude differences at the level of the occipital medial P1 between linguistic and nonlinguistic categories, scalp topographies and source analyses indicated strong hemispheric and orientation effects starting at the level of the N170, which was right lateralized for faces, smaller and bilateral for cars, and as large for printed words in the left hemisphere as for faces. The entire N170/VPP complex was accounted for by two dipolar sources located in the lateral inferior occipital cortex/posterior fusiform gyrus. These two locations were roughly equivalent across conditions but differed in strength and lateralization. Inversion delayed the N170 (and VPP) response for all categories, with an increasing delay for cars, words, and faces, respectively, as suggested by source modeling analysis

  11. Strokes and vision: The management of ischemic arterial disease affecting the retina and occipital lobe.

    PubMed

    Lawlor, Mitchell; Perry, Richard; Hunt, Beverley J; Plant, Gordon T

    2015-01-01

    Embolic disease of the anterior or posterior vascular territories may lead to disturbance of vision. Although death from this is uncommon, morbidity remains relatively high: Visual field loss may impair or preclude reading and driving and these are important influences on quality of life. Visual symptoms of stroke mean that patients may present to ophthalmologists with isolated visual symptoms, rather than directly to an emergency department. It is important to diagnose stroke and transient ischemic attacks accurately, as well as to manage them appropriately, as they are important harbingers of further cerebrovascular events. Ophthalmologists are therefore well placed to ensure that these patients receive appropriate acute treatment and secondary prevention. This article reviews the evidence for managing patients presenting with visual symptoms of vascular events. It reviews management of ischemic stroke in general, and compares this with management of events involving the anterior circulation by way of transient monocular visual loss or retinal artery occlusion, and posterior circulation by way of transient binocular visual loss or infarction of the visual cortex. PMID:25937273

  12. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    PubMed

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  13. Strokes and vision: The management of ischemic arterial disease affecting the retina and occipital lobe.

    PubMed

    Lawlor, Mitchell; Perry, Richard; Hunt, Beverley J; Plant, Gordon T

    2015-01-01

    Embolic disease of the anterior or posterior vascular territories may lead to disturbance of vision. Although death from this is uncommon, morbidity remains relatively high: Visual field loss may impair or preclude reading and driving and these are important influences on quality of life. Visual symptoms of stroke mean that patients may present to ophthalmologists with isolated visual symptoms, rather than directly to an emergency department. It is important to diagnose stroke and transient ischemic attacks accurately, as well as to manage them appropriately, as they are important harbingers of further cerebrovascular events. Ophthalmologists are therefore well placed to ensure that these patients receive appropriate acute treatment and secondary prevention. This article reviews the evidence for managing patients presenting with visual symptoms of vascular events. It reviews management of ischemic stroke in general, and compares this with management of events involving the anterior circulation by way of transient monocular visual loss or retinal artery occlusion, and posterior circulation by way of transient binocular visual loss or infarction of the visual cortex.