Sample records for occipital cortical areas

  1. Post-traumatic transient cortical blindness in a child with occipital bone fracture.

    PubMed

    Ng, Rachel H C

    2016-12-01

    Cortical blindness as sequelae of trauma has been reported in literature but mostly in the setting of occipital cortex or visual tract damages. We present a case of transient cortical blindness in a child following a closed head injury with a non-displaced occipital bone fracture and underlying occipital lobe contusion. We discuss the pathophysiology behind Post-traumatic transient cortical blindness, relevant investigations, and current management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Coherent Activity in Bilateral Parieto-Occipital Cortices during P300-BCI Operation.

    PubMed

    Takano, Kouji; Ora, Hiroki; Sekihara, Kensuke; Iwaki, Sunao; Kansaku, Kenji

    2014-01-01

    The visual P300 brain-computer interface (BCI), a popular system for electroencephalography (EEG)-based BCI, uses the P300 event-related potential to select an icon arranged in a flicker matrix. In earlier studies, we used green/blue (GB) luminance and chromatic changes in the P300-BCI system and reported that this luminance and chromatic flicker matrix was associated with better performance and greater subject comfort compared with the conventional white/gray (WG) luminance flicker matrix. To highlight areas involved in improved P300-BCI performance, we used simultaneous EEG-fMRI recordings and showed enhanced activities in bilateral and right lateralized parieto-occipital areas. Here, to capture coherent activities of the areas during P300-BCI, we collected whole-head 306-channel magnetoencephalography data. When comparing functional connectivity between the right and left parieto-occipital channels, significantly greater functional connectivity in the alpha band was observed under the GB flicker matrix condition than under the WG flicker matrix condition. Current sources were estimated with a narrow-band adaptive spatial filter, and mean imaginary coherence was computed in the alpha band. Significantly greater coherence was observed in the right posterior parietal cortex under the GB than under the WG condition. Re-analysis of previous EEG-based P300-BCI data showed significant correlations between the power of the coherence of the bilateral parieto-occipital cortices and their performance accuracy. These results suggest that coherent activity in the bilateral parieto-occipital cortices plays a significant role in effectively driving the P300-BCI.

  3. Cortical thickness and surface area in neonates at high risk for schizophrenia.

    PubMed

    Li, Gang; Wang, Li; Shi, Feng; Lyall, Amanda E; Ahn, Mihye; Peng, Ziwen; Zhu, Hongtu; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2016-01-01

    Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness and cortical surface area. However, it is unclear whether these abnormalities exist in neonates associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21) who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex was computed as the shortest distance between the inner and outer surfaces. Comparisons were made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had significantly thinner cortical thickness in the right lateral occipital cortex than the female control neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital cortex, compared with the control neonates. Before FDR correction, in comparison with control neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also had significantly

  4. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology

    PubMed Central

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-01-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject’s body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for

  5. The engagement of cortical areas preceding exogenous vergence eye movements.

    PubMed

    Wojtczak-Kwaśniewska, Monika; Przekoracka-Krawczyk, Anna; Van der Lubbe, Rob H J

    2018-01-01

    Source analyses on event related potentials (ERPs) derived from the electroencephalogram (EEG) were performed to examine the respective roles of cortical areas preceding exogenously triggered saccades, combined convergences, and combined divergences. All eye movements were triggered by the offset of a central fixation light emitting diode (LED) and the onset of a lateral LED at various depths in an otherwise fully darkened room. Our analyses revealed that three source pairs, two located in the frontal lobe-the frontal eye fields (FEF) and an anterior frontal area-, and one located within the occipital cortex, can account for 99.2% of the observed ERPs. Overall, the comparison between source activities revealed the largest activity in the occipital cortex, while no difference in activity between FEF and the anterior frontal area was obtained. For all sources, increased activity was observed for combined vergences, especially combined convergences, relative to saccades. Behavioral results revealed that onset latencies were longest for combined convergences, intermediate for combined divergences, and the shortest for saccades. Together, these findings fit within a perspective in which both occipital and frontal areas play an important role in retinal disparity detection. In the case of saccades and combined divergences stimulus-locked activity was larger than response-locked activity, while no difference between stimulus- and response-locked activity was observed for combined convergences. These findings seem to imply that the electrophysiological activity preceding exogenous eye movements consists of a sensory-related part that is under cortical control, while subcortical structures may be held responsible for final execution.

  6. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas.

    PubMed

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-08-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.

  7. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas

    PubMed Central

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193

  8. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex

    PubMed Central

    Bressler, David W.; Silver, Michael A.

    2010-01-01

    Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1 and IPS2) cortical areas. Additionally, one 5-minute run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy. PMID:20600961

  9. Consecutive TMS-fMRI reveals remote effects of neural noise to the "occipital face area".

    PubMed

    Solomon-Harris, Lily M; Rafique, Sara A; Steeves, Jennifer K E

    2016-11-01

    The human cortical system for face perception comprises a network of connected regions including the middle fusiform gyrus ("fusiform face area" or FFA), the inferior occipital gyrus ("occipital face area" or OFA), and the posterior superior temporal sulcus (pSTS). Here, we sought to investigate how transcranial magnetic stimulation (TMS) to the OFA affects activity within the face processing network. We used offline repetitive TMS to temporarily introduce neural noise in the right OFA in healthy subjects. We then immediately performed functional magnetic resonance imaging (fMRI) to measure changes in blood oxygenation level dependent (BOLD) signal across the face network using an fMR-adaptation (fMR-A) paradigm. We hypothesized that TMS to the right OFA would induce abnormal face identity coding throughout the face processing network in regions to which it has direct or indirect connections. Indeed, BOLD signal for face identity, but not non-face (butterfly) identity, decreased in the right OFA and FFA following TMS to the right OFA compared to both sham TMS and TMS to a control site, the nearby object-related lateral occipital area (LO). Further, TMS to the right OFA decreased face-related activation in the left FFA, without any effect in the left OFA. Our findings indicate that TMS to the right OFA selectively disrupts face coding at both the stimulation site and bilateral FFA. TMS to the right OFA also decreased BOLD signal for different identity stimuli in the right pSTS. Together with mounting evidence from patient studies, we demonstrate connectivity of the OFA within the face network and that its activity modulates face processing in bilateral FFA as well as the right pSTS. Moreover, this study shows that deep regions within the face network can be remotely probed by stimulating structures closer to the cortical surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Decreased occipital cortical glutamate levels in response to successful cognitive-behavioral therapy and pharmacotherapy for major depressive disorder.

    PubMed

    Abdallah, Chadi G; Niciu, Mark J; Fenton, Lisa R; Fasula, Madonna K; Jiang, Lihong; Black, Anne; Rothman, Douglas L; Mason, Graeme F; Sanacora, Gerard

    2014-01-01

    Previous studies have demonstrated that antidepressant medication and electroconvulsive therapy increase occipital cortical γ-aminobutyric acid (GABA) in major depressive disorder (MDD), but a small pilot study failed to show a similar effect of cognitive-behavioral therapy (CBT) on occipital GABA. In light of these findings we sought to determine if baseline GABA levels predict treatment response and to broaden the analysis to other metabolites and neurotransmitters in this larger study. A total of 40 MDD outpatients received baseline proton magnetic resonance spectroscopy (1H-MRS), and 30 subjects completed both pre- and post-CBT 1H-MRS; 9 CBT nonresponders completed an open-label medication phase followed by an additional/3rd 1H-MRS. The magnitude of treatment response was correlated with occipital amino acid neurotransmitter levels. Baseline GABA did not predict treatment outcome. Furthermore, there was no significant effect of CBT on GABA levels. However, we found a significant group × time interaction (F1, 28 = 6.30, p = 0.02), demonstrating reduced glutamate in CBT responders, with no significant glutamate change in CBT nonresponders. These findings corroborate the lack of effect of successful CBT on occipital cortical GABA levels in a larger sample. A reduction in glutamate levels following treatment, on the other hand, correlated with successful CBT and antidepressant medication response. Based on this finding and other reports, decreased occipital glutamate may be an antidepressant response biomarker. Healthy control comparator and nonintervention groups may shed light on the sensitivity and specificity of these results.

  11. Faciotopy—A face-feature map with face-like topology in the human occipital face area

    PubMed Central

    Henriksson, Linda; Mur, Marieke; Kriegeskorte, Nikolaus

    2015-01-01

    The occipital face area (OFA) and fusiform face area (FFA) are brain regions thought to be specialized for face perception. However, their intrinsic functional organization and status as cortical areas with well-defined boundaries remains unclear. Here we test these regions for “faciotopy”, a particular hypothesis about their intrinsic functional organisation. A faciotopic area would contain a face-feature map on the cortical surface, where cortical patches represent face features and neighbouring patches represent features that are physically neighbouring in a face. The faciotopy hypothesis is motivated by the idea that face regions might develop from a retinotopic protomap and acquire their selectivity for face features through natural visual experience. Faces have a prototypical configuration of features, are usually perceived in a canonical upright orientation, and are frequently fixated in particular locations. To test the faciotopy hypothesis, we presented images of isolated face features at fixation to subjects during functional magnetic resonance imaging. The responses in V1 were best explained by low-level image properties of the stimuli. OFA, and to a lesser degree FFA, showed evidence for faciotopic organization. When a single patch of cortex was estimated for each face feature, the cortical distances between the feature patches reflected the physical distance between the features in a face. Faciotopy would be the first example, to our knowledge, of a cortical map reflecting the topology, not of a part of the organism itself (its retina in retinotopy, its body in somatotopy), but of an external object of particular perceptual significance. PMID:26235800

  12. Faciotopy-A face-feature map with face-like topology in the human occipital face area.

    PubMed

    Henriksson, Linda; Mur, Marieke; Kriegeskorte, Nikolaus

    2015-11-01

    The occipital face area (OFA) and fusiform face area (FFA) are brain regions thought to be specialized for face perception. However, their intrinsic functional organization and status as cortical areas with well-defined boundaries remains unclear. Here we test these regions for "faciotopy", a particular hypothesis about their intrinsic functional organisation. A faciotopic area would contain a face-feature map on the cortical surface, where cortical patches represent face features and neighbouring patches represent features that are physically neighbouring in a face. The faciotopy hypothesis is motivated by the idea that face regions might develop from a retinotopic protomap and acquire their selectivity for face features through natural visual experience. Faces have a prototypical configuration of features, are usually perceived in a canonical upright orientation, and are frequently fixated in particular locations. To test the faciotopy hypothesis, we presented images of isolated face features at fixation to subjects during functional magnetic resonance imaging. The responses in V1 were best explained by low-level image properties of the stimuli. OFA, and to a lesser degree FFA, showed evidence for faciotopic organization. When a single patch of cortex was estimated for each face feature, the cortical distances between the feature patches reflected the physical distance between the features in a face. Faciotopy would be the first example, to our knowledge, of a cortical map reflecting the topology, not of a part of the organism itself (its retina in retinotopy, its body in somatotopy), but of an external object of particular perceptual significance. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Pre-cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control

    PubMed Central

    Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071

  14. Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users

    PubMed Central

    Cowan, Ronald L.; Bolo, Nicolas R.; Dietrich, Mary; Haga, Erica; Lukas, Scott E.; Renshaw, Perry F.

    2007-01-01

    The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent results in MDMA users. Because higher field strength proton MRS has theoretical advantages over lower field strengths, we used proton MRS at 4.0 T to study absolute concentrations of occipital cortical NAA and MI in a cohort of moderate MDMA users (n = 9) versus non-MDMA using (n = 7) controls. Mean NAA in non-MDMA users was 10.47 mM (± 2.51), versus 9.83 mM (± 1.94) in MDMA users. Mean MI in non-MDMA users was 7.43 mM (± 1.68), versus 6.57 mM (± 1.59) in MDMA users. There were no statistical differences in absolute metabolite levels for NAA and MI in occipital cortex of MDMA users and controls. These findings are not supportive of MDMA-induced alterations in NAA or MI levels in this small sample of moderate MDMA users. Limitations to this study suggest caution in the interpretation of these results. PMID:17574394

  15. Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users.

    PubMed

    Cowan, Ronald L; Bolo, Nicolas R; Dietrich, Mary; Haga, Erica; Lukas, Scott E; Renshaw, Perry F

    2007-08-15

    The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent results in MDMA users. Because higher field strength proton MRS has theoretical advantages over lower field strengths, we used proton MRS at 4.0 T to study absolute concentrations of occipital cortical NAA and MI in a cohort of moderate MDMA users (n=9) versus non-MDMA using (n=7) controls. Mean NAA in non-MDMA users was 10.47 mM (+/-2.51), versus 9.83 mM (+/-1.94) in MDMA users. Mean MI in non-MDMA users was 7.43 mM (+/-.68), versus 6.57 mM (+/-1.59) in MDMA users. There were no statistical differences in absolute metabolite levels for NAA and MI in occipital cortex of MDMA users and controls. These findings are not supportive of MDMA-induced alterations in NAA or MI levels in this small sample of moderate MDMA users. Limitations to this study suggest caution in the interpretation of these results.

  16. [Study of the relationship between the acupoints of Zhongzhu (TE 3), Yanglingquan (GB 34) and their corresponding cortical areas with the functional MRI].

    PubMed

    Tian, Li-Fang; Zhou, Cheng; Chen, Min; Zou, Ming-Zhu; Yang, Zheng-Han

    2009-07-01

    Using the functional magnetic resonance imaging (fMRI) to observe the distributed characteristic of excited cerebral cortical areas that induced by acupuncture-stimulating the Zhongzhu (TE 3) of the meridian of Hand-Shaoyang and Yanglingquan (GB 34) of the meridian of Foot-Shaoyang, and investigate the central neural mechanism on the effect of meridians and acupoints. Forty-two right handed healthy volunteers were randomly divided into Zhongzhu (TE 3) group and Yanglingquan (GB 34) group. The functional cortical changes during acupuncture-stimulating the Zhongzhu (TE 3) and Yanglingquan (GB 34) were successively scanned with fMRI, and the effected areas were determined through analysing the obtained data with SPM2 software. The main excited areas were bilateral frontal lobes, temporal lobes, cerebellum and occipital lobes successively in Zhongzhu (TE 3) group, and bilateral occipital lobes, cerebellum, frontal lobes and temporal lobes in Yanglingquan (GB 34) group in contrast. Acupuncture-stimulating both Zhongzhu (TE 3) and Yanglingquan (GB 34) can excite bilateral acoustic, visual and somatomotor cortices, which might be the central neural basis for clinical treatment on related diseases.

  17. Sonographic evaluation of the greater occipital nerve in unilateral occipital neuralgia.

    PubMed

    Cho, John Chin-Suk; Haun, Daniel W; Kettner, Norman W

    2012-01-01

    Occipital neuralgia is a headache that may result from greater occipital nerve entrapment. Entrapped peripheral nerves typically have an increase in cross-sectional area. The purpose of this study was to measure the cross-sectional area and circumference of symptomatic and asymptomatic greater occipital nerves in patients with unilateral occipital neuralgia and to correlate the greater occipital nerve cross-sectional area with headache severity, sex, and body mass index. Both symptomatic and contralateral asymptomatic greater occipital nerve cross-sectional areas and circumferences were measured by a single examiner using sonography in 17 patients. The Wilcoxon signed rank test and Spearman rank order correlation coefficient were used to analyze the data. Significant differences between the cross-sectional areas and circumferences of the symptomatic and asymptomatic greater occipital nerves were noted (P < .001). No difference existed in cross-sectional area (P = .40) or circumference (P = .10) measurements of the nerves between male and female patients. A significant correlation existed between the body mass index and symptomatic (r = 0.424; P = .045) and asymptomatic (r = 0.443; P = .037) cross-sectional areas. There was no correlation shown between the cross-sectional area of the symptomatic nerve and the severity of Headache Impact Test 6 scores (r = -0.342; P = .179). We report sonographic evidence showing an increased cross-sectional area and circumference of the symptomatic greater occipital nerve in patients with unilateral occipital neuralgia.

  18. Explicit memory and implicit memory in occipital lobe stroke patients.

    PubMed

    Gong, Liang; Wang, JiHua; Feng, Lei; Wang, MeiHong; Li, Xiu; Hu, JiaYun; Wang, Kai

    2015-03-01

    Occipital stroke patients mainly showed cortical blindness and unilateral vision loss; memory is generally reserved. Recent reports from neuroimaging show the occipital lobe may be involved in the processing of implicit memory (IM), especially the perception type of IM processing. In this study, we explored the explicit memory (EM) and IM damage in occipital lobe stroke patients. A total of 25 occipital strokes and 29 years of age, educational level equivalent healthy controls (HCs), evaluated by using immediate recall, delayed recall, recognition for EM tasks, picture identification, and category exemplar generation for IM tasks. There was no significant difference between occipital stroke patients and HCs in EM tasks and category exemplar generation task. In the picture identification task, occipital lobe stroke group score was poorer than HC group, the results were statistically significant, but in the pictures identify rate, occipital stroke patients and normal control group had no significant difference. The occipital stroke patients may have IM damage, primarily damage the perception type of IM priming effects, which was unrelated with their cortical blindness. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.

    PubMed

    Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V

    2013-01-01

    To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  20. Cortical thickness and surface area correlates with cognitive dysfunction among first-episode psychosis patients.

    PubMed

    Haring, L; Müürsepp, A; Mõttus, R; Ilves, P; Koch, K; Uppin, K; Tarnovskaja, J; Maron, E; Zharkovsky, A; Vasar, E; Vasar, V

    2016-07-01

    In studies using magnetic resonance imaging (MRI), some have reported specific brain structure-function relationships among first-episode psychosis (FEP) patients, but findings are inconsistent. We aimed to localize the brain regions where cortical thickness (CTh) and surface area (cortical area; CA) relate to neurocognition, by performing an MRI on participants and measuring their neurocognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB), in order to investigate any significant differences between FEP patients and control subjects (CS). Exploration of potential correlations between specific cognitive functions and brain structure was performed using CANTAB computer-based neurocognitive testing and a vertex-by-vertex whole-brain MRI analysis of 63 FEP patients and 30 CS. Significant correlations were found between cortical parameters in the frontal, temporal, cingular and occipital brain regions and performance in set-shifting, working memory manipulation, strategy usage and sustained attention tests. These correlations were significantly dissimilar between FEP patients and CS. Significant correlations between CTh and CA with neurocognitive performance were localized in brain areas known to be involved in cognition. The results also suggested a disrupted structure-function relationship in FEP patients compared with CS.

  1. Visual interhemispheric communication and callosal connections of the occipital lobes.

    PubMed

    Berlucchi, Giovanni

    2014-07-01

    Callosal connections of the occipital lobes, coursing in the splenium of the corpus callosum, have long been thought to be crucial for interactions between the cerebral hemispheres in vision in both experimental animals and humans. Yet the callosal connections of the temporal and parietal lobes appear to have more important roles than those of the occipital callosal connections in at least some high-order interhemispheric visual functions. The partial intermixing and overlap of temporal, parietal and occipital callosal connections within the splenium has made it difficult to attribute the effects of splenial pathological lesions or experimental sections to splenial components specifically related to select cortical areas. The present review describes some current contributions from the modern techniques for the tracking of commissural fibers within the living human brain to the tentative assignation of specific visual functions to specific callosal tracts, either occipital or extraoccipital. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Occipital Face Area Is Causally Involved in Facial Viewpoint Perception

    PubMed Central

    Poltoratski, Sonia; König, Peter; Blake, Randolph; Tong, Frank; Ling, Sam

    2015-01-01

    Humans reliably recognize faces across a range of viewpoints, but the neural substrates supporting this ability remain unclear. Recent work suggests that neural selectivity to mirror-symmetric viewpoints of faces, found across a large network of visual areas, may constitute a key computational step in achieving full viewpoint invariance. In this study, we used repetitive transcranial magnetic stimulation (rTMS) to test the hypothesis that the occipital face area (OFA), putatively a key node in the face network, plays a causal role in face viewpoint symmetry perception. Each participant underwent both offline rTMS to the right OFA and sham stimulation, preceding blocks of behavioral trials. After each stimulation period, the participant performed one of two behavioral tasks involving presentation of faces in the peripheral visual field: (1) judging the viewpoint symmetry; or (2) judging the angular rotation. rTMS applied to the right OFA significantly impaired performance in both tasks when stimuli were presented in the contralateral, left visual field. Interestingly, however, rTMS had a differential effect on the two tasks performed ipsilaterally. Although viewpoint symmetry judgments were significantly disrupted, we observed no effect on the angle judgment task. This interaction, caused by ipsilateral rTMS, provides support for models emphasizing the role of interhemispheric crosstalk in the formation of viewpoint-invariant face perception. SIGNIFICANCE STATEMENT Faces are among the most salient objects we encounter during our everyday activities. Moreover, we are remarkably adept at identifying people at a glance, despite the diversity of viewpoints during our social encounters. Here, we investigate the cortical mechanisms underlying this ability by focusing on effects of viewpoint symmetry, i.e., the invariance of neural responses to mirror-symmetric facial viewpoints. We did this by temporarily disrupting neural processing in the occipital face area (OFA) using

  3. tDCS Modulates Visual Gamma Oscillations and Basal Alpha Activity in Occipital Cortices: Evidence from MEG.

    PubMed

    Wilson, Tony W; McDermott, Timothy J; Mills, Mackenzie S; Coolidge, Nathan M; Heinrichs-Graham, Elizabeth

    2018-05-01

    Transcranial direct-current stimulation (tDCS) is now a widely used method for modulating the human brain, but the resulting physiological effects are not understood. Recent studies have combined magnetoencephalography (MEG) with simultaneous tDCS to evaluate online changes in occipital alpha and gamma oscillations, but no study to date has quantified the offline (i.e., after tDCS) alterations in these responses. Thirty-five healthy adults received active or sham anodal tDCS to the occipital cortices, and then completed a visual stimulation paradigm during MEG that is known to elicit robust gamma and alpha oscillations. The resulting MEG data were imaged and peak voxel time series were extracted to evaluate tDCS effects. We found that tDCS to the occipital increased the amplitude of local gamma oscillations, and basal alpha levels during the baseline. tDCS was also associated with network-level effects, including increased gamma oscillations in the prefrontal cortex, parietal, and other visual attention regions. Finally, although tDCS did not modulate peak gamma frequency, this variable was inversely correlated with gamma amplitude, which is consistent with a GABA-gamma link. In conclusion, tDCS alters gamma oscillations and basal alpha levels. The net offline effects on gamma activity are consistent with the view that anodal tDCS decreases local GABA.

  4. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks.

    PubMed

    Klaver, Peter; Latal, Beatrice; Martin, Ernst

    2015-01-01

    Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences

  5. The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding

    PubMed Central

    Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Gabi, Mariana; Mota, Bruno; Grinberg, Lea T.; Farfel, José M.; Ferretti-Rebustini, Renata E. L.; Leite, Renata E. P.; Filho, Wilson J.; Herculano-Houzel, Suzana

    2013-01-01

    The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex) the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital) that differ in how neurons are distributed across their gray matter volume and in three zones (prefrontal, occipital, and non-occipital) that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non-occipital areas. PMID

  6. Context-specific differences in fronto-parieto-occipital effective connectivity during short-term memory maintenance.

    PubMed

    Kundu, Bornali; Chang, Jui-Yang; Postle, Bradley R; Van Veen, Barry D

    2015-07-01

    Although visual short-term memory (VSTM) performance has been hypothesized to rely on two distinct mechanisms, capacity and filtering, the two have not been dissociated using network-level causality measures. Here, we hypothesized that behavioral tasks challenging capacity or distraction filtering would both engage a common network of areas, namely dorsolateral prefrontal cortex (dlPFC), superior parietal lobule (SPL), and occipital cortex, but would do so according to dissociable patterns of effective connectivity. We tested this by estimating directed connectivity between areas using conditional Granger causality (cGC). Consistent with our prediction, the results indicated that increasing mnemonic load (capacity) increased the top-down drive from dlPFC to SPL, and cGC in the alpha (8-14Hz) frequency range was a predominant component of this effect. The presence of distraction during encoding (filtering), in contrast, was associated with increased top-down drive from dlPFC to occipital cortices directly and from SPL to occipital cortices directly, in both cases in the beta (15-25Hz) range. Thus, although a common anatomical network may serve VSTM in different contexts, it does so via specific functions that are carried out within distinct, dynamically configured frequency channels. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease.

    PubMed

    Gerrits, Niels J H M; van Loenhoud, Anita C; van den Berg, Stan F; Berendse, Henk W; Foncke, Elisabeth M J; Klein, Martin; Stoffers, Diederick; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2016-01-01

    Parkinson's disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and surface area (SA), which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii) the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes.

  8. Localization of cortical areas activated by thinking.

    PubMed

    Roland, P E; Friberg, L

    1985-05-01

    These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and

  9. The Occipital Face Area Is Causally Involved in Facial Viewpoint Perception.

    PubMed

    Kietzmann, Tim C; Poltoratski, Sonia; König, Peter; Blake, Randolph; Tong, Frank; Ling, Sam

    2015-12-16

    Humans reliably recognize faces across a range of viewpoints, but the neural substrates supporting this ability remain unclear. Recent work suggests that neural selectivity to mirror-symmetric viewpoints of faces, found across a large network of visual areas, may constitute a key computational step in achieving full viewpoint invariance. In this study, we used repetitive transcranial magnetic stimulation (rTMS) to test the hypothesis that the occipital face area (OFA), putatively a key node in the face network, plays a causal role in face viewpoint symmetry perception. Each participant underwent both offline rTMS to the right OFA and sham stimulation, preceding blocks of behavioral trials. After each stimulation period, the participant performed one of two behavioral tasks involving presentation of faces in the peripheral visual field: (1) judging the viewpoint symmetry; or (2) judging the angular rotation. rTMS applied to the right OFA significantly impaired performance in both tasks when stimuli were presented in the contralateral, left visual field. Interestingly, however, rTMS had a differential effect on the two tasks performed ipsilaterally. Although viewpoint symmetry judgments were significantly disrupted, we observed no effect on the angle judgment task. This interaction, caused by ipsilateral rTMS, provides support for models emphasizing the role of interhemispheric crosstalk in the formation of viewpoint-invariant face perception. Faces are among the most salient objects we encounter during our everyday activities. Moreover, we are remarkably adept at identifying people at a glance, despite the diversity of viewpoints during our social encounters. Here, we investigate the cortical mechanisms underlying this ability by focusing on effects of viewpoint symmetry, i.e., the invariance of neural responses to mirror-symmetric facial viewpoints. We did this by temporarily disrupting neural processing in the occipital face area (OFA) using transcranial magnetic

  10. [Recurrent cortical blindness after LSD-intake].

    PubMed

    Bernhard, M K; Ulrich, K

    2009-02-01

    Recurrent disturbances of vision associated with headaches are typical signs of a migraine. A 15-year-old girl suffered from common migraine. The patient had a headache and nausea five days after a first and proved intake of LSD. Shortly later, a complete blindness of both eyes developed within seconds. These symptoms continued for 48 hours. As the pupillar reactions were intact the findings were consistent with cortical blindness. MRI and MR-angiography of the brain, analysis of the cerebrospinal fluid and blood investigations for thrombophilia were normal. The EEG showed a bilateral symmetrical delta wave slowing over the occipital areas. Within the following three months the girl had three more episodes with complete blindness over a period of 12-36 hours. There have never been any visual disturbances in between the episodes and afterwards. Extended diagnosis with long term blood pressure measurement, Doppler sonography and visual evoked potentials were normal. The occipital slowing in the EEG persisted for 18 months. As the symptoms were unusually long and severe for a complicated migraine it is possible that the temporary blindness was the correlate of flash backs caused by the LSD. LSD intake could trigger additional, local cortical dysfunction (e. g. in the occipital areas) in preexisting migraine.

  11. Processing of configural and componential information in face-selective cortical areas.

    PubMed

    Zhao, Mintao; Cheung, Sing-Hang; Wong, Alan C-N; Rhodes, Gillian; Chan, Erich K S; Chan, Winnie W L; Hayward, William G

    2014-01-01

    We investigated how face-selective cortical areas process configural and componential face information and how race of faces may influence these processes. Participants saw blurred (preserving configural information), scrambled (preserving componential information), and whole faces during fMRI scan, and performed a post-scan face recognition task using blurred or scrambled faces. The fusiform face area (FFA) showed stronger activation to blurred than to scrambled faces, and equivalent responses to blurred and whole faces. The occipital face area (OFA) showed stronger activation to whole than to blurred faces, which elicited similar responses to scrambled faces. Therefore, the FFA may be more tuned to process configural than componential information, whereas the OFA similarly participates in perception of both. Differences in recognizing own- and other-race blurred faces were correlated with differences in FFA activation to those faces, suggesting that configural processing within the FFA may underlie the other-race effect in face recognition.

  12. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change.

    PubMed

    Storsve, Andreas B; Fjell, Anders M; Tamnes, Christian K; Westlye, Lars T; Overbye, Knut; Aasland, Hilde W; Walhovd, Kristine B

    2014-06-18

    Human cortical thickness and surface area are genetically independent, emerge through different neurobiological events during development, and are sensitive to different clinical conditions. However, the relationship between changes in the two over time is unknown. Additionally, longitudinal studies have almost invariably been restricted to older adults, precluding the delineation of adult life span trajectories of change in cortical structure. In this longitudinal study, we investigated changes in cortical thickness, surface area, and volume after an average interval of 3.6 years in 207 well screened healthy adults aged 23-87 years. We hypothesized that the relationships among metrics are dynamic across the life span, that the primary contributor to cortical volume reductions in aging is cortical thinning, and that magnitude of change varies with age and region. Changes over time were seen in cortical area (mean annual percentage change [APC], -0.19), thickness (APC, -0.35), and volume (APC, -0.51) in most regions. Volume changes were primarily explained by changes in thickness rather than area. A negative relationship between change in thickness and surface area was found across several regions, where more thinning was associated with less decrease in area, and vice versa. Accelerating changes with increasing age was seen in temporal and occipital cortices. In contrast, decelerating changes were seen in prefrontal and anterior cingulate cortices. In conclusion, a dynamic relationship between cortical thickness and surface area changes exists throughout the adult life span. The mixture of accelerating and decelerating changes further demonstrates the importance of studying these metrics across the entire adult life span. Copyright © 2014 the authors 0270-6474/14/348488-11$15.00/0.

  13. Functional organization of the face-sensitive areas in human occipital-temporal cortex.

    PubMed

    Shao, Hanyu; Weng, Xuchu; He, Sheng

    2017-08-15

    Human occipital-temporal cortex features several areas sensitive to faces, presumably forming the biological substrate for face perception. To date, there are piecemeal insights regarding the functional organization of these regions. They have come, however, from studies that are far from homogeneous with regard to the regions involved, the experimental design, and the data analysis approach. In order to provide an overall view of the functional organization of the face-sensitive areas, it is necessary to conduct a comprehensive study that taps into the pivotal functional properties of all the face-sensitive areas, within the context of the same experimental design, and uses multiple data analysis approaches. In this study, we identified the most robustly activated face-sensitive areas in bilateral occipital-temporal cortices (i.e., AFP, aFFA, pFFA, OFA, pcSTS, pSTS) and systemically compared their regionally averaged activation and multivoxel activation patterns to 96 images from 16 object categories, including faces and non-faces. This condition-rich and single-image analysis approach critically samples the functional properties of a brain region, allowing us to test how two basic functional properties, namely face-category selectivity and face-exemplar sensitivity are distributed among these regions. Moreover, by examining the correlational structure of neural responses to the 96 images, we characterize their interactions in the greater face-processing network. We found that (1) r-pFFA showed the highest face-category selectivity, followed by l-pFFA, bilateral aFFA and OFA, and then bilateral pcSTS. In contrast, bilateral AFP and pSTS showed low face-category selectivity; (2) l-aFFA, l-pcSTS and bilateral AFP showed evidence of face-exemplar sensitivity; (3) r-OFA showed high overall response similarities with bilateral LOC and r-pFFA, suggesting it might be a transitional stage between general and face-selective information processing; (4) r-aFFA showed high

  14. Intramuscular Lipoma-Induced Occipital Neuralgia on the Lesser Occipital Nerve.

    PubMed

    Han, Hyun Ho; Kim, Hak Soo; Rhie, Jong Won; Moon, Suk Ho

    2016-06-01

    Occipital neuralgia (ON) is commonly characterized by a neuralgiform headache accompanied by a paroxysmal burning sensation in the dermatome area of the greater, lesser, or third occipital nerve. The authors report a rare case of ON caused by an intramuscular lipoma originating from the lesser occipital nerve.A 52-year-old man presented with sharp pain in the left postauricular area with a 3 × 2-cm palpable mass. Computed tomography revealed a mass suspiciously resembling an intramuscular lipoma within splenius muscle. In the operation field, a protruding mass causing stretching of the lesser occipital nerve was found. After complete resection, the neuralgiform headache symptom had resolved and the intramuscular lipoma was confirmed through histopathology.Previous studies on the causes of ON have reported that variation in normal anatomic structures results in nerve compression. Occipital neuralgia, however, caused by intramuscular lipomas in splenius muscles have not been previously reported, and the dramatic resolution following surgery makes it an interesting case worth reporting.

  15. Inattention Predicts Increased Thickness of Left Occipital Cortex in Men with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Sörös, Peter; Bachmann, Katharina; Lam, Alexandra P; Kanat, Manuela; Hoxhaj, Eliza; Matthies, Swantje; Feige, Bernd; Müller, Helge H O; Thiel, Christiane; Philipsen, Alexandra

    2017-01-01

    Attention-deficit/hyperactivity disorder (ADHD) in adulthood is a serious and frequent psychiatric disorder with the core symptoms inattention, impulsivity, and hyperactivity. The principal aim of this study was to investigate associations between brain morphology, i.e., cortical thickness and volumes of subcortical gray matter, and individual symptom severity in adult ADHD. Surface-based brain morphometry was performed in 35 women and 29 men with ADHD using FreeSurfer. Linear regressions were calculated between cortical thickness and the volumes of subcortical gray matter and the inattention, hyperactivity, and impulsivity subscales of the Conners Adult ADHD Rating Scales (CAARS). Two separate analyses were performed. For the first analysis, age was included as additional regressor. For the second analysis, both age and severity of depression were included as additional regressors. Study participants were recruited between June 2012 and January 2014. Linear regression identified an area in the left occipital cortex of men, covering parts of the middle occipital sulcus and gyrus, in which the score on the CAARS inattention subscale predicted increased mean cortical thickness [ F (1,27) = 26.27, p  < 0.001, adjusted R 2  = 0.4744]. No significant associations were found between cortical thickness and the scores on CAARS subscales in women. No significant associations were found between the volumes of subcortical gray matter and the scores on CAARS subscales, neither in men nor in women. These results remained stable when severity of depression was included as additional regressor, together with age. Increased cortical thickness in the left occipital cortex may represent a mechanism to compensate for dysfunctional attentional networks in male adult ADHD patients.

  16. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    PubMed

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.

  17. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.

    PubMed

    Ptito, M; Fumal, A; de Noordhout, A Martens; Schoenen, J; Gjedde, A; Kupers, R

    2008-01-01

    Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex. The number of cortical sites inducing tactile sensations appeared to be related to the number of hours of Braille reading per day, Braille reading speed and dexterity. These data, taken in conjunction with previous anatomical, behavioural and functional imaging results, suggest the presence of a polysynaptic cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference hypothesis.

  18. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    PubMed

    Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke

    2014-01-01

    A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  19. Cannabis use and progressive cortical thickness loss in areas rich in CB1 receptors during the first five years of schizophrenia.

    PubMed

    Rais, Monica; van Haren, Neeltje E M; Cahn, Wiepke; Schnack, Hugo G; Lepage, Claude; Collins, Louis; Evans, Alan C; Hulshoff Pol, Hilleke E; Kahn, René S

    2010-12-01

    Cerebral grey matter volume reductions are progressive in schizophrenia, with larger grey matter volume decreases associated with cannabis use. It is unknown whether this grey matter loss is globally distributed over the entire brain or more pronounced in specific cortical brain regions. Fifty-one patients with recent-onset schizophrenia and 31 matched healthy subjects were included. For all subjects, magnetic resonance imaging scans were obtained at inclusion and at 5-year follow-up. Nineteen patients (ab-)used cannabis but no other illicit drugs; 32 patients and the healthy comparison subjects did not use any drugs during the 5-year follow-up. At follow-up, clinical outcome was measured. To evaluate the local differences in cortical thickness change over five years between the two groups regression analysis was carried out over the cortical surface. At inclusion cortical thickness did not differ between patients and controls and between cannabis-using and non-using patients. Over the follow-up period we found excessive thinning of the right supplementary motor cortex, inferior frontal cortex, superior temporal gyrus, angular gyrus, occipital and parietal lobe in patients relative to controls after controlling for cannabis use. Patients who used cannabis showed additional thinning in the left dorsolateral prefrontal cortex (DLPFC), left anterior cingulate cortex (ACC) and left occipital lobe as compared to those patients that did not use cannabis during the scan interval. First-episode schizophrenia patients who use cannabis show a more pronounced cortical thinning than non-using patients in areas known for their high density of CB1 receptors, such as the ACC and the DLPFC. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Does Shape Discrimination by the Mouth Activate the Parietal and Occipital Lobes? – Near-Infrared Spectroscopy Study

    PubMed Central

    Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke

    2014-01-01

    A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth. PMID:25299397

  1. Occipital neuralgia: anatomic considerations.

    PubMed

    Cesmebasi, Alper; Muhleman, Mitchel A; Hulsberg, Paul; Gielecki, Jerzy; Matusz, Petru; Tubbs, R Shane; Loukas, Marios

    2015-01-01

    Occipital neuralgia is a debilitating disorder first described in 1821 as recurrent headaches localized in the occipital region. Other symptoms that have been associated with this condition include paroxysmal burning and aching pain in the distribution of the greater, lesser, or third occipital nerves. Several etiologies have been identified in the cause of occipital neuralgia and include, but are not limited to, trauma, fibrositis, myositis, fracture of the atlas, and compression of the C-2 nerve root, C1-2 arthrosis syndrome, atlantoaxial lateral mass osteoarthritis, hypertrophic cervical pachymeningitis, cervical cord tumor, Chiari malformation, and neurosyphilis. The management of occipital neuralgia can include conservative approaches and/or surgical interventions. Occipital neuralgia is a multifactorial problem where multiple anatomic areas/structures may be involved with this pathology. A review of these etiologies may provide guidance in better understanding occipital neuralgia. © 2014 Wiley Periodicals, Inc.

  2. Cortical thinning in cognitively normal elderly cohort of 60 to 89 year old from AIBL database and vulnerable brain areas

    NASA Astrophysics Data System (ADS)

    Lin, Zhongmin S.; Avinash, Gopal; Yan, Litao; McMillan, Kathryn

    2014-03-01

    Age-related cortical thinning has been studied by many researchers using quantitative MR images for the past three decades and vastly differing results have been reported. Although results have shown age-related cortical thickening in elderly cohort statistically in some brain regions under certain conditions, cortical thinning in elderly cohort requires further systematic investigation. This paper leverages our previously reported brain surface intensity model (BSIM)1 based technique to measure cortical thickness to study cortical changes due to normal aging. We measured cortical thickness of cognitively normal persons from 60 to 89 years old using Australian Imaging Biomarkers and Lifestyle Study (AIBL) data. MRI brains of 56 healthy people including 29 women and 27 men were selected. We measured average cortical thickness of each individual in eight brain regions: parietal, frontal, temporal, occipital, visual, sensory motor, medial frontal and medial parietal. Unlike the previous published studies, our results showed consistent age-related thinning of cerebral cortex in all brain regions. The parietal, medial frontal and medial parietal showed fastest thinning rates of 0.14, 0.12 and 0.10 mm/decade respectively while the visual region showed the slowest thinning rate of 0.05 mm/decade. In sensorimotor and parietal areas, women showed higher thinning (0.09 and 0.16 mm/decade) than men while in all other regions men showed higher thinning than women. We also created high resolution cortical thinning rate maps of the cohort and compared them to typical patterns of PET metabolic reduction of moderate AD and frontotemporal dementia (FTD). The results seemed to indicate vulnerable areas of cortical deterioration that may lead to brain dementia. These results validate our cortical thickness measurement technique by demonstrating the consistency of the cortical thinning and prediction of cortical deterioration trend with AIBL database.

  3. [Localization of attention related cortical structures by evoked potentials].

    PubMed

    Szelenberger, W

    2000-01-01

    Attention is an ambiguous concept, difficult to direct implementation in neurophysiological studies. The paper presents application of the Continuous Attention Test (CAT) items as stimuli in event related potential (ERP) studies on attention. Stimuli with high demand of attention result in enlarged N1 component in occipital derivations. Spatial analysis revealed increased positivity in frontal derivations. Three-dimensional image of cortical current density by means of Low Resolution Electromagnetic Tomography (LORETA) revealed sources of N1 component in occipital, parietal and postero-temporal derivations with the maximal current value at 17 Brodmann area. After target stimuli increase of current density in frontal derivations was observed, with the maximal value in the left 9 Brodmann area.

  4. Can proximity of the occipital artery to the greater occipital nerve act as a cause of idiopathic greater occipital neuralgia? An anatomical and histological evaluation of the artery-nerve relationship.

    PubMed

    Shimizu, Satoru; Oka, Hidehiro; Osawa, Shigeyuki; Fukushima, Yutaka; Utsuki, Satoshi; Tanaka, Ryusui; Fujii, Kiyotaka

    2007-06-01

    The purpose of this study was to clarify whether proximity of the occipital artery to the greater occipital nerve can act as a cause of occipital neuralgia, analogous to the contribution of intracranial vessels due to compression in cranial nerve neuralgias, represented by trigeminal neuralgias due to compression of the trigeminal nerve root by adjacent arterial loops. Twenty-four suboccipital areas in cadaver heads were studied for anatomical relationships between the occipital artery and the greater occipital nerve, with histopathological assessment of the greater occipital nerve for signs of mechanical damage. The occipital artery and greater occipital nerve were found to cross each other in the nuchal subcutaneous layer, and the latter was constantly situated superficial to the former at the cross point. An indentation of the greater occipital nerve due to the occipital artery was observed at the cross point in all specimens. However, histopathological examination did not reveal any findings of damage to nerves, even in specimens with atherosclerosis of the occipital artery. Although the present study did not provide direct evidence that the occipital artery contributes to occipital neuralgia at the point of contact with the greater occipital nerve, the possibility still cannot be precluded, because the occipital artery may be palpable in areas corresponding to tenderness of the greater occipital nerve. Further studies, including clinical cases, are needed to clarify this issue.

  5. Brain cortical characteristics of lifetime cognitive ageing.

    PubMed

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r < 0.180, FDR-corrected q < 0.05). There were no significant associations between cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  6. Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: Anatomical Stem-Based Virtual Dissection

    PubMed Central

    Hau, Janice; Sarubbo, Silvio; Perchey, Guy; Crivello, Fabrice; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Joliot, Marc; Mazoyer, Bernard M.; Tzourio-Mazoyer, Nathalie; Petit, Laurent

    2016-01-01

    We combined the neuroanatomists’ approach of defining a fascicle as all fibers passing through its compact stem with diffusion-weighted tractography to investigate the cortical terminations of two association tracts, the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF), which have recently been implicated in the ventral language circuitry. The aim was to provide a detailed and quantitative description of their terminations in 60 healthy subjects and to do so to apply an anatomical stem-based virtual dissection, mimicking classical post-mortem dissection, to extract with minimal a priori the IFOF and UF from tractography datasets. In both tracts, we consistently observed more extensive termination territories than their conventional definitions, within the middle and superior frontal, superior parietal and angular gyri for the IFOF and the middle frontal gyrus and superior, middle and inferior temporal gyri beyond the temporal pole for the UF. We revealed new insights regarding the internal organization of these tracts by investigating for the first time the frequency, distribution and hemispheric asymmetry of their terminations. Interestingly, we observed a dissociation between the lateral right-lateralized and medial left-lateralized fronto-occipital branches of the IFOF. In the UF, we observed a rightward lateralization of the orbito-frontal and temporal branches. We revealed a more detailed map of the terminations of these fiber pathways that will enable greater specificity for correlating with diseased populations and other behavioral measures. The limitations of the diffusion tensor model in this study are also discussed. We conclude that anatomical stem-based virtual dissection with diffusion tractography is a fruitful method for studying the structural anatomy of the human white matter pathways. PMID:27252628

  7. Anomalous origins of the calcarine and parieto-occipital arteries.

    PubMed

    Madhavan, Karthik; Dlouhy, Brian J; Vogel, Timothy W; Policeni, Bruno A; Smoker, Wendy R K; Hasan, David M

    2010-10-01

    Understanding cerebrovascular anatomy and its variations is of utmost importance in treating vascular malformations. The two patients presented here demonstrate yet to be reported anomalous origins of the cortical branches of the posterior cerebral artery. In one patient, fetal calcarine arteries were identified arising from the internal carotid arteries bilaterally with no calcarine branches arising from the posterior circulation and the basilar artery giving rise to terminal parieto-occipital arteries. Additionally, with vertebral artery injections, we found the dominant arterial supply to the right parieto-occipital artery arose from the right internal carotid artery and right posterior communicating artery and the dominant arterial supply to the left parieto-occipital artery arose from the right vertebral artery. A second patient demonstrated anomalous origins of the calcarine and parietal occipital branches from the supraclinoid left internal carotid artery. Understanding this complex cerebrovascular anatomy is important in the endovascular treatment of cerebrovascular aneurysms and malformations. Published by Elsevier Ltd.

  8. Occipital artery vasculitis not identified as a mechanism of occipital neuralgia-related chronic migraine headaches.

    PubMed

    Ducic, Ivica; Felder, John M; Janis, Jeffrey E

    2011-10-01

    Recent evidence has shown that some cases of occipital neuralgia are attributable to musculofascial compression of the greater occipital nerve and improve with neurolysis. A mechanical interaction at the intersection of the nerve and the occipital artery may also be capable of producing neuralgia, although that mechanism remains one theoretical possibility among several. The authors evaluated the possibility of unrecognized vasculitis of the occipital artery as a potential mechanism of occipital neuralgia arising from the occipital artery/greater occipital nerve junction. Twenty-five patients with preoperatively documented bilateral occipital neuralgia-related chronic headaches underwent peripheral nerve surgery with decompression of the greater occipital nerve bilaterally, including the area of its intersection with the occipital artery. In 15 patients, a 2-cm segment of the occipital artery was excised and submitted for pathologic evaluation. All patients were evaluated intraoperatively for evidence of arterially mediated greater occipital nerve compression, and the configuration of the nerve-vessel intersection was noted. None of the 15 specimens submitted for pathologic evaluation showed vasculitis. Intraoperatively, all 50 sites examined showed an intimate physical association between the occipital artery and greater occipital nerve. Surgical specimens from this first in vivo study provided no histologic evidence of vasculitis as a cause of greater occipital nerve irritation at the occipital artery/greater occipital nerve junction in patients with chronic headaches caused by occipital neuralgia. Based on these findings, mechanical (and not primary inflammatory) irritation of the nerve by the occipital artery remains an important theoretical cause for otherwise idiopathic cases. The authors have adopted an operative technique that includes physical separation of the nerve-artery intersection (in addition to musculofascial neurolysis) for a more thorough

  9. Orienting Auditory Spatial Attention Engages Frontal Eye Fields and Medial Occipital Cortex in Congenitally Blind Humans

    PubMed Central

    Garg, Arun; Schwartz, Daniel; Stevens, Alexander A.

    2007-01-01

    What happens in vision related cortical areas when congenitally blind (CB) individuals orient attention to spatial locations? Previous neuroimaging of sighted individuals has found overlapping activation in a network of frontoparietal areas including frontal eye-fields (FEF), during both overt (with eye movement) and covert (without eye movement) shifts of spatial attention. Since voluntary eye movement planning seems irrelevant in CB, their FEF neurons should be recruited for alternative functions if their attentional role in sighted individuals is only due to eye movement planning. Recent neuroimaging of the blind has also reported activation in medial occipital areas, normally associated with visual processing, during a diverse set of non-visual tasks, but their response to attentional shifts remains poorly understood. Here, we used event-related fMRI to explore FEF and medial occipital areas in CB individuals and sighted controls with eyes closed (SC) performing a covert attention orienting task, using endogenous verbal cues and spatialized auditory targets. We found robust stimulus-locked FEF activation of all CB subjects, similar but stronger than in SC, suggesting that FEF plays a role in endogenous orienting of covert spatial attention even in individuals in whom voluntary eye movements are irrelevant. We also found robust activation in bilateral medial occipital cortex in CB but not in SC subjects. The response decreased below baseline following endogenous verbal cues but increased following auditory targets, suggesting that the medial occipital area in CB does not directly engage during cued orienting of attention but may be recruited for processing of spatialized auditory targets. PMID:17397882

  10. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas.

    PubMed

    Palomero-Gallagher, Nicola; Zilles, Karl

    2017-08-12

    Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here. Copyright © 2017. Published by Elsevier Inc.

  11. Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans.

    PubMed

    Bakken, Trygve E; Roddey, J Cooper; Djurovic, Srdjan; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Jernigan, Terry L; Kaufmann, Walter E; Kenet, Tal; Kennedy, David N; Kuperman, Joshua M; Murray, Sarah S; Sowell, Elizabeth R; Rimol, Lars M; Mattingsdal, Morten; Melle, Ingrid; Agartz, Ingrid; Andreassen, Ole A; Schork, Nicholas J; Dale, Anders M; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R; Jagust, William; Trojanowki, John Q; Toga, Arthur W; Beckett, Laurel; Green, Robert C; Saykin, Andrew J; Morris, John; Liu, Enchi; Montine, Tom; Gamst, Anthony; Thomas, Ronald G; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Harvey, Danielle; Kornak, John; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Bandy, Dan; Koeppe, Robert A; Foster, Norm; Reiman, Eric M; Chen, Kewei; Mathis, Chet; Cairns, Nigel J; Taylor-Reinwald, Lisa; Trojanowki, J Q; Shaw, Les; Lee, Virginia M Y; Korecka, Magdalena; Crawford, Karen; Neu, Scott; Foroud, Tatiana M; Potkin, Steven; Shen, Li; Kachaturian, Zaven; Frank, Richard; Snyder, Peter J; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S; Pawluczyk, Sonia; Spann, Bryan M; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L; Lord, Joanne L; Johnson, Kris; Doody, Rachelle S; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S; Bell, Karen L; Morris, John C; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P Murali; Petrella, Jeffrey R; Coleman, R Edward; Arnold, Steven E; Karlawish, Jason H; Wolk, David; Smith, Charles D; Jicha, Greg; Hardy, Peter; Lopez, Oscar L; Oakley, MaryAnn; Simpson, Donna M; Porsteinsson, Anton P; Goldstein, Bonnie S; Martin, Kim; Makino, Kelly M; Ismail, M Saleem; Brand, Connie; Mulnard, Ruth A; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I; Lah, James J; Cellar, Janet S; Burns, Jeffrey M; Anderson, Heather S; Swerdlow, Russell H; Apostolova, Liana; Lu, Po H; Bartzokis, George; Silverman, Daniel H S; Graff-Radford, Neill R; Parfitt, Francine; Johnson, Heather; Farlow, Martin R; Hake, Ann Marie; Matthews, Brandy R; Herring, Scott; van Dyck, Christopher H; Carson, Richard E; MacAvoy, Martha G; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Ging-Yuek; Hsiung, Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A; Johnson, Keith A; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O; Wolday, Saba; Bwayo, Salome K; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; Kittur, Smita; Borrie, Michael; Lee, T-Y; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M; Potkin, Steven G; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W; Kataki, Maria; Zimmerman, Earl A; Celmins, Dzintra; Brown, Alice D; Pearlson, Godfrey D; Blank, Karen; Anderson, Karen; Santulli, Robert B; Schwartz, Eben S; Sink, Kaycee M; Williamson, Jeff D; Garg, Pradeep; Watkins, Franklin; Ott, Brian R; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J; Miller, Bruce L; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabether; Rachinsky, Irina; Drost, Dick; Jernigan, Terry; McCabe, Connor; Grant, Ellen; Ernst, Thomas; Kuperman, Josh; Chung, Yoon; Murray, Sarah; Bloss, Cinnamon; Darst, Burcu; Pritchett, Lexi; Saito, Ashley; Amaral, David; DiNino, Mishaela; Eyngorina, Bella; Sowell, Elizabeth; Houston, Suzanne; Soderberg, Lindsay; Kaufmann, Walter; van Zijl, Peter; Rizzo-Busack, Hilda; Javid, Mohsin; Mehta, Natasha; Ruberry, Erika; Powers, Alisa; Rosen, Bruce; Gebhard, Nitzah; Manigan, Holly; Frazier, Jean; Kennedy, David; Yakutis, Lauren; Hill, Michael; Gruen, Jeffrey; Bosson-Heenan, Joan; Carlson, Heatherly

    2012-03-06

    Visual cortical surface area varies two- to threefold between human individuals, is highly heritable, and has been correlated with visual acuity and visual perception. However, it is still largely unknown what specific genetic and environmental factors contribute to normal variation in the area of visual cortex. To identify SNPs associated with the proportional surface area of visual cortex, we performed a genome-wide association study followed by replication in two independent cohorts. We identified one SNP (rs6116869) that replicated in both cohorts and had genome-wide significant association (P(combined) = 3.2 × 10(-8)). Furthermore, a metaanalysis of imputed SNPs in this genomic region identified a more significantly associated SNP (rs238295; P = 6.5 × 10(-9)) that was in strong linkage disequilibrium with rs6116869. These SNPs are located within 4 kb of the 5' UTR of GPCPD1, glycerophosphocholine phosphodiesterase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is more highly expressed in occipital cortex compared with the remainder of cortex than 99.9% of genes genome-wide. Based on these findings, we conclude that this common genetic variation contributes to the proportional area of human visual cortex. We suggest that identifying genes that contribute to normal cortical architecture provides a first step to understanding genetic mechanisms that underlie visual perception.

  12. Effective connectivities of cortical regions for top-down face processing: A Dynamic Causal Modeling study

    PubMed Central

    Li, Jun; Liu, Jiangang; Liang, Jimin; Zhang, Hongchuan; Zhao, Jizheng; Rieth, Cory A.; Huber, David E.; Li, Wu; Shi, Guangming; Ai, Lin; Tian, Jie; Lee, Kang

    2013-01-01

    To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis. PMID:20423709

  13. Cortical areas involved in Arabic number reading.

    PubMed

    Roux, F-E; Lubrano, V; Lauwers-Cances, V; Giussani, C; Démonet, J-F

    2008-01-15

    Distinct functional pathways for processing words and numbers have been hypothesized from the observation of dissociated impairments of these categories in brain-damaged patients. We aimed to identify the cortical areas involved in Arabic number reading process in patients operated on for various brain lesions. Direct cortical electrostimulation was prospectively used in 60 brain mappings. We used object naming and two reading tasks: alphabetic script (sentences and number words) and Arabic number reading. Cortical areas involved in Arabic number reading were identified according to location, type of interference, and distinctness from areas associated with other language tasks. Arabic number reading was sustained by small cortical areas, often extremely well localized (<1 cm(2)). Over 259 language sites detected, 43 (17%) were exclusively involved in Arabic number reading (no sentence or word number reading interference detected in these sites). Specific Arabic number reading interferences were mainly found in three regions: the Broca area (Brodmann area 45), the anterior part of the dominant supramarginal gyrus (Brodmann area 40; p < 0.0001), and the temporal-basal area (Brodmann area 37; p < 0.05). Diverse types of interferences were observed (reading arrest, phonemic or semantic paraphasia). Error patterns were fairly similar across temporal, parietal, and frontal stimulation sites, except for phonemic paraphasias, which were found only in supramarginal gyrus. Our findings strongly support the fact that the acquisition through education of specific symbolic entities, such as Arabic numbers, could result in the segregation and the specialization of anatomically distinct brain areas.

  14. Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder.

    PubMed

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Génier Marchand, Daphné; Escudier, Frédérique; Gaubert, Malo; Bourgouin, Pierre-Alexandre; Carrier, Julie; Monchi, Oury; Joubert, Sven; Blanc, Frédéric; Gagnon, Jean-François

    2018-05-15

    To investigate cortical and subcortical gray matter abnormalities underlying cognitive impairment in patients with REM sleep behavior disorder (RBD) with or without mild cognitive impairment (MCI). Fifty-two patients with RBD, including 17 patients with MCI, were recruited and compared to 41 controls. All participants underwent extensive clinical assessments, neuropsychological examination, and 3-tesla MRI acquisition of T1 anatomical images. Vertex-based cortical analyses of volume, thickness, and surface area were performed to investigate cortical abnormalities between groups, whereas vertex-based shape analysis was performed to investigate subcortical structure surfaces. Correlations were performed to investigate associations between cortical and subcortical metrics, cognitive domains, and other markers of neurodegeneration (color discrimination, olfaction, and autonomic measures). Patients with MCI had cortical thinning in the frontal, cingulate, temporal, and occipital cortices, and abnormal surface contraction in the lenticular nucleus and thalamus. Patients without MCI had cortical thinning restricted to the frontal cortex. Lower patient performance in cognitive domains was associated with cortical and subcortical abnormalities. Moreover, impaired performance on olfaction, color discrimination, and autonomic measures was associated with thinning in the occipital lobe. Cortical and subcortical gray matter abnormalities are associated with cognitive status in patients with RBD, with more extensive patterns in patients with MCI. Our results highlight the importance of distinguishing between subgroups of patients with RBD according to cognitive status in order to better understand the neurodegenerative process in this population. © 2018 American Academy of Neurology.

  15. Development of Cortical Morphology Evaluated with Longitudinal MR Brain Images of Preterm Infants

    PubMed Central

    Moeskops, Pim; Benders, Manon J. N. L.; Kersbergen, Karina J.; Groenendaal, Floris; de Vries, Linda S.; Viergever, Max A.; Išgum, Ivana

    2015-01-01

    Introduction The cerebral cortex develops rapidly in the last trimester of pregnancy. In preterm infants, brain development is very vulnerable because of their often complicated extra-uterine conditions. The aim of this study was to quantitatively describe cortical development in a cohort of 85 preterm infants with and without brain injury imaged at 30 and 40 weeks postmenstrual age (PMA). Methods In the acquired T2-weighted MR images, unmyelinated white matter (UWM), cortical grey matter (CoGM), and cerebrospinal fluid in the extracerebral space (CSF) were automatically segmented. Based on these segmentations, cortical descriptors evaluating volume, surface area, thickness, gyrification index, and global mean curvature were computed at both time points, for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes separately. Additionally, visual scoring of brain abnormality was performed using a conventional scoring system at 40 weeks PMA. Results The evaluated descriptors showed larger change in the occipital lobes than in the other lobes. Moreover, the cortical descriptors showed an association with the abnormality scores: gyrification index and global mean curvature decreased, whereas, interestingly, median cortical thickness increased with increasing abnormality score. This was more pronounced at 40 weeks PMA than at 30 weeks PMA, suggesting that the period between 30 and 40 weeks PMA might provide a window of opportunity for intervention to prevent delay in cortical development. PMID:26161536

  16. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature.

    PubMed

    Kong, Li; Herold, Christina J; Zöllner, Frank; Salat, David H; Lässer, Marc M; Schmid, Lena A; Fellhauer, Iven; Thomann, Philipp A; Essig, Marco; Schad, Lothar R; Erickson, Kirk I; Schröder, Johannes

    2015-02-28

    Grey matter volume and cortical thickness are the two most widely used measures for detecting grey matter morphometric changes in various diseases such as schizophrenia. However, these two measures only share partial overlapping regions in identifying morphometric changes. Few studies have investigated the contributions of the potential factors to the differences of grey matter volume and cortical thickness. To investigate this question, 3T magnetic resonance images from 22 patients with schizophrenia and 20 well-matched healthy controls were chosen for analyses. Grey matter volume and cortical thickness were measured by VBM and Freesurfer. Grey matter volume results were then rendered onto the surface template of Freesurfer to compare the differences from cortical thickness in anatomical locations. Discrepancy regions of the grey matter volume and thickness where grey matter volume significantly decreased but without corresponding evidence of cortical thinning involved the rostral middle frontal, precentral, lateral occipital and superior frontal gyri. Subsequent region-of-interest analysis demonstrated that changes in surface area, grey/white matter intensity contrast and curvature accounted for the discrepancies. Our results suggest that the differences between grey matter volume and thickness could be jointly driven by surface area, grey/white matter intensity contrast and curvature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Chronotype differences in cortical thickness: grey matter reflects when you go to bed.

    PubMed

    Rosenberg, Jessica; Jacobs, Heidi I L; Maximov, Ivan I; Reske, Martina; Shah, N J

    2018-06-15

    Based on individual circadian cycles and associated cognitive rhythms, humans can be classified via standardised self-reports as being early (EC), late (LC) and intermediate (IC) chronotypes. Alterations in neural cortical structure underlying these chronotype differences have rarely been investigated and are the scope of this study. 16 healthy male ECs, 16 ICs and 16 LCs were measured with a 3 T MAGNETOM TIM TRIO (Siemens, Erlangen) scanner using a magnetization prepared rapid gradient echo sequence. Data were analysed by applying voxel-based morphometry (VBM) and vertex-wise cortical thickness (CTh) analysis. VBM analysis revealed that ECs showed significantly lower grey matter volumes bilateral in the lateral occipital cortex and the precuneus as compared to LCs, and in the right lingual gyrus, occipital fusiform gyrus and the occipital pole as compared to ICs. CTh findings showed lower grey matter volumes for ECs in the left anterior insula, precuneus, inferior parietal cortex, and right pars triangularis than for LCs, and in the right superior parietal gyrus than for ICs. These findings reveal that chronotype differences are associated with specific neural substrates of cortical thickness, surface areas, and folding. We conclude that this might be the basis for chronotype differences in behaviour and brain function. Furthermore, our results speak for the necessity of considering "chronotype" as a potentially modulating factor in all kinds of structural brain-imaging experiments.

  18. Micro-surgical decompression for greater occipital neuralgia.

    PubMed

    Li, Fuyong; Ma, Yi; Zou, Jianjun; Li, Yanfeng; Wang, Bin; Huang, Haitao; Wang, Quancai; Li, Liang

    2012-01-01

    To evaluate the clinical effect of micro-surgical decompression of greater occipital nerve for greater occipital neuralgia (GON). 76 patients underwent surgical decompression of the great occipital nerve. A nerve block was tested before operation. The headache rapidly resolved after infiltration of 1% Lidocaine near the tender area of the nerve trunk. 89 procedures were performed for 76 patients. The mean follow up duration was 20 months (range 7-52 months). The headache symptoms of 68 (89.5%) patients were completely resolved, and another 5 (6.6%) patients were significantly relieved without the need for any further medical treatment. Three (3.9%) patients experienced recurrence of the disorder. All patients experienced hypoesthesia of the innervated area of the great occipital nerve. They recovered gradually within 1 to 6 months after surgery. Micro-surgical decompression of the greater occipital nerve is a safe and effective method for greater occipital neuralgia. We believe our findings support the notion that the technique should also be considered as the first-line procedure for GON.

  19. Alfred Walter Campbell and the visual functions of the occipital cortex.

    PubMed

    Macmillan, Malcolm

    2014-07-01

    In his pioneering cytoarchitectonic studies of the human brain, Alfred Walter Campbell identified two structurally different areas in the occipital lobes and assigned two different kinds of visual functions to them. The first area, the visuosensory, was essentially on the mesial surface of the calcarine fissure. It was the terminus of nervous impulses generated in the retina and was where simple visual sensations arose. The second area, the visuopsychic, which surrounded or invested the first, was where sensations were interpreted and elaborated into visual perceptions. I argue that Campbell's distinction between the two areas was the starting point for the eventual differentiation of areas V1-V5. After a brief outline of Campbell's early life and education in Australia and of his Scottish medical education and early work as a pathologist at the Lancashire County Lunatic Asylum at Rainhill near Liverpool, I summarise his work on the human brain. In describing the structures he identified in the occipital lobes, I analyse the similarities and differences between them and the related structures identified by Joseph Shaw Bolton. I conclude by proposing some reasons for how that work came to be overshadowed by the later studies of Brodmann and for the more general lack of recognition given Campbell and his work. Those reasons include the effect of the controversies precipitated by Campbell's alliance with Charles Sherrington over the functions of the sensory and motor cortices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Occipital neuralgia.

    PubMed

    Dougherty, Carrie

    2014-05-01

    Occipital pain is a common complaint amongst patients with headache, and the differential can include many primary headache disorders such as cervicogenic headache or migraine. Occipital neuralgia is an uncommon cause of occipital pain characterized by paroxysmal lancinating pain in the distribution of the greater, lesser or third occipital nerves. Greater occipital nerve blockade with anesthetics and/or corticosteroids can aid in confirming the diagnosis and providing pain relief. However, nerve blocks are also effective in migraine headache and misdiagnosis can result in a false positive. Physical therapy and preventive medication with antiepileptics and tricyclic antidepressants are often effective treatments for occipital neuralgia. Refractory cases may require intervention with pulsed radiofrequency or occipital nerve stimulation.

  1. Greater occipital nerve excision for occipital neuralgia refractory to nerve decompression.

    PubMed

    Ducic, Ivica; Felder, John M; Khan, Neelam; Youn, Sojin

    2014-02-01

    Patients who undergo occipital nerve decompression for treatment of migraine headaches due to occipital neuralgia have already exhausted medical options for treatment. When surgical decompression fails, it is unknown how best to help these patients. We examine our experience performing greater occipital nerve (GON) excision for pain relief in this select, refractory group of patients. A retrospective chart review supplemented by a follow-up survey was performed on all patients under the care of the senior author who had undergone GON excision after failing occipital nerve decompression. Headache severity was measured by the migraine headache index (MHI) and disability by the migraine disability assessment. Success rate was considered the percentage of patients who experienced a 50% or greater reduction in MHI at final follow-up. Seventy-one of 108 patients responded to the follow-up survey and were included in the study. Average follow-up was 33 months. The success rate of surgery was 70.4%; 41% of patients showed a 90% or greater decrease in MHI. The MHI changed, on average, from 146 to 49, for an average reduction of 63% (P < 0.001). Migraine disability assessment scores decreased by an average of 49% (P < 0.001). Multivariate analysis revealed that a diagnosis of cervicogenic headache was associated with failure of surgery. The most common adverse effect was bothersome numbness or hypersensitivity in the denervated area, occurring in up to 31% of patients. Excision of the GON is a valid option for pain relief in patients with occipital headaches refractory to both medical treatment and surgical decompression. Potential risks include failure in patients with cervicogenic headache and hypersensitivity of the denervated area. To provide the best outcome to these patients who have failed all previous medical and surgical treatments, a multidisciplinary team approach remains critical.

  2. Cortical underconnectivity coupled with preserved visuospatial cognition in autism: Evidence from an fMRI study of an embedded figures task.

    PubMed

    Damarla, Saudamini Roy; Keller, Timothy A; Kana, Rajesh K; Cherkassky, Vladimir L; Williams, Diane L; Minshew, Nancy J; Just, Marcel Adam

    2010-10-01

    Individuals with high-functioning autism sometimes exhibit intact or superior performance on visuospatial tasks, in contrast to impaired functioning in other domains such as language comprehension, executive tasks, and social functions. The goal of the current study was to investigate the neural bases of preserved visuospatial processing in high-functioning autism from the perspective of the cortical underconnectivity theory. We used a combination of behavioral, functional magnetic resonance imaging, functional connectivity, and corpus callosum morphometric methodological tools. Thirteen participants with high-functioning autism and 13 controls (age-, IQ-, and gender-matched) were scanned while performing an Embedded Figures Task. Despite the ability of the autism group to attain behavioral performance comparable to the control group, the brain imaging results revealed several group differences consistent with the cortical underconnectivity account of autism. First, relative to controls, the autism group showed less activation in the left dorsolateral prefrontal and inferior parietal areas and more activation in visuospatial (bilateral superior parietal extending to inferior parietal and right occipital) areas. Second, the autism group demonstrated lower functional connectivity between higher-order working memory/executive areas and visuospatial regions (between frontal and parietal-occipital). Third, the size of the corpus callosum (an index of anatomical connectivity) was positively correlated with frontal-posterior (parietal and occipital) functional connectivity in the autism group. Thus, even in the visuospatial domain, where preserved performance among people with autism is observed, the neuroimaging signatures of cortical underconnectivity persist.

  3. Cortical underconnectivity coupled with preserved visuospatial cognition in autism: Evidence from an fMRI study of an embedded figures task

    PubMed Central

    Damarla, Saudamini Roy; Keller, Timothy A.; Kana, Rajesh K.; Cherkassky, Vladimir L.; Williams, Diane L.; Minshew, Nancy J.; Just, Marcel Adam

    2010-01-01

    Individuals with high-functioning autism sometimes exhibit intact or superior performance on visuospatial tasks, in contrast to impaired functioning in other domains such as language comprehension, executive tasks, and social functions. The goal of the current study was to investigate the neural bases of preserved visuospatial processing in high-functioning autism from the perspective of the cortical underconnectivity theory. We used a combination of behavioral, functional magnetic resonance imaging (fMRI), functional connectivity, and corpus callosum morphometric methodological tools. Thirteen participants with high-functioning autism and thirteen controls (age-, IQ-, and gender-matched) were scanned while performing an Embedded Figures Task (EFT). Despite the ability of the autism group to attain behavioral performance comparable to the control group, the brain imaging results revealed several group differences consistent with the cortical underconnectivity account of autism. First, relative to controls, the autism group showed less activation in left dorsolateral prefrontal and inferior parietal areas and more activation in visuospatial (bilateral superior parietal extending to inferior parietal and right occipital) areas. Second, the autism group demonstrated lower functional connectivity between higher-order working memory/executive areas and visuospatial regions (between frontal and parietal-occipital). Third, the size of the corpus callosum (an index of anatomical connectivity) was positively correlated with frontal-posterior (parietal and occipital) functional connectivity in the autism group. Thus, even in the visuospatial domain, where preserved performance among people with autism is observed, the neuroimaging signatures of cortical underconnectivity persist. PMID:20740492

  4. Early visual cortical structural changes in diabetic patients without diabetic retinopathy.

    PubMed

    Ferreira, Fábio S; Pereira, João M S; Reis, Aldina; Sanches, Mafalda; Duarte, João V; Gomes, Leonor; Moreno, Carolina; Castelo-Branco, Miguel

    2017-11-01

    It is known that diabetic patients have changes in cortical morphometry as compared to controls, but it remains to be clarified whether the visual cortex is a disease target, even when diabetes complications such as retinopathy are absent. Therefore, we compared type 2 diabetes patients without diabetic retinopathy with control subjects using magnetic resonance imaging to assess visual cortical changes when retinal damage is not yet present. We performed T1-weighted imaging in 24 type 2 diabetes patients without diabetic retinopathy and 27 age- and gender-matched controls to compare gray matter changes in the occipital cortex between groups using voxel based morphometry. Patients without diabetic retinopathy showed reduced gray matter volume in the occipital lobe when compared with controls. Reduced gray matter volume in the occipital cortex was found in diabetic patients without retinal damage. We conclude that cortical early visual processing regions may be affected in diabetic patients even before retinal damage occurs.

  5. Activation of the occipital cortex and deactivation of the default mode network during working memory in the early blind.

    PubMed

    Park, Hae-Jeong; Chun, Ji-Won; Park, Bumhee; Park, Haeil; Kim, Joong Il; Lee, Jong Doo; Kim, Jae-Jin

    2011-05-01

    Although blind people heavily depend on working memory to manage daily life without visual information, it is not clear yet whether their working memory processing involves functional reorganization of the memory-related cortical network. To explore functional reorganization of the cortical network that supports various types of working memory processes in the early blind, we investigated activation differences between 2-back tasks and 0-back tasks using fMRI in 10 congenitally blind subjects and 10 sighted subjects. We used three types of stimulus sequences: words for a verbal task, pitches for a non-verbal task, and sound locations for a spatial task. When compared to the sighted, the blind showed additional activations in the occipital lobe for all types of stimulus sequences for working memory and more significant deactivation in the posterior cingulate cortex of the default mode network. The blind had increased effective connectivity from the default mode network to the left parieto-frontal network and from the occipital cortex to the right parieto-frontal network during the 2-back tasks than the 0-back tasks. These findings suggest not only cortical plasticity of the occipital cortex but also reorganization of the cortical network for the executive control of working memory.

  6. Relating normalization to neuronal populations across cortical areas

    PubMed Central

    Alberts, Joshua J.; Cohen, Marlene R.

    2016-01-01

    Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties. PMID:27358313

  7. Effects of education on aging-related cortical thinning among cognitively normal individuals.

    PubMed

    Kim, Jun Pyo; Seo, Sang Won; Shin, Hee Young; Ye, Byoung Seok; Yang, Jin-Ju; Kim, Changsoo; Kang, Mira; Jeon, Seun; Kim, Hee Jin; Cho, Hanna; Kim, Jung-Hyun; Lee, Jong-Min; Kim, Sung Tae; Na, Duk L; Guallar, Eliseo

    2015-09-01

    We aimed to investigate the relationship between education and cortical thickness in cognitively normal individuals to determine whether education attenuated the association of advanced aging and cortical thinning. A total of 1,959 participants, in whom education levels were available, were included in the final analysis. Cortical thickness was measured on high-resolution MRIs using a surface-based method. Multiple linear regression analysis was performed for education level and cortical thickness, after controlling for possible confounders. High levels of education were correlated with increased mean cortical thickness throughout the entire cortex (p = 0.003). This association persisted after controlling for vascular risk factors. Statistical maps of cortical thickness showed that the high levels of education were correlated with increased cortical thickness in the bilateral premotor areas, anterior cingulate cortices, perisylvian areas, right superior parietal lobule, left lingual gyrus, and occipital pole. There were also interactive effects of age and education on the mean cortical thickness (p = 0.019). Our findings suggest the protective effect of education on cortical thinning in cognitively normal older individuals, regardless of vascular risk factors. This effect was found only in the older participants, suggesting that the protective effects of education on cortical thickness might be achieved by increased resistance to structural loss from aging rather than by simply providing a fixed advantage in the brain. © 2015 American Academy of Neurology.

  8. Long term prognosis of symptomatic occipital lobe epilepsy secondary to neonatal hypoglycemia.

    PubMed

    Montassir, Hesham; Maegaki, Yoshihiro; Ohno, Kousaku; Ogura, Kaeko

    2010-02-01

    To report on long-term clinical course in patients with symptomatic occipital lobe epilepsy secondary to neonatal hypoglycemia. Six patients with neonatal hypoglycemia and symptomatic occipital lobe epilepsy were studied in our hospital through reviewing their medical records retrospectively. The median onset age of epilepsy was 2 years 8 months and median follow-up period was 12 years and 4 months. Initial seizure types were generalized convulsions in 4 patients, hemiconvulsion in 1, and infantile spasms in 1. Ictal manifestations of main seizures were identical to occipital lobe seizures, such as eye deviation, eye blinking, ictal vomiting, and visual hallucination. Seizure frequency was maximum during infancy and early childhood and decreased thereafter with no seizure in 2 patients, a few seizures a year in 3, and once a month in 1. All patients had status epilepticus in the early course of epilepsy. EEGs showed parieto-occipital spikes in all patients. MRI revealed cortical atrophy and T2 prolongation parieto-occipitally in 4 patients, hippocampal atrophy in 1, and unremarkable in 1. This study indicates that epilepsy secondary to neonatal hypoglycemia is intractable during infancy and early childhood with frequent status epilepticus but tends to decrease in older age.

  9. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.

    PubMed

    Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K

    2016-11-01

    Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Stimulus Dependence of Correlated Variability across Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex

  11. Cortical plasticity associated with Braille learning.

    PubMed

    Hamilton, R H; Pascual-Leone, A

    1998-05-01

    Blind subjects who learn to read Braille must acquire the ability to extract spatial information from subtle tactile stimuli. In order to accomplish this, neuroplastic changes appear to take place. During Braille learning, the sensorimotor cortical area devoted to the representation of the reading finger enlarges. This enlargement follows a two-step process that can be demonstrated with transcranial magnetic stimulation mapping and suggests initial unmasking of existing connections and eventual establishment of more stable structural changes. In addition, Braille learning appears to be associated with the recruitment of parts of the occipital, formerly `visual', cortex (V1 and V2) for tactile information processing. In blind, proficient Braille readers, the occipital cortex can be shown not only to be associated with tactile Braille reading but also to be critical for reading accuracy. Recent studies suggest the possibility of applying non-invasive neurophysiological techniques to guide and improve functional outcomes of these plastic changes. Such interventions might provide a means of accelerating functional adjustment to blindness.

  12. Changes in cortical thickness during the course of illness in schizophrenia.

    PubMed

    van Haren, Neeltje E M; Schnack, Hugo G; Cahn, Wiepke; van den Heuvel, Martijn P; Lepage, Claude; Collins, Louis; Evans, Alan C; Hulshoff Pol, Hilleke E; Kahn, René S

    2011-09-01

    Whether cortical thickness changes in schizophrenia over time are more pronounced relative to the changes that can be attributed to normal aging has not been studied. To compare patients with schizophrenia and healthy control participants on cortical thickness change. A 5-year longitudinal study comparing schizophrenic patients and healthy controls using 2 magnetic resonance images of the brain. Patients were recruited from the Department of Psychiatry at the University Medical Centre Utrecht and from other psychiatric hospitals in the Netherlands. Healthy controls were recruited via advertisement in newspapers and notice boards. Ninety-six schizophrenic patients and 113 healthy controls aged 16 to 56 years. Cortical thickness and change in cortical thickness on a vertex-by-vertex basis across the cortical mantle, measures of functional and symptomatic outcome, and cumulative intake of antipsychotics during the scan interval. At baseline, the schizophrenic patients had thinner left orbitofrontal and right parahippocampal and superior temporal cortices and a thicker superior parietal lobule and occipital pole compared with the controls. Mean cortical thickness did not differ between the groups. Over time, excessive cortical thinning was found in widespread areas on the cortical mantle, most pronounced bilaterally in the temporal cortex and in the left frontal area. Poor outcome in patients was associated with more pronounced cortical thinning. Higher cumulative intake of typical antipsychotics during the scan interval was associated with more pronounced cortical thinning, whereas higher cumulative intake of atypical antipsychotic medication was associated with less pronounced cortical thinning. In schizophrenia, the cortex shows excessive thinning over time in widespread areas of the brain, most pronounced in the frontal and temporal areas, and progresses across the entire course of the illness. The excessive thinning of the cortex appears related to outcome and

  13. Greater Occipital Nerve Decompression for Occipital Neuralgia.

    PubMed

    Jose, Anson; Nagori, Shakil Ahmed; Chattopadhyay, Probodh K; Roychoudhury, Ajoy

    2018-05-14

    The aim of the study was to evaluate the effectiveness of greater occipital nerve decompression for the management of occipital neuralgia. Eleven patients of medical refractory occipital neuralgia were enrolled in the study. Local anaesthetic blocks were used for confirming diagnosis. All of them underwent surgical decompression of greater occipital nerve at the level of semispinalis capitis and trapezial tunnel. A pre and postoperative questionnaire was used to compare the severity of pain and number of pain episodes/month. Mean pain episodes reported by patients before surgery were 17.1 ± 5.63 episodes per month. This reduced to 4.1 ± 3.51 episodes per month (P < 0.0036) postsurgery. The mean intensity of pain also reduced from a preoperative 7.18 ± 1.33 to a postoperative of 1.73 ± 1.95 (P < 0.0033). Three patients reported complete elimination of pain after surgery while 6 patients reported significant relief of their symptoms. Only 2 patients failed to notice any significant improvement. The mean follow-up period was 12.45 ± 1.29 months. Surgical decompression of greater occipital nerve is a simple and viable treatment modality for the management of occipital neuralgia.

  14. Relating normalization to neuronal populations across cortical areas.

    PubMed

    Ruff, Douglas A; Alberts, Joshua J; Cohen, Marlene R

    2016-09-01

    Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties. Copyright © 2016 the American Physiological Society.

  15. Post-adolescent developmental changes in cortical complexity.

    PubMed

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  16. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    PubMed

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  17. Cortical Integration of Audio-Visual Information

    PubMed Central

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  18. Prenatal thalamic waves regulate cortical area size prior to sensory processing.

    PubMed

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M; López-Bendito, Guillermina

    2017-02-03

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.

  19. Prenatal thalamic waves regulate cortical area size prior to sensory processing

    PubMed Central

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina

    2017-01-01

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854

  20. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech

    PubMed Central

    Van Ackeren, Markus Johannes; Barbero, Francesca M; Mattioni, Stefania; Bottini, Roberto

    2018-01-01

    The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives. PMID:29338838

  1. Occipital neuralgia evoked by facial herpes zoster infection.

    PubMed

    Kihara, Takeshi; Shimohama, Shun

    2006-01-01

    Occipital neuralgia is a pain syndrome which may usually be induced by spasms of the cervical muscles or trauma to the greater or lesser occipital nerves. We report a patient with occipital neuralgia followed by facial herpes lesion. A 74-year-old male experienced sudden-onset severe headache in the occipital area. The pain was localized to the distribution of the right side of the greater occipital nerve, and palpation of the right greater occipital nerve reproduces the pain. He was diagnosed with occipital neuralgia according to ICHD-II criteria. A few days later, the occipital pain was followed by reddening of the skin and the appearance, of varying size, of vesicles on the right side of his face (the maxillary nerve and the mandibular nerve region). This was diagnosed as herpes zoster. This case represents a combination of facial herpes lesions and pain in the C2 and C3 regions. The pain syndromes can be confusing, and the classic herpes zoster infection should be considered even when no skin lesions are established.

  2. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    PubMed

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  3. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    PubMed

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial

  4. OCCIPITAL SOURCES OF RESTING STATE ALPHA RHYTHMS ARE RELATED TO LOCAL GRAY MATTER DENSITY IN SUBJECTS WITH AMNESIC MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

    PubMed Central

    Claudio, Babiloni; Claudio, Del Percio; Marina, Boccardi; Roberta, Lizio; Susanna, Lopez; Filippo, Carducci; Nicola, Marzano; Andrea, Soricelli; Raffaele, Ferri; Ivano, Triggiani Antonio; Annapaola, Prestia; Serenella, Salinari; Rasser Paul, E; Erol, Basar; Francesco, Famà; Flavio, Nobili; Görsev, Yener; Durusu, Emek-Savaş Derya; Gesualdo, Loreto; Ciro, Mundi; Thompson Paul, M; Rossini Paolo, M.; Frisoni Giovanni, B

    2014-01-01

    Occipital sources of resting state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Here we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging (MRI). Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density (GMD), estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8–10.5 Hz) and alpha 2 (10.5–13 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic tomography (LORETA). Results showed a positive correlation between occipital GMD and amplitude of occipital alpha 1 sources in Nold, MCI and AD subjects as a whole group (r=0.3, p=0.000004, N=235). Furthermore, there was a positive correlation between amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Evaluation (MMSE) score across all subjects (r=0.38, p=0.000001, N=235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the Receiver Operating Characteristic (ROC) curve: 0.81). These results suggest that the amplitude of occipital sources of resting state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathological aging. PMID:25442118

  5. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness.

    PubMed

    Staubo, Sara C; Aakre, Jeremiah A; Vemuri, Prashanthi; Syrjanen, Jeremy A; Mielke, Michelle M; Geda, Yonas E; Kremers, Walter K; Machulda, Mary M; Knopman, David S; Petersen, Ronald C; Jack, Clifford R; Roberts, Rosebud O

    2017-02-01

    The Mediterranean diet (MeDi) is associated with reduced risk of cognitive impairment, but it is unclear whether it is associated with better brain imaging biomarkers. Among 672 cognitively normal participants (mean age, 79.8 years, 52.5% men), we investigated associations of MeDi score and MeDi components with magnetic resonance imaging measures of cortical thickness for the four lobes separately and averaged (average lobar). Higher MeDi score was associated with larger frontal, parietal, occipital, and average lobar cortical thickness. Higher legume and fish intakes were associated with larger cortical thickness: legumes with larger superior parietal, inferior parietal, precuneus, parietal, occipital, lingual, and fish with larger precuneus, superior parietal, posterior cingulate, parietal, and inferior parietal. Higher carbohydrate and sugar intakes were associated with lower entorhinal cortical thickness. In this sample of elderly persons, higher adherence to MeDi was associated with larger cortical thickness. These cross-sectional findings require validation in prospective studies. Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  6. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    PubMed Central

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  7. Mapping cortical hubs in tinnitus

    PubMed Central

    2009-01-01

    Background Subjective tinnitus is the perception of a sound in the absence of any physical source. It has been shown that tinnitus is associated with hyperactivity of the auditory cortices. Accompanying this hyperactivity, changes in non-auditory brain structures have also been reported. However, there have been no studies on the long-range information flow between these regions. Results Using Magnetoencephalography, we investigated the long-range cortical networks of chronic tinnitus sufferers (n = 23) and healthy controls (n = 24) in the resting state. A beamforming technique was applied to reconstruct the brain activity at source level and the directed functional coupling between all voxels was analyzed by means of Partial Directed Coherence. Within a cortical network, hubs are brain structures that either influence a great number of other brain regions or that are influenced by a great number of other brain regions. By mapping the cortical hubs in tinnitus and controls we report fundamental group differences in the global networks, mainly in the gamma frequency range. The prefrontal cortex, the orbitofrontal cortex and the parieto-occipital region were core structures in this network. The information flow from the global network to the temporal cortex correlated positively with the strength of tinnitus distress. Conclusion With the present study we suggest that the hyperactivity of the temporal cortices in tinnitus is integrated in a global network of long-range cortical connectivity. Top-down influence from the global network on the temporal areas relates to the subjective strength of the tinnitus distress. PMID:19930625

  8. Early (N170/M170) Face-Sensitivity Despite Right Lateral Occipital Brain Damage in Acquired Prosopagnosia

    PubMed Central

    Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno

    2011-01-01

    Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect

  9. Reduced Cortical Thickness and Increased Surface Area in Antisocial Personality Disorder

    PubMed Central

    Jiang, Weixiong; Li, Gang; Liu, Huasheng; Shi, Feng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2016-01-01

    Antisocial Personality Disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness and surface area, as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of cortical thickness and surface area in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger surface area in several specific brain regions, i.e., bilateral superior frontal gyrus, orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus, middle temporal gyrus, and left bank of superior temporal sulcus. In addition, we also found that the ability of impulse control was positively correlated with cortical thickness in the superior frontal gyrus, middle frontal gyrus, orbitofrontal cortex, pars triangularis, superior temporal gyrus, and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in cortical thickness and surface area in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD. PMID:27600947

  10. Sex, Age, and Cognitive Correlates of Asymmetries in Thickness of the Cortical Mantle Across the Life Span

    PubMed Central

    Plessen, Kerstin J.; Hugdahl, Kenneth; Bansal, Ravi; Hao, Xuejun

    2014-01-01

    We assessed the correlations of age, sex, and cognitive performance with measures of asymmetry in cortical thickness on high-resolution MRIs in 215 healthy human children and adults, 7–59 years of age. A left > right asymmetry in thickness of the cortical mantle was present throughout the entire lateral, dorsal, and mesial surfaces of the frontal lobe, extending into primary sensory, superior parietal, and anterior superior temporal cortices. A right > left asymmetry was present in the lateral, mesial, and dorsal surfaces of the posterior temporal, parietal, and occipital cortices, as well as in the entire inferior surface of the brain. An exaggerated left > right asymmetry was detected in females in anterior brain regions, and an exaggerated right > left asymmetry was detected in males in the orbitofrontal, inferior parietal, and inferior occipital cortices. Weaker moderating effects of sex were scattered along the mesial surface of the brain. Age significantly moderated asymmetry measures in the inferior sensorimotor, inferior parietal, posterior temporal, and inferior occipital cortices. The age × asymmetry interaction derived from a steeper decline in cortical thickness with age in the right hemisphere than in the left on the lateral surface, whereas it derived from a steeper decline with age in the left hemisphere than in the right on the mesial surface. Finally, measures of performance on working memory and vocabulary tasks improved with increasing magnitudes of normal asymmetries in regions thought to support these cognitive capacities. PMID:24790200

  11. Sex, age, and cognitive correlates of asymmetries in thickness of the cortical mantle across the life span.

    PubMed

    Plessen, Kerstin J; Hugdahl, Kenneth; Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S

    2014-04-30

    We assessed the correlations of age, sex, and cognitive performance with measures of asymmetry in cortical thickness on high-resolution MRIs in 215 healthy human children and adults, 7-59 years of age. A left > right asymmetry in thickness of the cortical mantle was present throughout the entire lateral, dorsal, and mesial surfaces of the frontal lobe, extending into primary sensory, superior parietal, and anterior superior temporal cortices. A right > left asymmetry was present in the lateral, mesial, and dorsal surfaces of the posterior temporal, parietal, and occipital cortices, as well as in the entire inferior surface of the brain. An exaggerated left > right asymmetry was detected in females in anterior brain regions, and an exaggerated right > left asymmetry was detected in males in the orbitofrontal, inferior parietal, and inferior occipital cortices. Weaker moderating effects of sex were scattered along the mesial surface of the brain. Age significantly moderated asymmetry measures in the inferior sensorimotor, inferior parietal, posterior temporal, and inferior occipital cortices. The age × asymmetry interaction derived from a steeper decline in cortical thickness with age in the right hemisphere than in the left on the lateral surface, whereas it derived from a steeper decline with age in the left hemisphere than in the right on the mesial surface. Finally, measures of performance on working memory and vocabulary tasks improved with increasing magnitudes of normal asymmetries in regions thought to support these cognitive capacities.

  12. Backward masked fearful faces enhance contralateral occipital cortical activity for visual targets within the spotlight of attention

    PubMed Central

    Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza

    2011-01-01

    Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500

  13. Cortical Power-Density Changes of Different Frequency Bands in Visually Guided Associative Learning: A Human EEG-Study.

    PubMed

    Puszta, András; Katona, Xénia; Bodosi, Balázs; Pertich, Ákos; Nyujtó, Diána; Braunitzer, Gábor; Nagy, Attila

    2018-01-01

    The computer-based Rutgers Acquired Equivalence test (RAET) is a widely used paradigm to test the function of subcortical structures in visual associative learning. The test consists of an acquisition (pair learning) and a test (rule transfer) phase, associated with the function of the basal ganglia and the hippocampi, respectively. Obviously, such a complex task also requires cortical involvement. To investigate the activity of different cortical areas during this test, 64-channel EEG recordings were recorded in 24 healthy volunteers. Fast-Fourier and Morlet wavelet convolution analyses were performed on the recordings. The most robust power changes were observed in the theta (4-7 Hz) and gamma (>30 Hz) frequency bands, in which significant power elevation was observed in the vast majority of the subjects, over the parieto-occipital and temporo-parietal areas during the acquisition phase. The involvement of the frontal areas in the acquisition phase was remarkably weaker. No remarkable cortical power elevations were found in the test phase. In fact, the power of the alpha and beta bands was significantly decreased over the parietooccipital areas. We conclude that the initial acquisition of the image pairs requires strong cortical involvement, but once the pairs have been learned, neither retrieval nor generalization requires strong cortical contribution.

  14. Cortical Power-Density Changes of Different Frequency Bands in Visually Guided Associative Learning: A Human EEG-Study

    PubMed Central

    Puszta, András; Katona, Xénia; Bodosi, Balázs; Pertich, Ákos; Nyujtó, Diána; Braunitzer, Gábor; Nagy, Attila

    2018-01-01

    The computer-based Rutgers Acquired Equivalence test (RAET) is a widely used paradigm to test the function of subcortical structures in visual associative learning. The test consists of an acquisition (pair learning) and a test (rule transfer) phase, associated with the function of the basal ganglia and the hippocampi, respectively. Obviously, such a complex task also requires cortical involvement. To investigate the activity of different cortical areas during this test, 64-channel EEG recordings were recorded in 24 healthy volunteers. Fast-Fourier and Morlet wavelet convolution analyses were performed on the recordings. The most robust power changes were observed in the theta (4–7 Hz) and gamma (>30 Hz) frequency bands, in which significant power elevation was observed in the vast majority of the subjects, over the parieto-occipital and temporo-parietal areas during the acquisition phase. The involvement of the frontal areas in the acquisition phase was remarkably weaker. No remarkable cortical power elevations were found in the test phase. In fact, the power of the alpha and beta bands was significantly decreased over the parietooccipital areas. We conclude that the initial acquisition of the image pairs requires strong cortical involvement, but once the pairs have been learned, neither retrieval nor generalization requires strong cortical contribution. PMID:29867412

  15. Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Li, Chuanming; Wang, Jian; Gui, Li; Zheng, Jian; Liu, Chen; Du, Hanjian

    2011-01-01

    Gray matter volume and density of several brain regions, determined by magnetic resonance imaging (MRI), are decreased in Alzheimer's disease (AD). Animal studies have indicated that changes in cortical area size is relevant to thinking and behavior, but alterations of cortical area and thickness in the brains of individuals with AD or its likely precursor, mild cognitive impairment (MCI), have not been reported. In this study, 25 MCI subjects, 30 AD subjects, and 30 age-matched normal controls were recruited for brain MRI scans and Functional Activities Questionnaire (FAQ) assessments. Based on the model using FreeSurfer software, two brain lobes were divided into various regions according to the Desikan-Killiany atlas and the cortical area and thickness of every region was compared and analyzed. We found a significant increase in cortical area of several regions in the frontal and temporal cortices, which correlated negatively with MMSE scores, and a significant decrease in cortical area of several regions in the parietal cortex and the cingulate gyrus in AD subjects. Increased cortical area was also seen in some regions of the frontal and temporal cortices in MCI subjects, whereas the cortical thickness of the same regions was decreased. Our observations suggest characteristic differences of the cortical area and thickness in MCI, AD, and normal control subjects, and these changes may help diagnose both MCI and AD.

  16. Innovative modified hair follicle harvesting technique with reverse rake scalp elevator for lower occipital donor area in follicular unit extraction hair transplantation

    PubMed Central

    Gharwade, Chandrakant Rambhau

    2016-01-01

    Follicular unit extraction (FUE) is one of the widely practiced minimally invasive follicular harvesting techniques employed during hair transplantation. FUE technique has an advantage of utilising lower occipital area and supra-auricular region as a safe donor area described by Unger, in addition to the standard occipital donor area used in strip method (follicular unit transplant). Despite its potential advantages such as rapid recovery, minimal scarring and reduced post-operative pain; its widespread acceptance is limited due to various factors in variable contribution like steeper learning curve and potentially higher follicular transection rates (FTRs). The main practical drawbacks in harvesting FUE from lower occipital donor region that lie inferior to the standard donor area, is its acute angle (10°–15°) of emergent hair from scalp skin, higher variance angle (15°–35°) between hairs below the skin and hair exit angle above the skin and comparatively loose scalp, preventing to provide stable platform for punching. Hair transplant surgeon faces difficulty in aligning and engaging the FUE punch leading to very high hair follicle transection rate, and therefore, it is not a preferred site for harvesting follicles in FUE. Authors description of modified technique using reverse rake scalp elevator helps in negating the acute angle of the hair follicles exit from scalp skin and reducing the variance angle between emergent hair and hair below the skin in lower occipital region thereby reducing FTR. Furthermore, an added advantage of reducing the overall operative time and surgeon fatigue, improve donor area healing, availability of a comparatively larger donor area which increases the confidence of the beginners. This method will be of help as it is easy to duplicate and follow by novice hair transplant surgeons and also for those who are routinely doing mega hair transplants sessions. PMID:28216821

  17. Identification of greater occipital nerve landmarks for the treatment of occipital neuralgia.

    PubMed

    Loukas, M; El-Sedfy, A; Tubbs, R S; Louis, R G; Wartmann, C H T; Curry, B; Jordan, R

    2006-11-01

    Important structures involved in the pathogenesis of occipital headache include the aponeurotic attachments of the trapezius and semispinalis capitis muscles to the occipital bone. The greater occipital nerve (GON) can become entrapped as it passes through these aponeuroses, causing symptoms of occipital neuralgia. The aim of this study was to identify topographic landmarks for accurate identification of GON, which might facilitate its anaesthetic blockade. The course and distribution of GON and its relation to the aponeuroses of the trapezius and semispinalis capitis were examined in 100 formalin-fixed adult cadavers. In addition, the relative position of the nerve on a horizontal line between the external occipital protuberance and the mastoid process, as well as between the mastoid processes was measured. The greater occipital nerve was found bilaterally in all specimens. It was located at a mean distance of 3.8 cm (range 1.5-7.5 cm) lateral to a vertical line through the external occipital protuberance and the spinous processes of the cervical vertebrae 2-7. It was also located approximately 41% of the distance along the intermastoid line (medial to a mastoid process) and 22% of the distance between the external occipital protuberance and the mastoid process. The location of GON for anaesthesia or any other neurosurgical procedure has been established as one thumb's breadth lateral to the external occipital protuberance (2 cm laterally) and approximately at the base of the thumb nail (2 cm inferior). This is the first study proposing the use of landmarks in relation to anthropometric measurements. On the basis of these observations we propose a target zone for local anaesthetic injection that is based on easily identifiable landmarks and suggest that injection at this target point could be of benefit in the relief of occipital neuralgia.

  18. Tagging cortical networks in emotion: a topographical analysis

    PubMed Central

    Keil, Andreas; Costa, Vincent; Smith, J. Carson; Sabatinelli, Dean; McGinnis, E. Menton; Bradley, Margaret M.; Lang, Peter J.

    2013-01-01

    Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re-entrant connectivity originating in higher-order cortical and/or limbic structures. The present study used dense-array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady-state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower-tier visual cortex, a network of occipito-temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. PMID:21954087

  19. Eye closure in darkness animates olfactory and gustatory cortical areas.

    PubMed

    Wiesmann, M; Kopietz, R; Albrecht, J; Linn, J; Reime, U; Kara, E; Pollatos, O; Sakar, V; Anzinger, A; Fesl, G; Brückmann, H; Kobal, G; Stephan, T

    2006-08-01

    In two previous fMRI studies, it was reported that eyes-open and eyes-closed conditions in darkness had differential effects on brain activity, and typical patterns of cortical activity were identified. Without external stimulation, ocular motor and attentional systems were activated when the eyes were open. On the contrary, the visual, somatosensory, vestibular, and auditory systems were activated when the eyes were closed. In this study, we investigated whether cortical areas related to the olfactory and gustatory system are also animated by eye closure without any other external stimulation. In a first fMRI experiment (n = 22), we identified cortical areas including the piriform cortex activated by olfactory stimulation. In a second experiment (n = 12) subjects lying in darkness in the MRI scanner alternately opened and closed their eyes. In accordance to previous studies, we found activation clusters bilaterally in visual, somatosensory, vestibular and auditory cortical areas for the contrast eyes-closed vs. eyes-open. In addition, we were able to show that cortical areas related to the olfactory and gustatory system were also animated by eye closure. These results support the hypothesis that there are two different states of mental activity: with the eyes closed, an "interoceptive" state characterized by imagination and multisensory activity and with the eyes open, an "exteroceptive" state characterized by attention and ocular motor activity. Our study also suggests that the chosen baseline condition may have a considerable impact on activation patterns and on the interpretation of brain activation studies. This needs to be considered for studies of the olfactory and gustatory system.

  20. Cortical thickness correlates of minor neurological signs in patients with first episode psychosis.

    PubMed

    Ciufolini, Simone; Ponteduro, Maria Francesca; Reis-Marques, Tiago; Taylor, Heather; Mondelli, Valeria; Pariante, Carmine M; Bonaccorso, Stefania; Chan, Raymond; Simmons, Andy; David, Anthony; Di Forti, Marta; Murray, Robin M; Dazzan, Paola

    2018-05-18

    Neurological soft signs (NSS) are subtle abnormalities of motor and sensory function that are present in the absence of localized brain pathological lesions. In psychoses they have been consistently associated with a distinct pattern of cortical and subcortical brain structural alterations at the level of the heteromodal cortex and basal ganglia. However, a more specific and accurate evaluation of the cytoarchitecture of the cortical mantle could further advance our understanding of the neurobiological substrate of psychosis. We investigated the relationship between brain structure and NSS in a sample of 66 patients at their first episode of psychosis. We used the Neurological Evaluation Scale for neurological assessment and high-resolution MRI and Freesurfer to explore cortical thickness and surface area. Higher rates of NSS were associated with a reduction of cortical thickness in the precentral and postcentral gyri, inferior-parietal, superior temporal, and fusiform gyri. Higher rates of NSS were also associated with smaller surface areas of superior temporal gyrus and frontal regions (including middle frontal, superior and orbito-frontal gyri). Finally, more sensory integration signs were also associated with larger surface area of the latero-occipital region. We conclude that the presence of NSS in psychosis is associated with distinct but widespread changes in cortical thickness and surface area, in areas crucial for sensory-motor integration and for the fluid execution of movement. Studying these morphological correlates with advanced neuroimaging techniques can continue to improve our knowledge on the neurobiological substrate of these important functional correlates of psychosis. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  1. Attention Increases Spike Count Correlations between Visual Cortical Areas.

    PubMed

    Ruff, Douglas A; Cohen, Marlene R

    2016-07-13

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary

  2. Attention Increases Spike Count Correlations between Visual Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. SIGNIFICANCE STATEMENT Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously

  3. Occipital Nerve Stimulation for the Treatment of Refractory Occipital Neuralgia: A Case Series.

    PubMed

    Keifer, Orion P; Diaz, Ashley; Campbell, Melissa; Bezchlibnyk, Yarema B; Boulis, Nicholas M

    2017-09-01

    Occipital neuralgia is a chronic pain syndrome characterized by sharp, shooting pains in the distribution of the occipital nerves. Although relatively rare, it associated with extremely debilitating symptoms that drastically affect a patient's quality of life. Furthermore, it is extremely difficult to treat as the symptoms are refractory to traditional treatments, including pharmacologic and procedural interventions. A few previous case studies have established the use of a neurostimulation of the occipital nerves to treat occipital neuralgia. The following expands on that literature by retrospectively reviewing the results of occipital nerve stimulation in a relatively large patient cohort (29 patients). A retrospective review of 29 patients undergoing occipital nerve stimulation for occipital neuralgia from 2012 to 2017 at a single institution with a single neurosurgeon. Of those 29 patients, 5 were repair or replacement of previous systems, 4 did not have benefit from trial stimulation, and 20 saw benefit to their trial stage of stimulation and went on to full implantation. Of those 20 patients, even with a history of failed procedures and pharmacological therapies, there was an overall success rate of 85%. The average preoperative 10-point pain score dropped from 7.4 ± 1.7 to a postoperative score of 2.9 ± 1.7. However, as with any peripheral nerve stimulation procedure, there were complications (4 patients), including infection, hardware erosion, loss of effect, and lead migration, which required revision or system removal. Despite complications, the results suggest, overall, that occipital nerve stimulation is a safe and effective procedure for refractory occipital neuralgia and should be in the neurosurgical repertoire for occipital neuralgia treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    PubMed

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended

  5. Application of Normative Occipital Condyle-C1 Interval Measurements to Detect Atlanto-Occipital Injury in Children.

    PubMed

    Corcoran, B; Linscott, L L; Leach, J L; Vadivelu, S

    2016-05-01

    Prior studies have found that widening or asymmetry of the occipital condyle-C1 interval on CT is a sensitive and specific marker for atlanto-occipital dislocation. Previously reported abnormal occipital condyle-C1 interval values are not age-specific, possibly leading to false-positive findings in younger children, in whom this joint space is normally larger than that in adults. This study assesses the utility of applying age-specific normative occipital condyle-C1 interval ranges to documented cases of atlanto-occipital injury compared with previously reported abnormal cutoff values. Retrospective review of CT and MR imaging of 14 subjects with atlanto-occipital injury was performed, and occipital condyle-C1 interval measurements were made for each subject. Sensitivities and specificities of proposed occipital condyle-C1 interval cutoffs of 2 and 3 SDs above the mean and previously published occipital condyle-C1 interval cutoffs for atlanto-occipital injury were then calculated on the basis of occipital condyle-C1 interval measurements for each subject. An occipital condyle-C1 interval 2 SDs above the age-specific mean has a sensitivity of 50% and specificity of 89%-100%, depending on the age group. An occipital condyle-C1 interval 3 SDs above the age-specific mean has a sensitivity of 50% and a specificity of 95%-100%. A 4.0-mm occipital condyle-C1 interval has a sensitivity of 36% and a specificity of 100% in all age groups. A 2.5-mm occipital condyle-C1 interval has a sensitivity of 93% and a specificity of 18%-100%. Occipital condyle-C1 interval widening cutoffs used to establish atlanto-occipital injury lack both sensitivity and specificity in children and young teenagers. MR imaging is necessary to establish a diagnosis of atlanto-occipital injury in children and young teenagers when the appropriate mechanism of injury is present. © 2016 by American Journal of Neuroradiology.

  6. Early development of synchrony in cortical activations in the human.

    PubMed

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Headache Following Occipital Brain Lesion: A Case of Migraine Triggered by Occipital Spikes?

    PubMed

    Vollono, Catello; Mariotti, Paolo; Losurdo, Anna; Giannantoni, Nadia Mariagrazia; Mazzucchi, Edoardo; Valentini, Piero; De Rose, Paola; Della Marca, Giacomo

    2015-10-01

    This study describes the case of an 8-year-old boy who developed a genuine migraine after the surgical excision, from the right occipital lobe, of brain abscesses due to selective infestation of the cerebrum by Entamoeba histolytica. After the surgical treatment, the boy presented daily headaches with typical migraine features, including right-side parieto-temporal pain, nausea, vomiting, and photophobia. Electroencephalography (EEG) showed epileptiform discharges in the right occipital lobe, although he never presented seizures. Clinical and neurophysiological observations were performed, including video-EEG and polygraphic recordings. EEG showed "interictal" epileptiform discharges in the right occipital lobe. A prolonged video-EEG recording performed before, during, and after an acute attack ruled out ictal or postictal migraine. In this boy, an occipital lesion caused occipital epileptiform EEG discharges without seizures, probably prevented by the treatment. We speculate that occipital spikes, in turn, could have caused a chronic headache with features of migraine without aura. Occipital epileptiform discharges, even in absence of seizures, may trigger a genuine migraine, probably by means of either the trigeminovascular or brainstem system. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  8. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    PubMed

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  9. Reduced γ-Aminobutyric Acid in Occipital and Anterior Cingulate Cortices in Primary Insomnia: a Link to Major Depressive Disorder?

    PubMed Central

    Plante, David T; Jensen, J Eric; Schoerning, Laura; Winkelman, John W

    2012-01-01

    Insomnia is closely related to major depressive disorder (MDD) both cross-sectionally and longitudinally, and as such, offers potential opportunities to refine our understanding of the neurobiology of both sleep and mood disorders. Clinical and basic science data suggest a role for reduced γ-aminobutyric acid (GABA) in both MDD and primary insomnia (PI). Here, we have utilized single-voxel proton magnetic spectroscopy (1H-MRS) at 4 Tesla to examine GABA relative to total creatine (GABA/Cr) in the occipital cortex (OC), anterior cingulate cortex (ACC), and thalamus in 20 non-medicated adults with PI (12 women) and 20 age- and sex-matched healthy sleeper comparison subjects. PI subjects had significantly lower GABA/Cr in the OC (p=0.0005) and ACC (p=0.03) compared with healthy sleepers. There was no significant difference in thalamic GABA/Cr between groups. After correction for multiple comparisons, GABA/Cr did not correlate significantly with insomnia severity measures among PI subjects. This study is the first to demonstrate regional reductions of GABA in PI in the OC and ACC. Reductions in GABA in similar brain regions in MDD using 1H-MRS suggest a common reduction in cortical GABA among PI and mood disorders. PMID:22318195

  10. Acute hepatic encephalopathy presenting as cortical laminar necrosis: case report.

    PubMed

    Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young

    2013-01-01

    We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.

  11. The occipital place area represents the local elements of scenes

    PubMed Central

    Kamps, Frederik S.; Julian, Joshua B.; Kubilius, Jonas; Kanwisher, Nancy; Dilks, Daniel D.

    2016-01-01

    Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents in not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements – both in spatial boundary and scene content representation – while PPA and RSC represent global scene properties. PMID:26931815

  12. The occipital place area represents the local elements of scenes.

    PubMed

    Kamps, Frederik S; Julian, Joshua B; Kubilius, Jonas; Kanwisher, Nancy; Dilks, Daniel D

    2016-05-15

    Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents is not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found that OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements - both in spatial boundary and scene content representation - while PPA and RSC represent global scene properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Ultrasound-guided greater occipital nerve blocks and pulsed radiofrequency ablation for diagnosis and treatment of occipital neuralgia.

    PubMed

    Vanderhoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-09-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves.

  14. Ultrasound-Guided Greater Occipital Nerve Blocks and Pulsed Radiofrequency Ablation for Diagnosis and Treatment of Occipital Neuralgia

    PubMed Central

    VanderHoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-01-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves. PMID:24282778

  15. Pulsed radiofrequency for occipital neuralgia.

    PubMed

    Manolitsis, Nicholas; Elahi, Foad

    2014-01-01

    The clinical application of pulsed radiofrequency (PRF) by interventional pain physicians for a variety of chronic pain syndromes, including occipital neuralgia, is growing. As a minimally invasive percutaneous technique with none to minimal neurodestruction and a favorable side effect profile, use of PRF as an interventional neuromodulatory chronic pain treatment is appealing. Occipital neuralgia, also known as Arnold's neuralgia, is defined by the International Headache Society as a paroxysmal, shooting or stabbing pain in the greater, lesser, and/or third occipital nerve distributions. Pain intensity is often severe and debilitating, with an associated negative impact upon quality of life and function. Most cases of occipital neuralgia are idiopathic, with no clearly identifiable structural etiology. Treatment of occipital neuralgia poses inherent challenges as no criterion standard exists. Initially, conservative treatment options such as physical therapy and pharmacotherapy are routinely trialed. When occipital neuralgia is refractory to conservative measures, a number of interventional treatment options exist, including: local occipital nerve anesthetic and corticosteroid infiltration, botulinum toxin A injection, occipital nerve subcutaneous neurostimulation, and occipital nerve PRF. Of these, PRF has garnered significant interest as a potentially superior, safe, non-invasive treatment with long-term efficacy. The objective of this article is to provide a concise review of occipital neuralgia; and a concise, yet thorough, evidence-based review of the current literature concerning the use of PRF for occipital neuralgia. Review of published medical literature up through April 2013. The Center for Pain Medicine and Regional Anesthesia, the University of Iowa Hospitals and Clinics. A total of 3 clinical studies and one case report investigating the use of PRF for knee occipital neuralgia have been published worldwide. Statistically significant improvements in

  16. Cortical atrophy patterns in early Parkinson's disease patients using hierarchical cluster analysis.

    PubMed

    Uribe, Carme; Segura, Barbara; Baggio, Hugo Cesar; Abos, Alexandra; Garcia-Diaz, Anna Isabel; Campabadal, Anna; Marti, Maria Jose; Valldeoriola, Francesc; Compta, Yaroslau; Tolosa, Eduard; Junque, Carme

    2018-05-01

    Cortical brain atrophy detectable with MRI in non-demented advanced Parkinson's disease (PD) is well characterized, but its presence in early disease stages is still under debate. We aimed to investigate cortical atrophy patterns in a large sample of early untreated PD patients using a hypothesis-free data-driven approach. Seventy-seven de novo PD patients and 50 controls from the Parkinson's Progression Marker Initiative database with T1-weighted images in a 3-tesla Siemens scanner were included in this study. Mean cortical thickness was extracted from 360 cortical areas defined by the Human Connectome Project Multi-Modal Parcellation version 1.0, and a hierarchical cluster analysis was performed using Ward's linkage method. A general linear model with cortical thickness data was then used to compare clustering groups using FreeSurfer software. We identified two patterns of cortical atrophy. Compared with controls, patients grouped in pattern 1 (n = 33) were characterized by cortical thinning in bilateral orbitofrontal, anterior cingulate, and lateral and medial anterior temporal gyri. Patients in pattern 2 (n = 44) showed cortical thinning in bilateral occipital gyrus, cuneus, superior parietal gyrus, and left postcentral gyrus, and they showed neuropsychological impairment in memory and other cognitive domains. Even in the early stages of PD, there is evidence of cortical brain atrophy. Neuroimaging clustering analysis is able to detect two subgroups of cortical thinning, one with mainly anterior atrophy, and the other with posterior predominance and worse cognitive performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Cervical myelitis presenting as occipital neuralgia.

    PubMed

    Noh, Sang-Mi; Kang, Hyun Goo

    2018-07-01

    Occipital neuralgia is a common form of headache that is characterized by paroxysmal severe lancinating pain in the occipital nerve distribution. The exact pathophysiology is still not fully understood and occipital neuralgia often develops spontaneously. There are no specific guidelines for evaluation of patients with occipital neuralgia. Cervical spine, spinal cord and posterior neck muscle lesions can induce occipital neuralgia. Brain and spine imaging may be necessary in some cases, according to the nature of the headache or response to treatment. We report a case of cervical myelitis presenting as occipital neuralgia.

  18. Functional brain areas associated with manipulation of a prehensile tool: a PET study.

    PubMed

    Tsuda, Hayato; Aoki, Tomoko; Oku, Naohiko; Kimura, Yasuyuki; Hatazawa, Jun; Kinoshita, Hiroshi

    2009-09-01

    Using PET, brain areas representing the use of a well-learned tool (chopsticks) were investigated in 10 normal common users. The experimental task was to hold the tool in their right hand and use it to pick up and transport a small pin from a table. Data for the same task performed using only the fingers were also obtained as a control. The results showed an extensive overlap in activated areas with and without the use of the tool. The tool-use prehension, compared to the finger prehension, was associated with higher activities in the caudal-ventral premotor, dorsal premotor, superior parietal, posterior intraparietal, middle temporal gyrus, and primary sensory, occipital cortices, and the cerebellum. These are thus considered to be the human cortical and subcortical substrates representing the use of the tool studied. The activity of the posterior intraparietal area was negatively correlated with the number of drops of the pin, whereas occipital activity was positively correlated with the same error parameter. The caudal-ventral premotor and posterior intraparietal areas are together known to be involved in tool use-related modulation in peripersonal space. The correlation results suggest that this modulation depends on the level of performance. The coactivated left middle temporal gyrus further suggests that familiarity with a tool as well as the knowledge about its usage plays a role in peripersonal space modulation. Superior parietal activation, along with occipital activation, indicates the involvement of visual-spatial attention in the tool use, possibly reflecting the effect of interaction between the prehension (task) and the tool. 2009 Wiley-Liss, Inc.

  19. Evidence for a basal temporal visual language center: cortical stimulation producing pure alexia.

    PubMed

    Mani, J; Diehl, B; Piao, Z; Schuele, S S; Lapresto, E; Liu, P; Nair, D R; Dinner, D S; Lüders, H O

    2008-11-11

    Dejerine and Benson and Geschwind postulated disconnection of the dominant angular gyrus from both visual association cortices as the basis for pure alexia, emphasizing disruption of white matter tracts in the dominant temporooccipital region. Recently functional imaging studies provide evidence for direct participation of basal temporal and occipital cortices in the cognitive process of reading. The exact location and function of these areas remain a matter of debate. To confirm the participation of the basal temporal region in reading. Extraoperative electrical stimulation of the dominant hemisphere was performed in three subjects using subdural electrodes, as part of presurgical evaluation for refractory epilepsy. Pure alexia was reproduced during cortical stimulation of the dominant posterior fusiform and inferior temporal gyri in all three patients. Stimulation resulted in selective reading difficulty with intact auditory comprehension and writing. Reading difficulty involved sentences and words with intact letter by letter reading. Picture naming difficulties were also noted at some electrodes. This region is located posterior to and contiguous with the basal temporal language area (BTLA) where stimulation resulted in global language dysfunction in visual and auditory realms. The location corresponded with the visual word form area described on functional MRI. These observations support the existence of a visual language area in the dominant fusiform and occipitotemporal gyri, contiguous with basal temporal language area. A portion of visual language area was exclusively involved in lexical processing while the other part of this region processed both lexical and nonlexical symbols.

  20. Postoperative headache following acoustic neuroma resection: occipital nerve injuries are associated with a treatable occipital neuralgia.

    PubMed

    Ducic, Ivica; Felder, John M; Endara, Matthew

    2012-01-01

    To demonstrate that occipital nerve injury is associated with chronic postoperative headache in patients who have undergone acoustic neuroma excision and to determine whether occipital nerve excision is an effective treatment for these headaches. Few previous reports have discussed the role of occipital nerve injury in the pathogenesis of the postoperative headache noted to commonly occur following the retrosigmoid approach to acoustic neuroma resection. No studies have supported a direct etiologic link between the two. The authors report on a series of acoustic neuroma patients with postoperative headache presenting as occipital neuralgia who were found to have occipital nerve injuries and were treated for chronic headache by excision of the injured nerves. Records were reviewed to identify patients who had undergone surgical excision of the greater and lesser occipital nerves for refractory chronic postoperative headache following acoustic neuroma resection. Primary outcomes examined were change in migraine headache index, change in number of pain medications used, continued use of narcotics, patient satisfaction, and change in quality of life. Follow-up was in clinic and via telephone interview. Seven patients underwent excision of the greater and lesser occipital nerves. All met diagnostic criteria for occipital neuralgia and failed conservative management. Six of 7 patients experienced pain reduction of greater than 80% on the migraine index. Average pain medication use decreased from 6 to 2 per patient; 3 of 5 patients achieved independence from narcotics. Six patients experienced 80% or greater improvement in quality of life at an average follow-up of 32 months. There was one treatment failure. Occipital nerve neuroma or nerve entrapment was identified during surgery in all cases where treatment was successful but not in the treatment failure. In contradistinction to previous reports, we have identified a subset of patients in whom the syndrome of

  1. Initial cognitive decline is associated with cortical thinning in early Parkinson disease

    PubMed Central

    Svenningsson, Per; Weintraub, Daniel; Brønnick, Kolbjørn; Lebedev, Alexander; Westman, Eric; Aarsland, Dag

    2014-01-01

    Objectives: Our aim was to assess cortical thickness in a large multicenter cohort of drug-naive patients with early Parkinson disease (PD), with and without mild cognitive impairment (MCI), and explore the cognitive correlates of regional cortical thinning. Methods: One hundred twenty-three newly diagnosed patients with PD and 56 healthy controls with 3-tesla structural MRI scans and complete neuropsychological assessment from the Parkinson's Progression Markers Initiative were included. Modified Movement Disorders Society Task Force level II criteria were applied to diagnose MCI in PD. FreeSurfer image processing and analysis software was used to measure cortical thickness across groups and the association with cognitive domains and tests. Results: In patients with MCI, atrophy was found in temporal, parietal, frontal, and occipital areas compared with controls. Specific regional thinning in the right inferior temporal cortex was also found in cognitively normal patients. Memory, executive, and visuospatial performance was associated with temporoparietal and superior frontal thinning, suggesting a relationship between cognitive impairment and both anterior and posterior cortical atrophy in the whole patient sample. Conclusions: These findings confirm that MCI is associated with widespread cortical atrophy. In addition, they suggest that regional cortical thinning is already present at the time of diagnosis in patients with early, untreated PD who do not meet the criteria for MCI. Together, the results indicate that cortical thinning can serve as a marker for initial cognitive decline in early PD. PMID:24808018

  2. Occipital neuralgia: possible failure of surgical treatment - case report.

    PubMed

    Andrychowski, Jarosław; Czernicki, Zbigniew; Netczuk, Tomasz; Taraszewska, Anna; Dabrowski, Piotr; Rakasz, Lukasz; Budohoski, Karol

    2009-01-01

    Surgical intervention in severe cases of occipital neuralgia should be considered if pharmacological and local nerve blocking treatment fail. The literature suggests two types of interventions: surgical decompression of the greater occipital nerve (GON) from the entrapment site, as a less invasive approach, and neurotomy of the nerve trunk, which results in ipsilateral sensation deficits in the GON innervated area of the skull. Due to anatomical variations in the division of the GON trunk, typical neurotomy above the line of the trapezius muscle aponeurosis (TMA) may not result in full recovery. The present study discusses a case of a female treated with GON decompression as a result of occipital neuralgia unresponsive to pharmacotherapy, who thereafter was qualified for two consecutive neurotomies due to severe relapse of pain.

  3. Visual Cortical Representation of Whole Words and Hemifield-split Word Parts.

    PubMed

    Strother, Lars; Coros, Alexandra M; Vilis, Tutis

    2016-02-01

    Reading requires the neural integration of visual word form information that is split between our retinal hemifields. We examined multiple visual cortical areas involved in this process by measuring fMRI responses while observers viewed words that changed or repeated in one or both hemifields. We were specifically interested in identifying brain areas that exhibit decreased fMRI responses as a result of repeated versus changing visual word form information in each visual hemifield. Our method yielded highly significant effects of word repetition in a previously reported visual word form area (VWFA) in occipitotemporal cortex, which represents hemifield-split words as whole units. We also identified a more posterior occipital word form area (OWFA), which represents word form information in the right and left hemifields independently and is thus both functionally and anatomically distinct from the VWFA. Both the VWFA and the OWFA were left-lateralized in our study and strikingly symmetric in anatomical location relative to known face-selective visual cortical areas in the right hemisphere. Our findings are consistent with the observation that category-selective visual areas come in pairs and support the view that neural mechanisms in left visual cortex--especially those that evolved to support the visual processing of faces--are developmentally malleable and become incorporated into a left-lateralized visual word form network that supports rapid word recognition and reading.

  4. Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas

    PubMed Central

    Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J. J.; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine

    2017-01-01

    The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer’s motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex. PMID:28861024

  5. Effects of cigarette smoking on cortical thickness in major depressive disorder.

    PubMed

    Zorlu, Nabi; Cropley, Vanessa Louise; Zorlu, Pelin Kurtgoz; Delibas, Dursun Hakan; Adibelli, Zehra Hilal; Baskin, Emel Pasa; Esen, Özgür Sipahi; Bora, Emre; Pantelis, Christos

    2017-01-01

    Findings of surface-based morphometry studies in major depressive disorder (MDD) are still inconsistent. Given that cigarette smoking is highly prevalent in MDD and has documented negative effects on the brain, it is possible that some of the inconsistencies may be partly explained by cigarette use. The aim of the current study was to examine the influence of cigarette smoking on brain structure in MDD. 50 MDD patients (25 smokers and 25 non-smokers) and 22 age, education, gender and BMI matched non-smoker healthy controls underwent structural magnetic resonance imaging. Thickness and area of the cortex were measured using surface-based morphometry implemented with Freesurfer (v5.3.0). The non-smoker MDD patients had significantly increased cortical thickness, including in the left temporal cortex (p < 0.001), right insular cortex (p = 0.033) and left pre- and postcentral gyrus (p = 0.045), compared to healthy controls. We also found decreased cortical thickness in MDD patients who smoked compared to non-smoking patients in regions that overlapped with the regions found to be increased in non-smoking patients in comparison to controls. Non-smoker MDD patients had increased surface area in the right lateral occipital cortex (p = 0.009). We did not find any region where cortical thickness or surface area significantly differed between controls and either smoker MDD patients or all MDD patients. The findings of the current study suggest that cigarette smoking is associated with cortical thinning in regions found to be increased in patients with MDD. However, these results should be considered preliminary due to methodological limitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Visual and Motor Recovery After "Cognitive Therapeutic Exercises" in Cortical Blindness: A Case Study.

    PubMed

    De Patre, Daniele; Van de Winckel, Ann; Panté, Franca; Rizzello, Carla; Zernitz, Marina; Mansour, Mariam; Zordan, Lara; Zeffiro, Thomas A; OʼConnor, Erin E; Bisson, Teresa; Lupi, Andrea; Perfetti, Carlo

    2017-07-01

    Spontaneous visual recovery is rare after cortical blindness. While visual rehabilitation may improve performance, no visual therapy has been widely adopted, as clinical outcomes are variable and rarely translate into improvements in activities of daily living (ADLs). We explored the potential value of a novel rehabilitation approach "cognitive therapeutic exercises" for cortical blindness. The subject of this case study was 48-year-old woman with cortical blindness and tetraplegia after cardiac arrest. Prior to the intervention, she was dependent in ADLs and poorly distinguished shapes and colors after 19 months of standard visual and motor rehabilitation. Computed tomographic images soon after symptom onset demonstrated acute infarcts in both occipital cortices. The subject underwent 8 months of intensive rehabilitation with "cognitive therapeutic exercises" consisting of discrimination exercises correlating sensory and visual information. Visual fields increased; object recognition improved; it became possible to watch television; voluntary arm movements improved in accuracy and smoothness; walking improved; and ADL independence and self-reliance increased. Subtraction of neuroimaging acquired before and after rehabilitation showed that focal glucose metabolism increases bilaterally in the occipital poles. This study demonstrates feasibility of "cognitive therapeutic exercises" in an individual with cortical blindness, who experienced impressive visual and sensorimotor recovery, with marked ADL improvement, more than 2 years after ischemic cortical damage.Video Abstract available for additional insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A173).

  7. The sexually dimorphic impact of maltreatment on cortical thickness, surface area and gyrification.

    PubMed

    Kelly, Philip A; Viding, Essi; Puetz, Vanessa B; Palmer, Amy L; Samuel, Sophie; McCrory, Eamon J

    2016-09-01

    An extensive literature has detailed how maltreatment experience impacts brain structure in children and adolescents. However, there is a dearth of studies on the influence of maltreatment on surface based indices, and to date no study has investigated how sex influences the impact of maltreatment on cortical thickness, surface area and local gyrification. We investigated sex differences in these measures of cortical structure in a large community sample of children aged 10-14 years (n = 122) comprising 62 children with verified maltreatment experience and 60 matched non-maltreated controls. The maltreated group relative to the controls presented with a pattern of decreased cortical thickness within a region of right anterior cingulate, orbitofrontal cortex and superior frontal gyrus; decreased surface area within the right inferior parietal cortex; and increased local gyrification within left superior parietal cortex. This atypical pattern of cortical structure was similar across males and females. An interaction between maltreatment exposure and sex was found only in local gyrification, within two clusters: the right tempo-parietal junction and the left precentral gyrus. These findings suggest that maltreatment impacts cortical structure in brain areas associated with emotional regulation and theory of mind, with few differences between the sexes.

  8. Optimal staining methods for delineation of cortical areas and neuron counts in human brains.

    PubMed

    Uylings, H B; Zilles, K; Rajkowska, G

    1999-04-01

    For cytoarchitectonic delineation of cortical areas in human brain, the Gallyas staining for somata with its sharp contrast between cell bodies and neuropil is preferable to the classical Nissl staining, the more so when an image analysis system is used. This Gallyas staining, however, does not appear to be appropriate for counting neuron numbers in pertinent brain areas, due to the lack of distinct cytological features between small neurons and glial cells. For cell counting Nissl is preferable. In an optimal design for cell counting at least both the Gallyas and the Nissl staining must be applied, the former staining for cytoarchitectural delineaton of cortical areas and the latter for counting the number of neurons in the pertinent cortical areas. Copyright 1999 Academic Press.

  9. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve

    PubMed Central

    Choi, Jin-gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures. PMID:28331643

  10. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve.

    PubMed

    Son, Byung-Chul; Choi, Jin-Gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures.

  11. More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury.

    PubMed

    Mundinano, Inaki-Carril; Chen, Juan; de Souza, Mitchell; Sarossy, Marc G; Joanisse, Marc F; Goodale, Melvyn A; Bourne, James A

    2017-11-13

    Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans. These findings initiated a concerted effort on multiple fronts, including nonhuman primate studies, to uncover the neural substrate/s of the spared conscious vision. In both adult and early-life cases of V1 injury, evidence suggests the involvement of the Middle Temporal area (MT) of the extrastriate visual cortex, which is an integral component area of the dorsal stream and is also associated with visually-guided behaviors. Because of the limited number of early-life V1 injury cases for humans, the outstanding question in the field is what secondary visual pathways are responsible for this extraordinary capacity? Here we report for the first time a case of a child (B.I.) who suffered a bilateral occipital-lobe injury in the first two weeks postnatally due to medium-chain acyl-Co-A dehydrogenase deficiency. At 6 years of age, B.I. underwent a battery of neurophysiological tests, as well as structural and diffusion MRI and ophthalmic examination at 7 years. Despite the extensive bilateral occipital cortical damage, B.I. has extensive conscious visual abilities, is not blind, and can use vision to navigate his environment. Furthermore, unlike blindsight patients, he can readily and consciously identify happy and neutral faces and colors, tasks associated with ventral stream processing. These findings suggest significant re-routing of visual information. To identify the putative visual pathway/s responsible for this ability, MRI

  12. Neuronal electrical ongoing activity as a signature of cortical areas.

    PubMed

    Cottone, Carlo; Porcaro, Camillo; Cancelli, Andrea; Olejarczyk, Elzbieta; Salustri, Carlo; Tecchio, Franca

    2017-07-01

    Brodmann's pioneering work resulted in the classification of cortical areas based on their cytoarchitecture and topology. Here, we aim at documenting that diverse cortical areas also display different neuronal electric activities. We investigated this notion in the hand-controlling sections of the primary somatosensory (S1) and motor (M1) areas, in both hemispheres. We identified S1 and M1 in 20 healthy volunteers by applying functional source separation (FSS) to their recorded electroencephalograms (EEG). Our results show that S1 and M1 can be clearly differentiated by their neuroelectric activities in both hemispheres and independently of the subject's state (i.e., at rest or performing movements or receiving external stimulations). In particular, S1 displayed higher relative power than M1 in the alpha and low beta frequency ranges (8-25 Hz, p < .003), whereas the opposite occurred in the high gamma band (52-90 Hz, p = .006). In addition, S1's activity had a smaller Higuchi's fractal dimensions (HFD) than M1's (p < .00001) in all subjects, permitting a reliable classification of the two areas. Moreover, HFD of M1's activity resulted correlated with the hand's fine motor control, as expressed by the 9-hole peg test scores. The present work is a first step toward the identification and classification of brain cortical areas based on neuronal dynamics rather than on cytoarchitectural features. We deem this step to be an improvement of our knowledge of the brain's structural-functional unity.

  13. Relevance of Spectral Cues for Auditory Spatial Processing in the Occipital Cortex of the Blind

    PubMed Central

    Voss, Patrice; Lepore, Franco; Gougoux, Frédéric; Zatorre, Robert J.

    2011-01-01

    We have previously shown that some blind individuals can localize sounds more accurately than their sighted counterparts when one ear is obstructed, and that this ability is strongly associated with occipital cortex activity. Given that spectral cues are important for monaurally localizing sounds when one ear is obstructed, and that blind individuals are more sensitive to small spectral differences, we hypothesized that enhanced use of spectral cues via occipital cortex mechanisms could explain the better performance of blind individuals in monaural localization. Using positron-emission tomography (PET), we scanned blind and sighted persons as they discriminated between sounds originating from a single spatial position, but with different spectral profiles that simulated different spatial positions based on head-related transfer functions. We show here that a sub-group of early blind individuals showing superior monaural sound localization abilities performed significantly better than any other group on this spectral discrimination task. For all groups, performance was best for stimuli simulating peripheral positions, consistent with the notion that spectral cues are more helpful for discriminating peripheral sources. PET results showed that all blind groups showed cerebral blood flow increases in the occipital cortex; but this was also the case in the sighted group. A voxel-wise covariation analysis showed that more occipital recruitment was associated with better performance across all blind subjects but not the sighted. An inter-regional covariation analysis showed that the occipital activity in the blind covaried with that of several frontal and parietal regions known for their role in auditory spatial processing. Overall, these results support the notion that the superior ability of a sub-group of early-blind individuals to localize sounds is mediated by their superior ability to use spectral cues, and that this ability is subserved by cortical processing in

  14. Adverse effect profile of lidocaine injections for occipital nerve block in occipital neuralgia.

    PubMed

    Sahai-Srivastava, Soma; Subhani, Dawood

    2010-12-01

    To determine whether there are differences in the adverse effect profile between 1, 2 and 5% Lidocaine when used for occipital nerve blocks (ONB) in patients with occipital neuralgia. Occipital neuralgia is an uncommon cause of headaches. Little is known regarding the safety of Lidocaine injections for treatment in larger series of patients. Retrospective chart analysis of all ONB was performed at our headache clinic during a 6-year period on occipital neuralgia patients. 89 consecutive patients with occipital neuralgia underwent a total of 315 ONB. All the patients fulfilled the IHS criteria for Occipital Neuralgia. Demographic data were collected including age, gender, and ethnicity. The average age of this cohort was 53.25 years, and the majority of patients were females 69 (78%). Ethnicity of patients was diverse, with Caucasian 48(54%), Hispanics 31(35%), and others 10 (11%). 69 patients had 1%, 18 patients had 2% and 29 patient were given 5% Lidocaine. All Lidocaine injections were given with 20 mg Depo-medrol and the same injection technique and location were used for all the procedures. Eight patients (9%)had adverse effects to the Lidocaine and Depo-medrol injections, of which 5 received 5% and 3 received 1% Lidocaine. Majority of patients who had adverse effects were female 7(87%), and had received bilateral blocks (75%). ONB is a safe procedure with 1% Lidocaine; however, caution should be exerted with 5% in elderly patients, 70 or older, especially when administering bilateral injections.

  15. Association of Optic Radiation Integrity with Cortical Thickness in Children with Anisometropic Amblyopia.

    PubMed

    Qi, Shun; Mu, Yun-Feng; Cui, Long-Biao; Li, Rong; Shi, Mei; Liu, Ying; Xu, Jun-Qing; Zhang, Jian; Yang, Jian; Yin, Hong

    2016-02-01

    Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported. In this study, structural magnetic resonance imaging and diffusion tensor imaging (DTI) data were obtained from 15 children with anisometropic amblyopia and 15 age- and gender-matched children with normal sight. Combining DTI and surface-based morphometry, we examined a potential linkage between disrupted white matter integrity and altered cortical thickness. The fractional anisotropy (FA) values in the optic radiations (ORs) of children with anisometropic amblyopia were lower than in controls (P < 0.05). The cortical thickness in amblyopic children was lower than controls in the following subregions: lingual cortex, lateral occipitotemporal gyrus, cuneus, occipital lobe, inferior parietal lobe, and temporal lobe (P < 0.05, corrected), but was higher in the calcarine gyrus (P < 0.05, corrected). Node-by-node correlation analysis of changes in cortical thickness revealed a significant association between a lower FA value in the OR and diminished cortical thickness in the following subregions: medial lingual cortex, lateral occipitotemporal gyrus, lateral, superior, and medial occipital cortex, and lunate cortex. We also found a relationship between changes of cortical thickness and white matter OR integrity in amblyopia. These findings indicate that developmental changes occur simultaneously in the OR and visual cortex in amblyopia, and provide key information on complex damage of brain networks in anisometropic amblyopia. Our results also support the hypothesis that the pathogenesis of anisometropic amblyopia is neurodevelopmental.

  16. Nurse-led treatment for occipital neuralgia.

    PubMed

    Pike, Denise; Amphlett, Alexander; Weatherby, Stuart

    Occipital neuralgia is a headache resulting from dysfunction of the occipital nerves. Medically resistant occipital neuralgia is treated by greater occipital nerve injection, which is traditionally performed by neurologists. A nurse-led clinic was developed to try to improve the service. Patient feedback showed that the clinic was positively perceived by patients, with most stating the nurse-led model was more efficient than the previous one, which had been led by consultants.

  17. Dandy-Walker syndrome together with occipital encephalocele.

    PubMed

    Cakmak, A; Zeyrek, D; Cekin, A; Karazeybek, H

    2008-08-01

    Dandy-Walker malformation is an anomaly characterized by dysgenesis of the foramina of Magendie and Lushka in the upper 4(th) ventricle, hypoplasia of the cerebellar vermis and agenesis of the corpus callosum. Encephalocele is diagnosed from the calvarium defect, cerebrospinal fluid (CSF) and herniation of the meninges. It is the rarest neural tube defect. A 7 x 9 cm encephalocele was found on physical examination of a 6-day old baby boy patient. From cranial magnetic resonance, it was seen that the posterior fossa was enlarged with cysts and there was agenesis of the vermis. A connection was established between the ventricle and the development of cysts on the posterior fossa. These findings were evaluated as significant from the aspect of Dandy-Walker malformation. The extension of the bone defect in the left occipital area towards the posterior, and the cranio-caudal diameter reaching 9 cm was seen to be in accordance with encephalocele. It is rare for Dandy-Walker syndrome to occur together with occipital encephalocele. The authors present a case of Dandy-Walker syndrome together with occipital encephalocele.

  18. On the Physiological Modulation and Potential Mechanisms Underlying Parieto-Occipital Alpha Oscillations

    PubMed Central

    Lozano-Soldevilla, Diego

    2018-01-01

    The parieto-occipital alpha (8–13 Hz) rhythm is by far the strongest spectral fingerprint in the human brain. Almost 90 years later, its physiological origin is still far from clear. In this Research Topic I review human pharmacological studies using electroencephalography (EEG) and magnetoencephalography (MEG) that investigated the physiological mechanisms behind posterior alpha. Based on results from classical and recent experimental studies, I find a wide spectrum of drugs that modulate parieto-occipital alpha power. Alpha frequency is rarely affected, but this might be due to the range of drug dosages employed. Animal and human pharmacological findings suggest that both GABA enhancers and NMDA blockers systematically decrease posterior alpha power. Surprisingly, most of the theoretical frameworks do not seem to embrace these empirical findings and the debate on the functional role of alpha oscillations has been polarized between the inhibition vs. active poles hypotheses. Here, I speculate that the functional role of alpha might depend on physiological excitation as much as on physiological inhibition. This is supported by animal and human pharmacological work showing that GABAergic, glutamatergic, cholinergic, and serotonergic receptors in the thalamus and the cortex play a key role in the regulation of alpha power and frequency. This myriad of physiological modulations fit with the view that the alpha rhythm is a complex rhythm with multiple sources supported by both thalamo-cortical and cortico-cortical loops. Finally, I briefly discuss how future research combining experimental measurements derived from theoretical predictions based of biophysically realistic computational models will be crucial to the reconciliation of these disparate findings. PMID:29670518

  19. Neurogliaform cortical interneurons derive from cells in the preoptic area

    PubMed Central

    Cadilhac, Christelle; Prados, Julien; Holtmaat, Anthony

    2018-01-01

    Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs. PMID:29557780

  20. Occipital-posterior cerebral artery bypass via the occipital interhemispheric approach

    PubMed Central

    Kazumata, Ken; Yokoyama, Yuka; Sugiyama, Taku; Asaoka, Katsuyuki

    2013-01-01

    Background: The unavailability of the superficial temporal artery (STA) and the location of lesions pose a more technically demanding challenge when compared with conventional STA-superior cerebellar or posterior cerebral artery (PCA) bypass in vascular reconstruction procedures. To describe a case series of patients with cerebrovascular lesions who were treated using an occipital artery (OA) to PCA bypass via the occipital interhemispheric approach. Methods: We retrospectively reviewed three consecutive cases of patients with cerebrovascular lesions who were treated using OA-PCA bypass. Results: OA-PCA bypass was performed via the occipital interhemispheric approach. This procedure included: (1) OA-PCA bypass (n = 1), and combined OA-posterior inferior cerebellar artery and OA-PCA saphenous vein interposition graft bypass (n = 1) in patients with vertebrobasilar ischemia; (2) OA-PCA radial artery interposition graft bypass in one patient with residual PCA aneurysm. Conclusions: OA-PCA bypass represents a useful alternative to conventional STA-SCA or PCA bypass. PMID:23956933

  1. Variability of magnetoencephalographic sensor sensitivity measures as a function of age, brain volume and cortical area

    PubMed Central

    Irimia, Andrei; Erhart, Matthew J.; Brown, Timothy T.

    2014-01-01

    Objective To assess the feasibility and appropriateness of magnetoencephalography (MEG) for both adult and pediatric studies, as well as for the developmental comparison of these factors across a wide range of ages. Methods For 45 subjects with ages from 1 to 24 years (infants, toddlers, school-age children and young adults), lead fields (LFs) of MEG sensors are computed using anatomically realistic boundary element models (BEMs) and individually-reconstructed cortical surfaces. Novel metrics are introduced to quantify MEG sensor focality. Results The variability of MEG focality is graphed as a function of brain volume and cortical area. Statistically significant differences in total cerebral volume, cortical area, MEG global sensitivity and LF focality are found between age groups. Conclusions Because MEG focality and sensitivity differ substantially across the age groups studied, the cortical LF maps explored here can provide important insights for the examination and interpretation of MEG signals from early childhood to young adulthood. Significance This is the first study to (1) investigate the relationship between MEG cortical LFs and brain volume as well as cortical area across development, and (2) compare LFs between subjects with different head sizes using detailed cortical reconstructions. PMID:24589347

  2. Decoding the content of visual short-term memory under distraction in occipital and parietal areas.

    PubMed

    Bettencourt, Katherine C; Xu, Yaoda

    2016-01-01

    Recent studies have provided conflicting accounts regarding where in the human brain visual short-term memory (VSTM) content is stored, with strong univariate fMRI responses being reported in superior intraparietal sulcus (IPS), but robust multivariate decoding being reported in occipital cortex. Given the continuous influx of information in everyday vision, VSTM storage under distraction is often required. We found that neither distractor presence nor predictability during the memory delay affected behavioral performance. Similarly, superior IPS exhibited consistent decoding of VSTM content across all distractor manipulations and had multivariate responses that closely tracked behavioral VSTM performance. However, occipital decoding of VSTM content was substantially modulated by distractor presence and predictability. Furthermore, we found no effect of target-distractor similarity on VSTM behavioral performance, further challenging the role of sensory regions in VSTM storage. Overall, consistent with previous univariate findings, our results indicate that superior IPS, but not occipital cortex, has a central role in VSTM storage.

  3. V. Multi-level analysis of cortical neuroanatomy in Williams syndrome.

    PubMed

    Galaburda, A M; Bellugi, U

    2000-01-01

    The purpose of a neuroanatomical analysis of Williams Syndrome (WMS) brains is to help bridge the knowledge of the genetics of this disorder with the knowledge on behavior. Here, we outline findings of cortical neuroanatomy at multiple levels. We describe the gross anatomy with respect to brain shape, cortical folding, and asymmetry. This, as with most neuroanatomical information available in the literature on anatomical-functional correlations, links up best to the behavioral profile. Then, we describe the cytoarchitectonic appearance of the cortex. Further, we report on some histometric results. Finally, we present findings of immunocytochemistry that attempt to link up to the genomic deletion. The gross anatomical findings consist mainly of a small brain that shows curtailment in the posterior-parietal and occipital regions. There is also subtle dysmorphism of cortical folding. A consistent finding is a short central sulcus that does not become opercularized in the interhemispheric fissure, bringing attention to a possible developmental anomaly affecting the dorsal half of the hemispheres. There is also lack of asymmetry in the planum temporale. The cortical cytoarchitecture is relatively normal, with all sampled areas showing features typical of the region from which they are taken. Measurements in area 17 show increased cell size and decreased cell-packing density, which address the issue of possible abnormal connectivity. Immunostaining shows absence of elastin but normal staining for Lim-1 kinase, both of which are products of genes that are part of the deletion. Finally, one serially sectioned brain shows a fair amount of acquired pathology of microvascular origin related most likely to underlying hypertension and heart disease.

  4. Occipital pressure sores in two neonates.

    PubMed

    Liu, Yi; Xiao, Bin; Zhang, Cheng; Su, Zhihong

    2015-01-01

    The preference for a specific head shape can be influenced by people's culture, religious beliefs and race. Modern Chinese people prefer a "talented" head shape, which is rounded and has a long profile. To obtain their preferred head shape, some parents try to change their neonates' sleeping position. Due to these forced sleeping positions, positional skull deformities, such as plagiocephaly, may be present during the first few months of life. In this article, we report two neonatal cases, of Hui nationality and Dongxiang nationality, with occipital pressure sores that were caused by using hard objects as pillows with the intention of obtaining a flattened occiput. The pressure sores were deep to the occipital bone and needed surgical management. These pressure sores caused wounds that were repaired by local skin flaps, after debridement, and the use of external constraints from a dense sponge-made head frame for approximately two weeks. One case recovered with primary healing after surgical operation. The other case suffered from a disruption of the sutured wound, and a secondary operation was performed to cover the wound. These occipital pressure sores are avoidable by providing guidance to the parents in ethnic minorities' area regarding the prevention, diagnosis and management of positional skull deformity.

  5. Differential contributions of cortical thickness and surface area to trait impulsivity in healthy young adults.

    PubMed

    Kubera, Katharina M; Schmitgen, Mike M; Maier-Hein, Klaus H; Thomann, Philipp A; Hirjak, Dusan; Wolf, Robert C

    2018-05-08

    Impulsivity is an essential human personality trait and highly relevant for the development of several mental disorders. There is evidence that impulsivity is heritable, yet little is known about neural correlates reflecting early brain development. Here, we address the question whether motor, attentional and non-planning components, as reflected by the Barratt Impulsiveness Scale (BIS-11), are distinctly associated with cortical thickness and surface area variations in young healthy individuals. We investigated cortical thickness and surface area in 54 healthy volunteers (m/f = 30%/70%; age mean/SD = 24.9/4.02) using structural magnetic resonance imaging at 3 T together with surface-based analysis techniques. Impulsivity was examined on the Barratt impulsiveness scale (BIS-11) and related to the two distinct cortical measurements. Higher BIS-11 total scores were negatively associated with cortical thickness variations in the left lingual gyrus, left superior temporal gyrus, right cuneus, and right superior parietal gyrus (p<0.05 cluster-wise probability [CWP] corrected). Higher BIS-11 nonplanning scores were negatively associated with cortical thickness variations in bilateral pericalcarine gyrus (p<0.05 CWP corr.). In the orbitofrontal cortex motor impulsivity associated cortical thickness differs significantly between male and female. These data suggest distinct neurodevelopmental trajectories underlying impulsivity in healthy subjects. Impulsivity total scores appear to be specifically related to cortical thickness variations, in contrast to variations of cortical surface area. Furthermore, our findings underscores the importance of better characterizing gender-specific structural correlates of impulsivity. Copyright © 2018. Published by Elsevier B.V.

  6. Occipital Neuralgia after Occipital Cervical Fusion to Treat an Unstable Jefferson Fracture

    PubMed Central

    Kong, Seong Ju; Park, Jin Hoon

    2012-01-01

    In this report we describe a patient with an unstable Jefferson fracture who was treated by occipitocervical fusion and later reported sustained postoperative occipital neuralgia. A 70-year-old male was admitted to our center with a Jefferson fracture induced by a car accident. Preoperative lateral X-ray revealed an atlanto-dens interval of 4.8mm and a C1 canal anterior-posterior diameter of 19.94mm. We performed fusion surgery from the occiput to C5 without decompression of C1. The patient reported sustained continuous pain throughout the following year despite strong analgesics. The pain dermatome was located mainly in the great occipital nerve territory and posterior neck. Magnetic resonance images revealed no evidence of cord compression, however a C1 lamina compressed dural sac and C2 root compression could not be excluded. We performed bilateral C2 root decompression via a C1 laminectomy. After decompression, bilateral C2 root redundancy was identified by palpation. After decompression surgery, pain was reduced. This case indicates that occipital neuralgia, suggesting the need for diagnostic block, should be considered in the differential diagnosis of patients with sustained occipital headache after occipitocervical fusion surgery. PMID:25983846

  7. Prefrontal Cortical GABA Levels in Panic Disorder Determined by Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Hasler, Gregor; van der Veen, Jan Willem; Geraci, Marilla; Shen, Jun; Pine, Daniel; Drevets, Wayne C.

    2009-01-01

    Background Panic disorder (PD) is hypothesized to be associated with altered function of the major inhibitory neurotransmitter, gamma-amino butyric acid (GABA). Previous proton magnetic resonance spectroscopy (MRS) studies found lower GABA concentrations in the occipital cortex of subjects with PD relative to healthy controls. The current study is the first MRS study to compare GABA concentrations between unmedicated PD subjects and controls in the prefrontal cortex (PFC). Methods Unmedicated subjects with PD (n=17) and age- and sex-matched healthy controls (n=17) were scanned on a 3 Tesla scanner using a transmit-receive head coil that provided a sufficiently homogenous radiofrequency field to obtain spectroscopic measurements in the dorsomedial/dorsal anterolateral and ventromedial areas of the PFC. Results The prefrontal cortical GABA concentrations did not differ significantly between PD subjects and controls. There also was no statistically significant difference in Glx, choline or N-acetyl-aspartate concentrations. Conclusions The previously reported finding of reduced GABA concentrations in the occipital cortex of PD subjects does not appear to extend to the PFC. PMID:18692172

  8. Longitudinal changes in cortical thickness in autism and typical development.

    PubMed

    Zielinski, Brandon A; Prigge, Molly B D; Nielsen, Jared A; Froehlich, Alyson L; Abildskov, Tracy J; Anderson, Jeffrey S; Fletcher, P Thomas; Zygmunt, Kristen M; Travers, Brittany G; Lange, Nicholas; Alexander, Andrew L; Bigler, Erin D; Lainhart, Janet E

    2014-06-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3-36 years) and 60 males with typical development (mean age = 18 years; range 4-39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  9. Longitudinal changes in cortical thickness in autism and typical development

    PubMed Central

    Prigge, Molly B. D.; Nielsen, Jared A.; Froehlich, Alyson L.; Abildskov, Tracy J.; Anderson, Jeffrey S.; Fletcher, P. Thomas; Zygmunt, Kristen M.; Travers, Brittany G.; Lange, Nicholas; Alexander, Andrew L.; Bigler, Erin D.; Lainhart, Janet E.

    2014-01-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3–36 years) and 60 males with typical development (mean age = 18 years; range 4–39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  10. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?

    PubMed

    Lemaitre, Herve; Goldman, Aaron L; Sambataro, Fabio; Verchinski, Beth A; Meyer-Lindenberg, Andreas; Weinberger, Daniel R; Mattay, Venkata S

    2012-03-01

    Normal aging is accompanied by global as well as regional structural changes. While these age-related changes in gray matter volume have been extensively studied, less has been done using newer morphological indexes, such as cortical thickness and surface area. To this end, we analyzed structural images of 216 healthy volunteers, ranging from 18 to 87 years of age, using a surface-based automated parcellation approach. Linear regressions of age revealed a concomitant global age-related reduction in cortical thickness, surface area and volume. Cortical thickness and volume collectively confirmed the vulnerability of the prefrontal cortex, whereas in other cortical regions, such as in the parietal cortex, thickness was the only measure sensitive to the pronounced age-related atrophy. No cortical regions showed more surface area reduction than the global average. The distinction between these morphological measures may provide valuable information to dissect age-related structural changes of the brain, with each of these indexes probably reflecting specific histological changes occurring during aging. Published by Elsevier Inc.

  11. High resolution anatomical and quantitative MRI of the entire human occipital lobe ex vivo at 9.4T.

    PubMed

    Sengupta, S; Fritz, F J; Harms, R L; Hildebrand, S; Tse, D H Y; Poser, B A; Goebel, R; Roebroeck, A

    2018-03-01

    Several magnetic resonance imaging (MRI) contrasts are sensitive to myelin content in gray matter in vivo which has ignited ambitions of MRI-based in vivo cortical histology. Ultra-high field (UHF) MRI, at fields of 7T and beyond, is crucial to provide the resolution and contrast needed to sample contrasts over the depth of the cortex and get closer to layer resolved imaging. Ex vivo MRI of human post mortem samples is an important stepping stone to investigate MRI contrast in the cortex, validate it against histology techniques applied in situ to the same tissue, and investigate the resolutions needed to translate ex vivo findings to in vivo UHF MRI. Here, we investigate key technology to extend such UHF studies to large human brain samples while maintaining high resolution, which allows investigation of the layered architecture of several cortical areas over their entire 3D extent and their complete borders where architecture changes. A 16 channel cylindrical phased array radiofrequency (RF) receive coil was constructed to image a large post mortem occipital lobe sample (~80×80×80mm 3 ) in a wide-bore 9.4T human scanner with the aim of achieving high-resolution anatomical and quantitative MR images. Compared with a human head coil at 9.4T, the maximum Signal-to-Noise ratio (SNR) was increased by a factor of about five in the peripheral cortex. Although the transmit profile with a circularly polarized transmit mode at 9.4T is relatively inhomogeneous over the large sample, this challenge was successfully resolved with parallel transmit using the kT-points method. Using this setup, we achieved 60μm anatomical images for the entire occipital lobe showing increased spatial definition of cortical details compared to lower resolutions. In addition, we were able to achieve sufficient control over SNR, B 0 and B 1 homogeneity and multi-contrast sampling to perform quantitative T 2 * mapping over the same volume at 200μm. Markov Chain Monte Carlo sampling provided

  12. Development of global cortical networks in early infancy.

    PubMed

    Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro

    2010-04-07

    Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.

  13. Differentiable cortical networks for inferences concerning people's intentions versus physical causality.

    PubMed

    Mason, Robert A; Just, Marcel Adam

    2011-02-01

    Cortical activity associated with generating an inference was measured using fMRI. Participants read three-sentence passages that differed in whether or not an inference needed to be drawn to understand them. The inference was based on either a protagonist's intention or a physical consequence of a character's action. Activation was expected in Theory of Mind brain regions for the passages based on protagonists' intentions but not for the physical consequence passages. The activation measured in the right temporo-parietal junction was greater in the intentional passages than in the consequence passages, consistent with predictions from a Theory of Mind perspective. In contrast, there was increased occipital activation in the physical inference passages. For both types of passage, the cortical activity related to the reading of the critical inference sentence demonstrated a recruitment of a common inference cortical network. This general inference-related activation appeared bilaterally in the language processing areas (the inferior frontal gyrus, the temporal gyrus, and the angular gyrus), as well as in the medial to superior frontal gyrus, which has been found to be active in Theory of Mind tasks. These findings are consistent with the hypothesis that component areas of the discourse processing network are recruited as needed based on the nature of the inference. A Protagonist monitoring and synthesis network is proposed as a more accurate account for Theory of Mind activation during narrative comprehension. Copyright © 2010 Wiley-Liss, Inc.

  14. A conserved pattern of differential expansion of cortical areas in simian primates.

    PubMed

    Chaplin, Tristan A; Yu, Hsin-Hao; Soares, Juliana G M; Gattass, Ricardo; Rosa, Marcello G P

    2013-09-18

    The layout of areas in the cerebral cortex of different primates is quite similar, despite significant variations in brain size. However, it is clear that larger brains are not simply scaled up versions of smaller brains: some regions of the cortex are disproportionately large in larger species. It is currently debated whether these expanded areas arise through natural selection pressures for increased cognitive capacity or as a result of the application of a common developmental sequence on different scales. Here, we used computational methods to map and quantify the expansion of the cortex in simian primates of different sizes to investigate whether there is any common pattern of cortical expansion. Surface models of the marmoset, capuchin, and macaque monkey cortex were registered using the software package CARET and the spherical landmark vector difference algorithm. The registration was constrained by the location of identified homologous cortical areas. When comparing marmosets with both capuchins and macaques, we found a high degree of expansion in the temporal parietal junction, the ventrolateral prefrontal cortex, and the dorsal anterior cingulate cortex, all of which are high-level association areas typically involved in complex cognitive and behavioral functions. These expanded maps correlated well with previously published macaque to human registrations, suggesting that there is a general pattern of primate cortical scaling.

  15. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST

    PubMed Central

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B. Suresh; Treue, Stefan

    2017-01-01

    Abstract Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. PMID:28365773

  16. Anatomical consideration of the occipital cutaneous nerves and artery for the safe treatment of occipital neuralgia.

    PubMed

    Shin, Kang-Jae; Kim, Hong-San; O, Jehoon; Kwon, Hyun-Jin; Yang, Hun-Mu

    2018-05-12

    There is no standardized approach to the greater occipital nerve (GON) block technique for treating occipital neuralgia. The aim of the present study was to validate the previously-suggested guidelines for conventional injection techniques and to provide navigational guidelines for safe GON block. The GON, lesser occipital nerve (LON) and occipital artery (OA) were carefully dissected in the occipital region of embalmed cadavers. Using a 3D digitizer, the GON, LON, and OA were observed on the two reference lines. The distances between the landmarks were recorded and statistically analyzed. On the superior nuchal line, the mean distances between the external occipital protuberance (EOP) and the most medial branch of the GON was 33.5 mm. The mean distance between the EOP and the most medial branch of the OA was 37.4 mm. On the EOP-mastoid process (MP) line, the GON was on the medial third and the LON the lateral third of the EOP-MP line. The safe injection points on the EOP-MP line are about 3 cm from the EOP, 1 cm inferior parallel to the EOP-MP line, and about 3 cm away from the MP. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  17. Cortical volume and sex influence visual gamma.

    PubMed

    van Pelt, Stan; Shumskaya, Elena; Fries, Pascal

    2018-06-05

    Visually induced gamma-band activity (GBA) has been implicated in several central cognitive functions, in particular perceptual binding, the feedforward routing of attended stimulus information and memory encoding. Several studies have documented that the strength and frequency of GBA are influenced by both subject-intrinsic factors like age, and subject-extrinsic factors such as stimulus contrast. Here, we investigated the relative contributions of previously tested factors, additional factors, and their interactions, in a cohort of 158 subjects recorded with magnetoencephalography (MEG). In agreement with previous studies, we found that gamma strength and gamma peak frequency increase with stimulus contrast and stimulus velocity. Also in confirmation of previous findings, we report that gamma peak frequency declines with subject age. In addition, we found that gamma peak frequency is higher for subjects with thicker occipital cortex, but lower for larger occipital cortices. Also, gamma peak frequency is higher in female than male subjects. Extrinsic factors (stimulus contrast and velocity) and intrinsic factors (age, cortical thickness and sex) together explained 21% of the variance in gamma peak frequency and 20% of the variance in gamma strength. These results can contribute to our understanding of the mechanisms, by which gamma is generated, and the mechanisms, through which it affects the cognitive performance of a given individual subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Occipital Neuralgia as the Only Presenting Symptom of Foramen Magnum Meningioma

    PubMed Central

    Yang, Seung-Yeob; Koo, Joon-Bum; Jeong, Sang-Wuk

    2009-01-01

    Background Occipital neuralgia (ON) is a condition characterized by a paroxysmal stabbing pain in the area of the greater or lesser occipital nerves; it is usually regarded by clinicians as idiopathic. Some have suggested that ON can be induced by trauma or injury of the occipital nerves or their roots, but tumor has rarely been reported as a cause of ON. Case Report We report herein a case of foramen magnum meningioma in a 55-year-old woman who presented with ON triggered by head motion as the only symptom without any signs of myelopathy. Conclusions This case indicates that it is important to consider the underlying causes of ON. Precise neurologic and radiological evaluations such as cervical spine magnetic resonance imaging are needed. PMID:20076803

  19. Assessing cortical synchronization during transcranial direct current stimulation: A graph-theoretical analysis.

    PubMed

    Mancini, Matteo; Brignani, Debora; Conforto, Silvia; Mauri, Piercarlo; Miniussi, Carlo; Pellicciari, Maria Concetta

    2016-10-15

    Transcranial direct current stimulation (tDCS) is a neuromodulation technique that can alter cortical excitability and modulate behaviour in a polarity-dependent way. Despite the widespread use of this method in the neuroscience field, its effects on ongoing local or global (network level) neuronal activity are still not foreseeable. A way to shed light on the neuronal mechanisms underlying the cortical connectivity changes induced by tDCS is provided by the combination of tDCS with electroencephalography (EEG). In this study, twelve healthy subjects underwent online tDCS-EEG recording (i.e., simultaneous), during resting-state, using 19 EEG channels. The protocol involved anodal, cathodal and sham stimulation conditions, with the active and the reference electrodes in the left frontocentral area (FC3) and on the forehead over the right eyebrow, respectively. The data were processed using a network model, based on graph theory and the synchronization likelihood. The resulting graphs were analysed for four frequency bands (theta, alpha, beta and gamma) to evaluate the presence of tDCS-induced differences in synchronization patterns and graph theory measures. The resting state network connectivity resulted altered during tDCS, in a polarity-specific manner for theta and alpha bands. Anodal tDCS weakened synchronization with respect to the baseline over the fronto-central areas in the left hemisphere, for theta band (p<0.05). In contrast, during cathodal tDCS a significant increase in inter-hemispheric synchronization connectivity was observed over the centro-parietal, centro-occipital and parieto-occipital areas for the alpha band (p<0.05). Local graph measures showed a tDCS-induced polarity-specific differences that regarded modifications of network activities rather than specific region properties. Our results show that applying tDCS during the resting state modulates local synchronization as well as network properties in slow frequency bands, in a polarity

  20. Infiltrative cervical lesions causing symptomatic occipital neuralgia.

    PubMed

    Sierra-Hidalgo, F; Ruíz, J; Morales-Cartagena, A; Martínez-Salio, A; Serna, J de la; Hernández-Gallego, J

    2011-10-01

    Occipital neuralgia is a well-recognized cause of posterior head and neck pain that may associate mild sensory changes in the cutaneous distribution of the occipital nerves, lacking a recognizable local structural aetiology in most cases. Atypical clinical features or an abnormal neurological examination are alerts for a potential underlying cause of pain, although cases of clinically typical occipital neuralgia as isolated manifestation of lesions of the cervical spinal cord, cervical roots, or occipital nerves have been increasingly reported. We describe two cases (one with typical and another one with atypical clinical features) of occipital neuralgia secondary to paravertebral pyomyositis and vertebral relapse of multiple myeloma in patients with relevant medical history that aroused the possibility of an underlying structural lesion. We discuss the need for cranio-cervical magnetic resonance imaging in all patients with occipital neuralgia, even when typical clinical features are present and neurological examination is completely normal.

  1. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals.

    PubMed

    Bonino, D; Ricciardi, E; Sani, L; Gentili, C; Vanello, N; Guazzelli, M; Vecchi, T; Pietrini, P

    2008-09-01

    In sighted individuals, both the visual and tactile version of the same spatial working memory task elicited neural responses in the dorsal "where" cortical pathway (Ricciardi et al., 2006). Whether the neural response during the tactile working memory task is due to visually-based spatial imagery or rather reflects a more abstract, supramodal organization of the dorsal cortical pathway remains to be determined. To understand the role of visual experience on the functional organization of the dorsal cortical stream, using functional magnetic resonance imaging (fMRI) here we examined brain response in four individuals with congenital or early blindness and no visual recollection, while they performed the same tactile spatial working memory task, a one-back recognition of 2D and 3D matrices. The blind subjects showed a significant activation in bilateral posterior parietal cortex, dorsolateral and inferior prefrontal areas, precuneus, lateral occipital cortex, and cerebellum. Thus, dorsal occipito-parietal areas are involved in mental imagery dealing with spatial components in subjects without prior visual experience and in response to a non-visual task. These data indicate that recruitment of the dorsal cortical pathway in response to the tactile spatial working memory task is not mediated by visually-based imagery and that visual experience is not a prerequisite for the development of a more abstract functional organization of the dorsal stream. These findings, along with previous data indicating a similar supramodal functional organization within the ventral cortical pathway and the motion processing brain regions, may contribute to explain how individuals who are born deprived of sight are able to interact effectively with the surrounding world.

  2. Differentiable cortical networks for inferences concerning people’s intentions versus physical causality

    PubMed Central

    Mason, Robert A.; Just, Marcel Adam

    2010-01-01

    Cortical activity associated with generating an inference was measured using fMRI. Participants read three-sentence passages that differed in whether or not an inference needed to be drawn to understand them. The inference was based on either a protagonist’s intention or a physical consequence of a character’s action. Activation was expected in Theory of Mind brain regions for the passages based on protagonists’ intentions but not for the physical consequence passages. The activation measured in the right temporo-parietal junction was greater in the intentional passages than in the consequence passages, consistent with predictions from a Theory of Mind perspective. In contrast, there was increased occipital activation in the physical inference passages. For both types of passage, the cortical activity related to the reading of the critical inference sentence demonstrated a recruitment of a common inference cortical network. This general inference-related activation appeared bilaterally in the language processing areas (the inferior frontal gyrus, the temporal gyrus, and the angular gyrus), as well as in the medial to superior frontal gyrus, which has been found to be active in Theory of Mind tasks. These findings are consistent with the hypothesis that component areas of the discourse processing network are recruited as needed based on the nature of the inference. A Protagonist monitoring and synthesis network is proposed as a more accurate account for Theory of Mind activation during narrative comprehension. PMID:21229617

  3. Functional networks in parallel with cortical development associate with executive functions in children.

    PubMed

    Zhong, Jidan; Rifkin-Graboi, Anne; Ta, Anh Tuan; Yap, Kar Lai; Chuang, Kai-Hsiang; Meaney, Michael J; Qiu, Anqi

    2014-07-01

    Children begin performing similarly to adults on tasks requiring executive functions in late childhood, a transition that is probably due to neuroanatomical fine-tuning processes, including myelination and synaptic pruning. In parallel to such structural changes in neuroanatomical organization, development of functional organization may also be associated with cognitive behaviors in children. We examined 6- to 10-year-old children's cortical thickness, functional organization, and cognitive performance. We used structural magnetic resonance imaging (MRI) to identify areas with cortical thinning, resting-state fMRI to identify functional organization in parallel to cortical development, and working memory/response inhibition tasks to assess executive functioning. We found that neuroanatomical changes in the form of cortical thinning spread over bilateral frontal, parietal, and occipital regions. These regions were engaged in 3 functional networks: sensorimotor and auditory, executive control, and default mode network. Furthermore, we found that working memory and response inhibition only associated with regional functional connectivity, but not topological organization (i.e., local and global efficiency of information transfer) of these functional networks. Interestingly, functional connections associated with "bottom-up" as opposed to "top-down" processing were more clearly related to children's performance on working memory and response inhibition, implying an important role for brain systems involved in late childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Higher homocysteine associated with thinner cortical gray matter in 803 ADNI subjects

    PubMed Central

    Madsen, Sarah K.; Rajagopalan, Priya; Joshi, Shantanu H.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor – high homocysteine levels in the blood – is known to increase risk for Alzheimer’s disease and vascular disorders. Here we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, surface area) computed from brain MRI in 803 elderly subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital and right temporal regions; and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex, and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, mild cognitive impairment, or Alzheimer’s disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels. PMID:25444607

  5. Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R

    2016-09-21

    The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and

  6. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST.

    PubMed

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B Suresh; Treue, Stefan

    2017-01-01

    Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. © The Author 2016. Published by Oxford University Press.

  7. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones

    PubMed Central

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later

  8. Cortical Gamma-Aminobutyric Acid and Glutamate in Posttraumatic Stress Disorder and Their Relationships to Self-Reported Sleep Quality

    PubMed Central

    Meyerhoff, Dieter J.; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C.

    2014-01-01

    Study Objectives: To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Design: Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. Setting: VA Medical Center Research Service, Psychiatry and Radiology. Patients or Participants: Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD−), recruited from United States Army reservists, Army National Guard, and mental health clinics. Interventions: None. Measurements and Results: 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD−. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Conclusions: Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches. Citation: Meyerhoff DJ, Mon A, Metzler T, Neylan TC. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and

  9. Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood.

    PubMed

    Lyall, Amanda E; Shi, Feng; Geng, Xiujuan; Woolson, Sandra; Li, Gang; Wang, Li; Hamer, Robert M; Shen, Dinggang; Gilmore, John H

    2015-08-01

    Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Cortico-Cortical, Cortico-Striatal, and Cortico-Thalamic White Matter Fiber Tracts Generated in the Macaque Brain via Dynamic Programming

    PubMed Central

    Lal, Rakesh M.; An, Michael; Poynton, Clare B.; Li, Muwei; Jiang, Hangyi; Oishi, Kenichi; Selemon, Lynn D.; Mori, Susumu; Miller, Michael I.

    2013-01-01

    Abstract Probabilistic methods have the potential to generate multiple and complex white matter fiber tracts in diffusion tensor imaging (DTI). Here, a method based on dynamic programming (DP) is introduced to reconstruct fibers pathways whose complex anatomical structures cannot be resolved beyond the resolution of standard DTI data. DP is based on optimizing a sequentially additive cost function derived from a Gaussian diffusion model whose covariance is defined by the diffusion tensor. DP is used to determine the optimal path between initial and terminal nodes by efficiently searching over all paths, connecting the nodes, and choosing the path in which the total probability is maximized. An ex vivo high-resolution scan of a macaque hemi-brain is used to demonstrate the advantages and limitations of DP. DP can generate fiber bundles between distant cortical areas (superior longitudinal fasciculi, arcuate fasciculus, uncinate fasciculus, and fronto-occipital fasciculus), neighboring cortical areas (dorsal and ventral banks of the principal sulcus), as well as cortical projections to the hippocampal formation (cingulum bundle), neostriatum (motor cortical projections to the putamen), thalamus (subcortical bundle), and hippocampal formation projections to the mammillary bodies via the fornix. Validation is established either by comparison with in vivo intracellular transport of horseradish peroxidase in another macaque monkey or by comparison with atlases. DP is able to generate known pathways, including crossing and kissing tracts. Thus, DP has the potential to enhance neuroimaging studies of cortical connectivity. PMID:23879573

  11. Botulinum toxin occipital nerve block for the treatment of severe occipital neuralgia: a case series.

    PubMed

    Kapural, Leonardo; Stillman, Mark; Kapural, Miranda; McIntyre, Patrick; Guirgius, Maged; Mekhail, Nagy

    2007-12-01

    Persistent occipital neuralgia can produce severe headaches that are difficult to control by conservative or surgical approaches. We retrospectively describe a series of six patients with severe occipital neuralgia who received conservative and interventional therapies, including oral antidepressants, membrane stabilizers, opioids, and traditional occipital nerve blocks without significant relief. This group then underwent occipital nerve blocks using the botulinum toxin type A (BoNT-A) BOTOX Type A (Allergan, Inc., Irvine, CA, U.S.A.) 50 U for each block (100 U if bilateral). Significant decreases in pain Visual Analog Scale (VAS) scores and improvement in Pain Disability Index (PDI) were observed at four weeks follow-up in five out of six patients following BoNT-A occipital nerve block. The mean VAS score changed from 8 +/- 1.8 (median score of 8.5) to 2 +/- 2.7 (median score of 1), while PDI improved from 51.5 +/- 17.6 (median 56) to 19.5 +/- 21 (median 17.5) and the duration of the pain relief increased to an average of 16.3 +/- 3.2 weeks (median 16) from an average of 1.9 +/- 0.5 weeks (median 2) compared to diagnostic 0.5% bupivacaine block. Following block resolution, the average pain scores and PDI returned to similar levels as before BoNT-A block. In conclusion, BoNT-A occipital nerve blocks provided a much longer duration of analgesia than diagnostic local anesthetics. The functional capacity improvement measured by PDI was profound enough in the majority of the patients to allow patients to resume their regular daily activities for a period of time.

  12. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking

    PubMed Central

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous “standard” definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity

  13. Visual Dysfunction in Posterior Cortical Atrophy

    PubMed Central

    Maia da Silva, Mari N.; Millington, Rebecca S.; Bridge, Holly; James-Galton, Merle; Plant, Gordon T.

    2017-01-01

    Posterior cortical atrophy (PCA) is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical) visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions. PMID:28861031

  14. Cortical thinning in former professional soccer players.

    PubMed

    Koerte, Inga K; Mayinger, Michael; Muehlmann, Marc; Kaufmann, David; Lin, Alexander P; Steffinger, Denise; Fisch, Barbara; Rauchmann, Boris-Stephan; Immler, Stefanie; Karch, Susanne; Heinen, Florian R; Ertl-Wagner, Birgit; Reiser, Maximilian; Stern, Robert A; Zafonte, Ross; Shenton, Martha E

    2016-09-01

    Soccer is the most popular sport in the world. Soccer players are at high risk for repetitive subconcussive head impact when heading the ball. Whether this leads to long-term alterations of the brain's structure associated with cognitive decline remains unknown. The aim of this study was to evaluate cortical thickness in former professional soccer players using high-resolution structural MR imaging. Fifteen former male professional soccer players (mean age 49.3 [SD 5.1] years) underwent high-resolution structural 3 T MR imaging, as well as cognitive testing. Fifteen male, age-matched former professional non-contact sport athletes (mean age 49.6 [SD 6.4] years) served as controls. Group analyses of cortical thickness were performed using voxel-based statistics. Soccer players demonstrated greater cortical thinning with increasing age compared to controls in the right inferolateral-parietal, temporal, and occipital cortex. Cortical thinning was associated with lower cognitive performance as well as with estimated exposure to repetitive subconcussive head impact. Neurocognitive evaluation revealed decreased memory performance in the soccer players compared to controls. The association of cortical thinning and decreased cognitive performance, as well as exposure to repetitive subconcussive head impact, further supports the hypothesis that repetitive subconcussive head impact may play a role in early cognitive decline in soccer players. Future studies are needed to elucidate the time course of changes in cortical thickness as well as their association with impaired cognitive function and possible underlying neurodegenerative process.

  15. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    PubMed Central

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  16. Mapping Human Cortical Areas in vivo Based on Myelin Content as Revealed by T1- and T2-weighted MRI

    PubMed Central

    Glasser, Matthew F.; Van Essen, David C.

    2011-01-01

    Non-invasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject was mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface—i.e. putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multi-modal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared to macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates. PMID:21832190

  17. Occipital GABA correlates with cognitive failures in daily life.

    PubMed

    Sandberg, Kristian; Blicher, Jakob Udby; Dong, Mia Yuan; Rees, Geraint; Near, Jamie; Kanai, Ryota

    2014-02-15

    The brain has limited capacity, and so selective attention enhances relevant incoming information while suppressing irrelevant information. This process is not always successful, and the frequency of such cognitive failures varies to a large extent between individuals. Here we hypothesised that individual differences in cognitive failures might be reflected in inhibitory processing in the sensory cortex. To test this hypothesis, we measured GABA in human visual cortex using MR spectroscopy and found a negative correlation between occipital GABA (GABA+/Cr ratio) and cognitive failures as measured by an established cognitive failures questionnaire (CFQ). For a second site in parietal cortex, no correlation between CFQ score and GABA+/Cr ratio was found, thus establishing the regional specificity of the link between occipital GABA and cognitive failures. We further found that grey matter volume in the left superior parietal lobule (SPL) correlated with cognitive failures independently from the impact of occipital GABA and together, occipital GABA and SPL grey matter volume statistically explained around 50% of the individual variability in daily cognitive failures. We speculate that the amount of GABA in sensory areas may reflect the potential capacity to selectively suppress irrelevant information already at the sensory level, or alternatively that GABA influences the specificity of neural representations in visual cortex thus improving the effectiveness of successful attentional modulation. © 2013. Published by Elsevier Inc. All rights reserved.

  18. Combining MRI and VEP imaging to isolate the temporal response of visual cortical areas

    NASA Astrophysics Data System (ADS)

    Carney, Thom; Ales, Justin; Klein, Stanley A.

    2008-02-01

    The human brain has well over 30 cortical areas devoted to visual processing. Classical neuro-anatomical as well as fMRI studies have demonstrated that early visual areas have a retinotopic organization whereby adjacent locations in visual space are represented in adjacent areas of cortex within a visual area. At the 2006 Electronic Imaging meeting we presented a method using sprite graphics to obtain high resolution retinotopic visual evoked potential responses using multi-focal m-sequence technology (mfVEP). We have used this method to record mfVEPs from up to 192 non overlapping checkerboard stimulus patches scaled such that each patch activates about 12 mm2 of cortex in area V1 and even less in V2. This dense coverage enables us to incorporate cortical folding constraints, given by anatomical MRI and fMRI results from the same subject, to isolate the V1 and V2 temporal responses. Moreover, the method offers a simple means of validating the accuracy of the extracted V1 and V2 time functions by comparing the results between left and right hemispheres that have unique folding patterns and are processed independently. Previous VEP studies have been contradictory as to which area responds first to visual stimuli. This new method accurately separates the signals from the two areas and demonstrates that both respond with essentially the same latency. A new method is introduced which describes better ways to isolate cortical areas using an empirically determined forward model. The method includes a novel steady state mfVEP and complex SVD techniques. In addition, this evolving technology is put to use examining how stimulus attributes differentially impact the response in different cortical areas, in particular how fast nonlinear contrast processing occurs. This question is examined using both state triggered kernel estimation (STKE) and m-sequence "conditioned kernels". The analysis indicates different contrast gain control processes in areas V1 and V2. Finally we

  19. Segregation and persistence of form in the lateral occipital complex.

    PubMed

    Ferber, Susanne; Humphrey, G Keith; Vilis, Tutis

    2005-01-01

    While the lateral occipital complex (LOC) has been shown to be implicated in object recognition, it is unclear whether this brain area is responsive to low-level stimulus-driven features or high-level representational processes. We used scrambled shape-from-motion displays to disambiguate the presence of contours from figure-ground segregation and to measure the strength of the binding process for shapes without contours. We found persisting brain activation in the LOC for scrambled displays after the motion stopped indicating that this brain area subserves and maintains figure-ground segregation processes, a low-level function in the object processing hierarchy. In our second experiment, we found that the figure-ground segregation process has some form of spatial constancy indicating top-down influences. The persisting activation after the motion stops suggests an intermediate role in object recognition processes for this brain area and might provide further evidence for the idea that the lateral occipital complex subserves mnemonic functions mediating between iconic and short-term memory.

  20. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder.

    PubMed

    Shaw, Philip; Lalonde, Francois; Lepage, Claude; Rabin, Cara; Eckstrand, Kristen; Sharp, Wendy; Greenstein, Deanna; Evans, Alan; Giedd, J N; Rapoport, Judith

    2009-08-01

    Just as typical development of anatomical asymmetries in the human brain has been linked with normal lateralization of motor and cognitive functions, disruption of asymmetry has been implicated in the pathogenesis of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). No study has examined the development of cortical asymmetry using longitudinal neuroanatomical data. To delineate the development of cortical asymmetry in children with and without ADHD. Longitudinal study. Government Clinical Research Institute. A total of 218 children with ADHD and 358 typically developing children, from whom 1133 neuroanatomical magnetic resonance images were acquired prospectively. Cortical thickness was estimated at 40 962 homologous points in the left and right hemispheres, and the trajectory of change in asymmetry was defined using mixed-model regression. In right-handed typically developing individuals, a mean (SE) increase in the relative thickness of the right orbitofrontal and inferior frontal cortex with age of 0.011 (0.0018) mm per year (t(337) = 6.2, P < .001) was balanced against a relative left-hemispheric increase in the occipital cortical regions of 0.013 (0.0015) mm per year (t(337) = 8.1, P < .001). Age-related change in asymmetry in non-right-handed typically developing individuals was less extensive and was localized to different cortical regions. In ADHD, the posterior component of this evolving asymmetry was intact, but the prefrontal component was lost. These findings explain the way that, in typical development, the increased dimensions of the right frontal and left occipital cortical regions emerge in adulthood from the reversed pattern of childhood cortical asymmetries. Loss of the prefrontal component of this evolving asymmetry in ADHD is compatible with disruption of prefrontal function in the disorder and demonstrates the way that disruption of typical processes of asymmetry can inform our understanding of

  1. Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas

    PubMed Central

    Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.

    2015-01-01

    During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839

  2. Human Cortical Activity Evoked by the Assignment of Authenticity when Viewing Works of Art

    PubMed Central

    Huang, Mengfei; Bridge, Holly; Kemp, Martin J.; Parker, Andrew J.

    2011-01-01

    The expertise of others is a major social influence on our everyday decisions and actions. Many viewers of art, whether expert or naïve, are convinced that the full esthetic appreciation of an artwork depends upon the assurance that the work is genuine rather than fake. Rembrandt portraits provide an interesting image set for testing this idea, as there is a large number of them and recent scholarship has determined that quite a few fakes and copies exist. Use of this image set allowed us to separate the brain’s response to images of genuine and fake pictures from the brain’s response to external advice about the authenticity of the paintings. Using functional magnetic resonance imaging, viewing of artworks assigned as “copy,” rather than “authentic,” evoked stronger responses in frontopolar cortex (FPC), and right precuneus, regardless of whether the portrait was actually genuine. Advice about authenticity had no direct effect on the cortical visual areas responsive to the paintings, but there was a significant psycho-physiological interaction between the FPC and the lateral occipital area, which suggests that these visual areas may be modulated by FPC. We propose that the activation of brain networks rather than a single cortical area in this paradigm supports the art scholars’ view that esthetic judgments are multi-faceted and multi-dimensional in nature. PMID:22164139

  3. Alterations of the occipital lobe in schizophrenia

    PubMed Central

    Tohid, Hassaan; Faizan, Muhammad; Faizan, Uzma

    2015-01-01

    The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia. PMID:26166588

  4. Idiopathic hypertrophic pachymeningitis presenting with occipital neuralgia.

    PubMed

    Auboire, Laurent; Boutemy, Jonathan; Constans, Jean Marc; Le Gallou, Thomas; Busson, Philippe; Bienvenu, Boris

    2015-03-01

    Although occipital neuralgia is usually caused by degenerative arthropathy, nearly 20 other aetiologies may lead to this condition. We present the first case report of hypertrophic pachymeningitis revealed by isolated occipital neuralgia. Idiopathic hypertrophic pachymeningitis is a plausible cause of occipital neuralgia and may present without cranial-nerve palsy. There is no consensus on the treatment for idiopathic hypertrophic pachymeningitis, but the usual approach is to start corticotherapy and then to add immunosuppressants. When occipital neuralgia is not clinically isolated or when a first-line treatment fails, another disease diagnosis should be considered. However, the cost effectiveness of extended investigations needs to be considered.

  5. Occipital peripheral nerve stimulation in the management of chronic intractable occipital neuralgia in a patient with neurofibromatosis type 1: a case report.

    PubMed

    Skaribas, Ioannis; Calvillo, Octavio; Delikanaki-Skaribas, Evangelia

    2011-05-10

    Occipital peripheral nerve stimulation is an interventional pain management therapy that provides beneficial results in the treatment of refractory chronic occipital neuralgia. Herein we present a first-of-its-kind case study of a patient with neurofibromatosis type 1 and bilateral occipital neuralgia treated with occipital peripheral nerve stimulation. A 42-year-old Caucasian woman presented with bilateral occipital neuralgia refractory to various conventional treatments, and she was referred for possible treatment with occipital peripheral nerve stimulation. She was found to be a suitable candidate for the procedure, and she underwent implantation of two octapolar stimulating leads and a rechargeable, programmable, implantable generator. The intensity, severity, and frequency of her symptoms resolved by more than 80%, but an infection developed at the implantation site two months after the procedure that required explantation and reimplantation of new stimulating leads three months later. To date she continues to experience symptom resolution of more than 60%. These results demonstrate the significance of peripheral nerve stimulation in the management of refractory occipital neuralgias in patients with neurofibromatosis type 1 and the possible role of neurofibromata in the development of occipital neuralgia in these patients.

  6. Occipital peripheral nerve stimulation in the management of chronic intractable occipital neuralgia in a patient with neurofibromatosis type 1: a case report

    PubMed Central

    2011-01-01

    Introduction Occipital peripheral nerve stimulation is an interventional pain management therapy that provides beneficial results in the treatment of refractory chronic occipital neuralgia. Herein we present a first-of-its-kind case study of a patient with neurofibromatosis type 1 and bilateral occipital neuralgia treated with occipital peripheral nerve stimulation. Case presentation A 42-year-old Caucasian woman presented with bilateral occipital neuralgia refractory to various conventional treatments, and she was referred for possible treatment with occipital peripheral nerve stimulation. She was found to be a suitable candidate for the procedure, and she underwent implantation of two octapolar stimulating leads and a rechargeable, programmable, implantable generator. The intensity, severity, and frequency of her symptoms resolved by more than 80%, but an infection developed at the implantation site two months after the procedure that required explantation and reimplantation of new stimulating leads three months later. To date she continues to experience symptom resolution of more than 60%. Conclusion These results demonstrate the significance of peripheral nerve stimulation in the management of refractory occipital neuralgias in patients with neurofibromatosis type 1 and the possible role of neurofibromata in the development of occipital neuralgia in these patients. PMID:21569290

  7. Locating the cortical bottleneck for slow reading in peripheral vision

    PubMed Central

    Yu, Deyue; Jiang, Yi; Legge, Gordon E.; He, Sheng

    2015-01-01

    Yu, Legge, Park, Gage, and Chung (2010) suggested that the neural bottleneck for slow peripheral reading is located in nonretinotopic areas. We investigated the potential rate-limiting neural site for peripheral reading using fMRI, and contrasted peripheral reading with recognition of peripherally presented line drawings of common objects. We measured the BOLD responses to both text (three-letter words/nonwords) and line-drawing objects presented either in foveal or peripheral vision (10° lower right visual field) at three presentation rates (2, 4, and 8/second). The statistically significant interaction effect of visual field × presentation rate on the BOLD response for text but not for line drawings provides evidence for distinctive processing of peripheral text. This pattern of results was obtained in all five regions of interest (ROIs). At the early retinotopic cortical areas, the BOLD signal slightly increased with increasing presentation rate for foveal text, and remained fairly constant for peripheral text. In the Occipital Word-Responsive Area (OWRA), Visual Word Form Area (VWFA), and object sensitive areas (LO and PHA), the BOLD responses to text decreased with increasing presentation rate for peripheral but not foveal presentation. In contrast, there was no rate-dependent reduction in BOLD response for line-drawing objects in all the ROIs for either foveal or peripheral presentation. Only peripherally presented text showed a distinctive rate-dependence pattern. Although it is possible that the differentiation starts to emerge at the early retinotopic cortical representation, the neural bottleneck for slower reading of peripherally presented text may be a special property of peripheral text processing in object category selective cortex. PMID:26237299

  8. Gamma-oscillations modulated by picture naming and word reading: Intracranial recording in epileptic patients

    PubMed Central

    Wu, Helen C.; Nagasawa, Tetsuro; Brown, Erik C.; Juhasz, Csaba; Rothermel, Robert; Hoechstetter, Karsten; Shah, Aashit; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi

    2011-01-01

    Objective We measured cortical gamma-oscillations in response to visual-language tasks consisting of picture naming and word reading in an effort to better understand human visual-language pathways. Methods We studied six patients with focal epilepsy who underwent extraoperative electrocorticography (ECoG) recording. Patients were asked to overtly name images presented sequentially in the picture naming task and to overtly read written words in the reading task. Results Both tasks commonly elicited gamma-augmentation (maximally at 80–100 Hz) on ECoG in the occipital, inferior-occipital-temporal and inferior-Rolandic areas, bilaterally. Picture naming, compared to reading task, elicited greater gamma-augmentation in portions of pre-motor areas as well as occipital and inferior-occipital-temporal areas, bilaterally. In contrast, word reading elicited greater gamma-augmentation in portions of bilateral occipital, left occipital-temporal and left superior-posterior-parietal areas. Gamma-attenuation was elicited by both tasks in portions of posterior cingulate and ventral premotor-prefrontal areas bilaterally. The number of letters in a presented word was positively correlated to the degree of gamma-augmentation in the medial occipital areas. Conclusions Gamma-augmentation measured on ECoG identified cortical areas commonly and differentially involved in picture naming and reading tasks. Longer words may activate the primary visual cortex for the more peripheral field. Significance The present study increases our understanding of the visual-language pathways. PMID:21498109

  9. Head-to-Head Comparison of Two Popular Cortical Thickness Extraction Algorithms: A Cross-Sectional and Longitudinal Study

    PubMed Central

    Redolfi, Alberto; Manset, David; Barkhof, Frederik; Wahlund, Lars-Olof; Glatard, Tristan; Mangin, Jean-François; Frisoni, Giovanni B.

    2015-01-01

    Background and Purpose The measurement of cortical shrinkage is a candidate marker of disease progression in Alzheimer’s. This study evaluated the performance of two pipelines: Civet-CLASP (v1.1.9) and Freesurfer (v5.3.0). Methods Images from 185 ADNI1 cases (69 elderly controls (CTR), 37 stable MCI (sMCI), 27 progressive MCI (pMCI), and 52 Alzheimer (AD) patients) scanned at baseline, month 12, and month 24 were processed using the two pipelines and two interconnected e-infrastructures: neuGRID (https://neugrid4you.eu) and VIP (http://vip.creatis.insa-lyon.fr). The vertex-by-vertex cross-algorithm comparison was made possible applying the 3D gradient vector flow (GVF) and closest point search (CPS) techniques. Results The cortical thickness measured with Freesurfer was systematically lower by one third if compared to Civet’s. Cross-sectionally, Freesurfer’s effect size was significantly different in the posterior division of the temporal fusiform cortex. Both pipelines were weakly or mildly correlated with the Mini Mental State Examination score (MMSE) and the hippocampal volumetry. Civet differed significantly from Freesurfer in large frontal, parietal, temporal and occipital regions (p<0.05). In a discriminant analysis with cortical ROIs having effect size larger than 0.8, both pipelines gave no significant differences in area under the curve (AUC). Longitudinally, effect sizes were not significantly different in any of the 28 ROIs tested. Both pipelines weakly correlated with MMSE decay, showing no significant differences. Freesurfer mildly correlated with hippocampal thinning rate and differed in the supramarginal gyrus, temporal gyrus, and in the lateral occipital cortex compared to Civet (p<0.05). In a discriminant analysis with ROIs having effect size larger than 0.6, both pipelines yielded no significant differences in the AUC. Conclusions Civet appears slightly more sensitive to the typical AD atrophic pattern at the MCI stage, but both pipelines

  10. Unilateral occipital nerve stimulation for bilateral occipital neuralgia: a case report and literature review.

    PubMed

    Liu, Aijun; Jiao, Yongcheng; Ji, Huijun; Zhang, Zhiwen

    2017-01-01

    The aim of this study is to present a case of successful relief of bilateral occipital neuralgia (ON) using unilateral occipital nerve stimulation (ONS) and to discuss the possible underlying mechanisms. We present the case of a 59-year-old female patient with severe bilateral ON treated with unilateral ONS. We systematically reviewed previous studies of ONS for ON, discussing the possible mechanisms of ONS in the relief of ON. The patient reported complete pain relief after consistent unilateral ONS during the follow-up period. The underlying mechanisms may be linked to the relationship between pain and several brain regions, including the pons, midbrain, and periaqueductal gray. ONS is an effective and safe option for treating ON. Future studies will be required to clarify the mechanisms by which unilateral occipital stimulation provided relief for bilateral neuralgia in this case.

  11. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations.

    PubMed

    Vassal, François; Schneider, Fabien; Boutet, Claire; Jean, Betty; Sontheimer, Anna; Lemaire, Jean-Jacques

    2016-01-01

    Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM) connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI) fiber tracking (FT) and language functional magnetic resonance imaging (fMRI) in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF), superior longitudinal fascicle (SLF), uncinate fascicle (UF), temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF), middle longitudinal fascicle (MdLF), frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy) and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be related to

  12. Atypical Cortical Gyrification in Adolescents with Histories of Heavy Prenatal Alcohol Exposure

    PubMed Central

    Infante, M. Alejandra; Moore, Eileen M.; Bischoff-Grethe, Amanda; Migliorini, Robyn; Mattson, Sarah N.; Riley, Edward P.

    2015-01-01

    Prenatal alcohol exposure can adversely affect brain development, although little is known about the effects of prenatal alcohol exposure on gyrification. Gyrification reflects cortical folding complexity and is a process by which the surface of the brain creates sulci and gyri. Prior studies have shown that prenatal alcohol exposure is associated with reduced gyrification in childhood, but no studies have examined adolescents. Subjects (12–16y) comprised two age-equivalent groups: 30 adolescents with histories of heavy prenatal alcohol exposure (AE) and 19 non-exposed controls (CON). A T1-weighted image was obtained for all participants. Local gyrification index (LGI) was estimated using FreeSurfer. General linear models were used to determine between group differences in LGI controlling for age and sex. Age-by-group interactions were also investigated while controlling for sex. The AE group displayed reduced LGI relative to CON in the bilateral superior parietal region, right postcentral region, and left precentral and lateral occipital regions (ps < .001). Significant age-by-group interactions were observed in the right precentral and lateral occipital regions, and in the left pars opercularis and inferior parietal regions (ps < .01). The AE group showed age-related reductions in gyrification in all regions whereas the CON group showed increased gyrification with age in the lateral occipital region only. While cross-sectional, the age-related reduction in gyrification observed in the AE group suggests alterations in cortical development throughout adolescence and provides further insight into the pathophysiology and brain maturation of adolescents prenatally exposed to alcohol. PMID:26275919

  13. A case of occipital neuralgia in the greater and lesser occipital nerves treated with neurectomy by using transcranial Doppler sonography: technical aspects.

    PubMed

    Jung, Sang Jin; Moon, Seong Keun; Kim, Tae Young; Eom, Ki Seong

    2011-03-01

    Occipital neuralgia is usually defined as paroxysmal stabbing pain in the greater or lesser occipital nerve (GON or LON) distribution. In occipital neuralgia patients, surgical considerations are carefully taken into account if medical management is ineffective. However, identification of the occipital artery by palpation in patients with thick necks or small occipital arteries can be technically difficult. Therefore, we established a new technique using transcranial Doppler (TCD) sonography for more accurate and rapid identification. The patient was a 64-year-old man who had undergone C1-C3 screw fixation and presented with intractable stabbing pain in the bilateral GON and LON distributions. In cases in which pain management was performed using medication, physical therapy, nerve block, or radiofrequency thermocoagulation, substantial pain relief was not consistently achieved, and recurrence of pain was reported. Therefore, we performed occipital neurectomy of the bilateral GON and LON by using TCD sonography, which helped detect the greater occipital artery easily. After the operation, the patient's headache disappeared gradually, although he had discontinued all medication except antidepressants. We believe that this new technique of occipital neurectomy via a small skin incision performed using TCD sonography is easy and reliable, has a short operative time, and provides rapid pain relief.

  14. A Case of Occipital Neuralgia in the Greater and Lesser Occipital Nerves Treated with Neurectomy by Using Transcranial Doppler Sonography: Technical Aspects

    PubMed Central

    Jung, Sang Jin; Moon, Seong Keun; Kim, Tae Young

    2011-01-01

    Occipital neuralgia is usually defined as paroxysmal stabbing pain in the greater or lesser occipital nerve (GON or LON) distribution. In occipital neuralgia patients, surgical considerations are carefully taken into account if medical management is ineffective. However, identification of the occipital artery by palpation in patients with thick necks or small occipital arteries can be technically difficult. Therefore, we established a new technique using transcranial Doppler (TCD) sonography for more accurate and rapid identification. The patient was a 64-year-old man who had undergone C1-C3 screw fixation and presented with intractable stabbing pain in the bilateral GON and LON distributions. In cases in which pain management was performed using medication, physical therapy, nerve block, or radiofrequency thermocoagulation, substantial pain relief was not consistently achieved, and recurrence of pain was reported. Therefore, we performed occipital neurectomy of the bilateral GON and LON by using TCD sonography, which helped detect the greater occipital artery easily. After the operation, the patient's headache disappeared gradually, although he had discontinued all medication except antidepressants. We believe that this new technique of occipital neurectomy via a small skin incision performed using TCD sonography is easy and reliable, has a short operative time, and provides rapid pain relief. PMID:21390179

  15. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume.

    PubMed

    Vijayakumar, Nandita; Allen, Nicholas B; Youssef, George; Dennison, Meg; Yücel, Murat; Simmons, Julian G; Whittle, Sarah

    2016-06-01

    What we know about cortical development during adolescence largely stems from analyses of cross-sectional or cohort-sequential samples, with few studies investigating brain development using a longitudinal design. Further, cortical volume is a product of two evolutionarily and genetically distinct features of the cortex - thickness and surface area, and few studies have investigated development of these three characteristics within the same sample. The current study examined maturation of cortical thickness, surface area and volume during adolescence, as well as sex differences in development, using a mixed longitudinal design. 192 MRI scans were obtained from 90 healthy (i.e., free from lifetime psychopathology) adolescents (11-20 years) at three time points (with different MRI scanners used at time 1 compared to 2 and 3). Developmental trajectories were estimated using linear mixed models. Non-linear increases were present across most of the cortex for surface area. In comparison, thickness and volume were both characterised by a combination of non-linear decreasing and increasing trajectories. While sex differences in volume and surface area were observed across time, no differences in thickness were identified. Furthermore, few regions exhibited sex differences in the cortical development. Our findings clearly illustrate that volume is a product of surface area and thickness, with each exhibiting differential patterns of development during adolescence, particularly in regions known to contribute to the development of social-cognition and behavioral regulation. These findings suggest that thickness and surface area may be driven by different underlying mechanisms, with each measure potentially providing independent information about brain development. Hum Brain Mapp 37:2027-2038, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Time-dependent in-vivo effects of interleukin-2 on neurotransmitters in various cortices: relationships with depressive-related and anxiety-like behaviour.

    PubMed

    Karrenbauer, B D; Müller, C P; Ho, Y J; Spanagel, R; Huston, J P; Schwarting, R K W; Pawlak, C R

    2011-08-15

    We investigated the impact of systemically injected IL-2 (2.5 μg/kg, i.p.) on serotonergic and dopaminergic neurotransmission in various cortical areas by in-vivo microdialysis. IL-2 lastingly reduced extracellular 5-HT levels in the medial prefrontal (-75%), occipital (-70%), and temporal cortices (-45%), whereas dopamine was only moderately reduced in the medial prefrontal cortex. Based on the serotonergic time profile, we conducted further experiments to test for acute and delayed (2 h post injection) depressive-related effects of systemic IL-2 (0-5.0 μg/kg) in a forced swim test and delayed effects on anxiety-like behaviour in the elevated plus-maze. IL-2 had dose-dependent effects on depressive-related behaviour after delayed but not acute testing, but no effects on anxiety-like behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Helmet-Induced Occipital Neuralgia in a Military Aviator.

    PubMed

    Chalela, Julio A

    2018-04-01

    Headaches among military personnel are very common and headgear wear is a frequently identified culprit. Helmet wear may cause migrainous headaches, external compression headache, other primary cranial neuralgias, and occipital neuralgia. The clinical features and the response to treatment allow distinction between the different types of headaches. Headaches among aviators are particularly concerning as they may act as distractors while flying and the treatment options are often incompatible with flying status. A 24-yr-old door gunner presented with suboccipital pain associated with the wear of his helmet. He described the pain as a paroxysmal stabbing sensation coming in waves. The physical exam and history supported the diagnosis of primary occipital neuralgia. Systemic pharmacological options were discussed with the soldier, but rejected due to his need to remain in flying status. An occipital nerve block was performed with good clinical results, supporting the diagnosis of occipital neuralgia and allowing him to continue as mission qualified. Occipital neuralgia can be induced by helmet wear in military personnel. Occipital nerve block can be performed in the deployed setting, allowing the service member to remain mission capable and sparing him/her from systemic side effects.Chalela JA. Helmet-induced occipital neuralgia in a military aviator. Aerosp Med Hum Perform. 2018; 89(4):409-410.

  18. Unilateral occipital nerve stimulation for bilateral occipital neuralgia: a case report and literature review

    PubMed Central

    Liu, Aijun; Jiao, Yongcheng; Ji, Huijun; Zhang, Zhiwen

    2017-01-01

    Objectives The aim of this study is to present a case of successful relief of bilateral occipital neuralgia (ON) using unilateral occipital nerve stimulation (ONS) and to discuss the possible underlying mechanisms. Materials and methods We present the case of a 59-year-old female patient with severe bilateral ON treated with unilateral ONS. We systematically reviewed previous studies of ONS for ON, discussing the possible mechanisms of ONS in the relief of ON. Results The patient reported complete pain relief after consistent unilateral ONS during the follow-up period. The underlying mechanisms may be linked to the relationship between pain and several brain regions, including the pons, midbrain, and periaqueductal gray. Conclusion ONS is an effective and safe option for treating ON. Future studies will be required to clarify the mechanisms by which unilateral occipital stimulation provided relief for bilateral neuralgia in this case. PMID:28176938

  19. What Is Actually Affected by the Scrambling of Objects When Localizing the Lateral Occipital Complex?

    PubMed

    Margalit, Eshed; Biederman, Irving; Tjan, Bosco S; Shah, Manan P

    2017-09-01

    The lateral occipital complex (LOC), the cortical region critical for shape perception, is localized with fMRI by its greater BOLD activity when viewing intact objects compared with their scrambled versions (resembling texture). Despite hundreds of studies investigating LOC, what the LOC localizer accomplishes-beyond distinguishing shape from texture-has never been resolved. By independently scattering the intact parts of objects, the axis structure defining the relations between parts was no longer defined. This led to a diminished BOLD response, despite the increase in the number of independent entities (the parts) produced by the scattering, thus indicating that LOC specifies interpart relations, in addition to specifying the shape of the parts themselves. LOC's sensitivity to relations is not confined to those between parts but is also readily apparent between objects, rendering it-and not subsequent "place" areas-as the critical region for the representation of scenes. Moreover, that these effects are witnessed with novel as well as familiar intact objects and scenes suggests that the relations are computed on the fly, rather than being retrieved from memory.

  20. The cortical generators of P3a and P3b: a LORETA study.

    PubMed

    Volpe, U; Mucci, A; Bucci, P; Merlotti, E; Galderisi, S; Maj, M

    2007-07-12

    The P3 is probably the most well known component of the brain event-related potentials (ERPs). Using a three-tone oddball paradigm two different components can be identified: the P3b elicited by rare target stimuli and the P3a elicited by the presentation of rare non-target stimuli. Although the two components may partially overlap in time and space, they have a different scalp topography suggesting different neural generators. The present study is aimed at defining the scalp topography of the two P3 components by means of reference-independent methods and identifying their electrical cortical generators by using the low-resolution electromagnetic tomography (LORETA). ERPs were recorded during a three-tone oddball task in 32 healthy, right-handed university students. The scalp topography of the P3 components was assessed by means of the brain electrical microstates technique and their cortical sources were evaluated by LORETA. P3a and P3b showed different scalp topography and cortical sources. The P3a electrical field had a more anterior distribution as compared to the P3b and its generators were localized in cingulate, frontal and right parietal areas. P3b sources included bilateral frontal, parietal, limbic, cingulate and temporo-occipital regions. Differences in scalp topography and cortical sources suggest that the two components reflect different neural processes. Our findings on cortical generators are in line with the hypothesis that P3a reflects the automatic allocation of attention, while P3b is related to the effortful processing of task-relevant events.

  1. Unilateral Eye Blinking Arising From the Ictal Ipsilateral Occipital Area.

    PubMed

    Falsaperla, Raffaele; Perciavalle, Valentina; Pavone, Piero; Praticò, Andrea Domenico; Elia, Maurizio; Ruggieri, Martino; Caraballo, Roberto; Striano, Pasquale

    2016-07-01

    We report on an 18-month-old boy with unilateral left eye blinking as a single ictal manifestation without facial twitching. The clinical onset of this phenomenon was first recorded (as an occasional event) at age 3 months, and it was overlooked. By age 6 months, the child's blinking increased to almost daily occurrence in clusters: during blinking the infant showed intact awareness and occasional jerks in the upper limbs and right leg. A video-electroencephalography (video-EEG) documented clinical correlation with a focal pattern arising from the left occipital region, and brain magnetic resonance imaging (MRI) revealed severe brain damage, consisting in poroencephalic hollows and increased spaces in the convexities involving a large area of the left cerebral hemisphere. The boy was prescribed sodium valproate (30 mg/kg/d), resulting in drastic reduction of his clinical seizures. Follow-up to his current age documented good general status, with persistent partial right hemilateral seizures. The blinking progressively disappeared, and is no longer recorded. The pathogenic hypotheses of the unilateral ictal blinking include involvement of the ipsilateral cerebral hemisphere and/or the cerebellar pathways. Review of previous reports of unilateral eye blinking, arising from the ictal ipsilateral brain, revealed that different damaged regions may give rise to blinking ictal phenomena, likely via the trigeminal fibres innervating the subdural intracranial structures and the pial vessels in the ipsilateral affected brain. The eye blinking in the present child represents a further example of an ictal phenomenon, which is predictive of the damaged brain region. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  2. Cortico-Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine.

    PubMed

    Hodkinson, Duncan J; Veggeberg, Rosanna; Kucyi, Aaron; van Dijk, Koene R A; Wilcox, Sophie L; Scrivani, Steven J; Burstein, Rami; Becerra, Lino; Borsook, David

    2016-01-01

    Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino-vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico-cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients ( N = 40) and matched healthy control subjects ( N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico-cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms.

  3. Peripheral neurostimulation for control of intractable occipital neuralgia.

    PubMed

    Weiner, R L; Reed, K L

    1999-07-01

    Objective. To present a novel approach for treatment of intractable occipital neuralgia using percutaneous peripheral nerve electrostimulation techniques. Methods. Thirteen patients underwent 17 implant procedures for medically refractory occipital neuralgia. A subcutaneous electrode placed transversely at the level of C1 across the base of the occipital nerve trunk produced paresthesias and pain relief covering the regions of occipital nerve pain Results. With follow-up ranging from 1-½ to 6 years, 12 patients continue to report good to excellent response with greater than 50% pain control and requiring little or no additional medications. The 13th patient (first in the series) was subsequently explanted following symptom resolution. Conclusions. In patients with medically intractable occipital neuralgia, peripheral nerve electrostimulation subcutaneously at the level of C1 appears to be a reasonable alternative to more invasive surgical procedures following failure of more conservative therapies.

  4. Cooled radiofrequency ablation for bilateral greater occipital neuralgia.

    PubMed

    Vu, Tiffany; Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy.

  5. Cooled Radiofrequency Ablation for Bilateral Greater Occipital Neuralgia

    PubMed Central

    Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy. PMID:24716017

  6. Context matters: Anterior and posterior cortical midline responses to sad movie scenes.

    PubMed

    Schlochtermeier, L H; Pehrs, C; Bakels, J-H; Jacobs, A M; Kappelhoff, H; Kuchinke, L

    2017-04-15

    Narrative movies can create powerful emotional responses. While recent research has advanced the understanding of neural networks involved in immersive movie viewing, their modulation within a movie's dynamic context remains inconclusive. In this study, 24 healthy participants passively watched sad scene climaxes taken from 24 romantic comedies, while brain activity was measured using functional magnetic resonance (fMRI). To study effects of context, the sad scene climaxes were presented with either coherent scene context, replaced non-coherent context or without context. In a second viewing, the same clips were rated continuously for sadness. The ratings varied over time with peaks of experienced sadness within the assumed climax intervals. Activations in anterior and posterior cortical midline regions increased if presented with both coherent and replaced context, while activation in the temporal gyri decreased. This difference was more pronounced for the coherent context condition. Psycho-Physiological interactions (PPI) analyses showed a context-dependent coupling of midline regions with occipital visual and sub-cortical reward regions. Our results demonstrate the pivotal role of midline structures and their interaction with perceptual and reward areas in processing contextually embedded socio-emotional information in movies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Occipital Neuralgia Diagnosis and Treatment: The Role of Ultrasound.

    PubMed

    Narouze, Samer

    2016-04-01

    Occipital neuralgia is a form of neuropathic type of pain in the distribution of the greater, lesser, or third occipital nerves. Patients with intractable occipital neuralgia do not respond well to conservative treatment modalities. This group of patients represents a significant therapeutic challenge and may require interventional or invasive therapeutic approaches. Occipital neuralgia frequently occurs as a result of nerve entrapment or irritation by a tight muscle or vascular structure, or nerve trauma during whiplash injury. Although the entrapment theory is most commonly accepted, it lacks strong clinical evidence to support it. Accordingly, the available interventional approaches have been targeting the accessible part of the occipital nerve rather than the entrapped part. Bedside sonography is an excellent imaging modality for soft tissue structures. Ultrasound not only allows distinguishing normal from abnormal entrapped occipital nerves, it can identify the level and the cause of entrapment as well. Ultrasound guidance allows precise occipital nerve blocks and interventions at the level of the "specific" entrapment location rather than into the site of "presumed" entrapment. © 2016 American Headache Society.

  8. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality.

    PubMed

    Meyerhoff, Dieter J; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C

    2014-05-01

    To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. VA Medical Center Research Service, Psychiatry and Radiology. Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD-), recruited from United States Army reservists, Army National Guard, and mental health clinics. None. 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD-. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches.

  9. Cortical and subcortical mechanisms of brain-machine interfaces.

    PubMed

    Marchesotti, Silvia; Martuzzi, Roberto; Schurger, Aaron; Blefari, Maria Laura; Del Millán, José R; Bleuler, Hannes; Blanke, Olaf

    2017-06-01

    Technical advances in the field of Brain-Machine Interfaces (BMIs) enable users to control a variety of external devices such as robotic arms, wheelchairs, virtual entities and communication systems through the decoding of brain signals in real time. Most BMI systems sample activity from restricted brain regions, typically the motor and premotor cortex, with limited spatial resolution. Despite the growing number of applications, the cortical and subcortical systems involved in BMI control are currently unknown at the whole-brain level. Here, we provide a comprehensive and detailed report of the areas active during on-line BMI control. We recorded functional magnetic resonance imaging (fMRI) data while participants controlled an EEG-based BMI inside the scanner. We identified the regions activated during BMI control and how they overlap with those involved in motor imagery (without any BMI control). In addition, we investigated which regions reflect the subjective sense of controlling a BMI, the sense of agency for BMI-actions. Our data revealed an extended cortical-subcortical network involved in operating a motor-imagery BMI. This includes not only sensorimotor regions but also the posterior parietal cortex, the insula and the lateral occipital cortex. Interestingly, the basal ganglia and the anterior cingulate cortex were involved in the subjective sense of controlling the BMI. These results inform basic neuroscience by showing that the mechanisms of BMI control extend beyond sensorimotor cortices. This knowledge may be useful for the development of BMIs that offer a more natural and embodied feeling of control for the user. Hum Brain Mapp 38:2971-2989, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Cortical thinning in type 2 diabetes mellitus and recovering effects of insulin therapy.

    PubMed

    Chen, Zhiye; Sun, Jie; Yang, Yang; Lou, Xin; Wang, Yulin; Wang, Yan; Ma, Lin

    2015-02-01

    The purpose of this study was to explore the brain structural changes in type 2 diabetes and the effect of insulin on the brain using a surface-based cortical thickness analysis. High-resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI were obtained from 11 patients with type 2 diabetes before and after insulin therapy. The cortical thickness over the entire brain was calculated, and cross-sectional and longitudinal surface-based cortical thickness analyses were also performed. Regional cortical thinning was demonstrated in the middle temporal gyrus, posterior cingulate gyrus, precuneus, right lateral occipital gyrus and entorhinal cortex bilaterally for patients with type 2 diabetes mellitus compared with normal controls. Cortical thickening was seen in the middle temporal gyrus, entorhinal cortex and left inferior temporal gyrus bilaterally after patients underwent 1 year of insulin therapy. These findings suggest that insulin therapy may have recovering effects on the brain cortex in type 2 diabetes mellitus. The precise mechanism should be investigated further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    PubMed

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Atlantoaxial Chordoma in Two Patients with Occipital Neuralgia and Cervicalgia.

    PubMed

    Kim, Won Seop; Park, Jong Taek; Lee, Young Bok; Park, Woo Young

    2014-09-01

    Chordoma arises from cellular remnants of the notochord. It is the most common primary malignancy of the spine in adults. Approximately 50% of chordomas arise from the sacrococcygeal area with other areas of the spine giving rise to another 15% of chordomas. Following complete resection, patients can expect a 5-year survival rate of 85%. Chordoma has a recurrence rate of 40%, which leads to a less favorable prognosis. Here, we report two cases of chordoma presenting with occipital neuralgia and cervicalgia. The first patient presented with a C1-C2 chordoma. He rejected surgical intervention and ultimately died of respiratory failure. The second patient had an atlantoaxial chordoma and underwent surgery because of continued occipital neuralgia and cervicalgia despite nerve block. This patient has remained symptom-free since his operation. The presented cases show that the patients' willingness to participate in treatment can lead to appropriate and aggressive management of cancer pain, resulting in better outcomes in cancer treatment.

  13. Atlantoaxial Chordoma in Two Patients with Occipital Neuralgia and Cervicalgia

    PubMed Central

    Kim, Won Seop; Park, Jong Taek; Lee, Young Bok; Park, Woo Young

    2014-01-01

    Chordoma arises from cellular remnants of the notochord. It is the most common primary malignancy of the spine in adults. Approximately 50% of chordomas arise from the sacrococcygeal area with other areas of the spine giving rise to another 15% of chordomas. Following complete resection, patients can expect a 5-year survival rate of 85%. Chordoma has a recurrence rate of 40%, which leads to a less favorable prognosis. Here, we report two cases of chordoma presenting with occipital neuralgia and cervicalgia. The first patient presented with a C1–C2 chordoma. He rejected surgical intervention and ultimately died of respiratory failure. The second patient had an atlantoaxial chordoma and underwent surgery because of continued occipital neuralgia and cervicalgia despite nerve block. This patient has remained symptom-free since his operation. The presented cases show that the patients’ willingness to participate in treatment can lead to appropriate and aggressive management of cancer pain, resulting in better outcomes in cancer treatment. PMID:26064862

  14. γ-oscillations modulated by picture naming and word reading: intracranial recording in epileptic patients.

    PubMed

    Wu, Helen C; Nagasawa, Tetsuro; Brown, Erik C; Juhasz, Csaba; Rothermel, Robert; Hoechstetter, Karsten; Shah, Aashit; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi

    2011-10-01

    We measured cortical gamma-oscillations in response to visual-language tasks consisting of picture naming and word reading in an effort to better understand human visual-language pathways. We studied six patients with focal epilepsy who underwent extraoperative electrocorticography (ECoG) recording. Patients were asked to overtly name images presented sequentially in the picture naming task and to overtly read written words in the reading task. Both tasks commonly elicited gamma-augmentation (maximally at 80-100 Hz) on ECoG in the occipital, inferior-occipital-temporal and inferior-Rolandic areas, bilaterally. Picture naming, compared to reading task, elicited greater gamma-augmentation in portions of pre-motor areas as well as occipital and inferior-occipital-temporal areas, bilaterally. In contrast, word reading elicited greater gamma-augmentation in portions of bilateral occipital, left occipital-temporal and left superior-posterior-parietal areas. Gamma-attenuation was elicited by both tasks in portions of posterior cingulate and ventral premotor-prefrontal areas bilaterally. The number of letters in a presented word was positively correlated to the degree of gamma-augmentation in the medial occipital areas. Gamma-augmentation measured on ECoG identified cortical areas commonly and differentially involved in picture naming and reading tasks. Longer words may activate the primary visual cortex for the more peripheral field. The present study increases our understanding of the visual-language pathways. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Cortical surface area reduction in identification of subjects at high risk for post-traumatic stress disorder: A pilot study.

    PubMed

    Hu, Hao; Sun, Yawen; Su, Shanshan; Wang, Yao; Qiu, Yongming; Yang, Xi; Zhou, Yan; Xiao, Zeping; Wang, Zhen

    2018-01-01

    Victims of motor vehicle accidents often develop post-traumatic stress disorder, which causes significant social function loss. For the difficulty in treating post-traumatic stress disorder, identification of subjects at high risk for post-traumatic stress disorder is essential for providing possible intervention. This paper aims to examine the cortical structural traits related to susceptibility to post-traumatic stress disorder. To address this issue, we performed structural magnetic resonance imaging study in motor vehicle accident victims within 48 hours from the accidents. A total of 70 victims, available for both clinical and magnetic resonance imaging data, enrolled in our study. Upon completion of 6-month follow-up, 29 of them developed post-traumatic stress disorder, while 41 of them didn't. At baseline, voxelwise comparisons of cortical thickness, cortical area and cortical volume were conducted between post-traumatic stress disorder group and trauma control group. As expected, several reduced cortical volume within frontal-temporal loop were observed in post-traumatic stress disorder. For cortical thickness, no between-group differences were observed. There were three clusters in left hemisphere and one cluster in right hemisphere showing decreased cortical area in post-traumatic stress disorder patients, compared with trauma controls. Peak voxels of the three clusters in left hemisphere were separately located in superior parietal cortex, insula and rostral anterior cingulate cortex. The finding of reduced surface area of left insula and left rostral anterior cingulate cortex suggests that shrinked surface area in motor vehicle accident victims could act as potential biomarker of subjects at high risk for post-traumatic stress disorder.

  16. Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation.

    PubMed

    Plow, Ela B; Obretenova, Souzana N; Fregni, Felipe; Pascual-Leone, Alvaro; Merabet, Lotfi B

    2012-01-01

    Vision Restoration Therapy (VRT) aims to improve visual field function by systematically training regions of residual vision associated with the activity of suboptimal firing neurons within the occipital cortex. Transcranial direct current stimulation (tDCS) has been shown to modulate cortical excitability. Assess the possible efficacy of tDCS combined with VRT. The authors conducted a randomized, double-blind, demonstration-of-concept pilot study where participants were assigned to either VRT and tDCS or VRT and sham. The anode was placed over the occipital pole to target both affected and unaffected lobes. One hour training sessions were carried out 3 times per week for 3 months in a laboratory. Outcome measures included objective and subjective changes in visual field, recording of visual fixation performance, and vision-related activities of daily living (ADLs) and quality of life (QOL). Although 12 participants were enrolled, only 8 could be analyzed. The VRT and tDCS group demonstrated significantly greater expansion in visual field and improvement on ADLs compared with the VRT and sham group. Contrary to expectations, subjective perception of visual field change was greater in the VRT and sham group. QOL did not change for either group. The observed changes in visual field were unrelated to compensatory eye movements, as shown with fixation monitoring. The combination of occipital cortical tDCS with visual field rehabilitation appears to enhance visual functional outcomes compared with visual rehabilitation alone. TDCS may enhance inherent mechanisms of plasticity associated with training.

  17. Cortical inhibition deficits in recent onset PTSD after a single prolonged trauma exposure☆

    PubMed Central

    Qi, Shun; Mu, Yunfeng; Liu, Kang; Zhang, Jian; Huan, Yi; Tan, Qingrong; Shi, Mei; Wang, Qiang; Chen, Yunchun; Wang, Huaihai; Wang, Huaning; Zhang, Nanyin; Zhang, Xiaoliang; Xiong, Lize; Yin, Hong

    2013-01-01

    A variety of structural abnormalities have been described in post traumatic stress disorder (PTSD), but only a few studies have focused on cortical thickness alterations in recent onset PTSD. In this study, we adopted surface-based morphometry (SBM), which enables an exploration of global structural changes throughout the brain, in order to compare cortical thickness alterations in recent onset PTSD patients, trauma-exposed subjects but without PTSD, and normal controls. Moreover, we used region of interest (ROI) partial correlation analysis to evaluate the correlation among PTSD symptom severity and significant changes of cortical thickness. The widespread cortical thickness reduction relative to the normal controls were found in bilateral inferior and superior parietal lobes, frontal lobes, hippocampus, cingulate cortex, and right lateral occipital lobes in trauma survivors, whereas cortical thickness was only increased in left calcarine cortex in PTSD group. The average cortical thickness of hippocampus and cingulate cortex decreased by 10.75% and 9.09% in PTSD, 3.48% and 2.86% in non PTSD. We further demonstrated that the cortical thicknesses of bilateral ACC and PCC, superior frontal lobes, and hippocampus are negatively correlated with CAPS scores in all trauma survivors. Our study results suggest that stress widens cortical thinning regions and causes more serious effect in recent onset PTSD than non PTSD. It also shows that the cortical thinning in recent onset PTSD predicts the symptom severity. PMID:24273707

  18. Decreased occipital lobe metabolism by FDG-PET/CT

    PubMed Central

    Solnes, Lilja; Nalluri, Abhinav; Cohen, Jesse; Jones, Krystyna M.; Zan, Elcin; Javadi, Mehrbod S.; Venkatesan, Arun

    2017-01-01

    Objective: To compare brain metabolism patterns on fluorodeoxyglucose (FDG)-PET/CT in anti–NMDA receptor and other definite autoimmune encephalitis (AE) and to assess how these patterns differ between anti–NMDA receptor neurologic disability groups. Methods: Retrospective review of clinical data and initial dedicated brain FDG-PET/CT studies for neurology inpatients with definite AE, per published consensus criteria, treated at a single academic medical center over a 10-year period. Z-score maps of FDG-PET/CT were made using 3-dimensional stereotactic surface projections in comparison to age group–matched controls. Brain region mean Z scores with magnitudes ≥2.00 were interpreted as significant. Comparisons were made between anti–NMDA receptor and other definite AE patients as well as among patients with anti–NMDA receptor based on modified Rankin Scale (mRS) scores at the time of FDG-PET/CT. Results: The medial occipital lobes were markedly hypometabolic in 6 of 8 patients with anti–NMDA receptor encephalitis and as a group (Z = −4.02, interquartile range [IQR] 2.14) relative to those with definite AE (Z = −2.32, 1.46; p = 0.004). Among patients with anti–NMDA receptor encephalitis, the lateral and medial occipital lobes were markedly hypometabolic for patients with mRS 4–5 (lateral occipital lobe Z = −3.69, IQR 1; medial occipital lobe Z = −4.08, 1) compared with those with mRS 0–3 (lateral occipital lobe Z = −0.83, 2; p < 0.0005; medial occipital lobe Z = −1.07, 2; p = 0.001). Conclusions: Marked medial occipital lobe hypometabolism by dedicated brain FDG-PET/CT may serve as an early biomarker for discriminating anti–NMDA receptor encephalitis from other AE. Resolution of lateral and medial occipital hypometabolism may correlate with improved neurologic status in anti–NMDA receptor encephalitis. PMID:29159205

  19. Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area.

    PubMed

    Meyer, Martin; Neff, Patrick; Liem, Franziskus; Kleinjung, Tobias; Weidt, Steffi; Langguth, Berthold; Schecklmann, Martin

    2016-12-01

    Structural neuroimaging techniques have been used to identify cortical and subcortical regions constituting the neuroarchitecture of tinnitus. One recent investigation used voxel-based morphometry (VBM) to analyze a sample of tinnitus patients (TI, n = 257) (Schecklmann et al., 2013). A negative relationship between individual distress and cortical volume (CV) in bilateral auditory regions was observed. However, CV has meanwhile been identified as a neuroanatomical measurement that confounds genetically distinct neuroanatomical traits, namely cortical thickness (CT) and cortical surface area (CSA). We performed a re-analysis of the identical sample using the automated FreeSurfer surface-based morphometry (SBM) approach (Fischl, 2012). First, we replicated the negative correlation between tinnitus distress and bilateral supratemporal gray matter volume. Second, we observed a negative correlation for CSA in the left periauditory cortex and anterior insula. Furthermore, we noted a positive correlation between tinnitus duration and CT in the left periauditory cortex as well as a negative correlation in the subcallosal anterior cingulate, a region collated to the serotonergic circuit and germane to inhibitory functions. In short, the results elucidate differential neuroanatomical alterations of CSA and CT for the two independent tinnitus-related psychological traits distress and duration. Beyond this, the study provides further evidence for the distinction and specific susceptibility of CSA and CT within the context of neuroplasticity of the human brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Interactions between thalamic and cortical rhythms during semantic memory recall in human

    NASA Astrophysics Data System (ADS)

    Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.

    2002-04-01

    Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.

  1. Progressive posterior cortical dysfunction

    PubMed Central

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  2. Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing

    PubMed Central

    Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.

    2013-01-01

    Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860

  3. Anosmia leads to a loss of gray matter in cortical brain areas.

    PubMed

    Bitter, Thomas; Gudziol, Hilmar; Burmeister, Hartmut Peter; Mentzel, Hans-Joachim; Guntinas-Lichius, Orlando; Gaser, Christian

    2010-06-01

    Chronic olfactory disorders, including the complete loss of the sense of smell (anosmia), are common. Using voxel-based morphometry (VBM) in magnetic resonance imaging (MRI), structural changes in the cerebral gray matter (GM) of a group of patients with anosmia compared with a normosmic, healthy control group were evaluated. Patients with anosmia presented a significant decrease of GM volume mainly in the nucleus accumbens with adjacent subcallosal gyrus, in the medial prefrontal cortex (MPC) including the middle and anterior cingulate cortices, and in the dorsolateral prefrontal cortex (dlPFC). These areas are part of the limbic loop of the basal ganglia and except the dlPFC secondary olfactory areas. They also play an important role in many neurological diseases. Furthermore, volume decreases in smaller areas like the piriform cortex, insular cortex, orbitofrontal cortex, hippocampus, parahippocampal gyrus, supramarginal gyrus, and cerebellum could be seen. Longer disease duration was associated with a stronger atrophy in the described areas. No local increases in the GM volume could be observed. A comparison with results of an additionally executed functional MRI study on olfaction in healthy subjects was performed to evaluate the significance of the observed atrophy areas in cerebral olfactory processing. To our knowledge, this is the first study on persisting structural changes in cortical GM volume after complete olfactory loss.

  4. Incomplete cortical reorganization in macular degeneration.

    PubMed

    Liu, Tingting; Cheung, Sing-Hang; Schuchard, Ronald A; Glielmi, Christopher B; Hu, Xiaoping; He, Sheng; Legge, Gordon E

    2010-12-01

    Activity in regions of the visual cortex corresponding to central scotomas in subjects with macular degeneration (MD) is considered evidence for functional reorganization in the brain. Three unresolved issues related to cortical activity in subjects with MD were addressed: Is the cortical response to stimuli presented to the preferred retinal locus (PRL) different from other retinal loci at the same eccentricity? What effect does the role of age of onset and etiology of MD have on cortical responses? How do functional responses in an MD subject's visual cortex vary for task and stimulus conditions? Eight MD subjects-four with age-related onset (AMD) and four with juvenile onset (JMD)-and two age-matched normal vision controls, participated in three testing conditions while undergoing functional magnetic resonance imaging (fMRI). First, subjects viewed a small stimulus presented at the PRL compared with a non-PRL control location to investigate the role of the PRL. Second, they viewed a full-field flickering checkerboard compared with a small stimulus in the original fovea to investigate brain activation with passive viewing. Third, they performed a one-back task with scene images to investigate brain activation with active viewing. A small stimulus at the PRL generated more extensive cortical activation than at a non-PRL location, but neither yielded activation in the foveal cortical projection. Both passive and active viewing of full-field stimuli left a silent zone at the posterior pole of the occipital cortex, implying a lack of complete cortical reorganization. The silent zone was smaller in the task requiring active viewing compared with the task requiring passive viewing, especially in JMD subjects. The PRL for MD subjects has more extensive cortical representation than a retinal region with matched eccentricity. There is evidence for incomplete functional reorganization of early visual cortex in both JMD and AMD. Functional reorganization is more prominent

  5. Incomplete Cortical Reorganization in Macular Degeneration

    PubMed Central

    Cheung, Sing-Hang; Schuchard, Ronald A.; Glielmi, Christopher B.; Hu, Xiaoping; He, Sheng; Legge, Gordon E.

    2010-01-01

    Purpose. Activity in regions of the visual cortex corresponding to central scotomas in subjects with macular degeneration (MD) is considered evidence for functional reorganization in the brain. Three unresolved issues related to cortical activity in subjects with MD were addressed: Is the cortical response to stimuli presented to the preferred retinal locus (PRL) different from other retinal loci at the same eccentricity? What effect does the role of age of onset and etiology of MD have on cortical responses? How do functional responses in an MD subject's visual cortex vary for task and stimulus conditions? Methods. Eight MD subjects—four with age-related onset (AMD) and four with juvenile onset (JMD)—and two age-matched normal vision controls, participated in three testing conditions while undergoing functional magnetic resonance imaging (fMRI). First, subjects viewed a small stimulus presented at the PRL compared with a non-PRL control location to investigate the role of the PRL. Second, they viewed a full-field flickering checkerboard compared with a small stimulus in the original fovea to investigate brain activation with passive viewing. Third, they performed a one-back task with scene images to investigate brain activation with active viewing. Results. A small stimulus at the PRL generated more extensive cortical activation than at a non-PRL location, but neither yielded activation in the foveal cortical projection. Both passive and active viewing of full-field stimuli left a silent zone at the posterior pole of the occipital cortex, implying a lack of complete cortical reorganization. The silent zone was smaller in the task requiring active viewing compared with the task requiring passive viewing, especially in JMD subjects. Conclusions. The PRL for MD subjects has more extensive cortical representation than a retinal region with matched eccentricity. There is evidence for incomplete functional reorganization of early visual cortex in both JMD and AMD

  6. A novel approach for monitoring writing interferences during navigated transcranial magnetic stimulation mappings of writing related cortical areas.

    PubMed

    Rogić Vidaković, Maja; Gabelica, Dragan; Vujović, Igor; Šoda, Joško; Batarelo, Nikolina; Džimbeg, Andrija; Zmajević Schönwald, Marina; Rotim, Krešimir; Đogaš, Zoran

    2015-11-30

    It has recently been shown that navigated repetitive transcranial magnetic stimulation (nTMS) is useful in preoperative neurosurgical mapping of motor and language brain areas. In TMS mapping of motor cortices the evoked responses can be quantitatively monitored by electromyographic (EMG) recordings. No such setup exists for monitoring of writing during nTMS mappings of writing related cortical areas. We present a novel approach for monitoring writing during nTMS mappings of motor writing related cortical areas. To our best knowledge, this is the first demonstration of quantitative monitoring of motor evoked responses from hand by EMG, and of pen related activity during writing with our custom made pen, together with the application of chronometric TMS design and patterned protocol of rTMS. The method was applied in four healthy subjects participating in writing during nTMS mapping of the premotor cortical area corresponding to BA 6 and close to the superior frontal sulcus. The results showed that stimulation impaired writing in all subjects. The corresponding spectra of measured signal related to writing movements was observed in the frequency band 0-20 Hz. Magnetic stimulation affected writing by suppressing normal writing frequency band. The proposed setup for monitoring of writing provides additional quantitative data for monitoring and the analysis of rTMS induced writing response modifications. The setup can be useful for investigation of neurophysiologic mechanisms of writing, for therapeutic effects of nTMS, and in preoperative mapping of language cortical areas in patients undergoing brain surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Neuralgias of the Head: Occipital Neuralgia

    PubMed Central

    2016-01-01

    Occipital neuralgia is defined by the International Headache Society as paroxysmal shooting or stabbing pain in the dermatomes of the greater or lesser occipital nerve. Various treatment methods exist, from medical treatment to open surgical procedures. Local injection with corticosteroid can improve symptoms, though generally only temporarily. More invasive procedures can be considered for cases that do not respond adequately to medical therapies or repeated injections. Radiofrequency lesioning of the greater occipital nerve can relieve symptoms, but there is a tendency for the pain to recur during follow-up. There also remains a substantial group of intractable patients that do not benefit from local injections and conventional procedures. Moreover, treatment of occipital neuralgia is sometimes challenging. More invasive procedures, such as C2 gangliotomy, C2 ganglionectomy, C2 to C3 rhizotomy, C2 to C3 root decompression, neurectomy, and neurolysis with or without sectioning of the inferior oblique muscle, are now rarely performed for medically refractory patients. Recently, a few reports have described positive results following peripheral nerve stimulation of the greater or lesser occipital nerve. Although this procedure is less invasive, the significance of the results is hampered by the small sample size and the lack of long-term data. Clinicians should always remember that destructive procedures carry grave risks: once an anatomic structure is destroyed, it cannot be easily recovered, if at all, and with any destructive procedure there is always the risk of the development of painful neuroma or causalgia, conditions that may be even harder to control than the original complaint. PMID:27051229

  8. Neuralgias of the Head: Occipital Neuralgia.

    PubMed

    Choi, Il; Jeon, Sang Ryong

    2016-04-01

    Occipital neuralgia is defined by the International Headache Society as paroxysmal shooting or stabbing pain in the dermatomes of the greater or lesser occipital nerve. Various treatment methods exist, from medical treatment to open surgical procedures. Local injection with corticosteroid can improve symptoms, though generally only temporarily. More invasive procedures can be considered for cases that do not respond adequately to medical therapies or repeated injections. Radiofrequency lesioning of the greater occipital nerve can relieve symptoms, but there is a tendency for the pain to recur during follow-up. There also remains a substantial group of intractable patients that do not benefit from local injections and conventional procedures. Moreover, treatment of occipital neuralgia is sometimes challenging. More invasive procedures, such as C2 gangliotomy, C2 ganglionectomy, C2 to C3 rhizotomy, C2 to C3 root decompression, neurectomy, and neurolysis with or without sectioning of the inferior oblique muscle, are now rarely performed for medically refractory patients. Recently, a few reports have described positive results following peripheral nerve stimulation of the greater or lesser occipital nerve. Although this procedure is less invasive, the significance of the results is hampered by the small sample size and the lack of long-term data. Clinicians should always remember that destructive procedures carry grave risks: once an anatomic structure is destroyed, it cannot be easily recovered, if at all, and with any destructive procedure there is always the risk of the development of painful neuroma or causalgia, conditions that may be even harder to control than the original complaint.

  9. Cortical glutathione levels in young people with bipolar disorder: a pilot study using magnetic resonance spectroscopy.

    PubMed

    Godlewska, Beata R; Yip, Sarah W; Near, Jamie; Goodwin, Guy M; Cowen, Philip J

    2014-01-01

    Glutathione (GSH) is a key scavenger for cellular free radicals, and patients with bipolar disorder may have lowered GSH levels in plasma and in post-mortem brain tissue. The objective of the current study was to use magnetic resonance spectroscopy (MRS) to measure cortical GSH levels in young people with bipolar disorder to determine if lowered GSH might be a useful biomarker of vulnerability to the illness. We studied 13 patients with DSM-IV bipolar disorder and 11 healthy age-matched controls using proton MRS in conjunction with the SPECIAL acquisition technique. Voxels were placed in prefrontal and occipital cortex. All patients were clinically euthymic at the time of study and unmedicated. GSH and other relevant neurometabolites were measured relative to creatinine. There was no difference in GSH levels between bipolar participants and controls in either prefrontal or occipital cortex. Similarly, participants showed no difference from controls in other measured cortical metabolites including γ-aminobutyric acid, glutamate and N-acetylaspartate. This pilot study suggests that levels of cortical GSH are unlikely to be a useful trait biomarker of bipolar disorder in young people with a history of relatively mild mood instability at an early stage of illness. Lowered GSH levels may be relevant to bipolar pathophysiology in more severely ill patients, particular those with significant current mood disturbance.

  10. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.

    PubMed

    Herting, Megan M; Gautam, Prapti; Spielberg, Jeffrey M; Dahl, Ronald E; Sowell, Elizabeth R

    2015-01-01

    Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal) on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.

  11. No Association between Cortical Gyrification or Intrinsic Curvature and Attention-deficit/Hyperactivity Disorder in Adolescents and Young Adults.

    PubMed

    Forde, Natalie J; Ronan, Lisa; Zwiers, Marcel P; Alexander-Bloch, Aaron F; Faraone, Stephen V; Oosterlaan, Jaap; Heslenfeld, Dirk J; Hartman, Catharina A; Buitelaar, Jan K; Hoekstra, Pieter J

    2017-01-01

    Magnetic resonance imaging (MRI) studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD). Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface. This could help identify neurodevelopmental processes that contribute to ADHD. Structural MRI datasets from the NeuroIMAGE project were used [ n = 306 ADHD, n = 164 controls, and n = 148 healthy siblings of individuals with ADHD (age in years, mean(sd); 17.2 (3.4), 16.8 (3.2), and 17.7 (3.8), respectively)]. Reconstructions of the cortical surfaces were computed with FreeSurfer. Intrinsic curvature (taken as a marker of millimeter-scale surface connectivity) and local gyrification index were calculated for each point on the surface (vertex) with Caret and FreeSurfer, respectively. Intrinsic curvature skew and mean local gyrification index were extracted per region; frontal, parietal, temporal, occipital, cingulate, and insula. A generalized additive model was used to compare the trajectory of these measures between groups over age, with sex, scanner site, total surface area of hemisphere, and familiality accounted for. After correcting for sex, scanner site, and total surface area no group differences were found in the developmental trajectory of intrinsic curvature or local gyrification index. Despite the increased sensitivity of intrinsic curvature, compared to gyrification measures, to subtle morphological abnormalities of the cortical surface we found no

  12. Cortical Modulation of Motor Control Biofeedback among the Elderly with High Fall Risk during a Posture Perturbation Task with Augmented Reality

    PubMed Central

    Chang, Chun-Ju; Yang, Tsui-Fen; Yang, Sai-Wei; Chern, Jen-Suh

    2016-01-01

    The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial–temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal–occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal–central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation

  13. Altered Cortical Activation in Adolescents With Acute Migraine: A Magnetoencephalography Study

    PubMed Central

    Xiang, Jing; deGrauw, Xinyao; Korostenskaja, Milena; Korman, Abraham M.; O’Brien, Hope L.; Kabbouche, Marielle A.; Powers, Scott W.; Hershey, Andrew D.

    2013-01-01

    To quantitatively assess cortical dysfunction in pediatric migraine, 31 adolescents with acute migraine and age- and gender-matched controls were studied using a magnetoencephalography (MEG) system at a sampling rate of 6,000 Hz. Neuromagnetic brain activation was elicited by a finger-tapping task. The spectral and spatial signatures of magnetoencephalography data in 5 to 2,884 Hz were analyzed using Morlet wavelet and beamformers. Compared with controls, 31 migraine subjects during their headache attack phases (ictal) showed significantly prolonged latencies of neuromagnetic activation in 5 to 30 Hz, increased spectral power in 100 to 200 Hz, and a higher likelihood of neuromagnetic activation in the supplementary motor area, the occipital and ipsilateral sensorimotor cortices, in 2,200 to 2,800 Hz. Of the 31 migraine subjects, 16 migraine subjects during their headache-free phases (interictal) showed that there were no significant differences between interictal and control MEG data except that interictal spectral power in 100 to 200 Hz was significantly decreased. The results demonstrated that migraine subjects had significantly aberrant ictal brain activation, which can normalize interictally. The spread of abnormal ictal brain activation in both low- and high-frequency ranges triggered by movements may play a key role in the cascade of migraine attacks. Perspective This is the first study focusing on the spectral and spatial signatures of cortical dysfunction in adolescents with migraine using MEG signals in a frequency range of 5 to 2,884 Hz. This analyzing aberrant brain activation may be important for developing new therapeutic interventions for migraine in the future. PMID:23792072

  14. High-frequency cortical subdural stimulation enhanced plasticity in surgery of a tumor in Broca's area.

    PubMed

    Barcia, Juan A; Sanz, Ana; Balugo, Paloma; Alonso-Lera, Pedro; Brin, Juan Raúl; Yus, Miguel; Gonzalez-Hidalgo, Mercedes; Acedo, Victoria M; Oliviero, Antonio

    2012-03-28

    Functional areas located near or within brain gliomas prevent the complete resection of these tumors. It has recently been described that slow tumor invasion promotes neural reorganization, and even topographic plasticity, allowing a staged resection of those tumors. Thus, our aim was to promote plasticity by mimicking the tumor's capability to displace brain function. This proceeded through the production of a 'virtual lesion' in eloquent areas within a tumor using continuous high-frequency cortical electrical stimulation (cHFCS). An anaplastic astrocytoma located in Broca's area progressed in a patient whose lateralization of language to the side of the lesion was demonstrated with functional MRI. After partial tumor resection using awake cortical monitoring, we implanted a subdural grid over the eloquent cortex located within residual tumor. We then applied cHFCS for 25 days, using a frequency of 130 Hz and a pulse width of 1 ms. Stimulus intensity was set to the threshold wherein mild speech disturbance was evident without any other neurological effects. This treatment successfully achieved the displacement of speech functions, and a more radical resection of the tumor was possible in a second surgery. Critically, a reorganization of motor language areas was demonstrated both with functional MRI and cortical stimulation. Furthermore, motor language areas were also identified in the right hemisphere, where previously they were absent. The patient's speech fluency improved both after stimulation and resection. We therefore demonstrate the first evidence of induced topographic plasticity using cHFCS in eloquent areas within a tumor, which allowed for increased tumor removal. Our results open the possibility to induce plasticity before the resection of brain tumors near eloquent areas, in order to increase the extent of resection.

  15. The effects of anaesthetic agents on cortical mapping during neurosurgical procedures involving eloquent areas of the brain.

    PubMed

    Adhikary, Sanjib D; Thiruvenkatarajan, Venkatesan; Babu, K Srinivasa; Tharyan, Prathap

    2011-11-09

    In patients presenting for surgical resection of lesions involving, or adjacent to, the functionally important eloquent cortical areas, it is vital to achieve complete or near complete resection of the pathology without damaging the healthy surrounding tissues.The eloquent areas that the surgeons are concerned with are the primary motor, premotor cortex, supplementary motor cortex and speech areas. If the lesions are within these regions surgeons could either take a biopsy or do a intracapsular decompression without damaging the mentioned areas to avoid postoperative dysfunction. If the lesions are adjacent to the above mentioned areas, the normal anatomy would get distorted. However, proper identification of the above mentioned areas would enable the surgeon to radically remove the tumours. Intraoperative mapping of the cortex with stimulating and recording electrodes is termed as electrophysiological (EP) mapping.The EP mapping of motor, sensory and language cortex is widely employed in the resection of lesions involving or adjacent to the eloquent areas. Both intravenous and inhalational agents are known to affect these EP mapping techniques. The aim of this review was to evaluate the effect of anaesthetic agents on intra-operative EP mapping in patients undergoing neurosurgical procedures involving, or adjacent to, the functional areas of the cortex under general anaesthesia. We searched the Cochrane Epilepsy Group Specialized Register (7 March 2011), The Cochrane Central Register of Controlled Trials (CENTRAL issue 1 of 4, The Cochrane Library 2011), MEDLINE (Ovid, 1948 to February week 4, 2011), PsycINFO (EBSCOhost, 7 March 2011), and the National Research Register Archive and UK Clinical Research Network (7 March 2011). We also contacted other researchers in the field in an attempt to ascertain unpublished studies. We planned to include randomised and quasi randomised controlled trials irrespective of blinding in patients of any age or gender undergoing

  16. Experience of Surgical Treatment for Occipital Migraine in Taiwan.

    PubMed

    Lin, Shang-Hsi; Lin, Huwang-Chi; Jeng, Chu-Hsu; Hsieh, Cheng-Han; Lin, Yu-Hsien; Chen, Cha-Chun

    2016-03-01

    Refractory migraine surgery developed since 2003 has excellent results over the past 10 years. According to the pioneer of migraine surgery, Dr. Bahman Guyuron, 5 major surgical classifications of migraines are described in the field of plastic surgery, namely, frontal migraine, temporal migraine, rhinogenic migraine, occipital migraine, and auriculotemporal migraine. In this study, we present the preliminary surgical results of the occipital migraine surgery. A total of 22 patients with simple occipital migraines came to our outpatient clinic for help from June 2014 to February 2015. Thirteen cases were excluded owing to ineligibility for operation or other reasons. The patients who concurrently experienced other types of migraines were precluded even if they received combined migraine surgery. Therefore, 9 simple occipital migraine cases were enrolled in this study. Migraine severity was evaluated by uniform questionnaires to identify the source of migraine. Neurolysis was performed under general anesthesia, with the patient in a prone position. Postoperative conditions were evaluated at the second, fourth, sixth, and eighth weeks by posttreatment questionnaires. Of all the 9 patients, 5 experienced single-sided migraines of greater occipital nerve origin (2 left-sided and 3 right-sided cases). Two patients had bilateral migraines of greater occipital nerve origin, and unilateral right lesser occipital nerve origin was noted in one patient. The last patient had right-sided migraines of greater and lesser occipital nerve origin. As a result in the follow-up, a response rate greater than 90% was documented, and complete resolution was observed in 2 patients. Drug doses were reduced more than 50% in the remaining patients. The overall efficacy of occipital migraine surgery in this study was 88.8% (8/9 cases). Some patients with migraine are good candidates for surgical resolution with appropriate and meticulous selection. Similar to what is observed in Western

  17. The neuropsychological and neuroradiological correlates of slowly progressive visual agnosia.

    PubMed

    Giovagnoli, Anna Rita; Aresi, Anna; Reati, Fabiola; Riva, Alice; Gobbo, Clara; Bizzi, Alberto

    2009-04-01

    The case of a 64-year-old woman affected by slowly progressive visual agnosia is reported aiming to describe specific cognitive-brain relationships. Longitudinal clinical and neuropsychological assessment, combined with magnetic resonance imaging (MRI), spectroscopy, and positron emission tomography (PET) were used. Sequential neuropsychological evaluations performed during a period of 9 years since disease onset showed the appearance of apperceptive and associative visual agnosia, alexia without agraphia, agraphia, finger agnosia, and prosopoagnosia, but excluded dementia. MRI showed moderate diffuse cortical atrophy, with predominant atrophy in the left posterior cortical areas (temporal, parietal, and lateral occipital cortical gyri). 18FDG-PET showed marked bilateral posterior cortical hypometabolism; proton magnetic resonance spectroscopic imaging disclosed severe focal N-acetyl-aspartate depletion in the left temporoparietal and lateral occipital cortical areas. In conclusion, selective metabolic alterations and neuronal loss in the left temporoparietooccipital cortex may determine progressive visual agnosia in the absence of dementia.

  18. Neurofibromatosis Type 1: Transcatheter Arterial Embolization for Ruptured Occipital Arterial Aneurysms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanematsu, Masayuki; Kato, Hiroki; Kondo, Hiroshi

    Two cases of ruptured aneurysms in the posterior cervical regions associated with type-1 neurofibromatosis treated by transcatheter embolization are reported. Patients presented with acute onset of swelling and pain in the affected areas. Emergently performed contrast-enhanced CT demonstrated aneurysms and large hematomas widespread in the posterior cervical regions. Angiography revealed aneurysms and extravasations of the occipital artery. Patients were successfully treated by percutaneous transcatheter arterial microcoil embolization. Transcatheter arterial embolization therapy was found to be an effective method for treating aneurysmal rupture in the posterior cervical regions occurring in association with type-1 neurofibromatosis. A literature review revealed that rupture ofmore » an occipital arterial aneurysm, in the setting of neurofibromatosis type 1, has not been reported previously.« less

  19. Methomyl poisoning presenting with decorticate posture and cortical blindness.

    PubMed

    Lin, Chih-Ming

    2014-01-17

    Methomyl is a potent pesticide that is widely used in the field of agriculture. The systemic toxic effects of methomyl have been well described. However, the neurological effects of methomyl intoxication are not well understood. In this study, we report a 61-year-old Taiwanese man sent to our emergency department because of altered mental status. His family stated that he had consumed liquid methomyl in a suicide attempt. He was provided cardiopulmonary resuscitation because of unstable vital signs. He was then sent to an intensive care unit for close observation. On the second day of admission, he regained consciousness but exhibited irregular limb and torso posture. On the sixth day, he started to complain of blurred vision. An ophthalmologist was consulted but no obvious abnormalities could be identified. On suspicion of cerebral disease, a neurologist was consulted. Further examination revealed cortical blindness and decorticate posture. Cerebral magnetic resonance imaging (MRI) was arranged, which identified bilateral occipital regions lesions. The patient was administered normal saline and treated with aspirin and piracetam for 3 weeks in hospital. During the treatment period, his symptom of cortical blindness resolved, whereas his decorticate posture was refractory. Follow-up brain MRI results supported our clinical observations by indicating the disappearance of the bilateral occipital lesions and symmetrical putaminal high signal abnormalities. In this article, we briefly discuss the possible mechanisms underlying the cerebral effects of methomyl poisoning. Our study can provide clinicians with information on the manifestations of methomyl intoxication and an appropriate treatment direction.

  20. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: pathophysiological implications.

    PubMed

    Martín, Helena; Sánchez del Río, Margarita; de Silanes, Carlos López; Álvarez-Linera, Juan; Hernández, Juan Antonio; Pareja, Juan A

    2011-01-01

    The brain of migraineurs is hyperexcitable, particularly the occipital cortex, which is probably hypersensitive to light. Photophobia or hypersensitivity to light may be accounted for by an increased excitability of trigeminal, the visual pathways, and the occipital cortex. To study light sensitivity and photophobia by assessing the response to light stimuli with functional magnetic resonance imaging-blood oxygenation level dependent (fMRI-BOLD) of the occipital cortex in migraineurs and in controls. Also, to try to decipher the contribution of the occipital cortex to photophobia and whether the cortical reactivity of migraineurs may be part of a constitutional (defensive) mechanism or represents an acquired (sensitization) phenomenon. Nineteen patients with migraine (7 with aura and 12 without aura) and 19 controls were studied with fMRI-BOLD during 4 increasing light intensities. Eight axial image sections of 0.5 cm that covered the occipital cortex were acquired for each intensity. We measured the extension and the intensity of activation for every light stimuli. Photophobia was estimated according to a 0 to 3 semiquantitative scale of light discomfort. Migraineurs had a significantly higher number of fMRI-activated voxels at low (320.4 for migraineurs [SD = 253.9] and 164.3 for controls [SD = 102.7], P = .027) and medium-low luminance levels (501.2 for migraineurs [SD = 279.5] and 331.1 for controls [SD = 194.3], P = .034) but not at medium-high (579.5 for migraineurs [SD = 201.4] and 510.2 for controls [SD = 239.5], P = .410) and high light stimuli (496.2 for migraineurs [SD = 216.2] and 394.7 for controls [SD = 240], P = .210). No differences were found with respect to the voxel activation intensity (amplitude of the BOLD wave) between migraineurs and controls (8.98 [SD = 2.58] vs 7.99 [SD = 2.57], P = .25; 10.82 [SD = 3.27] vs 9.81 [SD = 3.19], P = .31; 11.90 [SD = 3.18] vs 11.06 [SD = 2.56], P = .62; 11.45 [SD = 2.65] vs 10.25 [SD = 2.22], P = .16). Light

  1. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    PubMed

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P < 0.01) on posterior cingulate and middle temporal cortices (age), and the fronto-orbital cortex (gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P < 0.05) on the temporopolar, inferior, and middle temporal-entorrhinal cortices bilaterally, as well as left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  2. Intractable occipital neuralgia caused by an entrapment in the semispinalis capitis.

    PubMed

    Son, Byung-Chul; Kim, Deok-Ryeong; Lee, Sang-Won

    2013-09-01

    Occipital neuralgia is a rare pain syndrome characterized by periodic lancinating pain involving the occipital nerve complex. We present a unique case of entrapment of the greater occipital nerve (GON) within the semispinalis capitis, which was thought to be the cause of occipital neuralgia. A 66-year-old woman with refractory left occipital neuralgia revealed an abnormally low-loop of the left posterior inferior cerebellar artery on the magnetic resonance imaging, suggesting possible vascular compression of the upper cervical roots. During exploration, however, the GON was found to be entrapped at the perforation site of the semispinalis capitis. There was no other compression of the GON or of C1 and C2 dorsal roots in their intracranial course. Postoperatively, the patient experienced almost complete relief of typical neuralgic pain. Although occipital neuralgia has been reported to occur by stretching of the GON by inferior oblique muscle or C1-C2 arthrosis, peripheral compression in the transmuscular course of the GON in the semispinalis capitis as a cause of refractory occipital neuralgia has not been reported and this should be considered when assessing surgical options for refractory occipital neuralgia.

  3. Intractable Occipital Neuralgia Caused by an Entrapment in the Semispinalis Capitis

    PubMed Central

    Kim, Deok-ryeong; Lee, Sang-won

    2013-01-01

    Occipital neuralgia is a rare pain syndrome characterized by periodic lancinating pain involving the occipital nerve complex. We present a unique case of entrapment of the greater occipital nerve (GON) within the semispinalis capitis, which was thought to be the cause of occipital neuralgia. A 66-year-old woman with refractory left occipital neuralgia revealed an abnormally low-loop of the left posterior inferior cerebellar artery on the magnetic resonance imaging, suggesting possible vascular compression of the upper cervical roots. During exploration, however, the GON was found to be entrapped at the perforation site of the semispinalis capitis. There was no other compression of the GON or of C1 and C2 dorsal roots in their intracranial course. Postoperatively, the patient experienced almost complete relief of typical neuralgic pain. Although occipital neuralgia has been reported to occur by stretching of the GON by inferior oblique muscle or C1-C2 arthrosis, peripheral compression in the transmuscular course of the GON in the semispinalis capitis as a cause of refractory occipital neuralgia has not been reported and this should be considered when assessing surgical options for refractory occipital neuralgia. PMID:24278663

  4. Cortical oscillations modulated by congruent and incongruent audiovisual stimuli.

    PubMed

    Herdman, A T; Fujioka, T; Chau, W; Ross, B; Pantev, C; Picton, T W

    2004-11-30

    Congruent or incongruent grapheme-phoneme stimuli are easily perceived as one or two linguistic objects. The main objective of this study was to investigate the changes in cortical oscillations that reflect the processing of congruent and incongruent audiovisual stimuli. Graphemes were Japanese Hiragana characters for four different vowels (/a/, /o/, /u/, and /i/). They were presented simultaneously with their corresponding phonemes (congruent) or non-corresponding phonemes (incongruent) to native-speaking Japanese participants. Participants' reaction times to the congruent audiovisual stimuli were significantly faster by 57 ms as compared to reaction times to incongruent stimuli. We recorded the brain responses for each condition using a whole-head magnetoencephalograph (MEG). A novel approach to analysing MEG data, called synthetic aperture magnetometry (SAM), was used to identify event-related changes in cortical oscillations involved in audiovisual processing. The SAM contrast between congruent and incongruent responses revealed greater event-related desynchonization (8-16 Hz) bilaterally in the occipital lobes and greater event-related synchronization (4-8 Hz) in the left transverse temporal gyrus. Results from this study further support the concept of interactions between the auditory and visual sensory cortices in multi-sensory processing of audiovisual objects.

  5. Normative morphometric data for cerebral cortical areas over the lifetime of the adult human brain.

    PubMed

    Potvin, Olivier; Dieumegarde, Louis; Duchesne, Simon

    2017-08-01

    Proper normative data of anatomical measurements of cortical regions, allowing to quantify brain abnormalities, are lacking. We developed norms for regional cortical surface areas, thicknesses, and volumes based on cross-sectional MRI scans from 2713 healthy individuals aged 18 to 94 years using 23 samples provided by 21 independent research groups. The segmentation was conducted using FreeSurfer, a widely used and freely available automated segmentation software. Models predicting regional cortical estimates of each hemisphere were produced using age, sex, estimated total intracranial volume (eTIV), scanner manufacturer, magnetic field strength, and interactions as predictors. The explained variance for the left/right cortex was 76%/76% for surface area, 43%/42% for thickness, and 80%/80% for volume. The mean explained variance for all regions was 41% for surface areas, 27% for thicknesses, and 46% for volumes. Age, sex and eTIV predicted most of the explained variance for surface areas and volumes while age was the main predictors for thicknesses. Scanner characteristics generally predicted a limited amount of variance, but this effect was stronger for thicknesses than surface areas and volumes. For new individuals, estimates of their expected surface area, thickness and volume based on their characteristics and the scanner characteristics can be obtained using the derived formulas, as well as Z score effect sizes denoting the extent of the deviation from the normative sample. Models predicting normative values were validated in independent samples of healthy adults, showing satisfactory validation R 2 . Deviations from the normative sample were measured in individuals with mild Alzheimer's disease and schizophrenia and expected patterns of deviations were observed. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. Perceptual learning modifies the functional specializations of visual cortical areas.

    PubMed

    Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang

    2016-05-17

    Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.

  7. Toward the development of a cortically based visual neuroprosthesis.

    PubMed

    Normann, Richard A; Greger, Bradley; Greger, Bradley A; House, Paul; Romero, Samuel F; Pelayo, Francisco; Fernandez, Eduardo

    2009-06-01

    Motivated by the success of cochlear implants for deaf patients, we are now facing the goal of creating a visual neuroprosthesis designed to interface with the occipital cortex as a means through which a limited but useful sense of vision could be restored in profoundly blind patients. We review the most important challenges regarding this neuroprosthetic approach and emphasize the need for basic human psychophysical research on the best way of presenting complex stimulating patterns through multiple microelectrodes. Continued research will hopefully lead to the development of and design specifications for the first generation of a cortically based visual prosthesis system.

  8. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    PubMed

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  9. Pulsed radiofrequency for the treatment of occipital neuralgia: a prospective study with 6 months of follow-up.

    PubMed

    Vanelderen, Pascal; Rouwette, Tom; De Vooght, Pieter; Puylaert, Martine; Heylen, René; Vissers, Kris; Van Zundert, Jan

    2010-01-01

    Occipital neuralgia is a paroxysmal nonthrobbing, stabbing pain in the area of the greater or lesser occipital nerve caused by irritation of these nerves. Although several therapies have been reported, no criterion standard has emerged. This study reports on the results of a prospective trial with 6 months of follow-up in which pulsed radiofrequency treatment of the greater and/or lesser occipital nerve was used to treat this neuralgia. Patients presenting with clinical findings suggestive of occipital neuralgia and a positive test block of the occipital nerves with 2 mL of local anesthetic underwent a pulsed radiofrequency procedure of the culprit nerves. Mean scores for pain, quality of life, and medication intake were measured 1, 2, and 6 months after the procedure. Pain was measured by the visual analog and Likert scales, quality of life was measured by a modified brief pain questionnaire, and medication intake was measured by a Medication Quantification Scale. During a 29-month period, 19 patients were included in the study. Mean visual analog scale and median Medication Quantification Scale scores declined by 3.6 units (P = 0.002) and 8 units (P = 0.006), respectively, during 6 months. Approximately 52.6% of patients reported a score of 6 (pain improved substantially) or higher on the Likert scale after 6 months. No complications were reported. Pulsed radiofrequency treatment of the greater and/or lesser occipital nerve is a promising treatment of occipital neuralgia. This study warrants further placebo-controlled trials.

  10. Source localization of small sharp spikes: low resolution electromagnetic tomography (LORETA) reveals two distinct cortical sources.

    PubMed

    Zumsteg, Dominik; Andrade, Danielle M; Wennberg, Richard A

    2006-06-01

    We have investigated the cortical sources and electroencephalographic (EEG) characteristics of small sharp spikes (SSS) by using statistical non-parametric mapping (SNPM) of low resolution electromagnetic tomography (LORETA). We analyzed 7 SSS patterns (501 individual SSS) in 6 patients who underwent sleep EEG studies with 29 or 23 scalp electrodes. The scalp signals were averaged time-locked to the SSS peak activity and subjected to SNPM of LORETA values. All 7 SSS patterns (mean 72 individual SSS, range 11-200) revealed a very similar and highly characteristic transhemispheric oblique scalp voltage distribution comprising a first negative field maximum over ipsilateral lateral temporal areas, followed by a second negative field maximum over the contralateral subtemporal region approximately 30 ms later. SNPM-LORETA consistently localized the first component into the ipsilateral posterior insular region, and the second component into ipsilateral posterior mesial temporo-occipital structures. SSS comprise an amalgam of two sequential, distinct cortical components, showing a very uniform and peculiar EEG pattern and cortical source solutions. As such, they must be clearly distinguished from interictal epileptiform discharges in patients with epilepsy. The awareness of these peculiar EEG characteristics may increase our ability to differentiate SSS from interictal epileptiform activity. The finding of a posterior insular source might serve as an inspiration for new physiological considerations regarding these enigmatic waveforms.

  11. Neural Correlates of Skill Acquisition: Decreased Cortical Activity During a Serial Interception Sequence Learning Task

    PubMed Central

    Gobel, Eric W.; Parrish, Todd B.; Reber, Paul J.

    2011-01-01

    Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. PMID:21771663

  12. Precision of pQCT-measured total, trabecular and cortical bone area, content, density and estimated bone strength in children

    PubMed Central

    Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.

    2017-01-01

    Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412

  13. Delayed-onset Reversible Cortical Blindness after Resuscitation from Cardiac Arrest

    PubMed Central

    de Souza, Aaron; de Souza, Rainha J.; Pai Kakode, Varun R.

    2017-01-01

    We present a patient who presented with cortical blindness (CB) 1 week after repeated cardiac arrest while undergoing treatment for an acute myocardial infarction. He had been revived within 5 min in each instance and was apparently neurologically normal until presentation. Magnetic resonance imaging showed subtle hyperintensities on fluid-attenuated inversion recovery and diffusion-weighted imaging in both temporooccipital cortices. A rapid recovery over the next 2 weeks was remarkable for the appearance of metamorphopsia. CB may present even days to weeks after hypoxic-ischemic encephalopathy following cardiac arrest, even in patients apparently without immediate neurological sequelae. The pathogenesis of this phenomenon remains to be fully elucidated, but is likely to be due to delayed effects of anoxia on the occipital cortex and may be analogous to the previously described syndrome of delayed posthypoxic leukoencephalopathy. Prognosis for visual recovery appears to be good. PMID:28936091

  14. Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions.

    PubMed

    Scheperjans, Filip; Palomero-Gallagher, Nicola; Grefkes, Christian; Schleicher, Axel; Zilles, Karl

    2005-11-01

    Regional distributions of ligand binding sites of 12 different neurotransmitter receptors (glutamatergic: AMPA, kainate, NMDA; GABAergic: GABA(A), GABA(B); cholinergic: muscarinic M2, nicotinic; adrenergic: alpha1, alpha2; serotonergic: 5-HT1A, 5-HT2; dopaminergic: D1) were studied in human postmortem brains by means of quantitative receptor autoradiography. Binding site densities were measured in the superior parietal lobule (SPL) (areas 5L, 5M, 5Ci, and different locations within Brodmann's area (BA) 7), somatosensory (BA 2), and visual cortical areas (BA 17, and different locations within BAs 18 and 19). Similarities of receptor distribution between cortical areas were analyzed by cluster analysis, uni- and multivariate statistics of mean receptor densities (averaged over all cortical layers), and profiles representing the laminar distribution patterns of receptors. A considerable heterogeneity of regional receptor densities and laminar patterns between the sites was found in the SPL and the visual cortex. The most prominent regional differences were found for M2 receptors. In the SPL, rostrocaudally oriented changes of receptor densities were more pronounced than those in mediolateral direction. The receptor distribution in the rostral SPL was more similar to that of the somatosensory cortex, whereas caudal SPL resembled the receptor patterns of the dorsolateral extrastriate visual areas. These results suggest a segregation of the different SPL areas based on receptor distribution features typical for somatosensory or visual areas, which fits to the dual functional role of this cortical region, i.e., the involvement of the human SPL in visuomotor and somatosensory motor transformations.

  15. A simplified CT-guided approach for greater occipital nerve infiltration in the management of occipital neuralgia.

    PubMed

    Kastler, Adrian; Onana, Yannick; Comte, Alexandre; Attyé, Arnaud; Lajoie, Jean-Louis; Kastler, Bruno

    2015-08-01

    To evaluate the efficacy of a simplified CT-guided greater occipital nerve (GON) infiltration approach in the management of occipital neuralgia (ON). Local IRB approval was obtained and written informed consent was waived. Thirty three patients suffering from severe refractory ON who underwent a total of 37 CT-guided GON infiltrations were included between 2012 and 2014. GON infiltration was performed at the first bend of the GON, between the inferior obliqus capitis and semispinalis capitis muscles with local anaesthetics and cortivazol. Pain was evaluated via VAS scores. Clinical success was defined by pain relief greater than or equal to 50 % lasting for at least 3 months. The pre-procedure mean pain score was 8/10. Patients suffered from left GON neuralgia in 13 cases, right GON neuralgia in 16 cases and bilateral GON neuralgia in 4 cases. The clinical success rate was 86 %. In case of clinical success, the mean pain relief duration following the procedure was 9.16 months. Simplified CT-guided infiltration appears to be effective in managing refractory ON. With this technique, infiltration of the GON appears to be faster, technically easier and, therefore, safer compared with other previously described techniques. • Occipital neuralgia is a very painful and debilitating condition • GON infiltrations have been successful in the treatment of occipital neuralgia • This simplified technique presents a high efficacy rate with long-lasting pain relief • This infiltration technique does not require contrast media injection for pre-planning • GON infiltration at the first bend appears easier and safer.

  16. Tornwaldt's cyst presenting only as occipital headache: a case report.

    PubMed

    Cho, Hang S; Byeon, Hyung K; Kim, Jun-Hee; Kim, Kyung S

    2009-02-01

    Tornwaldt's cyst (sometimes called Thornwaldt's cyst) is a rare cause of occipital headache. Owing to the rare occurrence of occipital headache as a symptom of Tornwaldt's cyst, if the patient presented only with occipital headache, this clinical symptom may be falsely perceived as a sign of neurologic disease leading to time-consuming diagnostic examinations that delay the establishment of a correct diagnosis.

  17. Low message sensation health promotion videos are better remembered and activate areas of the brain associated with memory encoding.

    PubMed

    Seelig, David; Wang, An-Li; Jagannathan, Kanchana; Jaganathan, Kanchana; Loughead, James W; Blady, Shira J; Childress, Anna Rose; Romer, Daniel; Langleben, Daniel D

    2014-01-01

    Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in "message sensation value" (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the "attention-grabbing" high MSV format could impede the learning and retention of public

  18. Randomized, double-blind, comparative-effectiveness study comparing pulsed radiofrequency to steroid injections for occipital neuralgia or migraine with occipital nerve tenderness.

    PubMed

    Cohen, Steven P; Peterlin, B Lee; Fulton, Larry; Neely, Edward T; Kurihara, Connie; Gupta, Anita; Mali, Jimmy; Fu, Diana C; Jacobs, Michael B; Plunkett, Anthony R; Verdun, Aubrey J; Stojanovic, Milan P; Hanling, Steven; Constantinescu, Octav; White, Ronald L; McLean, Brian C; Pasquina, Paul F; Zhao, Zirong

    2015-12-01

    Occipital neuralgia (ON) is characterized by lancinating pain and tenderness overlying the occipital nerves. Both steroid injections and pulsed radiofrequency (PRF) are used to treat ON, but few clinical trials have evaluated efficacy, and no study has compared treatments. We performed a multicenter, randomized, double-blind, comparative-effectiveness study in 81 participants with ON or migraine with occipital nerve tenderness whose aim was to determine which treatment is superior. Forty-two participants were randomized to receive local anesthetic and saline, and three 120 second cycles of PRF per targeted nerve, and 39 were randomized to receive local anesthetic mixed with deposteroid and 3 rounds of sham PRF. Patients, treating physicians, and evaluators were blinded to interventions. The PRF group experienced a greater reduction in the primary outcome measure, average occipital pain at 6 weeks (mean change from baseline -2.743 ± 2.487 vs -1.377 ± 1.970; P < 0.001), than the steroid group, which persisted through the 6-month follow-up. Comparable benefits favoring PRF were obtained for worst occipital pain through 3 months (mean change from baseline -1.925 ± 3.204 vs -0.541 ± 2.644; P = 0.043), and average overall headache pain through 6 weeks (mean change from baseline -2.738 ± 2.753 vs -1.120 ± 2.1; P = 0.037). Adverse events were similar between groups, and few significant differences were noted for nonpain outcomes. We conclude that although PRF can provide greater pain relief for ON and migraine with occipital nerve tenderness than steroid injections, the superior analgesia may not be accompanied by comparable improvement on other outcome measures.

  19. Randomized, double-blind, comparative-effectiveness study comparing pulsed radiofrequency to steroid injections for occipital neuralgia or migraine with occipital nerve tenderness

    PubMed Central

    Cohen, Steven P.; Peterlin, B. Lee; Fulton, Larry; Neely, Edward T.; Kurihara, Connie; Gupta, Anita; Mali, Jimmy; Fu, Diana C.; Jacobs, Michael B.; Plunkett, Anthony R.; Verdun, Aubrey J.; Stojanovic, Milan P.; Hanling, Steven; Constantinescu, Octav; White, Ronald L.; McLean, Brian C.; Pasquina, Paul F.; Zhao, Zirong

    2015-01-01

    Occipital neuralgia (ON) is characterized by lancinating pain and tenderness overlying the occipital nerves. Both steroid injections and pulsed radiofrequency (PRF) are used to treat ON, but few clinical trials have evaluated efficacy, and no study has compared treatments. We performed a multicenter, randomized, double-blind, comparative-effectiveness study in 81 participants with ON or migraine with occipital nerve tenderness whose aim was to determine which treatment is superior. Forty-two participants were randomized to receive local anesthetic and saline, and three 120 second cycles of PRF per targeted nerve, and 39 were randomized to receive local anesthetic mixed with deposteroid and 3 rounds of sham PRF. Patients, treating physicians, and evaluators were blinded to interventions. The PRF group experienced a greater reduction in the primary outcome measure, average occipital pain at 6 weeks (mean change from baseline −2.743 ± 2.487 vs −1.377 ± 1.970; P <0.001), than the steroid group, which persisted through the 6-month follow-up. Comparable benefits favoring PRF were obtained for worst occipital pain through 3 months (mean change from baseline−1.925 ± 3.204 vs−0.541 ± 2.644; P = 0.043), and average overall headache pain through 6 weeks (mean change from baseline −2.738 ± 2.753 vs −1.120 ± 2.1; P = 0.037). Adverse events were similar between groups, and few significant differences were noted for nonpain outcomes. We conclude that although PRF can provide greater pain relief for ON and migraine with occipital nerve tenderness than steroid injections, the superior analgesia may not be accompanied by comparable improvement on other outcome measures. PMID:26447705

  20. Ipsilateral corticotectal projections from the primary, premotor and supplementary motor cortical areas in adult macaque monkeys: a quantitative anterograde tracing study

    PubMed Central

    Fregosi, Michela; Rouiller, Eric M.

    2018-01-01

    The corticotectal projection from cortical motor areas is one of several descending pathways involved in the indirect control of spinal motoneurons. In non-human primates, previous studies reported that cortical projections to the superior colliculus originated from the premotor cortex and the primary motor cortex, whereas no projection originated from the supplementary motor area. The aim of the present study was to investigate and compare the properties of corticotectal projections originating from these three cortical motor areas in intact adult macaques (n=9). The anterograde tracer BDA was injected into one of these cortical areas in each animal. Individual axonal boutons, both en passant and terminaux, were charted and counted in the different layers of the ipsilateral superior colliculus. The data confirmed the presence of strong corticotectal projections from the premotor cortex. A new observation was that strong corticotectal projections were also found to originate from the supplementary motor area (its proper division). The corticotectal projection from the primary motor cortex was quantitatively less strong than that from either the premotor or supplementary motor areas. The corticotectal projection from each motor area was directed mainly to the deep layer of the superior colliculus, although its intermediate layer was also a consistent target of fairly dense terminations. The strong corticotectal projections from non-primary motor areas are in position to influence the preparation and planning of voluntary movements. PMID:28921678

  1. Early auditory processing in area V5/MT+ of the congenitally blind brain.

    PubMed

    Watkins, Kate E; Shakespeare, Timothy J; O'Donoghue, M Clare; Alexander, Iona; Ragge, Nicola; Cowey, Alan; Bridge, Holly

    2013-11-13

    Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.

  2. Cortical Thickness in Fusiform Face Area Predicts Face and Object Recognition Performance

    PubMed Central

    McGugin, Rankin W.; Van Gulick, Ana E.; Gauthier, Isabel

    2016-01-01

    The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that the response of FFA to non-face objects can predict behavioral performance for these objects. However, one possible account is that experts pay more attention to objects in their domain of expertise, driving signals up. Here we show an effect of expertise with non-face objects in FFA that cannot be explained by differential attention to objects of expertise. We explore the relationship between cortical thickness of FFA and face and object recognition using the Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical thickness in functionally-defined regions in a group of men who evidenced functional expertise effects for cars in FFA. Performance with faces and objects together accounted for approximately 40% of the variance in cortical thickness of several FFA patches. While subjects with a thicker FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with faces and living objects. The results point to a domain-general role of FFA in object perception and reveal an interesting double dissociation that does not contrast faces and objects, but rather living and non-living objects. PMID:26439272

  3. Cortical midline involvement in autobiographical memory

    PubMed Central

    Summerfield, Jennifer J.; Hassabis, Demis; Maguire, Eleanor A.

    2009-01-01

    Recollecting autobiographical memories of personal past experiences is an integral part of our everyday lives and relies on a distributed set of brain regions. Their occurrence externally in the real world (‘realness’) and their self-relevance (‘selfness’) are two defining features of these autobiographical events. Distinguishing between personally experienced events and those that happened to other individuals, and between events that really occurred and those that were mere figments of the imagination, is clearly advantageous, yet the respective neural correlates remain unclear. Here we experimentally manipulated and dissociated realness and selfness during fMRI using a novel paradigm where participants recalled self (autobiographical) and non-self (from a movie or television news clips) events that were either real or previously imagined. Distinct sub-regions within dorsal and ventral medial prefrontal cortex, retrosplenial cortex and along the parieto-occipital sulcus preferentially coded for events (real or imagined) involving the self. By contrast, recollection of autobiographical events that really happened in the external world activated different areas within ventromedial prefrontal cortex and posterior cingulate cortex. In addition, recall of externally experienced real events (self or non-self) was associated with increased activity in areas of dorsomedial prefrontal cortex and posterior cingulate cortex. Taken together our results permitted a functional deconstruction of anterior (medial prefrontal) and posterior (retrosplenial cortex, posterior cingulate cortex, precuneus) cortical midline regions widely associated with autobiographical memory but whose roles have hitherto been poorly understood. PMID:18973817

  4. PERSPECTIVE: Toward the development of a cortically based visual neuroprosthesis

    NASA Astrophysics Data System (ADS)

    Normann, Richard A.; Greger, Bradley A.; House, Paul; Romero, Samuel F.; Pelayo, Francisco; Fernandez, Eduardo

    2009-06-01

    Motivated by the success of cochlear implants for deaf patients, we are now facing the goal of creating a visual neuroprosthesis designed to interface with the occipital cortex as a means through which a limited but useful sense of vision could be restored in profoundly blind patients. We review the most important challenges regarding this neuroprosthetic approach and emphasize the need for basic human psychophysical research on the best way of presenting complex stimulating patterns through multiple microelectrodes. Continued research will hopefully lead to the development of and design specifications for the first generation of a cortically based visual prosthesis system.

  5. Occipital White Matter Tracts in Human and Macaque

    PubMed Central

    Takemura, Hiromasa; Pestilli, Franco; Weiner, Kevin S.; Landi, Sofia M.; Sliwa, Julia; Ye, Frank Q.; Barnett, Michael A.; Leopold, David A.; Freiwald, Winrich A.; Logothetis, Nikos K.; Wandell, Brian A.

    2017-01-01

    Abstract We compare several major white-matter tracts in human and macaque occipital lobe using diffusion magnetic resonance imaging. The comparison suggests similarities but also significant differences in the tracts. There are several apparently homologous tracts in the 2 species, including the vertical occipital fasciculus (VOF), optic radiation, forceps major, and inferior longitudinal fasciculus (ILF). There is one large human tract, the inferior fronto-occipital fasciculus, with no corresponding fasciculus in macaque. We could identify the macaque VOF (mVOF), which has been little studied. Its position is consistent with classical invasive anatomical studies by Wernicke. VOF homology is supported by similarity of the endpoints in V3A and ventral V4 across species. The mVOF fibers intertwine with the dorsal segment of the ILF, but the human VOF appears to be lateral to the ILF. These similarities and differences between the occipital lobe tracts will be useful in establishing which circuitry in the macaque can serve as an accurate model for human visual cortex. PMID:28369290

  6. Clinical outcomes of pulsed radiofrequency neuromodulation for the treatment of occipital neuralgia.

    PubMed

    Choi, Hyuk Jai; Oh, In Ho; Choi, Seok Keun; Lim, Young Jin

    2012-05-01

    Occipital neuralgia is characterized by paroxysmal jabbing pain in the dermatomes of the greater or lesser occipital nerves caused by irritation of these nerves. Although several therapies have been reported, they have only temporary therapeutic effects. We report the results of pulsed radiofrequency treatment of the occipital nerve, which was used to treat occipital neuralgia. Patients were diagnosed with occipital neuralgia according to the International Classification of Headache Disorders classification criteria. We performed pulsed radiofrequency neuromodulation when patients presented with clinical findings suggestive occipital neuralgia with positive diagnostic block of the occipital nerves with local anesthetics. Patients were analyzed according to age, duration of symptoms, surgical results, complications and recurrence. Pain was measured every month after the procedure using the visual analog and total pain indexes. From 2010, ten patients were included in the study. The mean age was 52 years (34-70 years). The mean follow-up period was 7.5 months (6-10 months). Mean Visual Analog Scale and mean total pain index scores declined by 6.1 units and 192.1 units, respectively, during the follow-up period. No complications were reported. Pulsed radiofrequency neuromodulation of the occipital nerve is an effective treatment for occipital neuralgia. Further controlled prospective studies are necessary to evaluate the exact effects and long-term outcomes of this treatment method.

  7. Clinical Outcomes of Pulsed Radiofrequency Neuromodulation for the Treatment of Occipital Neuralgia

    PubMed Central

    Oh, In Ho; Choi, Seok Keun; Lim, Young Jin

    2012-01-01

    Objective Occipital neuralgia is characterized by paroxysmal jabbing pain in the dermatomes of the greater or lesser occipital nerves caused by irritation of these nerves. Although several therapies have been reported, they have only temporary therapeutic effects. We report the results of pulsed radiofrequency treatment of the occipital nerve, which was used to treat occipital neuralgia. Methods Patients were diagnosed with occipital neuralgia according to the International Classification of Headache Disorders classification criteria. We performed pulsed radiofrequency neuromodulation when patients presented with clinical findings suggestive occipital neuralgia with positive diagnostic block of the occipital nerves with local anesthetics. Patients were analyzed according to age, duration of symptoms, surgical results, complications and recurrence. Pain was measured every month after the procedure using the visual analog and total pain indexes. Results From 2010, ten patients were included in the study. The mean age was 52 years (34-70 years). The mean follow-up period was 7.5 months (6-10 months). Mean Visual Analog Scale and mean total pain index scores declined by 6.1 units and 192.1 units, respectively, during the follow-up period. No complications were reported. Conclusion Pulsed radiofrequency neuromodulation of the occipital nerve is an effective treatment for occipital neuralgia. Further controlled prospective studies are necessary to evaluate the exact effects and long-term outcomes of this treatment method. PMID:22792425

  8. Giant occipital meningocele in an 8-year-old child with Dandy-Walker malformation.

    PubMed

    Talamonti, Giuseppe; Picano, Marco; Debernardi, Alberto; Bolzon, Moreno; Teruzzi, Mario; D'Aliberti, Giuseppe

    2011-01-01

    The possibility of an association between Dandy-Walker malformation and occipital meningocele is well-known. However, just an overall number of about 40 cases have been previously reported. Giant occipital meningocele has been described only in three newborns. Incidence, pathology, clinical presentation, and proper management of this association are still poorly defined. An 8-year-old boy with Dandy-Walker malformation and giant (25 cm in diameter) occipital meningocele is presented. This boy was born without any apparent occipital mass and harbored no other significant malformations including hydrocephalus. On admission, he was neurologically intact and the giant occipital mass presented partially calcified cyst walls. Treatment consisted of the excision of the occipital malformation, cranioplasty, and cysto-peritoneal shunt. Outcome was excellent. To the best of our knowledge, among the few reported patients with Dandy-Walker malformation associated to occipital meningocele, this is the oldest one and the one with the largest occipital meningocele; he is unique with calcified walls of the occipital meningocele and the only one who survived the repair of the giant malformation. In Dandy-Walker malformation, occipital meningocele may develop and grow regardless of hydrocephalus. Giant size may be reached and the cyst may become calcified. Surgical repair may warrant favorable outcome.

  9. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    PubMed

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R G; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  10. Reduced cortical thickness and increased surface area in antisocial personality disorder.

    PubMed

    Jiang, Weixiong; Li, Gang; Liu, Huasheng; Shi, Feng; Wang, Tao; Shen, Celina; Shen, Hui; Lee, Seong-Whan; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2016-11-19

    Antisocial personality disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness (CTh) and surface area (SA), as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of CTh and SA in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger SA in several specific brain regions, i.e., bilateral superior frontal gyrus (SFG), orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus (MFG), middle temporal gyrus (MTG), and left bank of superior temporal sulcus (STS). In addition, we also found that the ability of impulse control was positively correlated with CTh in the SFG, MFG, orbitofrontal cortex (OFC), pars triangularis, superior temporal gyrus (STG), and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in CTh and SA in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    PubMed Central

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  12. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    PubMed

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  13. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice

    PubMed Central

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  14. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    PubMed

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  15. Atlanto-occipital dislocation: Case report and discussion.

    PubMed

    Asfaw, Tehetena; Chow, Bernard; Frederiksen, Ryan A

    2011-01-01

    Traumatic atlanto-occipital dislocation is an uncommon injury that frequently results in either a fatal outcome or severe neurologic deficit. This diagnosis must be considered for any patients who may have had cervical spine damage after high trauma, even in the absence of neurologic signs, as there have been reports of cases without neurologic impairment. In addition to radiographic examination, including lateral cervical radiographs, supplemental imaging with CT or MRI may be required to confirm diagnosis in equivocal cases, and to help in evaluation of bone and nervous structures. Moreover, these modalities allow measurement of the magnitude of dislocation and aid in classification of type of dislocation, which helps guide management. A systematic approach to evaluating the cranio-cervical relationship is critical to identifying atlanto-occipital dislocation. This case report presents and discusses imaging findings that will assist in the diagnosis of atlanto-occipital dislocation.

  16. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    PubMed Central

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble

  17. Functional organization of human subgenual cortical areas: Relationship between architectonical segregation and connectional heterogeneity.

    PubMed

    Palomero-Gallagher, Nicola; Eickhoff, Simon B; Hoffstaedter, Felix; Schleicher, Axel; Mohlberg, Hartmut; Vogt, Brent A; Amunts, Katrin; Zilles, Karl

    2015-07-15

    Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Response of cervicogenic headaches and occipital neuralgia to radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerve.

    PubMed

    Hamer, John F; Purath, Traci A

    2014-03-01

    This article investigates the degree and duration of pain relief from cervicogenic headaches or occipital neuralgia following treatment with radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. It also addresses the procedure's complication rate and patient's willingness to repeat the procedure if severe symptoms recur. This is a single-center retrospective observational study of 40 patients with refractory cervicogenic headaches and or occipital neuralgia. Patients were all referred by a headache specialty clinic for evaluation for radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. After treatment, patients were followed for a minimum of 6 months to a year. Patient demographics and the results of radiofrequency ablation were recorded on the same day, after 3-4 days, and at 6 months to 1 year following treatment. Thirty-five percent of patients reported 100% pain relief and 70% reported 80% or greater pain relief. The mean duration of improvement is 22.35 weeks. Complication rate was 12-13%. 92.5% of patients reported they would undergo the procedure again if severe symptoms returned. Radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerve can provide many months of greater than 50% pain relief in the vast majority of recipients with an expected length of symptom improvement of 5-6 months. © 2014 American Headache Society.

  19. Experimental trauma of occipital impacts.

    DOT National Transportation Integrated Search

    1974-03-01

    The paper presents clinical observations, physiological data and pathological findings that have been collected on a series of baboons exposed to controlled occipital impacts under local anesthesia. This acute experimental trauma study was accomplish...

  20. Etiology and Treatment Modalities of Occipital Artery Aneurysms.

    PubMed

    Chaudhry, Nauman S; Gaynor, Brandon G; Hussain, Shahrose; Dernbach, Paul D; Aziz-Sultan, Mohammad A

    2017-06-01

    Aneurysms of the external carotid artery represent approximately 2% of cervical carotid aneurysms, with the majority being traumatic pseudoaneurysms. Given the paucity of literature available for guidance, the diagnosis, treatment, and follow-up of such lesions are completely individualized. We report an 83-year-old woman with an 8-week history of headache in the occipital region, transient episode of gait disturbance, and pulsatile tinnitus on the right. She had no history of trauma, surgery, autoimmune disease, or infection. Physical examination revealed a pulsatile mass tender to palpation in the right occipital scalp. The mass was surgically excised, and histopathological diagnosis of a true aneurysm was made. Postoperatively, the patient's symptoms resolved; however, 1 month after the procedure, she developed occipital neuralgia, which was successfully treated with a percutaneous nerve block. To the best of our knowledge, this is the second reported case of a true aneurysm of the occipital artery in a patient with no history of trauma. The clinical examination, diagnosis, and treatment are discussed and the literature is reviewed for previously reported cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cortical Activation Deficits During Facial Emotion Processing in Youth at High Risk for the Development of Substance Use Disorders*

    PubMed Central

    Hulvershorn, Leslie A.; Finn, Peter; Hummer, Tom A.; Leibenluft, Ellen; Ball, Brandon; Gichina, Victoria; Anand, Amit

    2013-01-01

    Background Recent longitudinal studies demonstrate that addiction risk may be influenced by a cognitive, affective and behavioral phenotype that emerges during childhood. Relatively little research has focused on the affective or emotional risk components of this high-risk phenotype, including the relevant neurobiology. Methods Non-substance abusing youth (N = 19; mean age = 12.2) with externalizing psychopathology and paternal history of a substance use disorder and demographically matched healthy comparisons (N=18; mean age = 11.9) were tested on a facial emotion matching task during functional MRI. This task involved matching faces by emotions (angry, anxious) or matching shape orientation. Results High-risk youth exhibited increased medial prefrontal, precuneus and occipital cortex activation compared to the healthy comparison group during the face matching condition, relative to the control shape condition. The occipital activation correlated positively with parent-rated emotion regulation impairments in the high-risk group. Conclusions These findings suggest a preexisting abnormality in cortical activation in response to facial emotion matching in youth at high risk for the development of problem drug or alcohol use. These cortical deficits may underlie impaired affective processing and regulation, which in turn may contribute to escalating drug use in adolescence. PMID:23768841

  2. An anatomical and functional topography of human auditory cortical areas

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that—whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis—the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions. PMID:25120426

  3. Effects of cross-sex hormone treatment on cortical thickness in transsexual individuals.

    PubMed

    Zubiaurre-Elorza, Leire; Junque, Carme; Gómez-Gil, Esther; Guillamon, Antonio

    2014-05-01

    Untreated transsexuals have a brain cortical phenotype. Cross-sex hormone treatments are used to masculinize or feminize the bodies of female-to-male (FtMs) or male-to-female (MtFs) transsexuals, respectively. A longitudinal design was conducted to investigate the effects of treatments on brain cortical thickness (CTh) of FtMs and MtFs. This study investigated 15 female-to-male (FtMs) and 14 male-to-female (MtFs) transsexuals prior and during at least six months of cross-sex hormone therapy treatment. Brain MRI imaging was performed in a 3-Tesla TIM-TRIO Siemens scanner. T1-weighted images were analyzed with FreeSurfer software to obtain CTh as well as subcortical volumetric values. Changes in brain CTh thickness and volumetry associated to changes in hormonal levels due to cross-sex hormone therapy. After testosterone treatment, FtMs showed increases of CTh bilaterally in the postcentral gyrus and unilaterally in the inferior parietal, lingual, pericalcarine, and supramarginal areas of the left hemisphere and the rostral middle frontal and the cuneus region of the right hemisphere. There was a significant positive correlation between the serum testosterone and free testosterone index changes and CTh changes in parieto-temporo-occipital regions. In contrast, MtFs, after estrogens and antiandrogens treatment, showed a general decrease in CTh and subcortical volumetric measures and an increase in the volume of the ventricles. Testosterone therapy increases CTh in FtMs. Thickening in cortical regions is associated to changes in testosterone levels. Estrogens and antiandrogens therapy in MtFs is associated to a decrease in the CTh that consequently induces an enlargement of the ventricular system. © 2014 International Society for Sexual Medicine.

  4. Imaging the cortical effect of lamotrigine in patients with idiopathic generalized epilepsy: a low-resolution electromagnetic tomography (LORETA) study.

    PubMed

    Clemens, Béla; Piros, Pálma; Bessenyei, Mónika; Tóth, Márton; Hollódy, Katalin; Kondákor, István

    2008-10-01

    Anatomical localization of the cortical effect of lamotrigine (LTG) in patients with idiopathic generalized epilepsy (IGE). 19 patients with untreated IGE were investigated. EEG was recorded in the untreated condition and 3 months later when LTG treatment abolished the seizures. 19-channel EEG was recorded, and a total of 2min artifact-free, waking EEG was processed to low-resolution electromagnetic tomography (LORETA) analysis. Activity (that is, current source density, A/m(2)) was computed in four frequency bands (delta, theta, alpha, and beta), for 2394 voxels that represented the cortical gray matter and the hippocampi. Group differences between the untreated and treated conditions were computed for the four bands and all voxels by multiple t-tests for interdependent datasets. The results were presented in terms of anatomical distribution and statistical significance. p<0.01 (uncorrected) changes (decrease of activity) emerged in the theta and the alpha bands. Theta activity decreased in a large cluster of voxels including parts of the temporal, parietal, occipital cortex bilaterally, and in the transverse temporal gyri, insula, hippocampus, and uncus on the right side. Alpha activity decreased in a relatively smaller cortical area involving the right temporo-parietal junction and surrounding parts of the cortex, and part of the insula on the right side. LTG decreased theta activity in several cortical areas where abnormally increased theta activity had been found in a prior study in another cohort of untreated IGE patients [Clemens, B., Bessenyei, M., Piros, P., Tóth, M., Seress, L., Kondákor, I., 2007b. Characteristic distribution of interictal brain electrical activity in idiopathic generalized epilepsy. Epilepsia 48, 941-949]. These LTG-related changes might be related to the decrease of seizure propensity in IGE.

  5. Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3

    PubMed Central

    Polimeni, Jonathan R.; Tootell, Roger B.H.

    2016-01-01

    In nonhuman primates (NHPs), secondary visual cortex (V2) is composed of repeating columnar stripes, which are evident in histological variations of cytochrome oxidase (CO) levels. Distinctive “thin” and “thick” stripes of dark CO staining reportedly respond selectively to stimulus variations in color and binocular disparity, respectively. Here, we first tested whether similar color-selective or disparity-selective stripes exist in human V2. If so, available evidence predicts that such stripes should (1) radiate “outward” from the V1–V2 border, (2) interdigitate, (3) differ from each other in both thickness and length, (4) be spaced ∼3.5–4 mm apart (center-to-center), and, perhaps, (5) have segregated functional connections. Second, we tested whether analogous segregated columns exist in a “next-higher” tier area, V3. To answer these questions, we used high-resolution fMRI (1 × 1 × 1 mm3) at high field (7 T), presenting color-selective or disparity-selective stimuli, plus extensive signal averaging across multiple scan sessions and cortical surface-based analysis. All hypotheses were confirmed. V2 stripes and V3 columns were reliably localized in all subjects. The two stripe/column types were largely interdigitated (e.g., nonoverlapping) in both V2 and V3. Color-selective stripes differed from disparity-selective stripes in both width (thickness) and length. Analysis of resting-state functional connections (eyes closed) showed a stronger correlation between functionally alike (compared with functionally unlike) stripes/columns in V2 and V3. These results revealed a fine-scale segregation of color-selective or disparity-selective streams within human areas V2 and V3. Together with prior evidence from NHPs, this suggests that two parallel processing streams extend from visual subcortical regions through V1, V2, and V3. SIGNIFICANCE STATEMENT In current textbooks and reviews, diagrams of cortical visual processing highlight two distinct neural

  6. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.

    PubMed

    Gobel, Eric W; Parrish, Todd B; Reber, Paul J

    2011-10-15

    Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. [Effect of neurolysis on intractable greater occipital nerve neuralgia].

    PubMed

    Tian, Yunhu; Liu, Ya; Liu, Huancai

    2007-09-01

    To investigate the effect of neurolysis on intractable greater occipital nerve neuralgia. From March 1998 to August 2005, twenty-six patients suffering from intractable greater occipital nerve neuralgia were treated. There were 12 males and 14 females with an average age of 52 years (ranged 38-63 years). The disease course was 3-7 years. Sixteen cases had a long duration of work with bowing head, 5 cases symptoms appeared after trauma, and others had no identified causes. The visual analogue scales (VAS) scoring was 6.0 to 9.5, averaged 8. 6. Seven cases were treated by apocope of obliquus capitis inferior under general anaesthesia and 19 cases were treated by neurolysis of greater occipital nerve under local anaesthesia. The compression mass were examined. Symptoms ameliorated or disappeared in 26 cases immediately after operation. The wounds healed by first intention. The pathological results of the removal mass included lymph node (3 cases), neurilemmoma (2 cases) and scar (5 cases). The VAS scoring of 26 cases was 0 to 5 (average, 2) 3 days after operation. Twenty-three cases were followed up for 1 to 3 years. The VAS scoring of 23 cases was 0 to 4.5 ( average, 1.9) 1 months after operation. Only two cases recurred and the symptoms were ameliorated. Pain aggavated after tiredness and reliveed after oral anti-inflammatory analgesics in 6 cases. No relapse occurred in the others. The complete neurolysis of greater occipital nerve (including apocope of obliquus capitis inferior, release between the cucullaris and semispinalis) which make the greater occipital nerve goes without any compression is the key point to treat intractable greater occipital nerve neuralgia.

  8. True aneurysm of the proximal occipital artery: Case report.

    PubMed

    Illuminati, Giulio; Cannistrà, Marco; Pizzardi, Giulia; Pasqua, Rocco; Frezzotti, Francesca; Calio', Francesco G

    2018-01-01

    True aneurysms of the proximal occipital artery are rare, may cause neurological symptoms due to compression of the hypoglossal nerve and their resection may be technically demanding. The case of an aneurysm of the proximal occipital artery causing discomfort and tongue deviation by compression on the hypoglossal nerve is reported. Postoperative course after resection was followed by complete regression of symptoms. Surgical resection, as standard treatment of aneurysms of the occipital artery, with the eventual technical adjunct of intubation by the nose is effective in durably relieving symptoms and preventing aneurysm-related complication. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. 8. Occipital neuralgia.

    PubMed

    Vanelderen, Pascal; Lataster, Arno; Levy, Robert; Mekhail, Nagy; van Kleef, Maarten; Van Zundert, Jan

    2010-01-01

    Occipital neuralgia is defined as a paroxysmal shooting or stabbing pain in the dermatomes of the nervus occipitalis major and/or nervus occipitalis minor. The pain originates in the suboccipital region and radiates over the vertex. A suggestive history and clinical examination with short-term pain relief after infiltration with local anesthetic confirm the diagnosis. No data are available about the prevalence or incidence of this condition. Most often, trauma or irritation of the nervi occipitales causes the neuralgia. Imaging studies are necessary to exclude underlying pathological conditions. Initial therapy consists of a single infiltration of the culprit nervi occipitales with local anesthetic and corticosteroids (2 C+). The reported effects of botulinum toxin A injections are contradictory (2 C+/-). Should injection of local anesthetic and corticosteroids fail to provide lasting relief, pulsed radio-frequency treatment of the nervi occipitales can be considered (2 C+). There is no evidence to support pulsed radio-frequency treatment of the ganglion spinale C2 (dorsal root ganglion). As such, this should only be done in a clinical trial setting. Subcutaneous occipital nerve stimulation can be considered if prior therapy with corticosteroid infiltration or pulsed radio-frequency treatment failed or provided only short-term relief (2 C+).

  10. High social desirability and prefrontal cortical activity in cancer patients: a preliminary study.

    PubMed

    Tashiro, Manabu; Juengling, Freimut D; Moser, Ernst; Reinhardt, Michael J; Kubota, Kazuo; Yanai, Kazuhiko; Sasaki, Hidetada; Nitzsche, Egbert U; Kumano, Hiroaki; Itoh, Masatoshi

    2003-04-01

    Social desirability is sometimes associated with poor prognosis in cancer patients. Psycho-neuro-immune interaction has been hypothesized as an underlying mechanism of the negative clinical outcome. Purpose of this study was to examine possible effects of high social desirability on the regional brain activity in patients with malignant diseases. Brain metabolism of 16 patients with various malignant diseases was measured by PET with 18F-fluorodeoxyglucose (FDG). Patients were divided into 2 groups using median split on Marlowe & Crown's Social Desirability Scale (MC), controlling for age, gender, and for severity of depression and anxiety, the possible two major influential factors. A group comparison of the regional cerebral activity was calculated on a voxel-by-voxel basis using statistical parametric mapping (SPM). The subgroup comparison showed that the high social desirability was associated with relatively increased metabolism in the cortical regions in the prefrontal, temporal and occipital lobes as well as in the anterior cingulate gyrus. High social desirability seems to be associated with increased activity in the prefrontal and other cortical areas. The finding is in an accordance with previous studies that demonstrated an association between prefrontal damage and anti-social behavior. Functional neuroimaging seems to be useful not only for psychiatric evaluation of major factors such as depression and anxiety but also for further psychosocial factors in cancer patients.

  11. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    PubMed

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  12. Comparison of landmark-based and automatic methods for cortical surface registration

    PubMed Central

    Pantazis, Dimitrios; Joshi, Anand; Jiang, Jintao; Shattuck, David; Bernstein, Lynne E.; Damasio, Hanna; Leahy, Richard M.

    2009-01-01

    Group analysis of structure or function in cerebral cortex typically involves as a first step the alignment of the cortices. A surface based approach to this problem treats the cortex as a convoluted surface and coregisters across subjects so that cortical landmarks or features are aligned. This registration can be performed using curves representing sulcal fundi and gyral crowns to constrain the mapping. Alternatively, registration can be based on the alignment of curvature metrics computed over the entire cortical surface. The former approach typically involves some degree of user interaction in defining the sulcal and gyral landmarks while the latter methods can be completely automated. Here we introduce a cortical delineation protocol consisting of 26 consistent landmarks spanning the entire cortical surface. We then compare the performance of a landmark-based registration method that uses this protocol with that of two automatic methods implemented in the software packages FreeSurfer and BrainVoyager. We compare performance in terms of discrepancy maps between the different methods, the accuracy with which regions of interest are aligned, and the ability of the automated methods to correctly align standard cortical landmarks. Our results show similar performance for ROIs in the perisylvian region for the landmark based method and FreeSurfer. However, the discrepancy maps showed larger variability between methods in occipital and frontal cortex and also that automated methods often produce misalignment of standard cortical landmarks. Consequently, selection of the registration approach should consider the importance of accurate sulcal alignment for the specific task for which coregistration is being performed. When automatic methods are used, the users should ensure that sulci in regions of interest in their studies are adequately aligned before proceeding with subsequent analysis. PMID:19796696

  13. Ultrasound-Guided Intermediate Site Greater Occipital Nerve Infiltration: A Technical Feasibility Study.

    PubMed

    Zipfel, Jonathan; Kastler, Adrian; Tatu, Laurent; Behr, Julien; Kechidi, Rachid; Kastler, Bruno

    2016-01-01

    Two studies recently reported that computed tomography (CT) guided infiltration of the greater occipital nerve at its intermediate site allows a high efficacy rate with long-lasting pain relief following procedure in occipital neuralgia and in various craniofacial pain syndromes. The purpose of our study was to evaluate the technical feasibility and safety of ultrasound-guided intermediate site greater occipital nerve infiltration. Retrospective study. This study was conducted at the imaging department of a 1,409 bed university hospital. Local institutional review board approval was obtained and written consent was waived. In this retrospective study, 12 patients suffering from refractory occipital neuralgia or craniofacial pain syndromes were included between April and October 2014. They underwent a total of 21 ultrasound-guided infiltrations. Infiltration of the greater occipital nerve was performed at the intermediate site of the greater occipital nerve, at its first bend between obliqus capitis inferior and semispinalis capitis muscles with local anestetics and cortivazol. Technical success was defined as satisfactory diffusion of added iodinated contrast media in the fatty space between these muscles depicted on control CT scan. We also reported first data of immediate block test efficacy and initial clinical efficacy at 7 days, one month, and 3 months, defined by a decrease of at least 50% of visual analog scale (VAS) scores. Technical success rate was 95.24%. Patients suffered from right unilateral occipital neuralgia in 3 cases, left unilateral occipital neuralgia in 2 cases, bilateral occipital neuralgia in 2 cases, migraine in one case, cervicogenic headache in one case, tension-type headache in 2 cases, and cluster headache in one case. Block test efficacy was found in 93.3% (14/15) cases. Clinical efficacy was found in 80% of cases at 7 days, in 66.7% of cases at one month and in 60% of cases at 3 months. No major complications were noted. Some of the

  14. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy.

    PubMed

    Amlien, Inge K; Fjell, Anders M; Tamnes, Christian K; Grydeland, Håkon; Krogsrud, Stine K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2016-01-01

    The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps

    PubMed Central

    2016-01-01

    Abstract Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor‐preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface‐based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory‐motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory‐motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M‐I. Hum Brain Mapp 37:2784–2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061771

  16. Hearing Lips and Seeing Voices: How Cortical Areas Supporting Speech Production Mediate Audiovisual Speech Perception

    PubMed Central

    Skipper, Jeremy I.; van Wassenhove, Virginie; Nusbaum, Howard C.; Small, Steven L.

    2009-01-01

    Observing a speaker’s mouth profoundly influences speech perception. For example, listeners perceive an “illusory” “ta” when the video of a face producing /ka/ is dubbed onto an audio /pa/. Here, we show how cortical areas supporting speech production mediate this illusory percept and audiovisual (AV) speech perception more generally. Specifically, cortical activity during AV speech perception occurs in many of the same areas that are active during speech production. We find that different perceptions of the same syllable and the perception of different syllables are associated with different distributions of activity in frontal motor areas involved in speech production. Activity patterns in these frontal motor areas resulting from the illusory “ta” percept are more similar to the activity patterns evoked by AV/ta/ than they are to patterns evoked by AV/pa/ or AV/ka/. In contrast to the activity in frontal motor areas, stimulus-evoked activity for the illusory “ta” in auditory and somatosensory areas and visual areas initially resembles activity evoked by AV/pa/ and AV/ka/, respectively. Ultimately, though, activity in these regions comes to resemble activity evoked by AV/ta/. Together, these results suggest that AV speech elicits in the listener a motor plan for the production of the phoneme that the speaker might have been attempting to produce, and that feedback in the form of efference copy from the motor system ultimately influences the phonetic interpretation. PMID:17218482

  17. Acute-Onset Severe Occipital Neuralgia Associated With High Cervical Lesion in Patients With Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Hayashi, Yuichi; Koumura, Akihiro; Yamada, Megumi; Kimura, Akio; Shibata, Toshirou; Inuzuka, Takashi

    2017-07-01

    To address occipital neuralgia in patients with neuromyelitis optica spectrum disorder (NMOSD). NMOSD is an inflammatory demyelinating disease that commonly presents with pain; however, headache symptoms have received little attention. We presented three cases of NMOSD in which the patients experienced acute-onset, severe, and steroid-responsive occipital neuralgia. All patients provided consent to use their demographic and imaging data retrospectively. In all three cases, MRI revealed a new high-intensity area in the cervical cord at the C1-C3 level of the spine, which was diminished in two of the three cases after corticosteroid pulse therapy. Our cases support the recognition of NMOSD as a cause of secondary headache. As patients with NMOSD experience severe occipital neuralgia, a relapse should be considered and a cervical MRI should be performed. © 2017 American Headache Society.

  18. Primary visual cortex in neandertals as revealed from the occipital remains from the El Sidrón site, with emphasis on the new SD-2300 specimen.

    PubMed

    García-Tabernero, Antonio; Peña-Melián, Angel; Rosas, Antonio

    2018-07-01

    The comparative analysis of the endocranial surface of the El Sidrón new occipital fragment SD-2300 shows meaningful differences in the configuration of the occipital pole region between neandertals and anatomically modern humans (AMH). The particular asymmetries found in neandertals in the venous sinus drainage and the petalial patterns are recognizable in this new specimen as well. In addition, the supra- and infracalcarine fossae of the occipital pole region appear to deviate obliquely from the mid-line when compared with sapiens. Due to the excellent preservation conditions of SD-2300, the main sulci and gyri of the occipital pole area have been identified, this degree of detail being uncommon in a fossil specimen; in general, the gyrification pattern is similar to AMH, but with some notable differences. Particularly interesting is the description of the lunate and the calcarine sulci. The lunate sulcus is located close to the occipital pole, in a similar posterior position to in other Homo species. Regarding the calcarine sulcus, there are significant differences in the primary visual cortex, with the V1 area, or Brodmann area 17, being larger in Homo neanderthalensis than in Homo sapiens. This may lead to greater visual acuity in neandertals than in sapiens. © 2018 Anatomical Society.

  19. Novel use of narrow paddle electrodes for occipital nerve stimulation--technical note.

    PubMed

    Abhinav, Kumar; Park, Nicholas D; Prakash, Savithru K; Love-Jones, Sarah; Patel, Nikunj K

    2013-01-01

    Occipital nerve stimulation (ONS), an established treatment for medically intractable headache syndromes, has lead migration rates quoted up to 24%. In a series of patients with ideal characteristics for this treatment modality, we describe an operative technique for ONS involving the novel use of narrow paddle electrodes: "S8 Lamitrode" (St. Jude Medical [SJM], St. Paul, MN, USA). Five patients (occipital neuralgia [ON] = 4; chronic migraine [CM] = 1) were treated with ONS between 2010 and 2011. All patients had a successful trial of peripheral neurostimulation (Algotec Ltd, Crawley, UK) therapy. Operative technique involved the use of a park-bench position, allowing simultaneous exposure of the occipital and infraclavicular regions. Through a retromastoid/occipital incision just beneath the external occipital protruberance, exposing the extrafascial plane, the S8 Lamitrode is implanted to intersect both greater occipital nerves for bilateral pain or unilateral greater and lesser occipital nerves for unilateral ON or with significant component of the pain relating to the lesser occipital nerve. Over the median follow-up of 12 months, there were no episodes of lead migration or revision. There also was significant improvement in symptoms in all patients. This is the first reported use of S8 Lamitrode electrode for ONS. This narrow electrode is suited for this role leading to minimal trauma during surgical placement, facilitates resolution of problems with lead migration, and optimizes effect with stimulation focused more in direction of the occipital nerves without skin involvement. To date, the SJM Genesis neurostimulation system, with percutaneous electrodes only, is CE mark approved in Europe for peripheral nerve stimulation of the occipital nerves for the management of pain and disability for patients diagnosed with intractable CM. Further developments and studies are required for better devices to suit ONS, thereby avoiding frequently encountered

  20. "Visual" Cortex of Congenitally Blind Adults Responds to Syntactic Movement.

    PubMed

    Lane, Connor; Kanjlia, Shipra; Omaki, Akira; Bedny, Marina

    2015-09-16

    Human cortex is comprised of specialized networks that support functions, such as visual motion perception and language processing. How do genes and experience contribute to this specialization? Studies of plasticity offer unique insights into this question. In congenitally blind individuals, "visual" cortex responds to auditory and tactile stimuli. Remarkably, recent evidence suggests that occipital areas participate in language processing. We asked whether in blindness, occipital cortices: (1) develop domain-specific responses to language and (2) respond to a highly specialized aspect of language-syntactic movement. Nineteen congenitally blind and 18 sighted participants took part in two fMRI experiments. We report that in congenitally blind individuals, but not in sighted controls, "visual" cortex is more active during sentence comprehension than during a sequence memory task with nonwords, or a symbolic math task. This suggests that areas of occipital cortex become selective for language, relative to other similar higher-cognitive tasks. Crucially, we find that these occipital areas respond more to sentences with syntactic movement but do not respond to the difficulty of math equations. We conclude that regions within the visual cortex of blind adults are involved in syntactic processing. Our findings suggest that the cognitive function of human cortical areas is largely determined by input during development. Human cortex is made up of specialized regions that perform different functions, such as visual motion perception and language processing. How do genes and experience contribute to this specialization? Studies of plasticity show that cortical areas can change function from one sensory modality to another. Here we demonstrate that input during development can alter cortical function even more dramatically. In blindness a subset of "visual" areas becomes specialized for language processing. Crucially, we find that the same "visual" areas respond to a highly

  1. Low Message Sensation Health Promotion Videos Are Better Remembered and Activate Areas of the Brain Associated with Memory Encoding

    PubMed Central

    Jaganathan, Kanchana; Loughead, James W.; Blady, Shira J.; Childress, Anna Rose; Romer, Daniel; Langleben, Daniel D.

    2014-01-01

    Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in “message sensation value” (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the “attention-grabbing” high MSV format could impede the learning and retention of

  2. [Occipital neuralgia with visual obscurations: a case report].

    PubMed

    Selekler, Hamit Macit; Dündar, Gülmine; Kutlu, Ayşe

    2010-07-01

    Vertigo, dizziness and visual blurring have been reported in painful conditions in trigeminal innervation zones such as in idiopathic stabbing headache, supraorbital neuralgia or trigeminal nerve ophthalmic branch neuralgia. Although not common, pain in occipital neuralgia can spread through the anterior parts of the head. In this article, we present a case whose occipital neuralgiform paroxysms spread to the ipsilateral eye with simultaneous visual obscuration; the mechanisms of propagation and visual obscuration are discussed.

  3. A Visual Cortical Network for Deriving Phonological Information from Intelligible Lip Movements.

    PubMed

    Hauswald, Anne; Lithari, Chrysa; Collignon, Olivier; Leonardelli, Elisa; Weisz, Nathan

    2018-05-07

    Successful lip-reading requires a mapping from visual to phonological information [1]. Recently, visual and motor cortices have been implicated in tracking lip movements (e.g., [2]). It remains unclear, however, whether visuo-phonological mapping occurs already at the level of the visual cortex-that is, whether this structure tracks the acoustic signal in a functionally relevant manner. To elucidate this, we investigated how the cortex tracks (i.e., entrains to) absent acoustic speech signals carried by silent lip movements. Crucially, we contrasted the entrainment to unheard forward (intelligible) and backward (unintelligible) acoustic speech. We observed that the visual cortex exhibited stronger entrainment to the unheard forward acoustic speech envelope compared to the unheard backward acoustic speech envelope. Supporting the notion of a visuo-phonological mapping process, this forward-backward difference of occipital entrainment was not present for actually observed lip movements. Importantly, the respective occipital region received more top-down input, especially from left premotor, primary motor, and somatosensory regions and, to a lesser extent, also from posterior temporal cortex. Strikingly, across participants, the extent of top-down modulation of the visual cortex stemming from these regions partially correlated with the strength of entrainment to absent acoustic forward speech envelope, but not to present forward lip movements. Our findings demonstrate that a distributed cortical network, including key dorsal stream auditory regions [3-5], influences how the visual cortex shows sensitivity to the intelligibility of speech while tracking silent lip movements. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.

    PubMed

    Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo

    2012-03-01

    No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.

  5. Decreased centrality of cortical volume covariance networks in autism spectrum disorders.

    PubMed

    Balardin, Joana Bisol; Comfort, William Edgar; Daly, Eileen; Murphy, Clodagh; Andrews, Derek; Murphy, Declan G M; Ecker, Christine; Sato, João Ricardo

    2015-10-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by atypical structural and functional brain connectivity. Complex network analysis has been mainly used to describe altered network-level organization for functional systems and white matter tracts in ASD. However, atypical functional and structural connectivity are likely to be also linked to abnormal development of the correlated structure of cortical gray matter. Such covariations of gray matter are particularly well suited to the investigation of the complex cortical pathology of ASD, which is not confined to isolated brain regions but instead acts at the systems level. In this study, we examined network centrality properties of gray matter networks in adults with ASD (n = 84) and neurotypical controls (n = 84) using graph theoretical analysis. We derived a structural covariance network for each group using interregional correlation matrices of cortical volumes extracted from a surface-based parcellation scheme containing 68 cortical regions. Differences between groups in closeness network centrality measures were evaluated using permutation testing. We identified several brain regions in the medial frontal, parietal and temporo-occipital cortices with reductions in closeness centrality in ASD compared to controls. We also found an association between an increased number of autistic traits and reduced centrality of visual nodes in neurotypicals. Our study shows that ASD are accompanied by atypical organization of structural covariance networks by means of a decreased centrality of regions relevant for social and sensorimotor processing. These findings provide further evidence for the altered network-level connectivity model of ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Bone Area Histomorphometry.

    PubMed

    Andronowski, Janna M; Crowder, Christian

    2018-05-21

    Quantifying the amount of cortical bone loss is one variable used in histological methods of adult age estimation. Measurements of cortical area tend to be subjective and additional information regarding bone loss is not captured considering cancellous bone is disregarded. We describe whether measuring bone area (cancellous + cortical area) rather than cortical area may improve histological age estimation for the sixth rib. Mid-shaft rib cross-sections (n = 114) with a skewed sex distribution were analyzed. Ages range from 16 to 87 years. Variables included: total cross-sectional area, cortical area, bone area, relative bone area, relative cortical area, and endosteal area. Males have larger mean total cross-sectional area, bone area, and cortical area than females. Females display a larger mean endosteal area and greater mean relative measure values. Relative bone area significantly correlates with age. The relative bone area variable will provide researchers with a less subjective and more accurate measure than cortical area. © 2018 American Academy of Forensic Sciences.

  7. Massaging over the greater occipital nerve reduces the intensity of migraine attacks: evidence for inhibitory trigemino-cervical convergence mechanisms.

    PubMed

    Piovesan, Elcio Juliato; Di Stani, Fabrizio; Kowacs, Pedro André; Mulinari, Rogério Andrade; Radunz, Victor Hugo; Utiumi, Marco; Muranka, Eder B; Giublin, Mario Luiz; Werneck, Lineu César

    2007-09-01

    Activation of the trigemino-cervical system constitutes one of the first steps in the genesis of migraine. The objective of this study was to confirm the presence of trigemino-cervical convergence mechanisms and to establish whether such mechanisms may also be of inhibitory origin. We describe a case of a 39-years-old woman suffering from episodic migraine who showed a significant improvement in her frontal headache during migraine attacks if the greater occipital nerve territory was massaged after the appearance of static mechanical allodynia (cortical sensitization). We review trigemino-cervical convergence and diffuse nociceptive inhibitory control (DNIC) mechanisms and suggest that the convergence mechanisms are not only excitatory but also inhibitory.

  8. Gender-based analysis of cortical thickness and structural connectivity in Parkinson's disease.

    PubMed

    Yadav, Santosh K; Kathiresan, Nagarajan; Mohan, Suyash; Vasileiou, Georgia; Singh, Anup; Kaura, Deepak; Melhem, Elias R; Gupta, Rakesh K; Wang, Ena; Marincola, Francesco M; Borthakur, Arijitt; Haris, Mohammad

    2016-11-01

    Parkinson's disease (PD) is a progressive neurological disorder and appears to have gender-specific symptoms. Studies have observed a higher frequency for development of PD in male than in female. In the current study, we evaluated the gender-based changes in cortical thickness and structural connectivity in PD patients. With informed consent, 64 PD (43 males and 21 females) patients, and 46 (12 males and 34 females) age-matched controls underwent clinical assessment including Mini-Mental State Examination (MMSE) and magnetic resonance imaging on a 1.5 Tesla clinical MR scanner. Whole brain high-resolution T1-weighted images were acquired from all subjects and used to measure cortical thickness and structural network connectivity. No significant difference in MMSE score was observed between male and female both in control and PD subjects. Male PD patients showed significantly reduced cortical thickness in multiple brain regions including frontal, parietal, temporal, and occipital lobes as compared with those in female PD patients. The graph theory-based network analysis depicted lower connection strengths, lower clustering coefficients, and altered network hubs in PD male than in PD female. Male-specific cortical thickness changes and altered connectivity in PD patients may derive from behavioral, physiological, environmental, and genetical differences between male and female, and may have significant implications in diagnosing and treating PD among genders.

  9. The course of the greater occipital nerve in the suboccipital region: a proposal for setting landmarks for local anesthesia in patients with occipital neuralgia.

    PubMed

    Natsis, K; Baraliakos, X; Appell, H J; Tsikaras, P; Gigis, I; Koebke, J

    2006-05-01

    The anatomical relationships of the greater occipital nerve (GON) to the semispinalis capitis muscle (SCM) and the trapezius muscle aponeurosis (TMA) were examined to identify topographic landmarks for use in anesthetic blockade of the GON in occipital neuralgia. The course and the diameter of the GON were studied in 40 cadavers (29 females, 11 males), and the points where it pierced the SCM and the TMA were identified. The course of the GON did not differ between males and females. A left-right difference was detected in the site of the GON in the TMA region but not in the SCM region. The nerve became wider towards the periphery. This may be relevant to entrapment of the nerve in the development of occipital neuralgia. In three cases, the GON split into two branches before piercing the TMA and reunited after having passed the TMA, and it pierced the obliquus capitis inferior muscle in another three cases. The GON and the lesser occipital nerve reunited at the level of the occiput in 80% of the specimens. The occiput and the nuchal midline are useful topographic landmarks to guide anesthetic blockade of the GON for diagnosis and therapy of occipital neuralgia. The infiltration is probably best aimed at the site where the SCM is pierced by the GON.

  10. On the Origin of Cortical Dopamine: Is it a Co-Transmitter in Noradrenergic Neurons?

    PubMed Central

    Devoto, Paola; Flore, Giovanna

    2006-01-01

    Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA. To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter. Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas. Systemic administration or intra-cortical perfusion of α2-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex. Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC. Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced. Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of α2-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex. Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in

  11. On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons?

    PubMed

    Devoto, Paola; Flore, Giovanna

    2006-04-01

    Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA.To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter.Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas.Systemic administration or intra-cortical perfusion of alpha(2)-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex.Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC.Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced.Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of alpha(2)-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex.Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished

  12. The Roots of Alzheimer's Disease: Are High-Expanding Cortical Areas Preferentially Targeted?†.

    PubMed

    Fjell, Anders M; Amlien, Inge K; Sneve, Markus H; Grydeland, Håkon; Tamnes, Christian K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2015-09-01

    Alzheimer's disease (AD) is regarded a human-specific condition, and it has been suggested that brain regions highly expanded in humans compared with other primates are selectively targeted. We calculated shared and unique variance in the distribution of AD atrophy accounted for by cortical expansion between macaque and human, affiliation to the default mode network (DMN), ontogenetic development and normal aging. Cortical expansion was moderately related to atrophy, but a critical discrepancy was seen in the medial temporo-parietal episodic memory network. Identification of "hotspots" and "coldspots" of expansion across several primate species did not yield compelling evidence for the hypothesis that highly expanded regions are specifically targeted. Controlling for distribution of atrophy in aging substantially attenuated the expansion-AD relationship. A path model showed that all variables explained unique variance in AD atrophy but were generally mediated through aging. This supports a systems-vulnerability model, where critical networks are subject to various negative impacts, aging in particular, rather than being selectively targeted in AD. An alternative approach is suggested, focused on the interplay of the phylogenetically old and preserved medial temporal lobe areas with more highly expanded association cortices governed by different principles of plasticity and stability. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Botulinum toxin type-A (BOTOX) in the treatment of occipital neuralgia: a pilot study.

    PubMed

    Taylor, Martin; Silva, Sachin; Cottrell, Constance

    2008-01-01

    To determine the efficacy of occipital nerve blocks using reconstituted botulinum toxin type-A (BTX-A) in providing significant and prolonged pain relief in chronic occipital neuralgia. Occipital neuralgia is a unilateral or bilateral radiating pain with paresthesias commonly manifesting as paroxysmal episodes and involving the occipital and parietal regions. Common causes of occipital neuralgia include irritation or injury to the divisions of the occipital nerve, myofascial spasm, and focal entrapment of the occipital nerve. Treatment options include medication therapy, occipital nerve blocks, and surgical techniques. BTX-A, which has shown promise in relief of other headache types, may prove a viable therapeutic option for occipital neuralgia pain. Botulinum toxin type-A (reconstituted in 3 cc of saline) was injected into regions traversed by the greater and lesser occipital nerve in 6 subjects diagnosed with occipital neuralgia. Subjects were instructed to report their daily pain level (on a visual analog pain scale), their ability to perform daily activities (on several quality of life instruments) and their daily pain medication usage (based on a self-reported log), 2 weeks prior to the injection therapy and 12 weeks following injection therapy. Data were analyzed for significant variation from baseline values. The dull/aching and pin/needles types of pain reported by the subjects did not show a statistically significant improvement during the trial period. The sharp/shooting type of pain, however, showed improvement during most of the trial period except weeks 3-4 and 5-6. The quality of life measures exhibited some improvement. The headache-specific quality of life measure showed significant improvement by 6 weeks which continued through week 12. The general health- and depression-related measures showed no statistical improvement. No significant reduction in pain medication usage was demonstrated. Our results indicate that BTX-A improved the sharp

  14. Cortical activation deficits during facial emotion processing in youth at high risk for the development of substance use disorders.

    PubMed

    Hulvershorn, Leslie A; Finn, Peter; Hummer, Tom A; Leibenluft, Ellen; Ball, Brandon; Gichina, Victoria; Anand, Amit

    2013-08-01

    Recent longitudinal studies demonstrate that addiction risk may be influenced by a cognitive, affective and behavioral phenotype that emerges during childhood. Relatively little research has focused on the affective or emotional risk components of this high-risk phenotype, including the relevant neurobiology. Non-substance abusing youth (N=19; mean age=12.2) with externalizing psychopathology and paternal history of a substance use disorder and demographically matched healthy comparisons (N=18; mean age=11.9) were tested on a facial emotion matching task during functional MRI. This task involved matching faces by emotions (angry, anxious) or matching shape orientation. High-risk youth exhibited increased medial prefrontal, precuneus and occipital cortex activation compared to the healthy comparison group during the face matching condition, relative to the control shape condition. The occipital activation correlated positively with parent-rated emotion regulation impairments in the high-risk group. These findings suggest a preexisting abnormality in cortical activation in response to facial emotion matching in youth at high risk for the development of problem drug or alcohol use. These cortical deficits may underlie impaired affective processing and regulation, which in turn may contribute to escalating drug use in adolescence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Differential Impact of Multiple Sclerosis on Cortical and Deep Gray Matter Structures in African Americans and Caucasian Americans.

    PubMed

    Al-Kawaz, Mais; Monohan, Elizabeth; Morris, Eric; Perumal, Jai S; Nealon, Nancy; Vartanian, Timothy; Gauthier, Susan A

    2017-05-01

    African Americans with multiple sclerosis (AAwMS) have different disease phenotypes when compared to Caucasians Americans with MS (CAwMS). The pathologic basis of this difference in disease presentation is unknown. Fifty-Four AAwMS and 54 CAwMS were appropriately matched for age, gender, treatment duration, and disease duration. FreeSurfer was used to segment brain white matter and gray matter from T1 images and compute thalamic volume. Regional cortical thickness was calculated using QDEC. The 2 matched cohorts differed in disability, with AAwMS demonstrating significantly higher EDSS scores (2.3±2.2 vs. 1.3±1.5, P < .009), yet the 2 populations had similar T2 hyperintense lesion volumes (P = .35). AAwMS had a significantly lower total global cortical thickness when compared to CAwMS (P = .03). Controlling for EDSS, AAwMS showed multiple cortical regions to be significantly thinner than CAwMS; these included areas within the temporal, parietal and occipital lobes, as well as the precentral and postcentral gyrus. Middletemporal cortex was most affected in AAwMS in the left hemisphere (P = .009), while the superiortemporal cortex was most affected in the right hemisphere (P = .0001). In contrast, thalamic volume was significantly reduced in CAwMS when compared to AAwMS (P = .01). In both groups, worse disability was associated with lower total thalamic volume percentage. AAwMS and CAwMS patients differ with regard to global and regional cortical thickness and thalamic volume. This diverging pattern of gray matter volumetrics among otherwise matched patients suggests that racial-specific disease differences may exist. Copyright © 2016 by the American Society of Neuroimaging.

  16. Abnormal activation of the occipital lobes during emotion picture processing in major depressive disorder patients

    PubMed Central

    Li, Jianying; Xu, Cheng; Cao, Xiaohua; Gao, Qiang; Wang, Yan; Wang, Yanfang; Peng, Juyi; Zhang, Kerang

    2013-01-01

    A large number of studies have demonstrated that depression patients have cognitive dysfunction. With recently developed brain functional imaging, studies have focused on changes in brain function to investigate cognitive changes. However, there is still controversy regarding abnormalities in brain functions or correlation between cognitive impairment and brain function changes. Thus, it is important to design an emotion-related task for research into brain function changes. We selected positive, neutral, and negative pictures from the International Affective Picture System. Patients with major depressive disorder were asked to judge emotion pictures. In addition, functional MRI was performed to synchronously record behavior data and imaging data. Results showed that the total correct rate for recognizing pictures was lower in patients compared with normal controls. Moreover, the consistency for recognizing pictures for depressed patients was worse than normal controls, and they frequently recognized positive pictures as negative pictures. The consistency for recognizing pictures was negatively correlated with the Hamilton Depression Rating Scale. Functional MRI suggested that the activation of some areas in the frontal lobe, temporal lobe, parietal lobe, limbic lobe, and cerebellum was enhanced, but that the activation of some areas in the frontal lobe, parietal lobe and occipital lobe was weakened while the patients were watching positive and neutral pictures compared with normal controls. The activation of some areas in the frontal lobe, temporal lobe, parietal lobe, and limbic lobe was enhanced, but the activation of some areas in the occipital lobe were weakened while the patients were watching the negative pictures compared with normal controls. These findings indicate that patients with major depressive disorder have negative cognitive disorder and extensive brain dysfunction. Thus, reduced activation of the occipital lobe may be an initiating factor for

  17. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions

  18. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy

    PubMed Central

    Kaski, Diego; Yong, Keir X. X.; Paterson, Ross W.; Slattery, Catherine F.; Ryan, Natalie S.; Schott, Jonathan M.; Crutch, Sebastian J.

    2015-01-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal ‘visual dementia’ and most common atypical Alzheimer’s disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients’ (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer’s disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer’s disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer’s disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with ‘sticky fixation’. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer’s disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large

  19. Distinct roles of three frontal cortical areas in reward-guided behavior

    PubMed Central

    Noonan, M.P.; Mars, R.B.; Rushworth, M.F.S

    2011-01-01

    Functional magnetic resonance imaging (fMRI) was used to measure activity in three frontal cortical areas, lateral orbitofrontal cortex (lOFC), medial orbitofrontal cortex/ventromedial frontal cortex (mOFC/vmPFC), and anterior cingulate cortex (ACC) when expectations about type of reward, and not just reward presence or absence, could be learned. Two groups of human subjects learned twelve stimulus-response pairings. In one group (Consistent), correct performances of a given pairing were always reinforced with a specific reward outcome whereas in the other group (Inconsistent), correct performances were reinforced with randomly selected rewards. MOFC/vmPFC and lOFC were not distinguished by simple differences in relative preference for positive and negative outcomes. Instead lOFC activity reflected updating of reward-related associations specific to reward type; lOFC was active whenever informative outcomes allowed updating of reward-related associations regardless of whether the outcomes were positive or negative and the effects were greater when consistent stimulus-outcome and response-outcome mappings were present. A psycho-physiological interaction (PPI) analysis demonstrated changed coupling between lOFC and brain areas for visual object representation, such as perirhinal cortex, and reward-guided learning, such as amygdala, ventral striatum, and habenula /mediodorsal thalamus. By contrast mOFC/vmPFC activity reflected expected values of outcomes and occurrence of positive outcomes, irrespective of consistency of outcome mappings. The third frontal cortical region, ACC, reflected the use of reward type information to guide response selection. ACC activity reflected the probability of selecting the correct response, was greater when consistent outcome mappings were present, and was related to individual differences in propensity to select the correct response. PMID:21976525

  20. Complete occipitalization of the atlas with bilateral external auditory canal atresia.

    PubMed

    Dolenšek, Janez; Cvetko, Erika; Snoj, Žiga; Meznaric, Marija

    2017-09-01

    Fusion of the atlas with the occipital bone is a rare congenital dysplasia known as occipitalization of the atlas, occipitocervical synostosis, assimilation of the atlas, or atlanto-occipital fusion. It is a component of the paraxial mesodermal maldevelopment and commonly associated with other dysplasias of the craniovertebral junction. External auditory canal atresia or external aural atresia is a rare congenital absence of the external auditory canal. It occurs as the consequence of the maldevelopment of the first pharyngeal cleft due to defects of cranial neural crest cells migration and/or differentiation. It is commonly associated with the dysplasias of the structures derived from the first and second pharyngeal arches including microtia. We present the coexistence of the occipitalization of the atlas and congenital aural atresia, an uncommon combination of the paraxial mesodermal maldevelopment, and defects of cranial neural crest cells. The association is most probably syndromic as minimal diagnostic criteria for the oculoariculovertebral spectrum are fulfilled. From the clinical point of view, it is important to be aware that patients with microtia must obtain also appropriate diagnostic imaging studies of the craniovetebral junction due to eventual concomitant occipitalization of the atlas and frequently associated C1-C2 instability.

  1. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    PubMed

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  2. Greater occipital nerve neuralgia caused by pathological arterial contact: treatment by surgical decompression.

    PubMed

    Cornely, Christiane; Fischer, Marius; Ingianni, Giulio; Isenmann, Stefan

    2011-04-01

    Occipital nerve neuralgia is a rare cause of severe headache, and may be difficult to treat. We report the case of a patient with occipital nerve neuralgia caused by pathological contact of the nerve with the occipital artery. The pain was refractory to medical treatment. Surgical decompression yielded complete remission. © 2010 American Headache Society.

  3. Uppermost synchronized generators of spike-wave activity are localized in limbic cortical areas in late-onset absence status epilepticus.

    PubMed

    Piros, Palma; Puskas, Szilvia; Emri, Miklos; Opposits, Gabor; Spisak, Tamas; Fekete, Istvan; Clemens, Bela

    2014-03-01

    Absence status (AS) epilepticus with generalized spike-wave pattern is frequently found in severely ill patients in whom several disease states co-exist. The cortical generators of the ictal EEG pattern and EEG functional connectivity (EEGfC) of this condition are unknown. The present study investigated the localization of the uppermost synchronized generators of spike-wave activity in AS. Seven patients with late-onset AS were investigated by EEG spectral analysis, LORETA (Low Resolution Electromagnetic Tomography) source imaging, and LSC (LORETA Source Correlation) analysis, which estimates cortico-cortical EEGfC among 23 ROIs (regions of interest) in each hemisphere. All the patients showed generalized ictal EEG activity. Maximum Z-scored spectral power was found in the 1-6 Hz and 12-14 Hz frequency bands. LORETA showed that the uppermost synchronized generators of 1-6 Hz band activity were localized in frontal and temporal cortical areas that are parts of the limbic system. For the 12-14 Hz band, abnormally synchronized generators were found in the antero-medial frontal cortex. Unlike the rather stereotyped spectral and LORETA findings, the individual EEGfC patterns were very dissimilar. The findings are discussed in the context of nonconvulsive seizure types and the role of the underlying cortical areas in late-onset AS. The diversity of the EEGfC patterns remains an enigma. Localizing the cortical generators of the EEG patterns contributes to understanding the neurophysiology of the condition. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. The occipital face area is causally involved in the formation of identity-specific face representations.

    PubMed

    Ambrus, Géza Gergely; Dotzer, Maria; Schweinberger, Stefan R; Kovács, Gyula

    2017-12-01

    Transcranial magnetic stimulation (TMS) and neuroimaging studies suggest a role of the right occipital face area (rOFA) in early facial feature processing. However, the degree to which rOFA is necessary for the encoding of facial identity has been less clear. Here we used a state-dependent TMS paradigm, where stimulation preferentially facilitates attributes encoded by less active neural populations, to investigate the role of the rOFA in face perception and specifically in image-independent identity processing. Participants performed a familiarity decision task for famous and unknown target faces, preceded by brief (200 ms) or longer (3500 ms) exposures to primes which were either an image of a different identity (DiffID), another image of the same identity (SameID), the same image (SameIMG), or a Fourier-randomized noise pattern (NOISE) while either the rOFA or the vertex as control was stimulated by single-pulse TMS. Strikingly, TMS to the rOFA eliminated the advantage of SameID over DiffID condition, thereby disrupting identity-specific priming, while leaving image-specific priming (better performance for SameIMG vs. SameID) unaffected. Our results suggest that the role of rOFA is not limited to low-level feature processing, and emphasize its role in image-independent facial identity processing and the formation of identity-specific memory traces.

  5. Altered spontaneous neural activity in the occipital face area reflects behavioral deficits in developmental prosopagnosia.

    PubMed

    Zhao, Yuanfang; Li, Jingguang; Liu, Xiqin; Song, Yiying; Wang, Ruosi; Yang, Zetian; Liu, Jia

    2016-08-01

    Individuals with developmental prosopagnosia (DP) exhibit severe difficulties in recognizing faces and to a lesser extent, also exhibit difficulties in recognizing non-face objects. We used fMRI to investigate whether these behavioral deficits could be accounted for by altered spontaneous neural activity. Two aspects of spontaneous neural activity were measured: the intensity of neural activity in a voxel indexed by the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), and the connectivity of a voxel to neighboring voxels indexed by regional homogeneity (ReHo). Compared with normal adults, both the fALFF and ReHo values within the right occipital face area (rOFA) were significantly reduced in DP subjects. Follow-up studies on the normal adults revealed that these two measures indicated further functional division of labor within the rOFA. The fALFF in the rOFA was positively correlated with behavioral performance in recognition of non-face objects, whereas ReHo in the rOFA was positively correlated with processing of faces. When considered together, the altered fALFF and ReHo within the same region (rOFA) may account for the comorbid deficits in both face and object recognition in DPs, whereas the functional division of labor in these two measures helps to explain the relative independency of deficits in face recognition and object recognition in DP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Percutaneous electrical nerve stimulation of peripheral nerve for the intractable occipital neuralgia].

    PubMed

    Shaladi, Ali; Crestani, Francesco; Saltari, Rita; Piva, Bruno

    2008-06-01

    Occipital neuralgia is characterized by pain paroxysm occurring within distribution of the greater or lesser occipital nerves. The pain may radiates from the rear head toward the ipso-lateral frontal or retro-orbital regions of head. Though known causes include head injuries, direct occipital nerve trauma, neuroma formation or upper cervical root compression, most people have no demonstrable lesion. A sample of 8 patients (5 females, 3 males) aging 63,5 years on the average with occipital neuralgia has been recruited. The occipital neuralgic pain had presented since 4, 6 years and they had been treated by pharmacological therapy without benefit. Some result has been obtained by blocking of the grand occipital nerve so that the patients seemed to be suitable for subcutaneous peripheral neurostimulation. The pain was evaluated by VAS and SVR scales before treatment (TO) and after three and twelve months (T1, T2). During the follow up period 7 patients have been monitored for a whole year while one patient was followed only for 3 months in that some complications have presented. In the other 7 patients pain paroxysms have interrupted and trigger point disappeared with a VAS and SVR reduction of about 71% and 60%, respectively. Our experience demonstrates a sound efficacy of such a technique for patients having occipital neuralgia resistant to pharmacological therapies even if action mechanisms have not yet clearly explained. Some hypothesis exist and we think it might negatively affect the neurogenic inflammation that surely acts in pain maintaining.

  7. Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness.

    PubMed

    Tamnes, Christian K; Herting, Megan M; Goddings, Anne-Lise; Meuwese, Rosa; Blakemore, Sarah-Jayne; Dahl, Ronald E; Güroğlu, Berna; Raznahan, Armin; Sowell, Elizabeth R; Crone, Eveline A; Mills, Kathryn L

    2017-03-22

    Before we can assess and interpret how developmental changes in human brain structure relate to cognition, affect, and motivation, and how these processes are perturbed in clinical or at-risk populations, we must first precisely understand typical brain development and how changes in different structural components relate to each other. We conducted a multisample magnetic resonance imaging study to investigate the development of cortical volume, surface area, and thickness, as well as their inter-relationships, from late childhood to early adulthood (7-29 years) using four separate longitudinal samples including 388 participants and 854 total scans. These independent datasets were processed and quality-controlled using the same methods, but analyzed separately to study the replicability of the results across sample and image-acquisition characteristics. The results consistently showed widespread and regionally variable nonlinear decreases in cortical volume and thickness and comparably smaller steady decreases in surface area. Further, the dominant contributor to cortical volume reductions during adolescence was thinning. Finally, complex regional and topological patterns of associations between changes in surface area and thickness were observed. Positive relationships were seen in sulcal regions in prefrontal and temporal cortices, while negative relationships were seen mainly in gyral regions in more posterior cortices. Collectively, these results help resolve previous inconsistencies regarding the structural development of the cerebral cortex from childhood to adulthood, and provide novel insight into how changes in the different dimensions of the cortex in this period of life are inter-related. SIGNIFICANCE STATEMENT Different measures of brain anatomy develop differently across adolescence. Their precise trajectories and how they relate to each other throughout development are important to know if we are to fully understand both typical development and

  8. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    PubMed

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  9. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task.

    PubMed

    Chang, Yu-Cherng C; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N; Hämäläinen, Matti S; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150-350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition.

  10. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task

    PubMed Central

    Chang, Yu-Cherng C.; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N.; Hämäläinen, Matti S.; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150–350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition. PMID:29867372

  11. Fluoroscopy and Sonographic Guided Injection of Obliquus Capitis Inferior Muscle in an Intractable Occipital Neuralgia

    PubMed Central

    Kim, Ok Sun; Jeong, Seung Min; Ro, Ji Young; Kim, Duck Kyoung; Koh, Young Cho; Ko, Young Sin; Lim, So Dug; Kim, Hae Kyoung

    2010-01-01

    Occipital neuralgia is a form of headache that involves the posterior occiput in the greater or lesser occipital nerve distribution. Pain can be severe and persistent with conservative treatment. We present a case of intractable occipital neuralgia that conventional therapeutic modalities failed to ameliorate. We speculate that, in this case, the cause of headache could be the greater occipital nerve entrapment by the obliquus capitis inferior muscle. After steroid and local anesthetic injection into obliquus capitis inferior muscles under fluoroscopic and sonographic guidance, the visual analogue scale was decreased from 9-10/10 to 1-2/10 for 2-3 weeks. The patient eventually got both greater occipital neurectomy and partial resection of obliquus capitis inferior muscles due to the short term effect of the injection. The successful steroid and local anesthetic injection for this occipital neuralgia shows that the refractory headache was caused by entrapment of greater occipital nerves by obliquus capitis inferior muscles. PMID:20552081

  12. The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles.

    PubMed

    Gămănuţ, Răzvan; Kennedy, Henry; Toroczkai, Zoltán; Ercsey-Ravasz, Mária; Van Essen, David C; Knoblauch, Kenneth; Burkhalter, Andreas

    2018-02-07

    The inter-areal wiring pattern of the mouse cerebral cortex was analyzed in relation to a refined parcellation of cortical areas. Twenty-seven retrograde tracer injections were made in 19 areas of a 47-area parcellation of the mouse neocortex. Flat mounts of the cortex and multiple histological markers enabled detailed counts of labeled neurons in individual areas. The observed log-normal distribution of connection weights to each cortical area spans 5 orders of magnitude and reveals a distinct connectivity profile for each area, analogous to that observed in macaques. The cortical network has a density of 97%, considerably higher than the 66% density reported in macaques. A weighted graph analysis reveals a similar global efficiency but weaker spatial clustering compared with that reported in macaques. The consistency, precision of the connectivity profile, density, and weighted graph analysis of the present data differ significantly from those obtained in earlier studies in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pronounced impairment of everyday skills and self-care in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Yong, Keir X X; Foxe, David; Hodges, John; Crutch, Sebastian J

    2015-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visual dysfunction and parietal, occipital, and occipitotemporal atrophy. The aim of this study was to compare the impact of PCA and typical Alzheimer's disease (tAD) on everyday functional abilities and neuropsychiatric status. The Cambridge Behavioural Inventory-Revised was given to carers of 32 PCA and 71 tAD patients. PCA patients showed significantly greater impairment in everyday skills and self-care while the tAD group showed greater impairment in aspects of memory and orientation, and motivation. We suggest that PCA poses specific challenges for those caring for people affected by the condition.

  14. Developmental abnormalities of the occipital bone in human chondrodystrophies (achondroplasia and thanatophoric dwarfism).

    PubMed

    Marin-Padilla, M; Marin-Padilla, T M

    1977-01-01

    Specific developmental malformations have been demonstrated in the occipital bone of two chondrodysplastic disorders (achondroplasia and thanatophoric dwarfism). Analysis of these malformations indicates that the occipital bone is primary affected in these disorders. In both cases, the endochondral-derived components of the occipital bone (the basioccipital, the two lateral parts, and the planum nuchale of the squama occipitalis) have failed to grow properly and are smaller and shorter than normal. On the other hand, the planum occipitalis of the squama, which derives from intramembranous ossification, is unaffected. In addition, the nature of these abnormalities indicates that the occipital synchondroses, together with the epiphyseal plates of other bones, are primarily affected in these two chondrodysplasias. The components of the occipital bone formed between the affected synchondroses failed to grow normally. The resulting malformation of the occipital bone is undoubtedly the cause of the shortening of the posterior cerebral fossa and of the considerable narrowing of the foramen magnum often described in these chondrodysplasias. It is postulated that growth disturbances between the affected occipital bone and the unaffected central nervous system results in the inadequacy of the posterior cerebral fossa and the foramen magnum to accommodate the growing brain. Consequently, compression of the brain at the posterior cerebral fossa or the foramen magnum levels could occur and thus lead to neurologic complications such as hydrocephalus and compression of the brain stem. It is suggested that the surgical removal of the fused posterior border of the lateral parts of the occipital bone (partial nuchalectomy) for the purpose of enlarging the narrow foramen magnum may be indicated in those chondrodysplastic children who develop these types of neurologic complications.

  15. Occipital condyle syndrome secondary to bone metastases from rectal cancer.

    PubMed

    Marruecos, J; Conill, C; Valduvieco, I; Vargas, M; Berenguer, J; Maurel, J

    2008-01-01

    Skull-base metastases are very unfrequent. Occipital condyle syndrome (OCS) is usually underdiagnosed. Until now few cases have been reported in the literature. We present a 71-year-old woman with metastatic rectum adenocarcinoma, with right occipital headache and ipsilateral hypoglossal palsy, diagnosed by computed tomography and magnetic resonance imaging of OCS due to a skull-base metastasis and treated with radiation therapy.

  16. Occipital neuralgia associates with high cervical spinal cord lesions in idiopathic inflammatory demyelinating disease.

    PubMed

    Kissoon, Narayan R; Watson, James C; Boes, Christopher J; Kantarci, Orhun H

    2018-01-01

    Background The association of trigeminal neuralgia with pontine lesions has been well documented in multiple sclerosis, and we tested the hypothesis that occipital neuralgia in multiple sclerosis is associated with high cervical spinal cord lesions. Methods We retrospectively reviewed the records of 29 patients diagnosed with both occipital neuralgia and demyelinating disease by a neurologist from January 2001 to December 2014. We collected data on demographics, clinical findings, presence of C2-3 demyelinating lesions, and treatment responses. Results The patients with both occipital neuralgia and multiple sclerosis were typically female (76%) and had a later onset (age > 40) of occipital neuralgia (72%). Eighteen patients (64%) had the presence of C2-3 lesions and the majority had unilateral symptoms (83%) or episodic pain (78%). All patients with documented sensory loss (3/3) had C2-3 lesions. Most patients with progressive multiple sclerosis (6/8) had C2-3 lesions. Of the eight patients with C2-3 lesions and imaging at onset of occipital neuralgia, five (62.5%) had evidence of active demyelination. None of the patients with progressive multiple sclerosis (3/3) responded to occipital nerve blocks or high dose intravenous steroids, whereas all of the other phenotypes with long term follow-up (eight patients) had good responses. Conclusions A cervical spine MRI should be considered in all patients presenting with occipital neuralgia. In patients with multiple sclerosis, clinical features in occipital neuralgia that were predictive of the presence of a C2-3 lesion were unilateral episodic symptoms, sensory loss, later onset of occipital neuralgia, and progressive multiple sclerosis phenotype. Clinical phenotype predicted response to treatment.

  17. Neural Responses in Parietal and Occipital Areas in Response to Visual Events Are Modulated by Prior Multisensory Stimuli

    PubMed Central

    Innes-Brown, Hamish; Barutchu, Ayla; Crewther, David P.

    2013-01-01

    The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus. PMID:24391939

  18. Intracranial Cortical Responses during Visual–Tactile Integration in Humans

    PubMed Central

    Quinn, Brian T.; Carlson, Chad; Doyle, Werner; Cash, Sydney S.; Devinsky, Orrin; Spence, Charles; Halgren, Eric

    2014-01-01

    Sensory integration of touch and sight is crucial to perceiving and navigating the environment. While recent evidence from other sensory modality combinations suggests that low-level sensory areas integrate multisensory information at early processing stages, little is known about how the brain combines visual and tactile information. We investigated the dynamics of multisensory integration between vision and touch using the high spatial and temporal resolution of intracranial electrocorticography in humans. We present a novel, two-step metric for defining multisensory integration. The first step compares the sum of the unisensory responses to the bimodal response as multisensory responses. The second step eliminates the possibility that double addition of sensory responses could be misinterpreted as interactions. Using these criteria, averaged local field potentials and high-gamma-band power demonstrate a functional processing cascade whereby sensory integration occurs late, both anatomically and temporally, in the temporo–parieto–occipital junction (TPOJ) and dorsolateral prefrontal cortex. Results further suggest two neurophysiologically distinct and temporally separated integration mechanisms in TPOJ, while providing direct evidence for local suppression as a dominant mechanism for synthesizing visual and tactile input. These results tend to support earlier concepts of multisensory integration as relatively late and centered in tertiary multimodal association cortices. PMID:24381279

  19. Interactive effects of dehydroepiandrosterone and testosterone on cortical thickness during early brain development.

    PubMed

    Nguyen, Tuong-Vi; McCracken, James T; Ducharme, Simon; Cropp, Brett F; Botteron, Kelly N; Evans, Alan C; Karama, Sherif

    2013-06-26

    Humans and the great apes are the only species demonstrated to exhibit adrenarche, a key endocrine event associated with prepubertal increases in the adrenal production of androgens, most significantly dehydroepiandrosterone (DHEA) and to a certain degree testosterone. Adrenarche also coincides with the emergence of the prosocial and neurobehavioral skills of middle childhood and may therefore represent a human-specific stage of development. Both DHEA and testosterone have been reported in animal and in vitro studies to enhance neuronal survival and programmed cell death depending on the timing, dose, and hormonal context involved, and to potentially compete for the same signaling pathways. Yet no extant brain-hormone studies have examined the interaction between DHEA- and testosterone-related cortical maturation in humans. Here, we used linear mixed models to examine changes in cortical thickness associated with salivary DHEA and testosterone levels in a longitudinal sample of developmentally healthy children and adolescents 4-22 years old. DHEA levels were associated with increases in cortical thickness of the left dorsolateral prefrontal cortex, right temporoparietal junction, right premotor and right entorhinal cortex between the ages of 4-13 years, a period marked by the androgenic changes of adrenarche. There was also an interaction between DHEA and testosterone on cortical thickness of the right cingulate cortex and occipital pole that was most significant in prepubertal subjects. DHEA and testosterone appear to interact and modulate the complex process of cortical maturation during middle childhood, consistent with evidence at the molecular level of fast/nongenomic and slow/genomic or conversion-based mechanisms underlying androgen-related brain development.

  20. Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study.

    PubMed

    Dong, Li; Wang, Pu; Peng, Rui; Jiang, Sisi; Klugah-Brown, Benjamin; Luo, Cheng; Yao, Dezhong

    2016-12-01

    The purpose of this study was to investigate alterations of basal ganglia-cortical functional connections in patients with frontal lobe epilepsy (FLE). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from 19 FLE patients and 19 age- and gender-matched healthy controls. Functional connectivity (FC) analysis was used to assess the functional connections between basal ganglia and cerebral cortex. Regions of interest, including the left/right caudate, putamen, pallidum and thalamus, were selected as the seeds. Two sample t-test was used to determine the difference between patients and controls, while controlling the age, gender and head motions. Compared with controls, FLE patients demonstrated increased FCs between basal ganglia and regions including the right fusiform gyrus, the bilateral cingulate gyrus, the precuneus and anterior cingulate gyrus. Reduced FCs were mainly located in a range of brain regions including the bilateral middle occipital gyrus, the ventral frontal lobe, the right putamen, the left fusiform gyrus and right rolandic operculum. In addition, the relationships between basal ganglia-cingulate connections and durations of epilepsy were also found. The alterations of functional integrity within the basal ganglia, as well as its connections to limbic and ventral frontal areas, indicate the important roles of the basal ganglia-cortical functional connections in FLE, and provide new insights in the pathophysiological mechanism of FLE. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cervical facet arthropathy and occipital neuralgia: headache culprits.

    PubMed

    Hoppenfeld, J D

    2010-12-01

    Cervicogenic headache (CH) is pain referred from the neck. Two common causes are cervical facet arthropathy and occipital neuralgia. Clinical diagnosis is difficult because of the overlying features between primary headaches such as migraine, tension-type headache, and CH. Interventional pain physicians have focused on supporting the clinical diagnosis of CH with confirmatory blocks. The treatment of cervical facet arthropathy as the source of CH is best approached with a multidimensional plan focusing on physical therapy and/or manual therapy. The effective management of occipital neuralgia remains challenging, but both injections and neuromodulation are promising options.

  2. Plantar Sole Unweighting Alters the Sensory Transmission to the Cortical Areas

    PubMed Central

    Mouchnino, Laurence; Lhomond, Olivia; Morant, Clément; Chavet, Pascale

    2017-01-01

    It is well established that somatosensory inputs to the cortex undergo an early and a later stage of processing. The later has been shown to be enhanced when the earlier transmission decreased. In this framework, mechanical factors such as the mechanical stress to which sensors are subjected when wearing a loaded vest are associated with a decrease in sensory transmission. This decrease is in turn associated with an increase in the late sensory processes originating from cortical areas. We hypothesized that unweighting the plantar sole should lead to a facilitation of the sensory transmission. To test this hypothesis, we recorded cortical somatosensory evoked potentials (SEPs) of individuals following cutaneous stimulation (by mean of an electrical stimulation of the foot sole) in different conditions of unweighting when standing still with eyes closed. To this end, the effective bodyweight (BW) was reduced from 100% BW to 40% BW. Contrary to what was expected, we found an attenuation of sensory information when the BW was unweighted to 41% which was not compensated by an increase of the late SEP component. Overall these results suggested that the attenuation of sensory transmission observed in 40 BW condition was not solely due to the absence of forces acting on the sole of the feet but rather to the current relevance of the afferent signals related to the balance constraints of the task. PMID:28539876

  3. Role of fusiform and anterior temporal cortical areas in facial recognition.

    PubMed

    Nasr, Shahin; Tootell, Roger B H

    2012-11-15

    Recent fMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus ('AT'; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Role of Fusiform and Anterior Temporal Cortical Areas in Facial Recognition

    PubMed Central

    Nasr, Shahin; Tootell, Roger BH

    2012-01-01

    Recent FMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus (‘AT’; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. PMID:23034518

  5. Dynamic Reconfiguration of the Supplementary Motor Area Network during Imagined Music Performance

    PubMed Central

    Tanaka, Shoji; Kirino, Eiji

    2017-01-01

    The supplementary motor area (SMA) has been shown to be the center for motor planning and is active during music listening and performance. However, limited data exist on the role of the SMA in music. Music performance requires complex information processing in auditory, visual, spatial, emotional, and motor domains, and this information is integrated for the performance. We hypothesized that the SMA is engaged in multimodal integration of information, distributed across several regions of the brain to prepare for ongoing music performance. To test this hypothesis, functional networks involving the SMA were extracted from functional magnetic resonance imaging (fMRI) data that were acquired from musicians during imagined music performance and during the resting state. Compared with the resting condition, imagined music performance increased connectivity of the SMA with widespread regions in the brain including the sensorimotor cortices, parietal cortex, posterior temporal cortex, occipital cortex, and inferior and dorsolateral prefrontal cortex. Increased connectivity of the SMA with the dorsolateral prefrontal cortex suggests that the SMA is under cognitive control, while increased connectivity with the inferior prefrontal cortex suggests the involvement of syntax processing. Increased connectivity with the parietal cortex, posterior temporal cortex, and occipital cortex is likely for the integration of spatial, emotional, and visual information. Finally, increased connectivity with the sensorimotor cortices was potentially involved with the translation of thought planning into motor programs. Therefore, the reconfiguration of the SMA network observed in this study is considered to reflect the multimodal integration required for imagined and actual music performance. We propose that the SMA network construct “the internal representation of music performance” by integrating multimodal information required for the performance. PMID:29311870

  6. Corticobulbar projections from distinct motor cortical areas to the reticular formation in macaque monkeys.

    PubMed

    Fregosi, Michela; Contestabile, Alessandro; Hamadjida, Adjia; Rouiller, Eric M

    2017-06-01

    Corticospinal and corticobulbar descending pathways act in parallel with brainstem systems, such as the reticulospinal tract, to ensure the control of voluntary movements via direct or indirect influences onto spinal motoneurons. The aim of this study was to investigate the corticobulbar projections from distinct motor cortical areas onto different nuclei of the reticular formation. Seven adult macaque monkeys were analysed for the location of corticobulbar axonal boutons, and one monkey for reticulospinal neurons' location. The anterograde tracer BDA was injected in the premotor cortex (PM), in the primary motor cortex (M1) or in the supplementary motor area (SMA), in 3, 3 and 1 monkeys respectively. BDA anterograde labelling of corticobulbar axons were analysed on brainstem histological sections and overlapped with adjacent Nissl-stained sections for cytoarchitecture. One adult monkey was analysed for retrograde CB tracer injected in C5-C8 hemispinal cord to visualise reticulospinal neurons. The corticobulbar axons formed bilateral terminal fields with boutons terminaux and en passant, which were quantified in various nuclei belonging to the Ponto-Medullary Reticular Formation (PMRF). The corticobulbar projections from both PM and SMA tended to end mainly ipsilaterally in PMRF, but contralaterally when originating from M1. Furthermore, the corticobulbar projection was less dense when originating from M1 than from non-primary motor areas (PM, SMA). The main nuclei of bouton terminals corresponded to the regions where reticulospinal neurons were located with CB retrograde tracing. In conclusion, the corticobulbar projection differs according to the motor cortical area of origin in density and laterality. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Outcomes of greater occipital nerve injections in pediatric patients with chronic primary headache disorders.

    PubMed

    Gelfand, Amy A; Reider, Amanda C; Goadsby, Peter J

    2014-02-01

    Chronic migraine is common in pediatrics and generally disabling. In adults, infiltration of the area around the greater occipital nerve can provide short- to medium-term benefit in some patients. This study reports the efficacy of greater occipital nerve infiltrations in pediatric patients with chronic primary headache disorders. Retrospective chart review of patients <18 years with a chronic primary headache disorder undergoing a first-time injection. Infiltrations were unilateral and consisted of a mixture of methylprednisolone acetate, adjusted for weight, and lidocaine 2%. Forty-six patients were treated. Thirty-five (76%) had chronic migraine, 9 (20%) new daily persistent headache (NDPH), and 2 (4%) a chronic trigeminal autonomic cephalalgia. Medication overuse was present in 26%. Ages ranged from 7 to 17 years. Follow-up data were available for 40 (87%). Overall, 53% (21/40) benefitted, and 52% (11/21) benefitted significantly. Benefit onset ranged from 0 to 14 days, mean 4.7 (SD 4.3), with mean benefit duration of 5.4 (SD 4.9) weeks. In chronic migraine, 62% (18/29) benefitted, and 56% (10/18) significantly benefitted. In NDPH, 33% (3/9) benefitted; 33% (n = 1) significantly. Neither child with a chronic trigeminal autonomic cephalalgia benefitted. In logistic regression modeling, medication overuse, age, sex, and sensory change in the distribution of the infiltrated nerve did not predict outcome. There were no serious side effects. Greater occipital nerve injections benefitted 53% of pediatric patients with chronic primary headache disorders. Efficacy appeared greater in chronic migraine than NDPH. Given the benign side effect profile, a greater occipital nerve infiltration seems appropriate before more aggressive approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Outcomes of Greater Occipital Nerve Injections in Pediatric Patients with Chronic Primary Headache Disorders

    PubMed Central

    Gelfand, Amy A.; Reider, Amanda C.; Goadsby, Peter J.

    2014-01-01

    Background Chronic migraine is common in pediatrics and generally disabling. In adults, infiltration of the area around the greater occipital nerve can provide short to medium term benefit in some patients. This study reports the efficacy of greater occipital nerve infiltrations in pediatric patients with chronic primary headache disorders. Methods Retrospective chart review of patients <18 years with a chronic primary headache disorder undergoing a first-time injection. Infiltrations were unilateral and consisted of a mixture of methylprednisolone acetate, adjusted for weight, and lidocaine 2%. Results Forty-six patients were treated. Thirty-five (76%) had chronic migraine, nine (20%) New Daily Persistent Headache (NDPH), and two (4%) a chronic trigeminal autonomic cephalalgia. Medication overuse was present in 26%. Ages ranged from 7–17 years. Follow-up data were available for 40 (87%). Overall, 53% (21/40) benefitted, 52% (11/21) significantly. Benefit onset ranged from 0–14 days, mean 4.7(SD 4.3), with mean benefit duration of 5.4(SD 4.9) weeks. In chronic migraine, 62% (18/29) benefitted, 56% (10/18) significantly. In NDPH, 33% (3/9) benefitted; 33% (n=1) significantly. Neither child with a chronic trigeminal autonomic cephalalgia benefitted. In logistic regression modeling, medication overuse, age, sex, and sensory change in the distribution of the infiltrated nerve did not predict outcome. There were no serious side effects. Conclusions Greater occipital nerve injections benefitted 53% of pediatric patients with chronic primary headache disorders. Efficacy appeared higher in chronic migraine than NDPH. Given the benign side effect profile, a greater occipital nerve infiltration prior to more aggressive approaches seems appropriate. PMID:24268688

  9. Phase Difference between Model Cortical Areas Determines Level of Information Transfer

    PubMed Central

    ter Wal, Marije; Tiesinga, Paul H.

    2017-01-01

    Communication between cortical sites is mediated by long-range synaptic connections. However, these connections are relatively static, while everyday cognitive tasks demand a fast and flexible routing of information in the brain. Synchronization of activity between distant cortical sites has been proposed as the mechanism underlying such a dynamic communication structure. Here, we study how oscillatory activity affects the excitability and input-output relation of local cortical circuits and how it alters the transmission of information between cortical circuits. To this end, we develop model circuits showing fast oscillations by the PING mechanism, of which the oscillatory characteristics can be altered. We identify conditions for synchronization between two brain circuits and show that the level of intercircuit coherence and the phase difference is set by the frequency difference between the intrinsic oscillations. We show that the susceptibility of the circuits to inputs, i.e., the degree of change in circuit output following input pulses, is not uniform throughout the oscillation period and that both firing rate, frequency and power are differentially modulated by inputs arriving at different phases. As a result, an appropriate phase difference between the circuits is critical for the susceptibility windows of the circuits in the network to align and for information to be efficiently transferred. We demonstrate that changes in synchrony and phase difference can be used to set up or abolish information transfer in a network of cortical circuits. PMID:28232796

  10. Large-scale cortical volume correlation networks reveal disrupted small world patterns in Parkinson's disease.

    PubMed

    Wu, Qiong; Gao, Yang; Liu, Ai-Shi; Xie, Li-Zhi; Qian, Long; Yang, Xiao-Guang

    2018-01-01

    To date, the most frequently reported neuroimaging biomarkers in Parkinson's disease (PD) are direct brain imaging measurements focusing on local disrupted regions. However, the notion that PD is related to abnormal functional and structural connectivity has received support in the past few years. Here, we employed graph theory to analyze the structural co-variance networks derived from 50 PD patients and 48 normal controls (NC). Then, the small world properties of brain networks were assessed in the structural networks that were constructed based on cortical volume data. Our results showed that both the PD and NC groups had a small world architecture in brain structural networks. However, the PD patients had a higher characteristic path length and clustering coefficients compared with the NC group. With regard to the nodal centrality, 11 regions, including 3 association cortices, 5 paralimbic cortices, and 3 subcortical regions were identified as hubs in the PD group. In contrast, 10 regions, including 7 association cortical regions, 2 paralimbic cortical regions, and the primary motor cortex region, were identified as hubs. Moreover, the regional centrality was profoundly affected in PD patients, including decreased nodal centrality in the right inferior occipital gyrus and the middle temporal gyrus and increased nodal centrality in the right amygdala, the left caudate and the superior temporal gyrus. In addition, the structural cortical network of PD showed reduced topological stability for targeted attacks. Together, this study shows that the coordinated patterns of cortical volume network are widely altered in PD patients with a decrease in the efficiency of parallel information processing. These changes provide structural evidence to support the concept that the core pathophysiology of PD is associated with disruptive alterations in the coordination of large-scale brain networks that underlie high-level cognition. Copyright © 2017. Published by Elsevier B.V.

  11. A preliminary examination of cortical neurotransmitter levels associated with heavy drinking in posttraumatic stress disorder.

    PubMed

    Pennington, David Louis; Abé, Christoph; Batki, Steven Laszlo; Meyerhoff, Dieter Johannes

    2014-12-30

    Posttraumatic stress disorder (PTSD) patients have low cortical concentrations of γ-aminobutyric acid (GABA) and elevated glutamate (Glu) as measured by proton magnetic resonance spectroscopy ((1)H MRS). Alcohol use disorder (AUD) is highly comorbid with PTSD, but the neurobiological underpinnings are largely unknown. We wanted to determine if PTSD patients with AUD have normalized cortical GABA and Glu levels in addition to metabolite alterations common to AUD. We compared brain metabolite concentrations in 10 PTSD patients with comorbid AUD (PAUD) with concentrtations in 28 PTSD patients without AUD and in 20 trauma-exposed controls (CON) without PTSD symptoms. We measured concentrations of GABA, Glu, N-acetylaspartate (NAA), creatine- (Cr) and choline-containing metabolites (Cho), and myo-Inositol (mI) in three cortical brain regions using (1)H MRS and correlated them with measures of neurocognition, insomnia, PTSD symptoms, and drinking severity. In contrast to PTSD, PAUD exhibited normal GABA and Glu concentrations in the parieto-occipital and temporal cortices, respectively, but lower Glu and trends toward higher GABA levels in the anterior cingulate cortex (ACC). Temporal NAA and Cho as well as mI in the ACC were lower in PAUD than in both PTSD and CON. Within PAUD, more cortical GABA and Glu correlated with better neurocognition. Heavy drinking in PTSD is associated with partially neutralized neurotransmitter imbalance, but also with neuronal injury commonly observed in AUD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2

    PubMed Central

    Tan, Geoffrey C.Y.; Doke, Thomas F.; Ashburner, John; Wood, Nicholas W.; Frackowiak, Richard S.J.

    2010-01-01

    Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MRI and diffusion tensor imaging. We compared volumetric differences in white and grey matter and fractional anisotropy values in control subjects characterised by genotype at rs7794745, a single nucleotide polymorphism in CNTNAP2. Homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation. Thus a risk allele for autism results in significant cerebral morphological variation, despite the absence of overt symptoms or behavioural abnormalities. The results are consistent with accumulating evidence of CNTNAP2's function in neuronal development. The finding suggests the possibility that the heterogeneous manifestations of ASD can be aetiologically characterised into distinct subtypes through genetic-morphological analysis. PMID:20176116

  13. Cortical activation during Braille reading is influenced by early visual experience in subjects with severe visual disability: a correlational fMRI study.

    PubMed

    Melzer, P; Morgan, V L; Pickens, D R; Price, R R; Wall, R S; Ebner, F F

    2001-11-01

    Functional magnetic resonance imaging was performed on blind adults resting and reading Braille. The strongest activation was found in primary somatic sensory/motor cortex on both cortical hemispheres. Additional foci of activation were situated in the parietal, temporal, and occipital lobes where visual information is processed in sighted persons. The regions were differentiated most in the correlation of their time courses of activation with resting and reading. Differences in magnitude and expanse of activation were substantially less significant. Among the traditionally visual areas, the strength of correlation was greatest in posterior parietal cortex and moderate in occipitotemporal, lateral occipital, and primary visual cortex. It was low in secondary visual cortex as well as in dorsal and ventral inferior temporal cortex and posterior middle temporal cortex. Visual experience increased the strength of correlation in all regions except dorsal inferior temporal and posterior parietal cortex. The greatest statistically significant increase, i.e., approximately 30%, was in ventral inferior temporal and posterior middle temporal cortex. In these regions, words are analyzed semantically, which may be facilitated by visual experience. In contrast, visual experience resulted in a slight, insignificant diminution of the strength of correlation in dorsal inferior temporal cortex where language is analyzed phonetically. These findings affirm that posterior temporal regions are engaged in the processing of written language. Moreover, they suggest that this function is modified by early visual experience. Furthermore, visual experience significantly strengthened the correlation of activation and Braille reading in occipital regions traditionally involved in the processing of visual features and object recognition suggesting a role for visual imagery. Copyright 2001 Wiley-Liss, Inc.

  14. Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study.

    PubMed

    Kauffmann, Louise; Chauvin, Alan; Pichat, Cédric; Peyrin, Carole

    2015-10-01

    According to current models of visual perception scenes are processed in terms of spatial frequencies following a predominantly coarse-to-fine processing sequence. Low spatial frequencies (LSF) reach high-order areas rapidly in order to activate plausible interpretations of the visual input. This triggers top-down facilitation that guides subsequent processing of high spatial frequencies (HSF) in lower-level areas such as the inferotemporal and occipital cortices. However, dynamic interactions underlying top-down influences on the occipital cortex have never been systematically investigated. The present fMRI study aimed to further explore the neural bases and effective connectivity underlying coarse-to-fine processing of scenes, particularly the role of the occipital cortex. We used sequences of six filtered scenes as stimuli depicting coarse-to-fine or fine-to-coarse processing of scenes. Participants performed a categorization task on these stimuli (indoor vs. outdoor). Firstly, we showed that coarse-to-fine (compared to fine-to-coarse) sequences elicited stronger activation in the inferior frontal gyrus (in the orbitofrontal cortex), the inferotemporal cortex (in the fusiform and parahippocampal gyri), and the occipital cortex (in the cuneus). Dynamic causal modeling (DCM) was then used to infer effective connectivity between these regions. DCM results revealed that coarse-to-fine processing resulted in increased connectivity from the occipital cortex to the inferior frontal gyrus and from the inferior frontal gyrus to the inferotemporal cortex. Critically, we also observed an increase in connectivity strength from the inferior frontal gyrus to the occipital cortex, suggesting that top-down influences from frontal areas may guide processing of incoming signals. The present results support current models of visual perception and refine them by emphasizing the role of the occipital cortex as a cortical site for feedback projections in the neural network underlying

  15. Working memory training in congenitally blind individuals results in an integration of occipital cortex in functional networks.

    PubMed

    Gudi-Mindermann, Helene; Rimmele, Johanna M; Nolte, Guido; Bruns, Patrick; Engel, Andreas K; Röder, Brigitte

    2018-04-12

    The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Hip fracture prevalence in grandfathers is associated with reduced cortical cross-sectional bone area in their young adult grandsons.

    PubMed

    Rudäng, Robert; Ohlsson, Claes; Odén, Anders; Johansson, Helena; Mellström, Dan; Lorentzon, Mattias

    2010-03-01

    Parent hip fracture prevalence is a known risk factor for osteoporosis. The role of hip fracture prevalence in grandparents on areal bone mineral density (aBMD) and bone size in their grandsons remains unknown. The objective of the study was to examine whether hip fracture prevalence in grandparents was associated with lower aBMD and reduced cortical bone size in their grandsons. This was a population-based cohort study in Sweden. Subjects included 1015 grandsons (18.9 +/- 0.6) (mean +/- sd) and 3688 grandparents. aBMD, cortical bone size, volumetric bone mineral density and polar strength strain index of the cortex in the grandsons in relation to hip fracture prevalence in their grandparents were measured. Grandsons of grandparents with hip fracture (n = 269) had lower aBMD at the total body, radius, and lumbar spine, but not at the hip, as well as reduced cortical cross-sectional area at the radius (P < 0.05) than grandsons of grandparents without hip fracture. Subgroup analysis demonstrated that grandsons of grandfathers with hip fracture (n = 99) had substantially lower aBMD at the lumbar spine (4.9%, P < 0.001) and total femur (4.1%, P = 0.003) and lower cortical cross-sectional area of the radius (4.1%, P < 0.001) and tibia (3.3%, P < 0.011). Adjusting bone variables for grandson age, weight, height, smoking, calcium intake, and physical activity and taking grandparent age at register entry, years in register, and grandparent sex into account strengthened or did not affect these associations. Family history of a grandfather with hip fracture was associated with reduced aBMD and cortical bone size in 19-yr-old men, indicating that patient history of hip fracture in a grandfather could be of value when evaluating the risk of low bone mass in men.

  17. Cellular organization of cortical barrel columns is whisker-specific

    PubMed Central

    Meyer, Hanno S.; Egger, Robert; Guest, Jason M.; Foerster, Rita; Reissl, Stefan; Oberlaender, Marcel

    2013-01-01

    The cellular organization of the cortex is of fundamental importance for elucidating the structural principles that underlie its functions. It has been suggested that reconstructing the structure and synaptic wiring of the elementary functional building block of mammalian cortices, the cortical column, might suffice to reverse engineer and simulate the functions of entire cortices. In the vibrissal area of rodent somatosensory cortex, whisker-related “barrel” columns have been referred to as potential cytoarchitectonic equivalents of functional cortical columns. Here, we investigated the structural stereotypy of cortical barrel columns by measuring the 3D neuronal composition of the entire vibrissal area in rat somatosensory cortex and thalamus. We found that the number of neurons per cortical barrel column and thalamic “barreloid” varied substantially within individual animals, increasing by ∼2.5-fold from dorsal to ventral whiskers. As a result, the ratio between whisker-specific thalamic and cortical neurons was remarkably constant. Thus, we hypothesize that the cellular architecture of sensory cortices reflects the degree of similarity in sensory input and not columnar and/or cortical uniformity principles. PMID:24101458

  18. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat.

    PubMed

    Huang, Luoxiu; Chen, Xin; Shou, Tiande

    2004-02-20

    The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.

  19. Distinct roles of the cortical layers of area V1 in figure-ground segregation.

    PubMed

    Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R

    2013-11-04

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Indications and outcomes for surgical treatment of patients with chronic migraine headaches caused by occipital neuralgia.

    PubMed

    Ducic, Ivica; Hartmann, Emily C; Larson, Ethan E

    2009-05-01

    Occipital neuralgia is a headache syndrome characterized by paroxysmal headaches localizing to the posterior scalp. The critical diagnostic feature is symptomatic response to local anesthetic blockade of the greater or lesser occipital nerve. Further characterization is debated in the literature regarding the diagnosis and optimal management of this condition. The authors present the largest reported series of surgical neurolysis of the greater occipital nerve in the management of occipital neuralgia. A retrospective chart review was conducted to identify 206 consecutive patients undergoing neurolysis of the greater or, less commonly, excision of the greater and/or lesser occipital nerves. A detailed description of the procedure is presented, as is the algorithm for patient selection and timing of surgery. Preoperative and postoperative visual analogue pain scores and migraine headache indices were measured. Success was defined as a reduction in pain of 50 percent or greater. Of 206 patients, 190 underwent greater occipital nerve neurolysis (171 bilateral). Twelve patients underwent greater and lesser occipital nerve excision, whereas four underwent lesser occipital nerve excision alone. The authors found that 80.5 percent of patients experienced at least 50 percent pain relief and 43.4 percent of patients experienced complete relief of headache. Mean preoperative pain score was 7.9 +/- 1.4. Mean postoperative pain was 1.9 +/- 1.8. Minimum duration of follow-up was 12 months. There were two minor complications. Neurolysis of the greater occipital nerve appears to provide safe, durable pain relief in the majority of selected patients with chronic headaches caused by occipital neuralgia.

  1. Vascular compression as a potential cause of occipital neuralgia: a case report.

    PubMed

    White, J B; Atkinson, P P; Cloft, H J; Atkinson, J L D

    2008-01-01

    Vascular compression is a well-established cause of cranial nerve neuralgic syndromes. A unique case is presented that demonstrates that vascular compression may be a possible cause of occipital neuralgia. A 48-year-old woman with refractory left occipital neuralgia revealed on magnetic resonance imaging and computed tomographic imaging of the upper cervical spine an atypically low loop of the left posterior inferior cerebellar artery (PICA), clearly indenting the dorsal upper cervical roots. During surgery, the PICA loop was interdigitated with the C1 and C2 dorsal roots. Microvascular decompression alone has never been described for occipital neuralgia, despite the strong clinical correlation in this case. Therefore, both sectioning the dorsal roots of C2 and microvascular decompression of the PICA loop were performed. Postoperatively, the patient experienced complete cure of her neuralgia. Vascular compression as a cause of refractory occipital neuralgia should be considered when assessing surgical options.

  2. Perceptual Learning: Use-Dependent Cortical Plasticity.

    PubMed

    Li, Wu

    2016-10-14

    Our perceptual abilities significantly improve with practice. This phenomenon, known as perceptual learning, offers an ideal window for understanding use-dependent changes in the adult brain. Different experimental approaches have revealed a diversity of behavioral and cortical changes associated with perceptual learning, and different interpretations have been given with respect to the cortical loci and neural processes responsible for the learning. Accumulated evidence has begun to put together a coherent picture of the neural substrates underlying perceptual learning. The emerging view is that perceptual learning results from a complex interplay between bottom-up and top-down processes, causing a global reorganization across cortical areas specialized for sensory processing, engaged in top-down attentional control, and involved in perceptual decision making. Future studies should focus on the interactions among cortical areas for a better understanding of the general rules and mechanisms underlying various forms of skill learning.

  3. Dissociation between Conceptual and Perceptual Implicit Memory: Evidence from Patients with Frontal and Occipital Lobe Lesions

    PubMed Central

    Gong, Liang; Wang, JiHua; Yang, XuDong; Feng, Lei; Li, Xiu; Gu, Cui; Wang, MeiHong; Hu, JiaYun; Cheng, Huaidong

    2016-01-01

    The latest neuroimaging studies about implicit memory (IM) have revealed that different IM types may be processed by different parts of the brain. However, studies have rarely examined what subtypes of IM processes are affected in patients with various brain injuries. Twenty patients with frontal lobe injury, 25 patients with occipital lobe injury, and 29 healthy controls (HC) were recruited for the study. Two subtypes of IM were investigated by using structurally parallel perceptual (picture identification task) and conceptual (category exemplar generation task) IM tests in the three groups, as well as explicit memory (EM) tests. The results indicated that the priming of conceptual IM and EM tasks in patients with frontal lobe injury was poorer than that observed in HC, while perceptual IM was identical between the two groups. By contrast, the priming of perceptual IM in patients with occipital lobe injury was poorer than that in HC, whereas the priming of conceptual IM and EM was similar to that in HC. This double dissociation between perceptual and conceptual IM across the brain areas implies that occipital lobes may participate in perceptual IM, while frontal lobes may be involved in processing conceptual memory. PMID:26793093

  4. Functional Connectivity in Frequency-Tagged Cortical Networks During Active Harm Avoidance

    PubMed Central

    Miskovic, Vladimir; Príncipe, José C.; Keil, Andreas

    2015-01-01

    Abstract Many behavioral and cognitive processes are grounded in widespread and dynamic communication between brain regions. Thus, the quantification of functional connectivity with high temporal resolution is highly desirable for capturing in vivo brain function. However, many of the commonly used measures of functional connectivity capture only linear signal dependence and are based entirely on relatively simple quantitative measures such as mean and variance. In this study, the authors used a recently developed algorithm, the generalized measure of association (GMA), to quantify dynamic changes in cortical connectivity using steady-state visual evoked potentials (ssVEPs) measured in the context of a conditioned behavioral avoidance task. GMA uses a nonparametric estimator of statistical dependence based on ranks that are efficient and capable of providing temporal precision roughly corresponding to the timing of cognitive acts (∼100–200 msec). Participants viewed simple gratings predicting the presence/absence of an aversive loud noise, co-occurring with peripheral cues indicating whether the loud noise could be avoided by means of a key press (active) or not (passive). For active compared with passive trials, heightened connectivity between visual and central areas was observed in time segments preceding and surrounding the avoidance cue. Viewing of the threat stimuli also led to greater initial connectivity between occipital and central regions, followed by heightened local coupling among visual regions surrounding the motor response. Local neural coupling within extended visual regions was sustained throughout major parts of the viewing epoch. These findings are discussed in a framework of flexible synchronization between cortical networks as a function of experience and active sensorimotor coupling. PMID:25557925

  5. Impaired cortical activation in autistic children: is the mirror neuron system involved?

    PubMed

    Martineau, Joëlle; Cochin, Stéphanie; Magne, Rémy; Barthelemy, Catherine

    2008-04-01

    The inability to imitate becomes obvious early in autistic children and seems to contribute to learning delay and to disorders of communication and contact. Posture, motility and imitation disorders in autistic syndrome might be the consequence of an abnormality of sensori-motor integration, related to the visual perception of movement, and could reflect impairment of the mirror neuron system (MNS). We compared EEG activity during the observation of videos showing actions or still scenes in 14 right-handed autistic children and 14 right-handed, age- and gender-matched control children (3 girls and 11 boys, aged 5 years 3 months-7 years 11 months). We showed desynchronisation of the EEG in the motor cerebral cortex and the frontal and temporal areas during observation of human actions in the group of healthy children. No such desynchronisation was found in autistic children. Moreover, inversion of the pattern of hemispheric activation was found in autistic children, with increased cortical activity in the right hemisphere in the posterior region, including the centro-parietal and temporo-occipital sites. These results are in agreement with the hypothesis of impairment of the mirror neuron system in autistic disorder.

  6. Occipital and Cingulate Hypometabolism are Significantly Under-Reported on 18-Fluorodeoxyglucose Positron Emission Tomography Scans of Patients with Lewy Body Dementia.

    PubMed

    Hamed, Moath; Schraml, Frank; Wilson, Jeffrey; Galvin, James; Sabbagh, Marwan N

    2018-01-01

    To determine whether occipital and cingulate hypometabolism is being under-reported or missed on 18-fluorodeoxyglucose positron emission tomography (FDG-PET) CT scans in patients with Dementia with Lewy Bodies (DLB). Recent studies have reported higher sensitivity and specificity for occipital and cingulate hypometabolism on FDG-PET of DLB patients. This retrospective chart review looked at regions of interest (ROI's) in FDG-PET CT scan reports in 35 consecutive patients with a clinical diagnosis of probable, possible, or definite DLB as defined by the latest DLB Consortium Report. ROI's consisting of glucose hypometabolism in frontal, parietal, temporal, occipital, and cingulate areas were tabulated and charted separately by the authors from the reports. A blinded Nuclear medicine physician read the images independently and marked ROI's separately. A Cohen's Kappa coefficient statistic was calculated to determine agreement between the reports and the blinded reads. On the radiology reports, 25.71% and 17.14% of patients reported occipital and cingulate hypometabolism respectively. Independent reads demonstrated significant disagreement with the proportion of occipital and cingulate hypometabolism being reported on initial reads: 91.43% and 85.71% respectively. Cohen's Kappa statistic determinations demonstrated significant agreement only with parietal hypometabolism (p<0.05). Occipital and cingulate hypometabolism is under-reported and missed frequently on clinical interpretations of FDG-PET scans of patients with DLB, but the frequency of hypometabolism is even higher than previously reported. Further studies with more statistical power and receiver operating characteristic analyses are needed to delineate the sensitivity and specificity of these in vivo biomarkers.

  7. Cortical functional anatomy of voluntary saccades in Parkinson disease.

    PubMed

    Rieger, Jochem W; Kim, Aleander; Argyelan, Miklos; Farber, Mark; Glazman, Sofya; Liebeskind, Marc; Meyer, Thomas; Bodis-Wollner, Ivan

    2008-10-01

    In Parkinson Disease (PD) several aspects of saccades are affected. The saccade-generating brainstem neurons are spared, however, the signals they receive may be flawed. In particular voluntary saccades suffer, but the functional anatomy of the impairment of saccade-related cortical control is unknown. We measured blood-oxygenation-level-dependent (BOLD) activation with functional Magnetic Resonance Imaging (fMRI) while healthy participants and patients with PD performed horizontal voluntary saccades between peripheral visual targets or fixated centrally. We compared saccade-related BOLD-activity vs. fixation in patients with PD and in healthy controls and correlated perisaccadic BOLD-activity in PD patients with saccade kinetics (multistep saccades). Saccade related BOLD-activation was found in both PD and healthy participants in the superior parietal cortex (PEF) and the occipital cortex. Our results suggest remarkable hypoactivity of the frontal and supplementary eye fields (FEF and SEF) in PD patients. On the other hand, PD patients showed a statistically more reliable BOLD modulation than healthy participants in the posterior cingulate gyrus, the parahippocampal gyrus, inferior parietal lobule, precuneus and in the middle temporal gyrus. Given abnormal frontal and normal PEF responses, our results suggest that in PD a frontal cortical circuitry, known to be associated with saccade planning, selection, and predicting a metric error of the saccade, is deficient.

  8. Locally induced neuronal synchrony precisely propagates to specific cortical areas without rhythm distortion.

    PubMed

    Toda, Haruo; Kawasaki, Keisuke; Sato, Sho; Horie, Masao; Nakahara, Kiyoshi; Bepari, Asim K; Sawahata, Hirohito; Suzuki, Takafumi; Okado, Haruo; Takebayashi, Hirohide; Hasegawa, Isao

    2018-05-16

    Propagation of oscillatory spike firing activity at specific frequencies plays an important role in distributed cortical networks. However, there is limited evidence for how such frequency-specific signals are induced or how the signal spectra of the propagating signals are modulated during across-layer (radial) and inter-areal (tangential) neuronal interactions. To directly evaluate the direction specificity of spectral changes in a spiking cortical network, we selectively photostimulated infragranular excitatory neurons in the rat primary visual cortex (V1) at a supra-threshold level with various frequencies, and recorded local field potentials (LFPs) at the infragranular stimulation site, the cortical surface site immediately above the stimulation site in V1, and cortical surface sites outside V1. We found a significant reduction of LFP powers during radial propagation, especially at high-frequency stimulation conditions. Moreover, low-gamma-band dominant rhythms were transiently induced during radial propagation. Contrastingly, inter-areal LFP propagation, directed to specific cortical sites, accompanied no significant signal reduction nor gamma-band power induction. We propose an anisotropic mechanism for signal processing in the spiking cortical network, in which the neuronal rhythms are locally induced/modulated along the radial direction, and then propagate without distortion via intrinsic horizontal connections for spatiotemporally precise, inter-areal communication.

  9. Familial neuralgia of occipital and intermedius nerves in a Chinese family.

    PubMed

    Wang, Yu; Yu, Chuan-Yong; Huang, Lin; Riederer, Franz; Ettlin, Dominik

    2011-08-01

    Cranial nerve neuralgia usually occurs sporadically. Nonetheless, familial cases of trigeminal neuralgia are not uncommon with a reported incidence of 1-2%, suggestive of an autosomal dominant inheritance. In contrast, familial occipital neuralgia is rarely reported with only one report in the literature. We present a Chinese family with five cases of occipital and nervus intermedius neuralgia alone or in combination in three generations. All persons afflicted with occipital neuralgia have suffered from paroxysmal 'electric wave'-like pain for years. In the first generation, the father (index patient) was affected, in the second generation all his three daughters (with two sons spared) and in the third generation a daughter's male offspring is affected. This familial pattern suggests an X-linked dominant or an autosomal dominant inheritance mode.

  10. Perceptual learning and adult cortical plasticity.

    PubMed

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  11. [Treatment of Occipital Neuralgia by Electroacupuncture Combined with Neural Mobilization].

    PubMed

    Wang, Yan; Guo, Zi-Nan; Yang, Zhen; Wang, Shun

    2018-03-25

    To observe the effect of electroacupuncture (EA) combined with neural mobilization (NM) in the treatment of occipital neuralgia. A total of 62 occipital neuralgia patients were randomized into EA group (19 cases), NM group (22 cases) and EA+NM group (21 cases). EA was applied at acupoint-pairs as Yuzhen (BL 9)- Tianzhu (BL 10), Fengchi (GB 20)- Wangu (GB 12), etc. NM intervention consisted of occipital muscle group mobilization, C 2 spinous process mobilization, cervical joint passive movement management mobilization, etc., was performed at the impaired cervical spine segment. The two methods were used in combination for patients in the EA+NM group. All the treatment was given once a day for 2 weeks. Before and after treatment, the visual analogue scale (VAS) and the 6-point (1-6 points) behavioral rating scale (BRS-6) of headache were used to assess the severity of pain. The therapeutic effect was evaluated according to the "Criteria for Diagnosis and Cure-Improvement of Clinical Conditions" formulated by State Administration of Traditional Chinese Medicine of the People's Republic of China in 1994. After treatment, both VAS and BRS-6 scores were significantly lower than those before treatment in each of the three groups ( P <0.05), and were significantly lower in the EA+NM group than in the simple EA and simple NM groups ( P <0.01, P <0.05). The total effective rates were 78.95% (15/19) in the EA group, 68.18% (15/22) in the NM group, and 90.48% (19/21) in the EA+NM group, with an obviously better therapeutic effect being in the EA+NM group relevant to each of the other two treatment groups ( P <0.05). EA, NM and EA combined with NM can improve symptoms of patients with occipital neuralgia, and EA+NM has a synergic analgesic effect for occipital neuralgia.

  12. INTERFRAGMENTARY SURFACE AREA AS AN INDEX OF COMMINUTION SEVERITY IN CORTICAL BONE IMPACT

    PubMed Central

    Beardsley, Christina L.; Anderson, Donald D.; Marsh, J. Lawrence; Brown, Thomas D.

    2008-01-01

    Summary A monotonic relationship is expected between energy absorption and fracture surface area generation for brittle solids, based on fracture mechanics principles. It was hypothesized that this relationship is demonstrable in bone, to the point that on a continuous scale, comminuted fractures created with specific levels of energy delivery could be discriminated from one another. Using bovine cortical bone segments in conjunction with digital image analysis of CT fracture data, the surface area freed by controlled impact fracture events was measured. The results demonstrated a statistically significant (p<0.0001) difference in measured de novo surface area between three specimen groups, over a range of input energies from 0.423 to 0.702 J/g. Local material properties were also incorporated into these measurements via CT Hounsfield intensities. This study confirms that comminution severity of bone fractures can indeed be measured on a continuous scale, based on energy absorption. This lays a foundation for similar assessments in human injuries. PMID:15885492

  13. The cognitive profile of occipital lobe epilepsy and the selective association of left temporal lobe hypometabolism with verbal memory impairment.

    PubMed

    Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F

    2014-08-01

    We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  14. Primary Occipital Ewing's Sarcoma with Subsequent Spinal Seeding.

    PubMed

    Alqahtani, Ali; Amer, Roaa; Bakhsh, Eman

    2017-01-01

    Ewing's sarcoma is a primary bone cancer that mainly affects the long bones. This malignancy is particularly common in pediatric patients. Primary cranial involvement accounts for 1% of cases, with occipital involvement considered extremely rare. In this case study, primary occipital Ewing's sarcoma with a posterior fossa mass and subsequent relapse resulting in spinal seeding is reported. A 3-year-old patient presented with a 1-year history of left-sided headaches, localized over the occipital bone with progressive torticollis. Computed tomography (CT) imaging showed a mass in the left posterior fossa compressing the brainstem. The patient then underwent surgical excision followed by adjuvant chemoradiation therapy. Two years later, the patient presented with severe lower back pain and urinary incontinence. Whole-spine magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) seeding from the L5 to the S4 vertebrae. Primary cranial Ewing's sarcoma is considered in the differential diagnosis of children with extra-axial posterior fossa mass associated with destructive permeative bone lesions. Although primary cranial Ewing's sarcoma typically has good prognosis, our patient developed metastasis in the lower spine. Therefore, with CNS Ewing's sarcoma, screening of the entire neural axis should be taken into consideration for early detection of CSF seeding metastasis in order to decrease the associated morbidity and mortality.

  15. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons

    PubMed Central

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew CN; Swindale, Nicholas V; Murphy, Timothy H

    2017-01-01

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI: http://dx.doi.org/10.7554/eLife.19976.001 PMID:28160463

  16. Task relevance modulates the cortical representation of feature conjunctions in the target template.

    PubMed

    Reeder, Reshanne R; Hanke, Michael; Pollmann, Stefan

    2017-07-03

    Little is known about the cortical regions involved in representing task-related content in preparation for visual task performance. Here we used representational similarity analysis (RSA) to investigate the BOLD response pattern similarity between task relevant and task irrelevant feature dimensions during conjunction viewing and target template maintenance prior to visual search. Subjects were cued to search for a spatial frequency (SF) or orientation of a Gabor grating and we measured BOLD signal during cue and delay periods before the onset of a search display. RSA of delay period activity revealed that widespread regions in frontal, posterior parietal, and occipitotemporal cortices showed general representational differences between task relevant and task irrelevant dimensions (e.g., orientation vs. SF). In contrast, RSA of cue period activity revealed sensory-related representational differences between cue images (regardless of task) at the occipital pole and additionally in the frontal pole. Our data show that task and sensory information are represented differently during viewing and during target template maintenance, and that task relevance modulates the representation of visual information across the cortex.

  17. Brief communication: timing of spheno-occipital closure in modern Western Australians.

    PubMed

    Franklin, Daniel; Flavel, Ambika

    2014-01-01

    The spheno-occipital synchondrosis is a craniofacial growth centre between the occipital and sphenoid bones-its ossification persists into adolescence, which for the skeletal biologist, means it has potential application for estimating subadult age. Based on previous research the timing of spheno-occipital fusion is widely variable between and within populations, with reports of complete fusion in individuals as young as 11 years of age and nonfusion in adults. The aim of this study is, therefore, to examine this structure in a mixed sex sample of Western Australian individuals that developmentally span late childhood to adulthood. The objective is to develop statistically quantified age estimation standards based on scoring the degree of spheno-occipital fusion. The sample comprises multidetector computed tomography (MDCT) scans of 312 individuals (169 male; 143 female) between 5 and 25 years of age. Each MDCT scan is visualized in a standardized sagittal plane using three-dimensional oblique multiplanar reformatting. Fusion status is scored according to a four-stage system. Transition analysis is used to calculate age ranges for each defined stage and determine the mean age for transition between an unfused, fusing and fused status. The maximum likelihood estimates for the transition from open to fusing in the endocranial half is 14.44 years (male) and 11.42 years (female); transition from fusion in the ectocranial half to complete fusion is 16.16 years (male) and 13.62 years (female). This study affirms the potential value of assessing the degree of fusion in the spheno-occipital synchondrosis as an indicator of skeletal age. Copyright © 2013 Wiley Periodicals, Inc.

  18. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  19. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    PubMed

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  20. In Vivo High-Resolution 7 Tesla MRI Shows Early and Diffuse Cortical Alterations in CADASIL

    PubMed Central

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Background and Purpose Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin’s scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Methods Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. Results MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Conclusions Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined. PMID:25165824

  1. Bone Density and Cortical Structure after Pediatric Renal Transplantation

    PubMed Central

    Terpstra, Anniek M.; Kalkwarf, Heidi J.; Shults, Justine; Zemel, Babette S.; Wetzsteon, Rachel J.; Foster, Bethany J.; Strife, C. Frederic; Foerster, Debbie L.

    2012-01-01

    The impact of renal transplantation on trabecular and cortical bone mineral density (BMD) and cortical structure is unknown. We obtained quantitative computed tomography scans of the tibia in pediatric renal transplant recipients at transplantation and 3, 6, and 12 months; 58 recipients completed at least two visits. We used more than 700 reference participants to generate Z-scores for trabecular BMD, cortical BMD, section modulus (a summary measure of cortical dimensions and strength), and muscle and fat area. At baseline, compared with reference participants, renal transplant recipients had significantly lower mean section modulus and muscle area; trabecular BMD was significantly greater than reference participants only in transplant recipients younger than 13 years. After transplantation, trabecular BMD decreased significantly in association with greater glucocorticoid exposure. Cortical BMD increased significantly in association with greater glucocorticoid exposure and greater decreases in parathyroid hormone levels. Muscle and fat area both increased significantly, but section modulus did not improve. At 12 months, transplantation associated with significantly lower section modulus and greater fat area compared with reference participants. Muscle area and cortical BMD did not differ significantly between transplant recipients and reference participants. Trabecular BMD was no longer significantly elevated in younger recipients and was low in older recipients. Pediatric renal transplant associated with persistent deficits in section modulus, despite recovery of muscle, and low trabecular BMD in older recipients. Future studies should determine the implications of these data on fracture risk and identify strategies to improve bone density and structure. PMID:22282589

  2. [Occipital neuralgia: clinical and therapeutic characteristics of a series of 14 patients].

    PubMed

    Pedraza, María Isabel; Ruiz, Marina; Rodríguez, Cristina; Muñoz, Irene; Barón, Johanna; Mulero, Patricia; Herrero-Velázquez, Sonia; Guerrero-Peral, Ángel L

    2013-09-01

    INTRODUCTION. Occipital neuralgia is a pain in the distribution of the occipital nerves, accompanied by hypersensitivity to touch in the corresponding territory. AIMS. We present the occipital neuralgia series from the specialised headache unit at a tertiary hospital and analyse its clinical characteristics and its response to therapy. PATIENTS AND METHODS. Variables were collected from the cases of occipital neuralgia diagnosed in the above-mentioned headache unit between January 2008 and April 2013. RESULTS. A series of 14 patients (10 females, 4 males) with occipital neuralgia was obtained out of a total of 2338 (0.59%). Age at onset of the clinical signs and symptoms: 53.4 ± 20.3 years (range: 17-81 years) and time elapsed to diagnosis was 35.5 ± 58.8 months (range: 1-230 months). An intracranial or cervical pathology was ruled out by suitable means in each case. Baseline pain of a generally oppressive nature and an intensity of 5.3 ± 1.3 (4-8) on the verbal analogue scale was observed in 13 of them (92.8%). Eleven (78.5%) presented exacerbations, generally stabbing pains, a variable frequency (4.6 ± 7 a day) and an intensity of 7.8 ± 1.7 (range: 4-10) on the verbal analogue scale. Anaesthetic blockade was not performed in four of them (two due to a remitting pattern and two following the patient's wishes); in the others, blockade was carried out and was completely effective for between two and seven months. Four cases had previously received preventive treatment (amitriptyline in three and gabapentin in one), with no response. CONCLUSIONS. In this series from a specialised headache unit, occipital neuralgia is an infrequent condition that mainly affects patients over 50 years of age. Given its poor response to preventive treatment, the full prolonged response to anaesthetic blockades must be taken into account.

  3. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    PubMed

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Right Occipital Cortex Activation Correlates with Superior Odor Processing Performance in the Early Blind

    PubMed Central

    Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.

    2013-01-01

    Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263

  5. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.

    PubMed

    Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G

    2017-08-16

    Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone. SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space

  6. Transarticular screw fixation of C1-2 for the treatment of arthropathy-associated occipital neuralgia.

    PubMed

    Pakzaban, Peyman

    2011-02-01

    Two patients with occipital neuralgia due to severe arthropathy of the C1-2 facet joint were treated using atlantoaxial fusion with transarticular screws without decompression of the C-2 nerve root. Both patients experienced immediate postoperative relief of occipital neuralgia. The resultant motion elimination at C1-2 eradicated not only the movement-evoked pain, but also the paroxysms of true occipital neuralgia occurring at rest. A possible pathophysiological explanation for this improvement is presented in the context of the ignition theory of neuralgic pain. This represents the first report of C1-2 transarticular screw fixation for the treatment of arthropathy-associated occipital neuralgia.

  7. [Scalp neuralgia and headache elicited by cranial superficial anatomical causes: supraorbital neuralgia, occipital neuralgia, and post-craniotomy headache].

    PubMed

    Shimizu, Satoru

    2014-01-01

    Most scalp neuralgias are supraorbital or occipital. Although they have been considered idiopathic, recent studies revealed that some were attributable to mechanical irritation with the peripheral nerve of the scalp by superficial anatomical cranial structures. Supraorbital neuralgia involves entrapment of the supraorbital nerve by the facial muscle, and occipital neuralgia involves entrapment of occipital nerves, mainly the greater occipital nerve, by the semispinalis capitis muscle. Contact between the occipital artery and the greater occipital nerve in the scalp may also be causative. Decompression surgery to address these neuralgias has been reported. As headache after craniotomy is the result of iatrogenic injury to the peripheral nerve of the scalp, post-craniotomy headache should be considered as a differential diagnosis.

  8. Greater sensitivity of the cortical face processing system to perceptually-equated face detection

    PubMed Central

    Maher, S.; Ekstrom, T.; Tong, Y.; Nickerson, L.D.; Frederick, B.; Chen, Y.

    2015-01-01

    Face detection, the perceptual capacity to identify a visual stimulus as a face before probing deeper into specific attributes (such as its identity or emotion), is essential for social functioning. Despite the importance of this functional capacity, face detection and its underlying brain mechanisms are not well understood. This study evaluated the roles that the cortical face processing system, which is identified largely through studying other aspects of face perception, play in face detection. Specifically, we used functional magnetic resonance imaging (fMRI) to examine the activations of the fusifom face area (FFA), occipital face area (OFA) and superior temporal sulcus (STS) when face detection was isolated from other aspects of face perception and when face detection was perceptually-equated across individual human participants (n=20). During face detection, FFA and OFA were significantly activated, even for stimuli presented at perceptual-threshold levels, whereas STS was not. During tree detection, however, FFA and OFA were responsive only for highly salient (i.e., high contrast) stimuli. Moreover, activation of FFA during face detection predicted a significant portion of the perceptual performance levels that were determined psychophysically for each participant. This pattern of result indicates that FFA and OFA have a greater sensitivity to face detection signals and selectively support the initial process of face vs. non-face object perception. PMID:26592952

  9. Development of a model for occipital fixation--validation of an analogue bone material.

    PubMed

    Mullett, H; O'Donnell, T; Felle, P; O'Rourke, K; FitzPatrick, D

    2002-01-01

    Several implant systems may be used to fuse the skull to the upper cervical spine (occipitocervical fusion). Current biomechanical evaluation is restricted by the limitations of human cadaveric specimens. This paper describes the design and validation of a synthetic testing model of the occipital bone. Data from thickness measurement and pull-out strength testing of a series of human cadaveric skulls was used in the design of a high-density rigid polyurethane foam model. The synthetic occipital model demonstrated repeatable and consistent morphological and biomechanical properties. The model provides a standardized environment for evaluation of occipital implants.

  10. Forty-two cases of greater occipital neuralgia treated by acupuncture plus acupoint-injection.

    PubMed

    Pan, Changqing; Tan, Guangbo

    2008-09-01

    To observe the therapeutic effect of acupuncture plus acupoint-injection on greater occipital neuralgia. The 84 cases of greater occipital neuralgia were randomly divided into two groups, with 42 cases in the treatment group treated by acupuncture plus acupoint-injection, and 42 cases in the control group treated with oral administration of carbamazepine. The total effective rate was 92.8% in the treatment group and 71.4% in the control group. The difference in the total effective rate was significant (P < 0.05) between the two groups. Acupuncture plus acupoint-injection is effective for greater occipital neuralgia, better than the routine western medication.

  11. Cortical networks for encoding near and far space in the non-human primate.

    PubMed

    Cléry, Justine; Guipponi, Olivier; Odouard, Soline; Wardak, Claire; Ben Hamed, Suliann

    2018-08-01

    While extra-personal space is often erroneously considered as a unique entity, early neuropsychological studies report a dissociation between near and far space processing both in humans and in monkeys. Here, we use functional MRI in a naturalistic 3D environment to describe the non-human primate near and far space cortical networks. We describe the co-occurrence of two extended functional networks respectively dedicated to near and far space processing. Specifically, far space processing involves occipital, temporal, parietal, posterior cingulate as well as orbitofrontal regions not activated by near space, possibly subserving the processing of the shape and identity of objects. In contrast, near space processing involves temporal, parietal, prefrontal and premotor regions not activated by far space, possibly subserving the preparation of an arm/hand mediated action in this proximal space. Interestingly, this network also involves somatosensory regions, suggesting a cross-modal anticipation of touch by a nearby object. Last, we also describe cortical regions that process both far and near space with a preference for one or the other. This suggests a continuous encoding of relative distance to the body, in the form of a far-to-near gradient. We propose that these cortical gradients in space representation subserve the physically delineable peripersonal spaces described in numerous psychology and psychophysics studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    PubMed Central

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  13. Comparison of functional and morphological deficits in the rat after gestational exposure to ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, S.; Kimler, B.F.

    1988-07-01

    Ionizing radiation is a precise tool for altering formation of the developing cerebral cortex of the fetal rat. Whole body exposure of the pregnant rat on gestational day 13, 15 or 17 to 1.0 Gy of gamma radiation resulted in maximum thinning of the cortex on days 15 and 17. In the preweaning period, functional tests (negative geotaxis, reflex suspension, continuous corridor and gait) were most affected by irradiation gestational day 15, as was body weight. When a lower dose of radiation (0.75 Gy) was used on gestational day 15, the damage to the cortex was much less but behavioralmore » changes were still present. Frontal, parietal and occipital areas of the cortex were approximately equally affected. Using stepwise multiple regression analysis, the linkage of functional tests and cortical thickness was examined. Functional variables which were most commonly included as predictors of frontal and parietal cortex were negative geotaxis and continuous corridor. Occipital cortical layers were not predicted by behavioral variables. In predicting function using cortical variables, frontal cortex was better than parietal and occipital cortex was the poorest predictor.« less

  14. Age determination by spheno-occipital synchondrosis fusion in Central Indian population.

    PubMed

    Pate, Rajeshwar Sambhaji; Tingne, Chaitanya Vidyadhar; Dixit, Pradeep Gangadhar

    2018-02-01

    The spheno occipital suture synchondrosis is a vital contributor to adolescent and adult age estimation in that it can provide an upper or lower age bound depending on its state of fusion. The present study evaluates the utility of the spheno-occipital suture fusion in age estimation of the Central Indian population. The sample includes 198 (117 males and 81 females) cadavers aged between 8 to 26 years. Grading was done using Mitra-Akhlaghi Scale as - Open, Semi closed and Closed. Our study demonstrates that a significant linear correlation exists between the age of an individual and spheno-occipital suture closure for both the sexes and observation of the degree of fusion of this single suture allows the prediction of age in mature individuals. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Structural Alteration of the Dorsal Visual Network in DLB Patients with Visual Hallucinations: A Cortical Thickness MRI Study

    PubMed Central

    Delli Pizzi, Stefano; Franciotti, Raffaella; Tartaro, Armando; Caulo, Massimo; Thomas, Astrid; Onofrj, Marco; Bonanni, Laura

    2014-01-01

    Visual hallucinations (VH) represent one of the core features in discriminating dementia with Lewy bodies (DLB) from Alzheimer’s Disease (AD). Previous studies reported that in DLB patients functional alterations of the parieto-occipital regions were correlated with the presence of VH. The aim of our study was to assess whether morphological changes in specific cortical regions of DLB could be related to the presence and severity of VH. We performed a cortical thickness analysis on magnetic resonance imaging data in a cohort including 18 DLB patients, 15 AD patients and 14 healthy control subjects. Relatively to DLB group, correlation analysis between the cortical thickness and the Neuropsychiatric Inventory (NPI) hallucination item scores was also performed. Cortical thickness was reduced bilaterally in DLB compared to controls in the pericalcarine and lingual gyri, cuneus, precuneus, superior parietal gyrus. Cortical thinning was found bilaterally in AD compared to controls in temporal cortex including the superior and middle temporal gyrus, part of inferior temporal cortex, temporal pole and insula. Inferior parietal and supramarginal gyri were also affected bilaterally in AD as compared to controls. The comparison between DLB and AD evidenced cortical thinning in DLB group in the right posterior regions including superior parietal gyrus, precuneus, cuneus, pericalcarine and lingual gyri. Furthermore, the correlation analysis between cortical thickness and NPI hallucination item scores showed that the structural alteration in the dorsal visual regions including superior parietal gyrus and precuneus closely correlated with the occurrence and severity of VH. We suggest that structural changes in key regions of the dorsal visual network may play a crucial role in the physiopathology of VH in DLB patients. PMID:24466177

  16. Drawing in the blind and the sighted as a probe of cortical reorganization

    NASA Astrophysics Data System (ADS)

    Likova, Lora T.

    2010-02-01

    In contrast to other arts, such as music, there is a very little neuroimaging research on visual art and in particular - on drawing. Drawing - from artistic to technical - involves diverse aspects of spatial cognition, precise sensorimotor planning and control as well as a rich set of higher cognitive functions. A new method for learning the drawing skill in the blind that we have developed, and the technological advances of a multisensory MR-compatible drawing system, allowed us to run for the first time a comparative fMRI study on drawing in the blind and the sighted. In each population, we identified widely distributed cortical networks, extending from the occipital and temporal cortices, through the parietal to the frontal lobe. This is the first neuroimaging study of drawing in blind novices, as well as the first study on the learning to draw in either population. We sought to determine the cortical reorganization taking place as a result of learning to draw, despite the lack of visual input to the brains of the blind. Remarkably, we found massive recruitment of the visual cortex on learning to draw, although our subjects had no previous experience, but only a short training with our new drawing method. This finding implies a rapid, learning-based plasticity mechanism. We further proposed that the functional level of the brain reorganization in the blind may still differ from that in the sighted even in areas that overlap between the two populations, such as in the visual cortex. We tested this idea in the framework of saccadic suppression. A methodological innovation allowed us to estimate the retinotopic regions locations in the blind brain. Although the visual cortex of both groups was greatly recruited, only the sighted experienced dramatic suppression in hMT+ and V1, while there was no sign of an analogous process in the blind. This finding has important implications and suggests that the recruitment of the visual cortex in the blind does not assure a

  17. Dorsal surgical stabilisation using tension bands for treatment of traumatic atlanto-occipital instability in a cat.

    PubMed

    Vedrine, B; Maurin, M P

    2017-12-01

    An atlanto-occipital instability secondary to a dog bite was diagnosed in a 4-year-old Persian cat. Dorsal stabilisation of the instability was made with two OrthoFiber prostheses (Securos), which were used as tension bands between the nuchal crests of the occipital bone and the spinous process of the axis. Total recovery was achieved 4 days after surgery. Normal alignment of the atlanto-occipital joint was observed on survey radiographs taken 6 weeks post-surgery. Although the right loop had failed, the alignment was still normal and no neurological after-effects could be identified. Dorsal divergent tension bands between the nuchal crests of the occipital bone and the spinous process of the axis can be used to stabilise traumatic atlanto-occipital instability. © 2017 Australian Veterinary Association.

  18. Long-Lasting Crossmodal Cortical Reorganization Triggered by Brief Postnatal Visual Deprivation.

    PubMed

    Collignon, Olivier; Dormal, Giulia; de Heering, Adelaide; Lepore, Franco; Lewis, Terri L; Maurer, Daphne

    2015-09-21

    Animal and human studies have demonstrated that transient visual deprivation early in life, even for a very short period, permanently alters the response properties of neurons in the visual cortex and leads to corresponding behavioral visual deficits. While it is acknowledged that early-onset and longstanding blindness leads the occipital cortex to respond to non-visual stimulation, it remains unknown whether a short and transient period of postnatal visual deprivation is sufficient to trigger crossmodal reorganization that persists after years of visual experience. In the present study, we characterized brain responses to auditory stimuli in 11 adults who had been deprived of all patterned vision at birth by congenital cataracts in both eyes until they were treated at 9 to 238 days of age. When compared to controls with typical visual experience, the cataract-reversal group showed enhanced auditory-driven activity in focal visual regions. A combination of dynamic causal modeling with Bayesian model selection indicated that this auditory-driven activity in the occipital cortex was better explained by direct cortico-cortical connections with the primary auditory cortex than by subcortical connections. Thus, a short and transient period of visual deprivation early in life leads to enduring large-scale crossmodal reorganization of the brain circuitry typically dedicated to vision. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas.

    PubMed

    Tiesinga, P H E

    2004-03-01

    The reproducibility of neural spike train responses to an identical stimulus across different presentations (trials) has been studied extensively. Reliability, the degree of reproducibility of spike trains, was found to depend in part on the amplitude and frequency content of the stimulus [J. Hunter and J. Milton, J. Neurophysiol. 90, 387 (2003)]. The responses across different trials can sometimes be interpreted as the response of an ensemble of similar neurons to a single stimulus presentation. How does the reliability of the activity of neural ensembles affect information transmission between different cortical areas? We studied a model neural system consisting of two ensembles of neurons with Hodgkin-Huxley-type channels. The first ensemble was driven by an injected sinusoidal current that oscillated in the gamma-frequency range (40 Hz) and its output spike trains in turn drove the second ensemble by fast excitatory synaptic potentials with short term depression. We determined the relationship between the reliability of the first ensemble and the response of the second ensemble. In our paradigm the neurons in the first ensemble were initially in a chaotic state with unreliable and imprecise spike trains. The neurons became entrained to the oscillation and responded reliably when the stimulus power was increased by less than 10%. The firing rate of the first ensemble increased by 30%, whereas that of the second ensemble could increase by an order of magnitude. We also determined the response of the second ensemble when its input spike trains, which had non-Poisson statistics, were replaced by an equivalent ensemble of Poisson spike trains. The resulting output spike trains were significantly different from the original response, as assessed by the metric introduced by Victor and Purpura [J. Neurophysiol. 76, 1310 (1996)]. These results are a proof of principle that weak temporal modulations in the power of gamma-frequency oscillations in a given cortical area

  20. Reorganization of Retinotopic Maps After Occipital Lobe Infarction

    PubMed Central

    Vaina, Lucia M.; Soloviev, Sergei; Calabro, Finnegan J.; Buonanno, Ferdinando; Passingham, Richard; Cowey, Alan

    2015-01-01

    We studied patient JS who had a right occipital infarct that encroached on visual areas V1, V2v and VP. When tested psychophysically, he was very impaired at detecting the direction of motion in random dot displays where a variable proportion of dots moving in one direction (signal) were embedded in masking motion noise (noise dots). The impairment on this Motion Coherence task was especially marked when the display was presented to the upper left (affected) visual quadrant, contralateral to his lesion. However, with extensive training, by 11 months his threshold fell to the level of healthy subjects. Training on the Motion Coherence task generalized to another motion task, the Motion Discontinuity task, on which he had to detect the presence of an edge that was defined by the difference in the direction of the coherently moving dots (signal) within the display. He was much better at this task at 8 than 3 months, and this improvement was associated with an increase in the activation of the human MT complex (hMT+) and in the kinetic occipital region (KO) as shown by repeated fMRI scans. We also used fMRI to perform retinotopic mapping at 3, 8 and 11 months after the infarct. We quantified the retinotopy and areal shifts by measuring the distances between the center of mass of functionally defined areas, computed in spherical surface-based coordinates. The functionally defined retinotopic areas V1, V2v, V2d and VP were initially smaller in the lesioned right hemisphere, but they increased in size between 3 and 11 months. This change was not found in the normal, left hemisphere, of the patient or in either hemispheres of the healthy control subjects. We were interested in whether practice on the motion coherence task promoted the changes in the retinotopic maps. We compared the results for patient JS with those from another patient (PF) who had a comparable lesion but had not been given such practice. We found similar changes in the maps in the lesioned hemisphere of

  1. Intraoperative Subcortical Fiber Mapping with Subcortico-Cortical Evoked Potentials.

    PubMed

    Enatsu, Rei; Kanno, Aya; Ohtaki, Shunya; Akiyama, Yukinori; Ochi, Satoko; Mikuni, Nobuhiro

    2016-02-01

    During brain surgery, there are difficulties associated with identifying subcortical fibers with no clear landmarks. We evaluated the usefulness of cortical evoked potentials with subcortical stimuli (subcortico-cortical evoked potential [SCEP]) in identifying subcortical fibers intraoperatively. We used SCEP to identify the pyramidal tract in 4 patients, arcuate fasciculus in 1 patient, and both in 2 patients during surgical procedures. After resection, a 1 × 4-electrode plate was placed on the floor of the removal cavity and 1-Hz alternating electrical stimuli were delivered to this electrode. A 4 × 5 recording electrode plate was placed on the central cortical areas to map the pyramidal tract and temporoparietal cortical areas for the arcuate fasciculus. SCEPs were obtained by averaging electrocorticograms time locked to the stimulus onset. The subcortical stimulation within 15 mm of the target fiber induced cortical evoked potentials in the corresponding areas, whereas the stimulation apart from 20 mm did not. Five patients showed transient worsening of neurologic symptoms after surgery. However, all patients recovered. SCEP was useful for identifying subcortical fibers and confirmed the preservation of these fibers. This technique is expected to contribute to the effectiveness and safety of resective surgery in patients with lesions close to eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Extensive cortical rewiring after brain injury.

    PubMed

    Dancause, Numa; Barbay, Scott; Frost, Shawn B; Plautz, Erik J; Chen, Daofen; Zoubina, Elena V; Stowe, Ann M; Nudo, Randolph J

    2005-11-02

    Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.

  3. Individual differences in brain activity during visuo-spatial processing assessed by slow cortical potentials and LORETA.

    PubMed

    Lamm, Claus; Fischmeister, Florian Ph S; Bauer, Herbert

    2005-12-01

    Using slow-cortical potentials (SCPs), Vitouch et al. demonstrated that subjects with low ability to solve a complex visuo-spatial imagery task show higher activity in occipital, parietal and frontal cortex during task processing than subjects with high ability. This finding has been interpreted in the sense of the so-called "neural efficiency" hypothesis, which assumes that the central nervous system of individuals with higher intellectual abilities is functioning in a more efficient way than the one of individuals with lower abilities. Using a higher spatial resolution of SCP recordings, and by employing the source localization method of LORETA (low-resolution electromagnetic tomography), we investigated this hypothesis by performing an extended replication of Vitouch et al.'s study. SCPs during processing of a visuo-spatial imagery task were recorded in pre-selected subjects with either high or low abilities in solving the imagery task. Topographic and LORETA analyses of SCPs revealed that a distributed network of extrastriate occipital, superior parietal, temporal, medial frontal and prefrontal areas was active during task solving. This network is well in line with former studies of the functional neuroanatomy of visuo-spatial imagery. Contrary to our expectations, however, the results of Vitouch et al. as well as of other studies supporting the neural efficiency hypothesis could not be confirmed since no difference in brain activity between groups was observed. This inconsistency between studies might be due to differing task processing strategies. While subjects with high abilities in the Vitouch et al. study seemed to use a visuo-perceptual task solving approach, all other subjects relied upon a visuo-motor task processing strategy.

  4. Cervico-occipital meningioma in a 5-year-old child: a case report.

    PubMed

    Ben Nsir, Atef; Boubaker, Adnene; Jemel, Hafedh

    2014-01-01

    Childhood meningiomas are scarce in clinical practice with an incidence ranging from 0.4 to 4.6% of all pediatric central nervous system (CNS) tumors. Cervico-occipital meningiomas account for 3.7% of childhood meningiomas and are slightly more frequent in male. A 5-year-old female presented with febrile posterior cervico-occipital pain for 3 weeks. She was diagnosed with meningitis and treated for a similar period with adapted antibiotics. The pain persisted even after treatment. Magnetic resonance imaging revealed an enhancing subdural extra medullary mass of the cervico occipital junction, developing around the left vertebral artery. The characteristics of the lesion were strongly suggestive of a neuroma. Surgical removal of the tumor aiming the decompression of the spinal cord and nerve roots was performed with a surprising discovery: The tumor was tightly attached to the dura at the entry of the left vertebral artery. The resection was total and only a thin part close to the artery was left. The pathological findings confirmed the diagnosis of meningothelial meningioma. Meningioma should be considered in the differential diagnosis of contrast enhancing subdural extra medullary lesions of the cervico-occipital junction in children.

  5. Solvent inhalation (toluene and n-hexane) during the brain growth spurt impairs the maturation of frontal, parietal and occipital cerebrocortical neurons in rats.

    PubMed

    Pascual, Rodrigo; Aedo, Luz; Meneses, Juan Carlos; Vergara, Daniela; Reyes, Alvaro; Bustamante, Carlos

    2010-10-01

    Solvent abuse during pregnancy may cause "fetal solvent syndrome", which is characterized by mild brain atrophy and associated with behavioral, cognitive, and emotional abnormalities. The present study investigated whether solvent inhalation during the preweaning period (P2-P21) alters the morphological maturation of frontal, parietal, and occipital cortical neurons. Twelve hours after delivery (postnatal day 0, P0), litters were cross-fostered, culled to 8 pups/dam and housed together with a dam in standard laboratory cages. Litters were randomly assigned to the "air-only" group (n=64, 8 litters) and to the "solvent-sniffer" group (n=72, 9 litters). During P2-P21, each animal was exposed daily to either organic solvent vapors (75% toluene and 18% n-hexane, a solvent mixture commonly found in glues and adhesives) or clean air. To determine the impact of early solvent inhalation on cortical neuronal differentiation, brains were stained using the Golgi-Cox-Sholl procedure to quantitatively assess neocortical pyramidal cell dendrogenesis. Preweaning, solvent-exposed animals displayed dramatic impairments in dendritic growth as well as significant reductions in brain weight and size. Copyright 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  6. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance

    PubMed Central

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B.; Carbonell, Felix; Mendola, Janine D.

    2016-01-01

    Abstract Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation

  7. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.

    PubMed

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir

    2016-02-01

    Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased

  8. Multivariate Patterns in the Human Object-Processing Pathway Reveal a Shift from Retinotopic to Shape Curvature Representations in Lateral Occipital Areas, LO-1 and LO-2.

    PubMed

    Vernon, Richard J W; Gouws, André D; Lawrence, Samuel J D; Wade, Alex R; Morland, Antony B

    2016-05-25

    Representations in early visual areas are organized on the basis of retinotopy, but this organizational principle appears to lose prominence in the extrastriate cortex. Nevertheless, an extrastriate region, such as the shape-selective lateral occipital cortex (LO), must still base its activation on the responses from earlier retinotopic visual areas, implying that a transition from retinotopic to "functional" organizations should exist. We hypothesized that such a transition may lie in LO-1 or LO-2, two visual areas lying between retinotopically defined V3d and functionally defined LO. Using a rapid event-related fMRI paradigm, we measured neural similarity in 12 human participants between pairs of stimuli differing along dimensions of shape exemplar and shape complexity within both retinotopically and functionally defined visual areas. These neural similarity measures were then compared with low-level and more abstract (curvature-based) measures of stimulus similarity. We found that low-level, but not abstract, stimulus measures predicted V1-V3 responses, whereas the converse was true for LO, a double dissociation. Critically, abstract stimulus measures were most predictive of responses within LO-2, akin to LO, whereas both low-level and abstract measures were predictive for responses within LO-1, perhaps indicating a transitional point between those two organizational principles. Similar transitions to abstract representations were not observed in the more ventral stream passing through V4 and VO-1/2. The transition we observed in LO-1 and LO-2 demonstrates that a more "abstracted" representation, typically considered the preserve of "category-selective" extrastriate cortex, can nevertheless emerge in retinotopic regions. Visual areas are typically identified either through retinotopy (e.g., V1-V3) or from functional selectivity [e.g., shape-selective lateral occipital complex (LOC)]. We combined these approaches to explore the nature of shape representations

  9. Neck and Occipital Pain Caused by Deep Cervical Intramuscular Lipoma: A Surgical Case.

    PubMed

    Kogure, Kazunari; Yamazaki, Michio; Tamaki, Tomonori; Node, Yoji; Morita, Akio

    2017-01-01

    A lipoma is a slow-growing, benign tumor and is usually asymptomatic; hence, surgical intervention can often be avoided in patients with these tumors in the cervical and cranial area. Lipomas arise most commonly in the subcutaneous fat, but occasionally in muscle tissue. Intramuscular lipomas in the cervico-cranial area have rarely been reported. We describe here a patient with a large intramuscular lipoma in the deep cervical tissue. The patient experienced troublesome pain in the neck and occipital area, and surgical treatment was therefore suggested. Particularly in the cervical area, intramuscular lipomas sometimes invade the surrounding muscles and tissue layers and develop into an irregular mass, despite being benign. In addition, the cervical area has one of the most complex muscle structures. Nevertheless, surgical management of intramuscular lipoma in the cervical and cranial area is sometimes indicated, for example, in patients with clinical symptoms or masses with a tendency to grow large.

  10. The Intramuscular Course of the Greater Occipital Nerve: Novel Findings with Potential Implications for Operative Interventions and Occipital Neuralgia

    PubMed Central

    Tubbs, R. Shane; Watanabe, Koichi; Loukas, Marios; Cohen-Gadol, Aaron A.

    2014-01-01

    Background: A better understanding of the etiologies of occipital neuralgia would help the clinician treat patients with this debilitating condition. Since few studies have examined the muscular course of the greater occipital nerve (GON), this study was performed. Methods: Thirty adult cadaveric sides underwent dissection of the posterior occiput with special attention to the intramuscular course of the GON. Nerves were typed based on their muscular course. Results: The GON traveled through the trapezius (type I; n = 5, 16.7%) or its aponeurosis (type II; n = 15, 83.3%) to become subcutaneous. Variations in the subtrapezius muscular course were found in 10 (33%) sides. In two (6.7%) sides, the GON traveled through the lower edge of the inferior capitis oblique muscle (subtype a). On five (16.7%) sides, the GON coursed through a tendinous band of the semispinalis capitis, not through its muscular fibers (subtype b). On three (10%) sides the GON bypassed the semispinalis capitis muscle to travel between its most medial fibers and the nuchal ligament (subtype c). For subtypes, eight were type II courses (through the aponeurosis of the trapezius), and two were type I courses (through the trapezius muscle). The authors identified two type IIa courses, four type IIb courses, and two type IIc courses. Type I courses included one type Ib and one type Ic courses. Conclusions: Variations in the muscular course of the GON were common. Future studies correlating these findings with the anatomy in patients with occipital neuralgia may elucidate nerve courses vulnerable to nerve compression. This enhanced classification scheme describes the morphology in this region and allows more specific communications about GON variations. PMID:25422783

  11. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    PubMed

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion.

    PubMed

    Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter

    2015-01-01

    This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.

  13. [Transient charles bonnet syndrome after excision of a right occipital meningioma: a case report].

    PubMed

    Arai, Takao; Hasegawa, Yuzuru; Tanaka, Toshihide; Kato, Naoki; Watanabe, Mitsuyoshi; Nakamura, Aya; Murayama, Yuichi

    2014-05-01

    Charles Bonnet syndrome is a condition characterized by visual hallucinations. These simple or complex visual hallucinations are more common in elderly individuals with impaired peripheral vision. The current report describes a case of transient Charles Bonnet syndrome appearing after the removal of a meningioma. The patient was a 61-year-old man who already had impaired visual acuity due to diabetic retinopathy. Brain MRI revealed a cystic tumor severely compressing the right occipital lobe. Starting on day 2 postoperatively, the patient was troubled by recurring visual hallucinations involving people, flowers, pictures, and familiar settings(the train and a coffee shop). These continued for 3.5 months. This period roughly coincided with the time for the occipital lobe to recover from the compression caused by the tumor, a fact that was confirmed by several MRI scans. ¹²³I-IMP SPECT performed 1 month after the surgical operation showed an area of hypoperfusion in the right parieto-occipital lobe. Based on the patient's clinical course and MRI findings, the mechanism of onset of visual hallucinations in this patient was put forward. The release of pressure in the brain by tumor removal and subsequent recovery changed the blood flow to the brain. This triggered visual hallucinations in the patient, who was already predisposed to developing Charles Bonnet syndrome because of diabetic retinopathy. This case is interesting since it indicates that central neurological factors, as well as visual deficits, may induce the appearance of visual hallucinations in Charles Bonnet syndrome.

  14. Cortical pathology in multiple sclerosis detected by the T1/T2‐weighted ratio from routine magnetic resonance imaging

    PubMed Central

    Righart, Ruthger; Biberacher, Viola; Jonkman, Laura E.; Klaver, Roel; Schmidt, Paul; Buck, Dorothea; Berthele, Achim; Kirschke, Jan S.; Zimmer, Claus; Hemmer, Bernhard; Geurts, Jeroen J. G.

    2017-01-01

    Objective In multiple sclerosis, neuropathological studies have shown widespread changes in the cerebral cortex. In vivo imaging is critical, because the histopathological substrate of most measurements is unknown. Methods Using a novel magnetic resonance imaging analysis technique, based on the ratio of T1‐ and T2‐weighted signal intensities, we studied the cerebral cortex of a large cohort of patients in early stages of multiple sclerosis. A total of 168 patients with clinically isolated syndrome or relapsing–remitting multiple sclerosis (Expanded Disability Status Scale: median = 1, range = 0–3.5) and 80 age‐ and sex‐matched healthy controls were investigated. We also searched for the histopathological substrate of the T1/T2‐weighted ratio by combining postmortem imaging and histopathology in 9 multiple sclerosis brain donors. Results Patients showed lower T1/T2‐weighted ratio values in parietal and occipital areas. The 4 most significant clusters appeared in the medial occipital and posterior cingulate cortex (each left and right). The decrease of the T1/T2‐weighted ratio in the posterior cingulate was related to performance in attention. Analysis of the T1/T2‐weighted ratio values of postmortem imaging yielded a strong correlation with dendrite density but none of the other parameters including myelin. Interpretation The T1/T2‐weighted ratio decreases in early stages of multiple sclerosis in a widespread manner, with a preponderance of posterior areas and with a contribution to attentional performance; it seems to reflect dendrite pathology. As the method is broadly available and applicable to available clinical scans, we believe that it is a promising candidate for studying and monitoring cortical pathology or therapeutic effects in multiple sclerosis. Ann Neurol 2017;82:519–529 PMID:28833433

  15. Subcortical and cortical structural central nervous system changes and attention processing deficits in preschool-aged children with prenatal methamphetamine and tobacco exposure.

    PubMed

    Derauf, Chris; Lester, Barry M; Neyzi, Nurunisa; Kekatpure, Minal; Gracia, Luis; Davis, James; Kallianpur, Kalpana; Efird, Jimmy T; Kosofsky, Barry

    2012-01-01

    To examine the independent contributions of prenatal methamphetamine exposure (PME) and prenatal tobacco exposure (PTE) on brain morphology among a sample of nonalcohol-exposed 3- to 5-year-old children followed prospectively since birth. The sample included 20 children with PME (19 with PTE) and 15 comparison children (7 with PTE), matched on race, birth weight, maternal education and type of insurance. Subcortical and cortical volumes and cortical thickness measures were derived through an automated segmentation procedure from T1-weighted structural magnetic resonance images obtained on unsedated children. Attention was assessed using the computerized Conners' Kiddie Continuous Performance Test Version 5 (K-CPT™ V.5). PME effects on subcortical and cortical brain volumes and cortical thickness were tested by general linear model with type III sum of squares, adjusting for PTE, prenatal marijuana exposure, age at time of scan, gender, handedness, pulse sequence and total intracranial volume (for volumetric outcomes). A similar analysis was done for PTE effects on subcortical and cortical brain volumes and thickness, adjusting for PME and the above covariates. Children with PME had significantly reduced caudate nucleus volumes and cortical thickness increases in perisylvian and orbital-frontal cortices. In contrast, children with PTE showed cortical thinning in perisylvian and lateral occipital cortices and volumetric increases in frontal regions and decreases in anterior cingulate. PME was positively related and caudate volume was inversely related to K-CPT reaction time by inter-stimulus interval, a measure of the ability to adjust to changing task demands, suggesting that children with PME may have subtle attentional deficits mediated by caudate volume reductions. Our results suggest that PME and PTE may have distinct differential cortical effects on the developing central nervous system. Additionally, PME may be associated with subtle deficits in attention

  16. Alterations in Functional Cortical Hierarchy in Hemiparkinsonian Rats.

    PubMed

    Jávor-Duray, Borbála Nóra; Vinck, Martin; van der Roest, Marcel; Bezard, Erwan; Berendse, Henk W; Boraud, Thomas; Voorn, Pieter

    2017-08-09

    Parkinson's disease and experimentally induced hemiparkinsonism are characterized by increased beta synchronization between cortical and subcortical areas. This change in beta connectivity might reflect either a symmetric increase in interareal influences or asymmetric changes in directed influences among brain areas. We assessed patterns of functional and directed connectivity within and between striatum and six cortical sites in each hemisphere of the hemiparkinsonian rat model. LFPs were recorded in resting and walking states, before and after unilateral 6-hydroxydopamine lesion. The hemiparkinsonian state was characterized by increased oscillatory activity in the 20-40 Hz range in resting and walking states, and increased interhemispheric coupling (phase lag index) that was more widespread at rest than during walking. Spectral Granger-causality analysis revealed that the change in symmetric functional connectivity comprised profound reorganization of hierarchical organization and directed influence patterns. First, in the lesioned hemisphere, the more anterior, nonprimary motor areas located at the top of the cortical hierarchy (i.e., receiving many directed influences) tended to increase their directed influence onto the posterior primary motor and somatosensory areas. This enhanced influence of "higher" areas may be related to the loss of motor control due to the 6-OHDA lesion. Second, the drive from the nonlesioned toward the lesioned hemisphere (in particular to striatum) increased, most prominently during walking. The nature of these adaptations (disturbed signaling or compensation) is discussed. The present study demonstrates that hemiparkinsonism is associated with a profound reorganization of the hierarchical organization of directed influence patterns among brain areas, perhaps reflecting compensatory processes. SIGNIFICANCE STATEMENT Parkinson's disease classically first becomes manifest in one hemibody before affecting both sides, suggesting that

  17. Influences of brain development and ageing on cortical interactive networks.

    PubMed

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Different categories of living and non-living sound-sources activate distinct cortical networks

    PubMed Central

    Engel, Lauren R.; Frum, Chris; Puce, Aina; Walker, Nathan A.; Lewis, James W.

    2009-01-01

    With regard to hearing perception, it remains unclear as to whether, or the extent to which, different conceptual categories of real-world sounds and related categorical knowledge are differentially represented in the brain. Semantic knowledge representations are reported to include the major divisions of living versus non-living things, plus more specific categories including animals, tools, biological motion, faces, and places—categories typically defined by their characteristic visual features. Here, we used functional magnetic resonance imaging (fMRI) to identify brain regions showing preferential activity to four categories of action sounds, which included non-vocal human and animal actions (living), plus mechanical and environmental sound-producing actions (non-living). The results showed a striking antero-posterior division in cortical representations for sounds produced by living versus non-living sources. Additionally, there were several significant differences by category, depending on whether the task was category-specific (e.g. human or not) versus non-specific (detect end-of-sound). In general, (1) human-produced sounds yielded robust activation in the bilateral posterior superior temporal sulci independent of task. Task demands modulated activation of left-lateralized fronto-parietal regions, bilateral insular cortices, and subcortical regions previously implicated in observation-execution matching, consistent with “embodied” and mirror-neuron network representations subserving recognition. (2) Animal action sounds preferentially activated the bilateral posterior insulae. (3) Mechanical sounds activated the anterior superior temporal gyri and parahippocampal cortices. (4) Environmental sounds preferentially activated dorsal occipital and medial parietal cortices. Overall, this multi-level dissociation of networks for preferentially representing distinct sound-source categories provides novel support for grounded cognition models that may

  19. Biological and cognitive correlates of cortical curvature in schizophrenia.

    PubMed

    Lubeiro, Alba; de Luis-García, Rodrigo; Rodríguez, Margarita; Álvarez, Aldara; de la Red, Henar; Molina, Vicente

    2017-10-27

    Mean cortical curvature may relate to cortico-cortical connections integrity. We explored the association between prefrontal (PFC) cortical curvature and fractional anisotropy (FA) values for tracts connecting PFC and relevant cortical regions. In schizophrenia Anatomical and diffusion magnetic resonance images were obtained from 34 patients (16 of them first-episodes) and 32 healthy controls. We calculated curvature at rostral lateral prefrontal (RLPF) and superior medial prefrontal (SMPF) areas and mean FA for the tracts respectively connecting RLPF and SMPF areas with anterior caudal cingulate (ACC), superior temporal gyrus (STG) and superior parietal SP regions. Cognitive and clinical data were collected, including baseline symptoms, Clinical Global Impression change scores from baseline to follow-up, illness duration and treatment dosage. Patients showed significantly lower FA values in the tracts linking right RLPF-ACC, right SMPF-SPG and bilaterally PFC-STG. FA values in short-range cortico-cortical connections (linking PFC and ACC) were inversely associated with PFC curvature. In patients, cognitive performance was negatively associated with PFC curvature. Larger curvature values were associated to lack of clinical improvement at follow-up. We conclude that cortical curvature is influenced by integrity in short-range cortico-cortical connections and relates to cognition and clinical outcome in schizophrenia patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Successful Decoding of Famous Faces in the Fusiform Face Area

    PubMed Central

    Axelrod, Vadim; Yovel, Galit

    2015-01-01

    What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition. PMID:25714434

  1. Successful decoding of famous faces in the fusiform face area.

    PubMed

    Axelrod, Vadim; Yovel, Galit

    2015-01-01

    What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition.

  2. Long-term occipital nerve stimulation for drug-resistant chronic cluster headache.

    PubMed

    Leone, Massimo; Proietti Cecchini, Alberto; Messina, Giuseppe; Franzini, Angelo

    2017-07-01

    Introduction Chronic cluster headache is rare and some of these patients become drug-resistant. Occipital nerve stimulation has been successfully employed in open studies to treat chronic drug-resistant cluster headache. Data from large group of occipital nerve stimulation-treated chronic cluster headache patients with long duration follow-up are advantageous. Patients and methods Efficacy of occipital nerve stimulation has been evaluated in an experimental monocentric open-label study including 35 chronic drug-resistant cluster headache patients (mean age 42 years; 30 men; mean illness duration: 6.7 years). The primary end-point was a reduction in number of daily attacks. Results After a median follow-up of 6.1 years (range 1.6-10.7), 20 (66.7%) patients were responders (≥50% reduction in headache number per day): 12 (40%) responders showed a stable condition characterized by sporadic attacks, five responders had a 60-80% reduction in headache number per day and in the remaining three responders chronic cluster headache was transformed in episodic cluster headache. Ten (33.3%) patients were non-responders; half of these have been responders for a long period (mean 14.6 months; range 2-48 months). Battery depletion (21 patients 70%) and electrode migration (six patients - 20%) were the most frequent adverse events. Conclusions Occipital nerve stimulation efficacy is confirmed in chronic drug-resistant cluster headaches even after an exceptional long-term follow-up. Tolerance can occur years after improvement.

  3. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness

    PubMed Central

    Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier

    2017-01-01

    In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed

  4. Differential Cortical Neurotrophin and Cytogenetic Adaptation after Voluntary Exercise in Normal and Amnestic Rats

    PubMed Central

    Hall, Joseph M.; Vetreno, Ryan P.; Savage, Lisa M.

    2013-01-01

    Voluntary exercise (VEx) has profound effects on neural and behavioral plasticity, including recovery of CNS trauma and disease. However, the unique regional cortical adaption to VEx has not been elucidated. In a series of experiments, we first examined whether VEx would restore and retain neurotrophin levels in several cortical regions (frontal cortex [FC], retrosplenial cortex [RSC], occipital cortex [OC]) in an animal model (pyrithiamine-induced thiamine deficiency [PTD]) of the amnestic disorder Wernicke-Korsakoff syndrome. In addition, we assessed the time-dependent effect of VEx to rescue performance on a spontaneous alternation task. Following 2-weeks of VEx or stationary housing conditions (Stat), rats were behaviorally tested and brains were harvested either the day after VEx (24-h) or after an additional two-week period (2-wk). In both control pair-fed (PF) rats and PTD rats, all neurotrophin levels (brain-derived neurotrophic factor [BDNF], nerve growth factor [NGF], and vascular endothelial growth factor [VEGF]) increased at the 24-h period after VEx in the FC and RSC, but not OC. Two-weeks following VEx, BDNF remained elevated in both FC and RSC, whereas NGF remained elevated in only the FC. Interestingly, VEx only recovered cognitive performance in amnestic rats when there was an additional 2-wk adaptation period after VEx. Given this unique temporal profile, Experiment 2 examined the cortical cytogenetic responses in all three cortical regions following a 2-wk adaptation period after VEx. In healthy (PF) rats, VEx increased the survival of progenitor cells in both the FC and RSC, but only increased oligodendrocyte precursor cells in the FC. Furthermore, VEx had a selective effect of only recovering oligodendrocyte precursor cells in the FC in PTD rats. These data reveal the therapeutic potential of exercise to restore cortical plasticity in the amnestic brain, and that the FC is one of the most responsive cortical regions to VEx. PMID:24215977

  5. Reduced Left Lateralization of Language in Congenitally Blind Individuals.

    PubMed

    Lane, Connor; Kanjlia, Shipra; Richardson, Hilary; Fulton, Anne; Omaki, Akira; Bedny, Marina

    2017-01-01

    Language processing depends on a left-lateralized network of frontotemporal cortical regions. This network is remarkably consistent across individuals and cultures. However, there is also evidence that developmental factors, such as delayed exposure to language, can modify this network. Recently, it has been found that, in congenitally blind individuals, the typical frontotemporal language network expands to include parts of "visual" cortices. Here, we report that blindness is also associated with reduced left lateralization in frontotemporal language areas. We analyzed fMRI data from two samples of congenitally blind adults (n = 19 and n = 13) and one sample of congenitally blind children (n = 20). Laterality indices were computed for sentence comprehension relative to three different control conditions: solving math equations (Experiment 1), a memory task with nonwords (Experiment 2), and a "does this come next?" task with music (Experiment 3). Across experiments and participant samples, the frontotemporal language network was less left-lateralized in congenitally blind than in sighted individuals. Reduction in left lateralization was not related to Braille reading ability or amount of occipital plasticity. Notably, we observed a positive correlation between the lateralization of frontotemporal cortex and that of language-responsive occipital areas in blind individuals. Blind individuals with right-lateralized language responses in frontotemporal cortices also had right-lateralized occipital responses to language. Together, these results reveal a modified neurobiology of language in blindness. Our findings suggest that, despite its usual consistency across people, the neurobiology of language can be modified by nonlinguistic experiences.

  6. Saccade-synchronized rapid attention shifts in macaque visual cortical area MT.

    PubMed

    Yao, Tao; Treue, Stefan; Krishna, B Suresh

    2018-03-06

    While making saccadic eye-movements to scan a visual scene, humans and monkeys are able to keep track of relevant visual stimuli by maintaining spatial attention on them. This ability requires a shift of attentional modulation from the neuronal population representing the relevant stimulus pre-saccadically to the one representing it post-saccadically. For optimal performance, this trans-saccadic attention shift should be rapid and saccade-synchronized. Whether this is so is not known. We trained two rhesus monkeys to make saccades while maintaining covert attention at a fixed spatial location. We show that the trans-saccadic attention shift in cortical visual medial temporal (MT) area is well synchronized to saccades. Attentional modulation crosses over from the pre-saccadic to the post-saccadic neuronal representation by about 50 ms after a saccade. Taking response latency into account, the trans-saccadic attention shift is well timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.

  7. Effects of interleukin-1ß on cortical spreading depolarization and cerebral vasculature

    PubMed Central

    Eitner, Annett; Leuchtweis, Johannes; Bauer, Reinhard; Lehmenkühler, Alfred; Schaible, Hans-Georg

    2016-01-01

    During brain damage and ischemia, the cytokine interleukin-1ß is rapidly upregulated due to activation of inflammasomes. We studied whether interleukin-1ß influences cortical spreading depolarization, and whether lipopolysaccharide, often used for microglial stimulation, influences cortical spreading depolarizations. In anaesthetized rats, cortical spreading depolarizations were elicited by microinjection of KCl. Interleukin-1ß, the IL-1 receptor 1 antagonist, the GABAA receptor blocker bicuculline, and lipopolysaccharide were administered either alone or combined (interleukin-1ß + IL-1 receptor 1 antagonist; interleukin-1ß + bicuculline; lipopolysaccharide + IL-1 receptor 1 antagonist) into a local cortical treatment area. Using microelectrodes, cortical spreading depolarizations were recorded in a non-treatment and in the treatment area. Plasma extravasation in cortical grey matter was assessed with Evans blue. Local application of interleukin-1ß reduced cortical spreading depolarization amplitudes in the treatment area, but not at a high dose. This reduction was prevented by IL-1 receptor 1 antagonist and by bicuculline. However, interleukin-1ß induced pronounced plasma extravasation independently on cortical spreading depolarizations. Application of lipopolysaccharide reduced cortical spreading depolarization amplitudes but prolonged their duration; EEG activity was still present. These effects were also blocked by IL-1 receptor 1 antagonist. Interleukin-1ß evokes changes of neuronal activity and of vascular functions. Thus, although the reduction of cortical spreading depolarization amplitudes at lower doses of interleukin-1ß may reduce deleterious effects of cortical spreading depolarizations, the sum of interleukin-1ß effects on excitability and on the vasculature rather promote brain damaging mechanisms. PMID:27037093

  8. Spatial integration and cortical dynamics.

    PubMed

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  9. Modified skin incision for avoiding the lesser occipital nerve and occipital artery during retrosigmoid craniotomy: potential applications for enhancing operative working distance and angles while minimizing the risk of postoperative neuralgias and intraoperative hemorrhage.

    PubMed

    Tubbs, R Shane; Fries, Fabian N; Kulwin, Charles; Mortazavi, Martin M; Loukas, Marios; Cohen-Gadol, Aaron A

    2016-10-01

    Chronic postoperative neuralgias and headache following retrosigmoid craniotomy can be uncomfortable for the patient. We aimed to better elucidate the regional nerve anatomy in an effort to minimize this postoperative complication. Ten adult cadaveric heads (20 sides) were dissected to observe the relationship between the lesser occipital nerve and a traditional linear versus modified U incision during retrosigmoid craniotomy. Additionally, the relationship between these incisions and the occipital artery were observed. The lesser occipital nerve was found to have two types of course. Type I nerves (60%) remained close to the posterior border of the sternocleidomastoid muscle and some crossed anteriorly over the sternocleidomastoid muscle near the mastoid process. Type II nerves (40%) left the posterior border of the sternocleidomastoid muscle and swung medially (up to 4.5cm posterior to the posterior border of the sternocleidomastoid muscle) as they ascended over the occiput. The lesser occipital nerve was near a midpoint of a line between the external occipital protuberance and mastoid process in all specimens with the type II nerve configuration. Based on our findings, the inverted U incision would be less likely to injure the type II nerves but would necessarily cross over type I nerves, especially more cranially on the nerve at the apex of the incision. As the more traditional linear incision would most likely transect the type I nerves and more so near their trunk, the U incision may be the overall better choice in avoiding neural and occipital artery injury during retrosigmoid approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Computational mechanisms underlying cortical responses to the affordance properties of visual scenes

    PubMed Central

    Epstein, Russell A.

    2018-01-01

    Biologically inspired deep convolutional neural networks (CNNs), trained for computer vision tasks, have been found to predict cortical responses with remarkable accuracy. However, the internal operations of these models remain poorly understood, and the factors that account for their success are unknown. Here we develop a set of techniques for using CNNs to gain insights into the computational mechanisms underlying cortical responses. We focused on responses in the occipital place area (OPA), a scene-selective region of dorsal occipitoparietal cortex. In a previous study, we showed that fMRI activation patterns in the OPA contain information about the navigational affordances of scenes; that is, information about where one can and cannot move within the immediate environment. We hypothesized that this affordance information could be extracted using a set of purely feedforward computations. To test this idea, we examined a deep CNN with a feedforward architecture that had been previously trained for scene classification. We found that responses in the CNN to scene images were highly predictive of fMRI responses in the OPA. Moreover the CNN accounted for the portion of OPA variance relating to the navigational affordances of scenes. The CNN could thus serve as an image-computable candidate model of affordance-related responses in the OPA. We then ran a series of in silico experiments on this model to gain insights into its internal operations. These analyses showed that the computation of affordance-related features relied heavily on visual information at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. These computations also exhibited a strong preference for information in the lower visual field, which is consistent with known retinotopic biases in the OPA. Visualizations of feature selectivity within the CNN suggested that affordance

  11. Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex.

    PubMed

    Watkins, Kate E; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M; Smith, Stephen M; Ragge, Nicola; Bridge, Holly

    2012-05-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an auditory covert naming task in five bilaterally anophthalmic subjects, who have never received visual input. When listening to auditory definitions and covertly retrieving words, these subjects activated lateral occipital cortex bilaterally in addition to the language areas activated in sighted controls. This activity was significantly greater than that present in a control condition of listening to reversed speech. The lateral occipital cortex was also recruited into a left-lateralized resting-state network that usually comprises anterior and posterior language areas. Levels of activation to the auditory naming and reversed speech conditions did not differ in the calcarine (striate) cortex. This primary 'visual' cortex was not recruited to the left-lateralized resting-state network and showed high interhemispheric correlation of activity at rest, as is typically seen in unimodal cortical areas. In contrast, the interhemispheric correlation of resting activity in extrastriate areas was reduced in anophthalmia to the level of cortical areas that are heteromodal, such as the inferior frontal gyrus. Previous imaging studies in the congenitally blind show that primary visual cortex is activated in higher-order tasks, such as language and memory to a greater extent than during more basic sensory processing, resulting in a reversal of the normal hierarchy of functional organization across 'visual' areas. Our data do not support such a pattern of organization in anophthalmia. Instead, the patterns of activity during task and the functional connectivity at rest are consistent with the known hierarchy of processing in these areas

  12. Cortical Odor Processing in Health and Disease

    PubMed Central

    Wilson, Donald A.; Xu, Wenjin; Sadrian, Benjamin; Courtiol, Emmanuelle; Cohen, Yaniv; Barnes, Dylan C.

    2014-01-01

    The olfactory system has a rich cortical representation, including a large archicortical component present in most vertebrates, and in mammals neocortical components including the entorhinal and orbitofrontal cortices. Together, these cortical components contribute to normal odor perception and memory. They help transform the physicochemical features of volatile molecules inhaled or exhaled through the nose into the perception of odor objects with rich associative and hedonic aspects. This chapter focuses on how olfactory cortical areas contribute to odor perception and begins to explore why odor perception is so sensitive to disease and pathology. Odor perception is disrupted by a wide range of disorders including Alzheimer’s disease, Parkinson’s disease, schizophrenia, depression, autism, and early life exposure to toxins. This olfactory deficit often occurs despite maintained functioning in other sensory systems. Does the unusual network of olfactory cortical structures contribute to this sensitivity? PMID:24767487

  13. Potential gray matter unpruned in adolescents and young adults dependent on dextromethorphan-containing cough syrups: evidence from cortical and subcortical study.

    PubMed

    Qiu, Ying-Wei; Lv, Xiao-Fei; Jiang, Gui-Hua; Su, Huan-Huan; Ma, Xiao-Fen; Tian, Jun-Zhang; Zhuo, Fu-Zhen

    2017-10-01

    Adolescence is a unique period in neurodevelopment. Dextromethorphan (DXM)-containing cough syrups are new addictive drugs used by adolescents and young adults. The effects of chronic DXM abuse on neurodevelopment in adolescents and young adults are still unknown. The aim of this study was to investigate the differences in cortical thickness and subcortical gray matter volumes between DXM-dependent adolescents and young adults and healthy controls, and to explore relationships between alternations in cortical thickness/subcortical volume and DXM duration, initial age of DXM use, as well as impulsive behavior in DXM-dependent adolescents and young adults. Thirty-eight DXM-dependent adolescents and young adults and 18 healthy controls underwent magnetic resonance imaging scanning, and cortical thickness across the continuous cortical surface was compared between the groups. Subcortical volumes were compared on a structure-by-structure basis. DXM-dependent adolescents and young adults exhibited significantly increased cortical thickness in the bilateral precuneus (PreC), left dorsal lateral prefrontal cortex (DLPFC. L), left inferior parietal lobe (IPL. L), right precentral gyrus (PreCG. R), right lateral occipital cortex (LOC. R), right inferior temporal cortex (ITC. R), right lateral orbitofrontal cortex (lOFC. R) and right transverse temporal gyrus (TTG. R) (all p < 0.05, multiple comparison corrected) and increased subcortical volumes of the right thalamus and right pallidum. There was a significant correlation between initial age of DXM use and cortical thickness of the DLPFC. L and PreCG. R. A significant correlation was also found between cortical thickness of the DLPFC. L and impulsive behavior in patients. This was the first study to explore relationships between cortical thickness/subcortical volume and impulsive behavior in adolescents dependent on DXM. These structural changes might explain the neurobiological mechanism of impulsive behavior in

  14. "The mute who can sing": a cortical stimulation study on singing.

    PubMed

    Roux, Franck-Emmanuel; Borsa, Stefano; Démonet, Jean-François

    2009-02-01

    In an attempt to identify cortical areas involved in singing in addition to language areas, the authors used a singing task during direct cortical mapping in 5 patients who were amateur singers and had undergone surgery for brain tumors. The organization of the cortical areas involved in language and singing was analyzed in relation with these surgical data. One left-handed and 4 right-handed patients with brain tumors in left (2 cases) and right (3 cases) hemispheres and no significant language or singing deficits underwent surgery with the "awake surgery" technique. All patients had a special interest in singing and were involved in amateur singing activities. They were tested using naming, reading, and singing tasks. Outside primary sensorimotor areas, singing interferences were rare and were exclusively localized in small cortical areas (< 1 cm(2)). A clear distinction was found between speech and singing in the Broca region. In the Broca region, no singing interference was found in areas in which interference in naming and reading tasks were detected. Conversely, a specific singing interference was found in nondominant middle frontal gyri in one patient. This interference consisted of abrupt singing arrest without apparent face, mouth, and tongue contraction. Finally, nonspecific singing interferences were found in the right and left precentral gyri in all patients (probably by interference in final articulatory mechanisms of singing). Dissociations between speech and singing found outside primary sensorimotor areas showed that these 2 functions use, in some cortical stages, different cerebral pathways.

  15. Peripheral nerve stimulation for occipital neuralgia: surgical leads.

    PubMed

    Kapural, Leonardo; Sable, James

    2011-01-01

    Peripheral nerve stimulation (PNS) has been used for the treatment of various neuropathic pain disorders, including occipital neuralgia, for the patients who failed less-invasive therapeutic approaches. Several different mechanisms of pain relief were proposed when PNS is used to treat occipital neuralgia and clinical studies using various types of electrical leads suggested largely positive clinical responses in patients with mostly refractory, severe neuropathic pain. With advancements in cylindrical lead design for PNS and placement/implantation techniques, there are very few clear indications where 'paddle' (surgical) leads could be advantageous. Those include patients who experienced repeated migration of cylindrical lead as paddle lead may provide greater stability, who are experiencing unpleasant recruitment of surrounding muscle and/or motor nerve stimulation and for cases where skin erosions were caused by a cylindrical lead. However, disregarding the type of lead used, multiple clinical advantages of this minimally invasive, easily reversible approach include relatively low morbidity and a high treatment efficacy. Copyright © 2011 S. Karger AG, Basel.

  16. Spontaneous cortical activity alternates between motifs defined by regional axonal projections

    PubMed Central

    Mohajerani, Majid H.; Chan, Allen W.; Mohsenvand, Mostafa; LeDue, Jeffrey; Liu, Rui; McVea, David A.; Boyd, Jamie D.; Wang, Yu Tian; Reimers, Mark; Murphy, Timothy H.

    2014-01-01

    In lightly anaesthetized or awake adult mice using millisecond timescale voltage sensitive dye imaging, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing including vision, audition, and touch. Similar cortical networks were found with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality specific sources such as primary sensory areas, and a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area, and a secondary anterior medial sink within the cingulate/secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range mono-synaptic connections between cortical regions. Maps of intracortical mono-synaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity. PMID:23974708

  17. Category search speeds up face-selective fMRI responses in a non-hierarchical cortical face network.

    PubMed

    Jiang, Fang; Badler, Jeremy B; Righi, Giulia; Rossion, Bruno

    2015-05-01

    The human brain is extremely efficient at detecting faces in complex visual scenes, but the spatio-temporal dynamics of this remarkable ability, and how it is influenced by category-search, remain largely unknown. In the present study, human subjects were shown gradually-emerging images of faces or cars in visual scenes, while neural activity was recorded using functional magnetic resonance imaging (fMRI). Category search was manipulated by the instruction to indicate the presence of either a face or a car, in different blocks, as soon as an exemplar of the target category was detected in the visual scene. The category selectivity of most face-selective areas was enhanced when participants were instructed to report the presence of faces in gradually decreasing noise stimuli. Conversely, the same regions showed much less selectivity when participants were instructed instead to detect cars. When "face" was the target category, the fusiform face area (FFA) showed consistently earlier differentiation of face versus car stimuli than did the "occipital face area" (OFA). When "car" was the target category, only the FFA showed differentiation of face versus car stimuli. These observations provide further challenges for hierarchical models of cortical face processing and show that during gradual revealing of information, selective category-search may decrease the required amount of information, enhancing and speeding up category-selective responses in the human brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Multivariate Patterns in the Human Object-Processing Pathway Reveal a Shift from Retinotopic to Shape Curvature Representations in Lateral Occipital Areas, LO-1 and LO-2

    PubMed Central

    Vernon, Richard J. W.; Gouws, André D.; Lawrence, Samuel J. D.; Wade, Alex R.

    2016-01-01

    Representations in early visual areas are organized on the basis of retinotopy, but this organizational principle appears to lose prominence in the extrastriate cortex. Nevertheless, an extrastriate region, such as the shape-selective lateral occipital cortex (LO), must still base its activation on the responses from earlier retinotopic visual areas, implying that a transition from retinotopic to “functional” organizations should exist. We hypothesized that such a transition may lie in LO-1 or LO-2, two visual areas lying between retinotopically defined V3d and functionally defined LO. Using a rapid event-related fMRI paradigm, we measured neural similarity in 12 human participants between pairs of stimuli differing along dimensions of shape exemplar and shape complexity within both retinotopically and functionally defined visual areas. These neural similarity measures were then compared with low-level and more abstract (curvature-based) measures of stimulus similarity. We found that low-level, but not abstract, stimulus measures predicted V1–V3 responses, whereas the converse was true for LO, a double dissociation. Critically, abstract stimulus measures were most predictive of responses within LO-2, akin to LO, whereas both low-level and abstract measures were predictive for responses within LO-1, perhaps indicating a transitional point between those two organizational principles. Similar transitions to abstract representations were not observed in the more ventral stream passing through V4 and VO-1/2. The transition we observed in LO-1 and LO-2 demonstrates that a more “abstracted” representation, typically considered the preserve of “category-selective” extrastriate cortex, can nevertheless emerge in retinotopic regions. SIGNIFICANCE STATEMENT Visual areas are typically identified either through retinotopy (e.g., V1–V3) or from functional selectivity [e.g., shape-selective lateral occipital complex (LOC)]. We combined these approaches to explore

  19. Increased cortical area and thickness in the distal radius in subjects with SHOX-gene mutation.

    PubMed

    Frederiksen, A L; Hansen, S; Brixen, K; Frost, M

    2014-12-01

    Short-stature homeobox (SHOX) gene haploinsufficiency may cause skeletal dysplasia including Léri-Weill Dyschondrosteosis (LWD), a clinical entity characterised by the triad of low height, mesomelic disproportion and Madelung's deformity of the wrist. Bone microarchitecture and estimated strength in adult SHOX mutation carriers have not been examined. Twenty-two subjects with a SHOX mutation including 7 males and 15 females with a median age of 38.8 [21.1-52.2] years were recruited from five unrelated families. The control group consisted of 22 healthy subjects matched on age and sex. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Bone geometry, volumetric density, microarchitecture and finite element estimated (FEA) bone strength were measured using high-resolution peripheral quantitative computed tomography (HR-pQCT). A full region of interest (ROI) image analysis and height-matched ROI analyses adjusting for differences in body height between the two groups were performed. Areal BMD and T-scores showed no significant differences between cases and controls. Total radius area was smaller in cases than controls (207 [176-263] vs. 273 [226-298] mm, p<0.01). Radius cortical bone area (74 ± 20 vs. 58 ± 17 mm(2), p=0.01) and thickness (1.16 ± 0.30 vs. 0.84 ± 0.26 mm, p<0.01) as well as total density (428 ± 99 vs. 328 ± 72 mg/cm(3), p<0.01) were higher in SHOX mutation carriers compared to controls. Radius trabecular bone area (119 [103-192] vs. 202 [168-247] mm(2), p<0.01) and trabecular number (1.61 [1.46-2.07] vs. 1.89 [1.73-2.08] mm(-1), p=0.01) were smaller in SHOX mutation carriers. Tibia trabecular thickness was lower in cases (0.067 ± 0.012 vs. 0.076 ± 0.012 mm, p=0.01). These results remained significant after adjustment for differences in body height and when restricting analyses to females. There were no differences in BMD, radius and tibia cortical porosity or FEA failure load between groups. A segment of cortical bone

  20. An autopsy case of cortical superficial siderosis with persistent abnormal behavior.

    PubMed

    Torii, Youta; Iritani, Shuji; Fujishiro, Hiroshige; Sekiguchi, Hirotaka; Habuchi, Chikako; Umeda, Kentaro; Matsunaga, Shinji; Mimuro, Maya; Ozaki, Norio; Yoshida, Mari; Fujita, Kiyoshi

    2016-12-01

    In recent years, MRI has revealed cortical superficial siderosis (cSS), which exhibits hemosiderin deposition in only the cortical surface. However, the associations between the histological findings and clinical symptoms of cSS remain unclear. We herein report an autopsy case of a 75-year-old Japanese man with cSS with persistent abnormal behavior according to cognitive impairment, hallucination and delusion. At 73 years of age, the patient presented with unusual behavior that indicated auditory hallucination and delusion. One year later, he was admitted to the hospital for malignant lymphoma. On admission, cognitive impairment was detected by a screening test. Soon after hospitalization, he presented with active delirium including visual hallucination and delusion. The patient's excited behavior was improved by the administration of a major tranquilizer. However, the abnormal behavior and cognitive impairment persisted. At 75 years of age, he died of heart failure. A neuropathological investigation revealed hemosiderin depositions in the superficial layer of the cortex in the medial and lateral frontal lobe, the lateral temporal lobe, the parietal lobe, and the medial and lateral occipital lobe. Neuritic plaques and diffuse plaques were extensively observed, which corresponded to Braak stage C and CERAD B, although NFTs were observed that corresponded to Braak stage II. Cortical amyloid angiopathy was not observed in any regions. Ischemic change of brain was also mild. Our report suggests that localized deposition of hemosiderin in the cortex might affect the manifestation of cognitive impairments and hallucination. Further clinicopathological studies are needed to clarify the clinical manifestations of patients with cSS. © 2016 Japanese Society of Neuropathology.

  1. Preliminary Findings Show Maternal Hypothyroidism May Contribute to Abnormal Cortical Morphology in Offspring

    PubMed Central

    Lischinsky, Julieta E.; Skocic, Jovanka; Clairman, Hayyah; Rovet, Joanne

    2016-01-01

    In rodents, insufficient thyroid hormone (TH) gestationally has adverse effects on cerebral cortex development. Comparable studies of humans examining how TH insufficiency affects cortical morphology are limited to children with congenital hypothyroidism or offspring of hypothyroxinemic women; effects on cortex of children born to women with clinically diagnosed hypothyroidism are not known. We studied archived MRI scans from 22 children aged 10–12 years born to women treated for preexisting or de novo hypothyroidism in pregnancy (HYPO) and 24 similar age and sex controls from euthyroid women. FreeSurfer Image Analysis Suite software was used to measure cortical thickness (CT) and a vertex-based approach served to compare HYPO versus control groups and Severe versus Mild HYPO subgroups as well as to perform regression analyses examining effects of trimester-specific maternal TSH on CT. Results showed that relative to controls, HYPO had multiple regions of both cortical thinning and thickening, which differed for left and right hemispheres. In HYPO, thinning was confined to medial and mid-lateral regions of each hemisphere and thickening to superior regions (primarily frontal) of the left hemisphere and inferior regions (particularly occipital and temporal) of the right. The Severe HYPO subgroup showed more thinning than Mild in frontal and temporal regions and more thickening in bilateral posterior and frontal regions. Maternal TSH values predicted degree of thinning and thickening within multiple brain regions, with the pattern and direction of correlations differing by trimester. Notably, some correlations remained when cases born to women with severe hypothyroidism were removed from the analyses, suggesting that mild variations of maternal TH may permanently affect offspring cortex. We conclude that maternal hypothyroidism during pregnancy has long-lasting manifestations on the cortical morphology of their offspring with specific effects reflecting both

  2. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    PubMed

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.

  3. The transverse occipital ligament: anatomy and potential functional significance.

    PubMed

    Tubbs, R Shane; Griessenauer, Christoph J; McDaniel, Jenny Gober; Burns, Amanda M; Kumbla, Anjali; Cohen-Gadol, Aaron A

    2010-03-01

    Knowledge of the anatomy of ligaments that bind the craniocervical junction is important for treating patients with lesions of this region. Although the anatomy and function of these ligaments have been well described, those of the transverse occipital ligament (TOL) have remained enigmatic. To describe the anatomy and functions of the transverse occipital ligament. Via a posterior approach, 9 cadaveric specimens underwent dissection of the craniocervical junction with special attention to the presence and anatomy of the TOL. The TOL was identified in 77.8% of the specimens. The ligament was found to be rectangular with fibers running horizontally between the lateral aspects of the foramen magnum. The attachment of each ligament near the occipital condyle was consistent, and each ligament was found superior to the transverse portion of the cruciform ligament and inserted just posterior to the lateral attachment sites of the alar ligaments. The average width, length, and thickness of the TOL was 0.34, 1.94, and 0.13 cm, respectively. The TOL in some specimens also had connections to the alar and transverse ligaments. The TOL was found in the majority of our specimens. The possible functions of this ligament when attached to the alar ligaments include providing additional support to these structures in stabilizing lateral bending, flexion, and axial rotation of the head. Knowledge of this ligament may aid in further understanding craniocervical stability and help in differentiating normal from pathology via imaging modalities.

  4. Occipital Neuralgia from C2 Cavernous Malformation

    PubMed Central

    Ha, Sang-woo; Choi, Jin-gyu; Son, Byung-chul

    2018-01-01

    A unique case is presented of chronic occipital neuralgia (ON) caused by cavernous malformation (CM) in the intramedullary C2 spinal cord and subsequent pain relief and remodeling of allodynic pain following dorsal root rhizotomy. A 53-year-old male presented with a 30-year history of chronic allodynic, paroxysmal lancinating pain in the greater and lesser occipital nerves. Typically, the pain was aggravated with neck extension and head movement. Magnetic resonance imaging showed a CM in the right posterolateral side of the intramedullary C2 cord. Considering potential risks associated with removal of the lesion, intradural C1-3 dorsal root rhizotomy with dentate ligament resection was performed. The paroxysmal lancinating pain of ON was significantly alleviated, and the remodeling of the extent of allodynic pain was noted after C1-3 dorsal root rhizotomy. These changes gradually occurred during the second postoperative month, and this effect was maintained for 24 months postoperatively. Significant reduction in chronic allodynic pain of secondary ON caused by cervicomedullary CM involving central sensitization in the trigeminocervical complex was observed with reduction of irritating, afferent input with C1-C3 dorsal root rhizotomy. PMID:29682056

  5. Occipital Neuralgia from C2 Cavernous Malformation.

    PubMed

    Ha, Sang-Woo; Choi, Jin-Gyu; Son, Byung-Chul

    2018-01-01

    A unique case is presented of chronic occipital neuralgia (ON) caused by cavernous malformation (CM) in the intramedullary C2 spinal cord and subsequent pain relief and remodeling of allodynic pain following dorsal root rhizotomy. A 53-year-old male presented with a 30-year history of chronic allodynic, paroxysmal lancinating pain in the greater and lesser occipital nerves. Typically, the pain was aggravated with neck extension and head movement. Magnetic resonance imaging showed a CM in the right posterolateral side of the intramedullary C2 cord. Considering potential risks associated with removal of the lesion, intradural C1-3 dorsal root rhizotomy with dentate ligament resection was performed. The paroxysmal lancinating pain of ON was significantly alleviated, and the remodeling of the extent of allodynic pain was noted after C1-3 dorsal root rhizotomy. These changes gradually occurred during the second postoperative month, and this effect was maintained for 24 months postoperatively. Significant reduction in chronic allodynic pain of secondary ON caused by cervicomedullary CM involving central sensitization in the trigeminocervical complex was observed with reduction of irritating, afferent input with C1-C3 dorsal root rhizotomy.

  6. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.

    PubMed

    Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael

    2013-01-16

    One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.

  7. Megalencephaly, polymicrogyria and ribbon-like band heterotopia: A new cortical malformation.

    PubMed

    Kobayashi, Yu; Magara, Shinichi; Okazaki, Kenichi; Komatsubara, Takao; Saitsu, Hirotomo; Matsumoto, Naomichi; Kato, Mitsuhiro; Tohyama, Jun

    2016-11-01

    Megalencephalic polymicrogyria syndromes include megalencephaly-capillary malformation and megalencephaly-polymicrogyria-polydactyly-hydrocephalus. Recent genetic studies have identified that genes in the PI3K-AKT pathway are involved in the pathogenesis of these disorders. Herein, we report a patient who presented with developmental delay, epilepsy and peculiar neuroimaging findings of megalencephaly, polymicrogyria, and symmetrical band heterotopia in the periventricular region. The heterotopias exhibited inhomogeneous signals with undulatory mixtures of gray and white matter, resembling ribbon-like heterotopia, with a predominance in the temporal to occipital regions. These neuroradiological findings were not consistent with those in known megalencephalic polymicrogyria syndromes. No genetic abnormality was identified through whole-exome sequencing. The neuroimaging findings of this patient may represent a novel cortical malformation involving megalencephaly with polymicrogyria and ribbon-like band heterotopia. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  8. Topographic organization, number, and laminar distribution of callosal cells connecting visual cortical areas 17 and 18 of normally pigmented and Siamese cats.

    PubMed

    Berman, N E; Grant, S

    1992-07-01

    The callosal connections between visual cortical areas 17 and 18 in adult normally pigmented and "Boston" Siamese cats were studied using degeneration methods, and by transport of WGA-HRP combined with electrophysiological mapping. In normal cats, over 90% of callosal neurons were located in the supragranular layers. The supragranular callosal cell zone spanned the area 17/18 border and extended, on average, some 2-3 mm into both areas to occupy a territory which was roughly co-extensive with the distribution of callosal terminations in these areas. The region of the visual field adjoining the vertical meridian that was represented by neurons in the supragranular callosal cell zone was shown to increase systematically with decreasing visual elevation. Thus, close to the area centralis, receptive-field centers recorded from within this zone extended only up to 5 deg into the contralateral hemifield but at elevations of -10 deg and -40 deg they extended as far as 8 deg and 14 deg, respectively, into this hemifield. This suggests an element of visual non-correspondence in the callosal pathway between these cortical areas, which may be an essential substrate for "coarse" stereopsis at the visual midline. In the Siamese cats, the callosal cell and termination zones in areas 17 and 18 were expanded in width compared to the normal animals, but the major components were less robust. The area 17/18 border was often devoid of callosal axons and, in particular, the number of supragranular layer neurons participating in the pathway were drastically reduced, to only about 25% of those found in the normally pigmented adults. The callosal zones contained representations of the contralateral and ipsilateral hemifields that were roughly mirror-symmetric about the vertical meridian, and both hemifield representations increased with decreasing visual elevation. The extent and severity of the anomalies observed were similar across individual cats, regardless of whether a strabismus

  9. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    PubMed

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  10. The Network Architecture of Cortical Processing in Visuo-spatial Reasoning

    PubMed Central

    Shokri-Kojori, Ehsan; Motes, Michael A.; Rypma, Bart; Krawczyk, Daniel C.

    2012-01-01

    Reasoning processes have been closely associated with prefrontal cortex (PFC), but specifically emerge from interactions among networks of brain regions. Yet it remains a challenge to integrate these brain-wide interactions in identifying the flow of processing emerging from sensory brain regions to abstract processing regions, particularly within PFC. Functional magnetic resonance imaging data were collected while participants performed a visuo-spatial reasoning task. We found increasing involvement of occipital and parietal regions together with caudal-rostral recruitment of PFC as stimulus dimensions increased. Brain-wide connectivity analysis revealed that interactions between primary visual and parietal regions predominantly influenced activity in frontal lobes. Caudal-to-rostral influences were found within left-PFC. Right-PFC showed evidence of rostral-to-caudal connectivity in addition to relatively independent influences from occipito-parietal cortices. In the context of hierarchical views of PFC organization, our results suggest that a caudal-to-rostral flow of processing may emerge within PFC in reasoning tasks with minimal top-down deductive requirements. PMID:22624092

  11. The network architecture of cortical processing in visuo-spatial reasoning.

    PubMed

    Shokri-Kojori, Ehsan; Motes, Michael A; Rypma, Bart; Krawczyk, Daniel C

    2012-01-01

    Reasoning processes have been closely associated with prefrontal cortex (PFC), but specifically emerge from interactions among networks of brain regions. Yet it remains a challenge to integrate these brain-wide interactions in identifying the flow of processing emerging from sensory brain regions to abstract processing regions, particularly within PFC. Functional magnetic resonance imaging data were collected while participants performed a visuo-spatial reasoning task. We found increasing involvement of occipital and parietal regions together with caudal-rostral recruitment of PFC as stimulus dimensions increased. Brain-wide connectivity analysis revealed that interactions between primary visual and parietal regions predominantly influenced activity in frontal lobes. Caudal-to-rostral influences were found within left-PFC. Right-PFC showed evidence of rostral-to-caudal connectivity in addition to relatively independent influences from occipito-parietal cortices. In the context of hierarchical views of PFC organization, our results suggest that a caudal-to-rostral flow of processing may emerge within PFC in reasoning tasks with minimal top-down deductive requirements.

  12. Higher Education is Not Associated with Greater Cortical Thickness in Brain Areas Related to Literacy or Intelligence in Normal Aging or Mild Cognitive Impairment

    PubMed Central

    Pillai, Jagan A.; McEvoy, Linda K.; Hagler, Donald J.; Holland, Dominic; Dale, Anders M.; Salmon, David P.; Galasko, Douglas; Fennema-Notestine, Christine

    2012-01-01

    Education may reduce risk of dementia through passive reserve, by increasing neural substrate. We tested the hypotheses that education is associated with thicker cortex and reduced rates of atrophy in brain regions related to literacy and intellectual ability. Healthy older adults and those with mild cognitive impairment were categorized into High (≥18 yrs) and Low (≤13 yrs) education groups. Higher education was associated with thinner cortices in several areas, but one-year atrophy rates in these areas did not differ by education group. These results do not support a passive reserve model in which early life education protects against dementia by increasing cortical thickness. Connectivity and synaptic efficiency, or other lifestyle factors may more directly reflect cognitive reserve. PMID:22905705

  13. Regional cortical thinning and cerebrospinal biomarkers predict worsening daily functioning across the Alzheimer disease spectrum

    PubMed Central

    Marshall, Gad A.; Lorius, Natacha; Locascio, Joseph J.; Hyman, Bradley T.; Rentz, Dorene M.; Johnson, Keith A.; Sperling, Reisa A.

    2014-01-01

    Background Impairment in instrumental activities of daily living (IADL) heralds the transition from mild cognitive impairment (MCI) to dementia and is a major source of burden for both the patient and caregiver. Objective To investigate the relationship between IADL and regional cortical thinning and cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers cross-sectionally and longitudinally in clinically normal (CN) elderly, MCI, and mild AD dementia subjects. Methods Two hundred and twenty nine CN, 395 MCI, and 188 AD dementia subjects participating in the Alzheimer's Disease Neuroimaging Initiative underwent baseline magnetic resonance imaging, baseline lumbar puncture, and clinical assessments, including the Functional Activities Questionnaire used to measure IADL, every 6 to 12 months up to 3 years. General linear regression and mixed effects models were employed. Results IADL impairment was associated with the interactions between lower inferior temporal cortical thickness and diagnosis (p<0.0001), greater lateral occipital cortical thickness and diagnosis (p<0.0001), and greater amyloid-beta 1-42 (Aβ1-42) and diagnosis (p=0.0002) at baseline (driven by AD dementia). Lower baseline supramarginal (p=0.02) and inferior temporal (p=0.05) cortical thickness, lower Aβ1-42 (p<0.0001), and greater total tau (t-tau) (p=0.02) were associated with greater rate of IADL impairment over time. Conclusions Temporal atrophy is associated with IADL impairment in mild AD dementia at baseline, while baseline parietal and temporal atrophy, lower CSF Aβ1-42, and greater t-tau predict worsening IADL impairment over time across the AD spectrum. These results emphasize the importance of assessing IADL at the stage of MCI and even at the transition from CN to MCI. PMID:24685624

  14. Alexia for Braille following bilateral occipital stroke in an early blind woman.

    PubMed

    Hamilton, R; Keenan, J P; Catala, M; Pascual-Leone, A

    2000-02-07

    Recent functional imaging and neurophysiologic studies indicate that the occipital cortex may play a role in Braille reading in congenitally and early blind subjects. We report on a woman blind from birth who sustained bilateral occipital damage following an ischemic stroke. Prior to the stroke, the patient was a proficient Braille reader. Following the stroke, she was no longer able to read Braille yet her somatosensory perception appeared otherwise to be unchanged. This case supports the emerging evidence for the recruitment of striate and prestriate cortex for Braille reading in early blind subjects.

  15. Long-term outcome and prognostic factors after C2 ganglion decompression in 68 consecutive patients with intractable occipital neuralgia.

    PubMed

    Choi, Kyu-Sun; Ko, Yong; Kim, Young-Soo; Yi, Hyeong-Joong

    2015-01-01

    Occipital neuralgia is a rare cause of severe headache characterized by paroxysmal shooting or stabbing pain in the distribution of the greater occipital or lesser occipital nerve. In cases of intractable occipital neuralgia, a definite cause has not been uncovered, so various types of treatment have been applied. The aim of this study is to evaluate the prognostic factors, safety, and long-term clinical efficacy of second cervical (C2) ganglion decompression for intractable occipital neuralgia. Retrospective analysis was performed in 68 patients with medically refractory occipital neuralgia who underwent C2 ganglion decompression. Factors based on patients' demography, pre- and postoperative headache severity/characteristics, medication use, and postoperative complications were investigated. Therapeutic success was defined as pain relief by at least 50 % without ongoing medication. The visual analog scale (VAS) score was significantly reduced between the preoperative and most recent follow-up period. One year later, excellent or good results were achieved in 57 patients (83.9 %), but poor in 11 patients (16.1 %). The long-term outcome after 5 years was only slightly less than the 1-year outcome; 47 of the 68 patients (69.1 %) obtained therapeutic success. Longer duration of headache (over 13 years; p = 0.029) and presence of retro-orbital/frontal radiation (p = 0.040) were significantly associated with poor prognosis. In the current study, C2 ganglion decompression provided durable, adequate pain relief with minimal complications in patients suffering from intractable occipital neuralgia. Due to the minimally invasive and nondestructive nature of this surgical procedure, C2 ganglion decompression is recommended as an initial surgical treatment option for intractable occipital neuralgia before attempting occipital nerve stimulation. However, further study is required to manage the pain recurrence associated with longstanding nerve injury.

  16. Category-Selectivity in Human Visual Cortex Follows Cortical Topology: A Grouped icEEG Study

    PubMed Central

    Conner, Christopher Richard; Whaley, Meagan Lee; Baboyan, Vatche George; Tandon, Nitin

    2016-01-01

    Neuroimaging studies suggest that category-selective regions in higher-order visual cortex are topologically organized around specific anatomical landmarks: the mid-fusiform sulcus (MFS) in the ventral temporal cortex (VTC) and lateral occipital sulcus (LOS) in the lateral occipital cortex (LOC). To derive precise structure-function maps from direct neural signals, we collected intracranial EEG (icEEG) recordings in a large human cohort (n = 26) undergoing implantation of subdural electrodes. A surface-based approach to grouped icEEG analysis was used to overcome challenges from sparse electrode coverage within subjects and variable cortical anatomy across subjects. The topology of category-selectivity in bilateral VTC and LOC was assessed for five classes of visual stimuli—faces, animate non-face (animals/body-parts), places, tools, and words—using correlational and linear mixed effects analyses. In the LOC, selectivity for living (faces and animate non-face) and non-living (places and tools) classes was arranged in a ventral-to-dorsal axis along the LOS. In the VTC, selectivity for living and non-living stimuli was arranged in a latero-medial axis along the MFS. Written word-selectivity was reliably localized to the intersection of the left MFS and the occipito-temporal sulcus. These findings provide direct electrophysiological evidence for topological information structuring of functional representations within higher-order visual cortex. PMID:27272936

  17. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice.

    PubMed

    Laramée, Marie-Eve; Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde

    2016-01-01

    In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed.

  18. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice

    PubMed Central

    Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde

    2016-01-01

    In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed. PMID:27410964

  19. An anatomical study of the transversus nuchae muscle: Application to better understanding occipital neuralgia.

    PubMed

    Watanabe, Koichi; Saga, Tsuyoshi; Iwanaga, Joe; Tabira, Yoko; Yamaki, Koh-Ichi

    2017-01-01

    The transversus nuchae muscle appears inconsistently in the occipital region. It has gained attention as one of the muscles composing the superficial musculoaponeurotic system (SMAS). The purpose of this study was to clarify its detailed anatomical features. We examined 124 sides of 62 cadavers. The transversus nuchae muscle was identified when present and examined after it had been completely exposed. We also examined its relationship to the occipital cutaneous nerves.The transversus nuchae muscle was detected in 40 sides (40/124, 32.2%) of 26 cadavers; it was present bilaterally in 14 and unilaterally in 12. It originated from the external occipital protuberance; 43% of the observed muscles inserted around the mastoid process, and 58% curved upward around the mastoid process and became the uppermost bundle of the platysma. In one case, an additional bundle originated from the lower posterior border of the sternocleidomastoid muscle and coursed obliquely upward along with platysma. Ninety percent of the muscles ran below the sling through which the greater occipital nerve passed; 65% of the lesser occipital nerves ran deep to the muscle, and 55% of the great auricular nerves ran superficial to it. Our observations clarify the unique anatomical features of the transversus nuchae muscle. We found that it occurs at a rate similar to that described in previous reports, but its arrangement is variable. Further investigations will be performed to clarify its innervation and other anatomical features. Clin. Anat. 30:32-38, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Charles Bonnet Syndrome in a Patient With Right Medial Occipital Lobe Infarction: Epileptic or Deafferentation Phenomenon?

    PubMed

    Kumral, Emre; Uluakay, Arzu; Dönmez, İlknur

    2015-07-01

    Charles Bonnet syndrome (CBS) is an uncommon disorder characterized by complex and recurrent visual hallucinations in patients with visual pathway pathologic defects. To describe a patient who experienced complex visual hallucinations following infarction in the right occipital lobe and epileptic seizure who was diagnosed as having CBS. A 65-year-old man presented acute ischemic stroke caused by artery to artery embolism involving the right occipital lobe. Following ischemic stroke, complex visual hallucinations in the left visual field not associated with loss of consciousness or delusion developed in the patient. Hallucinations persisted for >1 month and during hallucination, no electrographic seizures were recorded through 24 hours of videoelectroencephalographic monitoring. CBS may develop in a patient with occipital lobe infarction following an embolic event. CBS associated with medial occipital lobe infarction and epilepsy may coexist and reflects the abnormal functioning of an integrated neuronal network.

  1. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization

    PubMed Central

    Rosa, Marcello G.P; Tweedale, Rowan

    2005-01-01

    In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for ‘core’ fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey ‘third tier’ visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas. PMID:15937007

  2. Attention Influences Single Unit and Local Field Potential Response Latencies in Visual Cortical Area V4

    PubMed Central

    Sundberg, Kristy A.; Mitchell, Jude F.; Gawne, Timothy J.

    2012-01-01

    Many previous studies have demonstrated that changes in selective attention can alter the response magnitude of visual cortical neurons, but there has been little evidence for attention affecting response latency. Small latency differences, though hard to detect, can potentially be of functional importance, and may also give insight into the mechanisms of neuronal computation. We therefore reexamined the effect of attention on the response latency of both single units and the local field potential (LFP) in primate visual cortical area V4. We find that attention does produce small (1–2 ms) but significant reductions in the latency of both the spiking and LFP responses. Though attention, like contrast elevation, reduces response latencies, we find that the two have different effects on the magnitude of the LFP. Contrast elevations increase and attention decreases the magnitude of the initial deflection of the stimulus-evoked LFP. Both contrast elevation and attention increase the magnitude of the spiking response. We speculate that latencies may be reduced at higher contrast because stronger stimulus inputs drive neurons more rapidly to spiking threshold, while attention may reduce latencies by placing neurons in a more depolarized state closer to threshold before stimulus onset. PMID:23136440

  3. Cortical brain structure and sexual orientation in adult females with bipolar disorder or attention deficit hyperactivity disorder.

    PubMed

    Abé, Christoph; Rahman, Qazi; Långström, Niklas; Rydén, Eleonore; Ingvar, Martin; Landén, Mikael

    2018-05-29

    Nonheterosexual individuals have higher risk of psychiatric morbidity. Together with growing evidence for sexual orientation-related brain differences, this raises the concern that sexual orientation may be an important factor to control for in neuroimaging studies of neuropsychiatric disorders. We studied sexual orientation in adult psychiatric patients with bipolar disorder (BD) or ADHD in a large clinical cohort (N = 154). We compared cortical brain structure in exclusively heterosexual women (HEW, n = 29) with that of nonexclusively heterosexual women (nHEW, n = 37) using surface-based reconstruction techniques provided by FreeSurfer. The prevalence of nonheterosexual sexual orientation was tentatively higher than reported in general population samples. Consistent with previously reported cross-sex shifted brain patterns among homosexual individuals, nHEW patients showed significantly larger cortical volumes than HEW in medial occipital brain regions. We found evidence for a sex-reversed difference in cortical volume among nonheterosexual female patients, which provides insights into the neurobiology of sexual orientation, and may provide the first clues toward a better neurobiological understanding of the association between sexual orientation and mental health. We also suggest that sexual orientation is an important factor to consider in future neuroimaging studies of populations with certain mental health disorders. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  4. Antecedent occipital alpha band activity predicts the impact of oculomotor events in perceptual switching

    PubMed Central

    Nakatani, Hironori; van Leeuwen, Cees

    2013-01-01

    Oculomotor events such as blinks and saccades transiently interrupt the visual input and, even though this mostly goes undetected, these brief interruptions could still influence the percept. In particular, both blinking and saccades facilitate switching in ambiguous figures such as the Necker cube. To investigate the neural state antecedent to these oculomotor events during the perception of an ambiguous figure, we measured the human scalp electroencephalogram (EEG). When blinking led to perceptual switching, antecedent occipital alpha band activity exhibited a transient increase in amplitude. When a saccade led to switching, a series of transient increases and decreases in amplitude was observed in the antecedent occipital alpha band activity. Our results suggest that the state of occipital alpha band activity predicts the impact of oculomotor events on the percept. PMID:23745106

  5. Sleep EEG Provides Evidence that Cortical Changes Persist into Late Adolescence

    PubMed Central

    Tarokh, Leila; Van Reen, Eliza; LeBourgeois, Monique; Seifer, Ronald; Carskadon, Mary A.

    2011-01-01

    Study Objectives: To examine developmental changes in the human sleep electroencephalogram (EEG) during late adolescence. Setting: A 4-bed sleep laboratory. Participants: Fourteen adolescents (5 boys) were studied at ages 15 or 16 (initial) and again at ages 17 to 19 (follow-up). Interventions: N/A Measurements and Results: All-night polysomnography was recorded at each assessment and scored according to the criteria of Rechtschaffen and Kales. A 27% decline in duration of slow wave sleep, and a 22% increase of stage 2 sleep was observed from the initial to the follow-up session. All-night spectral analysis of 2 central and 2 occipital leads revealed a significant decline of NREM and REM sleep EEG power with increasing age across frequencies in both states. Time-frequency analysis revealed that the decline in power was consistent across the night for all bands except the delta band. The decreases in power were most pronounced over the left central (C3/A2) and right occipital (O2/A1) derivations. Conclusions: Using longitudinal data, we show that the developmental changes to the sleeping EEG that begin in early adolescence continue into late adolescence. As with early adolescents, we observed hemispheric asymmetry in the decline of sleep EEG power. This decline was state and frequency nonspecific, suggesting that it may be due to the pruning of synapses known to occur during adolescence. Citation: Tarokh L; Van Reen E; LeBourgeois M; Seifer R; Carskadon MA. Sleep EEG provides evidence that cortical changes persist into late adolescence. SLEEP 2011;34(10):1385–1393. PMID:21966070

  6. Methamphetamine users show greater than normal age-related cortical gray matter loss.

    PubMed

    Nakama, Helenna; Chang, Linda; Fein, George; Shimotsu, Ryan; Jiang, Caroline S; Ernst, Thomas

    2011-08-01

    Methamphetamine (Meth) abuse continues to be a major illicit drug of abuse. Neuroimaging findings suggest that Meth is neurotoxic and may alter various brain structures, but the effect of Meth on the aging brain has not been studied. The aim was to determine regional volumes of cortical gray matter in the brains of adult Meth users versus healthy control subjects, and their interaction with age and Meth-usage variables. Cross-sectional study Magnetic resonance imaging (MRI) Research Center located in a university-affiliated hospital. Thirty-four Meth-dependent subjects (21 men and 13 women; ages 33.1 ± 8.9 years), diagnosed according to DSM-IV criteria, and 31 healthy non-Meth user comparison subjects (23 men and 8 women ages 35.7 ± 8.4 years). Regional gray matter volumes were segmented automatically in all subjects and evaluated in relation to age, using high-resolution MRIs at 3.0 Tesla. After adjustment for the effects of cranium size, the Meth users showed enhanced cortical gray matter volume loss with age in the frontal (analysis of covariance interaction P = 0.02), occipital (interaction P = 0.01), temporal (interaction P < 0.001) and the insular lobes (interaction P = 0.01) compared to controls, independently of Meth-usage patterns. Additionally, Meth users showed smaller gray matter volumes than control subjects in several subregions (dorsolateral prefrontal: P = 0.02; orbitofrontal: P = 0.03; prefrontal: P = 0.047; superior temporal: P = 0.04). Methamphetamine users appear to show increased cortical gray matter loss with age which raises the possibility of accelerated decline in mental functioning. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  7. High-expanding cortical regions in human development and evolution are related to higher intellectual abilities.

    PubMed

    Fjell, Anders M; Westlye, Lars T; Amlien, Inge; Tamnes, Christian K; Grydeland, Håkon; Engvig, Andreas; Espeseth, Thomas; Reinvang, Ivar; Lundervold, Astri J; Lundervold, Arvid; Walhovd, Kristine B

    2015-01-01

    Cortical surface area has tremendously expanded during human evolution, and similar patterns of cortical expansion have been observed during childhood development. An intriguing hypothesis is that the high-expanding cortical regions also show the strongest correlations with intellectual function in humans. However, we do not know how the regional distribution of correlations between intellectual function and cortical area maps onto expansion in development and evolution. Here, in a sample of 1048 participants, we show that regions in which cortical area correlates with visuospatial reasoning abilities are generally high expanding in both development and evolution. Several regions in the frontal cortex, especially the anterior cingulate, showed high expansion in both development and evolution. The area of these regions was related to intellectual functions in humans. Low-expanding areas were not related to cognitive scores. These findings suggest that cortical regions involved in higher intellectual functions have expanded the most during development and evolution. The radial unit hypothesis provides a common framework for interpretation of the findings in the context of evolution and prenatal development, while additional cellular mechanisms, such as synaptogenesis, gliogenesis, dendritic arborization, and intracortical myelination, likely impact area expansion in later childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements.

    PubMed

    Yeatman, Jason D; Weiner, Kevin S; Pestilli, Franco; Rokem, Ariel; Mezer, Aviv; Wandell, Brian A

    2014-12-02

    The vertical occipital fasciculus (VOF) is the only major fiber bundle connecting dorsolateral and ventrolateral visual cortex. Only a handful of studies have examined the anatomy of the VOF or its role in cognition in the living human brain. Here, we trace the contentious history of the VOF, beginning with its original discovery in monkey by Wernicke (1881) and in human by Obersteiner (1888), to its disappearance from the literature, and recent reemergence a century later. We introduce an algorithm to identify the VOF in vivo using diffusion-weighted imaging and tractography, and show that the VOF can be found in every hemisphere (n = 74). Quantitative T1 measurements demonstrate that tissue properties, such as myelination, in the VOF differ from neighboring white-matter tracts. The terminations of the VOF are in consistent positions relative to cortical folding patterns in the dorsal and ventral visual streams. Recent findings demonstrate that these same anatomical locations also mark cytoarchitectonic and functional transitions in dorsal and ventral visual cortex. We conclude that the VOF is likely to serve a unique role in the communication of signals between regions on the ventral surface that are important for the perception of visual categories (e.g., words, faces, bodies, etc.) and regions on the dorsal surface involved in the control of eye movements, attention, and motion perception.

  9. Occipital Nerve Stimulation for the Treatment of Patients With Medically Refractory Occipital Neuralgia: Congress of Neurological Surgeons Systematic Review and Evidence-Based Guideline.

    PubMed

    Sweet, Jennifer A; Mitchell, Laura S; Narouze, Samer; Sharan, Ashwini D; Falowski, Steven M; Schwalb, Jason M; Machado, Andre; Rosenow, Joshua M; Petersen, Erika A; Hayek, Salim M; Arle, Jeffrey E; Pilitsis, Julie G

    2015-09-01

    Occipital neuralgia (ON) is a disorder characterized by sharp, electrical, paroxysmal pain, originating from the occiput and extending along the posterior scalp, in the distribution of the greater, lesser, and/or third occipital nerve. Occipital nerve stimulation (ONS) constitutes a promising therapy for medically refractory ON because it is reversible with minimal side effects and has shown continued efficacy with long-term follow-up. To conduct a systematic literature review and provide treatment recommendations for the use of ONS for the treatment of patients with medically refractory ON. A systematic literature search was conducted using the PubMed database and the Cochrane Library to locate articles published between 1966 and April 2014 using MeSH headings and keywords relevant to ONS as a means to treat ON. A second literature search was conducted using the PubMed database and the Cochrane Library to locate articles published between 1966 and June 2014 using MeSH headings and keywords relevant to interventions that predict response to ONS in ON. The strength of evidence of each article that underwent full text review and the resulting strength of recommendation were graded according to the guidelines development methodology of the American Association of Neurological Surgeons/Congress of Neurological Surgeons Joint Guidelines Committee. Nine studies met the criteria for inclusion in this guideline. All articles provided Class III Level evidence. Based on the data derived from this systematic literature review, the following Level III recommendation can be made: the use of ONS is a treatment option for patients with medically refractory ON.

  10. Effects of subjective preference of colors on attention-related occipital theta oscillations.

    PubMed

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2012-01-02

    Human daily behaviors are often affected by subjective preferences. Studies have shown that physical responses are affected by unconscious preferences before conscious decision making. Accordingly, attention-related neural activities could be influenced by unconscious preferences. However, few neurological data exist on the relationship between visual attention and subjective preference. To address this issue, we focused on lateralization during visual attention and investigated the effects of subjective color preferences on visual attention-related brain activities. We recorded electroencephalograph (EEG) data during a preference judgment task that required 19 participants to choose their preferred color from 2 colors simultaneously presented to the right and left hemifields. In addition, to identify oscillatory activity during visual attention, we conducted a control experiment in which the participants focused on either the right or the left color without stating their preference. The EEG results showed enhanced theta (4-6 Hz) and decreased alpha (10-12 Hz) activities in the right and left occipital electrodes when the participants focused on the color in the opposite hemifield. Occipital theta synchronizations also increased contralaterally to the hemifield to which the preferred color was presented, whereas the alpha desynchronizations showed no lateralization. The contralateral occipital theta activity lasted longer than the ipsilateral occipital theta activity. Interestingly, theta lateralization was observed even when the preferred color was presented to the unattended side in the control experiment, revealing the strength of the preference-related theta-modulation effect irrespective of visual attention. These results indicate that subjective preferences modulate visual attention-related brain activities. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  11. Frontal–Occipital Connectivity During Visual Search

    PubMed Central

    Pantazatos, Spiro P.; Yanagihara, Ted K.; Zhang, Xian; Meitzler, Thomas

    2012-01-01

    Abstract Although expectation- and attention-related interactions between ventral and medial prefrontal cortex and stimulus category-selective visual regions have been identified during visual detection and discrimination, it is not known if similar neural mechanisms apply to other tasks such as visual search. The current work tested the hypothesis that high-level frontal regions, previously implicated in expectation and visual imagery of object categories, interact with visual regions associated with object recognition during visual search. Using functional magnetic resonance imaging, subjects searched for a specific object that varied in size and location within a complex natural scene. A model-free, spatial-independent component analysis isolated multiple task-related components, one of which included visual cortex, as well as a cluster within ventromedial prefrontal cortex (vmPFC), consistent with the engagement of both top-down and bottom-up processes. Analyses of psychophysiological interactions showed increased functional connectivity between vmPFC and object-sensitive lateral occipital cortex (LOC), and results from dynamic causal modeling and Bayesian Model Selection suggested bidirectional connections between vmPFC and LOC that were positively modulated by the task. Using image-guided diffusion-tensor imaging, functionally seeded, probabilistic white-matter tracts between vmPFC and LOC, which presumably underlie this effective interconnectivity, were also observed. These connectivity findings extend previous models of visual search processes to include specific frontal–occipital neuronal interactions during a natural and complex search task. PMID:22708993

  12. Pragmatics in action: indirect requests engage theory of mind areas and the cortical motor network.

    PubMed

    van Ackeren, Markus J; Casasanto, Daniel; Bekkering, Harold; Hagoort, Peter; Rueschemeyer, Shirley-Ann

    2012-11-01

    Research from the past decade has shown that understanding the meaning of words and utterances (i.e., abstracted symbols) engages the same systems we used to perceive and interact with the physical world in a content-specific manner. For example, understanding the word "grasp" elicits activation in the cortical motor network, that is, part of the neural substrate involved in planned and executing a grasping action. In the embodied literature, cortical motor activation during language comprehension is thought to reflect motor simulation underlying conceptual knowledge [note that outside the embodied framework, other explanations for the link between action and language are offered, e.g., Mahon, B. Z., & Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grouding conceptual content. Journal of Physiology, 102, 59-70, 2008; Hagoort, P. On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416-423, 2005]. Previous research has supported the view that the coupling between language and action is flexible, and reading an action-related word form is not sufficient for cortical motor activation [Van Dam, W. O., van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical-semantic representations. Human Brain Mapping, doi: 10.1002/hbm.21365, 2011]. The current study goes one step further by addressing the necessity of action-related word forms for motor activation during language comprehension. Subjects listened to indirect requests (IRs) for action during an fMRI session. IRs for action are speech acts in which access to an action concept is required, although it is not explicitly encoded in the language. For example, the utterance "It is hot here!" in a room with a window is likely to be interpreted as a request to open the window. However, the same utterance in a desert will be interpreted as a statement. The results indicate (1) that comprehension of IR sentences activates cortical

  13. Brain Response to a Humanoid Robot in Areas Implicated in the Perception of Human Emotional Gestures

    PubMed Central

    Chaminade, Thierry; Zecca, Massimiliano; Blakemore, Sarah-Jayne; Takanishi, Atsuo; Frith, Chris D.; Micera, Silvestro; Dario, Paolo; Rizzolatti, Giacomo; Gallese, Vittorio; Umiltà, Maria Alessandra

    2010-01-01

    Background The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents. Methodology Here, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust) and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted. Principal Findings Increased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca's area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance. Conclusions Motor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions. Significance Artificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions. PMID:20657777

  14. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice.

    PubMed

    Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-03-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.

  15. Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability?

    PubMed

    Docherty, Anna R; Hagler, Donald J; Panizzon, Matthew S; Neale, Michael C; Eyler, Lisa T; Fennema-Notestine, Christine; Franz, Carol E; Jak, Amy; Lyons, Michael J; Rinker, Daniel A; Thompson, Wesley K; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2015-02-01

    The phenotypic and genetic relationship between global cortical size and general cognitive ability (GCA) appears to be driven by surface area (SA) and not cortical thickness (CT). Gyrification (cortical folding) is an important property of the cortex that helps to increase SA within a finite space, and may also improve connectivity by reducing distance between regions. Hence, gyrification may be what underlies the SA-GCA relationship. In previous phenotypic studies, a 3-dimensional gyrification index (3DGI) has been positively associated with cognitive ability and negatively associated with mild cognitive impairment, Alzheimer's disease, and psychiatric disorders affecting cognition. However, the differential genetic associations of 3DGI and SA with GCA are still unclear. We examined the heritability of 3DGI, and the phenotypic, genetic, and environmental associations of 3DGI with SA and GCA in a large sample of adult male twins (N = 512). Nearly 85% of the variance in 3DGI was due to genes, and 3DGI had a strong phenotypic and genetic association with SA. Both 3DGI and total SA had positive phenotypic correlations with GCA. However, the SA-GCA correlation remained significant after controlling for 3DGI, but not the other way around. There was also significant genetic covariance between SA and GCA, but not between 3DGI and GCA. Thus, despite the phenotypic and genetic associations between 3DGI and SA, our results do not support the hypothesis that gyrification underlies the association between SA and GCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Normal Development and Measurements of the Occipital Condyle-C1 Interval in Children and Young Adults.

    PubMed

    Smith, P; Linscott, L L; Vadivelu, S; Zhang, B; Leach, J L

    2016-05-01

    Widening of the occipital condyle-C1 interval is the most specific and sensitive means of detecting atlanto-occipital dislocation. Recent studies attempting to define normal measurements of the condyle-C1 interval in children have varied substantially. This study was performed to test the null hypothesis that condyle-C1 interval morphology and joint measurements do not change as a function of age. Imaging review of subjects undergoing CT of the upper cervical spine for reasons unrelated to trauma or developmental abnormality was performed. Four equidistant measurements were obtained for each bilateral condyle-C1 interval on sagittal and coronal images. The cohort was divided into 7 age groups to calculate the mean, SD, and 95% CIs for the average condyle-C1 interval in both planes. The prevalence of a medial occipital condyle notch was calculated. Two hundred forty-eight joints were measured in 124 subjects with an age range of 2 days to 22 years. The condyle-C1 interval varies substantially by age. Average coronal measurements are larger and more variable than sagittal measurements. The medial occipital condyle notch is most prevalent from 1 to 12 years and is uncommon in older adolescents and young adults. The condyle-C1 interval increases during the first several years of life, is largest in the 2- to 4-year age range, and then decreases through late childhood and adolescence. A single threshold value to detect atlanto-occipital dissociation may not be sensitive and specific for all age groups. Application of this normative data to documented cases of atlanto-occipital injury is needed to determine clinical utility. © 2016 by American Journal of Neuroradiology.

  17. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms

    PubMed Central

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Study Objectives: Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). Methods: The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Results: Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Conclusion: Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. Citation: Suh S, Kim H, Dang-Vu TT, Joo E, Shin C. Cortical thinning and altered cortico-cortical structural covariance of the default mode network in patients with

  18. Neural adaptation to thin and fat bodies in the fusiform body area and middle occipital gyrus: an fMRI adaptation study.

    PubMed

    Hummel, Dennis; Rudolf, Anne K; Brandi, Marie-Luise; Untch, Karl-Heinz; Grabhorn, Ralph; Hampel, Harald; Mohr, Harald M

    2013-12-01

    Visual perception can be strongly biased due to exposure to specific stimuli in the environment, often causing neural adaptation and visual aftereffects. In this study, we investigated whether adaptation to certain body shapes biases the perception of the own body shape. Furthermore, we aimed to evoke neural adaptation to certain body shapes. Participants completed a behavioral experiment (n = 14) to rate manipulated pictures of their own bodies after adaptation to demonstratively thin or fat pictures of their own bodies. The same stimuli were used in a second experiment (n = 16) using functional magnetic resonance imaging (fMRI) adaptation. In the behavioral experiment, after adapting to a thin picture of the own body participants also judged a thinner than actual body picture to be the most realistic and vice versa, resembling a typical aftereffect. The fusiform body area (FBA) and the right middle occipital gyrus (rMOG) show neural adaptation to specific body shapes while the extrastriate body area (EBA) bilaterally does not. The rMOG cluster is highly selective for bodies and perhaps body parts. The findings of the behavioral experiment support the existence of a perceptual body shape aftereffect, resulting from a specific adaptation to thin and fat pictures of one's own body. The fMRI results imply that body shape adaptation occurs in the FBA and the rMOG. The role of the EBA in body shape processing remains unclear. The results are also discussed in the light of clinical body image disturbances. Copyright © 2012 Wiley Periodicals, Inc.

  19. False Memories for Shape Activate the Lateral Occipital Complex

    ERIC Educational Resources Information Center

    Karanian, Jessica M.; Slotnick, Scott D.

    2017-01-01

    Previous functional magnetic resonance imaging evidence has shown that false memories arise from higher-level conscious processing regions rather than lower-level sensory processing regions. In the present study, we assessed whether the lateral occipital complex (LOC)--a lower-level conscious shape processing region--was associated with false…

  20. Benign Occipital Epilepsies of Childhood: Clinical Features and Genetics

    ERIC Educational Resources Information Center

    Taylor, Isabella; Berkovic, Samuel F.; Kivity, Sara; Scheffer, Ingrid E.

    2008-01-01

    The early and late benign occipital epilepsies of childhood (BOEC) are described as two discrete electro-clinical syndromes, eponymously known as Panayiotopoulos and Gastaut syndromes. Our aim was to explore the clinical features, classification and clinical genetics of these syndromes using twin and multiplex family studies to determine whether…

  1. Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous-unemotional traits.

    PubMed

    Wallace, Gregory L; White, Stuart F; Robustelli, Briana; Sinclair, Stephen; Hwang, Soonjo; Martin, Alex; Blair, R James R

    2014-04-01

    Although there is growing evidence of brain abnormalities among individuals with conduct disorder (CD), the structural neuroimaging literature is mixed and frequently aggregates cortical volume rather than differentiating cortical thickness from surface area. The current study assesses CD-related differences in cortical thickness, surface area, and gyrification as well as volume differences in subcortical structures critical to neurodevelopmental models of CD (amygdala; striatum) in a carefully characterized sample. We also examined whether group structural differences were related to severity of callous-unemotional (CU) traits in the CD sample. Participants were 49 community adolescents aged 10 to 18 years, 22 with CD and 27 healthy comparison youth. Structural MRI was collected and the FreeSurfer image analysis suite was used to provide measures of cortical thickness, surface area, and local gyrification as well as subcortical (amygdala and striatum) volumes. Youths with CD showed reduced cortical thickness in the superior temporal cortex. There were also indications of reduced gyrification in the ventromedial frontal cortex, particularly for youths with CD without comorbid attention-deficit/hyperactivity disorder. There were no group differences in cortical surface area. However, youths with CD also showed reduced amygdala and striatum (putamen and pallidum) volumes. Right temporal cortical thickness was significantly inversely related to severity of CU traits. Youths with CD show reduced cortical thickness within superior temporal regions, some indication of reduced gyrification within ventromedial frontal cortex and reduced amygdala and striatum (putamen and pallidum) volumes. These results are discussed with reference to neurobiological models of CD. Published by Elsevier Inc.

  2. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    PubMed

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  3. Resting state cortical oscillations of patients with Parkinson disease and with and without subthalamic deep brain stimulation: a magnetoencephalography study.

    PubMed

    Cao, Chunyan; Li, Dianyou; Jiang, Tianxiao; Ince, Nuri Firat; Zhan, Shikun; Zhang, Jing; Sha, Zhiyi; Sun, Bomin

    2015-04-01

    In this study, we investigate the modification to cortical oscillations of patients with Parkinson disease (PD) by subthalamic deep brain stimulation (STN-DBS). Spontaneous cortical oscillations of patients with PD were recorded with magnetoencephalography during on and off subthalamic nucleus deep brain stimulation states. Several features such as average frequency, average power, and relative subband power in regions of interest were extracted in the frequency domain, and these features were correlated with Unified Parkinson Disease Rating Scale III evaluation. The same features were also investigated in patients with PD without surgery and healthy controls. Patients with Parkinson disease without surgery compared with healthy controls had a significantly lower average frequency and an increased average power in 1 to 48 Hz range in whole cortex. Higher relative power in theta and simultaneous decrease in beta and gamma over temporal and occipital were also observed in patients with PD. The Unified Parkinson Disease Rating Scale III rigidity score correlated with the average frequency and with the relative power of beta and gamma in frontal areas. During subthalamic nucleus deep brain stimulation, the average frequency increased significantly when stimulation was on compared with off state. In addition, the relative power dropped in delta, whereas it rose in beta over the whole cortex. Through the course of stimulation, the Unified Parkinson Disease Rating Scale III rigidity and tremor scores correlated with the relative power of alpha over left parietal. Subthalamic nucleus deep brain stimulation improves the symptoms of PD by suppressing the synchronization of alpha rhythm in somatomotor region.

  4. Synchronous behaviour in network model based on human cortico-cortical connections.

    PubMed

    Protachevicz, Paulo Ricardo; Borges, Rafael Ribaski; Reis, Adriane da Silva; Borges, Fernando da Silva; Iarosz, Kelly Cristina; Caldas, Ibere Luiz; Lameu, Ewandson Luiz; Macau, Elbert Einstein Nehrer; Viana, Ricardo Luiz; Sokolov, Igor M; Ferrari, Fabiano A S; Kurths, Jürgen; Batista, Antonio Marcos

    2018-06-22

    We consider a network topology according to the cortico-cortical connec- tion network of the human brain, where each cortical area is composed of a random network of adaptive exponential integrate-and-fire neurons. Depending on the parameters, this neuron model can exhibit spike or burst patterns. As a diagnostic tool to identify spike and burst patterns we utilise the coefficient of variation of the neuronal inter-spike interval. In our neuronal network, we verify the existence of spike and burst synchronisation in different cortical areas. Our simulations show that the network arrangement, i.e., its rich-club organisation, plays an important role in the transition of the areas from desynchronous to synchronous behaviours. © 2018 Institute of Physics and Engineering in Medicine.

  5. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    PubMed

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Language Networks in Anophthalmia: Maintained Hierarchy of Processing in "Visual" Cortex

    ERIC Educational Resources Information Center

    Watkins, Kate E.; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M.; Smith, Stephen M.; Ragge, Nicola; Bridge, Holly

    2012-01-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an…

  7. Occipital Intraosseous Hemangioma over Torcula: Unusual Presentation with Raised Intracranial Pressure.

    PubMed

    Rao, K V L N; Beniwal, Manish; Vazhayil, Vikas; Somanna, Sampath; Yasha, T C

    2017-12-01

    Hemangiomas of the bone are benign, uncommon, slow-growing lesions accounting for <1.0% of all bony neoplasms. Intraosseous occipital hemangiomas are rare, and occipital hemangiomas presenting with features of raised intracranial tension are, with only 2 cases reported to date. In this case report, we describe the unique case of a 30-year-old male patient presenting with raised intracranial pressure due to venous obstruction at the torcula. The patient underwent excision of the lesion and became symptom free. Although these are benign lesions, they can have a varied clinical presentation. An understanding of the different clinical presentations and surgical nuances in excising such tumors can lead to early diagnosis and good patient outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Intersubject synchronization of cortical activity during natural vision.

    PubMed

    Hasson, Uri; Nir, Yuval; Levy, Ifat; Fuhrmann, Galit; Malach, Rafael

    2004-03-12

    To what extent do all brains work alike during natural conditions? We explored this question by letting five subjects freely view half an hour of a popular movie while undergoing functional brain imaging. Applying an unbiased analysis in which spatiotemporal activity patterns in one brain were used to "model" activity in another brain, we found a striking level of voxel-by-voxel synchronization between individuals, not only in primary and secondary visual and auditory areas but also in association cortices. The results reveal a surprising tendency of individual brains to "tick collectively" during natural vision. The intersubject synchronization consisted of a widespread cortical activation pattern correlated with emotionally arousing scenes and regionally selective components. The characteristics of these activations were revealed with the use of an open-ended "reverse-correlation" approach, which inverts the conventional analysis by letting the brain signals themselves "pick up" the optimal stimuli for each specialized cortical area.

  9. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling.

    PubMed

    Endo, Toshiki; Spenger, Christian; Tominaga, Teiji; Brené, Stefan; Olson, Lars

    2007-11-01

    Cortical sensory maps can reorganize in the adult brain in an experience-dependent manner. We monitored somatosensory cortical reorganization after sensory deafferentation using functional magnetic resonance imaging (fMRI) in rats subjected to complete transection of the mid-thoracic spinal cord. Cortical representation in response to spared forelimb stimulation was observed to enlarge and invade adjacent sensory-deprived hind limb territory in the primary somatosensory cortex as early as 3 days after injury. Functional MRI also demonstrated long-term cortical plasticity accompanied by increased thalamic activation. To support the notion that alterations of cortical neuronal circuitry after spinal cord injury may underlie the fMRI changes, we quantified transcriptional activities of several genes related to cortical plasticity including the Nogo receptor (NgR), its co-receptor LINGO-1 and brain derived neurotrophic factor (BDNF), using in situ hybridization. We demonstrate that NgR and LINGO-1 are down-regulated specifically in cortical areas deprived of sensory input and in adjacent cortex from 1 day after injury, while BDNF is up-regulated. Our results demonstrate that cortical neurons react to sensory deprivation by decreasing transcriptional activities of genes encoding the Nogo receptor components in the sensory deprived and the anatomically adjacent non-deprived area. Combined with the BDNF up-regulation, these changes presumably allow structural changes in the neuropil. Our observations therefore suggest an involvement of Nogo signalling in cortical activity-dependent plasticity in the somatosensory system. In spinal cord injury, cortical reorganization as shown here can become a disadvantage, much like the situation in amblyopia or phantom sensation. Successful strategies to repair sensory pathways at the spinal cord level may not lead to proper reestablishment of cortical connections, once deprived hind limb cortical areas have been reallocated to forelimb

  10. Benign childhood epilepsy with occipital paroxysms: neuropsychological findings.

    PubMed

    Germanò, Eva; Gagliano, Antonella; Magazù, Angela; Sferro, Caterina; Calarese, Tiziana; Mannarino, Erminia; Calamoneri, Filippo

    2005-05-01

    Benign childhood epilepsy with occipital paroxysms is classified among childhood benign partial epilepsies. The absence of neurological and neuropsychological deficits has long been considered as a prerequisite for a diagnosis of benign childhood partial epilepsy. Much evidence has been reported in literature in the latest years suggesting a neuropsychological impairment in this type of epilepsy, particularly in the type with Rolandic paroxysms. The present work examines the neuropsychological profiles of a sample of subjects affected by the early-onset benign childhood occipital seizures (EBOS) described by Panayotopulos. The patient group included 22 children (14 males and 8 females; mean age 10.1+/-3.3 years) diagnosed as having EBOS. The patients were examined with a set of tests investigating neuropsychological functions: memory, attention, perceptive, motor, linguistic and academic (reading, writing, arithmetic) abilities. The same instruments have been given to a homogeneous control group as regards sex, age, level of education and socio-economic background. None of the subjects affected by EBOS showed intellectual deficit (mean IQ in Wechsler Full Scale 91.7; S.D. 8.9). Results show a widespread cognitive dysfunction in the context of a focal epileptogenic process in EBOS. In particular, children with EBOS show a significant occurrence of specific learning disabilities (SLD) and other subtle neuropsychological deficits. We found selective dysfunctions relating to perceptive-visual attentional ability (p<0.05), verbal and visual-spatial memory abilities (p<0.01), visual perception and visual-motor integration global abilities (p<0.01), manual dexterity tasks (p<0.05), some language tasks (p<0.05), reading and writing abilities (p<0.01) and arithmetic ability (p<0.01). The presence of cognitive dysfunctions in subjects with EBOS supports the hypothesis that epilepsy itself plays a role in the development of neuropsychological impairment. Supported by other

  11. Representational dynamics of object recognition: Feedforward and feedback information flows.

    PubMed

    Goddard, Erin; Carlson, Thomas A; Dermody, Nadene; Woolgar, Alexandra

    2016-03-01

    Object perception involves a range of visual and cognitive processes, and is known to include both a feedfoward flow of information from early visual cortical areas to higher cortical areas, along with feedback from areas such as prefrontal cortex. Previous studies have found that low and high spatial frequency information regarding object identity may be processed over different timescales. Here we used the high temporal resolution of magnetoencephalography (MEG) combined with multivariate pattern analysis to measure information specifically related to object identity in peri-frontal and peri-occipital areas. Using stimuli closely matched in their low-level visual content, we found that activity in peri-occipital cortex could be used to decode object identity from ~80ms post stimulus onset, and activity in peri-frontal cortex could also be used to decode object identity from a later time (~265ms post stimulus onset). Low spatial frequency information related to object identity was present in the MEG signal at an earlier time than high spatial frequency information for peri-occipital cortex, but not for peri-frontal cortex. We additionally used Granger causality analysis to compare feedforward and feedback influences on representational content, and found evidence of both an early feedfoward flow and later feedback flow of information related to object identity. We discuss our findings in relation to existing theories of object processing and propose how the methods we use here could be used to address further questions of the neural substrates underlying object perception. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Missed Total Occlusion Due to the Occipital Artery Arising from the Internal Carotid Artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ustunsoz, Bahri, E-mail: bustunsoz2000@yahoo.com; Gumus, Burcak; Koksal, Ali

    2007-02-15

    A 56-year-old man was referred for digital subtraction angiography (DSA) with an ultrasound diagnosis of right proximal internal carotid artery (ICA) stenosis for possible carotid artery stenting. DSA revealed total occlusion of the ICA and an occipital artery arising from the stump and simulating continuation of the ICA. An ascending pharyngeal artery also arose from the same occipital artery. This case is of interest because this is a rare variation besides being a cause of misdiagnosis at carotid ultrasound.

  13. Neural networks for Braille reading by the blind.

    PubMed

    Sadato, N; Pascual-Leone, A; Grafman, J; Deiber, M P; Ibañez, V; Hallett, M

    1998-07-01

    To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.

  14. Differences in Early Stages of Tactile ERP Temporal Sequence (P100) in Cortical Organization during Passive Tactile Stimulation in Children with Blindness and Controls.

    PubMed

    Ortiz Alonso, Tomás; Santos, Juan Matías; Ortiz Terán, Laura; Borrego Hernández, Mayelin; Poch Broto, Joaquín; de Erausquin, Gabriel Alejandro

    2015-01-01

    Compared to their seeing counterparts, people with blindness have a greater tactile capacity. Differences in the physiology of object recognition between people with blindness and seeing people have been well documented, but not when tactile stimuli require semantic processing. We used a passive vibrotactile device to focus on the differences in spatial brain processing evaluated with event related potentials (ERP) in children with blindness (n = 12) vs. normally seeing children (n = 12), when learning a simple spatial task (lines with different orientations) or a task involving recognition of letters, to describe the early stages of its temporal sequence (from 80 to 220 msec) and to search for evidence of multi-modal cortical organization. We analysed the P100 of the ERP. Children with blindness showed earlier latencies for cognitive (perceptual) event related potentials, shorter reaction times, and (paradoxically) worse ability to identify the spatial direction of the stimulus. On the other hand, they are equally proficient in recognizing stimuli with semantic content (letters). The last observation is consistent with the role of P100 on somatosensory-based recognition of complex forms. The cortical differences between seeing control and blind groups, during spatial tactile discrimination, are associated with activation in visual pathway (occipital) and task-related association (temporal and frontal) areas. The present results show that early processing of tactile stimulation conveying cross modal information differs in children with blindness or with normal vision.

  15. Differences in Early Stages of Tactile ERP Temporal Sequence (P100) in Cortical Organization during Passive Tactile Stimulation in Children with Blindness and Controls

    PubMed Central

    Ortiz Alonso, Tomás; Santos, Juan Matías; Ortiz Terán, Laura; Borrego Hernández, Mayelin; Poch Broto, Joaquín; de Erausquin, Gabriel Alejandro

    2015-01-01

    Compared to their seeing counterparts, people with blindness have a greater tactile capacity. Differences in the physiology of object recognition between people with blindness and seeing people have been well documented, but not when tactile stimuli require semantic processing. We used a passive vibrotactile device to focus on the differences in spatial brain processing evaluated with event related potentials (ERP) in children with blindness (n = 12) vs. normally seeing children (n = 12), when learning a simple spatial task (lines with different orientations) or a task involving recognition of letters, to describe the early stages of its temporal sequence (from 80 to 220 msec) and to search for evidence of multi-modal cortical organization. We analysed the P100 of the ERP. Children with blindness showed earlier latencies for cognitive (perceptual) event related potentials, shorter reaction times, and (paradoxically) worse ability to identify the spatial direction of the stimulus. On the other hand, they are equally proficient in recognizing stimuli with semantic content (letters). The last observation is consistent with the role of P100 on somatosensory-based recognition of complex forms. The cortical differences between seeing control and blind groups, during spatial tactile discrimination, are associated with activation in visual pathway (occipital) and task-related association (temporal and frontal) areas. The present results show that early processing of tactile stimulation conveying cross modal information differs in children with blindness or with normal vision. PMID:26225827

  16. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    PubMed

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  17. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats

    PubMed Central

    Dunham, Caleb L.; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K.; Guggenmos, David J.; Nudo, Randolph J.

    2015-01-01

    Abstract The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9–T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury. PMID:26406381

  18. Testosterone-related cortical maturation across childhood and adolescence.

    PubMed

    Nguyen, Tuong-Vi; McCracken, James; Ducharme, Simon; Botteron, Kelly N; Mahabir, Megan; Johnson, Wendy; Israel, Mimi; Evans, Alan C; Karama, Sherif

    2013-06-01

    Neuroendocrine theories of brain development hold testosterone as the predominant factor mediating sex-specific cortical growth and the ensuing lateralization of hemispheric function. However, studies to date have focussed on prenatal testosterone rather than pubertal changes in testosterone. Yet, animal studies have shown a high density of androgen-sensitive receptors in multiple key cortical areas, and puberty is known to coincide with both a significant rise in testosterone and the emergence of behavioral sex differences, suggesting peripubertal influences of testosterone on brain development. Here, we used linear mixed models to examine sex-specific cortical maturation associated with changes in testosterone levels in a longitudinal sample of developmentally healthy children and adolescents. A significant "sex by age by testosterone" interaction on cortical thickness (CTh) involving widespread areas of the developing brain was found. Testosterone levels were associated with CTh changes in regions of the left hemisphere in males and of the right hemisphere in females. In both sexes, the relationship between testosterone and CTh varied across the age span. These findings show the association between testosterone and CTh to be complex, highly dynamic, and to vary, depending on sex and age; they also suggest sex-related hemispheric lateralization effects of testosterone in humans.

  19. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis.

    PubMed

    Schuster, Christina; Kasper, Elisabeth; Machts, Judith; Bittner, Daniel; Kaufmann, Jörn; Benecke, Reiner; Teipel, Stefan; Vielhaber, Stefan; Prudlo, Johannes

    2014-10-01

    To determine longitudinal rates of cortical atrophy in classical Amyotrophic lateral sclerosis (ALS) and ALS variants. Rates of cortical thinning were determined between 2 scans, 3-15 months apart, in 77 ALS patients: 51 classical, 12 upper motor neuron (UMN), and 14 lower motor neuron (LMN) ALS variants. Cortical thickness at the first assessment was compared with 60 healthy controls matched by age and gender. Atrophy rates were compared between patient sub-groups and correlated with disease duration, progression, and severity. Using a cross-sectional analysis, we found a significant difference in cortical thickness between ALS patients and controls in the motor and extra-motor areas (left medial orbito frontal gyrus, left inferior parietal gyrus, bilateral insular cortex, right fusiform gyrus, bilateral precuneus). Using a longitudinal analysis, we found a significant decline of cortical thickness in frontal, temporal, and parietal regions over the course of the study in ALS patients. Effects were independent of the clinical subtype, with exception of the precentral gyrus (p < 0.001). The LMN ALS variants demonstrated the highest rates of cortical thinning in the precentral gyrus, the UMN-dominant subjects exhibited intermediate rates of atrophy, and the classical ALS patients exhibited no such change. Atrophy of the precentral gyrus in classical ALS indicates a floor effect at the first assessment, resulting in a lack of further atrophy over time. Structural loss of the precentral gyrus appears to be an early sign of classical ALS. Over time, patterns of cortical thinning in extra-motor areas can be identified in ALS, regardless of the phenotype.

  20. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.

    PubMed

    Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza

    2015-03-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico-cortical