Sample records for occipital gyrus left

  1. Spontaneous neural activity in the right superior temporal gyrus and left middle temporal gyrus is associated with insight level in obsessive-compulsive disorder.

    PubMed

    Fan, Jie; Zhong, Mingtian; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Tan, Changlian; Yi, Jinyao; Zhu, Xiongzhao

    2017-01-01

    Insight into illness is an important issue for psychiatry disorder. Although the existence of a poor insight subtype of obsessive-compulsive disorder (OCD) was recognized in the DSM-IV, and the insight level in OCD was specified further in DSM-V, the neural underpinnings of insight in OCD have been rarely explored. The present study was designed to bridge this research gap by using resting-state functional magnetic resonance imaging (fMRI). Spontaneous neural activity were examined in 19 OCD patients with good insight (OCD-GI), 18 OCD patients with poor insight (OCD-PI), and 25 healthy controls (HC) by analyzing the amplitude of low-frequency fluctuation (ALFF) in the resting state. Pearson correlation analysis was performed between regional ALFFs and insight levels among OCD patients. OCD-GI and OCD-PI demonstrated overlapping and distinct brain alterations. Notably, compared with OCD-GI, tOCD-PI had reduced ALFF in left middle temporal gyrus (MTG) and right superior temporal gyrus (STG), as well as increased ALFF in right middle occipital gyrus. Further analysis revealed that ALFF values for the left MTG and right STG were correlated negatively with insight level in patients with OCD. Relatively small sample size and not all patients were un-medicated are our major limitations. Spontaneous brain activity in left MTG and right STG may be neural underpinnings of insight in OCD. Our results suggest the great role of human temporal brain regions in understanding insight, and further underscore the importance of considering insight presentation in understanding the clinical heterogeneity of OCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Right Occipital Cortex Activation Correlates with Superior Odor Processing Performance in the Early Blind

    PubMed Central

    Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.

    2013-01-01

    Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263

  3. Rapid, high-frequency, and theta-coupled gamma oscillations in the inferior occipital gyrus during face processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Inoue, Yushi; Toichi, Motomi

    2014-11-01

    Neuroimaging studies have found greater activation in the inferior occipital gyrus (IOG), or occipital face area, in response to faces relative to non-facial stimuli. However, the temporal, frequency, and functional profiles of IOG activity during face processing remain unclear. Here, this issue was investigated by recording intracranial field potentials in the IOG during the presentation of faces, mosaics, and houses in upright and inverted orientations. Time-frequency statistical parametric mapping analyses revealed greater gamma-band activation in the IOG beginning at 110 msec and covering 40-300 Hz in response to upright faces relative to upright houses and mosaics. Phase-amplitude cross-frequency coupling analyses revealed more evident theta-gamma couplings at 115-256 msec during the processing of upright faces as compared with that of upright houses and mosaics. Comparable gamma-band activity was observed during the processing of inverted and upright faces at about 100-200 msec, but weaker activity and different coupling with theta-band activity after 200 msec. These patterns of activity were more evident in the right than in the left IOG. These results, together with other evidence on neural communication, suggest that broadband gamma oscillations in the right IOG conduct rapid and multistage (i.e., both featural and configural) face processing in collaboration with theta oscillations transmitted from other brain regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Inattention Predicts Increased Thickness of Left Occipital Cortex in Men with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Sörös, Peter; Bachmann, Katharina; Lam, Alexandra P; Kanat, Manuela; Hoxhaj, Eliza; Matthies, Swantje; Feige, Bernd; Müller, Helge H O; Thiel, Christiane; Philipsen, Alexandra

    2017-01-01

    Attention-deficit/hyperactivity disorder (ADHD) in adulthood is a serious and frequent psychiatric disorder with the core symptoms inattention, impulsivity, and hyperactivity. The principal aim of this study was to investigate associations between brain morphology, i.e., cortical thickness and volumes of subcortical gray matter, and individual symptom severity in adult ADHD. Surface-based brain morphometry was performed in 35 women and 29 men with ADHD using FreeSurfer. Linear regressions were calculated between cortical thickness and the volumes of subcortical gray matter and the inattention, hyperactivity, and impulsivity subscales of the Conners Adult ADHD Rating Scales (CAARS). Two separate analyses were performed. For the first analysis, age was included as additional regressor. For the second analysis, both age and severity of depression were included as additional regressors. Study participants were recruited between June 2012 and January 2014. Linear regression identified an area in the left occipital cortex of men, covering parts of the middle occipital sulcus and gyrus, in which the score on the CAARS inattention subscale predicted increased mean cortical thickness [ F (1,27) = 26.27, p  < 0.001, adjusted R 2  = 0.4744]. No significant associations were found between cortical thickness and the scores on CAARS subscales in women. No significant associations were found between the volumes of subcortical gray matter and the scores on CAARS subscales, neither in men nor in women. These results remained stable when severity of depression was included as additional regressor, together with age. Increased cortical thickness in the left occipital cortex may represent a mechanism to compensate for dysfunctional attentional networks in male adult ADHD patients.

  5. Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus.

    PubMed

    Restle, Julia; Murakami, Takenobu; Ziemann, Ulf

    2012-07-01

    The posterior part of the inferior frontal gyrus (pIFG) in the left hemisphere is thought to form part of the putative human mirror neuron system and is assigned a key role in mapping sensory perception onto motor action. Accordingly, the pIFG is involved in motor imitation of the observed actions of others but it is not known to what extent speech repetition of auditory-presented sentences is also a function of the pIFG. Here we applied fMRI-guided facilitating intermittent theta burst transcranial magnetic stimulation (iTBS), or depressant continuous TBS (cTBS), or intermediate TBS (imTBS) over the left pIFG of healthy subjects and compared speech repetition accuracy of foreign Japanese sentences before and after TBS. We found that repetition accuracy improved after iTBS and, to a lesser extent, after imTBS, but remained unchanged after cTBS. In a control experiment, iTBS was applied over the left middle occipital gyrus (MOG), a region not involved in sensorimotor processing of auditory-presented speech. Repetition accuracy remained unchanged after iTBS of MOG. We argue that the stimulation type and stimulation site specific facilitating effect of iTBS over left pIFG on speech repetition accuracy indicates a causal role of the human left-hemispheric pIFG in the translation of phonological perception to motor articulatory output for repetition of speech. This effect may prove useful in rehabilitation strategies that combine repetitive speech training with iTBS of the left pIFG in speech disorders, such as aphasia after cerebral stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Backward masked fearful faces enhance contralateral occipital cortical activity for visual targets within the spotlight of attention

    PubMed Central

    Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza

    2011-01-01

    Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500

  7. Superior Temporal Gyrus Volume Abnormalities and Thought Disorder in Left-Handed Schizophrenic Men

    PubMed Central

    Holinger, Dorothy P.; Shenton, Martha E.; Wible, Cynthia G.; Donnino, Robert; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert W.

    2010-01-01

    Objective Studies of schizophrenia have not clearly defined handedness as a differentiating variable. Moreover, the relationship between thought disorder and anatomical anomalies has not been studied extensively in left-handed schizophrenic men. The twofold purpose of this study was to investigate gray matter volumes in the superior temporal gyrus of the temporal lobe (left and right hemispheres) in left-handed schizophrenic men and left-handed comparison men, in order to determine whether thought disorder in the left-handed schizophrenic men correlated with tissue volume abnormalities. Method Left-handed male patients (N=8) with DSM-III-R diagnoses of schizophrenia were compared with left-handed comparison men (N=10) matched for age, socioeconomic status, and IQ. Magnetic resonance imaging (MRI) with a 1.5-T magnet was used to obtain scans, which consisted of contiguous 1.5-mm slices of the whole brain. MRI analyses (as previously defined by the authors) included the anterior, posterior, and total superior temporal gyrus in both the left and right hemispheres. Results There were three significant findings regarding the left-handed schizophrenic men: 1) bilaterally smaller gray matter volumes in the posterior superior temporal gyrus (16% smaller on the right, 15% smaller on the left); 2) a smaller volume on the right side of the total superior temporal gyrus; and 3) a positive correlation between thought disorder and tissue volume in the right anterior superior temporal gyrus. Conclusions These results suggest that expression of brain pathology differs between left-handed and right-handed schizophrenic men and that the pathology is related to cognitive disturbance. PMID:10553736

  8. TMS over the Left Angular Gyrus Impairs the Ability to Discriminate Left from Right

    ERIC Educational Resources Information Center

    Hirnstein, Marco; Bayer, Ulrike; Ellison, Amanda; Hausmann, Markus

    2011-01-01

    The underlying cognitive and neural mechanisms of the ability to discriminate left from right are hardly explored. Clinical studies from patients with impairments of left-right discrimination (LRD) and neuroimaging data suggest that the left angular gyrus is particularly involved in LRD. Moreover, it is argued that the often reported sex…

  9. A Role for the Left Angular Gyrus in Episodic Simulation and Memory

    PubMed Central

    2017-01-01

    Functional magnetic resonance imaging (fMRI) studies indicate that episodic simulation (i.e., imagining specific future experiences) and episodic memory (i.e., remembering specific past experiences) are associated with enhanced activity in a common set of neural regions referred to as the core network. This network comprises the hippocampus, medial prefrontal cortex, and left angular gyrus, among other regions. Because fMRI data are correlational, it is unknown whether activity increases in core network regions are critical for episodic simulation and episodic memory. In the current study, we used MRI-guided transcranial magnetic stimulation (TMS) to assess whether temporary disruption of the left angular gyrus would impair both episodic simulation and memory (16 participants, 10 females). Relative to TMS to a control site (vertex), disruption of the left angular gyrus significantly reduced the number of internal (i.e., episodic) details produced during the simulation and memory tasks, with a concomitant increase in external detail production (i.e., semantic, repetitive, or off-topic information), reflected by a significant detail by TMS site interaction. Difficulty in the simulation and memory tasks also increased after TMS to the left angular gyrus relative to the vertex. In contrast, performance in a nonepisodic control task did not differ statistically as a function of TMS site (i.e., number of free associates produced or difficulty in performing the free associate task). Together, these results are the first to demonstrate that the left angular gyrus is critical for both episodic simulation and episodic memory. SIGNIFICANCE STATEMENT Humans have the ability to imagine future episodes (i.e., episodic simulation) and remember episodes from the past (i.e., episodic memory). A wealth of neuroimaging studies have revealed that these abilities are associated with enhanced activity in a core network of neural regions, including the hippocampus, medial prefrontal

  10. A Role for the Left Angular Gyrus in Episodic Simulation and Memory.

    PubMed

    Thakral, Preston P; Madore, Kevin P; Schacter, Daniel L

    2017-08-23

    Functional magnetic resonance imaging (fMRI) studies indicate that episodic simulation (i.e., imagining specific future experiences) and episodic memory (i.e., remembering specific past experiences) are associated with enhanced activity in a common set of neural regions referred to as the core network. This network comprises the hippocampus, medial prefrontal cortex, and left angular gyrus, among other regions. Because fMRI data are correlational, it is unknown whether activity increases in core network regions are critical for episodic simulation and episodic memory. In the current study, we used MRI-guided transcranial magnetic stimulation (TMS) to assess whether temporary disruption of the left angular gyrus would impair both episodic simulation and memory (16 participants, 10 females). Relative to TMS to a control site (vertex), disruption of the left angular gyrus significantly reduced the number of internal (i.e., episodic) details produced during the simulation and memory tasks, with a concomitant increase in external detail production (i.e., semantic, repetitive, or off-topic information), reflected by a significant detail by TMS site interaction. Difficulty in the simulation and memory tasks also increased after TMS to the left angular gyrus relative to the vertex. In contrast, performance in a nonepisodic control task did not differ statistically as a function of TMS site (i.e., number of free associates produced or difficulty in performing the free associate task). Together, these results are the first to demonstrate that the left angular gyrus is critical for both episodic simulation and episodic memory. SIGNIFICANCE STATEMENT Humans have the ability to imagine future episodes (i.e., episodic simulation) and remember episodes from the past (i.e., episodic memory). A wealth of neuroimaging studies have revealed that these abilities are associated with enhanced activity in a core network of neural regions, including the hippocampus, medial prefrontal

  11. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking

    PubMed Central

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous “standard” definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity

  12. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms.

    PubMed

    Müller-Vahl, Kirsten R; Grosskreutz, Julian; Prell, Tino; Kaufmann, Jörn; Bodammer, Nils; Peschel, Thomas

    2014-01-07

    Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS "only" (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.

  13. Category-selective attention modulates unconscious processes in the middle occipital gyrus.

    PubMed

    Tu, Shen; Qiu, Jiang; Martens, Ulla; Zhang, Qinglin

    2013-06-01

    Many studies have revealed the top-down modulation (spatial attention, attentional load, etc.) on unconscious processing. However, there is little research about how category-selective attention could modulate the unconscious processing. In the present study, using functional magnetic resonance imaging (fMRI), the results showed that category-selective attention modulated unconscious face/tool processing in the middle occipital gyrus (MOG). Interestingly, MOG effects were of opposed direction for face and tool processes. During unconscious face processing, activation in MOG decreased under the face-selective attention compared with tool-selective attention. This result was in line with the predictive coding theory. During unconscious tool processing, however, activation in MOG increased under the tool-selective attention compared with face-selective attention. The different effects might be ascribed to an interaction between top-down category-selective processes and bottom-up processes in the partial awareness level as proposed by Kouider, De Gardelle, Sackur, and Dupoux (2010). Specifically, we suppose an "excessive activation" hypothesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Early (N170/M170) Face-Sensitivity Despite Right Lateral Occipital Brain Damage in Acquired Prosopagnosia

    PubMed Central

    Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno

    2011-01-01

    Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect

  15. Progressive Decrease of Left Heschl Gyrus and Planum Temporale Gray Matter Volume in First-Episode Schizophrenia

    PubMed Central

    Kasai, Kiyoto; Shenton, Martha E.; Salisbury, Dean F.; Hirayasu, Yoshio; Onitsuka, Toshiaki; Spencer, Magdalena H.; Yurgelun-Todd, Deborah A.; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert W.

    2010-01-01

    Background The Heschl gyrus and planum temporale have crucial roles in auditory perception and language processing. Our previous investigation using magnetic resonance imaging (MRI) indicated smaller gray matter volumes bilaterally in the Heschl gyrus and in left planum temporale in patients with first-episode schizophrenia but not in patients with first-episode affective psychosis. We sought to determine whether there are progressive decreases in anatomically defined MRI gray matter volumes of the Heschl gyrus and planum temporale in patients with first-episode schizophrenia and also in patients with first-episode affective psychosis. Methods At a private psychiatric hospital, we conducted a prospective high spatial resolution MRI study that included initial scans of 28 patients at their first hospitalization (13 with schizophrenia and 15 with affective psychosis, 13 of whom had a manic psychosis) and 22 healthy control subjects. Follow-up scans occurred, on average, 1.5 years after the initial scan. Results Patients with first-episode schizophrenia showed significant decreases in gray matter volume over time in the left Heschl gyrus (6.9%) and left planum temporale (7.2%) compared with patients with first-episode affective psychosis or control subjects. Conclusions These findings demonstrate a left-biased progressive volume reduction in the Heschl gyrus and planum temporale gray matter in patients with first-episode schizophrenia in contrast to patients with first-episode affective psychosis and control subjects. Schizophrenia but not affective psychosis seems to be characterized by a postonset progression of neocortical gray matter volume loss in the left superior temporal gyrus and thus may not be developmentally fixed. PMID:12912760

  16. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks.

    PubMed

    Klaver, Peter; Latal, Beatrice; Martin, Ernst

    2015-01-01

    Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences

  17. Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus: a pilot study.

    PubMed

    Mattioli, Flavia; Ambrosi, Claudia; Mascaro, Lorella; Scarpazza, Cristina; Pasquali, Patrizia; Frugoni, Marina; Magoni, Mauro; Biagi, Laura; Gasparotti, Roberto

    2014-02-01

    Early poststroke aphasia rehabilitation effects and their functional MRI (fMRI) correlates were investigated in a pilot, controlled longitudinal study. Twelve patients with mild/moderate aphasia (8 Broca, 3 anomic, and 1 Wernicke) were randomly assigned to daily language rehabilitation for 2 weeks (starting 2.2 [mean] days poststroke) or no rehabilitation. The Aachen Aphasia Test and fMRI recorded during an auditory comprehension task were performed at 3 time intervals: mean 2.2 (T1), 16.2 (T2), and 190 (T3) days poststroke. Groups did not differ in terms of age, education, aphasia severity, lesions volume, baseline fMRI activations, and in task performance during fMRI across examinations. Rehabilitated patients significantly improved in naming and written language tasks (P<0.05) compared with no rehabilitation group both at T2 and T3. Functional activity at T1 was reduced in language-related cortical areas (right and left inferior frontal gyrus and middle temporal gyrus, right inferior parietal lobule and superior temporal gyrus) in patients compared with controls. T2 and T3 follow-ups revealed a cortical activation increase, with significantly greater activation in the left hemisphere areas in rehabilitated patients at T2 and T3, and a time×treatment effect at T2 in the left inferior Broca area after rehabilitation. Left inferior frontal gyrus activation at T2 significantly correlated with naming improvement. Early poststroke aphasia treatment is useful, has durable effects, and may lead to early enhanced recruitment of brain areas, particularly the left inferior frontal gyrus, which persists in the chronic phase.

  18. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve

    PubMed Central

    Choi, Jin-gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures. PMID:28331643

  19. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve.

    PubMed

    Son, Byung-Chul; Choi, Jin-Gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures.

  20. Time course of gamma-band oscillation associated with face processing in the inferior occipital gyrus and fusiform gyrus: A combined fMRI and MEG study.

    PubMed

    Uono, Shota; Sato, Wataru; Kochiyama, Takanori; Kubota, Yasutaka; Sawada, Reiko; Yoshimura, Sayaka; Toichi, Motomi

    2017-04-01

    Debate continues over whether the inferior occipital gyrus (IOG) or the fusiform gyrus (FG) represents the first stage of face processing and what role these brain regions play. We investigated this issue by combining functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in normal adults. Participants passively observed upright and inverted faces and houses. First, we identified the IOG and FG as face-specific regions using fMRI. We applied beamforming source reconstruction and time-frequency analysis to MEG source signals to reveal the time course of gamma-band activations in these regions. The results revealed that the right IOG showed higher gamma-band activation in response to upright faces than to upright houses at 100 ms from the stimulus onset. Subsequently, the right FG showed greater gamma-band response to upright faces versus upright houses at around 170 ms. The gamma-band activation in the right IOG and right FG was larger in response to inverted faces than to upright faces at the later time window. These results suggest that (1) the gamma-band activities occurs rapidly first in the IOG and next in the FG and (2) the gamma-band activity in the right IOG at later time stages is involved in configuration processing for faces. Hum Brain Mapp 38:2067-2079, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    PubMed

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  2. Sign language aphasia due to left occipital lesion in a deaf signer.

    PubMed

    Saito, Kozue; Otsuki, Mika; Ueno, Satoshi

    2007-10-02

    Localization of sign language production and comprehension in deaf people has been described as similar to that of spoken language aphasia. However, sign language employs a visuospatial modality through visual information. We present the first report of a deaf signer who showed substantial sign language aphasia with severe impairment in word production due to a left occipital lesion. This case may indicate the possibility of other localizations of plasticity.

  3. Mapping interference resolution across task domains: A shared control process in left inferior frontal gyrus

    PubMed Central

    Nelson, James K.; Reuter-Lorenz, Patricia A.; Persson, Jonas; Sylvester, Ching-Yune C.; Jonides, John

    2009-01-01

    Work in functional neuroimaging has mapped interference resolution processing onto left inferior frontal regions for both verbal working memory and a variety of semantic processing tasks. The proximity of the identified regions from these different tasks suggests the existence of a common, domain-general interference resolution mechanism. The current research specifically tests this idea in a within-subject design using fMRI to assess the activation associated with variable selection requirements in a semantic retrieval task (verb generation) and a verbal working memory task with a trial-specific proactive interference manipulation (recent-probes). High interference trials on both tasks were associated with activity in the midventrolateral region of the left inferior frontal gyrus, and the regions activated in each task strongly overlapped. The results indicate that an elemental component of executive control associated with interference resolution during retrieval from working memory and from semantic memory can be mapped to a common portion of the left inferior frontal gyrus. PMID:19111526

  4. Consecutive TMS-fMRI reveals remote effects of neural noise to the "occipital face area".

    PubMed

    Solomon-Harris, Lily M; Rafique, Sara A; Steeves, Jennifer K E

    2016-11-01

    The human cortical system for face perception comprises a network of connected regions including the middle fusiform gyrus ("fusiform face area" or FFA), the inferior occipital gyrus ("occipital face area" or OFA), and the posterior superior temporal sulcus (pSTS). Here, we sought to investigate how transcranial magnetic stimulation (TMS) to the OFA affects activity within the face processing network. We used offline repetitive TMS to temporarily introduce neural noise in the right OFA in healthy subjects. We then immediately performed functional magnetic resonance imaging (fMRI) to measure changes in blood oxygenation level dependent (BOLD) signal across the face network using an fMR-adaptation (fMR-A) paradigm. We hypothesized that TMS to the right OFA would induce abnormal face identity coding throughout the face processing network in regions to which it has direct or indirect connections. Indeed, BOLD signal for face identity, but not non-face (butterfly) identity, decreased in the right OFA and FFA following TMS to the right OFA compared to both sham TMS and TMS to a control site, the nearby object-related lateral occipital area (LO). Further, TMS to the right OFA decreased face-related activation in the left FFA, without any effect in the left OFA. Our findings indicate that TMS to the right OFA selectively disrupts face coding at both the stimulation site and bilateral FFA. TMS to the right OFA also decreased BOLD signal for different identity stimuli in the right pSTS. Together with mounting evidence from patient studies, we demonstrate connectivity of the OFA within the face network and that its activity modulates face processing in bilateral FFA as well as the right pSTS. Moreover, this study shows that deep regions within the face network can be remotely probed by stimulating structures closer to the cortical surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance.

    PubMed

    Króliczak, Gregory; Piper, Brian J; Frey, Scott H

    2016-12-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., "pounding") or intransitive (e.g. "waving") action words. In linguistic control trials, cues denoted non-physical actions (e.g., "believing"). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one's motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations-the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely on dissociable

  6. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance

    PubMed Central

    Króliczak, Gregory; Piper, Brian J.; Frey, Scott H.

    2016-01-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., “pounding”) or intransitive (e.g. “waving”) action words. In linguistic control trials, cues denoted non-physical actions (e.g., “believing”). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one’s motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations—the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely

  7. Decoding rule search domain in the left inferior frontal gyrus

    PubMed Central

    Babcock, Laura; Vallesi, Antonino

    2018-01-01

    Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of information, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active during inductive reasoning in both the verbal and spatial domains. We aimed to understand whether the left IFG supports inductive reasoning in a domain-specific or domain-general fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of domain during a rule search task. Thirteen participants were asked to extract the rule underlying streams of letters presented in different spatial locations. Each rule was either verbal (letters forming words) or spatial (positions forming geometric figures). Our results show that domain was decodable in the left prefrontal cortex, suggesting that this region represents domain-specific information, rather than processes common to the two domains. A replication study with the same participants tested two years later confirmed these findings, though the individual representations changed, providing evidence for the flexible nature of representations. This study extends our knowledge on the neural basis of goal-directed behaviors and on how information relevant for rule extraction is flexibly mapped in the prefrontal cortex. PMID:29547623

  8. Lexical Retrieval Constrained by Sound Structure: The Role of the Left Inferior Frontal Gyrus

    ERIC Educational Resources Information Center

    Sharp, David J.; Scott, Sophie K.; Cutler, Anne; Wise, Richard J. S.

    2005-01-01

    Positron emission tomography was used to investigate two competing hypotheses about the role of the left inferior frontal gyrus (IFG) in word generation. One proposes a domain-specific organization, with neural activation dependent on the type of information being processed, i.e., surface sound structure or semantic. The other proposes a…

  9. Prominence vs. Aboutness in Sequencing: A Functional Distinction within the Left Inferior Frontal Gyrus

    ERIC Educational Resources Information Center

    Bornkessel-Schlesewsky, Ina; Grewe, Tanja; Schlesewsky, Matthias

    2012-01-01

    Prior research on the neural bases of syntactic comprehension suggests that activation in the left inferior frontal gyrus (lIFG) correlates with the processing of word order variations. However, there are inconsistencies with respect to the specific subregion within the IFG that is implicated by these findings: the pars opercularis or the pars…

  10. Intramuscular Lipoma-Induced Occipital Neuralgia on the Lesser Occipital Nerve.

    PubMed

    Han, Hyun Ho; Kim, Hak Soo; Rhie, Jong Won; Moon, Suk Ho

    2016-06-01

    Occipital neuralgia (ON) is commonly characterized by a neuralgiform headache accompanied by a paroxysmal burning sensation in the dermatome area of the greater, lesser, or third occipital nerve. The authors report a rare case of ON caused by an intramuscular lipoma originating from the lesser occipital nerve.A 52-year-old man presented with sharp pain in the left postauricular area with a 3 × 2-cm palpable mass. Computed tomography revealed a mass suspiciously resembling an intramuscular lipoma within splenius muscle. In the operation field, a protruding mass causing stretching of the lesser occipital nerve was found. After complete resection, the neuralgiform headache symptom had resolved and the intramuscular lipoma was confirmed through histopathology.Previous studies on the causes of ON have reported that variation in normal anatomic structures results in nerve compression. Occipital neuralgia, however, caused by intramuscular lipomas in splenius muscles have not been previously reported, and the dramatic resolution following surgery makes it an interesting case worth reporting.

  11. BOLD Response to Motion Verbs in Left Posterior Middle Temporal Gyrus during Story Comprehension

    ERIC Educational Resources Information Center

    Wallentin, Mikkel; Nielsen, Andreas Hojlund; Vuust, Peter; Dohn, Anders; Roepstorff, Andreas; Lund, Torben Ellegaard

    2011-01-01

    A primary focus within neuroimaging research on language comprehension is on the distribution of semantic knowledge in the brain. Studies have shown that the left posterior middle temporal gyrus (LPMT), a region just anterior to area MT/V5, is important for the processing of complex action knowledge. It has also been found that motion verbs cause…

  12. Bidirectional electric communication between the inferior occipital gyrus and the amygdala during face processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Usui, Naotaka; Inoue, Yushi; Toichi, Motomi

    2017-09-01

    Faces contain multifaceted information that is important for human communication. Neuroimaging studies have revealed face-specific activation in multiple brain regions, including the inferior occipital gyrus (IOG) and amygdala; it is often assumed that these regions constitute the neural network responsible for the processing of faces. However, it remains unknown whether and how these brain regions transmit information during face processing. This study investigated these questions by applying dynamic causal modeling of induced responses to human intracranial electroencephalography data recorded from the IOG and amygdala during the observation of faces, mosaics, and houses in upright and inverted orientations. Model comparisons assessing the experimental effects of upright faces versus upright houses and upright faces versus upright mosaics consistently indicated that the model having face-specific bidirectional modulatory effects between the IOG and amygdala was the most probable. The experimental effect between upright versus inverted faces also favored the model with bidirectional modulatory effects between the IOG and amygdala. The spectral profiles of modulatory effects revealed both same-frequency (e.g., gamma-gamma) and cross-frequency (e.g., theta-gamma) couplings. These results suggest that the IOG and amygdala communicate rapidly with each other using various types of oscillations for the efficient processing of faces. Hum Brain Mapp 38:4511-4524, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Functional dissociation of the left and right fusiform gyrus in self-face recognition.

    PubMed

    Ma, Yina; Han, Shihui

    2012-10-01

    It is well known that the fusiform gyrus is engaged in face perception, such as the processes of face familiarity and identity. However, the functional role of the fusiform gyrus in face processing related to high-level social cognition remains unclear. The current study assessed the functional role of individually defined fusiform face area (FFA) in the processing of self-face physical properties and self-face identity. We used functional magnetic resonance imaging to monitor neural responses to rapidly presented face stimuli drawn from morph continua between self-face (Morph 100%) and a gender-matched friend's face (Morph 0%) in a face recognition task. Contrasting Morph 100% versus Morph 60% that differed in self-face physical properties but were both recognized as the self uncovered neural activity sensitive to self-face physical properties in the left FFA. Contrasting Morphs 50% that were recognized as the self versus a friend on different trials revealed neural modulations associated with self-face identity in the right FFA. Moreover, the right FFA activity correlated with the frequency of recognizing Morphs 50% as the self. Our results provide evidence for functional dissociations of the left and right FFAs in the representations of self-face physical properties and self-face identity. Copyright © 2011 Wiley Periodicals, Inc.

  14. Symbol processing in the left angular gyrus: evidence from passive perception of digits.

    PubMed

    Price, Gavin R; Ansari, Daniel

    2011-08-01

    Arabic digits are one of the most ubiquitous symbol sets in the world. While there have been many investigations into the neural processing of the semantic information digits represent (e.g. through numerical comparison tasks), little is known about the neural mechanisms which support the processing of digits as visual symbols. To characterise the component neurocognitive mechanisms which underlie numerical cognition, it is essential to understand the processing of digits as a visual category, independent of numerical magnitude processing. The 'Triple Code Model' (Dehaene, 1992; Dehaene and Cohen, 1995) posits an asemantic visual code for processing Arabic digits in the ventral visual stream, yet there is currently little empirical evidence in support of this code. This outstanding question was addressed in the current functional Magnetic Resonance (fMRI) study by contrasting brain responses during the passive viewing of digits versus letters and novel symbols at short (50 ms) and long (500 ms) presentation times. The results of this study reveal increased activation for familiar symbols (digits and letters) relative to unfamiliar symbols (scrambled digits and letters) at long presentation durations in the left dorsal Angular gyrus (dAG). Furthermore, increased activation for Arabic digits was observed in the left ventral Angular gyrus (vAG) in comparison to letters, scrambled digits and scrambled letters at long presentation durations, but no digit specific activation in any region at short presentation durations. These results suggest an absence of a digit specific 'Visual Number Form Area' (VNFA) in the ventral visual cortex, and provide evidence for the role of the left ventral AG during the processing of digits in the absence of any explicit processing demands. We conclude that Arabic digit processing depends specifically on the left AG rather than a ventral visual stream VNFA. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. [MRI for brain structure and function in patients with first-episode panic disorder].

    PubMed

    Zhang, Yan; Duan, Lian; Liao, Mei; Yang, Fan; Liu, Jun; Shan, Baoci; Li, Lingjiang

    2011-12-01

    To determine the brain function and structure in patinets with first-episode panic disorder (PD). All subjects (24 PD patients and 24 healthy subjects) received MRI scan and emotional counting Stroop task during the functional magnetic resonance imaging. Blood oxygenation level dependent functional magnetic resonance imaging and voxel-based morphometric technology were used to detect the gray matter volume. Compared with the healthy controls, left thalamus, left medial frontal gyrus, left anterior cingulate gyrus, left inferior frontal gyrus, left insula (panic-related words vs. neutral words) lacked activation in PD patients, but the over-activation were found in right brain stem, right occipital lobe/lingual gyrus in PD patients. Compared with the healthy controls, the gray matter volume in the PD patients significantly decreased in the left superior temporal gyrus, right medial frontal gyrus, left medial occipital gyrus, dorsomedial nucleus of left thalamus and right anterior cingulate gyrus. There was no significantly increased gray matter volume in any brain area in PD patients. PD patients have selective attentional bias in processing threatening information due to the depression and weakening of the frontal cingulated gyrus.

  16. Transient Beneficial Effects of Excitatory Theta Burst Stimulation in a Patient with Phonological Agraphia after Left Supramarginal Gyrus Infarction

    ERIC Educational Resources Information Center

    Nardone, Raffaele; De Blasi, Pierpaolo; Zuccoli, Giulio; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2012-01-01

    We report a patient showing isolated phonological agraphia after an ischemic stroke involving the left supramarginal gyrus (SMG). In this patient, we investigated the effects of focal repetitive transcranial magnetic stimulation (rTMS) given as theta burst stimulation (TBS) over the left SMG, corresponding to the Brodmann area (BA) 40. The patient…

  17. Glutamatergic stimulation of the left dentate gyrus abolishes depressive-like behaviors in a rat learned helplessness paradigm.

    PubMed

    Seo, Jeho; Cho, Hojin; Kim, Gun Tae; Kim, Chul Hoon; Kim, Dong Goo

    2017-10-01

    Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers

    PubMed Central

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F.

    2015-01-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. PMID:22277302

  19. Involuntary switching into the native language induced by electrocortical stimulation of the superior temporal gyrus: a multimodal mapping study.

    PubMed

    Tomasino, Barbara; Marin, Dario; Canderan, Cinzia; Maieron, Marta; Budai, Riccardo; Fabbro, Franco; Skrap, Miran

    2014-09-01

    We describe involuntary language switching from L2 to L1 evoked by electro-stimulation in the superior temporal gyrus in a 30-year-old right-handed Serbian (L1) speaker who was also a late Italian learner (L2). The patient underwent awake brain surgery. Stimulation of other portions of the exposed cortex did not cause language switching as did not stimulation of the left inferior frontal gyrus, where we evoked a speech arrest. Stimulation effects on language switching were selective, namely, interfered with counting behaviour but not with object naming. The coordinates of the positive site were combined with functional and fibre tracking (DTI) data. Results showed that the language switching site belonged to a significant fMRI cluster in the left superior temporal gyrus/supramarginal gyrus found activated for both L1 and L2, and for both the patient and controls, and did not overlap with the inferior fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF). This area, also known as Stp, has a role in phonological processing. Language switching phenomenon we observed can be partly explained by transient dysfunction of the feed-forward control mechanism hypothesized by the DIVA (Directions Into Velocities of Articulators) model (Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Alexia and agraphia with lesions of the angular and supramarginal gyri: evidence for the disruption of sequential processing.

    PubMed

    Sakurai, Yasuhisa; Asami, Masahiko; Mannen, Toru

    2010-01-15

    To determine the features of alexia or agraphia with a left angular or supramarginal gyrus lesion. We assessed the reading and writing abilities of three patients using kanji (Japanese morphograms) and kana (Japanese syllabograms). Patient 1 showed kana alexia and kanji agraphia following a hemorrhage in the left angular gyrus and the adjacent lateral occipital gyri. Patient 2 presented with minimal pure agraphia for both kanji and kana after an infarction in the left angular gyrus involving part of the supramarginal gyrus. Patient 3 also showed moderate pure agraphia for both kanji and kana after an infarction in the left supramarginal and postcentral gyri. All three patients made transposition errors (changing of sequential order of kana characters) in reading. Patient 1 showed letter-by-letter reading and a word-length effect and made substitution errors (changing hiragana [one form of kana] characters in a word to katakana [another form of kana] characters and vice versa) in writing. Alexia occurs as "angular" alexia only when the lesion involves the adjacent lateral occipital gyri. Transposition errors suggest disrupted sequential phonological processing from the angular and lateral occipital gyri to the supramarginal gyrus. Substitution errors suggest impaired allographic conversion between hiragana and katakana attributable to a dysfunction in the angular/lateral occipital gyri.

  1. Autistic fluid intelligence: Increased reliance on visual functional connectivity with diminished modulation of coupling by task difficulty.

    PubMed

    Simard, Isabelle; Luck, David; Mottron, Laurent; Zeffiro, Thomas A; Soulières, Isabelle

    2015-01-01

    Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM) test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid "reasoning" network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI), we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual perception has a

  2. Autistic fluid intelligence: Increased reliance on visual functional connectivity with diminished modulation of coupling by task difficulty

    PubMed Central

    Simard, Isabelle; Luck, David; Mottron, Laurent; Zeffiro, Thomas A.; Soulières, Isabelle

    2015-01-01

    Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM) test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid “reasoning” network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI), we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual perception has a

  3. Mentalization and the left inferior frontal gyrus and insula.

    PubMed

    McAdams, Carrie J; Harper, Jessica A; Van Enkevort, Erin

    2018-05-01

    To determine if an interpersonal attribution bias associated with self-perception, the externalizing bias, was related to neural activations during mentalization. A functional magnetic resonance imaging task involving verbal appraisals measured neural activations when thinking about oneself and others in 59 adults, including healthy women as well as women with and recovered from anorexia nervosa. Whole-brain regressions correlated brain function during mentalization with the externalizing bias measured using the Internal, Personal, and Situational Attributions Questionnaire. Women with anorexia nervosa had a lower externalizing bias, demonstrating a tendency to self-attribute more negative than positive social interactions, unlike the other groups. The externalizing bias was correlated with activation of the left inferior frontal gyrus and posterior insula, when comparing thinking about others evaluating oneself with direct self-evaluation. Externalizing biases may provide an office-based assay reflecting neurocognitive disturbances in social self-perception that are common during anorexia nervosa. Copyright © 2018 John Wiley & Sons, Ltd and Eating Disorders Association.

  4. Differential effects of methylphenidate and atomoxetine on intrinsic brain activity in children with attention deficit hyperactivity disorder.

    PubMed

    Shang, C Y; Yan, C G; Lin, H Y; Tseng, W Y; Castellanos, F X; Gau, S S

    2016-11-01

    Methylphenidate and atomoxetine are commonly prescribed for treating attention deficit hyperactivity disorder (ADHD). However, their therapeutic neural mechanisms remain unclear. After baseline evaluation including cognitive testing of the Cambridge Neuropsychological Test Automated Battery (CANTAB), drug-naive children with ADHD (n = 46), aged 7-17 years, were randomly assigned to a 12-week treatment with methylphenidate (n = 22) or atomoxetine (n = 24). Intrinsic brain activity, including the fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo), was quantified via resting-state functional magnetic resonance imaging at baseline and week 12. Reductions in inattentive symptoms were related to increased fALFF in the left superior temporal gyrus and left inferior parietal lobule for ADHD children treated with methylphenidate, and in the left lingual gyrus and left inferior occipital gyrus for ADHD children treated with atomoxetine. Hyperactivity/impulsivity symptom reductions were differentially related to increased fALFF in the methylphenidate group and to decreased fALFF in the atomoxetine group in bilateral precentral and postcentral gyri. Prediction analyses in the atomoxetine group revealed negative correlations between pre-treatment CANTAB simple reaction time and fALFF change in the left lingual gyrus and left inferior occipital gyrus, and positive correlations between pre-treatment CANTAB simple movement time and fALFF change in bilateral precentral and postcentral gyri and left precuneus, with a negative correlation between movement time and the fALFF change in the left lingual gyrus and the inferior occipital gyrus. Our findings suggest differential neurophysiological mechanisms for the treatment effects of methylphenidate and atomoxetine in children with ADHD.

  5. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers.

    PubMed

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F

    2012-04-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    PubMed

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge.

    PubMed

    Della Rosa, Pasquale Anthony; Catricalà, Eleonora; Canini, Matteo; Vigliocco, Gabriella; Cappa, Stefano F

    2018-07-15

    Evidence from both neuropsychology and neuroimaging suggests that different types of information are necessary for representing and processing concrete and abstract word meanings. Both abstract and concrete concepts, however, conjointly rely on perceptual, verbal and contextual knowledge, with abstract concepts characterized by low values of imageability (IMG) (low sensory-motor grounding) and low context availability (CA) (more difficult to contextualize). Imaging studies supporting differences between abstract and concrete concepts show a greater recruitment of the left inferior frontal gyrus (LIFG) for abstract concepts, which has been attributed either to the representation of abstract-specific semantic knowledge or to the request for more executive control than in the case of concrete concepts. We conducted an fMRI study on 27 participants, using a lexical decision task involving both abstract and concrete words, whose IMG and CA values were explicitly modelled in separate parametric analyses. The LIFG was significantly more activated for abstract than for concrete words, and a conjunction analysis showed a common activation for words with low IMG or low CA only in the LIFG, in the same area reported for abstract words. A regional template map of brain activations was then traced for words with low IMG or low CA, and BOLD regional time-series were extracted and correlated with the specific LIFG neural activity elicited for abstract words. The regions associated to low IMG, which were functionally correlated with LIFG, were mainly in the left hemisphere, while those associated with low CA were in the right hemisphere. Finally, in order to reveal which LIFG-related network increased its connectivity with decreases of IMG or CA, we conducted generalized psychophysiological interaction analyses. The connectivity strength values extracted from each region connected with the LIFG were correlated with specific LIFG neural activity for abstract words, and a regression

  8. The cognitive profile of occipital lobe epilepsy and the selective association of left temporal lobe hypometabolism with verbal memory impairment.

    PubMed

    Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F

    2014-08-01

    We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  9. Context-dependent lexical ambiguity resolution: MEG evidence for the time-course of activity in left inferior frontal gyrus and posterior middle temporal gyrus.

    PubMed

    Mollo, Giovanna; Jefferies, Elizabeth; Cornelissen, Piers; Gennari, Silvia P

    An MEG study investigated the role of context in semantic interpretation by examining the comprehension of ambiguous words in contexts leading to different interpretations. We compared high-ambiguity words in minimally different contexts (to bowl, the bowl) to low-ambiguity counterparts (the tray, to flog). Whole brain beamforming revealed the engagement of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (LPMTG). Points of interest analyses showed that both these sites showed a stronger response to verb-contexts by 200 ms post-stimulus and displayed overlapping ambiguity effects that were sustained from 300 ms onwards. The effect of context was stronger for high-ambiguity words than for low-ambiguity words at several different time points, including within the first 100 ms post-stimulus. Unlike LIFG, LPMTG also showed stronger responses to verb than noun contexts in low-ambiguity trials. We argue that different functional roles previously attributed to LIFG and LPMTG are in fact played out at different periods during processing. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  10. Damage to the Left Precentral Gyrus Is Associated With Apraxia of Speech in Acute Stroke.

    PubMed

    Itabashi, Ryo; Nishio, Yoshiyuki; Kataoka, Yuka; Yazawa, Yukako; Furui, Eisuke; Matsuda, Minoru; Mori, Etsuro

    2016-01-01

    Apraxia of speech (AOS) is a motor speech disorder, which is clinically characterized by the combination of phonemic segmental changes and articulatory distortions. AOS has been believed to arise from impairment in motor speech planning/programming and differentiated from both aphasia and dysarthria. The brain regions associated with AOS are still a matter of debate. The aim of this study was to address this issue in a large number of consecutive acute ischemic stroke patients. We retrospectively studied 136 patients with isolated nonlacunar infarcts in the left middle cerebral artery territory (70.5±12.9 years old, 79 males). In accordance with speech and language assessments, the patients were classified into the following groups: pure form of AOS (pure AOS), AOS with aphasia (AOS-aphasia), and without AOS (non-AOS). Voxel-based lesion-symptom mapping analysis was performed on T2-weighted images or fluid-attenuated inversion recovery images. Using the Liebermeister method, group-wise comparisons were made between the all AOS (pure AOS plus AOS-aphasia) and non-AOS, pure AOS and non-AOS, AOS-aphasia and non-AOS, and pure AOS and AOS-aphasia groups. Of the 136 patients, 22 patients were diagnosed with AOS (7 patients with pure AOS and 15 patients with AOS-aphasia). The voxel-based lesion-symptom mapping analysis demonstrated that the brain regions associated with AOS were centered on the left precentral gyrus. Damage to the left precentral gyrus is associated with AOS in acute to subacute stroke patients, suggesting a role of this brain region in motor speech production. © 2015 American Heart Association, Inc.

  11. Transcranial magnetic stimulation of the left angular gyrus during encoding does not impair associative memory performance.

    PubMed

    Koen, Joshua D; Thakral, Preston P; Rugg, Michael D

    2018-06-05

    The left angular gyrus (AG) is thought to play a critical role in episodic retrieval and has been implicated in the recollection of specific details of prior episodes. Motivated by recent fMRI studies in which it was reported that elevated neural activity in left AG during study is predictive of subsequent associative memory, the present study investigated whether the region plays a causal role in associative memory encoding. Participants underwent online transcranial magnetic stimulation (TMS) while encoding word pairs prior to an associative memory test. We predicted that TMS to left AG during encoding would result in reduced subsequent memory accuracy, especially for estimates of recollection. The results did not support this prediction: estimates of both recollection and familiarity-driven recognition were essentially identical for words pairs encoded during TMS to left AG relative to a vertex control site. These results suggest that the left AG may not play a necessary role in associative memory encoding. TMS to left AG did however affect confidence for incorrect 'intact' judgments to rearranged pairs and incorrect 'rearranged' judgments to intact pairs. These findings suggest that the left AG supports encoding processes that contribute to aspects of subjective mnemonic experience.

  12. Intractable occipital neuralgia caused by an entrapment in the semispinalis capitis.

    PubMed

    Son, Byung-Chul; Kim, Deok-Ryeong; Lee, Sang-Won

    2013-09-01

    Occipital neuralgia is a rare pain syndrome characterized by periodic lancinating pain involving the occipital nerve complex. We present a unique case of entrapment of the greater occipital nerve (GON) within the semispinalis capitis, which was thought to be the cause of occipital neuralgia. A 66-year-old woman with refractory left occipital neuralgia revealed an abnormally low-loop of the left posterior inferior cerebellar artery on the magnetic resonance imaging, suggesting possible vascular compression of the upper cervical roots. During exploration, however, the GON was found to be entrapped at the perforation site of the semispinalis capitis. There was no other compression of the GON or of C1 and C2 dorsal roots in their intracranial course. Postoperatively, the patient experienced almost complete relief of typical neuralgic pain. Although occipital neuralgia has been reported to occur by stretching of the GON by inferior oblique muscle or C1-C2 arthrosis, peripheral compression in the transmuscular course of the GON in the semispinalis capitis as a cause of refractory occipital neuralgia has not been reported and this should be considered when assessing surgical options for refractory occipital neuralgia.

  13. Intractable Occipital Neuralgia Caused by an Entrapment in the Semispinalis Capitis

    PubMed Central

    Kim, Deok-ryeong; Lee, Sang-won

    2013-01-01

    Occipital neuralgia is a rare pain syndrome characterized by periodic lancinating pain involving the occipital nerve complex. We present a unique case of entrapment of the greater occipital nerve (GON) within the semispinalis capitis, which was thought to be the cause of occipital neuralgia. A 66-year-old woman with refractory left occipital neuralgia revealed an abnormally low-loop of the left posterior inferior cerebellar artery on the magnetic resonance imaging, suggesting possible vascular compression of the upper cervical roots. During exploration, however, the GON was found to be entrapped at the perforation site of the semispinalis capitis. There was no other compression of the GON or of C1 and C2 dorsal roots in their intracranial course. Postoperatively, the patient experienced almost complete relief of typical neuralgic pain. Although occipital neuralgia has been reported to occur by stretching of the GON by inferior oblique muscle or C1-C2 arthrosis, peripheral compression in the transmuscular course of the GON in the semispinalis capitis as a cause of refractory occipital neuralgia has not been reported and this should be considered when assessing surgical options for refractory occipital neuralgia. PMID:24278663

  14. Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion.

    PubMed

    Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter

    2015-01-01

    This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.

  15. Baseline Brain Activity Changes in Patients With Single and Relapsing Optic Neuritis.

    PubMed

    Ren, Zhuoqiong; Liu, Yaou; Li, Kuncheng; Duan, Yunyun; Jing, Huang; Liang, Peipeng; Sun, Zheng; Zhang, Xiaojun; Mao, Bei

    2018-01-01

    Purpose : To investigate spontaneous brain activity amplitude alterations in single and relapsing optic neuritis (sON and rON, respectively) and their relationships with clinical variables. Methods : In total, 42 patients with sON, 35 patients with rON and 50 healthy volunteers were recruited. Resting-state functional Magnetic Resonance Imaging (rs-fMRI) scans were acquired for all participants and compared to investigate the changes in the amplitude of low-frequency fluctuations (ALFFs) among the three groups. The relationships between the ALFFs in regions with significant differences in the groups and clinical variables, including the logarithm of minimal angle of resolution (LogMAR), Expanded Disability Status Scale (EDSS) score and disease duration, were further explored. Results : Compared with healthy volunteers, the sON and rON patients showed significantly decreased ALFFs in several regions of the occipital and temporal lobes (i.e., inferior occipital gyrus and superior temporal gyrus; corrected p < 0.01 using AlphaSim). The sON patients showed significantly increased ALFFs in the left caudate and certain regions in the frontal lobes (i.e., medial frontal gyrus), whereas the rON patients showed increased ALFFs in the bilateral inferior temporal gyrus and left medial frontal gyrus (corrected p < 0.01 using AlphaSim). Significantly decreased ALFFs were observed in the right inferior parietal lobule (IPL), left posterior cingulate and precuneus in the rON patients compared with those in the sON patients (corrected p < 0.01 using AlphaSim). Significant correlations were observed between the disease duration and ALFF in the left middle temporal gyrus, left inferior occipital gyrus, right lingual gyrus and right IPL ( p < 0.05). Conclusion : Functional impairment and adaptation occurred in both the sON and rON patients. Impairment mainly involved the occipital cortex, and functional adaptions predominantly occurred in the frontal lobe. Functional damage was more

  16. Anomalous origins of the calcarine and parieto-occipital arteries.

    PubMed

    Madhavan, Karthik; Dlouhy, Brian J; Vogel, Timothy W; Policeni, Bruno A; Smoker, Wendy R K; Hasan, David M

    2010-10-01

    Understanding cerebrovascular anatomy and its variations is of utmost importance in treating vascular malformations. The two patients presented here demonstrate yet to be reported anomalous origins of the cortical branches of the posterior cerebral artery. In one patient, fetal calcarine arteries were identified arising from the internal carotid arteries bilaterally with no calcarine branches arising from the posterior circulation and the basilar artery giving rise to terminal parieto-occipital arteries. Additionally, with vertebral artery injections, we found the dominant arterial supply to the right parieto-occipital artery arose from the right internal carotid artery and right posterior communicating artery and the dominant arterial supply to the left parieto-occipital artery arose from the right vertebral artery. A second patient demonstrated anomalous origins of the calcarine and parietal occipital branches from the supraclinoid left internal carotid artery. Understanding this complex cerebrovascular anatomy is important in the endovascular treatment of cerebrovascular aneurysms and malformations. Published by Elsevier Ltd.

  17. Frontal Phonological Agraphia and Acalculia with Impaired Verbal Short-Term Memory due to Left Inferior Precentral Gyrus Lesion.

    PubMed

    Sakurai, Yasuhisa; Furukawa, Emi; Kurihara, Masanori; Sugimoto, Izumi

    2018-01-01

    We report a patient with phonological agraphia (selective impairment of kana [Japanese phonetic writing] nonwords) and acalculia (mental arithmetic difficulties) with impaired verbal short-term memory after a cerebral hemorrhage in the opercular part of the left precentral gyrus (Brodmann area 6) and the adjacent postcentral gyrus. The patient showed phonemic paragraphia in five-character kana nonword writing, minimal acalculia, and reduced digit and letter span. Mental arithmetic normalized after 8 months and agraphia recovered to the normal range at 1 year after onset, in parallel with an improvement of the auditory letter span score from 4 to 6 over a period of 14 months and in the digit span score from 6 to 7 over 24 months. These results suggest a close relationship between the recovery of agraphia and acalculia and the improvement of verbal short-term memory. The present case also suggests that the opercular part of the precentral gyrus constitutes the phonological route in writing that conveys phonological information of syllable sequences, and its damage causes phonological agraphia and acalculia with reduced verbal short-term memory.

  18. Abnormal Degree Centrality of Bilateral Putamen and Left Superior Frontal Gyrus in Schizophrenia with Auditory Hallucinations: A Resting-state Functional Magnetic Resonance Imaging Study

    PubMed Central

    Chen, Cheng; Wang, Hui-Ling; Wu, Shi-Hao; Huang, Huan; Zou, Ji-Lin; Chen, Jun; Jiang, Tian-Zi; Zhou, Yuan; Wang, Gao-Hua

    2015-01-01

    Background: Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH. Methods: Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups. Results: DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen. Conclusion: Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH. PMID:26612293

  19. How does experience modulate auditory spatial processing in individuals with blindness?

    PubMed

    Tao, Qian; Chan, Chetwyn C H; Luo, Yue-jia; Li, Jian-jun; Ting, Kin-hung; Wang, Jun; Lee, Tatia M C

    2015-05-01

    Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel "Bat-ears" sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.

  20. When the left brain is not right the right brain may be left: report of personal experience of occipital hemianopia

    PubMed Central

    Cole, M.

    1999-01-01

    OBJECTIVES—To make a personal report of a hemianopia due to an occipital infarct, sustained by a professor of neurology.
METHODS—Verbatim observation of neurological phenomena recorded during the acute illness.
RESULTS—Hemianopia, visual hallucinations, and non-occipital deficits without extraoccipital lesions on MRI, are described and discussed.
CONCLUSIONS—Hemianopia, due to an occipital infarct, without alexia, is not a disability which precludes a normal professional career. Neurorehabilitation has not been necessary.

 PMID:10406983

  1. Phonological Feature Repetition Suppression in the Left Inferior Frontal Gyrus.

    PubMed

    Okada, Kayoko; Matchin, William; Hickok, Gregory

    2018-06-07

    Models of speech production posit a role for the motor system, predominantly the posterior inferior frontal gyrus, in encoding complex phonological representations for speech production, at the phonemic, syllable, and word levels [Roelofs, A. A dorsal-pathway account of aphasic language production: The WEAVER++/ARC model. Cortex, 59(Suppl. C), 33-48, 2014; Hickok, G. Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13, 135-145, 2012; Guenther, F. H. Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39, 350-365, 2006]. However, phonological theory posits subphonemic units of representation, namely phonological features [Chomsky, N., & Halle, M. The sound pattern of English, 1968; Jakobson, R., Fant, G., & Halle, M. Preliminaries to speech analysis. The distinctive features and their correlates. Cambridge, MA: MIT Press, 1951], that specify independent articulatory parameters of speech sounds, such as place and manner of articulation. Therefore, motor brain systems may also incorporate phonological features into speech production planning units. Here, we add support for such a role with an fMRI experiment of word sequence production using a phonemic similarity manipulation. We adapted and modified the experimental paradigm of Oppenheim and Dell [Oppenheim, G. M., & Dell, G. S. Inner speech slips exhibit lexical bias, but not the phonemic similarity effect. Cognition, 106, 528-537, 2008; Oppenheim, G. M., & Dell, G. S. Motor movement matters: The flexible abstractness of inner speech. Memory & Cognition, 38, 1147-1160, 2010]. Participants silently articulated words cued by sequential visual presentation that varied in degree of phonological feature overlap in consonant onset position: high overlap (two shared phonological features; e.g., /r/ and /l/) or low overlap (one shared phonological feature, e.g., /r/ and /b/). We found a significant repetition suppression effect in the left

  2. Multimodal Magnetic Resonance Imaging Study of Treatment-Naïve Adults with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Chaim, Tiffany M.; Zhang, Tianhao; Zanetti, Marcus V.; da Silva, Maria Aparecida; Louzã, Mário R.; Doshi, Jimit; Serpa, Mauricio H.; Duran, Fabio L. S.; Caetano, Sheila C.; Davatzikos, Christos; Busatto, Geraldo F.

    2014-01-01

    Background Attention-Deficit/Hiperactivity Disorder (ADHD) is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication. Methods A newly validated method named optimally-discriminative voxel-based analysis (ODVBA) was applied to multimodal (structural and DTI) MRI data acquired from 22 treatment-naïve ADHD adults and 19 age- and gender-matched healthy controls (HC). Results Regarding DTI data, we found higher fractional anisotropy in ADHD relative to HC encompassing the white matter (WM) of the bilateral superior frontal gyrus, right middle frontal left gyrus, left postcentral gyrus, bilateral cingulate gyrus, bilateral middle temporal gyrus and right superior temporal gyrus; reductions in trace (a measure of diffusivity) in ADHD relative to HC were also found in fronto-striatal-parieto-occipital circuits, including the right superior frontal gyrus and bilateral middle frontal gyrus, right precentral gyrus, left middle occipital gyrus and bilateral cingulate gyrus, as well as the left body and right splenium of the corpus callosum, right superior corona radiata, and right superior longitudinal and fronto-occipital fasciculi. Volumetric abnormalities in ADHD subjects were found only at a trend level of significance, including reduced gray matter (GM) in the right angular gyrus, and increased GM in the right supplementary motor area and superior frontal gyrus. Conclusions Our results suggest that adult ADHD is associated with

  3. Learning to read an alphabet of human faces produces left-lateralized training effects in the fusiform gyrus.

    PubMed

    Moore, Michelle W; Durisko, Corrine; Perfetti, Charles A; Fiez, Julie A

    2014-04-01

    Numerous functional neuroimaging studies have shown that most orthographic stimuli, such as printed English words, produce a left-lateralized response within the fusiform gyrus (FG) at a characteristic location termed the visual word form area (VWFA). We developed an experimental alphabet (FaceFont) comprising 35 face-phoneme pairs to disentangle phonological and perceptual influences on the lateralization of orthographic processing within the FG. Using functional imaging, we found that a region in the vicinity of the VWFA responded to FaceFont words more strongly in trained versus untrained participants, whereas no differences were observed in the right FG. The trained response magnitudes in the left FG region correlated with behavioral reading performance, providing strong evidence that the neural tissue recruited by training supported the newly acquired reading skill. These results indicate that the left lateralization of the orthographic processing is not restricted to stimuli with particular visual-perceptual features. Instead, lateralization may occur because the anatomical projections in the vicinity of the VWFA provide a unique interconnection between the visual system and left-lateralized language areas involved in the representation of speech.

  4. Word and picture matching: a PET study of semantic category effects.

    PubMed

    Perani, D; Schnur, T; Tettamanti, M; Gorno-Tempini, M; Cappa, S F; Fazio, F

    1999-03-01

    We report two positron emission tomography (PET) studies of cerebral activation during picture and word matching tasks, in which we compared directly the processing of stimuli belonging to different semantic categories (animate and inanimate) in the visual (pictures) and verbal (words) modality. In the first experiment, brain activation was measured in eleven healthy adults during a same/different matching task for textures, meaningless shapes and pictures of animals and artefacts (tools). Activations for meaningless shapes when compared to visual texture discrimination were localized in the left occipital and inferior temporal cortex. Animal picture identification, either in the comparison with meaningless shapes and in the direct comparison with non-living pictures, involved primarily activation of occipital regions, namely the lingual gyrus bilaterally and the left fusiform gyrus. For artefact picture identification, in the same comparison with meaningless shape-baseline and in the direct comparison with living pictures, all activations were left hemispheric, through the dorsolateral frontal (Ba 44/6 and 45) and temporal (Ba 21, 20) cortex. In the second experiment, brain activation was measured in eight healthy adults during a same/different matching task for visually presented words referring to animals and manipulable objects (tools); the baseline was a pseudoword discrimination task. When compared with the tool condition, the animal condition activated posterior left hemispheric areas, namely the fusiform (Ba 37) and the inferior occipital gyrus (Ba 18). The right superior parietal lobule (Ba 7) and the left thalamus were also activated. The reverse comparison (tools vs animals) showed left hemispheric activations in the middle temporal gyrus (Ba 21) and precuneus (Ba 7), as well as bilateral activation in the occipital regions. These results are compatible with different brain networks subserving the identification of living and non-living entities; in

  5. Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage

    PubMed Central

    Marslen-Wilson, William D.; Randall, Billi; Wright, Paul; Devereux, Barry J.; Zhuang, Jie; Papoutsi, Marina; Stamatakis, Emmanuel A.

    2011-01-01

    For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left hemisphere damage and healthy participants to ask whether the left inferior frontal gyrus is essential for syntactic processing. In a functional neuroimaging study, participants listened to spoken sentences that either contained a syntactically ambiguous or matched unambiguous phrase. Behavioural data on three tests of syntactic processing were subsequently collected. In controls, syntactic processing co-activated left hemisphere Brodmann areas 45/47 and posterior middle temporal gyrus. Activity in a left parietal cluster was sensitive to working memory demands in both patients and controls. Exploiting the variability in lesion location and performance in the patients, voxel-based correlational analyses showed that tissue integrity and neural activity—primarily in left Brodmann area 45 and posterior middle temporal gyrus—were correlated with preserved syntactic performance, but unlike the controls, patients were insensitive to syntactic preferences, reflecting their syntactic deficit. These results argue for the essential contribution of the left inferior frontal gyrus in syntactic analysis and highlight the functional relationship between left Brodmann area 45 and the left posterior middle temporal gyrus, suggesting that when this relationship breaks down, through damage to either region or to the connections between them, syntactic processing is impaired. On this view, the left inferior frontal gyrus may not itself be specialized for syntactic processing, but plays an essential role in the neural network that carries out syntactic computations. PMID:21278407

  6. Vascular compression as a potential cause of occipital neuralgia: a case report.

    PubMed

    White, J B; Atkinson, P P; Cloft, H J; Atkinson, J L D

    2008-01-01

    Vascular compression is a well-established cause of cranial nerve neuralgic syndromes. A unique case is presented that demonstrates that vascular compression may be a possible cause of occipital neuralgia. A 48-year-old woman with refractory left occipital neuralgia revealed on magnetic resonance imaging and computed tomographic imaging of the upper cervical spine an atypically low loop of the left posterior inferior cerebellar artery (PICA), clearly indenting the dorsal upper cervical roots. During surgery, the PICA loop was interdigitated with the C1 and C2 dorsal roots. Microvascular decompression alone has never been described for occipital neuralgia, despite the strong clinical correlation in this case. Therefore, both sectioning the dorsal roots of C2 and microvascular decompression of the PICA loop were performed. Postoperatively, the patient experienced complete cure of her neuralgia. Vascular compression as a cause of refractory occipital neuralgia should be considered when assessing surgical options.

  7. Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming

    PubMed Central

    Hartwigsen, Gesa; Bestmann, Sven; Ward, Nick S.; Woerbel, Saskia; Mastroeni, Claudia; Granert, Oliver; Siebner, Hartwig R.

    2013-01-01

    The ability to discard a prepared action plan in favor of an alternative action is critical when facing sudden environmental changes. We tested whether the functional contribution of left supramarginal gyrus (SMG) during action reprogramming depends on the functional integrity of left dorsal premotor cortex (PMd). Adopting a dual-site repetitive transcranial magnetic stimulation (rTMS) strategy, we first transiently disrupted PMd with “offline” 1Hz rTMS and then applied focal “online” rTMS to SMG whilst human subjects performed a spatially-precued reaction time task. Effective online rTMS of SMG but not sham rTMS of SMG increased errors when subjects had to reprogram their action in response to an invalid precue regardless of the type of preceding offline rTMS. This suggests that left SMG primarily contributes to the online updating of actions by suppressing invalidly prepared responses. Online rTMS of SMG additionally increased reaction times for correct responses in invalidly-precued trials, but only after offline rTMS of PMd. We infer that offline rTMS caused an additional dysfunction of PMd which increased the functional relevance of SMG for rapid activation of the correct response, and sensitized SMG to the disruptive effects of online rTMS. These results not only provide causal evidence that left PMd and SMG jointly contribute to action reprogramming, but also that the respective functional weight of these areas can be rapidly redistributed. This mechanism might constitute a generic feature of functional networks that allows for rapid functional compensation in response to focal dysfunctions. PMID:23152600

  8. Cervico-occipital meningioma in a 5-year-old child: a case report.

    PubMed

    Ben Nsir, Atef; Boubaker, Adnene; Jemel, Hafedh

    2014-01-01

    Childhood meningiomas are scarce in clinical practice with an incidence ranging from 0.4 to 4.6% of all pediatric central nervous system (CNS) tumors. Cervico-occipital meningiomas account for 3.7% of childhood meningiomas and are slightly more frequent in male. A 5-year-old female presented with febrile posterior cervico-occipital pain for 3 weeks. She was diagnosed with meningitis and treated for a similar period with adapted antibiotics. The pain persisted even after treatment. Magnetic resonance imaging revealed an enhancing subdural extra medullary mass of the cervico occipital junction, developing around the left vertebral artery. The characteristics of the lesion were strongly suggestive of a neuroma. Surgical removal of the tumor aiming the decompression of the spinal cord and nerve roots was performed with a surprising discovery: The tumor was tightly attached to the dura at the entry of the left vertebral artery. The resection was total and only a thin part close to the artery was left. The pathological findings confirmed the diagnosis of meningothelial meningioma. Meningioma should be considered in the differential diagnosis of contrast enhancing subdural extra medullary lesions of the cervico-occipital junction in children.

  9. Learning to Read an Alphabet of Human Faces Produces Left-lateralized Training Effects in the Fusiform Gyrus

    PubMed Central

    Moore, Michelle W.; Durisko, Corrine; Perfetti, Charles A.; Fiez, Julie A.

    2014-01-01

    Numerous functional neuroimaging studies have shown that most orthographic stimuli, such as printed English words, produce a left-lateralized response within the fusiform gyrus (FG) at a characteristic location termed the visual word form area (VWFA). We developed an experimental alphabet (FaceFont) comprising 35 face–phoneme pairs to disentangle phonological and perceptual influences on the lateralization of orthographic processing within the FG. Using functional imaging, we found that a region in the vicinity of the VWFA responded to FaceFont words more strongly in trained versus untrained participants, whereas no differences were observed in the right FG. The trained response magnitudes in the left FG region correlated with behavioral reading performance, providing strong evidence that the neural tissue recruited by training supported the newly acquired reading skill. These results indicate that the left lateralization of the orthographic processing is not restricted to stimuli with particular visual-perceptual features. Instead, lateralization may occur because the anatomical projections in the vicinity of the VWFA provide a unique interconnection between the visual system and left-lateralized language areas involved in the representation of speech. PMID:24168219

  10. Spontaneous brain activity in chronic smokers revealed by fractional amplitude of low frequency fluctuation analysis: a resting state functional magnetic resonance imaging study.

    PubMed

    Chu, Shuilian; Xiao, Dan; Wang, Shuangkun; Peng, Peng; Xie, Teng; He, Yong; Wang, Chen

    2014-01-01

    Nicotine is primarily rsponsible for the highly addictive properties of cigarettes. Similar to other substances, nicotine dependence is related to many important brain regions, particular in mesolimbic reward circuit. This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI), in order to provide the evidence of neurobiological mechanism of smoking. This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement. Sociodemographic, smoking related characteristics and fMRI images were collected and the data analyzed. Compared with nonsmokers, smokers showed fALFF increased significantly in the left middle occipital gyrus, left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus, right superior temporal gyrus, right extra nuclear, left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels). Compared with light smokers (pack years ≤ 20), heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus, right precentral gyrus, and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus, right/left frontal lobe/sub gyral, right/left cerebellum posterior lobe (cluster size >50 voxels). Compared with nonsevere nicotine dependent smokers (Fagerstrőm test for nicotine dependence, score ≤ 6), severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus, right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (cluster size >25 voxels). In smokers during rest, the activity of addiction related regions were increased and the activity of smoking feeling, memory, related regions were also changed. The

  11. Decoding and disrupting left midfusiform gyrus activity during word reading

    PubMed Central

    Hirshorn, Elizabeth A.; Ward, Michael J.; Fiez, Julie A.; Ghuman, Avniel Singh

    2016-01-01

    The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation. PMID:27325763

  12. Decoding and disrupting left midfusiform gyrus activity during word reading.

    PubMed

    Hirshorn, Elizabeth A; Li, Yuanning; Ward, Michael J; Richardson, R Mark; Fiez, Julie A; Ghuman, Avniel Singh

    2016-07-19

    The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation.

  13. Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity

    PubMed Central

    Boccia, Maddalena; Piccardi, Laura; Palermo, Liana; Nori, Raffaella; Palmiero, Massimiliano

    2015-01-01

    Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions. PMID:26322002

  14. Sensory-specific anomic aphasia following left occipital lesions: Data from free oral descriptions of concrete word meanings

    PubMed Central

    Mårtensson, F.; Roll, M.; Lindgren, M.; Apt, P.; Horne, M.

    2013-01-01

    The present study investigated hierarchical lexical semantic structure in oral descriptions of concrete word meanings produced by a subject (ZZ) diagnosed with anomic aphasia due to left occipital lesions. The focus of the analysis was production of a) nouns at different levels of semantic specificity (e.g., “robin”–“bird”–“animal”) and b) words describing sensory or motor experiences (e.g., “blue,” “soft,” “fly”). Results show that in contrast to healthy and aphasic controls, who produced words at all levels of specificity and mainly vision-related sensory information, ZZ produced almost exclusively nouns at the most non-specific levels and words associated with sound and movement. PMID:23425233

  15. Occipital neuralgia.

    PubMed

    Dougherty, Carrie

    2014-05-01

    Occipital pain is a common complaint amongst patients with headache, and the differential can include many primary headache disorders such as cervicogenic headache or migraine. Occipital neuralgia is an uncommon cause of occipital pain characterized by paroxysmal lancinating pain in the distribution of the greater, lesser or third occipital nerves. Greater occipital nerve blockade with anesthetics and/or corticosteroids can aid in confirming the diagnosis and providing pain relief. However, nerve blocks are also effective in migraine headache and misdiagnosis can result in a false positive. Physical therapy and preventive medication with antiepileptics and tricyclic antidepressants are often effective treatments for occipital neuralgia. Refractory cases may require intervention with pulsed radiofrequency or occipital nerve stimulation.

  16. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    PubMed

    Miotto, Eliane C; Balardin, Joana B; Vieira, Gilson; Sato, Joao R; Martin, Maria da Graça M; Scaff, Milberto; Teixeira, Manoel J; Junior, Edson Amaro

    2014-01-01

    Patients with low-grade glioma (LGG) have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL) LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR), related-non-structured (RNS), and related-structured words (RS), allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG) and middle frontal gyrus (MFG) during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  17. Hemispheric Dominance for Stereognosis in a Patient With an Infarct of the Left Postcentral Sensory Hand Area.

    PubMed

    Moll, Jorge; de Oliveira-Souza, Ricardo

    2017-09-01

    The concept of left hemispheric dominance for praxis, speech, and language has been one of the pillars of neurology since the mid-19th century. In 1906, Hermann Oppenheim reported a patient with bilateral stereoagnosia (astereognosis) caused by a left parietal lobe tumor and proposed that the left hemisphere was also dominant for stereognosis. Surprisingly, few cases of bilateral stereoagnosia caused by a unilateral cerebral lesion have been documented in the literature since then. Here we report a 75-year-old right-handed man who developed bilateral stereoagnosia after suffering a small infarct in the crown of the left postcentral gyrus. He could not recognize objects with either hand, but retained the ability to localize stimuli applied to the palm of his left (ipsilesional) hand. He was severely disabled in ordinary activities requiring the use of his hands. The lesion corresponded to Brodmann area 1, where probabilistic anatomic, functional, and electrophysiologic studies have located one of the multiple somatosensory representations of the hand. The lesion was in a strategic position to interrupt both the processing of afferent tactile information issuing from the primary somatosensory cortex (areas 3a and 3b) and the forward higher-order processing in area 2, the secondary sensory cortex, and the contralateral area 1. The lesion also deprived the motor hand area of its afferent regulation from the sensory hand area (grasping), while leaving intact the visuomotor projections from the occipital cortex (reaching). Our patient supports Oppenheim's proposal that the left postcentral gyrus of some individuals is dominant for stereognosis.

  18. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production

    PubMed Central

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J.; Ulmer, Stephan; Baumgaertner, Annette; Siebner, Hartwig R.

    2013-01-01

    The role of the right hemisphere in aphasia recovery after left hemisphere damage remains unclear. Increased activation of the right hemisphere has been observed after left hemisphere damage. This may simply reflect a release from transcallosal inhibition that does not contribute to language functions. Alternatively, the right hemisphere may actively contribute to language functions by supporting disrupted processing in the left hemisphere via interhemispheric connections. To test this hypothesis, we applied off-line continuous theta burst stimulation (cTBS) over the left inferior frontal gyrus (IFG) in healthy volunteers, then used functional MRI to investigate acute changes in effective connectivity between the left and right hemispheres during repetition of auditory and visual words and pseudowords. In separate sessions, we applied cTBS over the left anterior IFG (aIFG) or posterior IFG (pIFG) to test the anatomic specificity of the effects of cTBS on speech processing. Compared with cTBS over the aIFG, cTBS over the pIFG suppressed activity in the left pIFG and increased activity in the right pIFG during pseudoword vs. word repetition in both modalities. This effect was associated with a stronger facilitatory drive from the right pIFG to the left pIFG during pseudoword repetition. Critically, response became faster as the influence of the right pIFG on left pIFG increased, indicating that homologous areas in the right hemisphere actively contribute to language function after a focal left hemisphere lesion. Our findings lend further support to the notion that increased activation of homologous right hemisphere areas supports aphasia recovery after left hemisphere damage. PMID:24062469

  19. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production.

    PubMed

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J; Ulmer, Stephan; Baumgaertner, Annette; Siebner, Hartwig R

    2013-10-08

    The role of the right hemisphere in aphasia recovery after left hemisphere damage remains unclear. Increased activation of the right hemisphere has been observed after left hemisphere damage. This may simply reflect a release from transcallosal inhibition that does not contribute to language functions. Alternatively, the right hemisphere may actively contribute to language functions by supporting disrupted processing in the left hemisphere via interhemispheric connections. To test this hypothesis, we applied off-line continuous theta burst stimulation (cTBS) over the left inferior frontal gyrus (IFG) in healthy volunteers, then used functional MRI to investigate acute changes in effective connectivity between the left and right hemispheres during repetition of auditory and visual words and pseudowords. In separate sessions, we applied cTBS over the left anterior IFG (aIFG) or posterior IFG (pIFG) to test the anatomic specificity of the effects of cTBS on speech processing. Compared with cTBS over the aIFG, cTBS over the pIFG suppressed activity in the left pIFG and increased activity in the right pIFG during pseudoword vs. word repetition in both modalities. This effect was associated with a stronger facilitatory drive from the right pIFG to the left pIFG during pseudoword repetition. Critically, response became faster as the influence of the right pIFG on left pIFG increased, indicating that homologous areas in the right hemisphere actively contribute to language function after a focal left hemisphere lesion. Our findings lend further support to the notion that increased activation of homologous right hemisphere areas supports aphasia recovery after left hemisphere damage.

  20. Effects of childhood trauma on left inferior frontal gyrus function during response inhibition across psychotic disorders.

    PubMed

    Quidé, Y; O'Reilly, N; Watkeys, O J; Carr, V J; Green, M J

    2018-07-01

    Childhood trauma is a risk factor for psychosis. Deficits in response inhibition are common to psychosis and trauma-exposed populations, and associated brain functions may be affected by trauma exposure in psychotic disorders. We aimed to identify the influence of trauma-exposure on brain activation and functional connectivity during a response inhibition task. We used functional magnetic resonance imaging to examine brain function within regions-of-interest [left and right inferior frontal gyrus (IFG), right dorsolateral prefrontal cortex, right supplementary motor area, right inferior parietal lobule and dorsal anterior cingulate cortex], during the performance of a Go/No-Go Flanker task, in 112 clinical cases with psychotic disorders and 53 healthy controls (HCs). Among the participants, 71 clinical cases and 21 HCs reported significant levels of childhood trauma exposure, while 41 clinical cases and 32 HCs did not. In the absence of effects on response inhibition performance, childhood trauma exposure was associated with increased activation in the left IFG, and increased connectivity between the left IFG seed region and the cerebellum and calcarine sulcus, in both cases and healthy individuals. There was no main effect of psychosis, and no trauma-by-psychosis interaction for any other region-of-interest. Within the clinical sample, the effects of trauma-exposure on the left IFG activation were mediated by symptom severity. Trauma-related increases in activation of the left IFG were not associated with performance differences, or dependent on clinical diagnostic status; increased IFG functionality may represent a compensatory (overactivation) mechanism required to exert adequate inhibitory control of the motor response.

  1. Topological Alterations of the Intrinsic Brain Network in Patients with Functional Dyspepsia.

    PubMed

    Nan, Jiaofen; Zhang, Li; Zhu, Fubao; Tian, Xiaorui; Zheng, Qian; Deneen, Karen M von; Liu, Jixin; Zhang, Ming

    2016-01-31

    Previous studies reported that integrated information in the brain ultimately determines the subjective experience of patients with chronic pain, but how the information is integrated in the brain connectome of functional dyspepsia (FD) patients remains largely unclear. The study aimed to quantify the topological changes of the brain network in FD patients. Small-world properties, network efficiency and nodal centrality were utilized to measure the changes in topological architecture in 25 FD patients and 25 healthy controls based on functional magnetic resonance imaging. Pearson's correlation assessed the relationship of each topological property with clinical symptoms. FD patients showed an increase of clustering coefficients and local efficiency relative to controls from the perspective of a whole network as well as elevated nodal centrality in the right orbital part of the inferior frontal gyrus, left anterior cingulate gyrus and left hippocampus, and decreased nodal centrality in the right posterior cingulate gyrus, left cuneus, right putamen, left middle occipital gyrus and right inferior occipital gyrus. Moreover, the centrality in the anterior cingulate gyrus was significantly associated with symptom severity and duration in FD patients. Nevertheless, the inclusion of anxiety and depression scores as covariates erased the group differences in nodal centralities in the orbital part of the inferior frontal gyrus and hippocampus. The results suggest topological disruption of the functional brain networks in FD patients, presumably in response to disturbances of sensory information integrated with emotion, memory, pain modulation, and selective attention in patients.

  2. The Involvement of Occipital and Inferior Frontal Cortex in the Phonological Learning of Chinese Characters

    PubMed Central

    Deng, Yuan; Chou, Tai-li; Ding, Guo-sheng; Peng, Dan-ling; Booth, James R.

    2016-01-01

    Neural changes related to the learning of the pronunciation of Chinese characters in English speakers were examined using fMRI. We examined the item-specific learning effects for trained characters and the generalization of phonetic knowledge to novel transfer characters that shared a phonetic radical (part of a character that gives a clue to the whole character’s pronunciation) with trained characters. Behavioral results showed that shared phonetic information improved performance for transfer characters. Neuroimaging results for trained characters over learning found increased activation in the right lingual gyrus, and greater activation enhancement in the left inferior frontal gyrus (Brodmann’s area 44) was correlated with higher accuracy improvement. Moreover, greater activation for transfer characters in these two regions at the late stage of training was correlated with better knowledge of the phonetic radical in a delayed recall test. The current study suggests that the right lingual gyrus and the left inferior frontal gyrus are crucial for the learning of Chinese characters and the generalization of that knowledge to novel characters. Left inferior frontal gyrus is likely involved in phonological segmentation, whereas right lingual gyrus may subserve processing visual–orthographic information. PMID:20807053

  3. Resting-state Brain Activity Changes Associated with Tardive Dyskinesia in Patients with Schizophrenia: Fractional Amplitude of Low-frequency Fluctuation Decreased in the Occipital Lobe.

    PubMed

    Zhang, Ping; Li, Yanli; Fan, Fengmei; Li, Chiang-Shan R; Luo, Xingguang; Yang, Fude; Yao, Yin; Tan, Yunlong

    2018-06-19

    We explored resting-state brain activity and its potential links to clinical parameters in schizophrenic patients with tardive dyskinesia (TD) using fractional amplitude of low-frequency fluctuations (fALFF). Resting-state functional magnetic resonance imaging data were acquired from 32 schizophrenic patients with TD (TD group), 31 without TD (NTD group), and 32 healthy controls (HC group). Clinical parameters including psychopathological symptoms, severity of TD, and cognitive function were assessed using the Positive and Negative Syndrome Scale, Abnormal Involuntary Movement Scale (AIMS), and Repeatable Battery for the Assessment of Neuropsychological Status, respectively. Pearson correlation analyses were performed to determine the relationship between the regions with altered fALFF values and clinical parameters in TD patients. The TD group showed decreased fALFF in the left middle occipital gyrus (MOG) and the right calcarine sulcus (CAL) compared to the HC group, and decreased fALFF in the left cuneus compared to the NTD group. In the TD group, fALFF values in the left MOG and the right CAL were correlated separately with the delayed memory score (r = 0.44, p = 0.027; r = 0.43, p = 0.028, respectively). The AIMS total score was negatively correlated to the visuospatial/constructional score (r = -0.53, p = 0.005). Our findings suggested that resting-state brain activity changes were associated with TD in schizophrenic patients. There was an association between the decreased brain activity in the occipital lobe and the delayed memory cognition impairment in this population. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. The left inferior frontal gyrus is involved in adjusting response bias during a perceptual decision-making task.

    PubMed

    Reckless, Greg E; Ousdal, Olga T; Server, Andres; Walter, Henrik; Andreassen, Ole A; Jensen, Jimmy

    2014-05-01

    Changing the way we make decisions from one environment to another allows us to maintain optimal decision-making. One way decision-making may change is how biased one is toward one option or another. Identifying the regions of the brain that underlie the change in bias will allow for a better understanding of flexible decision-making. An event-related, perceptual decision-making task where participants had to detect a picture of an animal amongst distractors was used during functional magnetic resonance imaging. Positive and negative financial motivation were used to affect a change in response bias, and changes in decision-making behavior were quantified using signal detection theory. Response bias became relatively more liberal during both positive and negative motivated trials compared to neutral trials. For both motivational conditions, the larger the liberal shift in bias, the greater the left inferior frontal gyrus (IFG) activity. There was no relationship between individuals' belief that they used a different strategy and their actual change in response bias. The present findings suggest that the left IFG plays a role in adjusting response bias across different decision environments. This suggests a potential role for the left IFG in flexible decision-making.

  5. Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS.

    PubMed

    Mayseless, N; Shamay-Tsoory, S G

    2015-04-16

    Creativity is the production of novel ideas that have value. Previous research indicated that while regions in the right hemisphere are implicated in the production of new ideas, damage to the left inferior frontal gyrus (IFG) is associated with increased creativity, indicating that the left IFG damage may have a "releasing" effect on creativity. To examine this, in the present study we used transcranial direct current stimulation (tDCS) to modulate activity of the right and the left IFG. In the first experiment we show that whereas anodal tDCS over the right IFG coupled with cathodal tDCS over the left IFG increases creativity as measured by a verbal divergent thinking task, the reverse stimulation does not affect creative production. To further confirm that only altering the balance between the two hemispheres is crucial in modulating creativity, in the second experiment we show that stimulation targeting separately the left IFG (cathodal stimulation) or the right IFG (anodal stimulation) did not result in changes in creativity as measured by verbal divergent thinking. These findings support the balance hypothesis, according to which verbal creativity requires a balance of activation between the right and the left frontal lobes, and more specifically, between the right and the left IFG. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Selective impairment of facial recognition due to a haematoma restricted to the right fusiform and lateral occipital region

    PubMed Central

    Wada, Y; Yamamoto, T

    2001-01-01

    A 67 year old right handed Japanese man developed prosopagnosia caused by a haemorrhage. His only deficit was the inability to perceive and discriminate unfamiliar faces, and to recognise familiar faces. He did not show deficits in visual or visuospatial perception of non-facial stimuli, alexia, visual agnosia, or topographical disorientation. Brain MRI showed a haematoma limited to the right fusiform and the lateral occipital region. Single photon emission computed tomography confirmed that there was no decreased blood flow in the opposite left cerebral hemisphere. The present case indicates that a well placed small right fusiform gyrus and the adjacent area can cause isolated impairment of facial recognition. As far as we know, there has been no published case that has demonstrated this exact lesion site, which was indicated by recent functional MRI studies as the most critical area in facial recognition.

 PMID:11459906

  7. Primary Occipital Ewing's Sarcoma with Subsequent Spinal Seeding.

    PubMed

    Alqahtani, Ali; Amer, Roaa; Bakhsh, Eman

    2017-01-01

    Ewing's sarcoma is a primary bone cancer that mainly affects the long bones. This malignancy is particularly common in pediatric patients. Primary cranial involvement accounts for 1% of cases, with occipital involvement considered extremely rare. In this case study, primary occipital Ewing's sarcoma with a posterior fossa mass and subsequent relapse resulting in spinal seeding is reported. A 3-year-old patient presented with a 1-year history of left-sided headaches, localized over the occipital bone with progressive torticollis. Computed tomography (CT) imaging showed a mass in the left posterior fossa compressing the brainstem. The patient then underwent surgical excision followed by adjuvant chemoradiation therapy. Two years later, the patient presented with severe lower back pain and urinary incontinence. Whole-spine magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) seeding from the L5 to the S4 vertebrae. Primary cranial Ewing's sarcoma is considered in the differential diagnosis of children with extra-axial posterior fossa mass associated with destructive permeative bone lesions. Although primary cranial Ewing's sarcoma typically has good prognosis, our patient developed metastasis in the lower spine. Therefore, with CNS Ewing's sarcoma, screening of the entire neural axis should be taken into consideration for early detection of CSF seeding metastasis in order to decrease the associated morbidity and mortality.

  8. Greater Occipital Nerve Decompression for Occipital Neuralgia.

    PubMed

    Jose, Anson; Nagori, Shakil Ahmed; Chattopadhyay, Probodh K; Roychoudhury, Ajoy

    2018-05-14

    The aim of the study was to evaluate the effectiveness of greater occipital nerve decompression for the management of occipital neuralgia. Eleven patients of medical refractory occipital neuralgia were enrolled in the study. Local anaesthetic blocks were used for confirming diagnosis. All of them underwent surgical decompression of greater occipital nerve at the level of semispinalis capitis and trapezial tunnel. A pre and postoperative questionnaire was used to compare the severity of pain and number of pain episodes/month. Mean pain episodes reported by patients before surgery were 17.1 ± 5.63 episodes per month. This reduced to 4.1 ± 3.51 episodes per month (P < 0.0036) postsurgery. The mean intensity of pain also reduced from a preoperative 7.18 ± 1.33 to a postoperative of 1.73 ± 1.95 (P < 0.0033). Three patients reported complete elimination of pain after surgery while 6 patients reported significant relief of their symptoms. Only 2 patients failed to notice any significant improvement. The mean follow-up period was 12.45 ± 1.29 months. Surgical decompression of greater occipital nerve is a simple and viable treatment modality for the management of occipital neuralgia.

  9. Electrical Stimulation of the Left and Right Human Fusiform Gyrus Causes Different Effects in Conscious Face Perception

    PubMed Central

    Rangarajan, Vinitha; Hermes, Dora; Foster, Brett L.; Weiner, Kevin S.; Jacques, Corentin; Grill-Spector, Kalanit

    2014-01-01

    Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-face-related visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception. PMID:25232118

  10. The left inferior frontal gyrus is involved in adjusting response bias during a perceptual decision-making task

    PubMed Central

    Reckless, Greg E; Ousdal, Olga T; Server, Andres; Walter, Henrik; Andreassen, Ole A; Jensen, Jimmy

    2014-01-01

    Introduction Changing the way we make decisions from one environment to another allows us to maintain optimal decision-making. One way decision-making may change is how biased one is toward one option or another. Identifying the regions of the brain that underlie the change in bias will allow for a better understanding of flexible decision-making. Methods An event-related, perceptual decision-making task where participants had to detect a picture of an animal amongst distractors was used during functional magnetic resonance imaging. Positive and negative financial motivation were used to affect a change in response bias, and changes in decision-making behavior were quantified using signal detection theory. Results Response bias became relatively more liberal during both positive and negative motivated trials compared to neutral trials. For both motivational conditions, the larger the liberal shift in bias, the greater the left inferior frontal gyrus (IFG) activity. There was no relationship between individuals' belief that they used a different strategy and their actual change in response bias. Conclusions The present findings suggest that the left IFG plays a role in adjusting response bias across different decision environments. This suggests a potential role for the left IFG in flexible decision-making. PMID:24944869

  11. Abnormal left superior temporal gyrus volumes in children and adolescents with bipolar disorder: a magnetic resonance imaging study.

    PubMed

    Chen, Hua Hsua; Nicoletti, Mark A; Hatch, John P; Sassi, Roberto B; Axelson, David; Brambilla, Paolo; Monkul, E Serap; Keshavan, Matcheri S; Ryan, Neal D; Birmaher, Boris; Soares, Jair C

    2004-06-03

    Abnormalities in left superior temporal gyrus (STG) have been reported in adult bipolar patients. However, it is not known whether such abnormalities are already present early in the course of this illness. Magnetic resonance imaging (MRI) morphometric analysis of STG was performed in 16 DSM-IV children and adolescents with bipolar disorder (mean age+/-SD 15.5+/-3.4 years) and 21 healthy controls (mean age+/-SD 16.9+/-3.8 years). Subjects underwent a 3D spoiled gradient recalled acquisition MRI examination. Using analysis of covariance with age, gender and intra-cranial brain volume as covariates, we found significantly smaller left total STG volumes in bipolar patients (12.5+/-1.5 cm(3)) compared with healthy controls (13.6+/-2.5 cm(3)) (F=4.45, d.f.=1, 32, P=0.04). This difference was accounted for by significantly smaller left and right STG white matter volumes in bipolar patients. Decreased white matter connections may be the core of abnormalities in STG, which is an important region for speech, language and communication, and could possibly underlie neurocognitive deficits present in bipolar patients.

  12. Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging.

    PubMed

    Wang, L; Li, K; Zhang, Q; Zeng, Y; Dai, W; Su, Y; Wang, G; Tan, Y; Jin, Z; Yu, X; Si, T

    2014-05-01

    Most knowledge regarding the effects of antidepressant drugs is at the receptor level, distal from the nervous system effects that mediate their clinical efficacy. Using functional magnetic resonance imaging (fMRI), this study investigated the effects of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on resting-state brain function in patients with major depressive disorder (MDD). Fourteen first-episode drug-naive MDD patients completed two fMRI scans before and after 8 weeks of escitalopram therapy. Scans were also acquired in 14 matched healthy subjects. Data were analyzed using the regional homogeneity (ReHo) approach. Compared to controls, MDD patients before treatment demonstrated decreased ReHo in the frontal (right superior frontal gyrus), temporal (left middle and right inferior temporal gyri), parietal (right precuneus) and occipital (left superior occipital gyrus and right cuneus) cortices, and increased ReHo in the left dorsal medial prefrontal gyrus and left anterior lobe of the cerebellum. Compared to the unmedicated state, ReHo in the patients after treatment was decreased in the left dorsal medial prefrontal gyrus, the right insula and the bilateral thalamus, and increased in the right superior frontal gyrus. Compared to controls, patients after treatment displayed a ReHo decrease in the right precuneus and a ReHo increase in the left anterior lobe of the cerebellum. Successful treatment with escitalopram may be associated with modulation of resting-state brain activity in regions within the fronto-limbic circuit. This study provides new insight into the effects of antidepressants on functional brain systems in MDD.

  13. Parcellation of left parietal tool representations by functional connectivity

    PubMed Central

    Garcea, Frank E.; Z. Mahon, Bradford

    2014-01-01

    Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during functional magnetic resonance imaging (fMRI). K-means clustering over time series data was used to parcellate left parietal cortex into subregions based on functional connectivity to a whole brain network of regions involved in tool processing. One cluster, in the inferior parietal cortex, expressed privileged functional connectivity to the left ventral premotor cortex. A second cluster, in the vicinity of the anterior intraparietal sulcus, expressed privileged functional connectivity with the left medial fusiform gyrus. A third cluster in the superior parietal lobe expressed privileged functional connectivity with dorsal occipital cortex. Control analyses using Monte Carlo style permutation tests demonstrated that the clustering solutions were outside the range of what would be observed based on chance ‘lumpiness’ in random data, or mere anatomical proximity. Finally, hierarchical clustering analyses were used to formally relate the resulting parcellation scheme of left parietal tool representations to previous work that has parcellated the left parietal lobule on purely anatomical grounds. These findings demonstrate significant heterogeneity in the functional organization of manipulable object representations in left parietal cortex, and outline a framework that generates novel predictions about the causes of some forms of upper limb apraxia. PMID:24892224

  14. Relationship between Parental Feeding Practices and Neural Responses to Food Cues in Adolescents

    PubMed Central

    Chambers, Alison; Blissett, Jacqueline; Chechlacz, Magdalena; Barrett, Timothy; Higgs, Suzanne; Nouwen, Arie

    2016-01-01

    Social context, specifically within the family, influences adolescent eating behaviours and thus their health. Little is known about the specific mechanisms underlying the effects of parental feeding practices on eating. We explored relationships between parental feeding practices and adolescent eating habits and brain activity in response to viewing food images. Fifty- seven adolescents (15 with type 2 diabetes mellitus, 21 obese and 21 healthy weight controls) underwent fMRI scanning whilst viewing images of food or matched control images. Participants completed the Kids Child Feeding Questionnaire, the Childrens’ Dutch Eating Behaviour Questionnaire (DEBQ) and took part in an observed meal. Parents completed the Comprehensive Feeding Practices Questionniare and the DEBQ. We were particularly interested in brain activity in response to food cues that was modulated by different feeding and eating styles. Healthy-weight participants increased activation (compared to the other groups) to food in proportion to the level of parental restriction in visual areas of the brain such as right lateral occipital cortex (LOC), right temporal occipital cortex, left occipital fusiform gyrus, left lateral and superior LOC. Adolescents with type 2 diabetes mellitus had higher activation (compared to the other groups) with increased parental restrictive feeding in areas relating to emotional control, attention and decision-making, such as posterior cingulate, precuneus, frontal operculum and right middle frontal gyrus. Participants with type 2 diabetes mellitus also showed higher activation (compared to the other groups) in the left anterior intraparietal sulcus and angular gyrus when they also reported higher self restraint. Parental restriction did not modulate food responses in obese participants, but there was increased activity in visual (visual cortex, left LOC, left occipital fusiform gyrus) and reward related brain areas (thalamus and parietal operculum) in response to

  15. Relationship between Parental Feeding Practices and Neural Responses to Food Cues in Adolescents.

    PubMed

    Allen, Harriet A; Chambers, Alison; Blissett, Jacqueline; Chechlacz, Magdalena; Barrett, Timothy; Higgs, Suzanne; Nouwen, Arie

    2016-01-01

    Social context, specifically within the family, influences adolescent eating behaviours and thus their health. Little is known about the specific mechanisms underlying the effects of parental feeding practices on eating. We explored relationships between parental feeding practices and adolescent eating habits and brain activity in response to viewing food images. Fifty- seven adolescents (15 with type 2 diabetes mellitus, 21 obese and 21 healthy weight controls) underwent fMRI scanning whilst viewing images of food or matched control images. Participants completed the Kids Child Feeding Questionnaire, the Childrens' Dutch Eating Behaviour Questionnaire (DEBQ) and took part in an observed meal. Parents completed the Comprehensive Feeding Practices Questionniare and the DEBQ. We were particularly interested in brain activity in response to food cues that was modulated by different feeding and eating styles. Healthy-weight participants increased activation (compared to the other groups) to food in proportion to the level of parental restriction in visual areas of the brain such as right lateral occipital cortex (LOC), right temporal occipital cortex, left occipital fusiform gyrus, left lateral and superior LOC. Adolescents with type 2 diabetes mellitus had higher activation (compared to the other groups) with increased parental restrictive feeding in areas relating to emotional control, attention and decision-making, such as posterior cingulate, precuneus, frontal operculum and right middle frontal gyrus. Participants with type 2 diabetes mellitus also showed higher activation (compared to the other groups) in the left anterior intraparietal sulcus and angular gyrus when they also reported higher self restraint. Parental restriction did not modulate food responses in obese participants, but there was increased activity in visual (visual cortex, left LOC, left occipital fusiform gyrus) and reward related brain areas (thalamus and parietal operculum) in response to

  16. The distributed neural system for top-down letter processing: an fMRI study

    NASA Astrophysics Data System (ADS)

    Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie

    2011-03-01

    This fMRI study used Psychophysiological interaction (PPI) to investigate top-down letter processing with an illusory letter detection task. After an initial training that became increasingly difficult, participant was instructed to detect a letter from pure noise images where there was actually no letter. Such experimental paradigm allowed for isolating top-down components of letter processing and minimizing the influence of bottom-up perceptual input. A distributed cortical network of top-down letter processing was identified by analyzing the functional connectivity patterns of letter-preferential area (LA) within the left fusiform gyrus. Such network extends from the visual cortex to high level cognitive cortexes, including the left middle frontal gyrus, left medial frontal gyrus, left superior parietal gyrus, bilateral precuneus, and left inferior occipital gyrus. These findings suggest that top-down letter processing contains not only regions for processing of letter phonology and appearance, but also those involved in internal information generation and maintenance, and attention and memory processing.

  17. Dandy-Walker syndrome together with occipital encephalocele.

    PubMed

    Cakmak, A; Zeyrek, D; Cekin, A; Karazeybek, H

    2008-08-01

    Dandy-Walker malformation is an anomaly characterized by dysgenesis of the foramina of Magendie and Lushka in the upper 4(th) ventricle, hypoplasia of the cerebellar vermis and agenesis of the corpus callosum. Encephalocele is diagnosed from the calvarium defect, cerebrospinal fluid (CSF) and herniation of the meninges. It is the rarest neural tube defect. A 7 x 9 cm encephalocele was found on physical examination of a 6-day old baby boy patient. From cranial magnetic resonance, it was seen that the posterior fossa was enlarged with cysts and there was agenesis of the vermis. A connection was established between the ventricle and the development of cysts on the posterior fossa. These findings were evaluated as significant from the aspect of Dandy-Walker malformation. The extension of the bone defect in the left occipital area towards the posterior, and the cranio-caudal diameter reaching 9 cm was seen to be in accordance with encephalocele. It is rare for Dandy-Walker syndrome to occur together with occipital encephalocele. The authors present a case of Dandy-Walker syndrome together with occipital encephalocele.

  18. Effects of subjective preference of colors on attention-related occipital theta oscillations.

    PubMed

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2012-01-02

    Human daily behaviors are often affected by subjective preferences. Studies have shown that physical responses are affected by unconscious preferences before conscious decision making. Accordingly, attention-related neural activities could be influenced by unconscious preferences. However, few neurological data exist on the relationship between visual attention and subjective preference. To address this issue, we focused on lateralization during visual attention and investigated the effects of subjective color preferences on visual attention-related brain activities. We recorded electroencephalograph (EEG) data during a preference judgment task that required 19 participants to choose their preferred color from 2 colors simultaneously presented to the right and left hemifields. In addition, to identify oscillatory activity during visual attention, we conducted a control experiment in which the participants focused on either the right or the left color without stating their preference. The EEG results showed enhanced theta (4-6 Hz) and decreased alpha (10-12 Hz) activities in the right and left occipital electrodes when the participants focused on the color in the opposite hemifield. Occipital theta synchronizations also increased contralaterally to the hemifield to which the preferred color was presented, whereas the alpha desynchronizations showed no lateralization. The contralateral occipital theta activity lasted longer than the ipsilateral occipital theta activity. Interestingly, theta lateralization was observed even when the preferred color was presented to the unattended side in the control experiment, revealing the strength of the preference-related theta-modulation effect irrespective of visual attention. These results indicate that subjective preferences modulate visual attention-related brain activities. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  19. Neural adaptation to thin and fat bodies in the fusiform body area and middle occipital gyrus: an fMRI adaptation study.

    PubMed

    Hummel, Dennis; Rudolf, Anne K; Brandi, Marie-Luise; Untch, Karl-Heinz; Grabhorn, Ralph; Hampel, Harald; Mohr, Harald M

    2013-12-01

    Visual perception can be strongly biased due to exposure to specific stimuli in the environment, often causing neural adaptation and visual aftereffects. In this study, we investigated whether adaptation to certain body shapes biases the perception of the own body shape. Furthermore, we aimed to evoke neural adaptation to certain body shapes. Participants completed a behavioral experiment (n = 14) to rate manipulated pictures of their own bodies after adaptation to demonstratively thin or fat pictures of their own bodies. The same stimuli were used in a second experiment (n = 16) using functional magnetic resonance imaging (fMRI) adaptation. In the behavioral experiment, after adapting to a thin picture of the own body participants also judged a thinner than actual body picture to be the most realistic and vice versa, resembling a typical aftereffect. The fusiform body area (FBA) and the right middle occipital gyrus (rMOG) show neural adaptation to specific body shapes while the extrastriate body area (EBA) bilaterally does not. The rMOG cluster is highly selective for bodies and perhaps body parts. The findings of the behavioral experiment support the existence of a perceptual body shape aftereffect, resulting from a specific adaptation to thin and fat pictures of one's own body. The fMRI results imply that body shape adaptation occurs in the FBA and the rMOG. The role of the EBA in body shape processing remains unclear. The results are also discussed in the light of clinical body image disturbances. Copyright © 2012 Wiley Periodicals, Inc.

  20. A simplified CT-guided approach for greater occipital nerve infiltration in the management of occipital neuralgia.

    PubMed

    Kastler, Adrian; Onana, Yannick; Comte, Alexandre; Attyé, Arnaud; Lajoie, Jean-Louis; Kastler, Bruno

    2015-08-01

    To evaluate the efficacy of a simplified CT-guided greater occipital nerve (GON) infiltration approach in the management of occipital neuralgia (ON). Local IRB approval was obtained and written informed consent was waived. Thirty three patients suffering from severe refractory ON who underwent a total of 37 CT-guided GON infiltrations were included between 2012 and 2014. GON infiltration was performed at the first bend of the GON, between the inferior obliqus capitis and semispinalis capitis muscles with local anaesthetics and cortivazol. Pain was evaluated via VAS scores. Clinical success was defined by pain relief greater than or equal to 50 % lasting for at least 3 months. The pre-procedure mean pain score was 8/10. Patients suffered from left GON neuralgia in 13 cases, right GON neuralgia in 16 cases and bilateral GON neuralgia in 4 cases. The clinical success rate was 86 %. In case of clinical success, the mean pain relief duration following the procedure was 9.16 months. Simplified CT-guided infiltration appears to be effective in managing refractory ON. With this technique, infiltration of the GON appears to be faster, technically easier and, therefore, safer compared with other previously described techniques. • Occipital neuralgia is a very painful and debilitating condition • GON infiltrations have been successful in the treatment of occipital neuralgia • This simplified technique presents a high efficacy rate with long-lasting pain relief • This infiltration technique does not require contrast media injection for pre-planning • GON infiltration at the first bend appears easier and safer.

  1. Subliminal enhancement of predictive effects during syntactic processing in the left inferior frontal gyrus: an MEG study

    PubMed Central

    Iijima, Kazuki; Sakai, Kuniyoshi L.

    2014-01-01

    Predictive syntactic processing plays an essential role in language comprehension. In our previous study using Japanese object-verb (OV) sentences, we showed that the left inferior frontal gyrus (IFG) responses to a verb increased at 120–140 ms after the verb onset, indicating predictive effects caused by a preceding object. To further elucidate the automaticity of the predictive effects in the present magnetoencephalography study, we examined whether a subliminally presented verb (“subliminal verb”) enhanced the predictive effects on the sentence-final verb (“target verb”) unconsciously, i.e., without awareness. By presenting a subliminal verb after the object, enhanced predictive effects on the target verb would be detected in the OV sentences when the transitivity of the target verb matched with that of the subliminal verb (“congruent condition”), because the subliminal verb just after the object could determine the grammaticality of the sentence. For the OV sentences under the congruent condition, we observed significantly increased left IFG responses at 140–160 ms after the target verb onset. In contrast, responses in the precuneus and midcingulate cortex (MCC) were significantly reduced for the OV sentences under the congruent condition at 110–140 and 280–300 ms, respectively. By using partial Granger causality analyses for the OV sentences under the congruent condition, we revealed a bidirectional interaction between the left IFG and MCC at 60–160 ms, as well as a significant influence from the MCC to the precuneus. These results indicate that a top-down influence from the left IFG to the MCC, and then to the precuneus, is critical in syntactic decisions, whereas the MCC shares its task-set information with the left IFG to achieve automatic and predictive processes of syntax. PMID:25404899

  2. Subliminal enhancement of predictive effects during syntactic processing in the left inferior frontal gyrus: an MEG study.

    PubMed

    Iijima, Kazuki; Sakai, Kuniyoshi L

    2014-01-01

    Predictive syntactic processing plays an essential role in language comprehension. In our previous study using Japanese object-verb (OV) sentences, we showed that the left inferior frontal gyrus (IFG) responses to a verb increased at 120-140 ms after the verb onset, indicating predictive effects caused by a preceding object. To further elucidate the automaticity of the predictive effects in the present magnetoencephalography study, we examined whether a subliminally presented verb ("subliminal verb") enhanced the predictive effects on the sentence-final verb ("target verb") unconsciously, i.e., without awareness. By presenting a subliminal verb after the object, enhanced predictive effects on the target verb would be detected in the OV sentences when the transitivity of the target verb matched with that of the subliminal verb ("congruent condition"), because the subliminal verb just after the object could determine the grammaticality of the sentence. For the OV sentences under the congruent condition, we observed significantly increased left IFG responses at 140-160 ms after the target verb onset. In contrast, responses in the precuneus and midcingulate cortex (MCC) were significantly reduced for the OV sentences under the congruent condition at 110-140 and 280-300 ms, respectively. By using partial Granger causality analyses for the OV sentences under the congruent condition, we revealed a bidirectional interaction between the left IFG and MCC at 60-160 ms, as well as a significant influence from the MCC to the precuneus. These results indicate that a top-down influence from the left IFG to the MCC, and then to the precuneus, is critical in syntactic decisions, whereas the MCC shares its task-set information with the left IFG to achieve automatic and predictive processes of syntax.

  3. Sonographic evaluation of the greater occipital nerve in unilateral occipital neuralgia.

    PubMed

    Cho, John Chin-Suk; Haun, Daniel W; Kettner, Norman W

    2012-01-01

    Occipital neuralgia is a headache that may result from greater occipital nerve entrapment. Entrapped peripheral nerves typically have an increase in cross-sectional area. The purpose of this study was to measure the cross-sectional area and circumference of symptomatic and asymptomatic greater occipital nerves in patients with unilateral occipital neuralgia and to correlate the greater occipital nerve cross-sectional area with headache severity, sex, and body mass index. Both symptomatic and contralateral asymptomatic greater occipital nerve cross-sectional areas and circumferences were measured by a single examiner using sonography in 17 patients. The Wilcoxon signed rank test and Spearman rank order correlation coefficient were used to analyze the data. Significant differences between the cross-sectional areas and circumferences of the symptomatic and asymptomatic greater occipital nerves were noted (P < .001). No difference existed in cross-sectional area (P = .40) or circumference (P = .10) measurements of the nerves between male and female patients. A significant correlation existed between the body mass index and symptomatic (r = 0.424; P = .045) and asymptomatic (r = 0.443; P = .037) cross-sectional areas. There was no correlation shown between the cross-sectional area of the symptomatic nerve and the severity of Headache Impact Test 6 scores (r = -0.342; P = .179). We report sonographic evidence showing an increased cross-sectional area and circumference of the symptomatic greater occipital nerve in patients with unilateral occipital neuralgia.

  4. Hostile Attribution Bias Mediates the Relationship Between Structural Variations in the Left Middle Frontal Gyrus and Trait Angry Rumination

    PubMed Central

    Wang, Yueyue; Zhu, Wenfeng; Xiao, Mingyue; Zhang, Qin; Zhao, Yufang; Zhang, Hao; Chen, Xu; Zheng, Yong; Xia, Ling-Xiang

    2018-01-01

    Angry rumination is a common mental phenomenon which may lead to negative social behaviors such as aggression. Although numerous neuroimaging studies have focused on brain area activation during angry rumination, to our knowledge no study has examined the neuroanatomical and cognitive mechanisms of this process. In this study, we conducted a voxel-based morphometry analysis, using a region of interest analysis to identify the structural and cognitive mechanisms underlying individual differences in trait angry rumination (as measured by the Angry Rumination Scale) in a sample of 82 undergraduate students. We found that angry rumination was positively correlated with gray matter density in the left middle frontal gyrus (left-MFG), which is implicated in inhibition control, working memory, and emotional regulation. The mediation analysis further revealed that hostile attribution bias (as measured by the Social Information Processing–Attribution Bias Questionnaire) acted as a cognitive mechanism underlying the positive association between the left-MFG gray matter density and trait angry rumination. These findings suggest that hostile attribution bias may contribute to trait angry rumination, while the left-MFG may play an important role in the development of hostile attribution bias and trait angry rumination. The study reveals the brain mechanisms of trait angry rumination and plays a role in revealing the cognitive mechanisms of the development of trait angry rumination. PMID:29695990

  5. Experience of Surgical Treatment for Occipital Migraine in Taiwan.

    PubMed

    Lin, Shang-Hsi; Lin, Huwang-Chi; Jeng, Chu-Hsu; Hsieh, Cheng-Han; Lin, Yu-Hsien; Chen, Cha-Chun

    2016-03-01

    Refractory migraine surgery developed since 2003 has excellent results over the past 10 years. According to the pioneer of migraine surgery, Dr. Bahman Guyuron, 5 major surgical classifications of migraines are described in the field of plastic surgery, namely, frontal migraine, temporal migraine, rhinogenic migraine, occipital migraine, and auriculotemporal migraine. In this study, we present the preliminary surgical results of the occipital migraine surgery. A total of 22 patients with simple occipital migraines came to our outpatient clinic for help from June 2014 to February 2015. Thirteen cases were excluded owing to ineligibility for operation or other reasons. The patients who concurrently experienced other types of migraines were precluded even if they received combined migraine surgery. Therefore, 9 simple occipital migraine cases were enrolled in this study. Migraine severity was evaluated by uniform questionnaires to identify the source of migraine. Neurolysis was performed under general anesthesia, with the patient in a prone position. Postoperative conditions were evaluated at the second, fourth, sixth, and eighth weeks by posttreatment questionnaires. Of all the 9 patients, 5 experienced single-sided migraines of greater occipital nerve origin (2 left-sided and 3 right-sided cases). Two patients had bilateral migraines of greater occipital nerve origin, and unilateral right lesser occipital nerve origin was noted in one patient. The last patient had right-sided migraines of greater and lesser occipital nerve origin. As a result in the follow-up, a response rate greater than 90% was documented, and complete resolution was observed in 2 patients. Drug doses were reduced more than 50% in the remaining patients. The overall efficacy of occipital migraine surgery in this study was 88.8% (8/9 cases). Some patients with migraine are good candidates for surgical resolution with appropriate and meticulous selection. Similar to what is observed in Western

  6. Occipital artery vasculitis not identified as a mechanism of occipital neuralgia-related chronic migraine headaches.

    PubMed

    Ducic, Ivica; Felder, John M; Janis, Jeffrey E

    2011-10-01

    Recent evidence has shown that some cases of occipital neuralgia are attributable to musculofascial compression of the greater occipital nerve and improve with neurolysis. A mechanical interaction at the intersection of the nerve and the occipital artery may also be capable of producing neuralgia, although that mechanism remains one theoretical possibility among several. The authors evaluated the possibility of unrecognized vasculitis of the occipital artery as a potential mechanism of occipital neuralgia arising from the occipital artery/greater occipital nerve junction. Twenty-five patients with preoperatively documented bilateral occipital neuralgia-related chronic headaches underwent peripheral nerve surgery with decompression of the greater occipital nerve bilaterally, including the area of its intersection with the occipital artery. In 15 patients, a 2-cm segment of the occipital artery was excised and submitted for pathologic evaluation. All patients were evaluated intraoperatively for evidence of arterially mediated greater occipital nerve compression, and the configuration of the nerve-vessel intersection was noted. None of the 15 specimens submitted for pathologic evaluation showed vasculitis. Intraoperatively, all 50 sites examined showed an intimate physical association between the occipital artery and greater occipital nerve. Surgical specimens from this first in vivo study provided no histologic evidence of vasculitis as a cause of greater occipital nerve irritation at the occipital artery/greater occipital nerve junction in patients with chronic headaches caused by occipital neuralgia. Based on these findings, mechanical (and not primary inflammatory) irritation of the nerve by the occipital artery remains an important theoretical cause for otherwise idiopathic cases. The authors have adopted an operative technique that includes physical separation of the nerve-artery intersection (in addition to musculofascial neurolysis) for a more thorough

  7. Effects of Time-Compressed Speech Training on Multiple Functional and Structural Neural Mechanisms Involving the Left Superior Temporal Gyrus.

    PubMed

    Maruyama, Tsukasa; Takeuchi, Hikaru; Taki, Yasuyuki; Motoki, Kosuke; Jeong, Hyeonjeong; Kotozaki, Yuka; Nakagawa, Seishu; Nouchi, Rui; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Sakaki, Kohei; Sasaki, Yukako; Magistro, Daniele; Kawashima, Ryuta

    2018-01-01

    Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension.

  8. Effects of Time-Compressed Speech Training on Multiple Functional and Structural Neural Mechanisms Involving the Left Superior Temporal Gyrus

    PubMed Central

    Maruyama, Tsukasa; Taki, Yasuyuki; Motoki, Kosuke; Jeong, Hyeonjeong; Kotozaki, Yuka; Nakagawa, Seishu; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Sakaki, Kohei; Sasaki, Yukako; Magistro, Daniele; Kawashima, Ryuta

    2018-01-01

    Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension. PMID:29675038

  9. Development of brain networks involved in spoken word processing of Mandarin Chinese.

    PubMed

    Cao, Fan; Khalid, Kainat; Lee, Rebecca; Brennan, Christine; Yang, Yanhui; Li, Kuncheng; Bolger, Donald J; Booth, James R

    2011-08-01

    Developmental differences in phonological and orthographic processing of Chinese spoken words were examined in 9-year-olds, 11-year-olds and adults using functional magnetic resonance imaging (fMRI). Rhyming and spelling judgments were made to two-character words presented sequentially in the auditory modality. Developmental comparisons between adults and both groups of children combined showed that age-related changes in activation in visuo-orthographic regions depended on a task. There were developmental increases in the left inferior temporal gyrus and the right inferior occipital gyrus in the spelling task, suggesting more extensive visuo-orthographic processing in a task that required access to these representations. Conversely, there were developmental decreases in activation in the left fusiform gyrus and left middle occipital gyrus in the rhyming task, suggesting that the development of reading is marked by reduced involvement of orthography in a spoken language task that does not require access to these orthographic representations. Developmental decreases may arise from the existence of extensive homophony (auditory words that have multiple spellings) in Chinese. In addition, we found that 11-year-olds and adults showed similar activation in the left superior temporal gyrus across tasks, with both groups showing greater activation than 9-year-olds. This pattern suggests early development of perceptual representations of phonology. In contrast, 11-year-olds and 9-year-olds showed similar activation in the left inferior frontal gyrus across tasks, with both groups showing weaker activation than adults. This pattern suggests late development of controlled retrieval and selection of lexical representations. Altogether, this study suggests differential effects of character acquisition on development of components of the language network in Chinese as compared to previous reports on alphabetic languages. Published by Elsevier Inc.

  10. Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: Anatomical Stem-Based Virtual Dissection

    PubMed Central

    Hau, Janice; Sarubbo, Silvio; Perchey, Guy; Crivello, Fabrice; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Joliot, Marc; Mazoyer, Bernard M.; Tzourio-Mazoyer, Nathalie; Petit, Laurent

    2016-01-01

    We combined the neuroanatomists’ approach of defining a fascicle as all fibers passing through its compact stem with diffusion-weighted tractography to investigate the cortical terminations of two association tracts, the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF), which have recently been implicated in the ventral language circuitry. The aim was to provide a detailed and quantitative description of their terminations in 60 healthy subjects and to do so to apply an anatomical stem-based virtual dissection, mimicking classical post-mortem dissection, to extract with minimal a priori the IFOF and UF from tractography datasets. In both tracts, we consistently observed more extensive termination territories than their conventional definitions, within the middle and superior frontal, superior parietal and angular gyri for the IFOF and the middle frontal gyrus and superior, middle and inferior temporal gyri beyond the temporal pole for the UF. We revealed new insights regarding the internal organization of these tracts by investigating for the first time the frequency, distribution and hemispheric asymmetry of their terminations. Interestingly, we observed a dissociation between the lateral right-lateralized and medial left-lateralized fronto-occipital branches of the IFOF. In the UF, we observed a rightward lateralization of the orbito-frontal and temporal branches. We revealed a more detailed map of the terminations of these fiber pathways that will enable greater specificity for correlating with diseased populations and other behavioral measures. The limitations of the diffusion tensor model in this study are also discussed. We conclude that anatomical stem-based virtual dissection with diffusion tractography is a fruitful method for studying the structural anatomy of the human white matter pathways. PMID:27252628

  11. The course of the greater occipital nerve in the suboccipital region: a proposal for setting landmarks for local anesthesia in patients with occipital neuralgia.

    PubMed

    Natsis, K; Baraliakos, X; Appell, H J; Tsikaras, P; Gigis, I; Koebke, J

    2006-05-01

    The anatomical relationships of the greater occipital nerve (GON) to the semispinalis capitis muscle (SCM) and the trapezius muscle aponeurosis (TMA) were examined to identify topographic landmarks for use in anesthetic blockade of the GON in occipital neuralgia. The course and the diameter of the GON were studied in 40 cadavers (29 females, 11 males), and the points where it pierced the SCM and the TMA were identified. The course of the GON did not differ between males and females. A left-right difference was detected in the site of the GON in the TMA region but not in the SCM region. The nerve became wider towards the periphery. This may be relevant to entrapment of the nerve in the development of occipital neuralgia. In three cases, the GON split into two branches before piercing the TMA and reunited after having passed the TMA, and it pierced the obliquus capitis inferior muscle in another three cases. The GON and the lesser occipital nerve reunited at the level of the occiput in 80% of the specimens. The occiput and the nuchal midline are useful topographic landmarks to guide anesthetic blockade of the GON for diagnosis and therapy of occipital neuralgia. The infiltration is probably best aimed at the site where the SCM is pierced by the GON.

  12. Occipital neuralgia: anatomic considerations.

    PubMed

    Cesmebasi, Alper; Muhleman, Mitchel A; Hulsberg, Paul; Gielecki, Jerzy; Matusz, Petru; Tubbs, R Shane; Loukas, Marios

    2015-01-01

    Occipital neuralgia is a debilitating disorder first described in 1821 as recurrent headaches localized in the occipital region. Other symptoms that have been associated with this condition include paroxysmal burning and aching pain in the distribution of the greater, lesser, or third occipital nerves. Several etiologies have been identified in the cause of occipital neuralgia and include, but are not limited to, trauma, fibrositis, myositis, fracture of the atlas, and compression of the C-2 nerve root, C1-2 arthrosis syndrome, atlantoaxial lateral mass osteoarthritis, hypertrophic cervical pachymeningitis, cervical cord tumor, Chiari malformation, and neurosyphilis. The management of occipital neuralgia can include conservative approaches and/or surgical interventions. Occipital neuralgia is a multifactorial problem where multiple anatomic areas/structures may be involved with this pathology. A review of these etiologies may provide guidance in better understanding occipital neuralgia. © 2014 Wiley Periodicals, Inc.

  13. Distinct but Overlapping Patterns of Response to Words and Faces in the Fusiform Gyrus.

    PubMed

    Harris, Richard J; Rice, Grace E; Young, Andrew W; Andrews, Timothy J

    2016-07-01

    Converging evidence suggests that the fusiform gyrus is involved in the processing of both faces and words. We used fMRI to investigate the extent to which the representation of words and faces in this region of the brain is based on a common neural representation. In Experiment 1, a univariate analysis revealed regions in the fusiform gyrus that were only selective for faces and other regions that were only selective for words. However, we also found regions that showed both word-selective and face-selective responses, particularly in the left hemisphere. We then used a multivariate analysis to measure the pattern of response to faces and words. Despite the overlap in regional responses, we found distinct patterns of response to both faces and words in the left and right fusiform gyrus. In Experiment 2, fMR adaptation was used to determine whether information about familiar faces and names is integrated in the fusiform gyrus. Distinct regions of the fusiform gyrus showed adaptation to either familiar faces or familiar names. However, there was no adaptation to sequences of faces and names with the same identity. Taken together, these results provide evidence for distinct, but overlapping, neural representations for words and faces in the fusiform gyrus. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing

    PubMed Central

    Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.

    2013-01-01

    Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860

  15. Identification of greater occipital nerve landmarks for the treatment of occipital neuralgia.

    PubMed

    Loukas, M; El-Sedfy, A; Tubbs, R S; Louis, R G; Wartmann, C H T; Curry, B; Jordan, R

    2006-11-01

    Important structures involved in the pathogenesis of occipital headache include the aponeurotic attachments of the trapezius and semispinalis capitis muscles to the occipital bone. The greater occipital nerve (GON) can become entrapped as it passes through these aponeuroses, causing symptoms of occipital neuralgia. The aim of this study was to identify topographic landmarks for accurate identification of GON, which might facilitate its anaesthetic blockade. The course and distribution of GON and its relation to the aponeuroses of the trapezius and semispinalis capitis were examined in 100 formalin-fixed adult cadavers. In addition, the relative position of the nerve on a horizontal line between the external occipital protuberance and the mastoid process, as well as between the mastoid processes was measured. The greater occipital nerve was found bilaterally in all specimens. It was located at a mean distance of 3.8 cm (range 1.5-7.5 cm) lateral to a vertical line through the external occipital protuberance and the spinous processes of the cervical vertebrae 2-7. It was also located approximately 41% of the distance along the intermastoid line (medial to a mastoid process) and 22% of the distance between the external occipital protuberance and the mastoid process. The location of GON for anaesthesia or any other neurosurgical procedure has been established as one thumb's breadth lateral to the external occipital protuberance (2 cm laterally) and approximately at the base of the thumb nail (2 cm inferior). This is the first study proposing the use of landmarks in relation to anthropometric measurements. On the basis of these observations we propose a target zone for local anaesthetic injection that is based on easily identifiable landmarks and suggest that injection at this target point could be of benefit in the relief of occipital neuralgia.

  16. Functional mapping of language networks in the normal brain using a word-association task.

    PubMed

    Ghosh, Shantanu; Basu, Amrita; Kumaran, Senthil S; Khushu, Subash

    2010-08-01

    Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic association

  17. Attention Bias of Avoidant Individuals to Attachment Emotion Pictures.

    PubMed

    Liu, Ying; Ding, Yi; Lu, Luluzi; Chen, Xu

    2017-01-27

    How attachment style affects emotion processing is tightly connected with individuals' attention bias. This experiment explored avoidant individuals' attentional engagement and attentional disengagement using a cue-target paradigm in fMRI. The experimental group consisted of 17 avoidant participants, while the control group consisted of 16 secure participants; these were identified by the Experiences in Close Relationships inventory and the Relationship Questionnaire. Each reacted to pictures of positive parent-child attachment, negative parent-child attachment, positive romantic attachment, negative romantic attachment, and neutral non-attachment. Behaviorally, avoidant individuals were slower than secure individuals in responding to emotions and their attentional disengagement effect for negative parent-child emotions was stronger than positive ones. fMRI results showed that avoidant compared to secure individuals activated more strongly in the right superior temporal gyrus, middle occipital gyrus, and the left medial frontal gyrus, middle occipital gyrus, supplementary motor area, and cingulate gyrus. They also showed stronger activation in disengaging from positive than negative emotions in the bilateral fusiform and middle occipital gyri. In conclusion, avoidant individuals could detect emotions as effective as secure individuals in attentioal engaging stages. They can disengage from positive emotions with effective cognitive resources and were harder to get rid of negative emotions with insufficient resource.

  18. Increased temporal variability of striatum region facilitating the early antidepressant response in patients with major depressive disorder.

    PubMed

    Hou, Zhenghua; Kong, Youyong; He, Xiaofu; Yin, Yingying; Zhang, Yuqun; Yuan, Yonggui

    2018-07-13

    The aim of this study is to identify the difference of temporal variability among major depressive disorder (MDD) patients (with different early antidepressant responses) and healthy controls (HC), and further explore the relationship between pre-treatment temporal variability and early antidepressant response. At baseline, 77 treatment-naïve inpatients with MDD and 42 matched HC received clinical assessments and 3.0 Tesla resting-state functional magnetic resonance imaging scans. After 2 weeks' antidepressant treatment, the patients were subgrouped into responsive depression (RD, n = 40) and non-responding depression (NRD, n = 37) based on the reduction of Hamilton depression rating scale (HAMD). The temporal variability of 90 brain nodes was calculated for further analysis. Compared with the HC group, both the RD and NRD subjects showed greater baseline temporal variability (i.e., greater dynamic) in the left inferior occipital gyrus. Significantly greater temporal variability in the left pallidum was found in the RD group than the NRD and the HC groups, and the higher variability of left pallidum correlated positively with the HAMD reduction. Moreover, the pooled MDD (i.e., RD and NRD) group showed greater baseline temporal variability in the right inferior frontal gyrus, the left inferior occipital gyrus, the bilateral fusiform gyri and the left Heschl gyrus than the HC group. The distinctive pattern of dynamically reorganized networks may provide a crucial scaffold to facilitate early antidepressant response, and the temporal variability may serve as a promising indicator for the personalized therapy of MDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A diffusional kurtosis imaging study of idiopathic generalized epilepsy with unilateral interictal epileptiform discharges in children.

    PubMed

    Zhang, Yuzhen; Gao, Yu; Zhou, Minxiong; Wu, Jie; Zee, Chishing; Wang, Dengbin

    2016-10-01

    To investigate brain abnormalities in children with a clinical diagnosis of idiopathic generalized epilepsy (IGE) and unilateral interictal epileptiform discharges (IED) demonstrated on electroencephalography (EEG) by diffusional kurtosis imaging (DKI). DKI images were obtained from 18 patients (n=9 each in the left and right hemispheres). Fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) maps were estimated through voxel-based analyses, and compared with 18 normal controls matched for age and sex. In the left side group, the significant differences of FA were in the left fusiform gyrus and occipital lobe of the white matter (WM). The significant differences of MD were in the left pons. The significant differences of MK were in the anterior cingulate gyrus, limbic lobe, gray matter (GM) and WM of the right cerebrum. In the right side group, the significant differences of FA were in the WM of the left cerebrum. MD identified differences in the frontal, temporal, occipital, and parietal lobes of both hemispheres, especially in the limbic system, fusiform gyrus, uncus, and parahippocampal gyrus. The significant differences of MK were in the GM of the right cerebrum, particularly in the rolandic operculum and frontal lobe. DKI is sensitive for the detection of diffusion abnormalities in both WM and GM of IGE in children. Secondary brain abnormalities may exist in regions outside the unilateral epileptogenic zone through the limbic epileptic network, and can be detected by DKI indices FA, MD and MK. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Occipital Nerve Stimulation for the Treatment of Refractory Occipital Neuralgia: A Case Series.

    PubMed

    Keifer, Orion P; Diaz, Ashley; Campbell, Melissa; Bezchlibnyk, Yarema B; Boulis, Nicholas M

    2017-09-01

    Occipital neuralgia is a chronic pain syndrome characterized by sharp, shooting pains in the distribution of the occipital nerves. Although relatively rare, it associated with extremely debilitating symptoms that drastically affect a patient's quality of life. Furthermore, it is extremely difficult to treat as the symptoms are refractory to traditional treatments, including pharmacologic and procedural interventions. A few previous case studies have established the use of a neurostimulation of the occipital nerves to treat occipital neuralgia. The following expands on that literature by retrospectively reviewing the results of occipital nerve stimulation in a relatively large patient cohort (29 patients). A retrospective review of 29 patients undergoing occipital nerve stimulation for occipital neuralgia from 2012 to 2017 at a single institution with a single neurosurgeon. Of those 29 patients, 5 were repair or replacement of previous systems, 4 did not have benefit from trial stimulation, and 20 saw benefit to their trial stage of stimulation and went on to full implantation. Of those 20 patients, even with a history of failed procedures and pharmacological therapies, there was an overall success rate of 85%. The average preoperative 10-point pain score dropped from 7.4 ± 1.7 to a postoperative score of 2.9 ± 1.7. However, as with any peripheral nerve stimulation procedure, there were complications (4 patients), including infection, hardware erosion, loss of effect, and lead migration, which required revision or system removal. Despite complications, the results suggest, overall, that occipital nerve stimulation is a safe and effective procedure for refractory occipital neuralgia and should be in the neurosurgical repertoire for occipital neuralgia treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Application of Normative Occipital Condyle-C1 Interval Measurements to Detect Atlanto-Occipital Injury in Children.

    PubMed

    Corcoran, B; Linscott, L L; Leach, J L; Vadivelu, S

    2016-05-01

    Prior studies have found that widening or asymmetry of the occipital condyle-C1 interval on CT is a sensitive and specific marker for atlanto-occipital dislocation. Previously reported abnormal occipital condyle-C1 interval values are not age-specific, possibly leading to false-positive findings in younger children, in whom this joint space is normally larger than that in adults. This study assesses the utility of applying age-specific normative occipital condyle-C1 interval ranges to documented cases of atlanto-occipital injury compared with previously reported abnormal cutoff values. Retrospective review of CT and MR imaging of 14 subjects with atlanto-occipital injury was performed, and occipital condyle-C1 interval measurements were made for each subject. Sensitivities and specificities of proposed occipital condyle-C1 interval cutoffs of 2 and 3 SDs above the mean and previously published occipital condyle-C1 interval cutoffs for atlanto-occipital injury were then calculated on the basis of occipital condyle-C1 interval measurements for each subject. An occipital condyle-C1 interval 2 SDs above the age-specific mean has a sensitivity of 50% and specificity of 89%-100%, depending on the age group. An occipital condyle-C1 interval 3 SDs above the age-specific mean has a sensitivity of 50% and a specificity of 95%-100%. A 4.0-mm occipital condyle-C1 interval has a sensitivity of 36% and a specificity of 100% in all age groups. A 2.5-mm occipital condyle-C1 interval has a sensitivity of 93% and a specificity of 18%-100%. Occipital condyle-C1 interval widening cutoffs used to establish atlanto-occipital injury lack both sensitivity and specificity in children and young teenagers. MR imaging is necessary to establish a diagnosis of atlanto-occipital injury in children and young teenagers when the appropriate mechanism of injury is present. © 2016 by American Journal of Neuroradiology.

  2. Occipital GABA correlates with cognitive failures in daily life.

    PubMed

    Sandberg, Kristian; Blicher, Jakob Udby; Dong, Mia Yuan; Rees, Geraint; Near, Jamie; Kanai, Ryota

    2014-02-15

    The brain has limited capacity, and so selective attention enhances relevant incoming information while suppressing irrelevant information. This process is not always successful, and the frequency of such cognitive failures varies to a large extent between individuals. Here we hypothesised that individual differences in cognitive failures might be reflected in inhibitory processing in the sensory cortex. To test this hypothesis, we measured GABA in human visual cortex using MR spectroscopy and found a negative correlation between occipital GABA (GABA+/Cr ratio) and cognitive failures as measured by an established cognitive failures questionnaire (CFQ). For a second site in parietal cortex, no correlation between CFQ score and GABA+/Cr ratio was found, thus establishing the regional specificity of the link between occipital GABA and cognitive failures. We further found that grey matter volume in the left superior parietal lobule (SPL) correlated with cognitive failures independently from the impact of occipital GABA and together, occipital GABA and SPL grey matter volume statistically explained around 50% of the individual variability in daily cognitive failures. We speculate that the amount of GABA in sensory areas may reflect the potential capacity to selectively suppress irrelevant information already at the sensory level, or alternatively that GABA influences the specificity of neural representations in visual cortex thus improving the effectiveness of successful attentional modulation. © 2013. Published by Elsevier Inc. All rights reserved.

  3. Functional Connectivity Density Mapping of Depressive Symptoms and Loneliness in Non-Demented Elderly Male

    PubMed Central

    Lan, Chen-Chia; Tsai, Shih-Jen; Huang, Chu-Chung; Wang, Ying-Hsiu; Chen, Tong-Ru; Yeh, Heng-Liang; Liu, Mu-En; Lin, Ching-Po; Yang, Albert C.

    2016-01-01

    Background: Depression and loneliness are prevalent and highly correlated phenomena among the elderly and influence both physical and mental health. Brain functional connectivity changes associated with depressive symptoms and loneliness are not fully understood. Methods: A cross-sectional functional MRI study was conducted among 85 non-demented male elders. Geriatric depression scale-short form (GDS) and loneliness scale were used to evaluate the severity of depressive symptoms and loneliness, respectively. Whole brain voxel-wise resting-state functional connectivity density (FCD) mapping was performed to delineate short-range FCD (SFCD) and long-range FCD (LFCD). Regional correlations between depressive symptoms or loneliness and SFCD or LFCD were examined using general linear model (GLM), with age incorporated as a covariate and depressive symptoms and loneliness as predictors. Results: Positive correlations between depressive symptoms and LFCD were observed in left rectal gyrus, left superior frontal gyrus, right supraorbital gyrus, and left inferior temporal gyrus. Positive correlations between depressive symptoms and SFCD were observed in left middle frontal gyrus, left superior frontal gyrus, bilateral superior medial frontal gyrus, left inferior temporal gyrus, and left middle occipital region. Positive correlations between SFCD and loneliness were centered over bilateral lingual gyrus. Conclusion: Depressive symptoms are associated with FCD changes over frontal and temporal regions, which may involve the cognitive control, affective regulation, and default mode networks. Loneliness is associated with FCD changes in bilateral lingual gyri that are known to be important in social cognition. Depressive symptoms and loneliness may be associated with different brain regions in non-demented elderly male. PMID:26793101

  4. Headache Following Occipital Brain Lesion: A Case of Migraine Triggered by Occipital Spikes?

    PubMed

    Vollono, Catello; Mariotti, Paolo; Losurdo, Anna; Giannantoni, Nadia Mariagrazia; Mazzucchi, Edoardo; Valentini, Piero; De Rose, Paola; Della Marca, Giacomo

    2015-10-01

    This study describes the case of an 8-year-old boy who developed a genuine migraine after the surgical excision, from the right occipital lobe, of brain abscesses due to selective infestation of the cerebrum by Entamoeba histolytica. After the surgical treatment, the boy presented daily headaches with typical migraine features, including right-side parieto-temporal pain, nausea, vomiting, and photophobia. Electroencephalography (EEG) showed epileptiform discharges in the right occipital lobe, although he never presented seizures. Clinical and neurophysiological observations were performed, including video-EEG and polygraphic recordings. EEG showed "interictal" epileptiform discharges in the right occipital lobe. A prolonged video-EEG recording performed before, during, and after an acute attack ruled out ictal or postictal migraine. In this boy, an occipital lesion caused occipital epileptiform EEG discharges without seizures, probably prevented by the treatment. We speculate that occipital spikes, in turn, could have caused a chronic headache with features of migraine without aura. Occipital epileptiform discharges, even in absence of seizures, may trigger a genuine migraine, probably by means of either the trigeminovascular or brainstem system. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  5. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    PubMed

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.

  6. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    PubMed

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  7. Brain responses to symptom provocation and trauma-related short-term memory recall in coal mining accident survivors with acute severe PTSD.

    PubMed

    Hou, Cailan; Liu, Jun; Wang, Kun; Li, Lingjiang; Liang, Meng; He, Zhong; Liu, Yong; Zhang, Yan; Li, Weihui; Jiang, Tianzi

    2007-05-04

    Functional neuroimaging studies have largely been performed in patients with longstanding chronic posttraumatic stress disorder (PTSD). Additionally, memory function of PTSD patients has been proved to be impaired. We sought to characterize the brain responses of patients with acute PTSD and implemented a trauma-related short-term memory recall paradigm. Individuals with acute severe PTSD (n=10) resulting from a mining accident and 7 men exposed to the mining accident without PTSD underwent functional magnetic resonance imaging (fMRI) while performing the symptom provocation and trauma-related short-term memory recall paradigms. During symptom provocation paradigm, PTSD subjects showed diminished responses in right anterior cingulate gyrus, left inferior frontal gyrus and bilateral middle frontal gyrus and enhanced left parahippocampal gyrus response compared with controls. During the short-term memory recall paradigm, PTSD group showed diminished responses in right inferior frontal gyrus, right middle frontal and left middle occipital gyrus in comparison with controls. PTSD group exhibited diminished right parahippocampal gyrus response during the memory recall task as compared to the symptom provocation task. Our findings suggest that neurophysiological alterations and memory performance deficit have developed in acute severe PTSD.

  8. Intrinsic functional network architecture of human semantic processing: Modules and hubs.

    PubMed

    Xu, Yangwen; Lin, Qixiang; Han, Zaizhu; He, Yong; Bi, Yanchao

    2016-05-15

    Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Ultrasound-guided greater occipital nerve blocks and pulsed radiofrequency ablation for diagnosis and treatment of occipital neuralgia.

    PubMed

    Vanderhoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-09-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves.

  10. Ultrasound-Guided Greater Occipital Nerve Blocks and Pulsed Radiofrequency Ablation for Diagnosis and Treatment of Occipital Neuralgia

    PubMed Central

    VanderHoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-01-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves. PMID:24282778

  11. Can proximity of the occipital artery to the greater occipital nerve act as a cause of idiopathic greater occipital neuralgia? An anatomical and histological evaluation of the artery-nerve relationship.

    PubMed

    Shimizu, Satoru; Oka, Hidehiro; Osawa, Shigeyuki; Fukushima, Yutaka; Utsuki, Satoshi; Tanaka, Ryusui; Fujii, Kiyotaka

    2007-06-01

    The purpose of this study was to clarify whether proximity of the occipital artery to the greater occipital nerve can act as a cause of occipital neuralgia, analogous to the contribution of intracranial vessels due to compression in cranial nerve neuralgias, represented by trigeminal neuralgias due to compression of the trigeminal nerve root by adjacent arterial loops. Twenty-four suboccipital areas in cadaver heads were studied for anatomical relationships between the occipital artery and the greater occipital nerve, with histopathological assessment of the greater occipital nerve for signs of mechanical damage. The occipital artery and greater occipital nerve were found to cross each other in the nuchal subcutaneous layer, and the latter was constantly situated superficial to the former at the cross point. An indentation of the greater occipital nerve due to the occipital artery was observed at the cross point in all specimens. However, histopathological examination did not reveal any findings of damage to nerves, even in specimens with atherosclerosis of the occipital artery. Although the present study did not provide direct evidence that the occipital artery contributes to occipital neuralgia at the point of contact with the greater occipital nerve, the possibility still cannot be precluded, because the occipital artery may be palpable in areas corresponding to tenderness of the greater occipital nerve. Further studies, including clinical cases, are needed to clarify this issue.

  12. Pulsed radiofrequency for occipital neuralgia.

    PubMed

    Manolitsis, Nicholas; Elahi, Foad

    2014-01-01

    The clinical application of pulsed radiofrequency (PRF) by interventional pain physicians for a variety of chronic pain syndromes, including occipital neuralgia, is growing. As a minimally invasive percutaneous technique with none to minimal neurodestruction and a favorable side effect profile, use of PRF as an interventional neuromodulatory chronic pain treatment is appealing. Occipital neuralgia, also known as Arnold's neuralgia, is defined by the International Headache Society as a paroxysmal, shooting or stabbing pain in the greater, lesser, and/or third occipital nerve distributions. Pain intensity is often severe and debilitating, with an associated negative impact upon quality of life and function. Most cases of occipital neuralgia are idiopathic, with no clearly identifiable structural etiology. Treatment of occipital neuralgia poses inherent challenges as no criterion standard exists. Initially, conservative treatment options such as physical therapy and pharmacotherapy are routinely trialed. When occipital neuralgia is refractory to conservative measures, a number of interventional treatment options exist, including: local occipital nerve anesthetic and corticosteroid infiltration, botulinum toxin A injection, occipital nerve subcutaneous neurostimulation, and occipital nerve PRF. Of these, PRF has garnered significant interest as a potentially superior, safe, non-invasive treatment with long-term efficacy. The objective of this article is to provide a concise review of occipital neuralgia; and a concise, yet thorough, evidence-based review of the current literature concerning the use of PRF for occipital neuralgia. Review of published medical literature up through April 2013. The Center for Pain Medicine and Regional Anesthesia, the University of Iowa Hospitals and Clinics. A total of 3 clinical studies and one case report investigating the use of PRF for knee occipital neuralgia have been published worldwide. Statistically significant improvements in

  13. Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex.

    PubMed

    Rivera, S M; Reiss, A L; Eckert, M A; Menon, V

    2005-11-01

    Arithmetic reasoning is arguably one of the most important cognitive skills a child must master. Here we examine neurodevelopmental changes in mental arithmetic. Subjects (ages 8-19 years) viewed arithmetic equations and were asked to judge whether the results were correct or incorrect. During two-operand addition or subtraction trials, for which accuracy was comparable across age, older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. These age-related changes were not associated with alterations in gray matter density, and provide novel evidence for increased functional maturation with age. By contrast, younger subjects showed greater activation in the prefrontal cortex, including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex, suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of mental arithmetic performance. Younger subjects also showed greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems. Our findings provide evidence for a process of increased functional specialization of the left inferior parietal cortex in mental arithmetic, a process that is accompanied by decreased dependence on memory and attentional resources with development.

  14. What is the impact of child abuse on gray matter abnormalities in individuals with major depressive disorder: a case control study.

    PubMed

    Ahn, Sung Jun; Kyeong, Sunghyon; Suh, Sang Hyun; Kim, Jae-Jin; Chung, Tae-Sub; Seok, Jeong-Ho

    2016-11-14

    Patients with major depressive disorder (MDD) present heterogeneous clinical symptoms, and childhood abuse is associated with deepening of psychopathology. The aim of this study was to identify structural brain abnormalities in MDD and to assess further differences in gray matter density (GMD) associated with childhood abuse in MDD. Differences in regional GMD between 34 MDD patients and 26 healthy controls were assessed using magnetic resonance imaging and optimized voxel-based morphometry. Within the MDD group, further comparisons were performed focusing on the experience of maltreatment during childhood (23 MDD with child abuse vs 11 MDD without child abuse). Compared with healthy controls, the MDD patient group showed decreased GMD in the bilateral orbitofrontal cortices, right superior frontal gyrus, right posterior cingulate gyrus, bilateral middle occipital gyri, and left cuneus. In addition, the patient group showed increased GMD in bilateral postcentral gyri, parieto-occipital cortices, putamina, thalami, and hippocampi, and left cerebellar declive and tuber of vermis. Within the MDD patient group, the subgroup with abuse showed a tendency of decreased GMD in right orbitofrontal cortex, but showed increased GMD in the left postcentral gyrus compared to the subgroup without abuse. Our findings suggest a complicated dysfunction of networks between cortical-subcortical circuits in MDD. In addition, increased GMD in postcentral gyrus and a possible reduction of GMD in the orbitofrontal cortex of MDD patients with abuse subgroup may be associated with abnormalities of body perception and emotional dysregulation.

  15. Functional network centrality in obesity: A resting-state and task fMRI study.

    PubMed

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Ultrasound-Guided Intermediate Site Greater Occipital Nerve Infiltration: A Technical Feasibility Study.

    PubMed

    Zipfel, Jonathan; Kastler, Adrian; Tatu, Laurent; Behr, Julien; Kechidi, Rachid; Kastler, Bruno

    2016-01-01

    Two studies recently reported that computed tomography (CT) guided infiltration of the greater occipital nerve at its intermediate site allows a high efficacy rate with long-lasting pain relief following procedure in occipital neuralgia and in various craniofacial pain syndromes. The purpose of our study was to evaluate the technical feasibility and safety of ultrasound-guided intermediate site greater occipital nerve infiltration. Retrospective study. This study was conducted at the imaging department of a 1,409 bed university hospital. Local institutional review board approval was obtained and written consent was waived. In this retrospective study, 12 patients suffering from refractory occipital neuralgia or craniofacial pain syndromes were included between April and October 2014. They underwent a total of 21 ultrasound-guided infiltrations. Infiltration of the greater occipital nerve was performed at the intermediate site of the greater occipital nerve, at its first bend between obliqus capitis inferior and semispinalis capitis muscles with local anestetics and cortivazol. Technical success was defined as satisfactory diffusion of added iodinated contrast media in the fatty space between these muscles depicted on control CT scan. We also reported first data of immediate block test efficacy and initial clinical efficacy at 7 days, one month, and 3 months, defined by a decrease of at least 50% of visual analog scale (VAS) scores. Technical success rate was 95.24%. Patients suffered from right unilateral occipital neuralgia in 3 cases, left unilateral occipital neuralgia in 2 cases, bilateral occipital neuralgia in 2 cases, migraine in one case, cervicogenic headache in one case, tension-type headache in 2 cases, and cluster headache in one case. Block test efficacy was found in 93.3% (14/15) cases. Clinical efficacy was found in 80% of cases at 7 days, in 66.7% of cases at one month and in 60% of cases at 3 months. No major complications were noted. Some of the

  17. Cervical myelitis presenting as occipital neuralgia.

    PubMed

    Noh, Sang-Mi; Kang, Hyun Goo

    2018-07-01

    Occipital neuralgia is a common form of headache that is characterized by paroxysmal severe lancinating pain in the occipital nerve distribution. The exact pathophysiology is still not fully understood and occipital neuralgia often develops spontaneously. There are no specific guidelines for evaluation of patients with occipital neuralgia. Cervical spine, spinal cord and posterior neck muscle lesions can induce occipital neuralgia. Brain and spine imaging may be necessary in some cases, according to the nature of the headache or response to treatment. We report a case of cervical myelitis presenting as occipital neuralgia.

  18. Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition.

    PubMed

    Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2017-05-01

    The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.

  19. Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis.

    PubMed

    Li, Haijun; Li, Lan; Shao, Yi; Gong, Honghan; Zhang, Wei; Zeng, Xianjun; Ye, Chenglong; Nie, Si; Chen, Liting; Peng, Dechang

    2016-01-01

    Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively reduced and increased DC. This expands

  20. Postoperative headache following acoustic neuroma resection: occipital nerve injuries are associated with a treatable occipital neuralgia.

    PubMed

    Ducic, Ivica; Felder, John M; Endara, Matthew

    2012-01-01

    To demonstrate that occipital nerve injury is associated with chronic postoperative headache in patients who have undergone acoustic neuroma excision and to determine whether occipital nerve excision is an effective treatment for these headaches. Few previous reports have discussed the role of occipital nerve injury in the pathogenesis of the postoperative headache noted to commonly occur following the retrosigmoid approach to acoustic neuroma resection. No studies have supported a direct etiologic link between the two. The authors report on a series of acoustic neuroma patients with postoperative headache presenting as occipital neuralgia who were found to have occipital nerve injuries and were treated for chronic headache by excision of the injured nerves. Records were reviewed to identify patients who had undergone surgical excision of the greater and lesser occipital nerves for refractory chronic postoperative headache following acoustic neuroma resection. Primary outcomes examined were change in migraine headache index, change in number of pain medications used, continued use of narcotics, patient satisfaction, and change in quality of life. Follow-up was in clinic and via telephone interview. Seven patients underwent excision of the greater and lesser occipital nerves. All met diagnostic criteria for occipital neuralgia and failed conservative management. Six of 7 patients experienced pain reduction of greater than 80% on the migraine index. Average pain medication use decreased from 6 to 2 per patient; 3 of 5 patients achieved independence from narcotics. Six patients experienced 80% or greater improvement in quality of life at an average follow-up of 32 months. There was one treatment failure. Occipital nerve neuroma or nerve entrapment was identified during surgery in all cases where treatment was successful but not in the treatment failure. In contradistinction to previous reports, we have identified a subset of patients in whom the syndrome of

  1. C1-C2 instability with severe occipital headache in the setting of vertebral artery facet complex erosion.

    PubMed

    Taher, Fadi; Bokums, Kristaps; Aichmair, Alexander; Hughes, Alexander P

    2014-05-01

    An exact understanding of patient vertebral artery anatomy is essential to safely place screws at the atlanto-axial level in posterior arthrodesis. We aim to report a case of erosion of the left vertebral artery into the C1-C2 facet complex with resultant rotatory and lateral listhesis presenting with severe occipital headache. This represents a novel etiology for this diagnosis and our report illustrates technical considerations when instrumenting the C1-C2 segment. We report a case of severe occipital headache due to C1-C2 instability with resultant left C2 nerve compression in the setting of erosion of the vertebral artery into the C1-C2 facet complex. A 68-year-old woman presented with a 12-month history of progressively debilitating headache and neck pain with atlanto-axial instability. Computed tomography (CT) angiography demonstrated erosion of the left vertebral artery into the left C1-C2 facet complex. In addition, the tortuous vertebral arteries had eroded into the C2 pedicles, eliminating the possibility for posterior pedicle screw placement. The patient underwent posterior arthrodesis of C1-C2 utilizing bilateral lateral mass fixation into C1 and bilateral trans-laminar fixation into C2 with resolution of all preoperative complaints. This study constitutes the first report of a tortuous vertebral artery causing the partial destruction of a C1-C2 facet complex, as well as instability, with the clinical presentation of severe occipital headache. It hereby presents a novel etiology for both the development of C1-C2 segment instability as well as the development of occipital headache. Careful evaluation of such lesions utilizing CT angiography is important when formulating a surgical plan.

  2. Charles Bonnet Syndrome in a Patient With Right Medial Occipital Lobe Infarction: Epileptic or Deafferentation Phenomenon?

    PubMed

    Kumral, Emre; Uluakay, Arzu; Dönmez, İlknur

    2015-07-01

    Charles Bonnet syndrome (CBS) is an uncommon disorder characterized by complex and recurrent visual hallucinations in patients with visual pathway pathologic defects. To describe a patient who experienced complex visual hallucinations following infarction in the right occipital lobe and epileptic seizure who was diagnosed as having CBS. A 65-year-old man presented acute ischemic stroke caused by artery to artery embolism involving the right occipital lobe. Following ischemic stroke, complex visual hallucinations in the left visual field not associated with loss of consciousness or delusion developed in the patient. Hallucinations persisted for >1 month and during hallucination, no electrographic seizures were recorded through 24 hours of videoelectroencephalographic monitoring. CBS may develop in a patient with occipital lobe infarction following an embolic event. CBS associated with medial occipital lobe infarction and epilepsy may coexist and reflects the abnormal functioning of an integrated neuronal network.

  3. Cortical thickness and surface area in neonates at high risk for schizophrenia.

    PubMed

    Li, Gang; Wang, Li; Shi, Feng; Lyall, Amanda E; Ahn, Mihye; Peng, Ziwen; Zhu, Hongtu; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2016-01-01

    Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness and cortical surface area. However, it is unclear whether these abnormalities exist in neonates associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21) who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex was computed as the shortest distance between the inner and outer surfaces. Comparisons were made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had significantly thinner cortical thickness in the right lateral occipital cortex than the female control neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital cortex, compared with the control neonates. Before FDR correction, in comparison with control neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also had significantly

  4. Correlation between white matter damage and gray matter lesions in multiple sclerosis patients.

    PubMed

    Han, Xue-Mei; Tian, Hong-Ji; Han, Zheng; Zhang, Ce; Liu, Ying; Gu, Jie-Bing; Bakshi, Rohit; Cao, Xia

    2017-05-01

    We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe (postcentral and inferior parietal gyri), right temporal lobe (caudate nucleus), right occipital lobe (middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.

  5. Changes in brain activity in response to problem solving during the abstinence from online game play.

    PubMed

    Kim, Sun Mi; Han, Doug Hyun; Lee, Young Sik; Kim, Jieun E; Renshaw, Perry F

    2012-06-01

    Several studies have suggested that addictive disorders including substance abuse and pathologic gambling might be associated with dysfunction on working memory and prefrontal activity. We hypothesized that excessive online game playing is associated with deficits in prefrontal cortex function and that recovery from excessive online game playing might improve prefrontal cortical activation in response to working memory stimulation. Thirteen adolescents with excessive online game playing (AEOP) and ten healthy adolescents (HC) agreed to participate in this study. The severity of online game play and playing time were evaluated for a baseline measurement and again following four weeks of treatment. Brain activation in response to working memory tasks (simple and complex calculations) at baseline and subsequent measurements was assessed using BOLD functional magnetic resonance imaging (fMRI). Compared to the HC subjects, the AEOP participants exhibited significantly greater activity in the right middle occipital gyrus, left cerebellum posterior lobe, left premotor cortex and left middle temporal gyrus in response to working memory tasks during baseline measurements. After four weeks of treatment, the AEOP subjects showed increased activity within the right dorsolateral prefrontal cortex and left occipital fusiform gyrus. After four weeks of treatment, changes in the severity of online game playing were negatively correlated with changes in the mean β value of the right dorsolateral prefrontal cortex in response to complex stimulation. We suggest that the effects of online game addiction on working memory may be similar to those observed in patients with substance dependence.

  6. Altered amygdala and hippocampus effective connectivity in mild cognitive impairment patients with depression: a resting-state functional MR imaging study with granger causality analysis

    PubMed Central

    Zhang, Xin Yuan; Wang, Yun Fei; Liu, Ya; Zheng, Gang; Lu, Guang Ming; Zhang, Long Jiang; Han, Ying

    2017-01-01

    Neuroimaging studies have demonstrated that the major depression disorder would increase the risk of dementia in the older with amnestic cognitive impairment. We used granger causality analysis algorithm to explore the amygdala- and hippocampus-based directional connectivity patterns in 12 patients with major depression disorder and amnestic cognitive impairment (mean age: 69.5 ± 10.3 years), 13 amnestic cognitive impairment patients (mean age: 72.7 ± 8.5 years) and 14 healthy controls (mean age: 64.7 ± 7.0 years). Compared with amnestic cognitive impairment patients and control groups respectively, the patients with both major depression disorder and amnestic cognitive impairment displayed increased effective connectivity from the right amygdala to the right lingual and calcarine gyrus, as well as to the bilateral supplementary motor areas. Meanwhile, the patients with both major depression disorder and amnestic cognitive impairment had enhanced effective connectivity from the left superior parietal gyrus, superior and middle occipital gyrus to the left hippocampus, the z values of which was also correlated with the scores of mini-mental state examination and auditory verbal learning test-immediate recall. Our findings indicated that the directional effective connectivity of right amygdala - occipital-parietal lobe – left hippocampus might be the pathway by which major depression disorder inhibited the brain activity in patients with amnestic cognitive impairment. PMID:28212570

  7. Altered amygdala and hippocampus effective connectivity in mild cognitive impairment patients with depression: a resting-state functional MR imaging study with granger causality analysis.

    PubMed

    Zheng, Li Juan; Yang, Gui Fen; Zhang, Xin Yuan; Wang, Yun Fei; Liu, Ya; Zheng, Gang; Lu, Guang Ming; Zhang, Long Jiang; Han, Ying

    2017-04-11

    Neuroimaging studies have demonstrated that the major depression disorder would increase the risk of dementia in the older with amnestic cognitive impairment. We used granger causality analysis algorithm to explore the amygdala- and hippocampus-based directional connectivity patterns in 12 patients with major depression disorder and amnestic cognitive impairment (mean age: 69.5 ± 10.3 years), 13 amnestic cognitive impairment patients (mean age: 72.7 ± 8.5 years) and 14 healthy controls (mean age: 64.7 ± 7.0 years). Compared with amnestic cognitive impairment patients and control groups respectively, the patients with both major depression disorder and amnestic cognitive impairment displayed increased effective connectivity from the right amygdala to the right lingual and calcarine gyrus, as well as to the bilateral supplementary motor areas. Meanwhile, the patients with both major depression disorder and amnestic cognitive impairment had enhanced effective connectivity from the left superior parietal gyrus, superior and middle occipital gyrus to the left hippocampus, the z values of which was also correlated with the scores of mini-mental state examination and auditory verbal learning test-immediate recall. Our findings indicated that the directional effective connectivity of right amygdala - occipital-parietal lobe - left hippocampus might be the pathway by which major depression disorder inhibited the brain activity in patients with amnestic cognitive impairment.

  8. Face-name association task reveals memory networks in patients with left and right hippocampal sclerosis.

    PubMed

    Klamer, Silke; Milian, Monika; Erb, Michael; Rona, Sabine; Lerche, Holger; Ethofer, Thomas

    2017-01-01

    We aimed to identify reorganization processes of episodic memory networks in patients with left and right temporal lobe epilepsy (TLE) due to hippocampal sclerosis as well as their relations to neuropsychological memory performance. We investigated 28 healthy subjects, 12 patients with left TLE (LTLE) and 9 patients with right TLE (RTLE) with hippocampal sclerosis by means of functional magnetic resonance imaging (fMRI) using a face-name association task, which combines verbal and non-verbal memory functions. Regions-of-interest (ROIs) were defined based on the group results of the healthy subjects. In each ROI, fMRI activations were compared across groups and correlated with verbal and non-verbal memory scores. The face-name association task yielded activations in bilateral hippocampus (HC), left inferior frontal gyrus (IFG), left superior frontal gyrus (SFG), left superior temporal gyrus, bilateral angular gyrus (AG), bilateral medial prefrontal cortex and right anterior temporal lobe (ATL). LTLE patients demonstrated significantly less activation in the left HC and left SFG, whereas RTLE patients showed significantly less activation in the HC bilaterally, the left SFG and right AG. Verbal memory scores correlated with activations in the left and right HC, left SFG and right ATL and non-verbal memory scores with fMRI activations in the left and right HC and left SFG. The face-name association task can be employed to examine functional alterations of hippocampal activation during encoding of both verbal and non-verbal material in one fMRI paradigm. Further, the left SFG seems to be a convergence region for encoding of verbal and non-verbal material.

  9. 1H magnetic resonance spectroscopy evidence for occipital involvement in treatment-naive paediatric obsessive-compulsive disorder.

    PubMed

    Ljungberg, Maria; Nilsson, Marie K L; Melin, Karin; Jönsson, Lars; Carlsson, Arvid; Carlsson, Åsa; Forssell-Aronsson, Eva; Ivarsson, Tord; Carlsson, Maria; Starck, Göran

    2017-06-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder leading to considerable distress and disability. Therapies are effective in a majority of paediatric patients, however, many only get partial response. It is therefore important to study the underlying pathophysiology of the disorder. 1H magnetic resonance spectroscopy (MRS) was used to study the concentration of brain metabolites in four different locations (cingulate gyrus and sulcus, occipital cortex, thalamus and right caudate nucleus). Treatment-naive children and adolescents with OCD (13 subjects) were compared with a group of healthy age- and gender-matched subjects (11 subjects). Multivariate analyses were performed on the concentration values. No separation between controls and patients was found. However, a correlation between metabolite concentrations and symptom severity as measured with the Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) was found. Strongest was the correlation with the CY-BOCS obsession subscore and aspartate and choline in the caudate nucleus (positively correlated with obsessions), lipids at 2 and 0.9 ppm in thalamus, and occipital glutamate+glutamine, N-acetylaspartate and myo-inosytol (negatively correlated with obsessions). The observed correlations between 1H MRS and CY-BOCS in treatment-naive patients further supports an occipital involvement in OCD. The results are consistent with our previous study on adult OCD patients. The 1H MRS data were not supportive of a separation between the patient and control groups.

  10. Altered Spontaneous Activity in Anisometropic Amblyopia Subjects: Revealed by Resting-State fMRI

    PubMed Central

    Lin, Xiaoming; Ding, Kun; Liu, Yong; Yan, Xiaohe; Song, Shaojie; Jiang, Tianzi

    2012-01-01

    Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo), a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to investigate changes in resting-state local spontaneous brain activity in individuals with anisometropic amblyopia. Compared with age- and gender-matched subjects with normal vision, the anisometropic amblyopia subjects showed decreased ReHo of spontaneous brain activity in the right precuneus, the left medial prefrontal cortex, the left inferior frontal gyrus, and the left cerebellum, and increased ReHo of spontaneous brain activity was found in the bilateral conjunction area of the postcentral and precentral gyri, the left paracentral lobule, the left superior temporal gyrus, the left fusiform gyrus, the conjunction area of the right insula, putamen and the right middle occipital gyrus. The observed decreases in ReHo may reflect decreased visuo-motor processing ability, and the increases in ReHo in the somatosensory cortices, the motor areas and the auditory area may indicate compensatory plasticity in amblyopia. PMID:22937041

  11. Adverse effect profile of lidocaine injections for occipital nerve block in occipital neuralgia.

    PubMed

    Sahai-Srivastava, Soma; Subhani, Dawood

    2010-12-01

    To determine whether there are differences in the adverse effect profile between 1, 2 and 5% Lidocaine when used for occipital nerve blocks (ONB) in patients with occipital neuralgia. Occipital neuralgia is an uncommon cause of headaches. Little is known regarding the safety of Lidocaine injections for treatment in larger series of patients. Retrospective chart analysis of all ONB was performed at our headache clinic during a 6-year period on occipital neuralgia patients. 89 consecutive patients with occipital neuralgia underwent a total of 315 ONB. All the patients fulfilled the IHS criteria for Occipital Neuralgia. Demographic data were collected including age, gender, and ethnicity. The average age of this cohort was 53.25 years, and the majority of patients were females 69 (78%). Ethnicity of patients was diverse, with Caucasian 48(54%), Hispanics 31(35%), and others 10 (11%). 69 patients had 1%, 18 patients had 2% and 29 patient were given 5% Lidocaine. All Lidocaine injections were given with 20 mg Depo-medrol and the same injection technique and location were used for all the procedures. Eight patients (9%)had adverse effects to the Lidocaine and Depo-medrol injections, of which 5 received 5% and 3 received 1% Lidocaine. Majority of patients who had adverse effects were female 7(87%), and had received bilateral blocks (75%). ONB is a safe procedure with 1% Lidocaine; however, caution should be exerted with 5% in elderly patients, 70 or older, especially when administering bilateral injections.

  12. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.

    PubMed

    Vander Ghinst, Marc; Bourguignon, Mathieu; Op de Beeck, Marc; Wens, Vincent; Marty, Brice; Hassid, Sergio; Choufani, Georges; Jousmäki, Veikko; Hari, Riitta; Van Bogaert, Patrick; Goldman, Serge; De Tiège, Xavier

    2016-02-03

    auditory scene and how increasing background noise corrupts this process is still debated. In this magnetoencephalography study, subjects had to attend a speech stream with or without multitalker background noise. Results argue for frequency-dependent cortical tracking mechanisms for the attended speech stream. The left superior temporal gyrus tracked the ∼0.5 Hz modulations of the attended speech stream only when the speech was embedded in multitalker background, whereas the right supratemporal auditory cortex tracked 4-8 Hz modulations during both noiseless and cocktail-party conditions. Copyright © 2016 the authors 0270-6474/16/361597-11$15.00/0.

  13. Benign occipital unicameral bone cyst causing lower cranial nerve palsies complicated by iophendylate arachnoiditis

    PubMed Central

    Bradley, W. G.; Kalbag, R. M.; Ramani, P. S.; Tomlinson, B. E.

    1974-01-01

    A 20 year old girl presented with a history of neck and occipital pain for six weeks, which was found to be due to a unicameral bone cyst of the left occipital condylar region. The differential diagnosis of bone cysts in the skull is discussed. Six months after the operation, the patient again presented with backache due to adhesive arachnoiditis. The latter was believed to have arisen as a result of a combination of spinal infective meningitis and intrathecal ethyl iodophenyl undecylate (iophendylate, Myodil, Pantopaque). The nature of meningeal reactions to iophendylate and the part played by intrathecal corticosteroids in relieving the arachnoiditis in the present case are discussed. Images

  14. Nurse-led treatment for occipital neuralgia.

    PubMed

    Pike, Denise; Amphlett, Alexander; Weatherby, Stuart

    Occipital neuralgia is a headache resulting from dysfunction of the occipital nerves. Medically resistant occipital neuralgia is treated by greater occipital nerve injection, which is traditionally performed by neurologists. A nurse-led clinic was developed to try to improve the service. Patient feedback showed that the clinic was positively perceived by patients, with most stating the nurse-led model was more efficient than the previous one, which had been led by consultants.

  15. Spontaneous alterations of regional brain activity in patients with adult generalized anxiety disorder

    PubMed Central

    Xia, Likun; Li, Shumei; Wang, Tianyue; Guo, Yaping; Meng, Lihong; Feng, Yunping; Cui, Yu; Wang, Fan; Ma, Jian; Jiang, Guihua

    2017-01-01

    Objective We aimed to examine how spontaneous brain activity might be related to the pathophysiology of generalized anxiety disorder (GAD). Patients and methods Using resting-state functional MRI, we examined spontaneous regional brain activity in 31 GAD patients (mean age, 36.87±9.16 years) and 36 healthy control participants (mean age, 39.53±8.83 years) matched for age, education, and sex from December 2014 to October 2015. We performed a two-sample t-test on the voxel-based analysis of the regional homogeneity (ReHo) maps. We used Pearson correlation analysis to compare scores from the Hamilton Anxiety Rating Scale, Hamilton Depression Rating Scale, State–Trait Anxiety Scale-Trait Scale, and mean ReHo values. Results We found abnormal spontaneous activity in multiple regions of brain in GAD patients, especially in the sensorimotor cortex and emotional regions. GAD patients showed decreased ReHo values in the right orbital middle frontal gyrus, left anterior cingulate cortex, right middle frontal gyrus, and bilateral supplementary motor areas, with increased ReHo values in the left middle temporal gyrus, left superior temporal gyrus, and right superior occipital gyrus. The ReHo value of the left middle temporal gyrus correlated positively with the Hamilton Anxiety Rating Scale scores. Conclusion These results suggest that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of GAD. PMID:28790831

  16. Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction

    PubMed Central

    2013-01-01

    Background Although recent studies have clearly demonstrated functional and structural abnormalities in adolescents with internet gaming addiction (IGA), less is known about how IGA affects perfusion in the human brain. We used pseudocontinuous arterial spin-labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) to measure the effects of IGA on resting brain functions by comparing resting cerebral blood flow in adolescents with IGA and normal subjects. Methods Fifteen adolescents with IGA and 18 matched normal adolescents underwent structural and perfusion fMRI in the resting state. Direct subtraction, voxel-wise general linear modeling was performed to compare resting cerebral blood flow (CBF) between the 2 groups. Correlations were calculated between the mean CBF value in all clusters that survived AlphaSim correction and the Chen Internet Addiction Scale (CIAS) scores, Barratt Impulsiveness Scale-11 (BIS-11) scores, or hours of Internet use per week (hours) in the 15 subjects with IGA. Results Compared with control subjects, adolescents with IGA showed significantly higher global CBF in the left inferior temporal lobe/fusiform gyrus, left parahippocampal gyrus/amygdala, right medial frontal lobe/anterior cingulate cortex, left insula, right insula, right middle temporal gyrus, right precentral gyrus, left supplementary motor area, left cingulate gyrus, and right inferior parietal lobe. Lower CBF was found in the left middle temporal gyrus, left middle occipital gyrus, and right cingulate gyrus. There were no significant correlations between mean CBF values in all clusters that survived AlphaSim correction and CIAS or BIS-11 scores or hours of Internet use per week. Conclusions In this study, we used ASL perfusion fMRI and noninvasively quantified resting CBF to demonstrate that IGA alters the CBF distribution in the adolescent brain. The results support the hypothesis that IGA is a behavioral addiction that may share similar neurobiological

  17. Occipital-posterior cerebral artery bypass via the occipital interhemispheric approach

    PubMed Central

    Kazumata, Ken; Yokoyama, Yuka; Sugiyama, Taku; Asaoka, Katsuyuki

    2013-01-01

    Background: The unavailability of the superficial temporal artery (STA) and the location of lesions pose a more technically demanding challenge when compared with conventional STA-superior cerebellar or posterior cerebral artery (PCA) bypass in vascular reconstruction procedures. To describe a case series of patients with cerebrovascular lesions who were treated using an occipital artery (OA) to PCA bypass via the occipital interhemispheric approach. Methods: We retrospectively reviewed three consecutive cases of patients with cerebrovascular lesions who were treated using OA-PCA bypass. Results: OA-PCA bypass was performed via the occipital interhemispheric approach. This procedure included: (1) OA-PCA bypass (n = 1), and combined OA-posterior inferior cerebellar artery and OA-PCA saphenous vein interposition graft bypass (n = 1) in patients with vertebrobasilar ischemia; (2) OA-PCA radial artery interposition graft bypass in one patient with residual PCA aneurysm. Conclusions: OA-PCA bypass represents a useful alternative to conventional STA-SCA or PCA bypass. PMID:23956933

  18. A TMS Investigation on the Role of Lateral Occipital Complex and Caudal Intraparietal Sulcus in the Perception of Object Form and Orientation.

    PubMed

    Chouinard, Philippe A; Meena, Deiter K; Whitwell, Robert L; Hilchey, Matthew D; Goodale, Melvyn A

    2017-05-01

    We used TMS to assess the causal roles of the lateral occipital (LO) and caudal intraparietal sulcus (cIPS) areas in the perceptual discrimination of object features. All participants underwent fMRI to localize these areas using a protocol in which they passively viewed images of objects that varied in both form and orientation. fMRI identified six significant brain regions: LO, cIPS, and the fusiform gyrus, bilaterally. In a separate experimental session, we applied TMS to LO or cIPS while the same participants performed match-to-sample form or orientation discrimination tasks. Compared with sham stimulation, TMS to either the left or right LO increased RTs for form but not orientation discrimination, supporting a critical role for LO in form processing for perception- and judgment-based tasks. In contrast, we did not observe any effects when we applied TMS to cIPS. Thus, despite the clear functional evidence of engagement for both LO and cIPS during the passive viewing of objects in the fMRI experiment, the TMS experiment revealed that cIPS is not critical for making perceptual judgments about their form or orientation.

  19. Enlarged right superior temporal gyrus in children and adolescents with autism.

    PubMed

    Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Vitale, Matthew P; Hardan, Antonio Y

    2010-11-11

    The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age=13.5±3.4years; full-scale IQ=103.6±13.4) and 19 healthy controls (mean age=13.7±3.0years; full-scale IQ=103.9±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes was significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Enlarged Right Superior Temporal Gyrus in Children and Adolescents with Autism

    PubMed Central

    Jou, Roger J.; Minshew, Nancy J.; Keshavan, Matcheri S.; Vitale, Matthew P.; Hardan, Antonio Y.

    2010-01-01

    The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age = 13.5 ±3.4 years; full-scale IQ = 103.6 ±13.4) and 19 healthy controls (mean age = 13.7 ±3.0 years; full-scale IQ = 103.9 ±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes were significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. PMID:20833154

  1. Different patterns and development characteristics of processing written logographic characters and alphabetic words: an ALE meta-analysis.

    PubMed

    Zhu, Linlin; Nie, Yaoxin; Chang, Chunqi; Gao, Jia-Hong; Niu, Zhendong

    2014-06-01

    The neural systems for phonological processing of written language have been well identified now, while models based on these neural systems are different for different language systems or age groups. Although each of such models is mostly concordant across different experiments, the results are sensitive to the experiment design and intersubject variability. Activation likelihood estimation (ALE) meta-analysis can quantitatively synthesize the data from multiple studies and minimize the interstudy or intersubject differences. In this study, we performed two ALE meta-analysis experiments: one was to examine the neural activation patterns of the phonological processing of two different types of written languages and the other was to examine the development characteristics of such neural activation patterns based on both alphabetic language and logographic language data. The results of our first meta-analysis experiment were consistent with the meta-analysis which was based on the studies published before 2005. And there were new findings in our second meta-analysis experiment, where both adults and children groups showed great activation in the left frontal lobe, the left superior/middle temporal gyrus, and the bilateral middle/superior occipital gyrus. However, the activation of the left middle/inferior frontal gyrus was found increase with the development, and the activation was found decrease in the following areas: the right claustrum and inferior frontal gyrus, the left inferior/medial frontal gyrus, the left middle/superior temporal gyrus, the right cerebellum, and the bilateral fusiform gyrus. It seems that adults involve more phonological areas, whereas children involve more orthographic areas and semantic areas. Copyright © 2013 Wiley Periodicals, Inc.

  2. Repeated measurements of cerebral blood flow in the left superior temporal gyrus reveal tonic hyperactivity in patients with auditory verbal hallucinations: a possible trait marker

    PubMed Central

    Homan, Philipp; Kindler, Jochen; Hauf, Martinus; Walther, Sebastian; Hubl, Daniela; Dierks, Thomas

    2013-01-01

    Background: The left superior temporal gyrus (STG) has been suggested to play a key role in auditory verbal hallucinations (AVH) in patients with schizophrenia. Methods: Eleven medicated subjects with schizophrenia and medication-resistant AVH and 19 healthy controls underwent perfusion magnetic resonance (MR) imaging with arterial spin labeling (ASL). Three additional repeated measurements were conducted in the patients. Patients underwent a treatment with transcranial magnetic stimulation (TMS) between the first 2 measurements. The main outcome measure was the pooled cerebral blood flow (CBF), which consisted of the regional CBF measurement in the left STG and the global CBF measurement in the whole brain. Results: Regional CBF in the left STG in patients was significantly higher compared to controls (p < 0.0001) and to the global CBF in patients (p < 0.004) at baseline. Regional CBF in the left STG remained significantly increased compared to the global CBF in patients across time (p < 0.0007), and it remained increased in patients after TMS compared to the baseline CBF in controls (p < 0.0001). After TMS, PANSS (p = 0.003) and PSYRATS (p = 0.01) scores decreased significantly in patients. Conclusions: This study demonstrated tonically increased regional CBF in the left STG in patients with schizophrenia and auditory hallucinations despite a decrease in symptoms after TMS. These findings were consistent with what has previously been termed a trait marker of AVH in schizophrenia. PMID:23805093

  3. Changes in Thalamic Connectivity in the Early and Late Stages of Amnestic Mild Cognitive Impairment: A Resting-State Functional Magnetic Resonance Study from ADNI

    PubMed Central

    Cai, Suping; Huang, Liyu; Zou, Jia; Jing, Longlong; Zhai, Buzhong; Ji, Gongjun; von Deneen, Karen M.; Ren, Junchan; Ren, Aifeng

    2015-01-01

    We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer’s disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is

  4. Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: a resting-state functional magnetic resonance study from ADNI.

    PubMed

    Cai, Suping; Huang, Liyu; Zou, Jia; Jing, Longlong; Zhai, Buzhong; Ji, Gongjun; von Deneen, Karen M; Ren, Junchan; Ren, Aifeng

    2015-01-01

    We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer's disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is

  5. Functional segregation of the inferior frontal gyrus for syntactic processes: a functional magnetic-resonance imaging study.

    PubMed

    Uchiyama, Yuji; Toyoda, Hiroshi; Honda, Manabu; Yoshida, Haruyo; Kochiyama, Takanori; Ebe, Kazutoshi; Sadato, Norihiro

    2008-07-01

    We used functional magnetic resonance imaging in 18 normal volunteers to determine whether there is separate representation of syntactic, semantic, and verbal working memory processing in the left inferior frontal gyrus (GFi). We compared a sentence comprehension task with a short-term memory maintenance task to identify syntactic and semantic processing regions. To investigate the effects of syntactic and verbal working memory load while minimizing the differences in semantic processes, we used comprehension tasks with garden-path (GP) sentences, which require re-parsing, and non-garden-path (NGP) sentences. Compared with the short-term memory task, sentence comprehension activated the left GFi, including Brodmann areas (BAs) 44, 45, and 47, and the left superior temporal gyrus. In GP versus NGP sentences, there was greater activity in the left BAs 44, 45, and 46 extending to the left anterior insula, the pre-supplementary motor area, and the right cerebellum. In the left GFi, verbal working memory activity was located more dorsally (BA 44/45), semantic processing was located more ventrally (BA 47), and syntactic processing was located in between (BA 45). These findings indicate a close relationship between semantic and syntactic processes, and suggest that BA 45 might link verbal working memory and semantic processing via syntactic unification processes.

  6. Classifying Alzheimer's disease with brain imaging and genetic data using a neural network framework.

    PubMed

    Ning, Kaida; Chen, Bo; Sun, Fengzhu; Hobel, Zachary; Zhao, Lu; Matloff, Will; Toga, Arthur W

    2018-08-01

    A long-standing question is how to best use brain morphometric and genetic data to distinguish Alzheimer's disease (AD) patients from cognitively normal (CN) subjects and to predict those who will progress from mild cognitive impairment (MCI) to AD. Here, we use a neural network (NN) framework on both magnetic resonance imaging-derived quantitative structural brain measures and genetic data to address this question. We tested the effectiveness of NN models in classifying and predicting AD. We further performed a novel analysis of the NN model to gain insight into the most predictive imaging and genetics features and to identify possible interactions between features that affect AD risk. Data were obtained from the AD Neuroimaging Initiative cohort and included baseline structural MRI data and single nucleotide polymorphism (SNP) data for 138 AD patients, 225 CN subjects, and 358 MCI patients. We found that NN models with both brain and SNP features as predictors perform significantly better than models with either alone in classifying AD and CN subjects, with an area under the receiver operating characteristic curve (AUC) of 0.992, and in predicting the progression from MCI to AD (AUC=0.835). The most important predictors in the NN model were the left middle temporal gyrus volume, the left hippocampus volume, the right entorhinal cortex volume, and the APOE (a gene that encodes apolipoprotein E) ɛ4 risk allele. Furthermore, we identified interactions between the right parahippocampal gyrus and the right lateral occipital gyrus, the right banks of the superior temporal sulcus and the left posterior cingulate, and SNP rs10838725 and the left lateral occipital gyrus. Our work shows the ability of NN models to not only classify and predict AD occurrence but also to identify important AD risk factors and interactions among them. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Electrical stimulation reduces smokers' craving by modulating the coupling between dorsal lateral prefrontal cortex and parahippocampal gyrus.

    PubMed

    Yang, Li-Zhuang; Shi, Bin; Li, Hai; Zhang, Wei; Liu, Ying; Wang, Hongzhi; Zhou, Yanfei; Wang, Ying; Lv, Wanwan; Ji, Xuebing; Hudak, Justin; Zhou, Yifeng; Fallgatter, Andreas J; Zhang, Xiaochu

    2017-08-01

    Applying electrical stimulation over the prefrontal cortex can help nicotine dependents reduce cigarette craving. However, the underlying mechanism remains ambiguous. This study investigates this issue with functional magnetic resonance imaging. Thirty-two male chronic smokers received real and sham stimulation over dorsal lateral prefrontal cortex (DLPFC) separated by 1 week. The neuroimaging data of the resting state, the smoking cue-reactivity task and the emotion task after stimulation were collected. The craving across the cue-reactivity task was diminished during real stimulation as compared with sham stimulation. The whole-brain analysis on the cue-reactivity task revealed a significant interaction between the stimulation condition (real vs sham) and the cue type (smoking vs neutral) in the left superior frontal gyrus and the left middle frontal gyrus. The functional connectivity between the left DLPFC and the right parahippocampal gyrus, as revealed by both psychophysical interaction analysis and the resting state functional connectivity, is altered by electrical stimulation. Moreover, the craving change across the real and sham condition is predicted by alteration of functional connectivity revealed by psychophysical interaction analysis. The local and long-distance coupling, altered by the electrical stimulation, might be the underlying neural mechanism of craving regulation. © The Author (2017). Published by Oxford University Press.

  8. Self-Reflection and the Inner Voice: Activation of the Left Inferior Frontal Gyrus During Perceptual and Conceptual Self-Referential Thinking

    PubMed Central

    Morin, Alain; Hamper, Breanne

    2012-01-01

    Inner speech involvement in self-reflection was examined by reviewing 130 studies assessing brain activation during self-referential processing in key self-domains: agency, self-recognition, emotions, personality traits, autobiographical memory, and miscellaneous (e.g., prospection, judgments). The left inferior frontal gyrus (LIFG) has been shown to be reliably recruited during inner speech production. The percentage of studies reporting LIFG activity for each self-dimension was calculated. Fifty five percent of all studies reviewed indicated LIFG (and presumably inner speech) activity during self-reflection tasks; on average LIFG activation is observed 16% of the time during completion of non-self tasks (e.g., attention, perception). The highest LIFG activation rate was observed during retrieval of autobiographical information. The LIFG was significantly more recruited during conceptual tasks (e.g., prospection, traits) than during perceptual tasks (agency and self-recognition). This constitutes additional evidence supporting the idea of a participation of inner speech in self-related thinking. PMID:23049653

  9. Self-reflection and the inner voice: activation of the left inferior frontal gyrus during perceptual and conceptual self-referential thinking.

    PubMed

    Morin, Alain; Hamper, Breanne

    2012-01-01

    Inner speech involvement in self-reflection was examined by reviewing 130 studies assessing brain activation during self-referential processing in key self-domains: agency, self-recognition, emotions, personality traits, autobiographical memory, and miscellaneous (e.g., prospection, judgments). The left inferior frontal gyrus (LIFG) has been shown to be reliably recruited during inner speech production. The percentage of studies reporting LIFG activity for each self-dimension was calculated. Fifty five percent of all studies reviewed indicated LIFG (and presumably inner speech) activity during self-reflection tasks; on average LIFG activation is observed 16% of the time during completion of non-self tasks (e.g., attention, perception). The highest LIFG activation rate was observed during retrieval of autobiographical information. The LIFG was significantly more recruited during conceptual tasks (e.g., prospection, traits) than during perceptual tasks (agency and self-recognition). This constitutes additional evidence supporting the idea of a participation of inner speech in self-related thinking.

  10. Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing.

    PubMed

    Rusconi, Elena; Walsh, Vincent; Butterworth, Brian

    2005-01-01

    Since the original description of Gerstmann's syndrome with its four cardinal symptoms, among which are finger agnosia and acalculia, the neuro-cognitive relationship between fingers and calculation has been debated. We asked our participants to perform four different tasks, two of which involved fingers and the other two involving numbers, during repetitive transcranial magnetic stimulation (rTMS) over the posterior parietal lobe of either hemisphere. In the finger tasks, they were required to transform a tactile stimulus randomly delivered on one of their fingers into a speeded key-press response either with the same or with the homologous finger on the opposite hand. In the numerical tasks, they were asked to perform a magnitude or a parity matching on pairs of single digits, in the context of arithmetically related or unrelated numerical primes. In accordance with the original anatomical hypothesis put forward by Gerstmann [Gerstmann, J. (1924). Fingeragnosie: eine umschriebene Stoerung der Orienterung am eigenen Koerper. Wiener clinische Wochenschrift, 37, 1010-12], we found that rTMS over the left angular gyrus disrupted tasks requiring access to the finger schema and number magnitude processing in the same group of participants. In addition to the numerous studies which have employed special populations such as neurological patients and children, our data confirm the presence of a relationship between numbers and body knowledge in skilled adults who no longer use their fingers for solving simple arithmetical tasks.

  11. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI.

    PubMed

    Plow, Ela B; Cattaneo, Zaira; Carlson, Thomas A; Alvarez, George A; Pascual-Leone, Alvaro; Battelli, Lorella

    2014-01-01

    A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction.

  12. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI

    PubMed Central

    Plow, Ela B.; Cattaneo, Zaira; Carlson, Thomas A.; Alvarez, George A.; Pascual-Leone, Alvaro; Battelli, Lorella

    2014-01-01

    A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction. PMID:24860462

  13. Occipital Neuralgia after Occipital Cervical Fusion to Treat an Unstable Jefferson Fracture

    PubMed Central

    Kong, Seong Ju; Park, Jin Hoon

    2012-01-01

    In this report we describe a patient with an unstable Jefferson fracture who was treated by occipitocervical fusion and later reported sustained postoperative occipital neuralgia. A 70-year-old male was admitted to our center with a Jefferson fracture induced by a car accident. Preoperative lateral X-ray revealed an atlanto-dens interval of 4.8mm and a C1 canal anterior-posterior diameter of 19.94mm. We performed fusion surgery from the occiput to C5 without decompression of C1. The patient reported sustained continuous pain throughout the following year despite strong analgesics. The pain dermatome was located mainly in the great occipital nerve territory and posterior neck. Magnetic resonance images revealed no evidence of cord compression, however a C1 lamina compressed dural sac and C2 root compression could not be excluded. We performed bilateral C2 root decompression via a C1 laminectomy. After decompression, bilateral C2 root redundancy was identified by palpation. After decompression surgery, pain was reduced. This case indicates that occipital neuralgia, suggesting the need for diagnostic block, should be considered in the differential diagnosis of patients with sustained occipital headache after occipitocervical fusion surgery. PMID:25983846

  14. Response-related fMRI of veridical and false recognition of words.

    PubMed

    Heun, Reinhard; Jessen, Frank; Klose, Uwe; Erb, Michael; Granath, Dirk-Oliver; Grodd, Wolfgang

    2004-02-01

    Studies on the relation between local cerebral activation and retrieval success usually compared high and low performance conditions, and thus showed performance-related activation of different brain areas. Only a few studies directly compared signal intensities of different response categories during retrieval. During verbal recognition, we recently observed increased parieto-occipital activation related to false alarms. The present study intends to replicate and extend this observation by investigating common and differential activation by veridical and false recognition. Fifteen healthy volunteers performed a verbal recognition paradigm using 160 learned target and 160 new distractor words. The subjects had to indicate whether they had learned the word before or not. Echo-planar MRI of blood-oxygen-level-dependent signal changes was performed during this recognition task. Words were classified post hoc according to the subjects' responses, i.e. hits, false alarms, correct rejections and misses. Response-related fMRI-analysis was used to compare activation associated with the subjects' recognition success, i.e. signal intensities related to the presentation of words were compared by the above-mentioned four response types. During recognition, all word categories showed increased bilateral activation of the inferior frontal gyrus, the inferior temporal gyrus, the occipital lobe and the brainstem in comparison with the control condition. Hits and false alarms activated several areas including the left medial and lateral parieto-occipital cortex in comparison with subjectively unknown items, i.e. correct rejections and misses. Hits showed more pronounced activation in the medial, false alarms in the lateral parts of the left parieto-occipital cortex. Veridical and false recognition show common as well as different areas of cerebral activation in the left parieto-occipital lobe: increased activation of the medial parietal cortex by hits may correspond to true

  15. Reduced Left Lateralization of Language in Congenitally Blind Individuals.

    PubMed

    Lane, Connor; Kanjlia, Shipra; Richardson, Hilary; Fulton, Anne; Omaki, Akira; Bedny, Marina

    2017-01-01

    Language processing depends on a left-lateralized network of frontotemporal cortical regions. This network is remarkably consistent across individuals and cultures. However, there is also evidence that developmental factors, such as delayed exposure to language, can modify this network. Recently, it has been found that, in congenitally blind individuals, the typical frontotemporal language network expands to include parts of "visual" cortices. Here, we report that blindness is also associated with reduced left lateralization in frontotemporal language areas. We analyzed fMRI data from two samples of congenitally blind adults (n = 19 and n = 13) and one sample of congenitally blind children (n = 20). Laterality indices were computed for sentence comprehension relative to three different control conditions: solving math equations (Experiment 1), a memory task with nonwords (Experiment 2), and a "does this come next?" task with music (Experiment 3). Across experiments and participant samples, the frontotemporal language network was less left-lateralized in congenitally blind than in sighted individuals. Reduction in left lateralization was not related to Braille reading ability or amount of occipital plasticity. Notably, we observed a positive correlation between the lateralization of frontotemporal cortex and that of language-responsive occipital areas in blind individuals. Blind individuals with right-lateralized language responses in frontotemporal cortices also had right-lateralized occipital responses to language. Together, these results reveal a modified neurobiology of language in blindness. Our findings suggest that, despite its usual consistency across people, the neurobiology of language can be modified by nonlinguistic experiences.

  16. Modified skin incision for avoiding the lesser occipital nerve and occipital artery during retrosigmoid craniotomy: potential applications for enhancing operative working distance and angles while minimizing the risk of postoperative neuralgias and intraoperative hemorrhage.

    PubMed

    Tubbs, R Shane; Fries, Fabian N; Kulwin, Charles; Mortazavi, Martin M; Loukas, Marios; Cohen-Gadol, Aaron A

    2016-10-01

    Chronic postoperative neuralgias and headache following retrosigmoid craniotomy can be uncomfortable for the patient. We aimed to better elucidate the regional nerve anatomy in an effort to minimize this postoperative complication. Ten adult cadaveric heads (20 sides) were dissected to observe the relationship between the lesser occipital nerve and a traditional linear versus modified U incision during retrosigmoid craniotomy. Additionally, the relationship between these incisions and the occipital artery were observed. The lesser occipital nerve was found to have two types of course. Type I nerves (60%) remained close to the posterior border of the sternocleidomastoid muscle and some crossed anteriorly over the sternocleidomastoid muscle near the mastoid process. Type II nerves (40%) left the posterior border of the sternocleidomastoid muscle and swung medially (up to 4.5cm posterior to the posterior border of the sternocleidomastoid muscle) as they ascended over the occiput. The lesser occipital nerve was near a midpoint of a line between the external occipital protuberance and mastoid process in all specimens with the type II nerve configuration. Based on our findings, the inverted U incision would be less likely to injure the type II nerves but would necessarily cross over type I nerves, especially more cranially on the nerve at the apex of the incision. As the more traditional linear incision would most likely transect the type I nerves and more so near their trunk, the U incision may be the overall better choice in avoiding neural and occipital artery injury during retrosigmoid approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Greater occipital nerve excision for occipital neuralgia refractory to nerve decompression.

    PubMed

    Ducic, Ivica; Felder, John M; Khan, Neelam; Youn, Sojin

    2014-02-01

    Patients who undergo occipital nerve decompression for treatment of migraine headaches due to occipital neuralgia have already exhausted medical options for treatment. When surgical decompression fails, it is unknown how best to help these patients. We examine our experience performing greater occipital nerve (GON) excision for pain relief in this select, refractory group of patients. A retrospective chart review supplemented by a follow-up survey was performed on all patients under the care of the senior author who had undergone GON excision after failing occipital nerve decompression. Headache severity was measured by the migraine headache index (MHI) and disability by the migraine disability assessment. Success rate was considered the percentage of patients who experienced a 50% or greater reduction in MHI at final follow-up. Seventy-one of 108 patients responded to the follow-up survey and were included in the study. Average follow-up was 33 months. The success rate of surgery was 70.4%; 41% of patients showed a 90% or greater decrease in MHI. The MHI changed, on average, from 146 to 49, for an average reduction of 63% (P < 0.001). Migraine disability assessment scores decreased by an average of 49% (P < 0.001). Multivariate analysis revealed that a diagnosis of cervicogenic headache was associated with failure of surgery. The most common adverse effect was bothersome numbness or hypersensitivity in the denervated area, occurring in up to 31% of patients. Excision of the GON is a valid option for pain relief in patients with occipital headaches refractory to both medical treatment and surgical decompression. Potential risks include failure in patients with cervicogenic headache and hypersensitivity of the denervated area. To provide the best outcome to these patients who have failed all previous medical and surgical treatments, a multidisciplinary team approach remains critical.

  18. Developmental differences in the brain response to unhealthy food cues: an fMRI study of children and adults.

    PubMed

    van Meer, Floor; van der Laan, Laura N; Charbonnier, Lisette; Viergever, Max A; Adan, Roger Ah; Smeets, Paul Am

    2016-12-01

    Food cues are omnipresent and may trigger overconsumption. In the past 2 decades, the prevalence of childhood obesity has increased dramatically. Because children's brains are still developing, especially in areas important for inhibition, children may be more susceptible than adults to tempting food cues. We examined potential developmental differences in children's and adults' responses to food cues to determine how these responses relate to weight status. We included 27 children aged 10-12 y and 32 adults aged 32-52 y. Functional magnetic resonance imaging data were acquired during a food-viewing task in which unhealthy and healthy food pictures were presented. Children had a stronger activation in the left precentral gyrus than did adults in response to unhealthy compared with healthy foods. In children, unhealthy foods elicited stronger activation in the right inferior temporal and middle occipital gyri, left precentral gyrus, bilateral opercular part of the inferior frontal gyrus, left hippocampus, and left middle frontal gyrus. Adults had stronger activation in the bilateral middle occipital gyrus and the right calcarine sulcus for unhealthy compared with healthy foods. Children with a higher body mass index (BMI) had lower activation in the bilateral dorsolateral prefrontal cortex while viewing unhealthy compared with healthy foods. In adults there was no correlation between BMI and neural response to unhealthy compared with healthy foods. Unhealthy foods might elicit more attention both in children and in adults. Children had stronger activation while viewing unhealthy compared with healthy foods in areas involved in reward, motivation, and memory. Furthermore, children activated a motivation and reward area located in the motor cortex more strongly than did adults in response to unhealthy foods. Finally, children with a higher BMI had less activation in inhibitory areas in response to unhealthy foods, which may mean they are more susceptible to tempting

  19. The neural correlates of sex differences in left-right confusion.

    PubMed

    Hjelmervik, Helene; Westerhausen, René; Hirnstein, Marco; Specht, Karsten; Hausmann, Markus

    2015-06-01

    Difficulties in left-right discrimination (LRD) are commonly experienced in everyday life situations. Here we investigate the neurocognitive mechanisms of LRD and the specific role of left angular gyrus. Given that previous behavioral research reported women to be more susceptible to left-right confusion, the current study focuses particularly on the neural basis of sex differences in LRD while controlling for potential menstrual cycle effects (repeated measures design). 16 women and 15 men were presented pictures of pointing hands in various orientations (rotated versus non-rotated) and were asked to identify them as left or right hands. Results revealed that LRD was particularly associated with activation in inferior parietal regions, extending into the right angular gyrus. Irrespective of menstrual cycle phase, women, relative to men, recruited more prefrontal areas, suggesting higher top-down control in LRD. For the subset of rotated stimuli as compared to the non-rotated, we found leftward asymmetry for both men and women, although women scored significantly lower. We conclude that there are sex differences in the neurocognitive mechanisms underlying LRD. Although the angular gyrus is involved in LRD, several other parietal areas are at least as critical. Moreover, the hypothesis that more left-right confusion is due to more bilateral activation (in women) can be rejected. Copyright © 2015. Published by Elsevier Inc.

  20. Anatomical consideration of the occipital cutaneous nerves and artery for the safe treatment of occipital neuralgia.

    PubMed

    Shin, Kang-Jae; Kim, Hong-San; O, Jehoon; Kwon, Hyun-Jin; Yang, Hun-Mu

    2018-05-12

    There is no standardized approach to the greater occipital nerve (GON) block technique for treating occipital neuralgia. The aim of the present study was to validate the previously-suggested guidelines for conventional injection techniques and to provide navigational guidelines for safe GON block. The GON, lesser occipital nerve (LON) and occipital artery (OA) were carefully dissected in the occipital region of embalmed cadavers. Using a 3D digitizer, the GON, LON, and OA were observed on the two reference lines. The distances between the landmarks were recorded and statistically analyzed. On the superior nuchal line, the mean distances between the external occipital protuberance (EOP) and the most medial branch of the GON was 33.5 mm. The mean distance between the EOP and the most medial branch of the OA was 37.4 mm. On the EOP-mastoid process (MP) line, the GON was on the medial third and the LON the lateral third of the EOP-MP line. The safe injection points on the EOP-MP line are about 3 cm from the EOP, 1 cm inferior parallel to the EOP-MP line, and about 3 cm away from the MP. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  1. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL.

    PubMed

    Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash

    2012-10-01

    To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Neural circuits of disgust induced by sexual stimuli in homosexual and heterosexual men: an fMRI study.

    PubMed

    Zhang, Minming; Hu, Shaohua; Xu, Lijuan; Wang, Qidong; Xu, Xiaojun; Wei, Erqing; Yan, Leqin; Hu, Jianbo; Wei, Ning; Zhou, Weihua; Huang, Manli; Xu, Yi

    2011-11-01

    Few studies demonstrated neural circuits related to disgust were influenced by internal sexual orientation in male. Here we used fMRI to study the neural responses to disgust in homosexual and heterosexual men to investigate that issue. Thirty-two healthy male volunteers (sixteen homosexual and sixteen heterosexual) were scanned while viewing alternating blocks of three types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity. All the participants rated their level of disgust and sexual arousal as well. The F-F and M-M stimuli induced disgust in homosexual and heterosexual men, respectively. The common activations related to disgusting stimuli included: bilateral frontal gyrus and occipital gyrus, right middle temporal gyrus, left superior temporal gyrus, right cerebellum, and right thalamus. Homosexual men had greater neural responses in the left medial frontal gyrus than did heterosexual men to the sexual disgusting stimuli; in contrast, heterosexual men showed significantly greater activation than homosexual men in the left cuneus. ROI analysis showed that negative correlation were found between the magnitude of MRI signals in the left medial frontal gyrus and scores of disgust in homosexual subjects (p<0.05). This study indicated that there were regions in common as well as regions specific for each type of erotic stimuli during disgust of homosexual and heterosexual men. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Bidirectional communication between amygdala and fusiform gyrus during facial recognition.

    PubMed

    Herrington, John D; Taylor, James M; Grupe, Daniel W; Curby, Kim M; Schultz, Robert T

    2011-06-15

    Decades of research have documented the specialization of fusiform gyrus (FG) for facial information processes. Recent theories indicate that FG activity is shaped by input from amygdala, but effective connectivity from amygdala to FG remains undocumented. In this fMRI study, 39 participants completed a face recognition task. 11 participants underwent the same experiment approximately four months later. Robust face-selective activation of FG, amygdala, and lateral occipital cortex were observed. Dynamic causal modeling and Bayesian Model Selection (BMS) were used to test the intrinsic connections between these structures, and their modulation by face perception. BMS results strongly favored a dynamic causal model with bidirectional, face-modulated amygdala-FG connections. However, the right hemisphere connections diminished at time 2, with the face modulation parameter no longer surviving Bonferroni correction. These findings suggest that amygdala strongly influences FG function during face perception, and that this influence is shaped by experience and stimulus salience. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Infiltrative cervical lesions causing symptomatic occipital neuralgia.

    PubMed

    Sierra-Hidalgo, F; Ruíz, J; Morales-Cartagena, A; Martínez-Salio, A; Serna, J de la; Hernández-Gallego, J

    2011-10-01

    Occipital neuralgia is a well-recognized cause of posterior head and neck pain that may associate mild sensory changes in the cutaneous distribution of the occipital nerves, lacking a recognizable local structural aetiology in most cases. Atypical clinical features or an abnormal neurological examination are alerts for a potential underlying cause of pain, although cases of clinically typical occipital neuralgia as isolated manifestation of lesions of the cervical spinal cord, cervical roots, or occipital nerves have been increasingly reported. We describe two cases (one with typical and another one with atypical clinical features) of occipital neuralgia secondary to paravertebral pyomyositis and vertebral relapse of multiple myeloma in patients with relevant medical history that aroused the possibility of an underlying structural lesion. We discuss the need for cranio-cervical magnetic resonance imaging in all patients with occipital neuralgia, even when typical clinical features are present and neurological examination is completely normal.

  5. Abnormal baseline brain activity in suicidal and non-suicidal patients with major depressive disorder.

    PubMed

    Fan, Tingting; Wu, Xia; Yao, Li; Dong, Jie

    2013-02-08

    Previous studies have shown that suicide attempts are strongly associated with major depressive disorder (MDD), and MDD patients who attempt suicide have a high risk of death by suicide throughout their lifetimes. We aimed to explore the differences in resting-state brain activity in MDD patients with and without histories of suicide attempt. We accomplished this using an approach named amplitude of low-frequency fluctuation (ALFF). ALFF reflects the local properties of specific brain regions and provides direct information about impaired regions. This approach differs from functional connectivity. In this study, we compared three groups: MDD patients with and without histories of suicide attempt, and normal controls (NC). The main result is that suicide attempters had increased ALFF in the right superior temporal gyrus (r-STG) relative to both non-suicidal patients (NSU) and NC. In addition, NSU had increased ALFF in the right ventral medial frontal gyrus (r-vMFG) relative to both suicide attempters (SU) and NC. Finally, both NSU and SU had increased ALFF in the left anterior cingulated cortex (l-ACC) and right parahippocampal gyrus (r-PG) and decreased ALFF in the left middle occipital gyrus (l-MOG) and left angular gyrus (l-AG) relative to NC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping.

    PubMed

    Liu, Jieke; Yao, Li; Zhang, Wenjing; Xiao, Yuan; Liu, Lu; Gao, Xin; Shah, Chandan; Li, Siyi; Tao, Bo; Gong, Qiyong; Lui, Su

    2017-08-01

    The gray matter abnormalities revealed by magnetic resonance imaging are inconsistent, especially in pediatric individuals with autism spectrum disorder (ASD) (age < 18 years old), a phenomenon possibly related to the core pathophysiology of ASD. The purpose of our meta-analysis was to identify and map the specific gray matter abnormalities in pediatric ASD individuals thereby exploring the potential effects of clinical and demographic characteristics of these gray matter changes. A systematic search was conducted to identify voxel-based morphometry studies in pediatric individuals with ASD. The effect-size signed differential mapping method was used to quantitatively estimate the regional gray matter abnormalities in pediatric ASD individuals. Meta-regression was used to examine the associations among age, gender, intelligence quotient, symptom severity and gray matter changes. Fifteen studies including 364 pediatric individuals with ASD (male = 282, age = 10.3 ± 4.4 years) and 377 healthy controls (male = 289, age = 10.5 ± 4.2 years) were included. Pediatric ASD individuals showed significant gray matter increases in the right angular gyrus, left superior and middle frontal gyrus, left precuneus, left inferior occipital gyrus and right inferior temporal gyrus, most of which involving the default mode network, and decreases in the left cerebellum and left postcentral gyrus. The meta-regression analysis showed that the repetitive behavior scores of the Autism Diagnostic Interview-Revised were positively associated with increased gray matter volumes in the right angular gyrus. Increased rather than decreased gray matter volume, especially involving the angular gyrus and prefrontal cortex may be the core pathophysiology in the early course of ASD.

  7. Longitudinal Heschl's gyrus growth during childhood and adolescence in typical development and autism.

    PubMed

    Prigge, Molly D; Bigler, Erin D; Fletcher, P Thomas; Zielinski, Brandon A; Ravichandran, Caitlin; Anderson, Jeffrey; Froehlich, Alyson; Abildskov, Tracy; Papadopolous, Evangelia; Maasberg, Kathryn; Nielsen, Jared A; Alexander, Andrew L; Lange, Nicholas; Lainhart, Janet

    2013-04-01

    Heightened auditory sensitivity and atypical auditory processing are common in autism. Functional studies suggest abnormal neural response and hemispheric activation to auditory stimuli, yet the neurodevelopment underlying atypical auditory function in autism is unknown. In this study, we model longitudinal volumetric growth of Heschl's gyrus gray matter and white matter during childhood and adolescence in 40 individuals with autism and 17 typically developing participants. Up to three time points of magnetic resonance imaging data, collected on average every 2.5 years, were examined from individuals 3-12 years of age at the time of their first scan. Consistent with previous cross-sectional studies, no group differences were found in Heschl's gyrus gray matter volume or asymmetry. However, reduced longitudinal gray matter volumetric growth was found in the right Heschl's gyrus in autism. Reduced longitudinal white matter growth in the left hemisphere was found in the right-handed autism participants. Atypical Heschl's gyrus white matter volumetric growth was found bilaterally in the autism individuals with a history of delayed onset of spoken language. Heightened auditory sensitivity, obtained from the Sensory Profile, was associated with reduced volumetric gray matter growth in the right hemisphere. Our longitudinal analyses revealed dynamic gray and white matter changes in Heschl's gyrus throughout childhood and adolescence in both typical development and autism. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Dyscalculia, dysgraphia, and left-right confusion from a left posterior peri-insular infarct.

    PubMed

    Bhattacharyya, S; Cai, X; Klein, J P

    2014-01-01

    The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI) showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation.

  9. Dyscalculia, Dysgraphia, and Left-Right Confusion from a Left Posterior Peri-Insular Infarct

    PubMed Central

    Bhattacharyya, S.; Cai, X.; Klein, J. P.

    2014-01-01

    The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI) showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation. PMID:24817791

  10. Occipital neuralgia evoked by facial herpes zoster infection.

    PubMed

    Kihara, Takeshi; Shimohama, Shun

    2006-01-01

    Occipital neuralgia is a pain syndrome which may usually be induced by spasms of the cervical muscles or trauma to the greater or lesser occipital nerves. We report a patient with occipital neuralgia followed by facial herpes lesion. A 74-year-old male experienced sudden-onset severe headache in the occipital area. The pain was localized to the distribution of the right side of the greater occipital nerve, and palpation of the right greater occipital nerve reproduces the pain. He was diagnosed with occipital neuralgia according to ICHD-II criteria. A few days later, the occipital pain was followed by reddening of the skin and the appearance, of varying size, of vesicles on the right side of his face (the maxillary nerve and the mandibular nerve region). This was diagnosed as herpes zoster. This case represents a combination of facial herpes lesions and pain in the C2 and C3 regions. The pain syndromes can be confusing, and the classic herpes zoster infection should be considered even when no skin lesions are established.

  11. Changes in Gait Balance and Brain Connectivity in Response to Equine-Assisted Activity and Training in Children with Attention Deficit Hyperactivity Disorder.

    PubMed

    Hyun, Gi Jung; Jung, Tae-Woon; Park, Jeong Ha; Kang, Kyoung Doo; Kim, Sun Mi; Son, Young Don; Cheong, Jae Hoon; Kim, Bung-Nyun; Han, Doug Hyun

    2016-04-01

    Equine-assisted activity and training (EAAT) is thought to improve body balance and clinical symptoms in children with attention deficit hyperactivity disorder (ADHD). The study hypostheses were that EAAT would improve the clinical symptoms and gait balance in children with ADHD and that these improvements would be associated with increased brain connectivity within the balance circuit. A total of 12 children with ADHD and 12 age- and sex-matched healthy control children were recruited. EAAT consisted of three training sessions, each 70 minutes long, once a week for 4 weeks. Brain functional connectivity was assessed by using functional magnetic resonance imaging. After 4 weeks of EAAT, children with ADHD showed improved scores on the Korean ADHD scale (K-ARS), while the K-ARS scores of healthy children did not change. During the 4 weeks, the plantar pressure difference between the left foot and right foot decreased in both the healthy control group and the ADHD group. After 4 weeks of EAAT, healthy controls showed increased brain connectivity from the cerebellum to the left occipital lingual gyrus, fusiform gyrus, right and left thalami, right caudate, right precentral gyrus, and right superior frontal gyrus. However, children with ADHD showed increased brain connectivity from the cerebellum to the right insular cortex, right middle temporal gyrus, left superior temporal gyrus, and right precentral gyrus. In contrast, children with ADHD exhibited decreased brain connectivity from the cerebellum to the left inferior frontal gyrus. EAAT may improve clinical symptoms, gait balance, and brain connectivity, the last of which controls gait balance, in children with ADHD. However, children with ADHD who have deficits in the fronto-cerebellar tract did not exhibit changes in brain connectivity as extensive as those in healthy children in response to EAAT.

  12. A Cross-Sectional Voxel-Based Morphometric Study of Age- and Sex-Related Changes in Gray Matter Volume in the Normal Aging Brain.

    PubMed

    Peng, Fei; Wang, Lixin; Geng, Zuojun; Zhu, Qingfeng; Song, Zhenhu

    2016-01-01

    The aim of the study was to carry out a cross-sectional study of 124 cognitively normal Chinese adults using the voxel-based morphometry approach to delineate age-related changes in the gray matter volume of regions of interest (ROI) in the brain and further analyze their correlation with age. One hundred twenty-four cognitively normal adults were divided into the young age group, the middle age group, and the old age group. Conventional magnetic resonance imaging was performed with the Achieva 3.0 T system. Structural images were processed using VBM8 and SPM8. Regions of interest were obtained by WFU PickAtlas and all realigned images were spatially normalized. Females showed significantly greater total gray matter volume than males (t = 4.81, P = 0.0000, false discovery rate corrected). Compared with young subjects, old-aged subjects showed extensive reduction in gray matter volumes in all ROIs examined except the occipital lobe. In young- and middle-aged subjects, female and male subjects showed significant difference in the right middle temporal gyrus, right superior temporal gyrus, left angular gyrus, right middle occipital lobe, left middle cingulate gyrus, and the pars triangularis of the right inferior frontal gyrus, suggesting an interaction between age and sex (P < 0.001, uncorrected). Logistic regression analysis revealed linear negative correlation between the total gray matter volume and age (R = 0.529, P < 0.001). Significant age-related differences are present in gray matter volume across multiple brain regions during aging. The VPM approach may provide an emerging paradigm in the normal aging brain that may help differentiate underlying normal neurobiological aging changes of specific brain regions from neurodegenerative impairments.

  13. Coherent Activity in Bilateral Parieto-Occipital Cortices during P300-BCI Operation.

    PubMed

    Takano, Kouji; Ora, Hiroki; Sekihara, Kensuke; Iwaki, Sunao; Kansaku, Kenji

    2014-01-01

    The visual P300 brain-computer interface (BCI), a popular system for electroencephalography (EEG)-based BCI, uses the P300 event-related potential to select an icon arranged in a flicker matrix. In earlier studies, we used green/blue (GB) luminance and chromatic changes in the P300-BCI system and reported that this luminance and chromatic flicker matrix was associated with better performance and greater subject comfort compared with the conventional white/gray (WG) luminance flicker matrix. To highlight areas involved in improved P300-BCI performance, we used simultaneous EEG-fMRI recordings and showed enhanced activities in bilateral and right lateralized parieto-occipital areas. Here, to capture coherent activities of the areas during P300-BCI, we collected whole-head 306-channel magnetoencephalography data. When comparing functional connectivity between the right and left parieto-occipital channels, significantly greater functional connectivity in the alpha band was observed under the GB flicker matrix condition than under the WG flicker matrix condition. Current sources were estimated with a narrow-band adaptive spatial filter, and mean imaginary coherence was computed in the alpha band. Significantly greater coherence was observed in the right posterior parietal cortex under the GB than under the WG condition. Re-analysis of previous EEG-based P300-BCI data showed significant correlations between the power of the coherence of the bilateral parieto-occipital cortices and their performance accuracy. These results suggest that coherent activity in the bilateral parieto-occipital cortices plays a significant role in effectively driving the P300-BCI.

  14. Compensatory brain activation in children with attention deficit/hyperactivity disorder during a simplified Go/No-go task.

    PubMed

    Ma, Jun; Lei, Du; Jin, Xingming; Du, Xiaoxia; Jiang, Fan; Li, Fei; Zhang, Yiwen; Shen, Xiaoming

    2012-05-01

    Given that a number of recent studies have shown attenuated brain activation in prefrontal regions in children with ADHD, it has been recognized as a disorder in executive function. However, fewer studies have focused exclusively on the compensatory brain activation in ADHD. The present study objective was to investigate the compensatory brain activation patterns during response inhibition (RI) processing in ADHD children. In this study, 15 ADHD children and 15 sex-, age-, and IQ-matched control children were scanned with a 3-T MRI equipment while performing a simplified letter Go/No-go task. The results showed more brain activation in the ADHD group compared with the control group, whereas the accuracy and reaction time of behavioral performance were the same. Children with ADHD did not activate the normal RI brain circuits, which are thought to be predominantly located in the right middle/inferior frontal gyrus (BA46/44), right inferior parietal regions (BA40), and pre-SMA(BA6), but instead, activated brain regions, such as the left inferior frontal cortex, the right inferior temporal cortex, the right precentral gyrus, the left postcentral gyrus, the inferior occipital cortex, the middle occipital cortex, the right calcarine, the right hippocampus, the right midbrain, and the cerebellum. Our conclusion is that children with ADHD tend to compensatorily use more posterior and diffusive brain regions to sustain normal RI function. © Springer-Verlag 2011

  15. Botulinum toxin occipital nerve block for the treatment of severe occipital neuralgia: a case series.

    PubMed

    Kapural, Leonardo; Stillman, Mark; Kapural, Miranda; McIntyre, Patrick; Guirgius, Maged; Mekhail, Nagy

    2007-12-01

    Persistent occipital neuralgia can produce severe headaches that are difficult to control by conservative or surgical approaches. We retrospectively describe a series of six patients with severe occipital neuralgia who received conservative and interventional therapies, including oral antidepressants, membrane stabilizers, opioids, and traditional occipital nerve blocks without significant relief. This group then underwent occipital nerve blocks using the botulinum toxin type A (BoNT-A) BOTOX Type A (Allergan, Inc., Irvine, CA, U.S.A.) 50 U for each block (100 U if bilateral). Significant decreases in pain Visual Analog Scale (VAS) scores and improvement in Pain Disability Index (PDI) were observed at four weeks follow-up in five out of six patients following BoNT-A occipital nerve block. The mean VAS score changed from 8 +/- 1.8 (median score of 8.5) to 2 +/- 2.7 (median score of 1), while PDI improved from 51.5 +/- 17.6 (median 56) to 19.5 +/- 21 (median 17.5) and the duration of the pain relief increased to an average of 16.3 +/- 3.2 weeks (median 16) from an average of 1.9 +/- 0.5 weeks (median 2) compared to diagnostic 0.5% bupivacaine block. Following block resolution, the average pain scores and PDI returned to similar levels as before BoNT-A block. In conclusion, BoNT-A occipital nerve blocks provided a much longer duration of analgesia than diagnostic local anesthetics. The functional capacity improvement measured by PDI was profound enough in the majority of the patients to allow patients to resume their regular daily activities for a period of time.

  16. Micro-surgical decompression for greater occipital neuralgia.

    PubMed

    Li, Fuyong; Ma, Yi; Zou, Jianjun; Li, Yanfeng; Wang, Bin; Huang, Haitao; Wang, Quancai; Li, Liang

    2012-01-01

    To evaluate the clinical effect of micro-surgical decompression of greater occipital nerve for greater occipital neuralgia (GON). 76 patients underwent surgical decompression of the great occipital nerve. A nerve block was tested before operation. The headache rapidly resolved after infiltration of 1% Lidocaine near the tender area of the nerve trunk. 89 procedures were performed for 76 patients. The mean follow up duration was 20 months (range 7-52 months). The headache symptoms of 68 (89.5%) patients were completely resolved, and another 5 (6.6%) patients were significantly relieved without the need for any further medical treatment. Three (3.9%) patients experienced recurrence of the disorder. All patients experienced hypoesthesia of the innervated area of the great occipital nerve. They recovered gradually within 1 to 6 months after surgery. Micro-surgical decompression of the greater occipital nerve is a safe and effective method for greater occipital neuralgia. We believe our findings support the notion that the technique should also be considered as the first-line procedure for GON.

  17. Automatic and Controlled Semantic Retrieval: TMS Reveals Distinct Contributions of Posterior Middle Temporal Gyrus and Angular Gyrus

    PubMed Central

    Davey, James; Cornelissen, Piers L.; Thompson, Hannah E.; Sonkusare, Saurabh; Hallam, Glyn; Smallwood, Jonathan

    2015-01-01

    Semantic retrieval involves both (1) automatic spreading activation between highly related concepts and (2) executive control processes that tailor this activation to suit the current context or goals. Two structures in left temporoparietal cortex, angular gyrus (AG) and posterior middle temporal gyrus (pMTG), are thought to be crucial to semantic retrieval and are often recruited together during semantic tasks; however, they show strikingly different patterns of functional connectivity at rest (coupling with the “default mode network” and “frontoparietal control system,” respectively). Here, transcranial magnetic stimulation (TMS) was used to establish a causal yet dissociable role for these sites in semantic cognition in human volunteers. TMS to AG disrupted thematic judgments particularly when the link between probe and target was strong (e.g., a picture of an Alsatian with a bone), and impaired the identification of objects at a specific but not a superordinate level (for the verbal label “Alsatian” not “animal”). In contrast, TMS to pMTG disrupted thematic judgments for weak but not strong associations (e.g., a picture of an Alsatian with razor wire), and impaired identity matching for both superordinate and specific-level labels. Thus, stimulation to AG interfered with the automatic retrieval of specific concepts from the semantic store while stimulation of pMTG impaired semantic cognition when there was a requirement to flexibly shape conceptual activation in line with the task requirements. These results demonstrate that AG and pMTG make a dissociable contribution to automatic and controlled aspects of semantic retrieval. SIGNIFICANCE STATEMENT We demonstrate a novel functional dissociation between the angular gyrus (AG) and posterior middle temporal gyrus (pMTG) in conceptual processing. These sites are often coactivated during neuroimaging studies using semantic tasks, but their individual contributions are unclear. Using transcranial

  18. The brain adapts to orthography with experience: Evidence from English and Chinese

    PubMed Central

    Cao, Fan; Brennan, Christine; Booth, James R.

    2016-01-01

    Using functional magnetic resonance imaging (fMRI), we examined the process of language specialization in the brain by comparing developmental changes in two contrastive orthographies: Chinese and English. In a visual word rhyming judgment task, we found a significant interaction between age and language in left inferior parietal lobule and left superior temporal gyrus, which was due to greater developmental increases in English than in Chinese. Moreover, we found that higher skill only in English children was correlated with greater activation in left inferior parietal lobule. These findings suggest that the regions associated with phonological processing are essential in English reading development. We also found greater developmental increases in English than in Chinese in left inferior temporal gyrus, suggesting refinement of this region for fine-grained word form recognition. In contrast, greater developmental increases in Chinese than in English were found in right middle occipital gyrus, suggesting the importance of holistic visual-orthographic analysis in Chinese reading acquisition. Our results suggest that the brain adapts to the special features of the orthography by engaging relevant brain regions to a greater degree over development. PMID:25444089

  19. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    PubMed

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM.

  20. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    PubMed

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Chronotype differences in cortical thickness: grey matter reflects when you go to bed.

    PubMed

    Rosenberg, Jessica; Jacobs, Heidi I L; Maximov, Ivan I; Reske, Martina; Shah, N J

    2018-06-15

    Based on individual circadian cycles and associated cognitive rhythms, humans can be classified via standardised self-reports as being early (EC), late (LC) and intermediate (IC) chronotypes. Alterations in neural cortical structure underlying these chronotype differences have rarely been investigated and are the scope of this study. 16 healthy male ECs, 16 ICs and 16 LCs were measured with a 3 T MAGNETOM TIM TRIO (Siemens, Erlangen) scanner using a magnetization prepared rapid gradient echo sequence. Data were analysed by applying voxel-based morphometry (VBM) and vertex-wise cortical thickness (CTh) analysis. VBM analysis revealed that ECs showed significantly lower grey matter volumes bilateral in the lateral occipital cortex and the precuneus as compared to LCs, and in the right lingual gyrus, occipital fusiform gyrus and the occipital pole as compared to ICs. CTh findings showed lower grey matter volumes for ECs in the left anterior insula, precuneus, inferior parietal cortex, and right pars triangularis than for LCs, and in the right superior parietal gyrus than for ICs. These findings reveal that chronotype differences are associated with specific neural substrates of cortical thickness, surface areas, and folding. We conclude that this might be the basis for chronotype differences in behaviour and brain function. Furthermore, our results speak for the necessity of considering "chronotype" as a potentially modulating factor in all kinds of structural brain-imaging experiments.

  2. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  3. Alterations of the occipital lobe in schizophrenia

    PubMed Central

    Tohid, Hassaan; Faizan, Muhammad; Faizan, Uzma

    2015-01-01

    The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia. PMID:26166588

  4. Idiopathic hypertrophic pachymeningitis presenting with occipital neuralgia.

    PubMed

    Auboire, Laurent; Boutemy, Jonathan; Constans, Jean Marc; Le Gallou, Thomas; Busson, Philippe; Bienvenu, Boris

    2015-03-01

    Although occipital neuralgia is usually caused by degenerative arthropathy, nearly 20 other aetiologies may lead to this condition. We present the first case report of hypertrophic pachymeningitis revealed by isolated occipital neuralgia. Idiopathic hypertrophic pachymeningitis is a plausible cause of occipital neuralgia and may present without cranial-nerve palsy. There is no consensus on the treatment for idiopathic hypertrophic pachymeningitis, but the usual approach is to start corticotherapy and then to add immunosuppressants. When occipital neuralgia is not clinically isolated or when a first-line treatment fails, another disease diagnosis should be considered. However, the cost effectiveness of extended investigations needs to be considered.

  5. Abnormal neural activity of brain regions in treatment-resistant and treatment-sensitive major depressive disorder: a resting-state fMRI study.

    PubMed

    Guo, Wen-bin; Liu, Feng; Chen, Jin-dong; Gao, Keming; Xue, Zhi-min; Xu, Xi-jia; Wu, Ren-rong; Tan, Chang-lian; Sun, Xue-li; Liu, Zhe-ning; Chen, Hua-fu; Zhao, Jing-ping

    2012-10-01

    Patients with treatment-resistant depression (TRD) and those with treatment-sensitive depression (TSD) responded to antidepressants differently. Previous studies have commonly shown that patients with TRD or TSD had abnormal neural activity in different brain regions. In the present study, we used a coherence-based ReHo (Cohe-ReHo) approach to test the hypothesis that patients with TRD or TSD had abnormal neural activity in different brain regions. Twenty-three patients with TRD, 22 with TSD, and 19 healthy subjects (HS) matched with gender, age, and education level participated in the study. ANOVA analysis revealed widespread differences in Cohe-ReHo values among the three groups in different brain regions which included bilateral superior frontal gyrus, bilateral cerebellum, left inferior temporal gyrus, left occipital cortex, and both sides of fusiform gyrus. Compared to HS, lower Cohe-ReHo values were observed in TRD group in bilateral superior frontal gyrus and left cerebellum; in contrast, in TSD group, lower Cohe-ReHo values were mainly found in bilateral superior frontal gyrus. Compared to TSD group, TRD group had lower Cohe-ReHo in bilateral cerebellum and higher Cohe-ReHo in left fusiform gyrus. There was a negative correlation between Cohe-ReHo values of the left fusiform gyrus and illness duration in the pooled patients (r = 0.480, p = 0.001). The sensitivity and specificity of cerebellar Cohe-ReHo values differentiating TRD from TSD were 83% and 86%, respectively. Compared to healthy controls, both TRD and TSD patients shared the majority of brain regions with abnormal neural activity. However, the lower Cohe-ReHo values in the cerebellum might be as a marker to differentiate TRD from TSD with high sensitivity and specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Assessment of in vivo microstructure alterations in gray matter using DKI in Internet gaming addiction.

    PubMed

    Sun, Yawen; Sun, Jinhua; Zhou, Yan; Ding, Weina; Chen, Xue; Zhuang, Zhiguo; Xu, Jianrong; Du, Yasong

    2014-10-24

    The aim of the current study was to investigate the utility of diffusional kurtosis imaging (DKI) in the detection of gray matter (GM) alterations in people suffering from Internet Gaming Addiction (IGA). DKI was applied to 18 subjects with IGA and to 21 healthy controls (HC). Whole-brain voxel-based analyses were performed with the following derived parameters: mean kurtosis metrics (MK), radial kurtosis (K⊥), and axial kurtosis (K//). A significance threshold was set at P <0.05, AlphaSim corrected. Pearson's correlation was performed to investigate the correlations between the Chen Internet Addiction Scale (CIAS) and the DKI-derived metrics of regions that differed between groups. Additionally, we used voxel-based morphometry (VBM) to detect GM-volume differences between the two groups. Compared with the HC group, the IGA group demonstrated diffusional kurtosis parameters that were significantly less in GM of the right anterolateral cerebellum, right inferior and superior temporal gyri, right supplementary motor area, middle occipital gyrus, right precuneus, postcentral gyrus, right inferior frontal gyrus, left lateral lingual gyrus, left paracentral lobule, left anterior cingulate cortex, and median cingulate cortex. The bilateral fusiform gyrus, insula, posterior cingulate cortex (PCC), and thalamus also exhibited less diffusional kurtosis in the IGA group. MK in the left PCC and K⊥ in the right PCC were positively correlated with CIAS scores. VBM showed that IGA subjects had higher GM volume in the right inferior and middle temporal gyri, and right parahippocampal gyrus, and lower GM volume in the left precentral gyrus. The lower diffusional kurtosis parameters in IGA suggest multiple differences in brain microstructure, which may contribute to the underlying pathophysiology of IGA. DKI may provide sensitive imaging biomarkers for assessing IGA severity.

  7. Occipital peripheral nerve stimulation in the management of chronic intractable occipital neuralgia in a patient with neurofibromatosis type 1: a case report.

    PubMed

    Skaribas, Ioannis; Calvillo, Octavio; Delikanaki-Skaribas, Evangelia

    2011-05-10

    Occipital peripheral nerve stimulation is an interventional pain management therapy that provides beneficial results in the treatment of refractory chronic occipital neuralgia. Herein we present a first-of-its-kind case study of a patient with neurofibromatosis type 1 and bilateral occipital neuralgia treated with occipital peripheral nerve stimulation. A 42-year-old Caucasian woman presented with bilateral occipital neuralgia refractory to various conventional treatments, and she was referred for possible treatment with occipital peripheral nerve stimulation. She was found to be a suitable candidate for the procedure, and she underwent implantation of two octapolar stimulating leads and a rechargeable, programmable, implantable generator. The intensity, severity, and frequency of her symptoms resolved by more than 80%, but an infection developed at the implantation site two months after the procedure that required explantation and reimplantation of new stimulating leads three months later. To date she continues to experience symptom resolution of more than 60%. These results demonstrate the significance of peripheral nerve stimulation in the management of refractory occipital neuralgias in patients with neurofibromatosis type 1 and the possible role of neurofibromata in the development of occipital neuralgia in these patients.

  8. Occipital peripheral nerve stimulation in the management of chronic intractable occipital neuralgia in a patient with neurofibromatosis type 1: a case report

    PubMed Central

    2011-01-01

    Introduction Occipital peripheral nerve stimulation is an interventional pain management therapy that provides beneficial results in the treatment of refractory chronic occipital neuralgia. Herein we present a first-of-its-kind case study of a patient with neurofibromatosis type 1 and bilateral occipital neuralgia treated with occipital peripheral nerve stimulation. Case presentation A 42-year-old Caucasian woman presented with bilateral occipital neuralgia refractory to various conventional treatments, and she was referred for possible treatment with occipital peripheral nerve stimulation. She was found to be a suitable candidate for the procedure, and she underwent implantation of two octapolar stimulating leads and a rechargeable, programmable, implantable generator. The intensity, severity, and frequency of her symptoms resolved by more than 80%, but an infection developed at the implantation site two months after the procedure that required explantation and reimplantation of new stimulating leads three months later. To date she continues to experience symptom resolution of more than 60%. Conclusion These results demonstrate the significance of peripheral nerve stimulation in the management of refractory occipital neuralgias in patients with neurofibromatosis type 1 and the possible role of neurofibromata in the development of occipital neuralgia in these patients. PMID:21569290

  9. Anterior cingulate hyperactivations during negative emotion processing among men with schizophrenia and a history of violent behavior.

    PubMed

    Tikàsz, Andràs; Potvin, Stéphane; Lungu, Ovidiu; Joyal, Christian C; Hodgins, Sheilagh; Mendrek, Adrianna; Dumais, Alexandre

    2016-01-01

    Evidence suggests a 2.1-4.6 times increase in the risk of violent behavior in schizophrenia compared to the general population. Current theories propose that the processing of negative emotions is defective in violent individuals and that dysfunctions within the neural circuits involved in emotion processing are implicated in violence. Although schizophrenia patients show enhanced sensitivity to negative stimuli, there are only few functional neuroimaging studies that have examined emotion processing among men with schizophrenia and a history of violence. The present study aimed to identify the brain regions with greater neurofunctional alterations, as detected by functional magnetic resonance imaging during an emotion processing task, of men with schizophrenia who had engaged in violent behavior compared with those who had not. Sixty men were studied; 20 with schizophrenia and a history of violence, 19 with schizophrenia and no violence, and 21 healthy men were scanned while viewing positive, negative, and neutral images. Negative images elicited hyperactivations in the anterior cingulate cortex (ACC), left and right lingual gyrus, and the left precentral gyrus in violent men with schizophrenia, compared to nonviolent men with schizophrenia and healthy men. Neutral images elicited hyperactivations in the right and left middle occipital gyrus, left lingual gyrus, and the left fusiform gyrus in violent men with schizophrenia, compared to the other two groups. Violent men with schizophrenia displayed specific increases in ACC in response to negative images. Given the role of the ACC in information integration, these results indicate a specific dysfunction in the processing of negative emotions that may trigger violent behavior in men with schizophrenia.

  10. Unilateral occipital nerve stimulation for bilateral occipital neuralgia: a case report and literature review.

    PubMed

    Liu, Aijun; Jiao, Yongcheng; Ji, Huijun; Zhang, Zhiwen

    2017-01-01

    The aim of this study is to present a case of successful relief of bilateral occipital neuralgia (ON) using unilateral occipital nerve stimulation (ONS) and to discuss the possible underlying mechanisms. We present the case of a 59-year-old female patient with severe bilateral ON treated with unilateral ONS. We systematically reviewed previous studies of ONS for ON, discussing the possible mechanisms of ONS in the relief of ON. The patient reported complete pain relief after consistent unilateral ONS during the follow-up period. The underlying mechanisms may be linked to the relationship between pain and several brain regions, including the pons, midbrain, and periaqueductal gray. ONS is an effective and safe option for treating ON. Future studies will be required to clarify the mechanisms by which unilateral occipital stimulation provided relief for bilateral neuralgia in this case.

  11. Face processing pattern under top-down perception: a functional MRI study

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liang, Jimin; Tian, Jie; Liu, Jiangang; Zhao, Jizheng; Zhang, Hui; Shi, Guangming

    2009-02-01

    Although top-down perceptual process plays an important role in face processing, its neural substrate is still puzzling because the top-down stream is extracted difficultly from the activation pattern associated with contamination caused by bottom-up face perception input. In the present study, a novel paradigm of instructing participants to detect faces from pure noise images is employed, which could efficiently eliminate the interference of bottom-up face perception in topdown face processing. Analyzing the map of functional connectivity with right FFA analyzed by conventional Pearson's correlation, a possible face processing pattern induced by top-down perception can be obtained. Apart from the brain areas of bilateral fusiform gyrus (FG), left inferior occipital gyrus (IOG) and left superior temporal sulcus (STS), which are consistent with a core system in the distributed cortical network for face perception, activation induced by top-down face processing is also found in these regions that include the anterior cingulate gyrus (ACC), right oribitofrontal cortex (OFC), left precuneus, right parahippocampal cortex, left dorsolateral prefrontal cortex (DLPFC), right frontal pole, bilateral premotor cortex, left inferior parietal cortex and bilateral thalamus. The results indicate that making-decision, attention, episodic memory retrieving and contextual associative processing network cooperate with general face processing regions to process face information under top-down perception.

  12. Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: evidence from fMRI.

    PubMed

    Magnani, Barbara; Frassinetti, Francesca; Ditye, Thomas; Oliveri, Massimiliano; Costantini, Marcello; Walsh, Vincent

    2014-05-15

    Prismatic adaptation (PA) has been shown to affect left-to-right spatial representations of temporal durations. A leftward aftereffect usually distorts time representation toward an underestimation, while rightward aftereffect usually results in an overestimation of temporal durations. Here, we used functional magnetic resonance imaging (fMRI) to study the neural mechanisms that underlie PA effects on time perception. Additionally, we investigated whether the effect of PA on time is transient or stable and, in the case of stability, which cortical areas are responsible of its maintenance. Functional brain images were acquired while participants (n=17) performed a time reproduction task and a control-task before, immediately after and 30 min after PA inducing a leftward aftereffect, administered outside the scanner. The leftward aftereffect induced an underestimation of time intervals that lasted for at least 30 min. The left anterior insula and the left superior frontal gyrus showed increased functional activation immediately after versus before PA in the time versus the control-task, suggesting these brain areas to be involved in the executive spatial manipulation of the representation of time. The left middle frontal gyrus showed an increase of activation after 30 min with respect to before PA. This suggests that this brain region may play a key role in the maintenance of the PA effect over time. Copyright © 2014. Published by Elsevier Inc.

  13. Is creative insight task-specific? A coordinate-based meta-analysis of neuroimaging studies on insightful problem solving.

    PubMed

    Shen, Wangbing; Yuan, Yuan; Liu, Chang; Zhang, Xiaojiang; Luo, Jing; Gong, Zhe

    2016-12-01

    The question of whether creative insight varies across problem types has recently come to the forefront of studies of creative cognition. In the present study, to address the nature of creative insight, the coordinate-based activation likelihood estimation (ALE) technique was utilized to individually conduct three quantitative meta-analyses of neuroimaging experiments that used the compound remote associate (CRA) task, the prototype heuristic (PH) task and the Chinese character chunk decomposition (CCD) task. These tasks were chosen because they are frequently used to uncover the neurocognitive correlates of insight. Our results demonstrated that creative insight reliably activates largely non-overlapping brain regions across task types, with the exception of some shared regions: the CRA task mainly relied on the right parahippocampal gyrus, the superior frontal gyrus and the inferior frontal gyrus; the PH task primarily depended on the right middle occipital gyrus (MOG), the bilateral superior parietal lobule/precuneus, the left inferior parietal lobule, the left lingual gyrus and the left middle frontal gyrus; and the CCD task activated a broad cerebral network consisting of most dorsolateral and medial prefrontal regions, frontoparietal regions and the right MOG. These results provide the first neural evidence of the task dependence of creative insight. The implications of these findings for resolving conflict surrounding the different theories of creative cognition and for defining insight as a set of heterogeneous processes are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Sex differences in the brain response to affective scenes with or without humans.

    PubMed

    Proverbio, Alice Mado; Adorni, Roberta; Zani, Alberto; Trestianu, Laura

    2009-10-01

    Recent findings have demonstrated that women might be more reactive than men to viewing painful stimuli (vicarious response to pain), and therefore more empathic [Han, S., Fan, Y., & Mao, L. (2008). Gender difference in empathy for pain: An electrophysiological investigation. Brain Research, 1196, 85-93]. We investigated whether the two sexes differed in their cerebral responses to affective pictures portraying humans in different positive or negative contexts compared to natural or urban scenarios. 440 IAPS slides were presented to 24 Italian students (12 women and 12 men). Half the pictures displayed humans while the remaining scenes lacked visible persons. ERPs were recorded from 128 electrodes and swLORETA (standardized weighted Low-Resolution Electromagnetic Tomography) source reconstruction was performed. Occipital P115 was greater in response to persons than to scenes and was affected by the emotional valence of the human pictures. This suggests that processing of biologically relevant stimuli is prioritized. Orbitofrontal N2 was greater in response to positive than negative human pictures in women but not in men, and not to scenes. A late positivity (LP) to suffering humans far exceeded the response to negative scenes in women but not in men. In both sexes, the contrast suffering-minus-happy humans revealed a difference in the activation of the occipito/temporal, right occipital (BA19), bilateral parahippocampal, left dorsal prefrontal cortex (DPFC) and left amygdala. However, increased right amygdala and right frontal area activities were observed only in women. The humans-minus-scenes contrast revealed a difference in the activation of the middle occipital gyrus (MOG) in men, and of the left inferior parietal (BA40), left superior temporal gyrus (STG, BA38) and right cingulate (BA31) in women (270-290 ms). These data indicate a sex-related difference in the brain response to humans, possibly supporting human empathy.

  15. A case of occipital neuralgia in the greater and lesser occipital nerves treated with neurectomy by using transcranial Doppler sonography: technical aspects.

    PubMed

    Jung, Sang Jin; Moon, Seong Keun; Kim, Tae Young; Eom, Ki Seong

    2011-03-01

    Occipital neuralgia is usually defined as paroxysmal stabbing pain in the greater or lesser occipital nerve (GON or LON) distribution. In occipital neuralgia patients, surgical considerations are carefully taken into account if medical management is ineffective. However, identification of the occipital artery by palpation in patients with thick necks or small occipital arteries can be technically difficult. Therefore, we established a new technique using transcranial Doppler (TCD) sonography for more accurate and rapid identification. The patient was a 64-year-old man who had undergone C1-C3 screw fixation and presented with intractable stabbing pain in the bilateral GON and LON distributions. In cases in which pain management was performed using medication, physical therapy, nerve block, or radiofrequency thermocoagulation, substantial pain relief was not consistently achieved, and recurrence of pain was reported. Therefore, we performed occipital neurectomy of the bilateral GON and LON by using TCD sonography, which helped detect the greater occipital artery easily. After the operation, the patient's headache disappeared gradually, although he had discontinued all medication except antidepressants. We believe that this new technique of occipital neurectomy via a small skin incision performed using TCD sonography is easy and reliable, has a short operative time, and provides rapid pain relief.

  16. A Case of Occipital Neuralgia in the Greater and Lesser Occipital Nerves Treated with Neurectomy by Using Transcranial Doppler Sonography: Technical Aspects

    PubMed Central

    Jung, Sang Jin; Moon, Seong Keun; Kim, Tae Young

    2011-01-01

    Occipital neuralgia is usually defined as paroxysmal stabbing pain in the greater or lesser occipital nerve (GON or LON) distribution. In occipital neuralgia patients, surgical considerations are carefully taken into account if medical management is ineffective. However, identification of the occipital artery by palpation in patients with thick necks or small occipital arteries can be technically difficult. Therefore, we established a new technique using transcranial Doppler (TCD) sonography for more accurate and rapid identification. The patient was a 64-year-old man who had undergone C1-C3 screw fixation and presented with intractable stabbing pain in the bilateral GON and LON distributions. In cases in which pain management was performed using medication, physical therapy, nerve block, or radiofrequency thermocoagulation, substantial pain relief was not consistently achieved, and recurrence of pain was reported. Therefore, we performed occipital neurectomy of the bilateral GON and LON by using TCD sonography, which helped detect the greater occipital artery easily. After the operation, the patient's headache disappeared gradually, although he had discontinued all medication except antidepressants. We believe that this new technique of occipital neurectomy via a small skin incision performed using TCD sonography is easy and reliable, has a short operative time, and provides rapid pain relief. PMID:21390179

  17. Longitudinal changes in cortical thickness in autism and typical development.

    PubMed

    Zielinski, Brandon A; Prigge, Molly B D; Nielsen, Jared A; Froehlich, Alyson L; Abildskov, Tracy J; Anderson, Jeffrey S; Fletcher, P Thomas; Zygmunt, Kristen M; Travers, Brittany G; Lange, Nicholas; Alexander, Andrew L; Bigler, Erin D; Lainhart, Janet E

    2014-06-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3-36 years) and 60 males with typical development (mean age = 18 years; range 4-39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  18. Longitudinal changes in cortical thickness in autism and typical development

    PubMed Central

    Prigge, Molly B. D.; Nielsen, Jared A.; Froehlich, Alyson L.; Abildskov, Tracy J.; Anderson, Jeffrey S.; Fletcher, P. Thomas; Zygmunt, Kristen M.; Travers, Brittany G.; Lange, Nicholas; Alexander, Andrew L.; Bigler, Erin D.; Lainhart, Janet E.

    2014-01-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3–36 years) and 60 males with typical development (mean age = 18 years; range 4–39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  19. Helmet-Induced Occipital Neuralgia in a Military Aviator.

    PubMed

    Chalela, Julio A

    2018-04-01

    Headaches among military personnel are very common and headgear wear is a frequently identified culprit. Helmet wear may cause migrainous headaches, external compression headache, other primary cranial neuralgias, and occipital neuralgia. The clinical features and the response to treatment allow distinction between the different types of headaches. Headaches among aviators are particularly concerning as they may act as distractors while flying and the treatment options are often incompatible with flying status. A 24-yr-old door gunner presented with suboccipital pain associated with the wear of his helmet. He described the pain as a paroxysmal stabbing sensation coming in waves. The physical exam and history supported the diagnosis of primary occipital neuralgia. Systemic pharmacological options were discussed with the soldier, but rejected due to his need to remain in flying status. An occipital nerve block was performed with good clinical results, supporting the diagnosis of occipital neuralgia and allowing him to continue as mission qualified. Occipital neuralgia can be induced by helmet wear in military personnel. Occipital nerve block can be performed in the deployed setting, allowing the service member to remain mission capable and sparing him/her from systemic side effects.Chalela JA. Helmet-induced occipital neuralgia in a military aviator. Aerosp Med Hum Perform. 2018; 89(4):409-410.

  20. Unilateral occipital nerve stimulation for bilateral occipital neuralgia: a case report and literature review

    PubMed Central

    Liu, Aijun; Jiao, Yongcheng; Ji, Huijun; Zhang, Zhiwen

    2017-01-01

    Objectives The aim of this study is to present a case of successful relief of bilateral occipital neuralgia (ON) using unilateral occipital nerve stimulation (ONS) and to discuss the possible underlying mechanisms. Materials and methods We present the case of a 59-year-old female patient with severe bilateral ON treated with unilateral ONS. We systematically reviewed previous studies of ONS for ON, discussing the possible mechanisms of ONS in the relief of ON. Results The patient reported complete pain relief after consistent unilateral ONS during the follow-up period. The underlying mechanisms may be linked to the relationship between pain and several brain regions, including the pons, midbrain, and periaqueductal gray. Conclusion ONS is an effective and safe option for treating ON. Future studies will be required to clarify the mechanisms by which unilateral occipital stimulation provided relief for bilateral neuralgia in this case. PMID:28176938

  1. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    PubMed

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  2. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia

    PubMed Central

    Barnes, Gareth R.; Penny, William D.; Iverson, Paul; Woodhead, Zoe V. J.; Griffiths, Timothy D.; Leff, Alexander P.

    2013-01-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics’ speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired. PMID:23715097

  3. Morphometric Analysis of the Occipital Condyle and Its Surgical Importance

    PubMed Central

    Das, Sushant Swaroop; Vasudeva, Neelam

    2016-01-01

    Introduction The Occipital Condyle (OC) is an integral component of craniovertebral region which is predisposed to a wide array of traumatic, degenerative and neoplastic diseases. Frequent surgical interventions of OC are required for successful management of these conditions. Hence a meticulous anatomical knowledge of the OC is vital but variability in morphometric dimensions exist amongst different races and hinder the standardization of measurements. Aim The aim of this study was to present a morphometric reference database for OC of the Indian population and enable comparisons with other populations. Materials and Methods The study was performed on 228 OC of 114 adult human skulls. Linear measurements of the OC were taken with the help of digital Vernier’s Calliper and angular measurements were determined with software Image J. Statistical Analysis Mean and standard deviation of the morphometric parameters taken into account were analysed. The comparison of morphometric dimensions of the right and left sides was carried out using Student’s t-test and p-value was calculated. Results The morphometric analysis of the OC established that mean width was larger (12.97 mm) in Indians population when compared to other races. The anterior and posterior intercondylar distances as well as the distances between the tips of OC and opisthion and basion were observed to be shorter in Indians. We found a significant difference (p=0.01) among the distance between Posterior tip of Occipital Condyle (POC) and basion of the right and left sides. The sagittal condylar angle and sagittal intercondylar angle were found to be greater in our study when compared to other researchers. There existed a highly significant difference (p=0.001) between the sagittal condylar angles of the right and left sides. Conclusion The present morphometric study would be valuable for the successful instrumentation of the OC as wider and ventrally oriented OC as well as smaller intercondylar distances

  4. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    PubMed

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  5. SU-F-J-139: Amplitude of Low Frequency Fluctuation(ALFF) and Regional Homogeneity (ReHo) Study of the Respiration Motion Control Byhypnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Li, R; Xie, Y

    Purpose: Respiration control by hypnosis is a method in reducing the detriment to the healthy organs or organizations for patients during radiotherapy, especially for lung and abdomen cancer (Fig.1). It’s hypothesized that there exists alterations neurological brain activity during the hypnosis state of respiratory motion control in comparison with resting state. Methods: Thirteen healthy volunteers were organized to participate in a hypnosis experiment that consisted of two sectional scans of functional magnetic resonance imaging (fMRI), rest state condition (RSC) scanning and hypnosis state condition (HSC) scanning. In addition, the coronal section of the lung was scanned during both conditions. Duringmore » the hypnosis scan, the volunteers were under the hypnotists’ guidance to keep peace and stable respiration. To evaluate the altered physiological performance of hypnosis in the respiratory control, three conventional indicators ALFF/fALFF (0.01–0.08Hz) and ReHo, were applied to identify the difference. Results: Compared with RSC, HSC showed significant (p<0.05) higher ReHo in superior temporal gyrus, middle temporal gyrus, frontal lobe, middle occipital gyrus, parietal lobe, cerebellum anterior Lobe and lingual gyrus, and left brainstem (Fig.2). While significant lower ReHo in middle frontal gyrus, superior frontal gyrus, inferior semi-lunar lobule, sub-lobar and limbic lobe (Fig.2). As for the ALFF results, significant higher value of HSC was observed in superior temporal gyrus, middle temporal gyrus, middle occipital gyrus, middle occipital gyrus, cerebellum anterior lobe, lingual gyrus, sub-lobar, limbic lobe, and lower in cerebellum posterior lobe, inferior semi-lunar lobule, inferior parietal lobule right middle frontal gyrus, cerebellar tonsil (Fig.3). The results of fALFF were similar to ALFF (Fig.4). The above results demonstrated that most significant regions of brain were uniform between ReHo and ALFF/fALFF. Conclusion: Hypnosis is a new

  6. Identify changes of brain regional homogeneity in early and later adult onset patients with first-episode depression using resting-state fMRI.

    PubMed

    Shen, Zonglin; Jiang, Linling; Yang, Shuran; Ye, Jing; Dai, Nan; Liu, Xiaoyan; Li, Na; Lu, Jin; Liu, Fang; Lu, Yi; Sun, Xuejin; Cheng, Yuqi; Xu, Xiufeng

    2017-01-01

    Previous work exhibited different brain grey matter volume (GMV) changes between patients with early adult onset depression (EOD, age 18-29) and later adult onset depression (LOD, age 30-44) by using 30-year-old as the cut-off age. To identify whether regional homogeneity (ReHo) changes are also different between EOD and LOD by using same cut-off age, we used resting-state functional magnetic resonance imaging (fMRI) to detect the abnormal ReHo between patients with EOD and LOD in the present study. Resting-state fMRI scans of 58 patients with EOD, 62 patients with LOD, 60 young healthy controls (HC), and 52 old HC were obtained. The ReHo approach was used to analyze the images. The ANOVA analysis revealed that the ReHo values in the frontoparietal, occipital, and cerebellar regions were significantly different among the four groups. Relative to patients with LOD, patients with EOD displayed significantly increased ReHo in the left precuneus, and decreased ReHo in the right fusiform. The ReHo values in the left precuneus and the right fusiform had no significant correlation with the score of the depression rating scale or illness duration in both patient subgroups. Compared to young HC, patients with EOD showed significantly increased ReHo in the right frontoparietal regions and the right calcarine. Furthermore, the increased ReHo in the right frontoparietal regions, right insula and left hippocampus, and decreased ReHo in the left inferior occipital gyrus, right middle occipital gyrus, left calcarine, and left supplementary motor area were observed in patients with LOD when compared to old HC. The ReHo of brain areas that were related to mood regulation was changed in the first-episode, drug-naive adult patients with MDD. Adult patients with EOD and LOD exhibited different ReHo abnormalities relative to each age-matched comparison group, suggesting that depressed adult patients with different age-onset might have different pathological mechanism.

  7. Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures.

    PubMed

    Santel, Stephanie; Baving, Lioba; Krauel, Kerstin; Münte, Thomas F; Rotte, Michael

    2006-10-09

    Neuroimaging studies of visually presented food stimuli in patients with anorexia nervosa have demonstrated decreased activations in inferior parietal and visual occipital areas, and increased frontal activations relative to healthy persons, but so far no inferences could be drawn with respect to the influence of hunger or satiety. Thirteen patients with AN and 10 healthy control subjects (aged 13-21) rated visual food and non-food stimuli for pleasantness during functional magnetic resonance imaging (fMRI) in a hungry and a satiated state. AN patients rated food as less pleasant than controls. When satiated, AN patients showed decreased activation in left inferior parietal cortex relative to controls. When hungry, AN patients displayed weaker activation of the right visual occipital cortex than healthy controls. Food stimuli during satiety compared with hunger were associated with stronger right occipital activation in patients and with stronger activation in left lateral orbitofrontal cortex, the middle portion of the right anterior cingulate, and left middle temporal gyrus in controls. The observed group differences in the fMRI activation to food pictures point to decreased food-related somatosensory processing in AN during satiety and to attentional mechanisms during hunger that might facilitate restricted eating in AN.

  8. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study.

    PubMed

    Orlov, Natasza D; Giampietro, Vincent; O'Daly, Owen; Lam, Sheut-Ling; Barker, Gareth J; Rubia, Katya; McGuire, Philip; Shergill, Sukhwinder S; Allen, Paul

    2018-02-12

    Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity can increase functional connectivity between speech motor and perception regions. These findings suggest that patients with AVH have the ability to alter activity and connectivity in speech and language regions, and raise the possibility that rtfMRI-NF training could present a novel therapeutic intervention in SCZ.

  9. Left Inferior Frontal Cortex and Syntax: Function, Structure and Behaviour in Patients with Left Hemisphere Damage

    ERIC Educational Resources Information Center

    Tyler, Lorraine K.; Marslen-Wilson, William D.; Randall, Billi; Wright, Paul; Devereux, Barry J.; Zhuang, Jie; Papoutsi, Marina; Stamatakis, Emmanuel A.

    2011-01-01

    For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left…

  10. Peripheral neurostimulation for control of intractable occipital neuralgia.

    PubMed

    Weiner, R L; Reed, K L

    1999-07-01

    Objective. To present a novel approach for treatment of intractable occipital neuralgia using percutaneous peripheral nerve electrostimulation techniques. Methods. Thirteen patients underwent 17 implant procedures for medically refractory occipital neuralgia. A subcutaneous electrode placed transversely at the level of C1 across the base of the occipital nerve trunk produced paresthesias and pain relief covering the regions of occipital nerve pain Results. With follow-up ranging from 1-½ to 6 years, 12 patients continue to report good to excellent response with greater than 50% pain control and requiring little or no additional medications. The 13th patient (first in the series) was subsequently explanted following symptom resolution. Conclusions. In patients with medically intractable occipital neuralgia, peripheral nerve electrostimulation subcutaneously at the level of C1 appears to be a reasonable alternative to more invasive surgical procedures following failure of more conservative therapies.

  11. Cooled radiofrequency ablation for bilateral greater occipital neuralgia.

    PubMed

    Vu, Tiffany; Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy.

  12. Cooled Radiofrequency Ablation for Bilateral Greater Occipital Neuralgia

    PubMed Central

    Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy. PMID:24716017

  13. Occipital Neuralgia Diagnosis and Treatment: The Role of Ultrasound.

    PubMed

    Narouze, Samer

    2016-04-01

    Occipital neuralgia is a form of neuropathic type of pain in the distribution of the greater, lesser, or third occipital nerves. Patients with intractable occipital neuralgia do not respond well to conservative treatment modalities. This group of patients represents a significant therapeutic challenge and may require interventional or invasive therapeutic approaches. Occipital neuralgia frequently occurs as a result of nerve entrapment or irritation by a tight muscle or vascular structure, or nerve trauma during whiplash injury. Although the entrapment theory is most commonly accepted, it lacks strong clinical evidence to support it. Accordingly, the available interventional approaches have been targeting the accessible part of the occipital nerve rather than the entrapped part. Bedside sonography is an excellent imaging modality for soft tissue structures. Ultrasound not only allows distinguishing normal from abnormal entrapped occipital nerves, it can identify the level and the cause of entrapment as well. Ultrasound guidance allows precise occipital nerve blocks and interventions at the level of the "specific" entrapment location rather than into the site of "presumed" entrapment. © 2016 American Headache Society.

  14. Multimodal imaging of language reorganization in patients with left temporal lobe epilepsy.

    PubMed

    Chang, Yu-Hsuan A; Kemmotsu, Nobuko; Leyden, Kelly M; Kucukboyaci, N Erkut; Iragui, Vicente J; Tecoma, Evelyn S; Kansal, Leena; Norman, Marc A; Compton, Rachelle; Ehrlich, Tobin J; Uttarwar, Vedang S; Reyes, Anny; Paul, Brianna M; McDonald, Carrie R

    2017-07-01

    This study explored the relationships among multimodal imaging, clinical features, and language impairment in patients with left temporal lobe epilepsy (LTLE). Fourteen patients with LTLE and 26 controls underwent structural MRI, functional MRI, diffusion tensor imaging, and neuropsychological language tasks. Laterality indices were calculated for each imaging modality and a principal component (PC) was derived from language measures. Correlations were performed among imaging measures, as well as to the language PC. In controls, better language performance was associated with stronger left-lateralized temporo-parietal and temporo-occipital activations. In LTLE, better language performance was associated with stronger right-lateralized inferior frontal, temporo-parietal, and temporo-occipital activations. These right-lateralized activations in LTLE were associated with right-lateralized arcuate fasciculus fractional anisotropy. These data suggest that interhemispheric language reorganization in LTLE is associated with alterations to perisylvian white matter. These concurrent structural and functional shifts from left to right may help to mitigate language impairment in LTLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Inferior fronto-temporo-occipital connectivity: a missing link between maltreated girls and neglectful mothers

    PubMed Central

    León, Inmaculada; Góngora, Daylin; Hernández-Cabrera, Juan A.; Byrne, Sonia; Bobes, María A.

    2016-01-01

    The neurobiological alterations resulting from adverse childhood experiences that subsequently may lead to neglectful mothering are poorly understood. Maternal neglect of an infant’s basic needs is the most prevalent type of child maltreatment. We tested white matter alterations in neglectful mothers, the majority of whom had also suffered maltreatment in their childhood, and compared them to a matched control group. The two groups were discriminated by a structural brain connectivity pattern comprising inferior fronto-temporo-occipital connectivity, which constitutes a major portion of the face-processing network and was indexed by fewer streamlines in neglectful mothers. Mediation and regression analyses showed that fewer streamlines in the right inferior longitudinal fasciculus tract (ILF-R) predicted a poorer quality of mother–child emotional availability observed during cooperative play and that effect depended on the respective interactions with left and right inferior fronto-occipital fasciculi (IFO-R/L), with no significant impact of psychopathological and cognitive conditions. Volume alteration in ILF-R but not in IFO-L modulated the impact of having been maltreated on emotional availability. The findings suggest the altered inferior fronto-temporal-occipital connectivity, affecting emotional visual processing, as a possible common neurological substrate linking a history of childhood maltreatment with maternal neglect. PMID:27342834

  16. Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes

    PubMed Central

    Bansal, Arjun K.; Singer, Jedediah M.; Anderson, William S.; Golby, Alexandra; Madsen, Joseph R.

    2012-01-01

    The cerebral cortex needs to maintain information for long time periods while at the same time being capable of learning and adapting to changes. The degree of stability of physiological signals in the human brain in response to external stimuli over temporal scales spanning hours to days remains unclear. Here, we quantitatively assessed the stability across sessions of visually selective intracranial field potentials (IFPs) elicited by brief flashes of visual stimuli presented to 27 subjects. The interval between sessions ranged from hours to multiple days. We considered electrodes that showed robust visual selectivity to different shapes; these electrodes were typically located in the inferior occipital gyrus, the inferior temporal cortex, and the fusiform gyrus. We found that IFP responses showed a strong degree of stability across sessions. This stability was evident in averaged responses as well as single-trial decoding analyses, at the image exemplar level as well as at the category level, across different parts of visual cortex, and for three different visual recognition tasks. These results establish a quantitative evaluation of the degree of stationarity of visually selective IFP responses within and across sessions and provide a baseline for studies of cortical plasticity and for the development of brain-machine interfaces. PMID:22956795

  17. The Left Fusiform Area Is Affected by Written Frequency of Words

    ERIC Educational Resources Information Center

    Proverbio, Alice M.; Zani, Alberto; Adorni, Roberta

    2008-01-01

    The recent neuroimaging literature gives conflicting evidence about whether the left fusiform gyrus (FG) might recognize words as unitary visual objects. The sensitivity of the left FG to word frequency might provide a neural basis for the orthographic input lexicon theorized by reading models [Patterson, K., Marshall, J. C., & Coltheart, M.…

  18. Gender differences in neural correlates of stress-induced anxiety.

    PubMed

    Seo, Dongju; Ahluwalia, Aneesha; Potenza, Marc N; Sinha, Rajita

    2017-01-02

    Although gender differences have been identified as a crucial factor for understanding stress-related anxiety and associated clinical disorders, the neural mechanisms underlying these differences remain unclear. To explore gender differences in the neural correlates of stress-induced anxiety, the current study used functional magnetic resonance imaging to examine brain responses in 96 healthy men and women with commensurable levels of trait anxiety as they engaged in a personalized guided imagery paradigm to provoke stress and neutral-relaxing experiences. During the task, a significant gender main effect emerged, with men displaying greater responses in the caudate, cingulate gyrus, midbrain, thalamus, and cerebellum. In contrast, women showed greater responses in the posterior insula, temporal gyrus, and occipital lobe. Additionally, a significant anxiety ratings × gender interaction from whole-brain regression analyses was observed in the dorsomedial prefrontal cortex, left inferior parietal lobe, left temporal gyrus, occipital gyrus, and cerebellum (P < 0.05, whole-brain family-wise error corrected), with positive associations between activity in these regions and stress-induced anxiety in women, but negative associations in men, indicating that men and women differentially use neural resources when experiencing stress-induced anxiety. The findings suggest that in response to stress, there is a greater use of the medial prefrontal-parietal cortices in experiencing subjective anxiety in women, while decreased use of this circuit was associated with increased subjective anxiety states in men. The current study has implications for understanding gender-specific differences in stress-induced anxiety and vulnerability to stress-related clinical disorders, and for developing more effective treatment strategies tailored to each gender. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Structural abnormalities and altered regional brain activity in multiple sclerosis with simple spinal cord involvement.

    PubMed

    Yin, Ping; Liu, Yi; Xiong, Hua; Han, Yongliang; Sah, Shambhu Kumar; Zeng, Chun; Wang, Jingjie; Li, Yongmei

    2018-02-01

    To assess the changes of the structural and functional abnormalities in multiple sclerosis with simple spinal cord involvement (MS-SSCI) by using resting-state functional MRI (RS-fMRI), voxel based morphology (VBM) and diffusion tensor tractography. The amplitude of low-frequency fluctuation (ALFF) of 22 patients with MS-SSCI and 22 healthy controls (HCs) matched for age, gender and education were compared by using RS-fMRI. We also compared the volume, fractional anisotropy (FA) and apparent diffusion coefficient of the brain regions in baseline brain activity by using VBM and diffusion tensor imaging. The relationships between the expanded disability states scale (EDSS) scores, changed parameters of structure and function were further explored. (1) Compared with HCs, the ALFF of the bilateral hippocampus and right middle temporal gyrus in MS-SSCI decreased significantly. However, patients exhibited increased ALFF in the left middle frontal gyrus, left posterior cingulate gyrus and right middle occipital gyrus ( two-sample t-test, after AlphaSim correction, p < 0.01, voxel size > 40). The volume of right middle frontal gyrus reduced significantly (p < 0.01). The FA and ADC of right hippocampus, the FA of left hippocampus and right middle temporal gyrus were significantly different. (2) A significant correlation between EDSS scores and ALFF was noted only in the left posterior cingulate gyrus. Our results detected structural and functional abnormalities in MS-SSCI and functional parameters were associated with clinical abnormalities. Multimodal imaging plays an important role in detecting structural and functional abnormalities in MS-SSCI. Advances in knowledge: This is the first time to apply RS-fMRI, VBM and diffusion tensor tractography to study the structural and functional abnormalities in MS-SSCI, and to explore its correlation with EDSS score.

  20. Central and peripheral components of writing critically depend on a defined area of the dominant superior parietal gyrus.

    PubMed

    Magrassi, Lorenzo; Bongetta, Daniele; Bianchini, Simonetta; Berardesca, Marta; Arienta, Cesare

    2010-07-30

    Classical neuropsychological models of writing separate central (linguistic) processes common to oral spelling, writing and typing from peripheral (motor) processes that are modality specific. Damage to the left superior parietal gyrus, an area of the cortex involved in peripheral processes specific to handwriting, should generate distorted graphemes but not misspelled words, while damage to other areas of the cortex like the frontal lobe should produce alterations in written and oral spelling without distorted graphemes. We describe the clinical and neuropsychological features of a patient with combined agraphia for handwriting and typewriting bearing a small glioblastoma in the left parietal lobe. His agraphia resolved after antiedema therapy and we tested by bipolar cortical stimulation his handwriting abilities during an awake neurosurgical procedure. We found that we could reversibly re-induce the same defects of writing by stimulating during surgery a limited area of the superior parietal gyrus in the same patient and in an independent patient that was never agraphic before the operation. In those patients stimulation caused spelling errors, poorly formed letters and in some cases a complete cessation of writing with minimal or no effects on oral spelling. Our results suggest that stimulating a specific area in the superior parietal gyrus we can generate different patterns of agraphia. Moreover, our findings also suggest that some of the central processes specific for typing and handwriting converge with motor processes at least in the limited portion of the superior parietal gyrus we mapped in our patients. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Evaluation of structural connectivity changes in betel-quid chewers using generalized q-sampling MRI.

    PubMed

    Weng, Jun-Cheng; Kao, Te-Wei; Huang, Guo-Joe; Tyan, Yeu-Sheng; Tseng, Hsien-Chun; Ho, Ming-Chou

    2017-07-01

    Betel quid (BQ) is a common addictive substance in many Asian countries. However, few studies have focused on the influences of BQ on the brain. It remains unclear how BQ can affect structural brain abnormalities in BQ chewers. We aimed to use generalized q-sampling imaging (GQI) to evaluate the impact of the neurological structure of white matter caused by BQ. The study population comprised 16 BQ chewers, 15 tobacco and alcohol controls, and 17 healthy controls. We used GQI with voxel-based statistical analysis (VBA) to evaluate structural brain and connectivity abnormalities in the BQ chewers compared to the tobacco and alcohol controls and the healthy controls. Graph theoretical analysis (GTA) and network-based statistical (NBS) analysis were also performed to identify the structural network differences among the three groups. Using GQI, we found increases in diffusion anisotropy in the right anterior cingulate cortex (ACC), the midbrain, the bilateral angular gyrus, the right superior temporal gyrus (rSTG), the bilateral superior occipital gyrus, the left middle occipital gyrus, the bilateral superior and inferior parietal lobule, and the bilateral postcentral and precentral gyrus in the BQ chewers when compared to the tobacco and alcohol controls and the healthy controls. In GTA and NBS analyses, we found more connections in connectivity among the BQ chewers, particularly in the bilateral anterior cingulum. Our results provided further evidence indicating that BQ chewing may lead to brain structure and connectivity changes in BQ chewers.

  2. Prediction of cognitive and motor development in preterm children using exhaustive feature selection and cross-validation of near-term white matter microstructure.

    PubMed

    Schadl, Kornél; Vassar, Rachel; Cahill-Rowley, Katelyn; Yeom, Kristin W; Stevenson, David K; Rose, Jessica

    2018-01-01

    Advanced neuroimaging and computational methods offer opportunities for more accurate prognosis. We hypothesized that near-term regional white matter (WM) microstructure, assessed on diffusion tensor imaging (DTI), using exhaustive feature selection with cross-validation would predict neurodevelopment in preterm children. Near-term MRI and DTI obtained at 36.6 ± 1.8 weeks postmenstrual age in 66 very-low-birth-weight preterm neonates were assessed. 60/66 had follow-up neurodevelopmental evaluation with Bayley Scales of Infant-Toddler Development, 3rd-edition (BSID-III) at 18-22 months. Linear models with exhaustive feature selection and leave-one-out cross-validation computed based on DTI identified sets of three brain regions most predictive of cognitive and motor function; logistic regression models were computed to classify high-risk infants scoring one standard deviation below mean. Cognitive impairment was predicted (100% sensitivity, 100% specificity; AUC = 1) by near-term right middle-temporal gyrus MD, right cingulate-cingulum MD, left caudate MD. Motor impairment was predicted (90% sensitivity, 86% specificity; AUC = 0.912) by left precuneus FA, right superior occipital gyrus MD, right hippocampus FA. Cognitive score variance was explained (29.6%, cross-validated Rˆ2 = 0.296) by left posterior-limb-of-internal-capsule MD, Genu RD, right fusiform gyrus AD. Motor score variance was explained (31.7%, cross-validated Rˆ2 = 0.317) by left posterior-limb-of-internal-capsule MD, right parahippocampal gyrus AD, right middle-temporal gyrus AD. Search in large DTI feature space more accurately identified neonatal neuroimaging correlates of neurodevelopment.

  3. Anterior cingulate hyperactivations during negative emotion processing among men with schizophrenia and a history of violent behavior

    PubMed Central

    Tikàsz, Andràs; Potvin, Stéphane; Lungu, Ovidiu; Joyal, Christian C; Hodgins, Sheilagh; Mendrek, Adrianna; Dumais, Alexandre

    2016-01-01

    Background Evidence suggests a 2.1–4.6 times increase in the risk of violent behavior in schizophrenia compared to the general population. Current theories propose that the processing of negative emotions is defective in violent individuals and that dysfunctions within the neural circuits involved in emotion processing are implicated in violence. Although schizophrenia patients show enhanced sensitivity to negative stimuli, there are only few functional neuroimaging studies that have examined emotion processing among men with schizophrenia and a history of violence. Objective The present study aimed to identify the brain regions with greater neurofunctional alterations, as detected by functional magnetic resonance imaging during an emotion processing task, of men with schizophrenia who had engaged in violent behavior compared with those who had not. Methods Sixty men were studied; 20 with schizophrenia and a history of violence, 19 with schizophrenia and no violence, and 21 healthy men were scanned while viewing positive, negative, and neutral images. Results Negative images elicited hyperactivations in the anterior cingulate cortex (ACC), left and right lingual gyrus, and the left precentral gyrus in violent men with schizophrenia, compared to nonviolent men with schizophrenia and healthy men. Neutral images elicited hyperactivations in the right and left middle occipital gyrus, left lingual gyrus, and the left fusiform gyrus in violent men with schizophrenia, compared to the other two groups. Discussion Violent men with schizophrenia displayed specific increases in ACC in response to negative images. Given the role of the ACC in information integration, these results indicate a specific dysfunction in the processing of negative emotions that may trigger violent behavior in men with schizophrenia. PMID:27366072

  4. Dysfunctional Default Mode Network in Methadone Treated Patients Who Have a Higher Heroin Relapse Risk.

    PubMed

    Li, Wei; Li, Qiang; Wang, Defeng; Xiao, Wei; Liu, Kai; Shi, Lin; Zhu, Jia; Li, Yongbin; Yan, Xuejiao; Chen, Jiajie; Ye, Jianjun; Li, Zhe; Wang, Yarong; Wang, Wei

    2015-10-15

    The purpose of this study was to identify whether heroin relapse is associated with changes in the functional connectivity of the default mode network (DMN) during methadone maintenance treatment (MMT). Resting-state functional magnetic resonance imaging (fMRI) data of chronic heroin relapsers (HR) (12 males, 1 female, age: 36.1 ± 6.9 years) and abstainers (HA) (11males, 2 female; age: 42.1 ± 8.1 years) were investigated with an independent component analysis to address the functional connectivity of their DMN. Group comparison was then performed between the relapsers and abstainers. Our study found that the left inferior temporal gyrus and the right superior occipital gyrus associated with DMN showed decreased functional connectivity in HR when compared with HA, while the left precuneus and the right middle cingulum had increased functional connectivity. Mean intensity signal, extracted from left inferior temporal gyrus of HR patients, showed a significant negative correlation corresponding to the degree of heroin relapse. These findings suggest that altered functional connectivity of DMN may contribute to the potential neurobiological mechanism(s) of heroin relapse and have a predictive value concerning heroin relapse under MMT.

  5. Decreased occipital lobe metabolism by FDG-PET/CT

    PubMed Central

    Solnes, Lilja; Nalluri, Abhinav; Cohen, Jesse; Jones, Krystyna M.; Zan, Elcin; Javadi, Mehrbod S.; Venkatesan, Arun

    2017-01-01

    Objective: To compare brain metabolism patterns on fluorodeoxyglucose (FDG)-PET/CT in anti–NMDA receptor and other definite autoimmune encephalitis (AE) and to assess how these patterns differ between anti–NMDA receptor neurologic disability groups. Methods: Retrospective review of clinical data and initial dedicated brain FDG-PET/CT studies for neurology inpatients with definite AE, per published consensus criteria, treated at a single academic medical center over a 10-year period. Z-score maps of FDG-PET/CT were made using 3-dimensional stereotactic surface projections in comparison to age group–matched controls. Brain region mean Z scores with magnitudes ≥2.00 were interpreted as significant. Comparisons were made between anti–NMDA receptor and other definite AE patients as well as among patients with anti–NMDA receptor based on modified Rankin Scale (mRS) scores at the time of FDG-PET/CT. Results: The medial occipital lobes were markedly hypometabolic in 6 of 8 patients with anti–NMDA receptor encephalitis and as a group (Z = −4.02, interquartile range [IQR] 2.14) relative to those with definite AE (Z = −2.32, 1.46; p = 0.004). Among patients with anti–NMDA receptor encephalitis, the lateral and medial occipital lobes were markedly hypometabolic for patients with mRS 4–5 (lateral occipital lobe Z = −3.69, IQR 1; medial occipital lobe Z = −4.08, 1) compared with those with mRS 0–3 (lateral occipital lobe Z = −0.83, 2; p < 0.0005; medial occipital lobe Z = −1.07, 2; p = 0.001). Conclusions: Marked medial occipital lobe hypometabolism by dedicated brain FDG-PET/CT may serve as an early biomarker for discriminating anti–NMDA receptor encephalitis from other AE. Resolution of lateral and medial occipital hypometabolism may correlate with improved neurologic status in anti–NMDA receptor encephalitis. PMID:29159205

  6. Neural correlates of cognitive dysfunction in Lewy body diseases and tauopathies: combined assessment with FDG-PET and the CERAD test battery.

    PubMed

    Hellwig, Sabine; Frings, Lars; Bormann, Tobias; Kreft, Annabelle; Amtage, Florian; Spehl, Timo S; Weiller, Cornelius; Tüscher, Oliver; Meyer, Philipp T

    2013-11-01

    We investigated disease-specific cognitive profiles and their neural correlates in Lewy-body diseases (LBD) and tauopathies by CERAD assessment and FDG-PET. Analyses revealed a significant interaction between reduced semantic fluency in tauopathies and impaired verbal learning in LBD. Semantic fluency discriminated between groups with high accuracy (83%). Compared to LBD, tauopathy patients showed bilateral hypometabolism of midbrain, thalamus, middle cingulate gyrus and supplementary motor/premotor cortex. In the reverse contrast, LBD patients exhibited bilateral hypometabolism in posterior parietal cortex, precuneus and inferior temporal gyrus extending into occipital and frontal cortices. In diagnosis-independent voxel-based analyses, verbal learning/memory correlated with left temporal and right parietal metabolism, while fluency was coupled to bilateral striatal and frontal metabolism. Naming correlated with left frontal metabolism and drawing with metabolism in bilateral temporal and left frontal regions. In line with disease-specific patterns of regional glucose metabolism, tauopathies and LBD show distinct cognitive profiles, which may assist clinical differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Explicit memory and implicit memory in occipital lobe stroke patients.

    PubMed

    Gong, Liang; Wang, JiHua; Feng, Lei; Wang, MeiHong; Li, Xiu; Hu, JiaYun; Wang, Kai

    2015-03-01

    Occipital stroke patients mainly showed cortical blindness and unilateral vision loss; memory is generally reserved. Recent reports from neuroimaging show the occipital lobe may be involved in the processing of implicit memory (IM), especially the perception type of IM processing. In this study, we explored the explicit memory (EM) and IM damage in occipital lobe stroke patients. A total of 25 occipital strokes and 29 years of age, educational level equivalent healthy controls (HCs), evaluated by using immediate recall, delayed recall, recognition for EM tasks, picture identification, and category exemplar generation for IM tasks. There was no significant difference between occipital stroke patients and HCs in EM tasks and category exemplar generation task. In the picture identification task, occipital lobe stroke group score was poorer than HC group, the results were statistically significant, but in the pictures identify rate, occipital stroke patients and normal control group had no significant difference. The occipital stroke patients may have IM damage, primarily damage the perception type of IM priming effects, which was unrelated with their cortical blindness. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  8. Altered spontaneous activity in antisocial personality disorder revealed by regional homogeneity.

    PubMed

    Tang, Yan; Liu, Wangyong; Chen, Jingang; Liao, Jian; Hu, Dewen; Wang, Wei

    2013-08-07

    There is increasing evidence that antisocial personality disorder (ASPD) stems from brain abnormalities. However, there are only a few studies investigating brain structure in ASPD. The aim of this study was to find regional coherence abnormalities in resting-state functional MRI of ASPD. Thirty-two ASPD individuals and 34 controls underwent a resting-state functional MRI scan. The regional homogeneity (ReHo) approach was used to examine whether ASPD was related to alterations in resting-state neural activity. Support vector machine discriminant analysis was used to evaluate the sensitivity/specificity characteristics of the ReHo index in discriminating between the ASPD individuals and controls. The results showed that, compared with controls, ASPD individuals show lower ReHo in the right cerebellum posterior lobe (Crus1) and the right middle frontal gyrus, as well as higher ReHo in the right middle occipital gyrus (BA 19), left inferior temporal gyrus (BA 37), and right inferior occipital gyrus (cuneus, BA 18). All alternation regions reported a predictive accuracy above 70%. To our knowledge, this study was the first to study the change in regional activity coherence in the resting brain of ASPD individuals. These results not only elucidated the pathological mechanism of ASPD from a resting-state functional viewpoint but also showed that these alterations in ReHo may serve as potential markers for the detection of ASPD.

  9. Activity of left inferior frontal gyrus related to word repetition effects: LORETA imaging with 128-channel EEG and individual MRI.

    PubMed

    Kim, Young Youn; Lee, Boreom; Shin, Yong Wook; Kwon, Jun Soo; Kim, Myung-Sun

    2006-02-01

    We investigated the brain substrate of word repetition effects on the implicit memory task using low-resolution electromagnetic tomography (LORETA) with high-density 128-channel EEG and individual MRI as a realistic head model. Thirteen right-handed, healthy subjects performed a word/non-word discrimination task, in which the words and non-words were presented visually, and some of the words appeared twice with a lag of one or five items. All of the subjects exhibited word repetition effects with respect to the behavioral data, in which a faster reaction time was observed to the repeated word (old word) than to the first presentation of the word (new word). The old words elicited more positive-going potentials than the new words, beginning at 200 ms and lasting until 500 ms post-stimulus. We conducted source reconstruction using LORETA at a latency of 400 ms with the peak mean global field potentials and used statistical parametric mapping for the statistical analysis. We found that the source elicited by the old words exhibited a statistically significant current density reduction in the left inferior frontal gyrus. This is the first study to investigate the generators of word repetition effects using voxel-by-voxel statistical mapping of the current density with individual MRI and high-density EEG.

  10. Left hemisphere specialization for the control of voluntary movement rate.

    PubMed

    Agnew, John A; Zeffiro, Thomas A; Eden, Guinevere F

    2004-05-01

    Although persuasive behavioral evidence demonstrates the superior dexterity of the right hand in most people under a variety of conditions, little is known about the neural mechanisms responsible for this phenomenon. As this lateralized superiority is most evident during the performance of repetitive, speeded movement, we used parametric rate variations to compare visually paced movement of the right and left hands. Twelve strongly right-handed subjects participated in a functional magnetic resonance imaging (fMRI) experiment involving variable rate thumb movements. For movements of the right hand, contralateral rate-related activity changes were identified in the precentral gyrus, thalamus, and posterior putamen. For left-hand movements, activity was seen only in the contralateral precentral gyrus, consistent with the existence of a rate-sensitive motor control subsystem involving the left, but not the right, medial premotor corticostriatal loop in right-handed individuals. We hypothesize that the right hemisphere system is less skilled at controlling variable-rate movements and becomes maximally engaged at a lower movement rate without further modulation. These findings demonstrate that right- and left-hand movements engage different neural systems to control movement, even during a relatively simple thumb flexion task. Specialization of the left hemisphere corticostriatal system for dexterity is reflected in asymmetric mechanisms for movement rate control.

  11. Different left brain regions are essential for grasping a tool compared with its subsequent use.

    PubMed

    Randerath, Jennifer; Goldenberg, Georg; Spijkers, Will; Li, Yong; Hermsdörfer, Joachim

    2010-10-15

    Tool use engages a left hemispheric network including frontal, temporal and parietal regions. Patients with left brain lesions (LBD patients) exhibit deficits when demonstrating use of a single tool (apraxia). When attempting to use a tool, some apraxic patients show errors in the preceding grasping movement. Forty-two LBD patients and 18 healthy controls grasped individual tools and demonstrated their typical use. For patients with a tool use impairment (22), lesion analysis revealed a large area of overlap in the left hemisphere, mainly in the supramarginal gyrus (SMG). For patients with erroneous grasping (12), the lesion overlay showed overlaps in the left frontal and parietal cortices, especially in the inferior frontal gyrus (IFG) and the angular gyrus (ANG). However, contrasting lesions associated with impaired grasping versus tool use impairments reveal little overlap, limited to the inferior parietal cortex. Presumably the left IFG is involved in selection processes in the context of tool use, such as choosing a functional or non-functional grasping movement depending on the task and the online information about the tool's structure and orientation. The ANG might provide this grasp related information, which is relevant for the specific action. The contribution of the SMG to tool use involves more general principals, such as integrating online and learned tool use information into the action plan for the use movement. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Neuralgias of the Head: Occipital Neuralgia

    PubMed Central

    2016-01-01

    Occipital neuralgia is defined by the International Headache Society as paroxysmal shooting or stabbing pain in the dermatomes of the greater or lesser occipital nerve. Various treatment methods exist, from medical treatment to open surgical procedures. Local injection with corticosteroid can improve symptoms, though generally only temporarily. More invasive procedures can be considered for cases that do not respond adequately to medical therapies or repeated injections. Radiofrequency lesioning of the greater occipital nerve can relieve symptoms, but there is a tendency for the pain to recur during follow-up. There also remains a substantial group of intractable patients that do not benefit from local injections and conventional procedures. Moreover, treatment of occipital neuralgia is sometimes challenging. More invasive procedures, such as C2 gangliotomy, C2 ganglionectomy, C2 to C3 rhizotomy, C2 to C3 root decompression, neurectomy, and neurolysis with or without sectioning of the inferior oblique muscle, are now rarely performed for medically refractory patients. Recently, a few reports have described positive results following peripheral nerve stimulation of the greater or lesser occipital nerve. Although this procedure is less invasive, the significance of the results is hampered by the small sample size and the lack of long-term data. Clinicians should always remember that destructive procedures carry grave risks: once an anatomic structure is destroyed, it cannot be easily recovered, if at all, and with any destructive procedure there is always the risk of the development of painful neuroma or causalgia, conditions that may be even harder to control than the original complaint. PMID:27051229

  13. Neuralgias of the Head: Occipital Neuralgia.

    PubMed

    Choi, Il; Jeon, Sang Ryong

    2016-04-01

    Occipital neuralgia is defined by the International Headache Society as paroxysmal shooting or stabbing pain in the dermatomes of the greater or lesser occipital nerve. Various treatment methods exist, from medical treatment to open surgical procedures. Local injection with corticosteroid can improve symptoms, though generally only temporarily. More invasive procedures can be considered for cases that do not respond adequately to medical therapies or repeated injections. Radiofrequency lesioning of the greater occipital nerve can relieve symptoms, but there is a tendency for the pain to recur during follow-up. There also remains a substantial group of intractable patients that do not benefit from local injections and conventional procedures. Moreover, treatment of occipital neuralgia is sometimes challenging. More invasive procedures, such as C2 gangliotomy, C2 ganglionectomy, C2 to C3 rhizotomy, C2 to C3 root decompression, neurectomy, and neurolysis with or without sectioning of the inferior oblique muscle, are now rarely performed for medically refractory patients. Recently, a few reports have described positive results following peripheral nerve stimulation of the greater or lesser occipital nerve. Although this procedure is less invasive, the significance of the results is hampered by the small sample size and the lack of long-term data. Clinicians should always remember that destructive procedures carry grave risks: once an anatomic structure is destroyed, it cannot be easily recovered, if at all, and with any destructive procedure there is always the risk of the development of painful neuroma or causalgia, conditions that may be even harder to control than the original complaint.

  14. Differences in Brain Adaptive Functional Reorganization in Right and Left Total Brachial Plexus Injury Patients.

    PubMed

    Feng, Jun-Tao; Liu, Han-Qiu; Xu, Jian-Guang; Gu, Yu-Dong; Shen, Yun-Dong

    2015-09-01

    Total brachial plexus avulsion injury (BPAI) results in the total functional loss of the affected limb and induces extensive brain functional reorganization. However, because the dominant hand is responsible for more cognitive-related tasks, injuries on this side induce more adaptive changes in brain function. In this article, we explored the differences in brain functional reorganization after injuries in unilateral BPAI patients. We applied resting-state functional magnetic resonance imaging scanning to 10 left and 10 right BPAI patients and 20 healthy control subjects. The amplitude of low-frequency fluctuation (ALFF), which is a resting-state index, was calculated for all patients as an indication of the functional activity level of the brain. Two-sample t-tests were performed between left BPAI patients and controls, right BPAI patients and controls, and between left and right BPAI patients. Two-sample t-tests of the ALFF values revealed that right BPAIs induced larger scale brain reorganization than did left BPAIs. Both left and right BPAIs elicited a decreased ALFF value in the right precuneus (P < 0.05, Alphasim corrected). In addition, right BPAI patients exhibited increased ALFF values in a greater number of brain regions than left BPAI patients, including the inferior temporal gyrus, lingual gyrus, calcarine sulcus, and fusiform gyrus. Our results revealed that right BPAIs induced greater extents of brain functional reorganization than left BPAIs, which reflected the relatively more extensive adaptive process that followed injuries of the dominant hand. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Hemispheric involvement in the processing of Chinese idioms: An fMRI study.

    PubMed

    Yang, Jie; Li, Ping; Fang, Xiaoping; Shu, Hua; Liu, Youyi; Chen, Lang

    2016-07-01

    Although the left hemisphere is believed to handle major language functions, the role of the right hemisphere in language comprehension remains controversial. Recently researchers have investigated hemispheric language processing with figurative language materials (e.g., metaphors, jokes, and idioms). The current study capitalizes on the pervasiveness and distinct features of Chinese idioms to examine the brain mechanism of figurative language processing. Native Chinese speakers performed a non-semantic task while reading opaque idioms, transparent idioms, and non-idiomatic literal phrases. Whole-brain analyses indicated strong activations for all three conditions in an overlapping brain network that includes the bilateral inferior/middle frontal gyrus and the temporo-parietal and occipital-temporal regions. The two idiom conditions elicited additional activations in the right superior parietal lobule and right precuneus. Item-based modulation analyses further demonstrated that activation amplitudes in the right angular gyrus, right superior parietal lobule and right precuneus, as well as left inferior temporo-occipital cortex, are negatively correlated with the semantic transparency of the idioms. These results suggest that both hemispheres are involved in idiom processing but they play different roles. Implications of the findings are discussed in light of theories of figurative language processing and hemispheric functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Gender differences in brain activation on a mental rotation task.

    PubMed

    Semrud-Clikeman, Margaret; Fine, Jodene Goldenring; Bledsoe, Jesse; Zhu, David C

    2012-10-01

    Few neuroimaging studies have explored gender differences on mental rotation tasks. Most studies have utilized samples with both genders, samples mainly consisting of men, or samples with six or fewer females. Graduate students in science fields or liberal arts programs (20 males, 20 females) completed a mental rotation task during functional magnetic resonance imaging (fMRI). When a pair of cube figures was shown, the participant made a keypad response based on whether the pair is the same/similar or different. Regardless of gender, the bilateral middle frontal gyrus, bilateral intraparietal sulcus (IPS), and the left precuneus were activated when a subject tried to solve the mental rotation task. Increased activation in the right inferior frontal gyrus/middle frontal gyrus, the left precuneus/posterior cingulate cortex/cuneus region, and the left middle occipital gyrus was found for men as compared to women. Better accuracy and shorter response times were correlated with an increased activation in the bilateral intraparietal sulcus. No significant brain activity differences related to mental rotation were found between academic majors. These findings suggest that networks involved in visual attention appear to be more strongly activated in the mental rotation tasks in men as compared to women. It also suggests that men use a more automatic process when analyzing complex visual reasoning tasks while women use a more top-down process.

  17. Altered Resting State Functional Connectivity in Young Survivors of Acute Lymphoblastic Leukemia

    PubMed Central

    Kesler, Shelli R.; Gugel, Meike; Pritchard-Berman, Mika; Lee, Clement; Kutner, Emily; Hosseini, S.M. Hadi; Dahl, Gary; Lacayo, Norman

    2014-01-01

    Background Chemotherapy treatment for pediatric acute lymphoblastic leukemia (ALL) has been associated with long-term cognitive impairments in some patients. However, the neurobiologic mechanisms underlying these impairments, particularly in young survivors, are not well understood. This study aimed to examine intrinsic functional brain connectivity in pediatric ALL and its relationship with cognitive status. Procedure We obtained resting state functional magnetic resonance imaging (rsfMRI) and cognitive testing data from 15 ALL survivors age 8–15 years and 14 matched healthy children. The ALL group had a history of intrathecal chemotherapy treatment but were off-therapy for at least 6 months at the time of enrollment. We used seed-based analyses to compare intrinsic functional brain network connectivity between the groups. We also explored correlations between connectivity and cognitive performance, demographic, medical, and treatment variables. Results We demonstrated significantly reduced connectivity between bilateral hippocampus, left inferior occipital, left lingual gyrus, bilateral calcarine sulcus, and right amygdala in the ALL group compared to controls. The ALL group also showed regions of functional hyperconnectivity including right lingual gyrus, precuneus, bilateral superior occipital lobe, and right inferior occipital lobe. Functional hypoconnectivity was associated with reduced cognitive function as well as younger age at diagnosis in the ALL group. Conclusions This is the first study to demonstrate that intrinsic functional brain connectivity is disrupted in pediatric ALL following chemotherapy treatment. These results help explain cognitive dysfunction even when objective test performance is seemingly normal. Children diagnosed at a younger age may show increased vulnerability to altered functional brain connectivity. PMID:24619953

  18. Altered Brain Network in Amyotrophic Lateral Sclerosis: A Resting Graph Theory-Based Network Study at Voxel-Wise Level.

    PubMed

    Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  19. Task Effects in the Mid-Fusiform Gyrus: A Comparison of Orthographic, Phonological, and Semantic Processing of Chinese Characters

    ERIC Educational Resources Information Center

    Guo, Yi; Burgund, E. Darcy

    2010-01-01

    The left mid-fusiform gyrus is repeatedly reported to be involved in visual word processing. Nevertheless, it is controversial whether this area responds to orthographic processing of reading. To examine this idea, neural activity was measured using functional magnetic resonance imaging in the present study while subjects performed phonological,…

  20. The Effects of Obstructive Sleep Apnea Syndrome on the Dentate Gyrus and Learning and Memory in Children.

    PubMed

    Cha, Jiook; Zea-Hernandez, Johanna A; Sin, Sanghun; Graw-Panzer, Katharina; Shifteh, Keivan; Isasi, Carmen R; Wagshul, Mark E; Moran, Eileen E; Posner, Jonathan; Zimmerman, Molly E; Arens, Raanan

    2017-04-19

    Obstructive sleep apnea syndrome (OSAS) is associated with intermittent hypoxia and sleep loss. In children, impairments of cognitive function are important manifestations, but the underlying pathology is unknown. We hypothesized that OSAS would affect the dentate gyrus, a hippocampal subdivision essential to neurogenesis and cognition, and that this impact would further affect cognitive function in children. In children with OSAS ( n = 11) and control subjects ( n = 12; age and sex matched), we performed diffusion tensor imaging and structural MRI, polysomnography, and neuropsychological assessments. We found that OSAS was associated with decreased mean diffusivity of the left dentate gyrus ( p = 0.002; false discovery rate corrected; adjusting for sex, age, and body mass index), showing a large effect size (partial η 2 = 0.491), but not with any other structural measures across the brain. Decreased dentate gyrus mean diffusivity correlated with a higher apnea hypopnea index (Spearman's r = -0.50, p = 0.008) and a greater arousal index ( r = -0.44, p = 0.017). OSAS did not significantly affect neuropsychological measures ( p values >0.5); however, a lower verbal learning score correlated with lower dentate gyrus mean diffusivity ( r = 0.54, p = 0.004). Path analysis demonstrated that dentate gyrus mean diffusivity mediates the impact of OSAS on verbal learning capacity. Finally, the diagnostic accuracy of a regression model based on dentate gyrus mean diffusivity reached 85.8% (cross validated). This study demonstrates a likely pathway of effects of OSAS on neurocognitive function in children, as well as potential utility of the dentate gyrus mean diffusivity as an early marker of brain pathology in children with OSAS. SIGNIFICANCE STATEMENT In this study we investigate the relationships between dentate gyrus structure, hippocampus-dependent cognition, and obstructive sleep apnea syndrome (OSAS). We demonstrate lower mean diffusivity of the dentate gyrus in

  1. Glioblastoma Presenting with Pure Alexia and Palinopsia Involving the Left Inferior Occipital Gyrus and Visual Word Form Area Evaluated with Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography.

    PubMed

    Huang, Meng; Baskin, David S; Fung, Steve

    2016-05-01

    Rapid word recognition and reading fluency is a specialized cortical process governed by the visual word form area (VWFA), which is localized to the dominant posterior lateral occipitotemporal sulcus/fusiform gyrus. A lesion of the VWFA results in pure alexia without agraphia characterized by letter-by-letter reading. Palinopsia is a visual processing distortion characterized by persistent afterimages and has been reported in lesions involving the nondominant occipitotemporal cortex. A 67-year-old right-handed woman with no neurologic history presented to our emergency department with acute cortical ischemic symptoms that began with a transient episode of receptive aphasia. She also reported inability to read, albeit with retained writing ability. She also saw afterimages of objects. During her stroke workup, an intra-axial circumscribed enhancing mass lesion was discovered involving her dominant posterolateral occipitotemporal lobe. Given the eloquent brain involvement, she underwent preoperative functional magnetic resonance imaging with diffusion tensor imaging tractography and awake craniotomy to maximize resection and preserve function. Many organic lesions involving these regions have been reported in the literature, but to the best of our knowledge, glioblastoma involving the VWFA resulting in both clinical syndromes of pure alexia and palinopsia with superimposed functional magnetic resonance imaging and fiber tract mapping has never been reported before. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    PubMed

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  3. Insula and Inferior Frontal Gyrus' Activities Protect Memory Performance Against Alzheimer's Disease Pathology in Old Age.

    PubMed

    Lin, Feng; Ren, Ping; Lo, Raymond Y; Chapman, Benjamin P; Jacobs, Alanna; Baran, Timothy M; Porsteinsson, Anton P; Foxe, John J

    2017-01-01

    Apolipoprotein E (APOE) ɛ4 carriers and patients with amnestic mild cognitive impairment (MCI) have high risk of developing Alzheimer's disease (AD). The Scaffolding Theory of Aging and Cognition proposes that recruitment of additional frontal brain regions can protect cognition against aging. This thesis has yet to be fully tested in older adults at high risk for AD. In the present study, 75 older participants (mean age: 74 years) were included. Applying a voxel-wise approach, fractional amplitude of low-frequency fluctuations (fALFF) in resting-state functional neuroimaging data were analyzed as a function of APOEɛ4 status (carrier versus noncarrier) and clinical status (healthy control [HC] versus MCI) using a 2×2 analysis of covariance (ANCOVA). Measures of cognition and cerebrospinal fluid levels of amyloid- β were also obtained. Three frontal regions were identified with significant interaction effects using ANCOVA (corrected p < 0.01): left-insula, left-inferior frontal gyrus (IFG), and right-precentral gyrus. The HC/APOEɛ4 carrier group had significantly higher fALFF in all three regions than other groups. In the entire sample, for two regions (left insula and left IFG), a significant positive relationship between amyloid-β and memory was only observed among individuals with low fALFF. Our results suggest higher activity in frontal regions may explain being cognitively normal among a subgroup of APOEɛ4 carriers and protect against the negative impact of AD-associated pathology on memory. This is an observation with potential implications for AD therapeutics.

  4. High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy

    ERIC Educational Resources Information Center

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-01-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…

  5. Brain activity in near-death experiencers during a meditative state.

    PubMed

    Beauregard, Mario; Courtemanche, Jérôme; Paquette, Vincent

    2009-09-01

    To measure brain activity in near-death experiencers during a meditative state. In two separate experiments, brain activity was measured with functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) during a Meditation condition and a Control condition. In the Meditation condition, participants were asked to mentally visualize and emotionally connect with the "being of light" allegedly encountered during their "near-death experience". In the Control condition, participants were instructed to mentally visualize the light emitted by a lamp. In the fMRI experiment, significant loci of activation were found during the Meditation condition (compared to the Control condition) in the right brainstem, right lateral orbitofrontal cortex, right medial prefrontal cortex, right superior parietal lobule, left superior occipital gyrus, left anterior temporal pole, left inferior temporal gyrus, left anterior insula, left parahippocampal gyrus and left substantia nigra. In the EEG experiment, electrode sites showed greater theta power in the Meditation condition relative to the Control condition at FP1, F7, F3, T5, P3, O1, FP2, F4, F8, P4, Fz, Cz and Pz. In addition, higher alpha power was detected at FP1, F7, T3 and FP2, whereas higher gamma power was found at FP2, F7, T4 and T5. The results indicate that the meditative state was associated with marked hemodynamic and neuroelectric changes in brain regions known to be involved either in positive emotions, visual mental imagery, attention or spiritual experiences.

  6. The effect of sex and handedness on white matter anisotropy: a diffusion tensor magnetic resonance imaging study.

    PubMed

    Powell, J L; Parkes, L; Kemp, G J; Sluming, V; Barrick, T R; García-Fiñana, M

    2012-04-05

    Diffusion tensor magnetic resonance imaging provides a way of assessing the asymmetry of white matter (WM) connectivity, the degree of anisotropic diffusion within a given voxel being a marker of coherently bundled myelinated fibers. Voxel-based statistical analysis was performed on fractional anisotropy (FA) images of 42 right- and 40 left-handers, to assess differences in underlying WM anisotropy and FA asymmetry across the whole brain. Right-handers show greater anisotropy than left-handers in the uncinate fasciculus (UF) within the limbic lobe, and WM underlying prefrontal cortex, medial and inferior frontal gyri. Significantly greater leftward FA asymmetry in cerebellum posterior lobe is seen in left- than right-handers, and males show significantly greater rightward (right-greater-than-left) FA asymmetry in regions of middle occipital lobe, medial temporal gyrus, and a region of the superior longitudinal fasciculus underlying the supramarginal gyrus. Leftward (left-greater-than-right) anisotropy is found in regions of the arcuate fasciculus (AF), UF, and WM underlying pars triangularis in both handedness groups, with right-handers alone showing additional leftward FA asymmetry along the length of the superior temporal gyrus. Overall results indicate that although both handedness groups show anisotropy in similar WM regions, greater anisotropy is observed in right-handers compared with left-handers. The largest differences in FA asymmetry are found between males and females, suggesting a greater effect of sex than handedness on FA asymmetry. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. The role of left and right hemispheres in the comprehension of idiomatic language: an electrical neuroimaging study.

    PubMed

    Proverbio, Alice M; Crotti, Nicola; Zani, Alberto; Adorni, Roberta

    2009-09-15

    The specific role of the two cerebral hemispheres in processing idiomatic language is highly debated. While some studies show the involvement of the left inferior frontal gyrus (LIFG), other data support the crucial role of right-hemispheric regions, and particularly of the middle/superior temporal area. Time-course and neural bases of literal vs. idiomatic language processing were compared. Fifteen volunteers silently read 360 idiomatic and literal Italian sentences and decided whether they were semantically related or unrelated to a following target word, while their EEGs were recorded from 128 electrodes. Word length, abstractness and frequency of use, sentence comprehensibility, familiarity and cloze probability were matched across classes. Participants responded more quickly to literal than to idiomatic sentences, probably indicating a difference in task difficulty. Occipito/temporal N2 component had a greater amplitude in response to idioms between 250-300 ms. Related swLORETA source reconstruction revealed a difference in the activation of the left fusiform gyrus (FG, BA19) and medial frontal gyri for the contrast idiomatic-minus-literal. Centroparietal N400 was much larger to idiomatic than to literal phrases (360-550 ms). The intra-cortical generators of this effect included the left and right FG, the left cingulate gyrus, the right limbic area, the right MTG (BA21) and the left middle frontal gyrus (BA46). Finally, an anterior late positivity (600-800 ms) was larger to idiomatic than literal phrases. ERPs also showed a larger right centro-parietal N400 to associated than non-associated targets (not differing as a function of sentence type), and a greater right frontal P600 to idiomatic than literal associated targets. The data indicate bilateral involvement of both hemispheres in idiom comprehension, including the right MTG after 350 ms and the right medial frontal gyrus in the time windows 270-300 and 500-780 ms. In addition, the activation of left and

  8. Dentate gyrus-cornu ammonis (CA) 4 volume is decreased and associated with depressive episodes and lipid peroxidation in bipolar II disorder: Longitudinal and cross-sectional analyses.

    PubMed

    Elvsåshagen, Torbjørn; Zuzarte, Pedro; Westlye, Lars T; Bøen, Erlend; Josefsen, Dag; Boye, Birgitte; Hol, Per K; Malt, Ulrik F; Young, L Trevor; Andreazza, Ana C

    2016-12-01

    Reduced dentate gyrus volume and increased oxidative stress have emerged as potential pathophysiological mechanisms in bipolar disorder. However, the relationship between dentate gyrus volume and peripheral oxidative stress markers remains unknown. Here, we examined dentate gyrus-cornu ammonis (CA) 4 volume longitudinally in patients with bipolar II disorder (BD-II) and healthy controls and investigated whether BD-II is associated with elevated peripheral levels of oxidative stress. We acquired high-resolution structural 3T-magnetic resonance imaging (MRI) images and quantified hippocampal subfield volumes using an automated segmentation algorithm in individuals with BD-II (n=29) and controls (n=33). The participants were scanned twice, at study inclusion and on average 2.4 years later. In addition, we measured peripheral levels of two lipid peroxidation markers (4-hydroxy-2-nonenal [4-HNE] and lipid hydroperoxides [LPH]). First, we demonstrated that the automated hippocampal subfield segmentation technique employed in this work reliably measured dentate gyrus-CA4 volume. Second, we found a decreased left dentate gyrus-CA4 volume in patients and that a larger number of depressive episodes between T1 and T2 predicted greater volume decline. Finally, we showed that 4-HNE was elevated in BD-II and that 4-HNE was negatively associated with left and right dentate gyrus-CA4 volumes in patients. These results are consistent with a role for the dentate gyrus in the pathophysiology of bipolar disorder and suggest that depressive episodes and elevated oxidative stress might contribute to hippocampal volume decreases. In addition, these findings provide further support for the hypothesis that peripheral lipid peroxidation markers may reflect brain alterations in bipolar disorders. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The Sport Expert's Attention Superiority on Skill-related Scene Dynamic by the Activation of left Medial Frontal Gyrus: An ERP and LORETA Study.

    PubMed

    He, Mengyang; Qi, Changzhu; Lu, Yang; Song, Amanda; Hayat, Saba Z; Xu, Xia

    2018-05-21

    Extensive studies have shown that a sports expert is superior to a sports novice in visually perceptual-cognitive processes of sports scene information, however the attentional and neural basis of it has not been thoroughly explored. The present study examined whether a sport expert has the attentional superiority on scene information relevant to his/her sport skill, and explored what factor drives this superiority. To address this problem, EEGs were recorded as participants passively viewed sport scenes (tennis vs. non-tennis) and negative emotional faces in the context of a visual attention task, where the pictures of sport scenes or of negative emotional faces randomly followed the pictures with overlapping sport scenes and negative emotional faces. ERP results showed that for experts, the evoked potential of attentional competition elicited by the overlap of tennis scene was significantly larger than that evoked by the overlap of non-tennis scene, while this effect was absent for novices. The LORETA showed that the experts' left medial frontal gyrus (MFG) cortex was significantly more active as compared to the right MFG when processing the overlap of tennis scene, but the lateralization effect was not significant in novices. Those results indicate that experts have attentional superiority on skill-related scene information, despite intruding the scene through negative emotional faces that are prone to cause negativity bias toward their visual field as a strong distractor. This superiority is actuated by the activation of left MFG cortex and probably due to self-reference. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Sex differences in the functional connectivity of the amygdalae in association with cortisol.

    PubMed

    Kogler, Lydia; Müller, Veronika I; Seidel, Eva-Maria; Boubela, Roland; Kalcher, Klaudius; Moser, Ewald; Habel, Ute; Gur, Ruben C; Eickhoff, Simon B; Derntl, Birgit

    2016-07-01

    Human amygdalae are involved in various behavioral functions such as affective and stress processing. For these behavioral functions, as well as for psychophysiological arousal including cortisol release, sex differences are reported. Here, we assessed cortisol levels and resting-state functional connectivity (rsFC) of left and right amygdalae in 81 healthy participants (42 women) to investigate potential modulation of amygdala rsFC by sex and cortisol concentration. Our analyses revealed that rsFC of the left amygdala significantly differed between women and men: Women showed stronger rsFC than men between the left amygdala and left middle temporal gyrus, inferior frontal gyrus, postcentral gyrus and hippocampus, regions involved in face processing, inner-speech, fear and pain processing. No stronger connections were detected for men and no sex difference emerged for right amygdala rsFC. Also, an interaction of sex and cortisol appeared: In women, cortisol was negatively associated with rsFC of the amygdalae with striatal regions, mid-orbital frontal gyrus, anterior cingulate gyrus, middle and superior frontal gyri, supplementary motor area and the parietal-occipital sulcus. Contrarily in men, positive associations of cortisol with rsFC of the left amygdala and these structures were observed. Functional decoding analyses revealed an association of the amygdalae and these regions with emotion, reward and memory processing, as well as action execution. Our results suggest that functional connectivity of the amygdalae as well as the regulatory effect of cortisol on brain networks differs between women and men. These sex-differences and the mediating and sex-dependent effect of cortisol on brain communication systems should be taken into account in affective and stress-related neuroimaging research. Thus, more studies including both sexes are required. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Multisensory integration processing during olfactory-visual stimulation-An fMRI graph theoretical network analysis.

    PubMed

    Ripp, Isabelle; Zur Nieden, Anna-Nora; Blankenagel, Sonja; Franzmeier, Nicolai; Lundström, Johan N; Freiherr, Jessica

    2018-05-07

    In this study, we aimed to understand how whole-brain neural networks compute sensory information integration based on the olfactory and visual system. Task-related functional magnetic resonance imaging (fMRI) data was obtained during unimodal and bimodal sensory stimulation. Based on the identification of multisensory integration processing (MIP) specific hub-like network nodes analyzed with network-based statistics using region-of-interest based connectivity matrices, we conclude the following brain areas to be important for processing the presented bimodal sensory information: right precuneus connected contralaterally to the supramarginal gyrus for memory-related imagery and phonology retrieval, and the left middle occipital gyrus connected ipsilaterally to the inferior frontal gyrus via the inferior fronto-occipital fasciculus including functional aspects of working memory. Applied graph theory for quantification of the resulting complex network topologies indicates a significantly increased global efficiency and clustering coefficient in networks including aspects of MIP reflecting a simultaneous better integration and segregation. Graph theoretical analysis of positive and negative network correlations allowing for inferences about excitatory and inhibitory network architectures revealed-not significant, but very consistent-that MIP-specific neural networks are dominated by inhibitory relationships between brain regions involved in stimulus processing. © 2018 Wiley Periodicals, Inc.

  12. Neuronal substrates of Corsi Block span: Lesion symptom mapping analyses in relation to attentional competition and spatial bias.

    PubMed

    Chechlacz, Magdalena; Rotshtein, Pia; Humphreys, Glyn W

    2014-11-01

    Spatial working memory problems are frequently reported following brain damage within both left and right hemispheres but with the severity often being grater in individuals with right hemisphere lesions. Clinically, deficits in spatial working memory have also been noted in patients with visuospatial disorders such as unilateral neglect. Here, we examined neural substrates of short-term memory for spatial locations based on the Corsi Block tapping task and the relationship with the visuospatial deficits of neglect and extinction in a group of chronic neuropsychological patients. Principal Component Analysis (PCA) was used to distinguish shared and dissociate functional components. The neural substrates of spatial short-term memory deficits and the components identified by PCA were examined using whole brain voxel-based morphometry and tract-wise lesion deficits analyses. We found that bilateral lesions within occipital cortex (middle occipital gyrus) and right posterior parietal cortex, along with disconnection of the right parieto-temporal segment of arcuate fasciculus, were associated with low spatial memory span. A single component revealed by PCA accounted for over half of the variance and was linked to damage to right posterior brain regions (temporo-parietal junction, the inferior parietal lobule and middle temporal gyrus extending into middle occipital gyrus). We also found link to disconnections within several association pathways including the superior longitudinal fasciculus, arcuate fasciculus, inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. These results indicate that different visuospatial deficits converge into a single component mapped within posterior parietal areas and fronto-parietal white matter pathways. Furthermore, the data presented here fit with the role of posterior parietal cortex/temporo-parietal junction in maintaining a map of salient locations in space, with Corsi Block performance being impaired when the

  13. Neuroanatomical anomalies of dyslexia: Disambiguating the effects of disorder, performance, and maturation.

    PubMed

    Xia, Zhichao; Hoeft, Fumiko; Zhang, Linjun; Shu, Hua

    2016-01-29

    An increasing body of studies has revealed neuroanatomical impairments in developmental dyslexia. However, whether these structural anomalies are driven by dyslexia (disorder-specific effects), absolute reading performance (performance-dependent effects), and/or further influenced by age (maturation-sensitive effects) remains elusive. To help disentangle these sources, the current study used a novel disorder (dyslexia vs. control) by maturation (younger vs. older) factorial design in 48 Chinese children who were carefully matched. This design not only allows for direct comparison between dyslexics versus controls matched for chronological age and reading ability, but also enables examination of the influence of maturation and its interaction with dyslexia. Voxel-based morphometry (VBM) showed that dyslexic children had reduced regional gray matter volume in the left temporo-parietal cortex (spanning over Heschl's gyrus, planum temporale and supramarginal gyrus), middle frontal gyrus, superior occipital gyrus, and reduced regional white matter in bilateral parieto-occipital regions (left cuneus and right precuneus) compared with both age-matched and reading-level matched controls. Therefore, maturational stage-invariant neurobiological signatures of dyslexia were found in brain regions that have been associated with impairments in the auditory/phonological and attentional systems. On the other hand, maturational stage-dependent effects on dyslexia were observed in three regions (left ventral occipito-temporal cortex, left dorsal pars opercularis and genu of the corpus callosum), all of which were previously reported to be involved in fluent reading and its development. These striking dissociations collectively suggest potential atypical developmental trajectories of dyslexia, where underlying mechanisms are currently unknown but may be driven by interactions between genetic and/or environmental factors. In summary, this is the first study to disambiguate

  14. Neuroanatomical Anomalies of Dyslexia: Disambiguating the Effects of Disorder, Performance, and Maturation

    PubMed Central

    Xia, Zhichao; Hoeft, Fumiko; Zhang, Linjun; Shu, Hua

    2016-01-01

    An increasing body of studies has revealed neuroanatomical impairments in developmental dyslexia. However, whether these structural anomalies are driven by dyslexia (disorder-specific effects), absolute reading performance (performance-dependent effects), and/or further influenced by age (maturation-sensitive effects) remains elusive. To help disentangle these sources, the current study used a novel disorder (dyslexia vs. control) by maturation (younger vs. older) factorial design in 48 Chinese children who were carefully matched. This design not only allows for direct comparison between dyslexics versus controls matched for chronological age and reading ability, but also enables examination of the influence of maturation and its interaction with dyslexia. Voxel-based morphometry (VBM) showed that dyslexic children had reduced regional gray matter volume in the left temporo-parietal cortex (spanning over Heschl’s gyrus, planum temporale and supramarginal gyrus), middle frontal gyrus, superior occipital gyrus, and reduced regional white matter in bilateral parieto-occipital regions (left cuneus and right precuneus) compared with both age-matched and reading-level matched controls. Therefore, maturational stage-invariant neurobiological signatures of dyslexia were found in brain regions that have been associated with impairments in the auditory/phonological and attentional systems. On the other hand, maturational stage-dependent effects on dyslexia were observed in three regions (left ventral occipito-temporal cortex, left dorsal pars opercularis and genu of the corpus callosum), all of which were previously reported to be involved in fluent reading and its development. These striking dissociations collectively suggest potential atypical developmental trajectories of dyslexia, where underlying mechanisms are currently unknown but may be driven by interactions between genetic and/or environmental factors. In summary, this is the first study to disambiguate

  15. Language comprehension and brain function in individuals with an optimal outcome from autism.

    PubMed

    Eigsti, Inge-Marie; Stevens, Michael C; Schultz, Robert T; Barton, Marianne; Kelley, Elizabeth; Naigles, Letitia; Orinstein, Alyssa; Troyb, Eva; Fein, Deborah A

    2016-01-01

    Although Autism Spectrum Disorder (ASD) is generally a lifelong disability, a minority of individuals with ASD overcome their symptoms to such a degree that they are generally indistinguishable from their typically-developing peers. That is, they have achieved an Optimal Outcome (OO). The question addressed by the current study is whether this normalized behavior reflects normalized brain functioning, or alternatively, the action of compensatory systems. Either possibility is plausible, as most participants with OO received years of intensive therapy that could alter brain networks to align with typical function or work around ASD-related neural dysfunction. Individuals ages 8 to 21 years with high-functioning ASD (n = 23), OO (n = 16), or typical development (TD; n = 20) completed a functional MRI scan while performing a sentence comprehension task. Results indicated similar activations in frontal and temporal regions (left middle frontal, left supramarginal, and right superior temporal gyri) and posterior cingulate in OO and ASD groups, where both differed from the TD group. Furthermore, the OO group showed heightened "compensatory" activation in numerous left- and right-lateralized regions (left precentral/postcentral gyri, right precentral gyrus, left inferior parietal lobule, right supramarginal gyrus, left superior temporal/parahippocampal gyrus, left middle occipital gyrus) and cerebellum, relative to both ASD and TD groups. Behaviorally normalized language abilities in OO individuals appear to utilize atypical brain networks, with increased recruitment of language-specific as well as right homologue and other systems. Early intensive learning and experience may normalize behavioral language performance in OO, but some brain regions involved in language processing may continue to display characteristics that are more similar to ASD than typical development, while others show characteristics not like ASD or typical development.

  16. Cortical thinning in type 2 diabetes mellitus and recovering effects of insulin therapy.

    PubMed

    Chen, Zhiye; Sun, Jie; Yang, Yang; Lou, Xin; Wang, Yulin; Wang, Yan; Ma, Lin

    2015-02-01

    The purpose of this study was to explore the brain structural changes in type 2 diabetes and the effect of insulin on the brain using a surface-based cortical thickness analysis. High-resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI were obtained from 11 patients with type 2 diabetes before and after insulin therapy. The cortical thickness over the entire brain was calculated, and cross-sectional and longitudinal surface-based cortical thickness analyses were also performed. Regional cortical thinning was demonstrated in the middle temporal gyrus, posterior cingulate gyrus, precuneus, right lateral occipital gyrus and entorhinal cortex bilaterally for patients with type 2 diabetes mellitus compared with normal controls. Cortical thickening was seen in the middle temporal gyrus, entorhinal cortex and left inferior temporal gyrus bilaterally after patients underwent 1 year of insulin therapy. These findings suggest that insulin therapy may have recovering effects on the brain cortex in type 2 diabetes mellitus. The precise mechanism should be investigated further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study.

    PubMed

    Dong, Li; Wang, Pu; Peng, Rui; Jiang, Sisi; Klugah-Brown, Benjamin; Luo, Cheng; Yao, Dezhong

    2016-12-01

    The purpose of this study was to investigate alterations of basal ganglia-cortical functional connections in patients with frontal lobe epilepsy (FLE). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from 19 FLE patients and 19 age- and gender-matched healthy controls. Functional connectivity (FC) analysis was used to assess the functional connections between basal ganglia and cerebral cortex. Regions of interest, including the left/right caudate, putamen, pallidum and thalamus, were selected as the seeds. Two sample t-test was used to determine the difference between patients and controls, while controlling the age, gender and head motions. Compared with controls, FLE patients demonstrated increased FCs between basal ganglia and regions including the right fusiform gyrus, the bilateral cingulate gyrus, the precuneus and anterior cingulate gyrus. Reduced FCs were mainly located in a range of brain regions including the bilateral middle occipital gyrus, the ventral frontal lobe, the right putamen, the left fusiform gyrus and right rolandic operculum. In addition, the relationships between basal ganglia-cingulate connections and durations of epilepsy were also found. The alterations of functional integrity within the basal ganglia, as well as its connections to limbic and ventral frontal areas, indicate the important roles of the basal ganglia-cortical functional connections in FLE, and provide new insights in the pathophysiological mechanism of FLE. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Pathways of the inferior frontal occipital fasciculus in overt speech and reading.

    PubMed

    Rollans, Claire; Cheema, Kulpreet; Georgiou, George K; Cummine, Jacqueline

    2017-11-19

    In this study, we examined the relationship between tractography-based measures of white matter integrity (ex. fractional anisotropy [FA]) from diffusion tensor imaging (DTI) and five reading-related tasks, including rapid automatized naming (RAN) of letters, digits, and objects, and reading of real words and nonwords. Twenty university students with no reported history of reading difficulties were tested on all five tasks and their performance was correlated with diffusion measures extracted through DTI tractography. A secondary analysis using whole-brain Tract-Based Spatial Statistics (TBSS) was also used to find clusters showing significant negative correlations between reaction time and FA. Results showed a significant relationship between the left inferior fronto-occipital fasciculus FA and performance on the RAN of objects task, as well as a strong relationship to nonword reading, which suggests a role for this tract in slower, non-automatic and/or resource-demanding speech tasks. There were no significant relationships between FA and the faster, more automatic speech tasks (RAN of letters and digits, and real word reading). These findings provide evidence for the role of the inferior fronto-occipital fasciculus in tasks that are highly demanding of orthography-phonology translation (e.g., nonword reading) and semantic processing (e.g., RAN object). This demonstrates the importance of the inferior fronto-occipital fasciculus in basic naming and suggests that this tract may be a sensitive predictor of rapid naming performance within the typical population. We discuss the findings in the context of current models of reading and speech production to further characterize the white matter pathways associated with basic reading processes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Cultural constraints on brain development: evidence from a developmental study of visual word processing in mandarin chinese.

    PubMed

    Cao, Fan; Lee, Rebecca; Shu, Hua; Yang, Yanhui; Xu, Guoqing; Li, Kuncheng; Booth, James R

    2010-05-01

    Developmental differences in phonological and orthographic processing in Chinese were examined in 9 year olds, 11 year olds, and adults using functional magnetic resonance imaging. Rhyming and spelling judgments were made to 2-character words presented sequentially in the visual modality. The spelling task showed greater activation than the rhyming task in right superior parietal lobule and right inferior temporal gyrus, and there were developmental increases across tasks bilaterally in these regions in addition to bilateral occipital cortex, suggesting increased involvement over age on visuo-orthographic analysis. The rhyming task showed greater activation than the spelling task in left superior temporal gyrus and there were developmental decreases across tasks in this region, suggesting reduced involvement over age on phonological representations. The rhyming and spelling tasks included words with conflicting orthographic and phonological information (i.e., rhyming words spelled differently or nonrhyming words spelled similarly) or nonconflicting information. There was a developmental increase in the difference between conflicting and nonconflicting words in left inferior parietal lobule, suggesting greater engagement of systems for mapping between orthographic and phonological representations. Finally, there were developmental increases across tasks in an anterior (Broadman area [BA] 45, 46) and posterior (BA 9) left inferior frontal gyrus, suggesting greater reliance on controlled retrieval and selection of posterior lexical representations.

  20. Compensatory Shift of Subcallosal Area and Paraterminal Gyrus White Matter Parameters on DTI in Patients with Alzheimer Disease.

    PubMed

    Kuchtova, Barbora; Wurst, Zdenek; Mrzilkova, Jana; Ibrahim, Ibrahim; Tintera, Jaroslav; Bartos, Ales; Musil, Vladimir; Kieslich, Karel; Zach, Petr

    2018-01-01

    Alzheimer disease is traditionally conceptualized as a disease of brain gray matter, however, studies with diffusion tensor imaging have demonstrated that Alzheimer disease also involves alterations in white matter integrity. We measured number of tracts, tracts length, tract volume, quantitative anisotropy and general fractional anisotropy of neuronal tracts in subcallosal area, paraterminal gyrus and fornix in patients with Alzheimer disease and healthy age-matched controls. Our hypothesis was that patients with Alzheimer disease should exhibit decrease in the integrity of these white matter structures that are crucial for semantic memory function. For our study were selected 24 patients with confirmed Alzheimer disease diagnosis and 24 healthy controls (AD center, Department of Neurology, Charles University, Prague, Czech Republic). Statistically significant differences between the patients with Alzheimer disease and the control group were found both on the left and right fornices but only concerning the tract numbers and tract length. The subcallosal area and paraterminal gyrus showed statistically significant differences between the patients with Alzheimer disease and the control group, but only on the left side and only associated with the tract volume and quantitative anisotropy. Our explanation for these findings lies in the severe hippocampal atrophy (and subsequent loss of function) with compensatory hypertrophy of the subcallosal area and paraterminal gyrus neuronal fibers that occurs in Alzheimer's disease, as an adaptation to the loss of projection from the hippocampal formation via fornix. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Pure word deafness following left temporal damage: Behavioral and neuroanatomical evidence from a new case.

    PubMed

    Maffei, Chiara; Capasso, Rita; Cazzolli, Giulia; Colosimo, Cesare; Dell'Acqua, Flavio; Piludu, Francesca; Catani, Marco; Miceli, Gabriele

    2017-12-01

    Pure Word Deafness (PWD) is a rare disorder, characterized by selective loss of speech input processing. Its most common cause is temporal damage to the primary auditory cortex of both hemispheres, but it has been reported also following unilateral lesions. In unilateral cases, PWD has been attributed to the disconnection of Wernicke's area from both right and left primary auditory cortex. Here we report behavioral and neuroimaging evidence from a new case of left unilateral PWD with both cortical and white matter damage due to a relatively small stroke lesion in the left temporal gyrus. Selective impairment in auditory language processing was accompanied by intact processing of nonspeech sounds and normal speech, reading and writing. Performance on dichotic listening was characterized by a reversal of the right-ear advantage typically observed in healthy subjects. Cortical thickness and gyral volume were severely reduced in the left superior temporal gyrus (STG), although abnormalities were not uniformly distributed and residual intact cortical areas were detected, for example in the medial portion of the Heschl's gyrus. Diffusion tractography documented partial damage to the acoustic radiations (AR), callosal temporal connections and intralobar tracts dedicated to single words comprehension. Behavioral and neuroimaging results in this case are difficult to integrate in a pure cortical or disconnection framework, as damage to primary auditory cortex in the left STG was only partial and Wernicke's area was not completely isolated from left or right-hemisphere input. On the basis of our findings we suggest that in this case of PWD, concurrent partial topological (cortical) and disconnection mechanisms have contributed to a selective impairment of speech sounds. The discrepancy between speech and non-speech sounds suggests selective damage to a language-specific left lateralized network involved in phoneme processing. Copyright © 2017 Elsevier Ltd. All rights

  2. Tornwaldt's cyst presenting only as occipital headache: a case report.

    PubMed

    Cho, Hang S; Byeon, Hyung K; Kim, Jun-Hee; Kim, Kyung S

    2009-02-01

    Tornwaldt's cyst (sometimes called Thornwaldt's cyst) is a rare cause of occipital headache. Owing to the rare occurrence of occipital headache as a symptom of Tornwaldt's cyst, if the patient presented only with occipital headache, this clinical symptom may be falsely perceived as a sign of neurologic disease leading to time-consuming diagnostic examinations that delay the establishment of a correct diagnosis.

  3. Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2

    PubMed Central

    Tan, Geoffrey C.Y.; Doke, Thomas F.; Ashburner, John; Wood, Nicholas W.; Frackowiak, Richard S.J.

    2010-01-01

    Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MRI and diffusion tensor imaging. We compared volumetric differences in white and grey matter and fractional anisotropy values in control subjects characterised by genotype at rs7794745, a single nucleotide polymorphism in CNTNAP2. Homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation. Thus a risk allele for autism results in significant cerebral morphological variation, despite the absence of overt symptoms or behavioural abnormalities. The results are consistent with accumulating evidence of CNTNAP2's function in neuronal development. The finding suggests the possibility that the heterogeneous manifestations of ASD can be aetiologically characterised into distinct subtypes through genetic-morphological analysis. PMID:20176116

  4. Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.

    PubMed

    Kurkela, Kyle A; Dennis, Nancy A

    2016-01-29

    Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Preliminary fMRI findings concerning the influence of 5-HTP on food selection.

    PubMed

    Ioannou, Stephanos; Williams, Adrian L

    2017-01-01

    This functional magnetic resonance imaging study was designed to observe how physiological brain states can alter food preferences. A primary goal was to observe food-sensitive regions and moreover examine whether 5-HTP intake would activate areas which have been associated with appetite suppression, anorexia, satiety, and weight loss. Fourteen healthy male and female participants took part in the study, of which half of them received the supplement 5-HTP and the rest vitamin C (control) on an empty stomach. During the scanning session, they passively observed food (high calories, proteins, carbohydrates) and nonfood movie stimuli. Within the 5-HTP group, a comparison of food and nonfood stimuli showed significant responses that included the limbic system, the basal ganglia, and the prefrontal, temporal, and parietal cortices. For the vitamin C group, activity was mainly located in temporal and occipital regions. Compared to the vitamin C group, the 5-HTP group in response to food showed increased activation on the VMPFC, the DLPFC, limbic, and temporal regions. For the 5-HTP group, activity in response to food high in protein content compared to food high in calories and carbohydrates was located in the limbic system and the right caudomedial OFC, whereas for the vitamin C group, activity was mainly located at the inferior parietal lobes, the anterior cingulate gyri, and the left ventrolateral OFC. Greater responses to carbohydrates and high calorie stimuli in the vitamin C group were located at the right temporal gyrus, the occipital gyrus, the right VLPFC, whereas for the 5-HTP group, activity was observed at the left VMPFC, the parahippocampal gyrus bilaterally, the occipital lobe, and middle temporal gyri. In line with the hypotheses, 5-HTP triggered cortical responses associated with healthy body weight as well as cerebral preferences for protein-rich stimuli. The brain's activity is altered by macronutrients rich or deprived in the body. By reading the

  6. Randomized, double-blind, comparative-effectiveness study comparing pulsed radiofrequency to steroid injections for occipital neuralgia or migraine with occipital nerve tenderness.

    PubMed

    Cohen, Steven P; Peterlin, B Lee; Fulton, Larry; Neely, Edward T; Kurihara, Connie; Gupta, Anita; Mali, Jimmy; Fu, Diana C; Jacobs, Michael B; Plunkett, Anthony R; Verdun, Aubrey J; Stojanovic, Milan P; Hanling, Steven; Constantinescu, Octav; White, Ronald L; McLean, Brian C; Pasquina, Paul F; Zhao, Zirong

    2015-12-01

    Occipital neuralgia (ON) is characterized by lancinating pain and tenderness overlying the occipital nerves. Both steroid injections and pulsed radiofrequency (PRF) are used to treat ON, but few clinical trials have evaluated efficacy, and no study has compared treatments. We performed a multicenter, randomized, double-blind, comparative-effectiveness study in 81 participants with ON or migraine with occipital nerve tenderness whose aim was to determine which treatment is superior. Forty-two participants were randomized to receive local anesthetic and saline, and three 120 second cycles of PRF per targeted nerve, and 39 were randomized to receive local anesthetic mixed with deposteroid and 3 rounds of sham PRF. Patients, treating physicians, and evaluators were blinded to interventions. The PRF group experienced a greater reduction in the primary outcome measure, average occipital pain at 6 weeks (mean change from baseline -2.743 ± 2.487 vs -1.377 ± 1.970; P < 0.001), than the steroid group, which persisted through the 6-month follow-up. Comparable benefits favoring PRF were obtained for worst occipital pain through 3 months (mean change from baseline -1.925 ± 3.204 vs -0.541 ± 2.644; P = 0.043), and average overall headache pain through 6 weeks (mean change from baseline -2.738 ± 2.753 vs -1.120 ± 2.1; P = 0.037). Adverse events were similar between groups, and few significant differences were noted for nonpain outcomes. We conclude that although PRF can provide greater pain relief for ON and migraine with occipital nerve tenderness than steroid injections, the superior analgesia may not be accompanied by comparable improvement on other outcome measures.

  7. Randomized, double-blind, comparative-effectiveness study comparing pulsed radiofrequency to steroid injections for occipital neuralgia or migraine with occipital nerve tenderness

    PubMed Central

    Cohen, Steven P.; Peterlin, B. Lee; Fulton, Larry; Neely, Edward T.; Kurihara, Connie; Gupta, Anita; Mali, Jimmy; Fu, Diana C.; Jacobs, Michael B.; Plunkett, Anthony R.; Verdun, Aubrey J.; Stojanovic, Milan P.; Hanling, Steven; Constantinescu, Octav; White, Ronald L.; McLean, Brian C.; Pasquina, Paul F.; Zhao, Zirong

    2015-01-01

    Occipital neuralgia (ON) is characterized by lancinating pain and tenderness overlying the occipital nerves. Both steroid injections and pulsed radiofrequency (PRF) are used to treat ON, but few clinical trials have evaluated efficacy, and no study has compared treatments. We performed a multicenter, randomized, double-blind, comparative-effectiveness study in 81 participants with ON or migraine with occipital nerve tenderness whose aim was to determine which treatment is superior. Forty-two participants were randomized to receive local anesthetic and saline, and three 120 second cycles of PRF per targeted nerve, and 39 were randomized to receive local anesthetic mixed with deposteroid and 3 rounds of sham PRF. Patients, treating physicians, and evaluators were blinded to interventions. The PRF group experienced a greater reduction in the primary outcome measure, average occipital pain at 6 weeks (mean change from baseline −2.743 ± 2.487 vs −1.377 ± 1.970; P <0.001), than the steroid group, which persisted through the 6-month follow-up. Comparable benefits favoring PRF were obtained for worst occipital pain through 3 months (mean change from baseline−1.925 ± 3.204 vs−0.541 ± 2.644; P = 0.043), and average overall headache pain through 6 weeks (mean change from baseline −2.738 ± 2.753 vs −1.120 ± 2.1; P = 0.037). Adverse events were similar between groups, and few significant differences were noted for nonpain outcomes. We conclude that although PRF can provide greater pain relief for ON and migraine with occipital nerve tenderness than steroid injections, the superior analgesia may not be accompanied by comparable improvement on other outcome measures. PMID:26447705

  8. Diminished caudate and superior temporal gyrus responses to effort-based decision making in patients with first-episode major depressive disorder.

    PubMed

    Yang, Xin-hua; Huang, Jia; Lan, Yong; Zhu, Cui-ying; Liu, Xiao-qun; Wang, Ye-fei; Cheung, Eric F C; Xie, Guang-rong; Chan, Raymond C K

    2016-01-04

    Anhedonia, the loss of interest or pleasure in reward processing, is a hallmark feature of major depressive disorder (MDD), but its underlying neurobiological mechanism is largely unknown. The present study aimed to examine the underlying neural mechanism of reward-related decision-making in patients with MDD. We examined behavioral and neural responses to rewards in patients with first-episode MDD (N=25) and healthy controls (N=25) using the Effort-Expenditure for Rewards Task (EEfRT). The task involved choices about possible rewards of varying magnitude and probability. We tested the hypothesis that individuals with MDD would exhibit a reduced neural response in reward-related brain structures involved in cost-benefit decision-making. Compared with healthy controls, patients with MDD showed significantly weaker responses in the left caudate nucleus when contrasting the 'high reward'-'low reward' condition, and blunted responses in the left superior temporal gyrus and the right caudate nucleus when contrasting high and low probabilities. In addition, hard tasks chosen during high probability trials were negatively correlated with superior temporal gyrus activity in MDD patients, while the same choices were negatively correlated with caudate nucleus activity in healthy controls. These results indicate that reduced caudate nucleus and superior temporal gyrus activation may underpin abnormal cost-benefit decision-making in MDD. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Subthalamic nucleus stimulation affects theory of mind network: a PET study in Parkinson's disease.

    PubMed

    Péron, Julie; Le Jeune, Florence; Haegelen, Claire; Dondaine, Thibaut; Drapier, Dominique; Sauleau, Paul; Reymann, Jean-Michel; Drapier, Sophie; Rouaud, Tiphaine; Millet, Bruno; Vérin, Marc

    2010-03-29

    There appears to be an overlap between the limbic system, which is modulated by subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD), and the brain network that mediates theory of mind (ToM). Accordingly, the aim of the present study was to investigate the effects of STN DBS on ToM of PD patients and to correlate ToM modifications with changes in glucose metabolism. To this end, we conducted (18)FDG-PET scans in 13 PD patients in pre- and post-STN DBS conditions and correlated changes in their glucose metabolism with modified performances on the Eyes test, a visual ToM task requiring them to describe thoughts or feelings conveyed by photographs of the eye region. Postoperative PD performances on this emotion recognition task were significantly worse than either preoperative PD performances or those of healthy controls (HC), whereas there was no significant difference between preoperative PD and HC. Conversely, PD patients in the postoperative condition performed within the normal range on the gender attribution task included in the Eyes test. As far as the metabolic results are concerned, there were correlations between decreased cerebral glucose metabolism and impaired ToM in several cortical areas: the bilateral cingulate gyrus (BA 31), right middle frontal gyrus (BA 8, 9 and 10), left middle frontal gyrus (BA 6), temporal lobe (fusiform gyrus, BA 20), bilateral parietal lobe (right BA 3 and right and left BA 7) and bilateral occipital lobe (BA 19). There were also correlations between increased cerebral glucose metabolism and impaired ToM in the left superior temporal gyrus (BA 22), left inferior frontal gyrus (BA 13 and BA 47) and right inferior frontal gyrus (BA 47). All these structures overlap with the brain network that mediates ToM. These results seem to confirm that STN DBS hinders the ability to infer the mental states of others and modulates a distributed network known to subtend ToM.

  10. The relation between resting state connectivity and creativity in adolescents before and after training.

    PubMed

    Cousijn, Janna; Zanolie, Kiki; Munsters, Robbert J M; Kleibeuker, Sietske W; Crone, Eveline A

    2014-01-01

    An important component of creativity is divergent thinking, which involves the ability to generate novel and useful problem solutions. In this study, we tested the relation between resting-state functional connectivity of brain areas activated during a divergent thinking task (i.e., supramarginal gyrus, middle temporal gyrus, medial frontal gyrus) and the effect of practice in 32 adolescents aged 15-16. Over a period of two weeks, an experimental group (n = 16) conducted an 8-session Alternative Uses Task (AUT) training and an active control group (n = 16) conducted an 8-session rule switching training. Resting-state functional connectivity was measured before (pre-test) and after (post-test) training. Across groups at pre-test, stronger connectivity between the middle temporal gyrus and bilateral postcentral gyrus was associated with better divergent thinking performance. The AUT-training, however, did not significantly change functional connectivity. Post hoc analyses showed that change in divergent thinking performance over time was predicted by connectivity between left supramarginal gyrus and right occipital cortex. These results provide evidence for a relation between divergent thinking and resting-state functional connectivity in a task-positive network, taking an important step towards understanding creative cognition and functional brain connectivity.

  11. Attribution of emotions to body postures: an independent component analysis study of functional connectivity in autism.

    PubMed

    Libero, Lauren E; Stevens, Carl E; Kana, Rajesh K

    2014-10-01

    The ability to interpret others' body language is a vital skill that helps us infer their thoughts and emotions. However, individuals with autism spectrum disorder (ASD) have been found to have difficulty in understanding the meaning of people's body language, perhaps leading to an overarching deficit in processing emotions. The current fMRI study investigates the functional connectivity underlying emotion and action judgment in the context of processing body language in high-functioning adolescents and young adults with autism, using an independent components analysis (ICA) of the fMRI time series. While there were no reliable group differences in brain activity, the ICA revealed significant involvement of occipital and parietal regions in processing body actions; and inferior frontal gyrus, superior medial prefrontal cortex, and occipital cortex in body expressions of emotions. In a between-group analysis, participants with autism, relative to typical controls, demonstrated significantly reduced temporal coherence in left ventral premotor cortex and right superior parietal lobule while processing emotions. Participants with ASD, on the other hand, showed increased temporal coherence in left fusiform gyrus while inferring emotions from body postures. Finally, a positive predictive relationship was found between empathizing ability and the brain areas underlying emotion processing in ASD participants. These results underscore the differential role of frontal and parietal brain regions in processing emotional body language in autism. Copyright © 2014 Wiley Periodicals, Inc.

  12. "Decoding versus comprehension": Brain responses underlying reading comprehension in children with autism.

    PubMed

    Bednarz, Haley M; Maximo, Jose O; Murdaugh, Donna L; O'Kelley, Sarah; Kana, Rajesh K

    2017-06-01

    Despite intact decoding ability, deficits in reading comprehension are relatively common in children with autism spectrum disorders (ASD). However, few neuroimaging studies have tested the neural bases of this specific profile of reading deficit in ASD. This fMRI study examined activation and synchronization of the brain's reading network in children with ASD with specific reading comprehension deficits during a word similarities task. Thirteen typically developing children and 18 children with ASD performed the task in the MRI scanner. No statistically significant group differences in functional activation were observed; however, children with ASD showed decreased functional connectivity between the left inferior frontal gyrus (LIFG) and the left inferior occipital gyrus (LIOG). In addition, reading comprehension ability significantly positively predicted functional connectivity between the LIFG and left thalamus (LTHAL) among all subjects. The results of this study provide evidence for altered recruitment of reading-related neural resources in ASD children and suggest specific weaknesses in top-down modulation of semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pica in a Child with Anterior Cingulate Gyrus Oligodendroglioma: Case Report.

    PubMed

    Rangwala, Shivani D; Tobin, Matthew K; Birk, Daniel M; Butts, Jonathan T; Nikas, Dimitrios C; Hahn, Yoon S

    2017-01-01

    The anterior cingulate gyrus (ACG) is a continued focus of research as its exact role in brain function and vast connections with other anatomical locations is not fully understood. A review of the literature illustrates the role the ACG likely plays in cognitive and emotional processing, as well as a modulating role in motor function and goal-oriented behaviors. While lesions of the cingulate gyrus are rare, each new case broadens our understanding of its role in cognitive neuroscience and higher order processing. The authors present the case of an 8-year-old boy with a 1-month history of staring spells, agitated personality, and hyperphagia notable for the consumption of paper, who was found to have a 3-cm tumor in the left ACG. Following surgical resection of the tumor, his aggressive behavior and pica were ameliorated and the patient made an uneventful recovery, with no evidence of recurrence over the last 6 years since surgical resection. Here we discuss a unique behavioral presentation of pica, along with a review of the current literature, to illustrate functions of the ACG relevant to the location of the lesion. © 2017 S. Karger AG, Basel.

  14. Occipital White Matter Tracts in Human and Macaque

    PubMed Central

    Takemura, Hiromasa; Pestilli, Franco; Weiner, Kevin S.; Landi, Sofia M.; Sliwa, Julia; Ye, Frank Q.; Barnett, Michael A.; Leopold, David A.; Freiwald, Winrich A.; Logothetis, Nikos K.; Wandell, Brian A.

    2017-01-01

    Abstract We compare several major white-matter tracts in human and macaque occipital lobe using diffusion magnetic resonance imaging. The comparison suggests similarities but also significant differences in the tracts. There are several apparently homologous tracts in the 2 species, including the vertical occipital fasciculus (VOF), optic radiation, forceps major, and inferior longitudinal fasciculus (ILF). There is one large human tract, the inferior fronto-occipital fasciculus, with no corresponding fasciculus in macaque. We could identify the macaque VOF (mVOF), which has been little studied. Its position is consistent with classical invasive anatomical studies by Wernicke. VOF homology is supported by similarity of the endpoints in V3A and ventral V4 across species. The mVOF fibers intertwine with the dorsal segment of the ILF, but the human VOF appears to be lateral to the ILF. These similarities and differences between the occipital lobe tracts will be useful in establishing which circuitry in the macaque can serve as an accurate model for human visual cortex. PMID:28369290

  15. Clinical outcomes of pulsed radiofrequency neuromodulation for the treatment of occipital neuralgia.

    PubMed

    Choi, Hyuk Jai; Oh, In Ho; Choi, Seok Keun; Lim, Young Jin

    2012-05-01

    Occipital neuralgia is characterized by paroxysmal jabbing pain in the dermatomes of the greater or lesser occipital nerves caused by irritation of these nerves. Although several therapies have been reported, they have only temporary therapeutic effects. We report the results of pulsed radiofrequency treatment of the occipital nerve, which was used to treat occipital neuralgia. Patients were diagnosed with occipital neuralgia according to the International Classification of Headache Disorders classification criteria. We performed pulsed radiofrequency neuromodulation when patients presented with clinical findings suggestive occipital neuralgia with positive diagnostic block of the occipital nerves with local anesthetics. Patients were analyzed according to age, duration of symptoms, surgical results, complications and recurrence. Pain was measured every month after the procedure using the visual analog and total pain indexes. From 2010, ten patients were included in the study. The mean age was 52 years (34-70 years). The mean follow-up period was 7.5 months (6-10 months). Mean Visual Analog Scale and mean total pain index scores declined by 6.1 units and 192.1 units, respectively, during the follow-up period. No complications were reported. Pulsed radiofrequency neuromodulation of the occipital nerve is an effective treatment for occipital neuralgia. Further controlled prospective studies are necessary to evaluate the exact effects and long-term outcomes of this treatment method.

  16. Clinical Outcomes of Pulsed Radiofrequency Neuromodulation for the Treatment of Occipital Neuralgia

    PubMed Central

    Oh, In Ho; Choi, Seok Keun; Lim, Young Jin

    2012-01-01

    Objective Occipital neuralgia is characterized by paroxysmal jabbing pain in the dermatomes of the greater or lesser occipital nerves caused by irritation of these nerves. Although several therapies have been reported, they have only temporary therapeutic effects. We report the results of pulsed radiofrequency treatment of the occipital nerve, which was used to treat occipital neuralgia. Methods Patients were diagnosed with occipital neuralgia according to the International Classification of Headache Disorders classification criteria. We performed pulsed radiofrequency neuromodulation when patients presented with clinical findings suggestive occipital neuralgia with positive diagnostic block of the occipital nerves with local anesthetics. Patients were analyzed according to age, duration of symptoms, surgical results, complications and recurrence. Pain was measured every month after the procedure using the visual analog and total pain indexes. Results From 2010, ten patients were included in the study. The mean age was 52 years (34-70 years). The mean follow-up period was 7.5 months (6-10 months). Mean Visual Analog Scale and mean total pain index scores declined by 6.1 units and 192.1 units, respectively, during the follow-up period. No complications were reported. Conclusion Pulsed radiofrequency neuromodulation of the occipital nerve is an effective treatment for occipital neuralgia. Further controlled prospective studies are necessary to evaluate the exact effects and long-term outcomes of this treatment method. PMID:22792425

  17. Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area.

    PubMed

    Centanni, Tracy M; Norton, Elizabeth S; Park, Anne; Beach, Sara D; Halverson, Kelly; Ozernov-Palchik, Ola; Gaab, Nadine; Gabrieli, John DE

    2018-03-05

    A functional region of left fusiform gyrus termed "the visual word form area" (VWFA) develops during reading acquisition to respond more strongly to printed words than to other visual stimuli. Here, we examined responses to letters among 5- and 6-year-old early kindergarten children (N = 48) with little or no school-based reading instruction who varied in their reading ability. We used functional magnetic resonance imaging (fMRI) to measure responses to individual letters, false fonts, and faces in left and right fusiform gyri. We then evaluated whether signal change and size (spatial extent) of letter-sensitive cortex (greater activation for letters versus faces) and letter-specific cortex (greater activation for letters versus false fonts) in these regions related to (a) standardized measures of word-reading ability and (b) signal change and size of face-sensitive cortex (fusiform face area or FFA; greater activation for faces versus letters). Greater letter specificity, but not letter sensitivity, in left fusiform gyrus correlated positively with word reading scores. Across children, in the left fusiform gyrus, greater size of letter-sensitive cortex correlated with lesser size of FFA. These findings are the first to suggest that in beginning readers, development of letter responsivity in left fusiform cortex is associated with both better reading ability and also a reduction of the size of left FFA that may result in right-hemisphere dominance for face perception. © 2018 John Wiley & Sons Ltd.

  18. Giant occipital meningocele in an 8-year-old child with Dandy-Walker malformation.

    PubMed

    Talamonti, Giuseppe; Picano, Marco; Debernardi, Alberto; Bolzon, Moreno; Teruzzi, Mario; D'Aliberti, Giuseppe

    2011-01-01

    The possibility of an association between Dandy-Walker malformation and occipital meningocele is well-known. However, just an overall number of about 40 cases have been previously reported. Giant occipital meningocele has been described only in three newborns. Incidence, pathology, clinical presentation, and proper management of this association are still poorly defined. An 8-year-old boy with Dandy-Walker malformation and giant (25 cm in diameter) occipital meningocele is presented. This boy was born without any apparent occipital mass and harbored no other significant malformations including hydrocephalus. On admission, he was neurologically intact and the giant occipital mass presented partially calcified cyst walls. Treatment consisted of the excision of the occipital malformation, cranioplasty, and cysto-peritoneal shunt. Outcome was excellent. To the best of our knowledge, among the few reported patients with Dandy-Walker malformation associated to occipital meningocele, this is the oldest one and the one with the largest occipital meningocele; he is unique with calcified walls of the occipital meningocele and the only one who survived the repair of the giant malformation. In Dandy-Walker malformation, occipital meningocele may develop and grow regardless of hydrocephalus. Giant size may be reached and the cyst may become calcified. Surgical repair may warrant favorable outcome.

  19. Statistical parametric mapping for analyzing interictal magnetoencephalography in patients with left frontal lobe epilepsy.

    PubMed

    Zhu, Haitao; Zhu, Jinlong; Bao, Forrest Sheng; Liu, Hongyi; Zhu, Xuchuang; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang

    2016-01-01

    Frontal lobe epilepsy is a common epileptic disorder and is characterized by recurring seizures that arise in the frontal lobes. The purpose of this study is to identify the epileptogenic regions and other abnormal regions in patients with left frontal lobe epilepsy (LFLE) based on the magnetoencephalogram (MEG), and to understand the effects of clinical variables on brain activities in patients with LFLE. Fifteen patients with LFLE (23.20 ± 8.68 years, 6 female and 9 male) and 16 healthy controls (23.13 ± 7.66 years, 6 female and 10 male) were included in resting-stage MEG examinations. Epileptogenic regions of LFLE patients were confirmed by surgery. Regional brain activations were quantified using statistical parametric mapping (SPM). The correlation between the activations of the abnormal brain regions and the clinical seizure parameters were computed for LFLE patients. Brain activations of LFLE patients were significantly elevated in left superior/middle/inferior frontal gyri, postcentral gyrus, inferior temporal gyrus, insula, parahippocampal gyrus and amygdala, including the epileptogenic regions. Remarkable decreased activations were found mainly in the left parietal gyrus and precuneus. There is a positive correlation between the duration of the epilepsy (in month) and activations of the abnormal regions, while no relation was found between age of seizure onset (year), seizure frequency and the regions of the abnormal activity of the epileptic patients. Our findings suggest that the aberrant brain activities of LFLE patients were not restricted to the epileptogenic zones. Long duration of epilepsy might induce further functional damage in patients with LFLE. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  20. Increased regional cerebral blood flow in the contralateral thalamus after successful motor cortex stimulation in a patient with poststroke pain.

    PubMed

    Saitoh, Youichi; Osaki, Yasuhiro; Nishimura, Hiroshi; Hirano, Shun-ichiro; Kato, Amami; Hashikawa, Kazuo; Hatazawa, Jun; Yoshimine, Toshiki

    2004-05-01

    The mechanisms underlying poststroke pain have not been clearly identified. Although motor cortex stimulation (MCS) sometimes reduces poststroke pain successfully, the exact mechanism is not yet known. For further investigation of the neural pathways involved in the processing of poststroke pain and in pain reduction by MCS, the authors used positron emission tomography (PET) scanning to determine significant changes in regional cerebral blood flow (rCBF). This 58-year-old right-handed man suffered from right-sided poststroke pain for which he underwent implantation of a stimulation electrode in the right motor cortex. After 30 minutes of stimulation, his pain was remarkably reduced (Visual Analog Scale scores decreased 8 to 1) and he felt warmth in his left arm. The rCBF was studied using PET scanning with 15O-labeled water when the patient was in the following states: before MCS (painful condition, no stimulation) and after successful MCS (painless condition, no stimulation). The images were analyzed using statistical parametric mapping software. State-dependent differences in global blood flow were covaried using analysis of covariance. Comparisons of the patient's rCBF in the painful condition with that in the painless condition revealed significant rCBF increases in the left rectus gyrus (BA11), left superior frontal lobe (BA9), left anterior cingulate gyms (BA32), and the left thalamus (p < 0.05, corrected). On the other hand, there were significant decreases in rCBF in the right superior temporal gyrus (BA22, p < 0.01, corrected) and the left middle occipital gyrus (BA19, p < 0.05, corrected). The efficacy of MCS was mainly related to increased synaptic activity in the thalamus, whereas the activations in the rectus gyrus, anterior cingulate gyrus, and superior frontal cortex as well as the inactivation of the superior temporal lobe may be related to emotional processes. This is the first report in which the contralateral thalamus was significantly activated

  1. Increased Gray Matter Volume and Resting-State Functional Connectivity in Somatosensory Cortex and their Relationship with Autistic Symptoms in Young Boys with Autism Spectrum Disorder.

    PubMed

    Wang, Jia; Fu, Kuang; Chen, Lei; Duan, Xujun; Guo, Xiaonan; Chen, Heng; Wu, Qiong; Xia, Wei; Wu, Lijie; Chen, Huafu

    2017-01-01

    Autism spectrum disorder (ASD) has been widely recognized as a complex neurodevelopmental disorder. A large number of neuroimaging studies suggest abnormalities in brain structure and function of patients with ASD, but there is still no consistent conclusion. We sought to investigate both of the structural and functional brain changes in 3-7-year-old children with ASD compared with typically developing controls (TDs), and to assess whether these alterations are associated with autistic behavioral symptoms. Firstly, we applied an optimized method of voxel-based morphometry (VBM) analysis on structural magnetic resonance imaging (sMRI) data to assess the differences of gray matter volume (GMV) between 31 autistic boys aged 3-7 and 31 age- and handness-matched male TDs. Secondly, we used clusters with between-group differences as seed regions to generate intrinsic functional connectivity maps based on resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) in order to evaluate the functional impairments induced by structural alterations. Brain-behavior correlations were assessed among GMV, functional connectivity and symptom severity in children with ASD. VBM analyses revealed increased GMV in left superior temporal gyrus (STG) and left postcentral gyrus (PCG) in ASD children, comparing with TDs. Using left PCG as a seed region, ASD children displayed significantly higher positive connectivity with right angular gyrus (AG) and greater negative connectivity with right superior parietal gyrus (SPG) and right superior occipital gyrus (SOG), which were associated with the severity of symptoms in social interaction, communication and self-care ability. We suggest that stronger functional connectivity between left PCG and right AG, SPG, and SOG detected in young boys with ASD may serve as important indicators of disease severity. Our study provided preliminary functional evidence that may underlie impaired higher-order multisensory integration in ASD

  2. Atlanto-occipital dislocation: Case report and discussion.

    PubMed

    Asfaw, Tehetena; Chow, Bernard; Frederiksen, Ryan A

    2011-01-01

    Traumatic atlanto-occipital dislocation is an uncommon injury that frequently results in either a fatal outcome or severe neurologic deficit. This diagnosis must be considered for any patients who may have had cervical spine damage after high trauma, even in the absence of neurologic signs, as there have been reports of cases without neurologic impairment. In addition to radiographic examination, including lateral cervical radiographs, supplemental imaging with CT or MRI may be required to confirm diagnosis in equivocal cases, and to help in evaluation of bone and nervous structures. Moreover, these modalities allow measurement of the magnitude of dislocation and aid in classification of type of dislocation, which helps guide management. A systematic approach to evaluating the cranio-cervical relationship is critical to identifying atlanto-occipital dislocation. This case report presents and discusses imaging findings that will assist in the diagnosis of atlanto-occipital dislocation.

  3. Rivastigmine is Associated with Restoration of Left Frontal Brain Activity in Parkinson’s Disease

    PubMed Central

    Possin, Katherine L.; Kang, Gail A.; Guo, Christine; Fine, Eric M.; Trujillo, Andrew J.; Racine, Caroline A.; Wilheim, Reva; Johnson, Erica T.; Witt, Jennifer L.; Seeley, William W.; Miller, Bruce L.; Kramer, Joel H.

    2013-01-01

    Objective To investigate how acetylcholinesterase inhibitor (ChEI) treatment impacts brain function in Parkinson’s disease (PD). Methods Twelve patients with PD and either dementia or mild cognitive impairment underwent task-free functional magnetic resonance imaging before and after three months of ChEI treatment and were compared to 15 age and sex matched neurologically healthy controls. Regional spontaneous brain activity was measured using the fractional amplitude of low frequency fluctuations. Results At baseline, patients showed reduced spontaneous brain activity in regions important for motor control (e.g., caudate, supplementary motor area, precentral gyrus, thalamus), attention and executive functions (e.g., lateral prefrontal cortex), and episodic memory (e.g., precuneus, angular gyrus, hippocampus). After treatment, the patients showed a similar but less extensive pattern of reduced spontaneous brain activity relative to controls. Spontaneous brain activity deficits in the left premotor cortex, inferior frontal gyrus, and supplementary motor area were restored such that the activity was increased post-treatment compared to baseline and was no longer different from controls. Treatment-related increases in left premotor and inferior frontal cortex spontaneous brain activity correlated with parallel reaction time improvement on a test of controlled attention. Conclusions PD patients with cognitive impairment show numerous regions of decreased spontaneous brain function compared to controls, and rivastigmine is associated with performance-related normalization in left frontal cortex function. PMID:23847120

  4. [Dysfunctional resting-state connectivity of default mode network in adolescent patients with first-episode drug-naive major depressive disorder].

    PubMed

    Li, S Y; Zhu, Y; Wang, Y L; Lü, P P; Zuo, W B; Li, F Y

    2017-12-05

    Objective: To study resting-state functional connectivity (FC) of default mode network (DMN) in adolescent patients with first-episode drug-naive major depressive disorder (MDD). Methods: We enrolled thirty first-episode and drug-naive adolescent MDD patients and twenty-nine adolescent healthy control (HC) participants in the First Affiliated Hospital of Zhengzhou University. There were no differences in age, sex, and education between the MDD and HC group. Resting-state functional magnetic resonance images (fMRI) was performed. We selected posterior cingulate cortex (PCC) and medial prefrontal cortex (MPFC) of DMN as regions of interests (ROI). The differences of these regions from the whole brain functional connectivity were analyzed. The relations between abnormalities in FCs of DMN and clinical variables were further investigated. Results: Compared to the HCs, the MDD patients had congruently reduced FCs between the PCC and cerebellum, temporal cortices, occipital cortices, fusiform, dorsolateral prefrontal cortex. MPFC not only had reduced FCs with fusiform, temporal cortices, anterior cingulate cortex, but also had enhanced FCs with occipital cortices, parietal cortices, and precentral gyrus. In addition, the increased FC between the right MPFC and right precentral gyrus was positive correlated with Hamilton Rating Scale for Depression (HAMD) scores ( r =0.38, P =0.04). The reduced FC between the left middle temporal gyrus and left PCC as well as the enhanced FC between the right middle cingulum and right MPFC were positive correlated with the duration of depression since onset ( r =0.39, P =0.03; r =0.38, P =0.04). Conclusions: These findings show dysfunctional DMN connectivity of adolescent MDD patients. Neurodevelopmental abnormalities in DMN may present in adolescent MDD.

  5. Gender Differences in Regional Brain Activity in Patients with Chronic Primary Insomnia: Evidence from a Resting-State fMRI Study.

    PubMed

    Dai, Xi-Jian; Nie, Xiao; Liu, Xuming; Pei, Li; Jiang, Jian; Peng, De-chang; Gong, Hong-Han; Zeng, Xian-Jun; Wáng, Yì-Xiáng J; Zhan, Yang

    2016-03-01

    To explore the regional brain activities in patients with chronic primary insomnia (PCPIs) and their sex differences. Forty-two PCPIs (27 females, 15 males) and 42 good sleepers (GSs; 24 females, 18 males) were recruited. Six PCPIs (3 males, 3 females) were scanned twice by MRI to examine the test-retest reliability. Amplitude of low frequency fluctuation (ALFF) method was used to assess the local brain features. The mean signal values of the different ALFF areas were analyzed with a receiver operating characteristic (ROC) curve. Simple linear regression analysis was performed to investigate the relationships between clinical features and different brain areas. Both female and male PCPIs showed higher ALFF in the temporal lobe and occipital lobe, especially in female PCPIs. Female PCPIs had lower ALFF in the bilateral cerebellum posterior lobe, left dorsolateral prefrontal cortex, and bilateral limbic lobe; however, male PCPIs showed lower ALFF in the left occipital gyrus. The mean signal value of the cerebellum in female PCPIs showed negative correlations with negative emotions. Compared with male PCPIs, female PCPIs showed higher ALFF in the bilateral middle temporal gyrus and lower ALFF in the left limbic lobe. The different areas showed high test-retest stability (Clusters of contiguous volumes ≥ 1080 mm(3) with an intraclass correlation coefficient ≥ 0.80) and high degree of sensitivity and specificity. Female PCPIs showed more regional brain differences with higher and lower ALFF responses than male PCPIs. However, they shared analogous excessive hyperarousal mechanism and wide variations in aberrant brain areas. © 2016 American Academy of Sleep Medicine.

  6. Neural Correlates of Suicidality in Adolescents with Major Depression: Resting-State Functional Connectivity of the Precuneus and Posterior Cingulate Cortex.

    PubMed

    Schreiner, Melinda Westlund; Klimes-Dougan, Bonnie; Cullen, Kathryn R

    2018-05-13

    Major depressive disorder (MDD) is associated with suicidal thoughts and behaviors ("suicidality"). Of the three components of Joiner's interpersonal theory of suicide, two involve negatively valenced, self-related beliefs: perceived burdensomeness and thwarted belongingness. However, the neurocircuitry underlying self-processing and suicidality has not been fully explored. This study examined the association between suicidality and the neurocircuitry of regions relevant to self-referential processing in adolescents with depression. Fifty-eight adolescents underwent assessment and a resting-state fMRI scan. Resting-state functional connectivity (RSFC) analyses included two brain regions implicated in self-referential processing: precuneus and posterior cingulate cortex (PCC). Suicidality was measured using the Index of Depression and Anxiety Symptoms. While controlling for depression severity, we conducted whole-brain correlation analyses between suicidality and left and right precuneus and PCC connectivity maps. Suicidality was positively associated with RSFC between left precuneus and left primary motor and somatosensory cortices, and middle and superior frontal gyri. Suicidality was negatively associated with RSFC between left PCC and left cerebellum, lateral occipital cortex, and temporal-occipital fusiform gyrus. Findings of hyperconnectivity stemming from the precuneus and hypoconnectivity from the PCC may reflect maladaptive self-reflection and mentalization. However, additional investigation is warranted to further clarify these relationships. © 2018 The American Association of Suicidology.

  7. Response of cervicogenic headaches and occipital neuralgia to radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerve.

    PubMed

    Hamer, John F; Purath, Traci A

    2014-03-01

    This article investigates the degree and duration of pain relief from cervicogenic headaches or occipital neuralgia following treatment with radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. It also addresses the procedure's complication rate and patient's willingness to repeat the procedure if severe symptoms recur. This is a single-center retrospective observational study of 40 patients with refractory cervicogenic headaches and or occipital neuralgia. Patients were all referred by a headache specialty clinic for evaluation for radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. After treatment, patients were followed for a minimum of 6 months to a year. Patient demographics and the results of radiofrequency ablation were recorded on the same day, after 3-4 days, and at 6 months to 1 year following treatment. Thirty-five percent of patients reported 100% pain relief and 70% reported 80% or greater pain relief. The mean duration of improvement is 22.35 weeks. Complication rate was 12-13%. 92.5% of patients reported they would undergo the procedure again if severe symptoms returned. Radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerve can provide many months of greater than 50% pain relief in the vast majority of recipients with an expected length of symptom improvement of 5-6 months. © 2014 American Headache Society.

  8. Paleoneurology of two new neandertal occipitals from El Sidrón (asturias, Spain) in the context of homo endocranial evolution.

    PubMed

    Peña-Melián, Angel; Rosas, Antonio; García-Tabernero, Antonio; Bastir, Markus; De La Rasilla, Marco

    2011-08-01

    The endocranial surface description and comparative analyses of two new neandertal occipital fragments (labelled SD-1149 and SD-370a) from the El Sidrón site (Asturias, Spain) reveal new aspects of neandertal brain morphological asymmetries. The dural sinus drainage pattern, as observed on the sagittal-transverse system, as well as the cerebral occipito-petalias, point out a slightly differential configuration of the neandertal brain when compared to other Homo species, especially H. sapiens. The neandertal dural sinus drainage pattern is organized in a more asymmetric mode, in such a way that the superior sagittal sinus (SSS) drains either to the right or to the left transverse sinuses, but in no case in a confluent mode (i.e. simultaneous continuation of SSS with both right (RTS) and left (LTS) transverse sinuses). Besides, the superior sagittal sinus shows an accentuated deviation from of the mid-sagittal plane in its way to the RTS in 35% of neandertals. This condition, which increases the asymmetry of the system, is almost nonexistent neither in the analyzed Homo fossil species sample nor in that of anatomically modern humans. Regarding the cerebral occipito-petalias, neandertals manifest one of the lowest percentages of left petalia of the Homo sample (including modern H. sapiens). As left occipito-petalia is the predominant pattern in hominins, it seems as if neandertals would have developed a different pattern of brain hemispheres asymmetry. Finally, the relief and position of the the cerebral sulci and gyri impressions observed in the El Sidrón occipital specimens look similar to those observed in modern H. sapiens. Copyright © 2011 Wiley-Liss, Inc.

  9. Experimental trauma of occipital impacts.

    DOT National Transportation Integrated Search

    1974-03-01

    The paper presents clinical observations, physiological data and pathological findings that have been collected on a series of baboons exposed to controlled occipital impacts under local anesthesia. This acute experimental trauma study was accomplish...

  10. Reorganization of Retinotopic Maps After Occipital Lobe Infarction

    PubMed Central

    Vaina, Lucia M.; Soloviev, Sergei; Calabro, Finnegan J.; Buonanno, Ferdinando; Passingham, Richard; Cowey, Alan

    2015-01-01

    We studied patient JS who had a right occipital infarct that encroached on visual areas V1, V2v and VP. When tested psychophysically, he was very impaired at detecting the direction of motion in random dot displays where a variable proportion of dots moving in one direction (signal) were embedded in masking motion noise (noise dots). The impairment on this Motion Coherence task was especially marked when the display was presented to the upper left (affected) visual quadrant, contralateral to his lesion. However, with extensive training, by 11 months his threshold fell to the level of healthy subjects. Training on the Motion Coherence task generalized to another motion task, the Motion Discontinuity task, on which he had to detect the presence of an edge that was defined by the difference in the direction of the coherently moving dots (signal) within the display. He was much better at this task at 8 than 3 months, and this improvement was associated with an increase in the activation of the human MT complex (hMT+) and in the kinetic occipital region (KO) as shown by repeated fMRI scans. We also used fMRI to perform retinotopic mapping at 3, 8 and 11 months after the infarct. We quantified the retinotopy and areal shifts by measuring the distances between the center of mass of functionally defined areas, computed in spherical surface-based coordinates. The functionally defined retinotopic areas V1, V2v, V2d and VP were initially smaller in the lesioned right hemisphere, but they increased in size between 3 and 11 months. This change was not found in the normal, left hemisphere, of the patient or in either hemispheres of the healthy control subjects. We were interested in whether practice on the motion coherence task promoted the changes in the retinotopic maps. We compared the results for patient JS with those from another patient (PF) who had a comparable lesion but had not been given such practice. We found similar changes in the maps in the lesioned hemisphere of

  11. Etiology and Treatment Modalities of Occipital Artery Aneurysms.

    PubMed

    Chaudhry, Nauman S; Gaynor, Brandon G; Hussain, Shahrose; Dernbach, Paul D; Aziz-Sultan, Mohammad A

    2017-06-01

    Aneurysms of the external carotid artery represent approximately 2% of cervical carotid aneurysms, with the majority being traumatic pseudoaneurysms. Given the paucity of literature available for guidance, the diagnosis, treatment, and follow-up of such lesions are completely individualized. We report an 83-year-old woman with an 8-week history of headache in the occipital region, transient episode of gait disturbance, and pulsatile tinnitus on the right. She had no history of trauma, surgery, autoimmune disease, or infection. Physical examination revealed a pulsatile mass tender to palpation in the right occipital scalp. The mass was surgically excised, and histopathological diagnosis of a true aneurysm was made. Postoperatively, the patient's symptoms resolved; however, 1 month after the procedure, she developed occipital neuralgia, which was successfully treated with a percutaneous nerve block. To the best of our knowledge, this is the second reported case of a true aneurysm of the occipital artery in a patient with no history of trauma. The clinical examination, diagnosis, and treatment are discussed and the literature is reviewed for previously reported cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Higher Language Ability is Related to Angular Gyrus Activation Increase During Semantic Processing, Independent of Sentence Incongruency.

    PubMed

    Van Ettinger-Veenstra, Helene; McAllister, Anita; Lundberg, Peter; Karlsson, Thomas; Engström, Maria

    2016-01-01

    This study investigates the relation between individual language ability and neural semantic processing abilities. Our aim was to explore whether high-level language ability would correlate to decreased activation in language-specific regions or rather increased activation in supporting language regions during processing of sentences. Moreover, we were interested if observed neural activation patterns are modulated by semantic incongruency similarly to previously observed changes upon syntactic congruency modulation. We investigated 27 healthy adults with a sentence reading task-which tapped language comprehension and inference, and modulated sentence congruency-employing functional magnetic resonance imaging (fMRI). We assessed the relation between neural activation, congruency modulation, and test performance on a high-level language ability assessment with multiple regression analysis. Our results showed increased activation in the left-hemispheric angular gyrus extending to the temporal lobe related to high language ability. This effect was independent of semantic congruency, and no significant relation between language ability and incongruency modulation was observed. Furthermore, there was a significant increase of activation in the inferior frontal gyrus (IFG) bilaterally when the sentences were incongruent, indicating that processing incongruent sentences was more demanding than processing congruent sentences and required increased activation in language regions. The correlation of high-level language ability with increased rather than decreased activation in the left angular gyrus, a region specific for language processing, is opposed to what the neural efficiency hypothesis would predict. We can conclude that no evidence is found for an interaction between semantic congruency related brain activation and high-level language performance, even though the semantic incongruent condition shows to be more demanding and evoking more neural activation.

  13. Higher Language Ability is Related to Angular Gyrus Activation Increase During Semantic Processing, Independent of Sentence Incongruency

    PubMed Central

    Van Ettinger-Veenstra, Helene; McAllister, Anita; Lundberg, Peter; Karlsson, Thomas; Engström, Maria

    2016-01-01

    This study investigates the relation between individual language ability and neural semantic processing abilities. Our aim was to explore whether high-level language ability would correlate to decreased activation in language-specific regions or rather increased activation in supporting language regions during processing of sentences. Moreover, we were interested if observed neural activation patterns are modulated by semantic incongruency similarly to previously observed changes upon syntactic congruency modulation. We investigated 27 healthy adults with a sentence reading task—which tapped language comprehension and inference, and modulated sentence congruency—employing functional magnetic resonance imaging (fMRI). We assessed the relation between neural activation, congruency modulation, and test performance on a high-level language ability assessment with multiple regression analysis. Our results showed increased activation in the left-hemispheric angular gyrus extending to the temporal lobe related to high language ability. This effect was independent of semantic congruency, and no significant relation between language ability and incongruency modulation was observed. Furthermore, there was a significant increase of activation in the inferior frontal gyrus (IFG) bilaterally when the sentences were incongruent, indicating that processing incongruent sentences was more demanding than processing congruent sentences and required increased activation in language regions. The correlation of high-level language ability with increased rather than decreased activation in the left angular gyrus, a region specific for language processing, is opposed to what the neural efficiency hypothesis would predict. We can conclude that no evidence is found for an interaction between semantic congruency related brain activation and high-level language performance, even though the semantic incongruent condition shows to be more demanding and evoking more neural activation. PMID

  14. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions.

    PubMed

    Goodin, Peter; Lamp, Gemma; Vidyasagar, Rishma; McArdle, David; Seitz, Rüdiger J; Carey, Leeanne M

    2018-01-01

    One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke

  15. Gray-white matter and cerebrospinal fluid volume differences in children with Specific Language Impairment and/or Reading Disability.

    PubMed

    Girbau-Massana, Dolors; Garcia-Marti, Gracian; Marti-Bonmati, Luis; Schwartz, Richard G

    2014-04-01

    We studied gray-white matter and cerebrospinal fluid (CSF) alterations that may be critical for language, through an optimized voxel-based morphometry evaluation in children with Specific Language Impairment (SLI), compared to Typical Language Development (TLD). Ten children with SLI (8;5-10;9) and 14 children with TLD (8;2-11;8) participated. They received a comprehensive language and reading test battery. We also analyzed a subgroup of six children with SLI+RD (Reading Disability). Brain images from 3-Tesla MRIs were analyzed with intelligence, age, gender, and total intracranial volume as covariates. Children with SLI or SLI+RD exhibited a significant lower overall gray matter volume than children with TLD. Particularly, children with SLI showed a significantly lower volume of gray matter compared to children with TLD in the right postcentral parietal gyrus (BA4), and left and right medial occipital gyri (BA19). The group with SLI also exhibited a significantly greater volume of gray matter in the right superior occipital gyrus (BA19), which may reflect a brain reorganization to compensate for their lower volumes at medial occipital gyri. Children with SLI+RD, compared to children with TLD, showed a significantly lower volume of: (a) gray matter in the right postcentral parietal gyrus; and (b) white matter in the right inferior longitudinal fasciculus (RILF), which interconnects the temporal and occipital lobes. Children with TLD exhibited a significantly lower CSF volume than children with SLI and children with SLI+RD respectively, who had somewhat smaller volumes of gray matter allowing for more CSF volume. The significant lower gray matter volume at the right postcentral parietal gyrus and greater cerebrospinal fluid volume may prove to be unique markers for SLI. We discuss the association of poor knowledge/visual representations and language input to brain development. Our comorbid study showed that a significant lower volume of white matter in the right

  16. [Effect of neurolysis on intractable greater occipital nerve neuralgia].

    PubMed

    Tian, Yunhu; Liu, Ya; Liu, Huancai

    2007-09-01

    To investigate the effect of neurolysis on intractable greater occipital nerve neuralgia. From March 1998 to August 2005, twenty-six patients suffering from intractable greater occipital nerve neuralgia were treated. There were 12 males and 14 females with an average age of 52 years (ranged 38-63 years). The disease course was 3-7 years. Sixteen cases had a long duration of work with bowing head, 5 cases symptoms appeared after trauma, and others had no identified causes. The visual analogue scales (VAS) scoring was 6.0 to 9.5, averaged 8. 6. Seven cases were treated by apocope of obliquus capitis inferior under general anaesthesia and 19 cases were treated by neurolysis of greater occipital nerve under local anaesthesia. The compression mass were examined. Symptoms ameliorated or disappeared in 26 cases immediately after operation. The wounds healed by first intention. The pathological results of the removal mass included lymph node (3 cases), neurilemmoma (2 cases) and scar (5 cases). The VAS scoring of 26 cases was 0 to 5 (average, 2) 3 days after operation. Twenty-three cases were followed up for 1 to 3 years. The VAS scoring of 23 cases was 0 to 4.5 ( average, 1.9) 1 months after operation. Only two cases recurred and the symptoms were ameliorated. Pain aggavated after tiredness and reliveed after oral anti-inflammatory analgesics in 6 cases. No relapse occurred in the others. The complete neurolysis of greater occipital nerve (including apocope of obliquus capitis inferior, release between the cucullaris and semispinalis) which make the greater occipital nerve goes without any compression is the key point to treat intractable greater occipital nerve neuralgia.

  17. True aneurysm of the proximal occipital artery: Case report.

    PubMed

    Illuminati, Giulio; Cannistrà, Marco; Pizzardi, Giulia; Pasqua, Rocco; Frezzotti, Francesca; Calio', Francesco G

    2018-01-01

    True aneurysms of the proximal occipital artery are rare, may cause neurological symptoms due to compression of the hypoglossal nerve and their resection may be technically demanding. The case of an aneurysm of the proximal occipital artery causing discomfort and tongue deviation by compression on the hypoglossal nerve is reported. Postoperative course after resection was followed by complete regression of symptoms. Surgical resection, as standard treatment of aneurysms of the occipital artery, with the eventual technical adjunct of intubation by the nose is effective in durably relieving symptoms and preventing aneurysm-related complication. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Resting state functional connectivity of the nucleus accumbens in youth with a family history of alcoholism

    PubMed Central

    Cservenka, Anita; Casimo, Kaitlyn; Fair, Damien; Nagel, Bonnie

    2014-01-01

    Adolescents with a family history of alcoholism (FHP) are at heightened risk for developing alcohol use disorders (AUDs). The nucleus accumbens (NAcc), a key brain region for reward processing, is implicated in the development of AUDs. Thus, functional connectivity of the NAcc may be an important marker of risk in FHP youth. Resting state functional magnetic resonance imaging (rs-fcMRI) was used to examine the intrinsic connectivity of the NAcc in 47 FHP and 50 family history negative (FHN) youth, ages 10–16 years old. FHP and FHN adolescents showed significant group differences in resting state synchrony between the left NAcc and bilateral inferior frontal gyri and the left postcentral gyrus (PG). Additionally, FHP youth differed from FHN youth in right NAcc functional connectivity with the left orbitofrontal cortex (OFC), left superior temporal gyrus, right cerebellum, left PG, and right occipital cortex. These results indicate that FHP youth have less segregation between the NAcc and executive functioning brain regions, and less integration with reward-related brain areas, such as the OFC. The findings of the current study highlight that premorbid atypical connectivity of appetitive systems, in the absence of heavy alcohol use, may be a risk marker in FHP adolescents. PMID:24440571

  19. Automatized smoking-related action schemata are reflected by reduced fMRI activity in sensorimotor brain regions of smokers.

    PubMed

    Isik, Ayse Ilkay; Naumer, Marcus J; Kaiser, Jochen; Buschenlange, Christian; Wiesmann, Sandro; Czoschke, Stefan; Yalachkov, Yavor

    2017-01-01

    In the later stages of addiction, automatized processes play a prominent role in guiding drug-seeking and drug-taking behavior. However, little is known about the neural correlates of automatized drug-taking skills and drug-related action knowledge in humans. We employed functional magnetic resonance imaging (fMRI) while smokers and non-smokers performed an orientation affordance task, where compatibility between the hand used for a behavioral response and the spatial orientation of a priming stimulus leads to shorter reaction times resulting from activation of the corresponding motor representations. While non-smokers exhibited this behavioral effect only for control objects, smokers showed the affordance effect for both control and smoking-related objects. Furthermore, smokers exhibited reduced fMRI activation for smoking-related as compared to control objects for compatible stimulus-response pairings in a sensorimotor brain network consisting of the right primary motor cortex, supplementary motor area, middle occipital gyrus, left fusiform gyrus and bilateral cingulate gyrus. In the incompatible condition, we found higher fMRI activation in smokers for smoking-related as compared to control objects in the right primary motor cortex, cingulate gyrus, and left fusiform gyrus. This suggests that the activation and performance of deeply embedded, automatized drug-taking schemata employ less brain resources. This might reduce the threshold for relapsing in individuals trying to abstain from smoking. In contrast, the interruption or modification of already triggered automatized action representations require increased neural resources.

  20. 8. Occipital neuralgia.

    PubMed

    Vanelderen, Pascal; Lataster, Arno; Levy, Robert; Mekhail, Nagy; van Kleef, Maarten; Van Zundert, Jan

    2010-01-01

    Occipital neuralgia is defined as a paroxysmal shooting or stabbing pain in the dermatomes of the nervus occipitalis major and/or nervus occipitalis minor. The pain originates in the suboccipital region and radiates over the vertex. A suggestive history and clinical examination with short-term pain relief after infiltration with local anesthetic confirm the diagnosis. No data are available about the prevalence or incidence of this condition. Most often, trauma or irritation of the nervi occipitales causes the neuralgia. Imaging studies are necessary to exclude underlying pathological conditions. Initial therapy consists of a single infiltration of the culprit nervi occipitales with local anesthetic and corticosteroids (2 C+). The reported effects of botulinum toxin A injections are contradictory (2 C+/-). Should injection of local anesthetic and corticosteroids fail to provide lasting relief, pulsed radio-frequency treatment of the nervi occipitales can be considered (2 C+). There is no evidence to support pulsed radio-frequency treatment of the ganglion spinale C2 (dorsal root ganglion). As such, this should only be done in a clinical trial setting. Subcutaneous occipital nerve stimulation can be considered if prior therapy with corticosteroid infiltration or pulsed radio-frequency treatment failed or provided only short-term relief (2 C+).

  1. A Voxel-Based Morphometry Study of the Brain of University Students Majoring in Music and Nonmusic Disciplines.

    PubMed

    Sato, Kanako; Kirino, Eiji; Tanaka, Shoji

    2015-01-01

    The brain changes flexibly due to various experiences during the developmental stages of life. Previous voxel-based morphometry (VBM) studies have shown volumetric differences between musicians and nonmusicians in several brain regions including the superior temporal gyrus, sensorimotor areas, and superior parietal cortex. However, the reported brain regions depend on the study and are not necessarily consistent. By VBM, we investigated the effect of musical training on the brain structure by comparing university students majoring in music with those majoring in nonmusic disciplines. All participants were right-handed healthy Japanese females. We divided the nonmusic students into two groups and therefore examined three groups: music expert (ME), music hobby (MH), and nonmusic (NM) group. VBM showed that the ME group had the largest gray matter volumes in the right inferior frontal gyrus (IFG; BA 44), left middle occipital gyrus (BA 18), and bilateral lingual gyrus. These differences are considered to be caused by neuroplasticity during long and continuous musical training periods because the MH group showed intermediate volumes in these regions.

  2. Activation of the occipital cortex and deactivation of the default mode network during working memory in the early blind.

    PubMed

    Park, Hae-Jeong; Chun, Ji-Won; Park, Bumhee; Park, Haeil; Kim, Joong Il; Lee, Jong Doo; Kim, Jae-Jin

    2011-05-01

    Although blind people heavily depend on working memory to manage daily life without visual information, it is not clear yet whether their working memory processing involves functional reorganization of the memory-related cortical network. To explore functional reorganization of the cortical network that supports various types of working memory processes in the early blind, we investigated activation differences between 2-back tasks and 0-back tasks using fMRI in 10 congenitally blind subjects and 10 sighted subjects. We used three types of stimulus sequences: words for a verbal task, pitches for a non-verbal task, and sound locations for a spatial task. When compared to the sighted, the blind showed additional activations in the occipital lobe for all types of stimulus sequences for working memory and more significant deactivation in the posterior cingulate cortex of the default mode network. The blind had increased effective connectivity from the default mode network to the left parieto-frontal network and from the occipital cortex to the right parieto-frontal network during the 2-back tasks than the 0-back tasks. These findings suggest not only cortical plasticity of the occipital cortex but also reorganization of the cortical network for the executive control of working memory.

  3. Tell it to a child! A brain stimulation study of the role of left inferior frontal gyrus in emotion regulation during storytelling.

    PubMed

    Urgesi, Cosimo; Mattiassi, Alan D A; Buiatti, Tania; Marini, Andrea

    2016-08-01

    In everyday life we need to continuously regulate our emotional responses according to their social context. Strategies of emotion regulation allow individuals to control time, intensity, nature and expression of emotional responses to environmental stimuli. The left inferior frontal gyrus (LIFG) is involved in the cognitive control of the selection of semantic content. We hypothesized that it might also be involved in the regulation of emotional feelings and expressions. We applied continuous theta burst stimulation (cTBS) over LIFG or a control site before a newly-developed ecological regulation task that required participants to produce storytelling of pictures with negative or neutral valence to either a peer (unregulated condition) or a child (regulated condition). Linguistic, expressive, and physiological responses were analyzed in order to assess the effects of LIFG-cTBS on emotion regulation. Results showed that the emotion regulation context modulated the emotional content of narrative productions, but not the physiologic orienting response or the early expressive behavior to negative stimuli. Furthermore, LIFG-cTBS disrupted the text-level structuring of negative picture storytelling and the early cardiac and muscular response to negative pictures; however, it did not affect the contextual emotional regulation of storytelling. These results may suggest that LIFG is involved in the initial detection of the affective arousal of emotional stimuli. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Voxel-based morphometric analysis in hypothyroidism using diffeomorphic anatomic registration via an exponentiated lie algebra algorithm approach.

    PubMed

    Singh, S; Modi, S; Bagga, D; Kaur, P; Shankar, L R; Khushu, S

    2013-03-01

    The present study aimed to investigate whether brain morphological differences exist between adult hypothyroid subjects and age-matched controls using voxel-based morphometry (VBM) with diffeomorphic anatomic registration via an exponentiated lie algebra algorithm (DARTEL) approach. High-resolution structural magnetic resonance images were taken in ten healthy controls and ten hypothyroid subjects. The analysis was conducted using statistical parametric mapping. The VBM study revealed a reduction in grey matter volume in the left postcentral gyrus and cerebellum of hypothyroid subjects compared to controls. A significant reduction in white matter volume was also found in the cerebellum, right inferior and middle frontal gyrus, right precentral gyrus, right inferior occipital gyrus and right temporal gyrus of hypothyroid patients compared to healthy controls. Moreover, no meaningful cluster for greater grey or white matter volume was obtained in hypothyroid subjects compared to controls. Our study is the first VBM study of hypothyroidism in an adult population and suggests that, compared to controls, this disorder is associated with differences in brain morphology in areas corresponding to known functional deficits in attention, language, motor speed, visuospatial processing and memory in hypothyroidism. © 2012 British Society for Neuroendocrinology.

  5. The Origin of Word-related Motor Activity

    PubMed Central

    Papeo, Liuba; Lingnau, Angelika; Agosta, Sara; Pascual-Leone, Alvaro; Battelli, Lorella; Caramazza, Alfonso

    2015-01-01

    Conceptual processing of verbs consistently recruits the left posterior middle temporal gyrus (lpMTG). The left precentral motor cortex also responds to verbs, with higher activity for action than nonaction verbs. The early timing of this effect has suggested that motor features of words' meaning are accessed directly, bypassing access to conceptual representations in lpMTG. An alternative hypothesis is that the retrieval of conceptual representations in lpMTG is necessary to drive more specific, motor-related representations in the precentral gyrus. To test these hypotheses, we first showed that repetitive transcranial magnetic stimulation (rTMS) applied to the verb-preferring lpMTG site selectively impoverished the semantic processing of verbs. In a second experiment, rTMS perturbation of lpMTG, relative to no stimulation (no-rTMS), eliminated the action–nonaction verb distinction in motor activity, as indexed by motor-evoked potentials induced in peripheral muscles with single-pulse TMS over the left primary motor cortex. rTMS pertubation of an occipital control site, relative to no-rTMS, did not affect the action–nonaction verb distinction in motor activity, but the verb contrast did not differ reliably from the lpMTG effect. The results show that lpMTG carries core semantic information necessary to drive the activation of specific (motor) features in the precentral gyrus. PMID:24421174

  6. Novel use of narrow paddle electrodes for occipital nerve stimulation--technical note.

    PubMed

    Abhinav, Kumar; Park, Nicholas D; Prakash, Savithru K; Love-Jones, Sarah; Patel, Nikunj K

    2013-01-01

    Occipital nerve stimulation (ONS), an established treatment for medically intractable headache syndromes, has lead migration rates quoted up to 24%. In a series of patients with ideal characteristics for this treatment modality, we describe an operative technique for ONS involving the novel use of narrow paddle electrodes: "S8 Lamitrode" (St. Jude Medical [SJM], St. Paul, MN, USA). Five patients (occipital neuralgia [ON] = 4; chronic migraine [CM] = 1) were treated with ONS between 2010 and 2011. All patients had a successful trial of peripheral neurostimulation (Algotec Ltd, Crawley, UK) therapy. Operative technique involved the use of a park-bench position, allowing simultaneous exposure of the occipital and infraclavicular regions. Through a retromastoid/occipital incision just beneath the external occipital protruberance, exposing the extrafascial plane, the S8 Lamitrode is implanted to intersect both greater occipital nerves for bilateral pain or unilateral greater and lesser occipital nerves for unilateral ON or with significant component of the pain relating to the lesser occipital nerve. Over the median follow-up of 12 months, there were no episodes of lead migration or revision. There also was significant improvement in symptoms in all patients. This is the first reported use of S8 Lamitrode electrode for ONS. This narrow electrode is suited for this role leading to minimal trauma during surgical placement, facilitates resolution of problems with lead migration, and optimizes effect with stimulation focused more in direction of the occipital nerves without skin involvement. To date, the SJM Genesis neurostimulation system, with percutaneous electrodes only, is CE mark approved in Europe for peripheral nerve stimulation of the occipital nerves for the management of pain and disability for patients diagnosed with intractable CM. Further developments and studies are required for better devices to suit ONS, thereby avoiding frequently encountered

  7. [Occipital neuralgia with visual obscurations: a case report].

    PubMed

    Selekler, Hamit Macit; Dündar, Gülmine; Kutlu, Ayşe

    2010-07-01

    Vertigo, dizziness and visual blurring have been reported in painful conditions in trigeminal innervation zones such as in idiopathic stabbing headache, supraorbital neuralgia or trigeminal nerve ophthalmic branch neuralgia. Although not common, pain in occipital neuralgia can spread through the anterior parts of the head. In this article, we present a case whose occipital neuralgiform paroxysms spread to the ipsilateral eye with simultaneous visual obscuration; the mechanisms of propagation and visual obscuration are discussed.

  8. Occipital pressure sores in two neonates.

    PubMed

    Liu, Yi; Xiao, Bin; Zhang, Cheng; Su, Zhihong

    2015-01-01

    The preference for a specific head shape can be influenced by people's culture, religious beliefs and race. Modern Chinese people prefer a "talented" head shape, which is rounded and has a long profile. To obtain their preferred head shape, some parents try to change their neonates' sleeping position. Due to these forced sleeping positions, positional skull deformities, such as plagiocephaly, may be present during the first few months of life. In this article, we report two neonatal cases, of Hui nationality and Dongxiang nationality, with occipital pressure sores that were caused by using hard objects as pillows with the intention of obtaining a flattened occiput. The pressure sores were deep to the occipital bone and needed surgical management. These pressure sores caused wounds that were repaired by local skin flaps, after debridement, and the use of external constraints from a dense sponge-made head frame for approximately two weeks. One case recovered with primary healing after surgical operation. The other case suffered from a disruption of the sutured wound, and a secondary operation was performed to cover the wound. These occipital pressure sores are avoidable by providing guidance to the parents in ethnic minorities' area regarding the prevention, diagnosis and management of positional skull deformity.

  9. An illustrated heuristic prototype facilitates scientific inventive problem solving: A functional magnetic resonance imaging study.

    PubMed

    Tong, Dandan; Li, Wenfu; Tang, Chaoying; Yang, Wenjing; Tian, Yan; Zhang, Lei; Zhang, Meng; Qiu, Jiang; Liu, Yijun; Zhang, Qinglin

    2015-07-01

    Many scientific inventions (SI) throughout history were inspired by heuristic prototypes (HPs). For instance, an event or piece of knowledge similar to displaced water from a tub inspired Archimedes' principle. However, the neural mechanisms underlying this insightful problem solving are not very clear. Thus, the present study explored the neural correlates used to solve SI problems facilitated by HPs. Each HP had two versions: a literal description with an illustration (LDI) and a literal description with no illustration (LDNI). Thirty-two participants were divided randomly into these two groups. Blood oxygenation level-dependent fMRI contrasts between LDI and LDNI groups were measured. Greater activity in the right middle occipital gyrus (RMOG, BA19), right precentral gyrus (RPCG, BA4), and left middle frontal gyrus (LMFG, BA46) were found within the LDI group as compared to the LDNI group. We discuss these results in terms cognitive functions within these regions related to problem solving and memory retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neural networks for Braille reading by the blind.

    PubMed

    Sadato, N; Pascual-Leone, A; Grafman, J; Deiber, M P; Ibañez, V; Hallett, M

    1998-07-01

    To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.

  11. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    PubMed

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  12. The Relation between Resting State Connectivity and Creativity in Adolescents before and after Training

    PubMed Central

    Cousijn, Janna; Zanolie, Kiki; Munsters, Robbert J. M.; Kleibeuker, Sietske W.; Crone, Eveline A.

    2014-01-01

    An important component of creativity is divergent thinking, which involves the ability to generate novel and useful problem solutions. In this study, we tested the relation between resting-state functional connectivity of brain areas activated during a divergent thinking task (i.e., supramarginal gyrus, middle temporal gyrus, medial frontal gyrus) and the effect of practice in 32 adolescents aged 15–16. Over a period of two weeks, an experimental group (n = 16) conducted an 8-session Alternative Uses Task (AUT) training and an active control group (n = 16) conducted an 8-session rule switching training. Resting-state functional connectivity was measured before (pre-test) and after (post-test) training. Across groups at pre-test, stronger connectivity between the middle temporal gyrus and bilateral postcentral gyrus was associated with better divergent thinking performance. The AUT-training, however, did not significantly change functional connectivity. Post hoc analyses showed that change in divergent thinking performance over time was predicted by connectivity between left supramarginal gyrus and right occipital cortex. These results provide evidence for a relation between divergent thinking and resting-state functional connectivity in a task-positive network, taking an important step towards understanding creative cognition and functional brain connectivity. PMID:25188416

  13. Regional Gray Matter Volumes Are Related to Concern About Falling in Older People: A Voxel-Based Morphometric Study.

    PubMed

    Tuerk, Carola; Zhang, Haobo; Sachdev, Perminder; Lord, Stephen R; Brodaty, Henry; Wen, Wei; Delbaere, Kim

    2016-01-01

    Concern about falling is common in older people. Various related psychological constructs as well as poor balance and slow gait have been associated with decreased gray matter (GM) volume in old age. The current study investigates the association between concern about falling and voxel-wise GM volumes. A total of 281 community-dwelling older people aged 70-90 years underwent structural magnetic resonance imaging. Concern about falling was assessed using Falls Efficacy Scale-International (FES-I). For each participant, voxel-wise GM volumes were generated with voxel-based morphometry and regressed on raw FES-I scores (p < .05 family-wise error corrected on cluster level). FES-I scores were negatively correlated with total brain volume (r = -.212; p ≤ .001), GM volume (r = -.210; p ≤ .001), and white matter volume (r = -.155; p ≤ .001). Voxel-based morphometry analysis revealed significant negative associations between FES-I and GM volumes of (i) left cerebellum and bilateral inferior occipital gyrus (voxels-in-cluster = 2,981; p < .001) and (ii) bilateral superior frontal gyrus and left supplementary motor area (voxels-in-cluster = 1,900; p = .004). Additional adjustment for vision and physical fall risk did not alter these associations. After adjustment for anxiety, only left cerebellum and bilateral inferior occipital gyrus remained negatively associated with FES-I scores (voxels-in-cluster = 2,426; p < .001). Adjustment for neuroticism removed all associations between FES-I and GM volumes. Our study findings show that concern about falling is negatively associated with brain volumes in areas important for emotional control and for motor control, executive functions and visual processing in a large sample of older men and women. Regression analyses suggest that these relationships were primarily accounted for by psychological factors (generalized anxiety and neuroticism) and not by physical fall risk or vision. © The Author 2015. Published by Oxford

  14. Unilateral Eye Blinking Arising From the Ictal Ipsilateral Occipital Area.

    PubMed

    Falsaperla, Raffaele; Perciavalle, Valentina; Pavone, Piero; Praticò, Andrea Domenico; Elia, Maurizio; Ruggieri, Martino; Caraballo, Roberto; Striano, Pasquale

    2016-07-01

    We report on an 18-month-old boy with unilateral left eye blinking as a single ictal manifestation without facial twitching. The clinical onset of this phenomenon was first recorded (as an occasional event) at age 3 months, and it was overlooked. By age 6 months, the child's blinking increased to almost daily occurrence in clusters: during blinking the infant showed intact awareness and occasional jerks in the upper limbs and right leg. A video-electroencephalography (video-EEG) documented clinical correlation with a focal pattern arising from the left occipital region, and brain magnetic resonance imaging (MRI) revealed severe brain damage, consisting in poroencephalic hollows and increased spaces in the convexities involving a large area of the left cerebral hemisphere. The boy was prescribed sodium valproate (30 mg/kg/d), resulting in drastic reduction of his clinical seizures. Follow-up to his current age documented good general status, with persistent partial right hemilateral seizures. The blinking progressively disappeared, and is no longer recorded. The pathogenic hypotheses of the unilateral ictal blinking include involvement of the ipsilateral cerebral hemisphere and/or the cerebellar pathways. Review of previous reports of unilateral eye blinking, arising from the ictal ipsilateral brain, revealed that different damaged regions may give rise to blinking ictal phenomena, likely via the trigeminal fibres innervating the subdural intracranial structures and the pial vessels in the ipsilateral affected brain. The eye blinking in the present child represents a further example of an ictal phenomenon, which is predictive of the damaged brain region. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  15. Distorted images of one's own body activates the prefrontal cortex and limbic/paralimbic system in young women: a functional magnetic resonance imaging study.

    PubMed

    Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-02-15

    Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.

  16. Occipital neuralgia: possible failure of surgical treatment - case report.

    PubMed

    Andrychowski, Jarosław; Czernicki, Zbigniew; Netczuk, Tomasz; Taraszewska, Anna; Dabrowski, Piotr; Rakasz, Lukasz; Budohoski, Karol

    2009-01-01

    Surgical intervention in severe cases of occipital neuralgia should be considered if pharmacological and local nerve blocking treatment fail. The literature suggests two types of interventions: surgical decompression of the greater occipital nerve (GON) from the entrapment site, as a less invasive approach, and neurotomy of the nerve trunk, which results in ipsilateral sensation deficits in the GON innervated area of the skull. Due to anatomical variations in the division of the GON trunk, typical neurotomy above the line of the trapezius muscle aponeurosis (TMA) may not result in full recovery. The present study discusses a case of a female treated with GON decompression as a result of occipital neuralgia unresponsive to pharmacotherapy, who thereafter was qualified for two consecutive neurotomies due to severe relapse of pain.

  17. Long-term potentiation in hilar circuitry modulates gating by the dentate gyrus.

    PubMed

    Wright, Brandon J; Jackson, Meyer B

    2014-07-16

    The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus. Copyright © 2014 the authors 0270-6474/14/349743-11$15.00/0.

  18. Visual interhemispheric communication and callosal connections of the occipital lobes.

    PubMed

    Berlucchi, Giovanni

    2014-07-01

    Callosal connections of the occipital lobes, coursing in the splenium of the corpus callosum, have long been thought to be crucial for interactions between the cerebral hemispheres in vision in both experimental animals and humans. Yet the callosal connections of the temporal and parietal lobes appear to have more important roles than those of the occipital callosal connections in at least some high-order interhemispheric visual functions. The partial intermixing and overlap of temporal, parietal and occipital callosal connections within the splenium has made it difficult to attribute the effects of splenial pathological lesions or experimental sections to splenial components specifically related to select cortical areas. The present review describes some current contributions from the modern techniques for the tracking of commissural fibers within the living human brain to the tentative assignation of specific visual functions to specific callosal tracts, either occipital or extraoccipital. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Ultra-fast speech comprehension in blind subjects engages primary visual cortex, fusiform gyrus, and pulvinar – a functional magnetic resonance imaging (fMRI) study

    PubMed Central

    2013-01-01

    Background Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl) per second - exceeding by far the maximum performance level of normal-sighted listeners (ca. 8 syl/s). To further elucidate the brain mechanisms underlying this extraordinary skill, functional magnetic resonance imaging (fMRI) was performed in blind subjects of varying ultra-fast speech comprehension capabilities and sighted individuals while listening to sentence utterances of a moderately fast (8 syl/s) or ultra-fast (16 syl/s) syllabic rate. Results Besides left inferior frontal gyrus (IFG), bilateral posterior superior temporal sulcus (pSTS) and left supplementary motor area (SMA), blind people highly proficient in ultra-fast speech perception showed significant hemodynamic activation of right-hemispheric primary visual cortex (V1), contralateral fusiform gyrus (FG), and bilateral pulvinar (Pv). Conclusions Presumably, FG supports the left-hemispheric perisylvian “language network”, i.e., IFG and superior temporal lobe, during the (segmental) sequencing of verbal utterances whereas the collaboration of bilateral pulvinar, right auditory cortex, and ipsilateral V1 implements a signal-driven timing mechanism related to syllabic (suprasegmental) modulation of the speech signal. These data structures, conveyed via left SMA to the perisylvian “language zones”, might facilitate – under time-critical conditions – the consolidation of linguistic information at the level of verbal working memory. PMID:23879896

  20. Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study.

    PubMed

    Kauffmann, Louise; Chauvin, Alan; Pichat, Cédric; Peyrin, Carole

    2015-10-01

    According to current models of visual perception scenes are processed in terms of spatial frequencies following a predominantly coarse-to-fine processing sequence. Low spatial frequencies (LSF) reach high-order areas rapidly in order to activate plausible interpretations of the visual input. This triggers top-down facilitation that guides subsequent processing of high spatial frequencies (HSF) in lower-level areas such as the inferotemporal and occipital cortices. However, dynamic interactions underlying top-down influences on the occipital cortex have never been systematically investigated. The present fMRI study aimed to further explore the neural bases and effective connectivity underlying coarse-to-fine processing of scenes, particularly the role of the occipital cortex. We used sequences of six filtered scenes as stimuli depicting coarse-to-fine or fine-to-coarse processing of scenes. Participants performed a categorization task on these stimuli (indoor vs. outdoor). Firstly, we showed that coarse-to-fine (compared to fine-to-coarse) sequences elicited stronger activation in the inferior frontal gyrus (in the orbitofrontal cortex), the inferotemporal cortex (in the fusiform and parahippocampal gyri), and the occipital cortex (in the cuneus). Dynamic causal modeling (DCM) was then used to infer effective connectivity between these regions. DCM results revealed that coarse-to-fine processing resulted in increased connectivity from the occipital cortex to the inferior frontal gyrus and from the inferior frontal gyrus to the inferotemporal cortex. Critically, we also observed an increase in connectivity strength from the inferior frontal gyrus to the occipital cortex, suggesting that top-down influences from frontal areas may guide processing of incoming signals. The present results support current models of visual perception and refine them by emphasizing the role of the occipital cortex as a cortical site for feedback projections in the neural network underlying

  1. Botulinum toxin type-A (BOTOX) in the treatment of occipital neuralgia: a pilot study.

    PubMed

    Taylor, Martin; Silva, Sachin; Cottrell, Constance

    2008-01-01

    To determine the efficacy of occipital nerve blocks using reconstituted botulinum toxin type-A (BTX-A) in providing significant and prolonged pain relief in chronic occipital neuralgia. Occipital neuralgia is a unilateral or bilateral radiating pain with paresthesias commonly manifesting as paroxysmal episodes and involving the occipital and parietal regions. Common causes of occipital neuralgia include irritation or injury to the divisions of the occipital nerve, myofascial spasm, and focal entrapment of the occipital nerve. Treatment options include medication therapy, occipital nerve blocks, and surgical techniques. BTX-A, which has shown promise in relief of other headache types, may prove a viable therapeutic option for occipital neuralgia pain. Botulinum toxin type-A (reconstituted in 3 cc of saline) was injected into regions traversed by the greater and lesser occipital nerve in 6 subjects diagnosed with occipital neuralgia. Subjects were instructed to report their daily pain level (on a visual analog pain scale), their ability to perform daily activities (on several quality of life instruments) and their daily pain medication usage (based on a self-reported log), 2 weeks prior to the injection therapy and 12 weeks following injection therapy. Data were analyzed for significant variation from baseline values. The dull/aching and pin/needles types of pain reported by the subjects did not show a statistically significant improvement during the trial period. The sharp/shooting type of pain, however, showed improvement during most of the trial period except weeks 3-4 and 5-6. The quality of life measures exhibited some improvement. The headache-specific quality of life measure showed significant improvement by 6 weeks which continued through week 12. The general health- and depression-related measures showed no statistical improvement. No significant reduction in pain medication usage was demonstrated. Our results indicate that BTX-A improved the sharp

  2. Systematic Comparison of Brain Imaging Meta-Analyses of ToM with vPT

    PubMed Central

    Schurz, Matthias; Perner, Josef

    2017-01-01

    In visual perspective taking (vPT) one has to concern oneself with what other people see and how they see it. Since seeing is a mental state, developmental studies have discussed vPT within the domain of “theory of mind (ToM)” but imaging studies have not treated it as such. Based on earlier results from several meta-analyses, we tested for the overlap of visual perspective taking studies with 6 different kinds of ToM studies: false belief, trait judgments, strategic games, social animations, mind in the eyes, and rational actions. Joint activation was observed between the vPT task and some kinds of ToM tasks in regions involving the left temporoparietal junction (TPJ), anterior precuneus, left middle occipital gyrus/extrastriate body area (EBA), and the left inferior frontal and precentral gyrus. Importantly, no overlap activation was found for the vPT tasks with the joint core of all six kinds of ToM tasks. This raises the important question of what the common denominator of all tasks that fall under the label of “theory of mind” is supposed to be if visual perspective taking is not one of them. PMID:28367446

  3. Systematic Comparison of Brain Imaging Meta-Analyses of ToM with vPT.

    PubMed

    Arora, Aditi; Schurz, Matthias; Perner, Josef

    2017-01-01

    In visual perspective taking (vPT) one has to concern oneself with what other people see and how they see it. Since seeing is a mental state, developmental studies have discussed vPT within the domain of "theory of mind (ToM)" but imaging studies have not treated it as such. Based on earlier results from several meta-analyses, we tested for the overlap of visual perspective taking studies with 6 different kinds of ToM studies: false belief, trait judgments, strategic games, social animations, mind in the eyes, and rational actions. Joint activation was observed between the vPT task and some kinds of ToM tasks in regions involving the left temporoparietal junction (TPJ), anterior precuneus, left middle occipital gyrus/extrastriate body area (EBA), and the left inferior frontal and precentral gyrus. Importantly, no overlap activation was found for the vPT tasks with the joint core of all six kinds of ToM tasks. This raises the important question of what the common denominator of all tasks that fall under the label of "theory of mind" is supposed to be if visual perspective taking is not one of them.

  4. Cannabis use and progressive cortical thickness loss in areas rich in CB1 receptors during the first five years of schizophrenia.

    PubMed

    Rais, Monica; van Haren, Neeltje E M; Cahn, Wiepke; Schnack, Hugo G; Lepage, Claude; Collins, Louis; Evans, Alan C; Hulshoff Pol, Hilleke E; Kahn, René S

    2010-12-01

    Cerebral grey matter volume reductions are progressive in schizophrenia, with larger grey matter volume decreases associated with cannabis use. It is unknown whether this grey matter loss is globally distributed over the entire brain or more pronounced in specific cortical brain regions. Fifty-one patients with recent-onset schizophrenia and 31 matched healthy subjects were included. For all subjects, magnetic resonance imaging scans were obtained at inclusion and at 5-year follow-up. Nineteen patients (ab-)used cannabis but no other illicit drugs; 32 patients and the healthy comparison subjects did not use any drugs during the 5-year follow-up. At follow-up, clinical outcome was measured. To evaluate the local differences in cortical thickness change over five years between the two groups regression analysis was carried out over the cortical surface. At inclusion cortical thickness did not differ between patients and controls and between cannabis-using and non-using patients. Over the follow-up period we found excessive thinning of the right supplementary motor cortex, inferior frontal cortex, superior temporal gyrus, angular gyrus, occipital and parietal lobe in patients relative to controls after controlling for cannabis use. Patients who used cannabis showed additional thinning in the left dorsolateral prefrontal cortex (DLPFC), left anterior cingulate cortex (ACC) and left occipital lobe as compared to those patients that did not use cannabis during the scan interval. First-episode schizophrenia patients who use cannabis show a more pronounced cortical thinning than non-using patients in areas known for their high density of CB1 receptors, such as the ACC and the DLPFC. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Brain structural differences associated with the behavioural phenotype in children with Williams syndrome.

    PubMed

    Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Karmiloff-Smith, Annette; Murphy, Declan G M; Murphy, Kieran C

    2009-03-03

    We investigated structural brain morphology of intellectually disabled children with Williams (WS) syndrome and its relationship to the behavioural phenotype. We compared the neuroanatomy of 15 children (mean age:13+/-2) with WS and 15 age/gender-matched healthy children using a manual region-of-interest analysis to measure bulk (white+grey) tissue volumes and unbiased fully-automated voxel-based morphometry to assess differences in grey/white matter throughout the brain. Ratings of abnormal behaviours were correlated with brain structure. Compared to controls, the brains of children with WS had a decreased volume of the right parieto-occipital regions and basal ganglia. We identified reductions of grey matter of the parieto-occipital regions, left putamen/globus pallidus and thalamus; and in white matter of the basal ganglia and right posterior cingulate gyrus. In contrast, significant increases of grey matter were identified in the frontal lobes, anterior cingulate gyrus, left temporal lobe, and of white matter bilaterally in the anterior cingulate. Inattention in WS was correlated with volumetric differences in the frontal lobes, caudate nucleus and cerebellum, and hyperactivity was related to differences in the left temporal and parietal lobes and cerebellum. Finally, ratings of peer problems were related to differences in the temporal lobes, right basal ganglia and frontal lobe. In one of the first studies of brain structure in intellectually disabled children with WS using voxel-based morphometry, our findings suggest that this group has specific differences in grey/white matter morphology. In addition, it was found that structural differences were correlated to ratings of inattention, hyperactivity and peer problems in children with WS.

  6. The Role of the Left Inferior Frontal Gyrus in Implicit Semantic Competition and Selection: An Event-Related fMRI Study

    PubMed Central

    Grindrod, Christopher M.; Bilenko, Natalia Y.; Myers, Emily B.; Blumstein, Sheila E.

    2008-01-01

    Recent research suggests that the left inferior frontal gyrus (LIFG) plays a role in selecting semantic information from among competing alternatives. A key question remains as to whether the LIFG is engaged by the selection of semantic information only or by increased semantic competition in and of itself, especially when such competition is implicit in nature. Ambiguous words presented in a lexical context provide a means of examining whether the LIFG is recruited under conditions when contextual cues constrain selection to only the meaning appropriate to the context (e.g., coin-mint-money) or under conditions of increased competition when contextual cues do not allow for the resolution to a particular meaning (e.g., candy-mint-money). In this event-related fMRI study, an implicit task was used in which subjects made lexical (i.e., word/nonword) decisions on the third stimulus of auditorily-presented triplets in conditions where the lexical context either promoted resolution toward a particular ambiguous word meaning or enhanced the competition among ambiguous word meanings. LIFG activation was observed when the context allowed for the resolution of competition and hence the selection of one meaning (e.g., coin-mint-money) but failed to emerge when competition between the meanings of an ambiguous word was unresolved by the context (e.g., candy-mint-money). In the latter case, there was a pattern of reduced activation in frontal, temporal and parietal areas. These findings demonstrate that selection or resolution of competition as opposed to increased semantic competition alone engages the LIFG. Moreover, they extend previous work in showing that the LIFG is recruited even in cases where the selection of meaning takes place implicitly. PMID:18656462

  7. The neural circuits for arithmetic principles.

    PubMed

    Liu, Jie; Zhang, Han; Chen, Chuansheng; Chen, Hui; Cui, Jiaxin; Zhou, Xinlin

    2017-02-15

    Arithmetic principles are the regularities underlying arithmetic computation. Little is known about how the brain supports the processing of arithmetic principles. The current fMRI study examined neural activation and functional connectivity during the processing of verbalized arithmetic principles, as compared to numerical computation and general language processing. As expected, arithmetic principles elicited stronger activation in bilateral horizontal intraparietal sulcus and right supramarginal gyrus than did language processing, and stronger activation in left middle temporal lobe and left orbital part of inferior frontal gyrus than did computation. In contrast, computation elicited greater activation in bilateral horizontal intraparietal sulcus (extending to posterior superior parietal lobule) than did either arithmetic principles or language processing. Functional connectivity analysis with the psychophysiological interaction approach (PPI) showed that left temporal-parietal (MTG-HIPS) connectivity was stronger during the processing of arithmetic principle and language than during computation, whereas parietal-occipital connectivities were stronger during computation than during the processing of arithmetic principles and language. Additionally, the left fronto-parietal (orbital IFG-HIPS) connectivity was stronger during the processing of arithmetic principles than during computation. The results suggest that verbalized arithmetic principles engage a neural network that overlaps but is distinct from the networks for computation and language processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of prenatal marijuana on visuospatial working memory: an fMRI study in young adults.

    PubMed

    Smith, Andra M; Fried, Peter A; Hogan, Matthew J; Cameron, Ian

    2006-01-01

    The long lasting neurophysiological effects of prenatal marijuana exposure on visuospatial working memory were investigated in 18-22 year olds using functional magnetic resonance imaging (fMRI). The participants are members of the Ottawa Prenatal Prospective Study (OPPS), a longitudinal study that provides a unique body of information collected from each participant over 20 years, including prenatal drug history, detailed cognitive/behavioral performance from infancy to young adulthood, and current and past drug usage. This information allowed for the control of potentially confounding drug exposure variables in the statistical analyses. Thirty-one offspring from the OPPS (16 prenatally exposed and 15 nonexposed) performed a visuospatial 2-back task while neural activity was imaged with fMRI. Cognitive performance data were also collected. No significant performance differences were observed when comparing controls versus exposed participants. Multiple regression analyses (including controls with no exposure) revealed that as the amount of prenatal marijuana exposure increased, there was significantly more neural activity in the left inferior and middle frontal gyri, left parahippocampal gyrus, left middle occipital gyrus and left cerebellum. There was also significantly less activity in right inferior and middle frontal gyri. These results suggest that prenatal marijuana exposure alters neural functioning during visuospatial working memory processing in young adulthood.

  9. Reduced resting-state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa.

    PubMed

    Lavagnino, Luca; Amianto, Federico; D'Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg

    2014-01-01

    Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = -0.4; P = 0.02) and interoceptive awareness (r = -0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  10. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy.

    PubMed

    Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen

    2015-01-01

    Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.

  11. MRI Assessment of Superior Temporal Gyrus in Williams Syndrome

    PubMed Central

    Sampaio, Adriana; Sousa, Nuno; Férnandez, Montse; Vasconcelos, Cristiana; Shenton, Martha E.; Gonçalves, Óscar F.

    2009-01-01

    Objective To evaluate volumes and asymmetry of superior temporal gyrus (STG) and correlate these measures with a neurocognitive evaluation of verbal performance in Williams syndrome (WS) and in a typically developing age-matched and sex-matched group. Background Despite initial claims of language strength in WS, recent studies suggest delayed language milestones. The STG is implicated in linguistic processing and is a highly lateralized brain region. Method Here, we examined STG volumes and asymmetry of STG in WS patients and in age-matched controls. We also correlated volume of STG with a subset of verbal measures. Magnetic resonance imaging scans were obtained on a GE 1.5-T magnet with 1.5-mm contiguous slices, and were used to measure whole gray matter, white matter, and cerebrospinal fluid volumes, and also STG volume. Results Results revealed significantly reduced intracranial volume in WS patients, compared with controls. Right and left STG were also significantly smaller in WS patients. In addition, compared with normal controls, a lack of normal left >right STG asymmetry was evident in WS. Also of note was the finding that, in contrast to controls, WS patients did not reveal a positive correlation between verbal intelligence quotient and left STG volume, which further suggests a disruption in this region of the brain. Conclusions In conclusion, atypical patterns of asymmetry and reduced STG volume in WS were observed, which may, in part, contribute to some of the linguistic impairments found in this cohort of WS patients. PMID:18797257

  12. Implicit timing activates the left inferior parietal cortex.

    PubMed

    Wiener, Martin; Turkeltaub, Peter E; Coslett, H Branch

    2010-11-01

    Coull and Nobre (2008) suggested that tasks that employ temporal cues might be divided on the basis of whether these cues are explicitly or implicitly processed. Furthermore, they suggested that implicit timing preferentially engages the left cerebral hemisphere. We tested this hypothesis by conducting a quantitative meta-analysis of eleven neuroimaging studies of implicit timing using the activation-likelihood estimation (ALE) algorithm (Turkeltaub, Eden, Jones, & Zeffiro, 2002). Our analysis revealed a single but robust cluster of activation-likelihood in the left inferior parietal cortex (supramarginal gyrus). This result is in accord with the hypothesis that the left hemisphere subserves implicit timing mechanisms. Furthermore, in conjunction with a previously reported meta-analysis of explicit timing tasks, our data support the claim that implicit and explicit timing are supported by at least partially distinct neural structures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Complete occipitalization of the atlas with bilateral external auditory canal atresia.

    PubMed

    Dolenšek, Janez; Cvetko, Erika; Snoj, Žiga; Meznaric, Marija

    2017-09-01

    Fusion of the atlas with the occipital bone is a rare congenital dysplasia known as occipitalization of the atlas, occipitocervical synostosis, assimilation of the atlas, or atlanto-occipital fusion. It is a component of the paraxial mesodermal maldevelopment and commonly associated with other dysplasias of the craniovertebral junction. External auditory canal atresia or external aural atresia is a rare congenital absence of the external auditory canal. It occurs as the consequence of the maldevelopment of the first pharyngeal cleft due to defects of cranial neural crest cells migration and/or differentiation. It is commonly associated with the dysplasias of the structures derived from the first and second pharyngeal arches including microtia. We present the coexistence of the occipitalization of the atlas and congenital aural atresia, an uncommon combination of the paraxial mesodermal maldevelopment, and defects of cranial neural crest cells. The association is most probably syndromic as minimal diagnostic criteria for the oculoariculovertebral spectrum are fulfilled. From the clinical point of view, it is important to be aware that patients with microtia must obtain also appropriate diagnostic imaging studies of the craniovetebral junction due to eventual concomitant occipitalization of the atlas and frequently associated C1-C2 instability.

  14. [Follow-up of resting-state brain function with magnetic resonance imaging in patients with type 2 diabetes mellitus].

    PubMed

    Qi, N; Cui, Y; Liu, J C; Yu, M; Teng, G J

    2017-10-24

    Objective: To investigate the changes of resting brain function with time in patients with type 2 diabetes mellitus (T2DM) by using regional homogeneity (ReHo) with resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Multidimensional cognitive function tests and rs-fMRI scans were performed in 21 T2DM patients and 12 healthy controls in 2012 and 2015 respectively.The differences in clinical variables and the ReHo values before and after were measured by paired sample t test, and the correlation between the change of ReHo value and the change of clinical variables was measured by Pearson correlation analysis based on voxel. Results: The delayed score (14±6) of the T2DM patients in 2015 was significantly lower than that in 2012 (18±6) ( t =-2.88, P =0.009); while the value of ReHo in the bilateral occipital lobe and right middle frontal gyrus was significantly lower than that in 2012 ( P <0.01, Alphasim correction). And the decreased ReHo value in the left occipital lobe was significantly correlated with the change of complex figure test (CFT) delay score and the trail making test-B (TMT-B)( r =0.52, -0.46, both P <0.05). No significant change in cognitive function tests in the healthy control group was found between the two years, ReHo value in right cuneus decreased significantly ( P <0.01, Alphasim correction), but it increased significantly in superior frontal gyrus ( P <0.01, Alphasim correction) in 2015.No significant correlation between the changes of the ReHo values in the right cuneus and right superior frontal gyrus and the changes of cognitive function scores was found in the healthy controls. Conclusions: The visual memory is significantly declined in T2DM patients within 3 years.The reduced neural activity areas in T2DM patients are in the bilateral occipitai lobes and the right middle frontal lobe. Decreased neural activity in the left occipital area is related to visual impairment, information processing speed and attention drops.

  15. Agrammatic Comprehension Caused by a Glioma in the Left Frontal Cortex

    ERIC Educational Resources Information Center

    Kinno, Ryuta; Muragaki, Yoshihiro; Hori, Tomokatsu; Maruyama, Takashi; Kawamura, Mitsuru; Sakai, Kuniyoshi L.

    2009-01-01

    It has been known that lesions in the left inferior frontal gyrus (L. IFG) do not always cause Broca's aphasia, casting doubt upon the specificity of this region. We have previously devised a picture-sentence matching task for a functional magnetic resonance imaging (fMRI) study, and observed that both pars triangularis (L. F3t) of L. IFG…

  16. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    PubMed Central

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2016-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00±29.04) showed less scores for sadness compared to healthy controls (128.70±22.26) (p<0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  17. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.

  18. Impact of Cognitive-Behavioral Therapy for Social Anxiety Disorder on the Neural Bases of Emotional Reactivity to and Regulation of Social Evaluation

    PubMed Central

    Goldin, Philippe R.; Ziv, Michal; Jazaieri, Hooria; Weeks, Justin; Heimberg, Richard G.; Gross, James J.

    2014-01-01

    We examined whether Cognitive-Behavioral Therapy (CBT) for social anxiety disorder (SAD) would modify self-reported negative emotion and functional magnetic resonance imaging brain responses when reacting to and reappraising social evaluation, and tested whether changes would predict treatment outcome in 59 patients with SAD who completed CBT or waitlist groups. For reactivity, compared to waitlist, CBT resulted in (a) increased brain responses in right superior frontal gyrus (SFG), inferior parietal lobule (IPL), and middle occipital gyrus (MOG) when reacting to social praise, and (b) increases in right SFG and IPL and decreases in left posterior superior temporal gyrus (pSTG) when reacting to social criticism. For reappraisal, compared to waitlist, CBT resulted in greater (c) reductions in self-reported negative emotion, and (d) increases in brain responses in right SFG and MOG, and decreases in left pSTG. A linear regression found that after controlling for CBT-induced changes in reactivity and reappraisal negative emotion ratings and brain changes in reactivity to praise and criticism, reappraisal of criticism brain response changes predicted 24% of the unique variance in CBT-related reductions in social anxiety. Thus, one mechanism underlying CBT for SAD may be changes in reappraisal-related brain responses to social criticism. PMID:25193002

  19. Greater occipital nerve neuralgia caused by pathological arterial contact: treatment by surgical decompression.

    PubMed

    Cornely, Christiane; Fischer, Marius; Ingianni, Giulio; Isenmann, Stefan

    2011-04-01

    Occipital nerve neuralgia is a rare cause of severe headache, and may be difficult to treat. We report the case of a patient with occipital nerve neuralgia caused by pathological contact of the nerve with the occipital artery. The pain was refractory to medical treatment. Surgical decompression yielded complete remission. © 2010 American Headache Society.

  20. Neural signatures of phonological deficits in Chinese developmental dyslexia.

    PubMed

    Cao, Fan; Yan, Xin; Wang, Zhao; Liu, Yanni; Wang, Jin; Spray, Gregory J; Deng, Yuan

    2017-02-01

    connectivity between the left middle occipital gyrus (MOG) and left STG was sensitive to age, because both AC and DD were greater than RC. In summary, our study provides the very first neurological evidence of phonological deficits in Chinese developmental dyslexia and we successfully distinguished variations of brain activity/functional connectivity due to age, performance, and dyslexia by comparing AC, RC, and DD. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Errors Recruit both Cognitive and Emotional Monitoring Systems: Simultaneous Intracranial Recordings in the Dorsal Anterior Cingulate Gyrus and Amygdala Combined with fMRI

    ERIC Educational Resources Information Center

    Pourtois, Gilles; Vocat, Roland; N'Diaye, Karim; Spinelli, Laurent; Seeck, Margitta; Vuilleumier, Patrik

    2010-01-01

    We studied error monitoring in a human patient with unique implantation of depth electrodes in both the left dorsal cingulate gyrus and medial temporal lobe prior to surgery. The patient performed a speeded go/nogo task and made a substantial number of commission errors (false alarms). As predicted, intracranial Local Field Potentials (iLFPs) in…

  2. Post-traumatic transient cortical blindness in a child with occipital bone fracture.

    PubMed

    Ng, Rachel H C

    2016-12-01

    Cortical blindness as sequelae of trauma has been reported in literature but mostly in the setting of occipital cortex or visual tract damages. We present a case of transient cortical blindness in a child following a closed head injury with a non-displaced occipital bone fracture and underlying occipital lobe contusion. We discuss the pathophysiology behind Post-traumatic transient cortical blindness, relevant investigations, and current management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Structural abnormalities in early Tourette syndrome children: a combined voxel-based morphometry and tract-based spatial statistics study.

    PubMed

    Liu, Yue; Miao, Wen; Wang, Jieqiong; Gao, Peiyi; Yin, Guangheng; Zhang, Liping; Lv, Chuankai; Ji, Zhiying; Yu, Tong; Sabel, B A; He, Huiguang; Peng, Yun

    2013-01-01

    Tourette Syndrome (TS) is characterized with chronic motor and vocal tics beginning in childhood. Abnormality of both gray (GM) and white matter (WM) has been observed in cortico-striato-thalamo-cortical circuits and sensory-motor cortex of adult TS patient. It is not clear if these morphological changes are also present in TS children and if there are any microstructural changes of WM. To understand the developmental cause of such changes, we investigated volumetric changes of GM and WM using VBM and microstructural changes of WM using DTI, and correlated these changes with tic severity and duration. T1 images and Diffusion Tensor Images (DTI) from 21 TS children were compared with 20 age and gender matched health control children using a 1.5T Philips scanner. All of the 21 TS children met the DSM-IV-TR criteria. T1 images were analyzed using DARTEL-VBM in conjunction with statistical parametric mapping (SPM). Diffusion tensor imaging (DTI) analysis was performed using Tract-Based Spatial Statistics (TBSS). Brain volume changes were found in left superior temporal gyrus, left and right paracentral gyrus, right precuneous cortex, right pre- and post-central gyrus, left temporal occipital fusiform cortex, right frontal pole, and left lingual gyrus. Significant axial diffusivity (AD) and mean diffusivity (MD) increases were found in anterior thalamic radiation, right cingulum bundle projecting to the cingulate gurus and forceps minor. Decreases in white matter volume (WMV) in the right frontal pole were inversely related with tic severity (YGTSS), and increases in AD and MD were positively correlated with tic severity and duration, respectively. These changes in TS children can be interpreted as signs of neural plasticity in response to the experiential demand. Our findings may suggest that the morphological and microstructural measurements from structural MRI and DTI can potentially be used as a biomarker of the pathophysiologic pattern of early TS children.

  4. [Percutaneous electrical nerve stimulation of peripheral nerve for the intractable occipital neuralgia].

    PubMed

    Shaladi, Ali; Crestani, Francesco; Saltari, Rita; Piva, Bruno

    2008-06-01

    Occipital neuralgia is characterized by pain paroxysm occurring within distribution of the greater or lesser occipital nerves. The pain may radiates from the rear head toward the ipso-lateral frontal or retro-orbital regions of head. Though known causes include head injuries, direct occipital nerve trauma, neuroma formation or upper cervical root compression, most people have no demonstrable lesion. A sample of 8 patients (5 females, 3 males) aging 63,5 years on the average with occipital neuralgia has been recruited. The occipital neuralgic pain had presented since 4, 6 years and they had been treated by pharmacological therapy without benefit. Some result has been obtained by blocking of the grand occipital nerve so that the patients seemed to be suitable for subcutaneous peripheral neurostimulation. The pain was evaluated by VAS and SVR scales before treatment (TO) and after three and twelve months (T1, T2). During the follow up period 7 patients have been monitored for a whole year while one patient was followed only for 3 months in that some complications have presented. In the other 7 patients pain paroxysms have interrupted and trigger point disappeared with a VAS and SVR reduction of about 71% and 60%, respectively. Our experience demonstrates a sound efficacy of such a technique for patients having occipital neuralgia resistant to pharmacological therapies even if action mechanisms have not yet clearly explained. Some hypothesis exist and we think it might negatively affect the neurogenic inflammation that surely acts in pain maintaining.

  5. Neuroimaging during Trance State: A Contribution to the Study of Dissociation

    PubMed Central

    Peres, Julio Fernando; Moreira-Almeida, Alexander; Caixeta, Leonardo; Leao, Frederico; Newberg, Andrew

    2012-01-01

    Despite increasing interest in pathological and non-pathological dissociation, few researchers have focused on the spiritual experiences involving dissociative states such as mediumship, in which an individual (the medium) claims to be in communication with, or under the control of, the mind of a deceased person. Our preliminary study investigated psychography – in which allegedly “the spirit writes through the medium's hand” – for potential associations with specific alterations in cerebral activity. We examined ten healthy psychographers – five less expert mediums and five with substantial experience, ranging from 15 to 47 years of automatic writing and 2 to 18 psychographies per month – using single photon emission computed tomography to scan activity as subjects were writing, in both dissociative trance and non-trance states. The complexity of the original written content they produced was analyzed for each individual and for the sample as a whole. The experienced psychographers showed lower levels of activity in the left culmen, left hippocampus, left inferior occipital gyrus, left anterior cingulate, right superior temporal gyrus and right precentral gyrus during psychography compared to their normal (non-trance) writing. The average complexity scores for psychographed content were higher than those for control writing, for both the whole sample and for experienced mediums. The fact that subjects produced complex content in a trance dissociative state suggests they were not merely relaxed, and relaxation seems an unlikely explanation for the underactivation of brain areas specifically related to the cognitive processing being carried out. This finding deserves further investigation both in terms of replication and explanatory hypotheses. PMID:23166648

  6. Neural dichotomy of word concreteness: a view from functional neuroimaging.

    PubMed

    Kumar, Uttam

    2016-02-01

    Our perception about the representation and processing of concrete and abstract concepts is based on the fact that concrete words are highly imagined and remembered faster than abstract words. In order to explain the processing differences between abstract and concrete concepts, various theories have been proposed, yet there is no unanimous consensus about its neural implication. The present study investigated the processing of concrete and abstract words during an orthography judgment task (implicit semantic processing) using functional magnetic resonance imaging to validate the involvement of the neural regions. Relative to non-words, both abstract and concrete words show activation in the regions of bilateral hemisphere previously associated with semantic processing. The common areas (conjunction analyses) observed for abstract and concrete words are bilateral inferior frontal gyrus (BA 44/45), left superior parietal (BA 7), left fusiform gyrus and bilateral middle occipital. The additional areas for abstract words were noticed in bilateral superior temporal and bilateral middle temporal region, whereas no distinct region was noticed for concrete words. This suggests that words with abstract concepts recruit additional language regions in the brain.

  7. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study.

    PubMed

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-02-21

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals' creative performance in the fields of science and art.

  8. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study

    PubMed Central

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-01-01

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals’ creative performance in the fields of science and art. PMID:28220826

  9. Fluoroscopy and Sonographic Guided Injection of Obliquus Capitis Inferior Muscle in an Intractable Occipital Neuralgia

    PubMed Central

    Kim, Ok Sun; Jeong, Seung Min; Ro, Ji Young; Kim, Duck Kyoung; Koh, Young Cho; Ko, Young Sin; Lim, So Dug; Kim, Hae Kyoung

    2010-01-01

    Occipital neuralgia is a form of headache that involves the posterior occiput in the greater or lesser occipital nerve distribution. Pain can be severe and persistent with conservative treatment. We present a case of intractable occipital neuralgia that conventional therapeutic modalities failed to ameliorate. We speculate that, in this case, the cause of headache could be the greater occipital nerve entrapment by the obliquus capitis inferior muscle. After steroid and local anesthetic injection into obliquus capitis inferior muscles under fluoroscopic and sonographic guidance, the visual analogue scale was decreased from 9-10/10 to 1-2/10 for 2-3 weeks. The patient eventually got both greater occipital neurectomy and partial resection of obliquus capitis inferior muscles due to the short term effect of the injection. The successful steroid and local anesthetic injection for this occipital neuralgia shows that the refractory headache was caused by entrapment of greater occipital nerves by obliquus capitis inferior muscles. PMID:20552081

  10. Developmental abnormalities of the occipital bone in human chondrodystrophies (achondroplasia and thanatophoric dwarfism).

    PubMed

    Marin-Padilla, M; Marin-Padilla, T M

    1977-01-01

    Specific developmental malformations have been demonstrated in the occipital bone of two chondrodysplastic disorders (achondroplasia and thanatophoric dwarfism). Analysis of these malformations indicates that the occipital bone is primary affected in these disorders. In both cases, the endochondral-derived components of the occipital bone (the basioccipital, the two lateral parts, and the planum nuchale of the squama occipitalis) have failed to grow properly and are smaller and shorter than normal. On the other hand, the planum occipitalis of the squama, which derives from intramembranous ossification, is unaffected. In addition, the nature of these abnormalities indicates that the occipital synchondroses, together with the epiphyseal plates of other bones, are primarily affected in these two chondrodysplasias. The components of the occipital bone formed between the affected synchondroses failed to grow normally. The resulting malformation of the occipital bone is undoubtedly the cause of the shortening of the posterior cerebral fossa and of the considerable narrowing of the foramen magnum often described in these chondrodysplasias. It is postulated that growth disturbances between the affected occipital bone and the unaffected central nervous system results in the inadequacy of the posterior cerebral fossa and the foramen magnum to accommodate the growing brain. Consequently, compression of the brain at the posterior cerebral fossa or the foramen magnum levels could occur and thus lead to neurologic complications such as hydrocephalus and compression of the brain stem. It is suggested that the surgical removal of the fused posterior border of the lateral parts of the occipital bone (partial nuchalectomy) for the purpose of enlarging the narrow foramen magnum may be indicated in those chondrodysplastic children who develop these types of neurologic complications.

  11. Repetitive transcranial magnetic stimulation reveals a role for the left inferior parietal lobule in matching observed kinematics during imitation.

    PubMed

    Reader, Arran T; Royce, Ben P; Marsh, Jade E; Chivers, Katy-Jayne; Holmes, Nicholas P

    2018-04-01

    Apraxia (a disorder of complex movement) suggests that the left inferior parietal lobule (IPL) plays a role in kinematic or spatial aspects of imitation, which may be particularly important for meaningless (i.e. unfamiliar intransitive) actions. Mirror neuron theories indicate that the IPL is part of a frontoparietal system that can support imitation by linking observed and stored actions through visuomotor matching, and have less to say about different subregions of the left IPL, or how different types of action (i.e. meaningful or meaningless) are processed for imitation. We used repetitive transcranial magnetic stimulation (rTMS) to bridge this gap and better understand the roles of the left supramarginal gyrus (SMG) and left angular gyrus (AG) in imitation. We also examined whether these areas are differentially involved in meaningful and meaningless action imitation. We applied rTMS over the left SMG, over the left AG or during a no-rTMS baseline condition, and then asked participants to imitate a confederate's actions whilst the arm and hand movements of both individuals were motion-tracked. rTMS over both the left SMG and the left AG reduced the velocity of participants' finger movements relative to the actor during imitation of finger gestures, regardless of action meaning. Our results support recent claims in apraxia and confirm a role for the left IPL in kinematic processing during gesture imitation, regardless of action meaning. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Occipital condyle syndrome secondary to bone metastases from rectal cancer.

    PubMed

    Marruecos, J; Conill, C; Valduvieco, I; Vargas, M; Berenguer, J; Maurel, J

    2008-01-01

    Skull-base metastases are very unfrequent. Occipital condyle syndrome (OCS) is usually underdiagnosed. Until now few cases have been reported in the literature. We present a 71-year-old woman with metastatic rectum adenocarcinoma, with right occipital headache and ipsilateral hypoglossal palsy, diagnosed by computed tomography and magnetic resonance imaging of OCS due to a skull-base metastasis and treated with radiation therapy.

  13. Occipital neuralgia associates with high cervical spinal cord lesions in idiopathic inflammatory demyelinating disease.

    PubMed

    Kissoon, Narayan R; Watson, James C; Boes, Christopher J; Kantarci, Orhun H

    2018-01-01

    Background The association of trigeminal neuralgia with pontine lesions has been well documented in multiple sclerosis, and we tested the hypothesis that occipital neuralgia in multiple sclerosis is associated with high cervical spinal cord lesions. Methods We retrospectively reviewed the records of 29 patients diagnosed with both occipital neuralgia and demyelinating disease by a neurologist from January 2001 to December 2014. We collected data on demographics, clinical findings, presence of C2-3 demyelinating lesions, and treatment responses. Results The patients with both occipital neuralgia and multiple sclerosis were typically female (76%) and had a later onset (age > 40) of occipital neuralgia (72%). Eighteen patients (64%) had the presence of C2-3 lesions and the majority had unilateral symptoms (83%) or episodic pain (78%). All patients with documented sensory loss (3/3) had C2-3 lesions. Most patients with progressive multiple sclerosis (6/8) had C2-3 lesions. Of the eight patients with C2-3 lesions and imaging at onset of occipital neuralgia, five (62.5%) had evidence of active demyelination. None of the patients with progressive multiple sclerosis (3/3) responded to occipital nerve blocks or high dose intravenous steroids, whereas all of the other phenotypes with long term follow-up (eight patients) had good responses. Conclusions A cervical spine MRI should be considered in all patients presenting with occipital neuralgia. In patients with multiple sclerosis, clinical features in occipital neuralgia that were predictive of the presence of a C2-3 lesion were unilateral episodic symptoms, sensory loss, later onset of occipital neuralgia, and progressive multiple sclerosis phenotype. Clinical phenotype predicted response to treatment.

  14. A lexical semantic hub for heteromodal naming in middle fusiform gyrus.

    PubMed

    Forseth, Kiefer James; Kadipasaoglu, Cihan Mehmet; Conner, Christopher Richard; Hickok, Gregory; Knight, Robert Thomas; Tandon, Nitin

    2018-07-01

    Semantic memory underpins our understanding of objects, people, places, and ideas. Anomia, a disruption of semantic memory access, is the most common residual language disturbance and is seen in dementia and following injury to temporal cortex. While such anomia has been well characterized by lesion symptom mapping studies, its pathophysiology is not well understood. We hypothesize that inputs to the semantic memory system engage a specific heteromodal network hub that integrates lexical retrieval with the appropriate semantic content. Such a network hub has been proposed by others, but has thus far eluded precise spatiotemporal delineation. This limitation in our understanding of semantic memory has impeded progress in the treatment of anomia. We evaluated the cortical structure and dynamics of the lexical semantic network in driving speech production in a large cohort of patients with epilepsy using electrocorticography (n = 64), functional MRI (n = 36), and direct cortical stimulation (n = 30) during two generative language processes that rely on semantic knowledge: visual picture naming and auditory naming to definition. Each task also featured a non-semantic control condition: scrambled pictures and reversed speech, respectively. These large-scale data of the left, language-dominant hemisphere uniquely enable convergent, high-resolution analyses of neural mechanisms characterized by rapid, transient dynamics with strong interactions between distributed cortical substrates. We observed three stages of activity during both visual picture naming and auditory naming to definition that were serially organized: sensory processing, lexical semantic processing, and articulation. Critically, the second stage was absent in both the visual and auditory control conditions. Group activity maps from both electrocorticography and functional MRI identified heteromodal responses in middle fusiform gyrus, intraparietal sulcus, and inferior frontal gyrus; furthermore, the

  15. Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease.

    PubMed

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2017-03-01

    Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Utilizing Mutual Information Analysis to Explore the Relationship Between Gray and White Matter Structural Pathologies in Schizophrenia.

    PubMed

    Lyall, Amanda E; Savadjiev, Peter; Del Re, Elisabetta C; Seitz, Johanna; O'Donnell, Lauren J; Westin, Carl-Fredrik; Mesholam-Gately, Raquelle I; Petryshen, Tracey; Wojcik, Joanne D; Nestor, Paul; Niznikiewicz, Margaret; Goldstein, Jill; Seidman, Larry J; McCarley, Robert W; Shenton, Martha E; Kubicki, Marek

    2018-04-03

    Schizophrenia has been characterized as a neurodevelopmental disorder, with structural brain abnormalities reported at all stages. However, at present, it remains unclear whether gray and white matter abnormalities represent related or independent pathologies in schizophrenia. In this study, we present findings from an integrative analysis exploring the morphological relationship between gray and white matter in 45 schizophrenia participants and 49 healthy controls. We utilized mutual information (MI), a measure of how much information two variables share, to assess the morphological dependence between gray and white matter in three segments of the corpus callsoum, and the gray matter regions these segments connect: (1) the genu and the left and right rostral middle frontal gyrus (rMFG), (2) the isthmus and the left and right superior temporal gyrus (STG), (3) the splenium and the left and right lateral occipital gyrus (LOG). We report significantly reduced MI between white matter tract dispersion of the right hemispheric callosal connections to the STG and both cortical thickness and area in the right STG in schizophrenia patients, despite a lack of group differences in cortical thickness, surface area, or dispersion. We believe that this reduction in morphological dependence between gray and white matter may reflect a possible decoupling of the developmental processes that shape morphological features of white and gray matter early in life. The present study also demonstrates the importance of studying the relationship between gray and white matter measures, as opposed to restricting analyses to gray and white matter measures independently.

  17. Repetition Suppression in the Left Inferior Frontal Gyrus Predicts Tone Learning Performance.

    PubMed

    Asaridou, Salomi S; Takashima, Atsuko; Dediu, Dan; Hagoort, Peter; McQueen, James M

    2016-06-01

    Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Cervical facet arthropathy and occipital neuralgia: headache culprits.

    PubMed

    Hoppenfeld, J D

    2010-12-01

    Cervicogenic headache (CH) is pain referred from the neck. Two common causes are cervical facet arthropathy and occipital neuralgia. Clinical diagnosis is difficult because of the overlying features between primary headaches such as migraine, tension-type headache, and CH. Interventional pain physicians have focused on supporting the clinical diagnosis of CH with confirmatory blocks. The treatment of cervical facet arthropathy as the source of CH is best approached with a multidimensional plan focusing on physical therapy and/or manual therapy. The effective management of occipital neuralgia remains challenging, but both injections and neuromodulation are promising options.

  19. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students.

    PubMed

    Li, Lin; Men, Wei-Wei; Chang, Yu-Kai; Fan, Ming-Xia; Ji, Liu; Wei, Gao-Xia

    2014-01-01

    There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81) were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline.

  20. A case of tactile agnosia with a lesion restricted to the post-central gyrus.

    PubMed

    Estañol, Bruno; Baizabal-Carvallo, José Fidel; Sentíes-Madrid, Horacio

    2008-01-01

    Tactile agnosia has been described after lesions of the primary sensory cortex but the exact location and extension of those lesions is not clear. We report the clinical features and imaging findings in a patient with an acute ischemic stroke restricted to the primary sensory area (S1). A 73-year-old man had a sudden onset of a left alien hand, without left hemiparesis. Neurological examination showed intact primary sensory functions, but impaired recognition of shape, size (macrogeometrical) and texture (microgeometrical) of objects; damage confined to the post-central gyrus, sparing the posterior parietal cortex was demonstrated on MRI. An embolic occlusion of the anterior parietal artery was suspected as mechanism of stroke. Tactile agnosia with impaired microgeometrical and macrogeometrical features' recognition can result from a single lesion in the primary sensory cortex (S1) in the right parietal hemisphere, sparing other regions of the cerebral cortex which presumably participate in tactile object recognition.

  1. [The left central gyral lesion and pure anarthria].

    PubMed

    Tabuchi, M; Odashima, K; Fujii, T; Suzuki, K; Saitou, J; Yamadori, A

    2000-05-01

    We report a very rare case of pure anarthria with lesion analysis. A 44-year-old right-handed man suffered from a cerebral infarction with a mild right hemiparesis and speech disturbance. An MRI of the brain 1.5 months post onset revealed a lesion confined to the left central gyrus. One month after the onset, his spontaneous speech was dysprosodic and laborious. It was contaminated with dysarthria and phonological paraphasias. However, language comprehension, repetition and naming abilities were normal. Most remarkably he showed no impairment in writing with his left hand. Over the following months, his difficulties in verbal output showed general amelioration, but the isolated impairment in the domain of articulation characterized by dysprosody, dysarthria, and phonological paraphasia persisted. As for the symptomatology of pure anarthria resulting from precentral gyral lesions, there have been controversies about its pureness. Some argue that the so called pure anarthria always shows some degree of writing disturbances, albeit mild in degree. Others maintain there certainly exists the pure type without any signs of agraphia. In the present case lesions were limited to the central gyrus but spared the lowest opercular portion. The previous reports of pure anarthria that had mild agraphia all had lesions involving the opercular portion. We conclude the sparing of this area is most likely related with sparing of writing capacity in pure anarthria.

  2. Selective excision of cerebral metastases from the precentral gyrus

    PubMed Central

    Kellogg, Robert G.; Munoz, Lorenzo F.

    2013-01-01

    Background: The surgical management of cerebral metastases to the eloquent cortex is a controversial topic. Precentral gyrus lesions are often treated with whole brain radiation therapy (WBRT) or stereotactic radiosurgery (SRS) because of the concern for causing new or worsened postoperative neurological deficits. However, there is evidence in the literature that radiation therapy carries significant risk of complication. We present a series of patients who were symptomatic from a precentral gyrus metastasis and underwent surgical excision. Methods: During a 2-year period from 2010 to 2012, 17 consecutive patients harboring a cerebral metastasis within the precentral gyrus underwent microsurgical resection. All patients were discussed at a multi-disciplinary tumor board. The prerequisite for neurosurgical treatment was stable systemic disease and life expectancy greater than 6 months as determined by the patient's oncologist. Patients also were required to harbor a symptomatic lesion within the motor cortex, defined as the precentral gyrus. Results: We present the 3-month neurological outcome for this group of patients. Surgery was uneventful and without any severe perioperative complications in all 17 patients. At 3 month follow up, symptoms had improved or been stabilized in 94.1% of patients and were worsened in 5.9%. Conclusion: Our results have shown that surgery for cerebral metastases in the precentral gyrus can be done safely and improve or stabilize the neurological function of most patients. Microsurgical resection of precentral gyrus metastases should be a treatment option for patients with single or multiple lesions who present a focal neurologic deficit. This can be performed safely and without intraoperative cortical mapping. PMID:23776752

  3. Long term prognosis of symptomatic occipital lobe epilepsy secondary to neonatal hypoglycemia.

    PubMed

    Montassir, Hesham; Maegaki, Yoshihiro; Ohno, Kousaku; Ogura, Kaeko

    2010-02-01

    To report on long-term clinical course in patients with symptomatic occipital lobe epilepsy secondary to neonatal hypoglycemia. Six patients with neonatal hypoglycemia and symptomatic occipital lobe epilepsy were studied in our hospital through reviewing their medical records retrospectively. The median onset age of epilepsy was 2 years 8 months and median follow-up period was 12 years and 4 months. Initial seizure types were generalized convulsions in 4 patients, hemiconvulsion in 1, and infantile spasms in 1. Ictal manifestations of main seizures were identical to occipital lobe seizures, such as eye deviation, eye blinking, ictal vomiting, and visual hallucination. Seizure frequency was maximum during infancy and early childhood and decreased thereafter with no seizure in 2 patients, a few seizures a year in 3, and once a month in 1. All patients had status epilepticus in the early course of epilepsy. EEGs showed parieto-occipital spikes in all patients. MRI revealed cortical atrophy and T2 prolongation parieto-occipitally in 4 patients, hippocampal atrophy in 1, and unremarkable in 1. This study indicates that epilepsy secondary to neonatal hypoglycemia is intractable during infancy and early childhood with frequent status epilepticus but tends to decrease in older age.

  4. Functional cerebral space theory: Towards an integration of theory and mechanisms of left hemineglect, anosognosia, and anosodiaphoria.

    PubMed

    Smith, Andrew J; Campbell, Ransom W; Harrison, Patti Kelly; Harrison, David W

    2016-01-01

    The current case study presents a 43 year old African American woman admitted to a Tertiary Care Rehabilitation unit at a major medical center for concerns over left-sided anesthesia and weakness. Head scans indicate a right middle cerebral arterial distribution infarct altering blood flow in temporal, parietal, and occipital regions in the right cerebral hemisphere. Physician and therapist reports (i.e., speech and occupational therapists) referred the patient for a neuropsychological evaluation for concerns over the patient's capacity to recognize the severity of her deficits and self-care, with potential rule-outs indicated by the extant literature on right CVA for anosognosia, anosodiaphoria, and left hemibody/hemispace neglect. The current case integrates interdisciplinary physician notation, magnetic resonance imaging and magnetic resonance angiogram, observations and reports from speech and occupational therapy, and neuropsychological assessment via standardized tests and neurobehavioral syndrome analysis. Evidence was found for co-occurring syndromes of moderate anosognosia, anosodiaphoria, and left hemibody/hemispatial neglect derived from shared functional cerebral space with overlapping temporal, parietal, and occipital damage. Clinical implications are discussed, including recommendations for therapy approaches based on functional cerebral space theory that may indicate the use of known techniques (e.g., for left hemibody neglect) that may also have therapeutic implications for treating other, more mercurial co-occurring syndromes of anosognosia and anosodiaphoria.

  5. Occipital Condyle Syndrome as an Initial Presentation of Lung Cancer: A Case Report.

    PubMed

    Liu, Meng-Ta; Lin, Guan-Yu; Lin, Chun-Chieh; Cheng, Chun-An; Chen, Ming-Hua; Lee, Jiunn-Tay

    2015-03-01

    Occipital condyle syndrome (OCS) is a rare cause of headache. This study herein reports a case in which a unique headache and tongue deviation appear as symptoms of the first presentation of a malignant tumor. A healthy 67-year-old male presented with a unilateral shooting pain in the occipital region, accompanied by slurred speech and difficulty swallowing. Neurological examinations later revealed atrophy and mild fasciculation of the tongue. The clinical symptoms and MRI results suggested OCS. Screening for tumor markers showed an elevated CEA. The chest CT revealed a lobulated soft-tissue mass in the lower left lobe, and a CTguided biopsy confirmed the diagnosis of adenocarcinoma. A whole body bone scan found multiple foci. The adenocarcinoma was graded pT2bN3M1b, stage IV. The headache improved with a prescription of prednisone, 60 mg to be taken daily. With three months of treatment, clinical examinations showed that the patient was free of pain and that there had been no progression of the atrophy or deviation of the tongue. The possible etiology of OCS includes a primary tumor or metastatic lesion that directly invades the base of the skull. Determining the underlying causes of OCS can be challenging, but MR imaging is currently the diagnostic tool of choice. An awareness of the features of OCS in healthy adults may be able to lead to earlier diagnosis of the underlying etiology and efficient relief of the symptoms.

  6. The effects of left and right monocular viewing on hemispheric activation.

    PubMed

    Wang, Chao; Burtis, D Brandon; Ding, Mingzhou; Mo, Jue; Williamson, John B; Heilman, Kenneth M

    2018-03-01

    Prior research has revealed that whereas activation of the left hemisphere primarily increases the activity of the parasympathetic division of the autonomic nervous system, right-hemisphere activation increases the activity of the sympathetic division. In addition, each hemisphere primarily receives retinocollicular projections from the contralateral eye. A prior study reported that pupillary dilation was greater with left- than with right-eye monocular viewing. The goal of this study was to test the alternative hypotheses that this asymmetric pupil dilation with left-eye viewing was induced by activation of the right-hemispheric-mediated sympathetic activity, versus a reduction of left-hemisphere-mediated parasympathetic activity. Thus, this study was designed to learn whether there are changes in hemispheric activation, as measured by alteration of spontaneous alpha activity, during right versus left monocular viewing. High-density electroencephalography (EEG) was recorded from healthy participants viewing a crosshair with their right, left, or both eyes. There was a significantly less alpha power over the right hemisphere's parietal-occipital area with left and binocular viewing than with right-eye monocular viewing. The greater relative reduction of right-hemisphere alpha activity during left than during right monocular viewing provides further evidence that left-eye viewing induces greater increase in right-hemisphere activation than does right-eye viewing.

  7. Impact of head models in N170 component source imaging: results in control subjects and ADHD patients

    NASA Astrophysics Data System (ADS)

    Beltrachini, L.; Blenkmann, A.; von Ellenrieder, N.; Petroni, A.; Urquina, H.; Manes, F.; Ibáñez, A.; Muravchik, C. H.

    2011-12-01

    The major goal of evoked related potential studies arise in source localization techniques to identify the loci of neural activity that give rise to a particular voltage distribution measured on the surface of the scalp. In this paper we evaluate the effect of the head model adopted in order to estimate the N170 component source in attention deficit hyperactivity disorder (ADHD) patients and control subjects, considering faces and words stimuli. The standardized low resolution brain electromagnetic tomography algorithm (sLORETA) is used to compare between the three shell spherical head model and a fully realistic model based on the ICBM-152 atlas. We compare their variance on source estimation and analyze the impact on the N170 source localization. Results show that the often used three shell spherical model may lead to erroneous solutions, specially on ADHD patients, so its use is not recommended. Our results also suggest that N170 sources are mainly located in the right occipital fusiform gyrus for faces stimuli and in the left occipital fusiform gyrus for words stimuli, for both control subjects and ADHD patients. We also found a notable decrease on the N170 estimated source amplitude on ADHD patients, resulting in a plausible marker of the disease.

  8. Different association between intentionality competence and prefrontal volume in left- and right-handers.

    PubMed

    Powell, Joanne L; Kemp, Graham J; Dunbar, Robin I M; Roberts, Neil; Sluming, Vanessa; García-Fiñana, Marta

    2014-05-01

    Intentionality is the ability to explain and predict the behaviour of others by attributing to them mental states, and is thus important for social cognition. Prefrontal cortex (PFC) including orbital and dorsal regions is implicated in a range of social and metacognitive executive functions (EFs). We investigate, for the first time, in 39 left-handers and 43 right-handers the effect of handedness on the relationship between intentionality and (i) PFC volume using stereology and (ii) grey matter (GM) volume within six a priori regions of interest using voxel-based morphometry (VBM). Although no association was found between degree of handedness and intentionality competence (p = .17), handedness groups differ significantly in the relationship between intentionality and PFC volume. Right-handers with handedness score =+75 (based on a range from -100 to +100) show a significant positive correlation between intentionality and orbital PFC volume (p = .01), while no significant correlation is observed for dorsal PFC volume (p = .82); and left-handers with handedness score =-75 show a significant positive correlation between intentionality and dorsal PFC volume (p = .02) while no significant correlation is observed for orbital PFC volume (p = .44). VBM results showed significantly greater GM volume correlated with intentionality in right-handers compared to left-handers (family-wise error - FWE, p < .05) in right temporo-parietal junction and superior temporal sulcus. Correlations between GM volume and intentionality were found across all subjects (FWE, p < .05) in bilateral middle frontal gyrus, superior temporal sulcus and right inferior frontal gyrus, superior frontal gyrus and precuneus. Overall, the findings suggest that the neuroanatomy underlying intentionality competence is influenced by handedness and that different methodological approaches can and should be considered in conjunction when investigating neuroanatomical correlates of psychological

  9. Intracerebral stimulation of left and right ventral temporal cortex during object naming.

    PubMed

    Bédos Ulvin, Line; Jonas, Jacques; Brissart, Hélène; Colnat-Coulbois, Sophie; Thiriaux, Anne; Vignal, Jean-Pierre; Maillard, Louis

    2017-12-01

    While object naming is traditionally considered asa left hemisphere function, neuroimaging studies have reported activations related to naming in the ventral temporal cortex (VTC) bilaterally. Our aim was to use intracerebral electrical stimulation to specifically compare left and right VTC in naming. In twenty-three epileptic patients tested for visual object naming during stimulation, the proportion of naming impairments was significantly higher in the left than in the right VTC (31.3% vs 13.6%). The highest proportions of positive naming sites were found in the left fusiform gyrus and occipito-temporal sulcus (47.5% and 31.8%). For 17 positive left naming sites, an additional semantic picture matching was carried out, always successfully performed. Our results showed the enhanced role of the left compared to the right VTC in naming and suggest that it may be involved in lexical retrieval rather than in semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Gender Differences in Regional Brain Activity in Patients with Chronic Primary Insomnia: Evidence from a Resting-State fMRI Study

    PubMed Central

    Dai, Xi-Jian; Nie, Xiao; Liu, Xuming; Pei, Li; Jiang, Jian; Peng, De-chang; Gong, Hong-Han; Zeng, Xian-Jun; Wáng, Yì-Xiáng J.; Zhan, Yang

    2016-01-01

    Study Objectives: To explore the regional brain activities in patients with chronic primary insomnia (PCPIs) and their sex differences. Methods: Forty-two PCPIs (27 females, 15 males) and 42 good sleepers (GSs; 24 females, 18 males) were recruited. Six PCPIs (3 males, 3 females) were scanned twice by MRI to examine the test-retest reliability. Amplitude of low frequency fluctuation (ALFF) method was used to assess the local brain features. The mean signal values of the different ALFF areas were analyzed with a receiver operating characteristic (ROC) curve. Simple linear regression analysis was performed to investigate the relationships between clinical features and different brain areas. Results: Both female and male PCPIs showed higher ALFF in the temporal lobe and occipital lobe, especially in female PCPIs. Female PCPIs had lower ALFF in the bilateral cerebellum posterior lobe, left dorsolateral prefrontal cortex, and bilateral limbic lobe; however, male PCPIs showed lower ALFF in the left occipital gyrus. The mean signal value of the cerebellum in female PCPIs showed negative correlations with negative emotions. Compared with male PCPIs, female PCPIs showed higher ALFF in the bilateral middle temporal gyrus and lower ALFF in the left limbic lobe. The different areas showed high test-retest stability (Clusters of contiguous volumes ≥ 1080 mm3 with an intraclass correlation coefficient ≥ 0.80) and high degree of sensitivity and specificity. Conclusions: Female PCPIs showed more regional brain differences with higher and lower ALFF responses than male PCPIs. However, they shared analogous excessive hyperarousal mechanism and wide variations in aberrant brain areas. Citation: Dai XJ, Nie X, Liu X, Pei L, Jiang J, Peng D, Gong HH, Zeng XJ, Wáng YX, Zhan Y. Gender differences in regional brain activity in patients with chronic primary insomnia: evidence from a resting-state fMRI study. J Clin Sleep Med 2016;12(3):363–374. PMID:26715399

  11. Indications and outcomes for surgical treatment of patients with chronic migraine headaches caused by occipital neuralgia.

    PubMed

    Ducic, Ivica; Hartmann, Emily C; Larson, Ethan E

    2009-05-01

    Occipital neuralgia is a headache syndrome characterized by paroxysmal headaches localizing to the posterior scalp. The critical diagnostic feature is symptomatic response to local anesthetic blockade of the greater or lesser occipital nerve. Further characterization is debated in the literature regarding the diagnosis and optimal management of this condition. The authors present the largest reported series of surgical neurolysis of the greater occipital nerve in the management of occipital neuralgia. A retrospective chart review was conducted to identify 206 consecutive patients undergoing neurolysis of the greater or, less commonly, excision of the greater and/or lesser occipital nerves. A detailed description of the procedure is presented, as is the algorithm for patient selection and timing of surgery. Preoperative and postoperative visual analogue pain scores and migraine headache indices were measured. Success was defined as a reduction in pain of 50 percent or greater. Of 206 patients, 190 underwent greater occipital nerve neurolysis (171 bilateral). Twelve patients underwent greater and lesser occipital nerve excision, whereas four underwent lesser occipital nerve excision alone. The authors found that 80.5 percent of patients experienced at least 50 percent pain relief and 43.4 percent of patients experienced complete relief of headache. Mean preoperative pain score was 7.9 +/- 1.4. Mean postoperative pain was 1.9 +/- 1.8. Minimum duration of follow-up was 12 months. There were two minor complications. Neurolysis of the greater occipital nerve appears to provide safe, durable pain relief in the majority of selected patients with chronic headaches caused by occipital neuralgia.

  12. Neurobiological underpinnings of shame and guilt: a pilot fMRI study

    PubMed Central

    Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R.; Reiser, Maximilian

    2014-01-01

    In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.’s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings. PMID:23051901

  13. Neurobiological underpinnings of shame and guilt: a pilot fMRI study.

    PubMed

    Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R; Reiser, Maximilian; Hennig-Fast, Kristina

    2014-02-01

    In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.'s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings.

  14. Functional brain areas associated with manipulation of a prehensile tool: a PET study.

    PubMed

    Tsuda, Hayato; Aoki, Tomoko; Oku, Naohiko; Kimura, Yasuyuki; Hatazawa, Jun; Kinoshita, Hiroshi

    2009-09-01

    Using PET, brain areas representing the use of a well-learned tool (chopsticks) were investigated in 10 normal common users. The experimental task was to hold the tool in their right hand and use it to pick up and transport a small pin from a table. Data for the same task performed using only the fingers were also obtained as a control. The results showed an extensive overlap in activated areas with and without the use of the tool. The tool-use prehension, compared to the finger prehension, was associated with higher activities in the caudal-ventral premotor, dorsal premotor, superior parietal, posterior intraparietal, middle temporal gyrus, and primary sensory, occipital cortices, and the cerebellum. These are thus considered to be the human cortical and subcortical substrates representing the use of the tool studied. The activity of the posterior intraparietal area was negatively correlated with the number of drops of the pin, whereas occipital activity was positively correlated with the same error parameter. The caudal-ventral premotor and posterior intraparietal areas are together known to be involved in tool use-related modulation in peripersonal space. The correlation results suggest that this modulation depends on the level of performance. The coactivated left middle temporal gyrus further suggests that familiarity with a tool as well as the knowledge about its usage plays a role in peripersonal space modulation. Superior parietal activation, along with occipital activation, indicates the involvement of visual-spatial attention in the tool use, possibly reflecting the effect of interaction between the prehension (task) and the tool. 2009 Wiley-Liss, Inc.

  15. Abnormal Neural Network of Primary Insomnia: Evidence from Spatial Working Memory Task fMRI.

    PubMed

    Li, Yongli; Liu, Liya; Wang, Enfeng; Zhang, Hongju; Dou, Shewei; Tong, Li; Cheng, Jingliang; Chen, Chuanliang; Shi, Dapeng

    2016-01-01

    Contemporary functional MRI (fMRI) methods can provide a wealth of information about the neural mechanisms associated with primary insomnia (PI), which centrally involve neural network circuits related to spatial working memory. A total of 30 participants diagnosed with PI and without atypical brain anatomy were selected along with 30 age- and gender-matched healthy controls. Subjects were administered the Pittsburgh Sleep Quality Index (PSQI), Hamilton Rating Scale for Depression and clinical assessments of spatial working memory, followed by an MRI scan and fMRI in spatial memory task state. Statistically significant differences between PSQI and spatial working memory were observed between PI patients and controls (p < 0.01). Activation of neural networks related to spatial memory task state in the PI group was observed at the left temporal lobe, left occipital lobe and right frontal lobe. Lower levels of activation were observed in the left parahippocampal gyrus, right parahippocampal gyrus, bilateral temporal cortex, frontal cortex and superior parietal lobule. Participants with PI exhibited characteristic abnormalities in the neural network connectivity related to spatial working memory. These results may be indicative of an underlying pathological mechanism related to spatial working memory deterioration in PI, analogous to recently described mechanisms in other mental health disorders. © 2016 S. Karger AG, Basel.

  16. Occipital Neuralgia as the Only Presenting Symptom of Foramen Magnum Meningioma

    PubMed Central

    Yang, Seung-Yeob; Koo, Joon-Bum; Jeong, Sang-Wuk

    2009-01-01

    Background Occipital neuralgia (ON) is a condition characterized by a paroxysmal stabbing pain in the area of the greater or lesser occipital nerves; it is usually regarded by clinicians as idiopathic. Some have suggested that ON can be induced by trauma or injury of the occipital nerves or their roots, but tumor has rarely been reported as a cause of ON. Case Report We report herein a case of foramen magnum meningioma in a 55-year-old woman who presented with ON triggered by head motion as the only symptom without any signs of myelopathy. Conclusions This case indicates that it is important to consider the underlying causes of ON. Precise neurologic and radiological evaluations such as cervical spine magnetic resonance imaging are needed. PMID:20076803

  17. Familial neuralgia of occipital and intermedius nerves in a Chinese family.

    PubMed

    Wang, Yu; Yu, Chuan-Yong; Huang, Lin; Riederer, Franz; Ettlin, Dominik

    2011-08-01

    Cranial nerve neuralgia usually occurs sporadically. Nonetheless, familial cases of trigeminal neuralgia are not uncommon with a reported incidence of 1-2%, suggestive of an autosomal dominant inheritance. In contrast, familial occipital neuralgia is rarely reported with only one report in the literature. We present a Chinese family with five cases of occipital and nervus intermedius neuralgia alone or in combination in three generations. All persons afflicted with occipital neuralgia have suffered from paroxysmal 'electric wave'-like pain for years. In the first generation, the father (index patient) was affected, in the second generation all his three daughters (with two sons spared) and in the third generation a daughter's male offspring is affected. This familial pattern suggests an X-linked dominant or an autosomal dominant inheritance mode.

  18. [Treatment of Occipital Neuralgia by Electroacupuncture Combined with Neural Mobilization].

    PubMed

    Wang, Yan; Guo, Zi-Nan; Yang, Zhen; Wang, Shun

    2018-03-25

    To observe the effect of electroacupuncture (EA) combined with neural mobilization (NM) in the treatment of occipital neuralgia. A total of 62 occipital neuralgia patients were randomized into EA group (19 cases), NM group (22 cases) and EA+NM group (21 cases). EA was applied at acupoint-pairs as Yuzhen (BL 9)- Tianzhu (BL 10), Fengchi (GB 20)- Wangu (GB 12), etc. NM intervention consisted of occipital muscle group mobilization, C 2 spinous process mobilization, cervical joint passive movement management mobilization, etc., was performed at the impaired cervical spine segment. The two methods were used in combination for patients in the EA+NM group. All the treatment was given once a day for 2 weeks. Before and after treatment, the visual analogue scale (VAS) and the 6-point (1-6 points) behavioral rating scale (BRS-6) of headache were used to assess the severity of pain. The therapeutic effect was evaluated according to the "Criteria for Diagnosis and Cure-Improvement of Clinical Conditions" formulated by State Administration of Traditional Chinese Medicine of the People's Republic of China in 1994. After treatment, both VAS and BRS-6 scores were significantly lower than those before treatment in each of the three groups ( P <0.05), and were significantly lower in the EA+NM group than in the simple EA and simple NM groups ( P <0.01, P <0.05). The total effective rates were 78.95% (15/19) in the EA group, 68.18% (15/22) in the NM group, and 90.48% (19/21) in the EA+NM group, with an obviously better therapeutic effect being in the EA+NM group relevant to each of the other two treatment groups ( P <0.05). EA, NM and EA combined with NM can improve symptoms of patients with occipital neuralgia, and EA+NM has a synergic analgesic effect for occipital neuralgia.

  19. Disrupted Brain Functional Network Architecture in Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Feng, Yuan; Xu, Jin-Jing; Mao, Cun-Nan; Xia, Wenqing; Ren, Jun; Yin, Xindao

    2016-01-01

    Purpose: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated the disruptions of multiple brain networks in tinnitus patients. Nonetheless, several studies found no differences in network processing between tinnitus patients and healthy controls (HCs). Its neural bases are poorly understood. To identify aberrant brain network architecture involved in chronic tinnitus, we compared the resting-state fMRI (rs-fMRI) patterns of tinnitus patients and HCs. Materials and Methods: Chronic tinnitus patients (n = 24) with normal hearing thresholds and age-, sex-, education- and hearing threshold-matched HCs (n = 22) participated in the current study and underwent the rs-fMRI scanning. We used degree centrality (DC) to investigate functional connectivity (FC) strength of the whole-brain network and Granger causality to analyze effective connectivity in order to explore directional aspects involved in tinnitus. Results: Compared to HCs, we found significantly increased network centrality in bilateral superior frontal gyrus (SFG). Unidirectionally, the left SFG revealed increased effective connectivity to the left middle orbitofrontal cortex (OFC), left posterior lobe of cerebellum (PLC), left postcentral gyrus, and right middle occipital gyrus (MOG) while the right SFG exhibited enhanced effective connectivity to the right supplementary motor area (SMA). In addition, the effective connectivity from the bilateral SFG to the OFC and SMA showed positive correlations with tinnitus distress. Conclusions: Rs-fMRI provides a new and novel method for identifying aberrant brain network architecture. Chronic tinnitus patients have disrupted FC strength and causal connectivity mostly in non-auditory regions, especially the prefrontal cortex (PFC). The current findings will provide a new perspective for understanding the neuropathophysiological mechanisms in chronic tinnitus. PMID:27458377

  20. Motor skill for tool-use is associated with asymmetries in Broca’s area and the motor hand area of the precentral gyrus in chimpanzees (Pan troglodytes)

    PubMed Central

    Hopkins, William D.; Meguerditchian, Adrien; Coulon, Olivier; Misiura, Maria; Pope, Sarah; Mareno, Mary Catherine; Schapiro, Steven J.

    2017-01-01

    Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca’s area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution. PMID:27816558

  1. Impact of cognitive-behavioral therapy for social anxiety disorder on the neural bases of emotional reactivity to and regulation of social evaluation.

    PubMed

    Goldin, Philippe R; Ziv, Michal; Jazaieri, Hooria; Weeks, Justin; Heimberg, Richard G; Gross, James J

    2014-11-01

    We examined whether Cognitive-Behavioral Therapy (CBT) for social anxiety disorder (SAD) would modify self-reported negative emotion and functional magnetic resonance imaging brain responses when reacting to and reappraising social evaluation, and tested whether changes would predict treatment outcome in 59 patients with SAD who completed CBT or waitlist groups. For reactivity, compared to waitlist, CBT resulted in (a) increased brain responses in right superior frontal gyrus (SFG), inferior parietal lobule (IPL), and middle occipital gyrus (MOG) when reacting to social praise, and (b) increases in right SFG and IPL and decreases in left posterior superior temporal gyrus (pSTG) when reacting to social criticism. For reappraisal, compared to waitlist, CBT resulted in greater (c) reductions in self-reported negative emotion, and (d) increases in brain responses in right SFG and MOG, and decreases in left pSTG. A linear regression found that after controlling for CBT-induced changes in reactivity and reappraisal negative emotion ratings and brain changes in reactivity to praise and criticism, reappraisal of criticism brain response changes predicted 24% of the unique variance in CBT-related reductions in social anxiety. Thus, one mechanism underlying CBT for SAD may be changes in reappraisal-related brain responses to social criticism. NCT00380731. http://www.clinicaltrials.gov/ct2/show/NCT00380731?term=social+anxiety+cognitive+behavioral+therapy+Stanford&rank=1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Language-invariant verb processing regions in Spanish-English bilinguals.

    PubMed

    Willms, Joanna L; Shapiro, Kevin A; Peelen, Marius V; Pajtas, Petra E; Costa, Albert; Moo, Lauren R; Caramazza, Alfonso

    2011-07-01

    Nouns and verbs are fundamental grammatical building blocks of all languages. Studies of brain-damaged patients and healthy individuals have demonstrated that verb processing can be dissociated from noun processing at a neuroanatomical level. In cases where bilingual patients have a noun or verb deficit, the deficit has been observed in both languages. This suggests that the noun-verb distinction may be based on neural components that are common across languages. Here we investigated the cortical organization of grammatical categories in healthy, early Spanish-English bilinguals using functional magnetic resonance imaging (fMRI) in a morphophonological alternation task. Four regions showed greater activity for verbs than for nouns in both languages: left posterior middle temporal gyrus (LMTG), left middle frontal gyrus (LMFG), pre-supplementary motor area (pre-SMA), and right middle occipital gyrus (RMOG); no regions showed greater activation for nouns. Multi-voxel pattern analysis within verb-specific regions showed indistinguishable activity patterns for English and Spanish, indicating language-invariant bilingual processing. In LMTG and LMFG, patterns were more similar within than across grammatical category, both within and across languages, indicating language-invariant grammatical class information. These results suggest that the neural substrates underlying verb-specific processing are largely independent of language in bilinguals, both at the macroscopic neuroanatomical level and at the level of voxel activity patterns. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Language-Invariant Verb Processing Regions in Spanish-English Bilinguals

    PubMed Central

    Willms, Joanna L.; Shapiro, Kevin A.; Peelen, Marius V.; Pajtas, Petra E.; Costa, Albert; Moo, Lauren R.; Caramazza, Alfonso

    2011-01-01

    Nouns and verbs are fundamental grammatical building blocks of all languages. Studies of brain-damaged patients and healthy individuals have demonstrated that verb processing can be dissociated from noun processing at a neuroanatomical level. In cases where bilingual patients have a noun or verb deficit, the deficit has been observed in both languages. This suggests that the noun-verb distinction may be based on neural components that are common across languages. Here we investigated the cortical organization of grammatical categories in healthy, early Spanish-English bilinguals using functional magnetic resonance imaging (fMRI) in a morphophonological alternation task. Four regions showed greater activity for verbs than for nouns in both languages: left posterior middle temporal gyrus (LMTG), left middle frontal gyrus (LMFG), pre-supplementary motor area (pre-SMA), and right middle occipital gyrus (RMOG); no regions showed greater activation for nouns. Multi-voxel pattern analysis within verb-specific regions showed indistinguishable activity patterns for English and Spanish, indicating language-invariant bilingual processing. In LMTG and LMFG, patterns were more similar within than across grammatical category, both within and across languages, indicating language-invariant grammatical class information. These results suggest that the neural substrates underlying verb-specific processing are largely independent of language in bilinguals, both at the macroscopic neuroanatomical level and at the level of voxel activity patterns. PMID:21515387

  4. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics.

    PubMed

    Marangolo, P; Marinelli, C V; Bonifazi, S; Fiori, V; Ceravolo, M G; Provinciali, L; Tomaiuolo, F

    2011-12-01

    A number of studies have shown that modulating cortical activity by means of transcranial direct current stimulation (tDCS) affects the performance of both healthy and brain-damaged subjects. In this study, we investigated the potential of tDCS for the recovery of apraxia of speech in 3 patients with stroke-induced aphasia. Over 2 weeks, three aphasic subjects participated in a randomized double-blinded experiment involving intensive language training for their articulatory difficulties in two tDCS conditions. Each subject participated in five consecutive daily sessions of anodic tDCS (20 min, 1 mA) and sham stimulation over the left inferior frontal gyrus (referred to as Broca's area) while they performed a repetition task. By the end of each week, a significant improvement was found in both conditions. However, all three subjects showed greater response accuracy in the anodic than in the sham condition. Moreover, results for transfer of treatment effects, although different across subjects, indicate a generalization of the recovery at the language test. Subjects 2 and 3 showed a significant improvement in oral production tasks, such as word repetition and reading, while Subjects 1 and 2 had an unexpected significant recovery in written naming and word writing under dictation tasks. At three follow-ups (1 week, 1 and 2 months after the end of treatment), response accuracy was still significantly better in the anodic than in sham condition, suggesting a long-term effect on the recovery of their articulatory gestures. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Late Complication of Surgically Treated Atlantoaxial Instability: Occipital Bone Erosion Induced by Protruded Fixed Titanium Rod: A Case Report

    PubMed Central

    Nakao, Yaoki; Shimokawa, Nobuyuki; Morisako, Hiroki; Tsukazaki, Yuji; Terada, Aiko; Nakajo, Kosuke; Fu, Yoshihiko

    2014-01-01

    Objective Polyaxial screw-rod fixation of C1-C2 is a relatively new technique to treat atlantoaxial instability, and there have been few reports in the literature outlining all possible complications. The purpose of this case report is to present the occurrence and management of occipital bone erosion induced by the protruded rostral part of a posterior atlantoaxial screw-rod construct causing headache. Clinical Features A 70-year-old Asian man with rheumatoid arthritis initially presented to our institution with atlantoaxial instability causing progressive quadraparesis and neck pain. Intervention and Outcome Posterior atlantoaxial instrumented fixation using C1 lateral mass screws in conjunction with C2 pedicle screws was performed to stabilize these segments. Postoperatively, the patient regained the ability to independently walk and had no radiographic evidence of instrumentation hardware failure and excellent sagittal alignment. However, despite a well-stabilized fusion, the patient began to complain of headache during neck extension. Follow-up imaging studies revealed left occipital bone erosion induced by a protruded titanium rod fixed with setscrews. During revision surgery, the rod protrusion was modified and the headaches diminished. Conclusion This case demonstrates that occipital bone erosion after posterior atlantoaxial fixation causing headache may occur. The principal cause of bone erosion in this case was rod protrusion. Although posterior atlantoaxial fixation using the screw-rod system was selected to manage atlantoaxial instability because it has less complications than other procedures, surgeons should pay attention that the length of the rod protrusion should not exceed 2 mm. PMID:25435842

  6. Brief communication: timing of spheno-occipital closure in modern Western Australians.

    PubMed

    Franklin, Daniel; Flavel, Ambika

    2014-01-01

    The spheno-occipital synchondrosis is a craniofacial growth centre between the occipital and sphenoid bones-its ossification persists into adolescence, which for the skeletal biologist, means it has potential application for estimating subadult age. Based on previous research the timing of spheno-occipital fusion is widely variable between and within populations, with reports of complete fusion in individuals as young as 11 years of age and nonfusion in adults. The aim of this study is, therefore, to examine this structure in a mixed sex sample of Western Australian individuals that developmentally span late childhood to adulthood. The objective is to develop statistically quantified age estimation standards based on scoring the degree of spheno-occipital fusion. The sample comprises multidetector computed tomography (MDCT) scans of 312 individuals (169 male; 143 female) between 5 and 25 years of age. Each MDCT scan is visualized in a standardized sagittal plane using three-dimensional oblique multiplanar reformatting. Fusion status is scored according to a four-stage system. Transition analysis is used to calculate age ranges for each defined stage and determine the mean age for transition between an unfused, fusing and fused status. The maximum likelihood estimates for the transition from open to fusing in the endocranial half is 14.44 years (male) and 11.42 years (female); transition from fusion in the ectocranial half to complete fusion is 16.16 years (male) and 13.62 years (female). This study affirms the potential value of assessing the degree of fusion in the spheno-occipital synchondrosis as an indicator of skeletal age. Copyright © 2013 Wiley Periodicals, Inc.

  7. Investigation of Abnormal Left Temporal Functioning in Dyslexia through rCBF, Auditory Evoked Potentials, and Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Wood, Frank; And Others

    1991-01-01

    Investigates the proposed left hemisphere dysfunction in dyslexia by reviewing four studies using regional cerebral blood flow (RCBF) and combined auditory evoked responses with positron emission tomography. Emphasizes methodological issues. Finds that dyslexics showed a positive correlation between Heschl's gyrus activation and phonemic…

  8. Functional Connectivity Estimated from Resting-State fMRI Reveals Selective Alterations in Male Adolescents with Pure Conduct Disorder

    PubMed Central

    Lu, Feng-Mei; Zhou, Jian-Song; Zhang, Jiang; Xiang, Yu-Tao; Zhang, Jian; Liu, Qi; Wang, Xiao-Ping; Yuan, Zhen

    2015-01-01

    Conduct disorder (CD) is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI) studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs) are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD) individuals. Independent component analysis (ICA) was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus), which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus), the lateral visual network (left superior occipital gyrus), and the medial visual network (right fusiform, left lingual gyrus and right calcarine), which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network) and a high-order cognitive network (the default mode network). Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD. PMID:26713867

  9. Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression.

    PubMed

    Frenkel-Toledo, Silvi; Liebermann, Dario G; Bentin, Shlomo; Soroker, Nachum

    2016-06-01

    Stroke patients with ideomotor apraxia (IMA) have difficulties controlling voluntary motor actions, as clearly seen when asked to imitate simple gestures performed by the examiner. Despite extensive research, the neurophysiological mechanisms underlying failure to imitate gestures in IMA remain controversial. The aim of the current study was to explore the relationship between imitation failure in IMA and mirror neuron system (MNS) functioning. Mirror neurons were found to play a crucial role in movement imitation and in imitation-based motor learning. Their recruitment during movement observation and execution is signaled in EEG recordings by suppression of the lower (8-10 Hz) mu range. We examined the modulation of EEG in this range in stroke patients with left (n = 21) and right (n = 15) hemisphere damage during observation of video clips showing different manual movements. IMA severity was assessed by the DeRenzi standardized diagnostic test. Results showed that failure to imitate observed manual movements correlated with diminished mu suppression in patients with damage to the right inferior parietal lobule and in patients with damage to the right inferior frontal gyrus pars opercularis-areas where major components of the human MNS are assumed to reside. Voxel-based lesion symptom mapping revealed a significant impact on imitation capacity for the left inferior and superior parietal lobules and the left post central gyrus. Both left and right hemisphere damages were associated with imitation failure typical of IMA, yet a clear demonstration of relationship to the MNS was obtained only in the right hemisphere damage group. Suppression of the 8-10 Hz range was stronger in central compared with occipital sites, pointing to a dominant implication of mu rather than alpha rhythms. However, the suppression correlated with De Renzi's apraxia test scores not only in central but also in occipital sites, suggesting a multifactorial mechanism for IMA, with a possible

  10. An fMRI study on variation of visuospatial cognitive performance of young male due to highly concentrated oxygen administration

    NASA Astrophysics Data System (ADS)

    Chung, Soon Cheol; Kim, Ik Hyeon; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    This study investigated the effects of 30% oxygen administration on the visuospatial cognitive performance using fMRI. Eight college students (right-handed, average age 23.5) were selected as subjects for this study. Oxygen supply equipment which gives 21% and 30% oxygen at a constant rate of 8L/min was developed for this study. To measure the performance of visuospatial cognition, two questionnaires with similar difficulty containing 20 questions each were also developed. Experiment was designed as two runs: run for visuospatial cognition test with normal air (21% of oxygen) and run for visuospatial cognition test with highly concentrated air (30% of oxygen). Run consists of 4 blocks and each block has 8 control problems and 5 visuospatial problems. Functional brain images were taken from 3T MRI using single-shot EPI method. Activities of neural network due to performing visuospatial cognition test were identified using subtraction procedure, and activation areas while performing visuospatial cognition test were extracted using double subtraction procedure. Activities were observed at occipital lobe, parietal lobe, and frontal lobe when performing visuospatial cognition test following both 21% and 30% oxygen administration. But in case of only 30% oxygen administration there were more activities at left precuneus, left cuneus, right postcentral gyrus, bilateral middle frontal gyri, right inferior frontal gyrus, left superior frontal gyrus, bilateral uvula, bilateral pyramis, and nodule compared with 21% oxygen administration. From results of visuospatial cognition test, accuracy rate increased in case of 30% oxygen administration. Thus it could be concluded that highly concentrated oxygen administration has positive effects on the visuospatial cognitive performance.

  11. Nonlinear modulation of interacting between COMT and depression on brain function.

    PubMed

    Gong, L; He, C; Yin, Y; Ye, Q; Bai, F; Yuan, Y; Zhang, H; Lv, L; Zhang, H; Zhang, Z; Xie, C

    2017-09-01

    The catechol-O-methyltransferase (COMT) gene is related to dopamine degradation and has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). However, how this gene affects brain function properties in MDD is still unclear. Fifty patients with MDD and 35 cognitively normal participants underwent a resting-state functional magnetic resonance imaging scan. A voxelwise and data-drive global functional connectivity density (gFCD) analysis was used to investigate the main effects and the interactions of disease states and COMT rs4680 gene polymorphism on brain function. We found significant group differences of the gFCD in bilateral fusiform area (FFA), post-central and pre-central cortex, left superior temporal gyrus (STG), rectal and superior temporal gyrus and right ventrolateral prefrontal cortex (vlPFC); abnormal gFCDs in left STG were positively correlated with severity of depression in MDD group. Significant disease×COMT interaction effects were found in the bilateral calcarine gyrus, right vlPFC, hippocampus and thalamus, and left SFG and FFA. Further post-hoc tests showed a nonlinear modulation effect of COMT on gFCD in the development of MDD. Interestingly, an inverted U-shaped modulation was found in the prefrontal cortex (control system) but U-shaped modulations were found in the hippocampus, thalamus and occipital cortex (processing system). Our study demonstrated nonlinear modulation of the interaction between COMT and depression on brain function. These findings expand our understanding of the COMT effect underlying the pathophysiology of MDD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Effects of antidepressant treatment with rTMS and fluoxetine on brain perfusion in PD.

    PubMed

    Fregni, F; Ono, C R; Santos, C M; Bermpohl, F; Buchpiguel, C; Barbosa, E R; Marcolin, M A; Pascual-Leone, A; Valente, K D

    2006-06-13

    Although depression is highly prevalent in Parkinson disease (PD), little is known about the neural correlates associated with depression and antidepressant treatment in PD. To examine the effects of fluoxetine and repetitive transcranial magnetic stimulation (rTMS) on regional cerebral blood flow (rCBF) using SPECT in patients with PD and depression. Twenty-six patients were enrolled into two groups: One received active rTMS and placebo medication and the other sham rTMS and fluoxetine 20 mg/day. Brain SPECT was performed at baseline and after 2 and 8 weeks. Changes in rCBF were compared across timepoints and correlated with clinical scores. In addition, baseline rCBF of these patients was compared with that of 29 healthy, age-matched subjects. At baseline, patients with PD and depression showed significantly lower rCBF in the left prefrontal cortex, posterior cingulate gyrus, left insula, and right parietal cortex when compared with healthy controls. Both treatments induced significant clinical improvement and increases in rCBF in the posterior cingulate gyrus and decreases in rCBF in the right medial frontal gyrus. These changes were significantly correlated to the clinical outcome. Furthermore, the comparison between these two treatments revealed that whereas rTMS treatment was associated with an increased perfusion in the right and left prefrontal cortex, fluoxetine treatment was associated with a relative rCBF increase in the occipital lobe. Depression in patients with Parkinson disease is correlated with a dysfunction of the frontal-limbic network that can be modulated by two different antidepressant therapies.

  13. Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder

    PubMed Central

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshimura, Sayaka; Kubota, Yasutaka; Sawada, Reiko; Sakihama, Morimitsu; Toichi, Motomi

    2017-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral impairment in social interactions. Although theoretical and empirical evidence suggests that impairment in the social brain network could be the neural underpinnings of ASD, previous structural magnetic resonance imaging (MRI) studies in adults with ASD have not provided clear support for this, possibly due to confounding factors, such as language impairments. To further explore this issue, we acquired structural MRI data and analyzed gray matter volume in adults with ASD (n = 36) who had no language impairments (diagnosed with Asperger’s disorder or pervasive developmental disorder not otherwise specified, with symptoms milder than those of Asperger’s disorder), had no comorbidity, and were not taking medications, and in age- and sex-matched typically developing (TD) controls (n = 36). Univariate voxel-based morphometry analyses revealed that regional gray matter volume was lower in the ASD than in the control group in several brain regions, including the right inferior occipital gyrus, left fusiform gyrus, right middle temporal gyrus, bilateral amygdala, right inferior frontal gyrus, right orbitofrontal cortex, and left dorsomedial prefrontal cortex. A multivariate approach using a partial least squares (PLS) method showed that these regions constituted a network that could be used to discriminate between the ASD and TD groups. A PLS discriminant analysis using information from these regions showed high accuracy, sensitivity, specificity, and precision (>80%) in discriminating between the groups. These results suggest that reduced gray matter volume in the social brain network represents the neural underpinnings of behavioral social malfunctioning in adults with ASD. PMID:28824399

  14. [Occipital neuralgia: clinical and therapeutic characteristics of a series of 14 patients].

    PubMed

    Pedraza, María Isabel; Ruiz, Marina; Rodríguez, Cristina; Muñoz, Irene; Barón, Johanna; Mulero, Patricia; Herrero-Velázquez, Sonia; Guerrero-Peral, Ángel L

    2013-09-01

    INTRODUCTION. Occipital neuralgia is a pain in the distribution of the occipital nerves, accompanied by hypersensitivity to touch in the corresponding territory. AIMS. We present the occipital neuralgia series from the specialised headache unit at a tertiary hospital and analyse its clinical characteristics and its response to therapy. PATIENTS AND METHODS. Variables were collected from the cases of occipital neuralgia diagnosed in the above-mentioned headache unit between January 2008 and April 2013. RESULTS. A series of 14 patients (10 females, 4 males) with occipital neuralgia was obtained out of a total of 2338 (0.59%). Age at onset of the clinical signs and symptoms: 53.4 ± 20.3 years (range: 17-81 years) and time elapsed to diagnosis was 35.5 ± 58.8 months (range: 1-230 months). An intracranial or cervical pathology was ruled out by suitable means in each case. Baseline pain of a generally oppressive nature and an intensity of 5.3 ± 1.3 (4-8) on the verbal analogue scale was observed in 13 of them (92.8%). Eleven (78.5%) presented exacerbations, generally stabbing pains, a variable frequency (4.6 ± 7 a day) and an intensity of 7.8 ± 1.7 (range: 4-10) on the verbal analogue scale. Anaesthetic blockade was not performed in four of them (two due to a remitting pattern and two following the patient's wishes); in the others, blockade was carried out and was completely effective for between two and seven months. Four cases had previously received preventive treatment (amitriptyline in three and gabapentin in one), with no response. CONCLUSIONS. In this series from a specialised headache unit, occipital neuralgia is an infrequent condition that mainly affects patients over 50 years of age. Given its poor response to preventive treatment, the full prolonged response to anaesthetic blockades must be taken into account.

  15. Motor skill for tool-use is associated with asymmetries in Broca's area and the motor hand area of the precentral gyrus in chimpanzees (Pan troglodytes).

    PubMed

    Hopkins, William D; Meguerditchian, Adrien; Coulon, Olivier; Misiura, Maria; Pope, Sarah; Mareno, Mary Catherine; Schapiro, Steven J

    2017-02-01

    Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca's area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Microsurgical treatment for central gyrus region meningioma with epilepsy as primary symptom.

    PubMed

    Deng, Wen-shuai; Zhou, Xiao-yang; Li, Zhao-jian; Xie, Hong-wei; Fan, Ming-chao; Sun, Peng

    2014-09-01

    The objective of this article was to investigate the operation outcome, complications, and the patient's quality of life after surgical therapy for central gyrus region meningioma with epilepsy as the primary symptom. All patients get at least 6 months of follow-up (range, 6-34 mo) after surgery. They underwent preoperative magnetic resonance imaging and video electroencephalography, and their clinical manifestations, imaging characteristics, microsurgical methods, and prognosis were retrospectively analyzed. The meningioma was located in the front and back of the central sulcus vein in 3 and 2 patients, respectively; in the compressed precentral gyrus and central sulcus vein in 3 patients; and in the precentral gyrus and postcentral gyrus each in 1 patient; beside the right sagittal sinus and invaded a thick draining vein on the brain surface in 1 patient and beside the right sagittal sinus and close to the precentral gyrus in 2 patients; invaded the superior sagittal sinus in 8 patients; crossed the cerebral falx and compressed cortex gyrus veins in 1 patient; invaded duramater and irritated skull hyperplasia in 3 patients; invaded duramater and its midline infiltrated into the superior sagittal sinus, was located behind the precentral gyrus, and enveloped the central sulcus vein. They were resected and classified by Simpson standards: 17 of the 26 patients had grade I, 6 patients had in grade II, and 3 patients had in grade III. Resection of central gyrus region meningioma by microsurgical technique avoids injury to the cerebral cortex, central sulcus vein, and other draining veins. Microsurgery improves the total resection rate, reduces recurrence rate, and lowers disability or death rate.

  17. Transarticular screw fixation of C1-2 for the treatment of arthropathy-associated occipital neuralgia.

    PubMed

    Pakzaban, Peyman

    2011-02-01

    Two patients with occipital neuralgia due to severe arthropathy of the C1-2 facet joint were treated using atlantoaxial fusion with transarticular screws without decompression of the C-2 nerve root. Both patients experienced immediate postoperative relief of occipital neuralgia. The resultant motion elimination at C1-2 eradicated not only the movement-evoked pain, but also the paroxysms of true occipital neuralgia occurring at rest. A possible pathophysiological explanation for this improvement is presented in the context of the ignition theory of neuralgic pain. This represents the first report of C1-2 transarticular screw fixation for the treatment of arthropathy-associated occipital neuralgia.

  18. [Scalp neuralgia and headache elicited by cranial superficial anatomical causes: supraorbital neuralgia, occipital neuralgia, and post-craniotomy headache].

    PubMed

    Shimizu, Satoru

    2014-01-01

    Most scalp neuralgias are supraorbital or occipital. Although they have been considered idiopathic, recent studies revealed that some were attributable to mechanical irritation with the peripheral nerve of the scalp by superficial anatomical cranial structures. Supraorbital neuralgia involves entrapment of the supraorbital nerve by the facial muscle, and occipital neuralgia involves entrapment of occipital nerves, mainly the greater occipital nerve, by the semispinalis capitis muscle. Contact between the occipital artery and the greater occipital nerve in the scalp may also be causative. Decompression surgery to address these neuralgias has been reported. As headache after craniotomy is the result of iatrogenic injury to the peripheral nerve of the scalp, post-craniotomy headache should be considered as a differential diagnosis.

  19. Lateralized hyperkinetic motor behavior.

    PubMed

    Krishnaiah, Balaji; Acharya, Jayant; Ahmed, Aiesha

    2018-01-01

    Seizures are followed by a post-ictal period, which is characterized by usual slowing of brain activity. This case report describes a 68-year old woman who presented with right-sided rhythmic, non-voluntary, semi-purposeful motor behavior that started 2 days after an episode of generalized seizure. Her initial electroencephalogram (EEG) showed beta activity with no evidence of epileptiform discharges. Computed tomography scan showed hypodensity in the left parieto-occipital region. Magnetic resonance imaging (MRI) showed restricted diffusion/fluid-attenuated inversion recovery hyperintensities in the left precentral and post-central gyrus. Unilateral compulsive motor behavior during the post-ictal state should be considered, and not confused with partial status epilepticus to avoid unnecessary treatment. Abnormal magnetic resonance imaging (MRI) findings, which are reversible, can help with the diagnostic and therapeutic approach.

  20. Subjective Cognitive Decline: Mapping Functional and Structural Brain Changes-A Combined Resting-State Functional and Structural MR Imaging Study.

    PubMed

    Sun, Yu; Dai, Zhengjia; Li, Yuxia; Sheng, Can; Li, Hongyan; Wang, Xiaoni; Chen, Xiaodan; He, Yong; Han, Ying

    2016-10-01

    Purpose To determine whether individuals with subjective cognitive decline (SCD) exhibit functional and structural brain alterations by using resting-state functional and structural magnetic resonance (MR) imaging. Materials and Methods This study received institutional review board approval, and all participants gave informed consent. Resting-state functional MR imaging and structural MR imaging techniques were used to measure amplitude of low-frequency fluctuations (ALFF) and regional gray matter volume in 25 subjects with SCD (mean age, 65.52 years ± 6.12) and 61 control subjects (mean age, 64.11 years ± 8.59). Voxel-wise general linear model analyses were used to examine between-group differences in ALFF or in gray matter volume and to further determine the brain-behavioral relationship. Results Subjects with SCD exhibited higher ALFF values than did control subjects in the bilateral inferior parietal lobule (left: 0.44 ± 0.25 vs 0.27 ± 0.18, respectively; P = .0003; right: 1.46 ± 0.45 vs 1.10 ± 0.37, respectively; P = .0015), right inferior (0.45 ± 0.15 vs 0.37 ± 0.08, repectively; P = .0106) and middle (1.03 ± 0.32 vs 0.83 ± 0.20, respectively; P = .0008) occipital gyrus, right superior temporal gyrus (0.11 ± 0.07 vs 0.07 ± 0.04, respectively; P = .0016), and right cerebellum posterior lobe (0.51 ± 0.27 vs 0.39 ± 0.15, respectively; P = .0010). In the SCD group, significant correlations were found between Auditory Verbal Learning Test recognition scores and ALFF in the left inferior parietal lobe (r = -0.79, P < .001) and between Auditory Verbal Learning Test immediate recall scores and ALFF values in the right middle occipital gyrus (r = -0.64, P = .002). Nonsignificant group differences were found in gray matter volume (P > .05, corrected). Conclusion Individuals with SCD had altered spontaneous functional activity, suggesting that resting-state functional MR imaging may be a noninvasive method for characterizing SCD. (©) RSNA, 2016 Online

  1. Development of a model for occipital fixation--validation of an analogue bone material.

    PubMed

    Mullett, H; O'Donnell, T; Felle, P; O'Rourke, K; FitzPatrick, D

    2002-01-01

    Several implant systems may be used to fuse the skull to the upper cervical spine (occipitocervical fusion). Current biomechanical evaluation is restricted by the limitations of human cadaveric specimens. This paper describes the design and validation of a synthetic testing model of the occipital bone. Data from thickness measurement and pull-out strength testing of a series of human cadaveric skulls was used in the design of a high-density rigid polyurethane foam model. The synthetic occipital model demonstrated repeatable and consistent morphological and biomechanical properties. The model provides a standardized environment for evaluation of occipital implants.

  2. Forty-two cases of greater occipital neuralgia treated by acupuncture plus acupoint-injection.

    PubMed

    Pan, Changqing; Tan, Guangbo

    2008-09-01

    To observe the therapeutic effect of acupuncture plus acupoint-injection on greater occipital neuralgia. The 84 cases of greater occipital neuralgia were randomly divided into two groups, with 42 cases in the treatment group treated by acupuncture plus acupoint-injection, and 42 cases in the control group treated with oral administration of carbamazepine. The total effective rate was 92.8% in the treatment group and 71.4% in the control group. The difference in the total effective rate was significant (P < 0.05) between the two groups. Acupuncture plus acupoint-injection is effective for greater occipital neuralgia, better than the routine western medication.

  3. Neural substrates of resisting craving during cigarette cue exposure.

    PubMed

    Brody, Arthur L; Mandelkern, Mark A; Olmstead, Richard E; Jou, Jennifer; Tiongson, Emmanuelle; Allen, Valerie; Scheibal, David; London, Edythe D; Monterosso, John R; Tiffany, Stephen T; Korb, Alex; Gan, Joanna J; Cohen, Mark S

    2007-09-15

    In cigarette smokers, the most commonly reported areas of brain activation during visual cigarette cue exposure are the prefrontal, anterior cingulate, and visual cortices. We sought to determine changes in brain activity in response to cigarette cues when smokers actively resist craving. Forty-two tobacco-dependent smokers underwent functional magnetic resonance imaging, during which they were presented with videotaped cues. Three cue presentation conditions were tested: cigarette cues with subjects allowing themselves to crave (cigarette cue crave), cigarette cues with the instruction to resist craving (cigarette cue resist), and matched neutral cues. Activation was found in the cigarette cue resist (compared with the cigarette cue crave) condition in the left dorsal anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and precuneus. Lower magnetic resonance signal for the cigarette cue resist condition was found in the cuneus bilaterally, left lateral occipital gyrus, and right postcentral gyrus. These relative activations and deactivations were more robust when the cigarette cue resist condition was compared with the neutral cue condition. Suppressing craving during cigarette cue exposure involves activation of limbic (and related) brain regions and deactivation of primary sensory and motor cortices.

  4. Age determination by spheno-occipital synchondrosis fusion in Central Indian population.

    PubMed

    Pate, Rajeshwar Sambhaji; Tingne, Chaitanya Vidyadhar; Dixit, Pradeep Gangadhar

    2018-02-01

    The spheno occipital suture synchondrosis is a vital contributor to adolescent and adult age estimation in that it can provide an upper or lower age bound depending on its state of fusion. The present study evaluates the utility of the spheno-occipital suture fusion in age estimation of the Central Indian population. The sample includes 198 (117 males and 81 females) cadavers aged between 8 to 26 years. Grading was done using Mitra-Akhlaghi Scale as - Open, Semi closed and Closed. Our study demonstrates that a significant linear correlation exists between the age of an individual and spheno-occipital suture closure for both the sexes and observation of the degree of fusion of this single suture allows the prediction of age in mature individuals. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Sleep Duration and Subsequent Cortical Thinning in Cognitively Normal Older Adults.

    PubMed

    Spira, Adam P; Gonzalez, Christopher E; Venkatraman, Vijay K; Wu, Mark N; Pacheco, Jennifer; Simonsick, Eleanor M; Ferrucci, Luigi; Resnick, Susan M

    2016-05-01

    To determine the association between self-reported sleep duration and cortical thinning among older adults. We studied 122 cognitively normal participants in the Baltimore Longitudinal Study of Aging with a mean age = 66.6 y (range, 51-84) at baseline sleep assessment and 69.5 y (range, 56-86) at initial magnetic resonance imaging (MRI) scan. Participants reported average sleep duration and completed a mean of 7.6 1.5-T MRI scans (range, 3-11), with mean follow-up from initial scan of 8.0 y (range, 2.0-11.8). In analyses adjusted for age, sex, education, race, and interval between sleep assessment and initial MRI scan, participants reporting > 7 h sleep at baseline had thinner cortex in the inferior occipital gyrus and sulcus of the left hemisphere at initial MRI scan than those reporting 7 h (cluster P < 0.05). In adjusted longitudinal analyses, compared to those reporting 7 h of sleep, participants reporting < 7 h exhibited higher rates of subsequent thinning in the superior temporal sulcus and gyrus, inferior and middle frontal gyrus, and superior frontal sulcus of the left hemisphere, and in the superior frontal gyrus of the right hemisphere; those reporting > 7 h of sleep had higher rates of thinning in the superior frontal and middle frontal gyrus of the left hemisphere (cluster P < 0.05 for all). In sensitivity analyses, adjustment for apolipoprotein E (APOE) e4 genotype reduced or eliminated some effects but revealed others. When reports of < 7 h of sleep were compared to reports of 7 or 8 h combined, there were no significant associations with cortical thinning. Among cognitively normal older adults, sleep durations of < 7 h and > 7 h may increase the rate of subsequent frontotemporal gray matter atrophy. Additional studies, including those that use objective sleep measures and investigate mechanisms linking sleep duration to gray matter loss, are needed. © 2016 Associated Professional Sleep Societies, LLC.

  6. SA72. Neural Correlates of Self-Reflection in Schizophrenia: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Hiremath, Chaitra; Dey, Avyarthana

    2017-01-01

    Abstract Background: Self-reflection is the process of conscious evaluation of one’s traits, abilities, and attitudes. Deficient self-reflective processes might underlie lack of insight into schizophrenia. The limited research literature on the neural correlates of self-reflection in schizophrenia is inconclusive. In this study, we investigated the neural correlates of self-reflection in schizophrenia patients attending a tertiary care hospital in India. Methods: Nineteen male schizophrenia patients (mean age = 32.68 ± 7.11, mean years of education =15.21 ± 1.93) and 19 male healthy controls (mean age = 26.96 ± 4.67, mean years of education = 18.11 ± 3.13) participated in the study. Participants performed a previously validated self-reflection task while undergoing functional magnetic resonance imaging (fMRI; 3-Tesla). The task comprised of 144 words subdivided into 4 domains: Self-reflection, Other-reflection, Affect labeling, and Perceptual. The task was presented as 3 runs of 8 blocks each. The images were preprocessed and analyzed using SPM-12. After preprocessing, contrasts comparing Self-reflection with the other domains were modeled at the individual subject level. In second-level analysis, the first-level contrasts were entered into a 2-sample t test to compare patient and healthy control groups. The results were thresholded at P < .001 (uncorrected) and a cluster size of 6 voxels. Results: For the Self-reflection > Other-reflection contrast, schizophrenia patients demonstrated greater activation of right and left superior parietal lobules (BA 5 and 7), right inferior parietal lobule (BA 39), left parahippocampal gyrus (BA 36), and left premotor cortex (BA 6). For the Self-reflection > Affect labeling contrast, patients showed greater activation of precuneus (BA 7) and right inferior occipital gyrus (BA 19), and lesser activation of left inferior frontal gyrus (BA 45 and 47). And for the Self-reflection > Perceptual contrast

  7. Dorsal surgical stabilisation using tension bands for treatment of traumatic atlanto-occipital instability in a cat.

    PubMed

    Vedrine, B; Maurin, M P

    2017-12-01

    An atlanto-occipital instability secondary to a dog bite was diagnosed in a 4-year-old Persian cat. Dorsal stabilisation of the instability was made with two OrthoFiber prostheses (Securos), which were used as tension bands between the nuchal crests of the occipital bone and the spinous process of the axis. Total recovery was achieved 4 days after surgery. Normal alignment of the atlanto-occipital joint was observed on survey radiographs taken 6 weeks post-surgery. Although the right loop had failed, the alignment was still normal and no neurological after-effects could be identified. Dorsal divergent tension bands between the nuchal crests of the occipital bone and the spinous process of the axis can be used to stabilise traumatic atlanto-occipital instability. © 2017 Australian Veterinary Association.

  8. Reduced Resting-State Functional Connectivity of the Somatosensory Cortex Predicts Psychopathological Symptoms in Women with Bulimia Nervosa

    PubMed Central

    Lavagnino, Luca; Amianto, Federico; D’Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg

    2014-01-01

    Background: Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Methods: Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Results: Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = −0.4; P = 0.02) and interoceptive awareness (r = −0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Conclusion: Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size. PMID:25136302

  9. Structural Abnormalities in Early Tourette Syndrome Children: A Combined Voxel-Based Morphometry and Tract-Based Spatial Statistics Study

    PubMed Central

    Wang, Jieqiong; Gao, Peiyi; Yin, Guangheng; Zhang, Liping; Lv, Chuankai; Ji, Zhiying; Yu, Tong; Sabel, B. A.; He, Huiguang; Peng, Yun

    2013-01-01

    Tourette Syndrome (TS) is characterized with chronic motor and vocal tics beginning in childhood. Abnormality of both gray (GM) and white matter (WM) has been observed in cortico-striato-thalamo-cortical circuits and sensory-motor cortex of adult TS patient. It is not clear if these morphological changes are also present in TS children and if there are any microstructural changes of WM. To understand the developmental cause of such changes, we investigated volumetric changes of GM and WM using VBM and microstructural changes of WM using DTI, and correlated these changes with tic severity and duration. T1 images and Diffusion Tensor Images (DTI) from 21 TS children were compared with 20 age and gender matched health control children using a 1.5T Philips scanner. All of the 21 TS children met the DSM-IV-TR criteria. T1 images were analyzed using DARTEL-VBM in conjunction with statistical parametric mapping (SPM). Diffusion tensor imaging (DTI) analysis was performed using Tract-Based Spatial Statistics (TBSS). Brain volume changes were found in left superior temporal gyrus, left and right paracentral gyrus, right precuneous cortex, right pre- and post- central gyrus, left temporal occipital fusiform cortex, right frontal pole, and left lingual gyrus. Significant axial diffusivity (AD) and mean diffusivity (MD) increases were found in anterior thalamic radiation, right cingulum bundle projecting to the cingulate gurus and forceps minor. Decreases in white matter volume (WMV) in the right frontal pole were inversely related with tic severity (YGTSS), and increases in AD and MD were positively correlated with tic severity and duration, respectively. These changes in TS children can be interpreted as signs of neural plasticity in response to the experiential demand. Our findings may suggest that the morphological and microstructural measurements from structural MRI and DTI can potentially be used as a biomarker of the pathophysiologic pattern of early TS children. PMID

  10. Combined ERP/fMRI evidence for early word recognition effects in the posterior inferior temporal gyrus.

    PubMed

    Dien, Joseph; Brian, Eric S; Molfese, Dennis L; Gold, Brian T

    2013-10-01

    Two brain regions with established roles in reading are the posterior middle temporal gyrus and the posterior fusiform gyrus (FG). Lesion studies have also suggested that the region located between them, the posterior inferior temporal gyrus (pITG), plays a central role in word recognition. However, these lesion results could reflect disconnection effects since neuroimaging studies have not reported consistent lexicality effects in pITG. Here we tested whether these reported pITG lesion effects are due to disconnection effects or not using parallel Event-related Potentials (ERP)/functional magnetic resonance imaging (fMRI) studies. We predicted that the Recognition Potential (RP), a left-lateralized ERP negativity that peaks at about 200-250 msec, might be the electrophysiological correlate of pITG activity and that conditions that evoke the RP (perceptual degradation) might therefore also evoke pITG activity. In Experiment 1, twenty-three participants performed a lexical decision task (temporally flanked by supraliminal masks) while having high-density 129-channel ERP data collected. In Experiment 2, a separate group of fifteen participants underwent the same task while having fMRI data collected in a 3T scanner. Examination of the ERP data suggested that a canonical RP effect was produced. The strongest corresponding effect in the fMRI data was in the vicinity of the pITG. In addition, results indicated stimulus-dependent functional connectivity between pITG and a region of the posterior FG near the Visual Word Form Area (VWFA) during word compared to nonword processing. These results provide convergent spatiotemporal evidence that the pITG contributes to early lexical access through interaction with the VWFA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging.

    PubMed

    Vidal-Piñeiro, Dídac; Martin-Trias, Pablo; Arenaza-Urquijo, Eider M; Sala-Llonch, Roser; Clemente, Imma C; Mena-Sánchez, Isaias; Bargalló, Núria; Falcón, Carles; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2014-01-01

    Transcranial magnetic stimulation (TMS) can affect episodic memory, one of the main cognitive hallmarks of aging, but the mechanisms of action remain unclear. To evaluate the behavioral and functional impact of excitatory TMS in a group of healthy elders. We applied a paradigm of repetitive TMS - intermittent theta-burst stimulation - over left inferior frontal gyrus in healthy elders (n = 24) and evaluated its impact on the performance of an episodic memory task with two levels of processing and the associated brain activity as captured by a pre and post fMRI scans. In the post-TMS fMRI we found TMS-related activity increases in left prefrontal and cerebellum-occipital areas specifically during deep encoding but not during shallow encoding or at rest. Furthermore, we found a task-dependent change in connectivity during the encoding task between cerebellum-occipital areas and the TMS-targeted left inferior frontal region. This connectivity change correlated with the TMS effects over brain networks. The results suggest that the aged brain responds to brain stimulation in a state-dependent manner as engaged by different tasks components and that TMS effect is related to inter-individual connectivity changes measures. These findings reveal fundamental insights into brain network dynamics in aging and the capacity to probe them with combined behavioral and stimulation approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging

    PubMed Central

    Vidal-Piñeiro, Dídac; Martin-Trias, Pablo; Arenaza-Urquijo, Eider M.; Sala-Llonch, Roser; Mena-Sánchez, Isaias; Bargalló, Núria; Falcón, Carles; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2015-01-01

    Background Transcranial Magnetic Stimulation (TMS) can affect episodic memory, one of the main cognitive hallmarks of aging, but the mechanisms of action remain unclear. Objectives To evaluate the behavioral and functional impact of excitatory TMS in a group of healthy elders. Methods We applied a paradigm of repetitive TMS -intermittent theta-burst stimulation- over left inferior frontal gyrus in healthy elders (n=24) and evaluated its impact on the performance of an episodic memory task with two levels of processing and the associated brain activity as captured by a pre and post fMRI scans. Results In the post-TMS fMRI we found TMS-related activity increases in left prefrontal and cerebellum-occipital areas specifically during deep encoding but not during shallow encoding or at rest. Furthermore, we found a task-dependent change in connectivity during the encoding task between cerebellum-occipital areas and the TMS-targeted left inferior frontal region. This connectivity change correlated with the TMS effects over brain networks. Conclusions The results suggest that the aged brain responds to brain stimulation in a state-dependent manner as engaged by different tasks components and that TMS effect is related to inter-individual connectivity changes measures. These findings reveal fundamental insights into brain network dynamics in aging and the capacity to probe them with combined behavioral and stimulation approaches. PMID:24485466

  13. Theta-band Oscillations in the Middle Temporal Gyrus Reflect Novel Word Consolidation.

    PubMed

    Bakker-Marshall, Iske; Takashima, Atsuko; Schoffelen, Jan-Mathijs; van Hell, Janet G; Janzen, Gabriele; McQueen, James M

    2018-05-01

    Like many other types of memory formation, novel word learning benefits from an offline consolidation period after the initial encoding phase. A previous EEG study has shown that retrieval of novel words elicited more word-like-induced electrophysiological brain activity in the theta band after consolidation [Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of Cognitive Neuroscience, 27, 1286-1297, 2015]. This suggests that theta-band oscillations play a role in lexicalization, but it has not been demonstrated that this effect is directly caused by the formation of lexical representations. This study used magnetoencephalography to localize the theta consolidation effect to the left posterior middle temporal gyrus (pMTG), a region known to be involved in lexical storage. Both untrained novel words and words learned immediately before test elicited lower theta power during retrieval than existing words in this region. After a 24-hr consolidation period, the difference between novel and existing words decreased significantly, most strongly in the left pMTG. The magnitude of the decrease after consolidation correlated with an increase in behavioral competition effects between novel words and existing words with similar spelling, reflecting functional integration into the mental lexicon. These results thus provide new evidence that consolidation aids the development of lexical representations mediated by the left pMTG. Theta synchronization may enable lexical access by facilitating the simultaneous activation of distributed semantic, phonological, and orthographic representations that are bound together in the pMTG.

  14. The Intramuscular Course of the Greater Occipital Nerve: Novel Findings with Potential Implications for Operative Interventions and Occipital Neuralgia

    PubMed Central

    Tubbs, R. Shane; Watanabe, Koichi; Loukas, Marios; Cohen-Gadol, Aaron A.

    2014-01-01

    Background: A better understanding of the etiologies of occipital neuralgia would help the clinician treat patients with this debilitating condition. Since few studies have examined the muscular course of the greater occipital nerve (GON), this study was performed. Methods: Thirty adult cadaveric sides underwent dissection of the posterior occiput with special attention to the intramuscular course of the GON. Nerves were typed based on their muscular course. Results: The GON traveled through the trapezius (type I; n = 5, 16.7%) or its aponeurosis (type II; n = 15, 83.3%) to become subcutaneous. Variations in the subtrapezius muscular course were found in 10 (33%) sides. In two (6.7%) sides, the GON traveled through the lower edge of the inferior capitis oblique muscle (subtype a). On five (16.7%) sides, the GON coursed through a tendinous band of the semispinalis capitis, not through its muscular fibers (subtype b). On three (10%) sides the GON bypassed the semispinalis capitis muscle to travel between its most medial fibers and the nuchal ligament (subtype c). For subtypes, eight were type II courses (through the aponeurosis of the trapezius), and two were type I courses (through the trapezius muscle). The authors identified two type IIa courses, four type IIb courses, and two type IIc courses. Type I courses included one type Ib and one type Ic courses. Conclusions: Variations in the muscular course of the GON were common. Future studies correlating these findings with the anatomy in patients with occipital neuralgia may elucidate nerve courses vulnerable to nerve compression. This enhanced classification scheme describes the morphology in this region and allows more specific communications about GON variations. PMID:25422783

  15. Different roles of the posterior inferior frontal gyrus in Chinese character form judgment differences between literate and illiterate individuals.

    PubMed

    Wu, Jinglong; Wang, Bin; Yan, Tianyi; Li, Xiujun; Bao, Xuexiang; Guo, Qiyong

    2012-01-11

    In the present study, we used event-related functional magnetic resonance imaging (fMRI) to explore the different roles of the posterior inferior frontal gyrus (pIFG) in Chinese character form judgment between literate and illiterate subjects. Using event-related fMRI, 24 healthy right-handed Chinese subjects (12 literates and 12 illiterates) were asked to perform Chinese character and figure form judgment tasks. The blood oxygen level-dependent (BOLD) differences in pIFG were examined with general linear modeling (GLM). We found differences in reaction times and accuracy between subjects as they performed these tasks. These behavioral differences reflect the different cognitive demands of character form judgment for literate and illiterate individuals. The results showed differences in the BOLD response patterns in the pIFG between the two discrimination tasks and the two subject groups. A comparison of the character and figure tasks showed that literate and illiterate subjects had similar BOLD responses in the inferior frontal gyrus. However, differences in behavioral performance suggest that the pIFG plays a different role in Chinese character form judgment for each subject group. In literate subjects, the left pIFG mediated access to phonology in achieving Chinese character form judgment, whereas the right pIFG participated in the processing of the orthography of Chinese characters. In illiterate subjects, the bilateral frontal gyrus participated in the visual-spatial processing of Chinese characters to achieve form judgment. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cortical Signatures of Dyslexia and Remediation: An Intrinsic Functional Connectivity Approach

    PubMed Central

    Koyama, Maki S.; Di Martino, Adriana; Kelly, Clare; Jutagir, Devika R.; Sunshine, Jessica; Schwartz, Susan J.; Castellanos, Francisco X.; Milham, Michael P.

    2013-01-01

    This observational, cross-sectional study investigates cortical signatures of developmental dyslexia, particularly from the perspective of behavioral remediation. We employed resting-state fMRI, and compared intrinsic functional connectivity (iFC) patterns of known reading regions (seeds) among three dyslexia groups characterized by (a) no remediation (current reading and spelling deficits), (b) partial remediation (only reading deficit remediated), and (c) full remediation (both reading and spelling deficits remediated), and a group of age- and IQ-matched typically developing children (TDC) (total N = 44, age range = 7–15 years). We observed significant group differences in iFC of two seeds located in the left posterior reading network – left intraparietal sulcus (L.IPS) and left fusiform gyrus (L.FFG). Specifically, iFC between L.IPS and left middle frontal gyrus was significantly weaker in all dyslexia groups, irrespective of remediation status/literacy competence, suggesting that persistent dysfunction in the fronto-parietal attention network characterizes dyslexia. Additionally, relative to both TDC and the no remediation group, the remediation groups exhibited stronger iFC between L.FFG and right middle occipital gyrus (R.MOG). The full remediation group also exhibited stronger negative iFC between the same L.FFG seed and right medial prefrontal cortex (R.MPFC), a core region of the default network These results suggest that behavioral remediation may be associated with compensatory changes anchored in L.FFG, which reflect atypically stronger coupling between posterior visual regions (L.FFG-R.MOG) and greater functional segregation between task-positive and task-negative regions (L.FFG-R.MPFC). These findings were bolstered by significant relationships between the strength of the identified functional connections and literacy scores. We conclude that examining iFC can reveal cortical signatures of dyslexia with particular promise for monitoring

  17. Electropalatographic analysis of apraxia of speech in a left hander and in a right hander.

    PubMed

    Sugishita, M; Konno, K; Kabe, S; Yunoki, K; Togashi, O; Kawamura, M

    1987-10-01

    Two cases with 'pure' apraxia of speech are reported. The articulatory disturbances were quite similar. One of the two cases was a left-handed male with a subcortical haemorrhage and the other a right-handed male with a cerebral infarct. The MRI and CT scans showed that the first case had a lesion that mainly involved the right precentral gyrus and its deep white matter, and that the second had a lesion mainly affecting the lower parts of the left precentral and postcentral gyri and their deep white matter. These findings and a literature review suggest that a corticosubcortical lesion of the lower part of the left precentral gyrus in most right handers and a lesion of the symmetric region in the right hemisphere in some left handers cause apraxia of speech. The omission errors for sounds articulated by the tongue and the hard palate were analysed using electropalatography, which records visually the dynamics of the palatolingual contact. The results demonstrated that there were three kinds of omission errors: true omissions (no palatolingual contact); omissions with incorrect contact (palatolingual contact for a different sound or undifferentiated sound); and omissions with correct contact (correct palatolingual contact for a target sound). The latter two types of omission error were observed for initial consonants and they were probably caused by a delay in air flow. The patients also showed a tendency to substitute one of the two consonants/t, t/for other sounds, which suggested that they had difficulty in the inhibition of tongue activity.

  18. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech

    PubMed Central

    Van Ackeren, Markus Johannes; Barbero, Francesca M; Mattioni, Stefania; Bottini, Roberto

    2018-01-01

    The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives. PMID:29338838

  19. Resting state signatures of domain and demand-specific working memory performance.

    PubMed

    van Dam, Wessel O; Decker, Scott L; Durbin, Jeffery S; Vendemia, Jennifer M C; Desai, Rutvik H

    2015-09-01

    Working memory (WM) is one of the key constructs in understanding higher-level cognition. We examined whether patterns of activity in the resting state of individual subjects are correlated with their off-line working and short-term memory capabilities. Participants completed a resting-state fMRI scan and off-line working and short-term memory (STM) tests with both verbal and visual materials. We calculated fractional amplitude of low frequency fluctuations (fALFF) from the resting state data, and also computed connectivity between seeds placed in frontal and parietal lobes. Correlating fALFF values with behavioral measures showed that the fALFF values in a widespread fronto-parietal network during rest were positively correlated with a combined memory measure. In addition, STM showed a significant correlation with fALFF within the right angular gyrus and left middle occipital gyrus, whereas WM was correlated with fALFF values within the right IPS and left dorsomedial cerebellar cortex. Furthermore, verbal and visuospatial memory capacities were associated with dissociable patterns of low-frequency fluctuations. Seed-based connectivity showed correlations with the verbal WM measure in the left hemisphere, and with the visual WM measure in the right hemisphere. These findings contribute to our understanding of how differences in spontaneous low-frequency fluctuations at rest are correlated with differences in cognitive performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The Effects of Taekwondo Training on Brain Connectivity and Body Intelligence.

    PubMed

    Kim, Young Jae; Cha, Eun Joo; Kim, Sun Mi; Kang, Kyung Doo; Han, Doug Hyun

    2015-07-01

    Many studies have reported that Taekwondo training could improve body perception, control and brain activity, as assessed with an electroencephalogram. This study aimed to assess body intelligence and brain connectivity in children with Taekwondo training as compared to children without Taekwondo training. Fifteen children with Taekwondo training (TKD) and 13 age- and sex-matched children who had no previous experience of Taekwondo training (controls) were recruited. Body intelligence, clinical characteristics and brain connectivity in all children were assessed with the Body Intelligence Scale (BIS), self-report, and resting state functional magnetic resonance imaging. The mean BIS score in the TKD group was higher than that in the control group. The TKD group showed increased low-frequency fluctuations in the right frontal precentral gyrus and the right parietal precuneus, compared to the control group. The TKD group showed positive cerebellum vermis (lobe VII) seed to the right frontal, left frontal, and left parietal lobe. The control group showed positive cerebellum seed to the left frontal, parietal, and occipital cortex. Relative to the control group, the TKD group showed increased functional connectivity from cerebellum seed to the right inferior frontal gyrus. To the best of our knowledge, this is the first study to assess the effect of Taekwondo training on brain connectivity in children. Taekwondo training improved body intelligence and brain connectivity from the cerebellum to the parietal and frontal cortex.

  1. Fusiform Gyrus Dysfunction is Associated with Perceptual Processing Efficiency to Emotional Faces in Adolescent Depression: A Model-Based Approach.

    PubMed

    Ho, Tiffany C; Zhang, Shunan; Sacchet, Matthew D; Weng, Helen; Connolly, Colm G; Henje Blom, Eva; Han, Laura K M; Mobayed, Nisreen O; Yang, Tony T

    2016-01-01

    While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed.

  2. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    PubMed

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P <0.005). Multiple comparison analysis showed that compared with patients in the 1-month follow-up, patients in the 3-month follow-up showed that brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus

  3. Altered regional homogeneity in patients with late monocular blindness: a resting-state functional MRI study

    PubMed Central

    Huang, Xin; Ye, Cheng-Long; Zhong, Yu-Lin; Ye, Lei; Yang, Qi-Chen; Li, Hai-Jun; Jiang, Nan; Peng, De-Chang

    2017-01-01

    Many previous studies have demonstrated that the blindness patients have has functional and anatomical abnormalities in the visual and other vision-related cortex. However, changes in the brain function in late monocular blindness (MB) at rest are largely unknown. In this study, we investigated the underlying regional homogeneity (ReHo) of brain-activity abnormalities in patients with late MB and their relationship with clinical features. A total of 32 patients with MB (25 male and seven female) and 32 healthy controls (HCs) (25 male and seven female) closely matched in age, sex, and education underwent resting-state functional MRI scans. The ReHo method was used to assess local features of spontaneous brain activities. Patients with MB were distinguishable from HCs using the receiver operating characteristic curve. The relationship between the mean ReHo in brain regions and the behavioral performance was calculated using correlation analysis. Compared with HCs, patients with MB showed significantly decreased ReHo values in the right rectal gyrus, right cuneus, right anterior cingulate, and right lateral occipital cortex and increased ReHo values in the right inferior temporal gyrus, right frontal middle orbital, left posterior cingulate/precuneus, and left middle frontal gyrus. However, there was no significant relationship between the different mean ReHo values in the brain regions and the clinical features. Late MB involves abnormalities of the visual cortex and other vision-related brain regions, which may reflect brain dysfunction in these regions. PMID:28858036

  4. Individual differences in verbal creative thinking are reflected in the precuneus.

    PubMed

    Chen, Qun-Lin; Xu, Ting; Yang, Wen-Jing; Li, Ya-Dan; Sun, Jiang-Zhou; Wang, Kang-Cheng; Beaty, Roger E; Zhang, Qing-Lin; Zuo, Xi-Nian; Qiu, Jiang

    2015-08-01

    There have been many structural and functional imaging studies of creative thinking, but combining structural and functional magnetic resonance imaging (MRI) investigations with respect to creative thinking is still lacking. Thus, the aim of the present study was to explore the associations among inter-individual verbal creative thinking and both regional homogeneity and cortical morphology of the brain surface. We related the local functional homogeneity of spontaneous brain activity to verbal creative thinking and its dimensions--fluency, originality, and flexibility--by examining these inter-individual differences in a large sample of 268 healthy college students. Results revealed that people with high verbal creative ability and high scores for the three dimensions of creativity exhibited lower regional functional homogeneity in the right precuneus. Both cortical volume and thickness of the right precuneus were positively associated with individual verbal creativity and its dimensions. Moreover, originality was negatively correlated with functional homogeneity in the left superior frontal gyrus and positively correlated with functional homogeneity in the right occipito-temporal gyrus. In contrast, flexibility was positively correlated with functional homogeneity in the left superior and middle occipital gyrus. These findings provide additional evidence of a link between verbal creative thinking and brain structure in the right precuneus--a region involved in internally--focused attention and effective semantic retrieval-and further suggest that local functional homogeneity of verbal creative thinking has neurobiological relevance that is likely based on anatomical substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of outcome on the covariance between risk level and brain activity in adolescents with internet gaming disorder.

    PubMed

    Qi, Xin; Yang, Yongxin; Dai, Shouping; Gao, Peihong; Du, Xin; Zhang, Yang; Du, Guijin; Li, Xiaodong; Zhang, Quan

    2016-01-01

    Individuals with internet gaming disorder (IGD) often have impaired risky decision-making abilities, and IGD-related functional changes have been observed during neuroimaging studies of decision-making tasks. However, it is still unclear how feedback (outcomes of decision-making) affects the subsequent risky decision-making in individuals with IGD. In this study, twenty-four adolescents with IGD and 24 healthy controls (HCs) were recruited and underwent functional magnetic resonance imaging while performing the balloon analog risk task (BART) to evaluate the effects of prior outcomes on brain activity during subsequent risky decision-making in adolescents with IGD. The covariance between risk level and activation of the bilateral ventral medial prefrontal cortex, left inferior frontal cortex, right ventral striatum (VS), left hippocampus/parahippocampus, right inferior occipital gyrus/fusiform gyrus and right inferior temporal gyrus demonstrated interaction effects of group by outcome ( P  < 0.05, AlphaSim correction). The regions with interactive effects were defined as ROI, and ROI-based intergroup comparisons showed that the covariance between risk level and brain activation was significantly greater in adolescents with IGD compared with HCs after a negative outcome occurred ( P  < 0.05). Our results indicated that negative outcomes affected the covariance between risk level and activation of the brain regions related to value estimation (prefrontal cortex), anticipation of rewards (VS), and emotional-related learning (hippocampus/parahippocampus), which may be one of the underlying neural mechanisms of disadvantageous risky decision-making in adolescents with IGD.

  6. Grey matter atrophy in mild cognitive impairment / early Alzheimer disease associated with delusions: a voxel-based morphometry study.

    PubMed

    Ting, Windsor Kwan-Chun; Fischer, Corinne E; Millikin, Colleen P; Ismail, Zahinoor; Chow, Tiffany W; Schweizer, Tom A

    2015-01-01

    Grey matter atrophy in the right hemisphere has been shown to be more severe in dementia patients with delusions, suggesting a neuroanatomical localization that may be pertinent to impending neurodegeneration. Delusional symptoms may arise when atrophy in these areas reduces the regulatory functions of the right hemisphere, in tandem with asymmetric neuropathology in the left hemisphere. We hypothesized that delusional patients with either amnestic mild cognitive impairment (MCI) or early Alzheimer Disease (AD) would experience more pronounced grey matter atrophy in the right frontal lobe compared with matched patients without delusions. We used neuroimaging and clinical data obtained from the Alzheimer's Disease Neuroimaging Initiative. A comparison group of twenty-nine nondelusional MCI/early AD participants were compared with twenty-nine delusional participants using voxel-based morphometry, matched at baseline by age, sex, education, and Mini-Mental State Exam score. All included participants were diagnosed with amnestic MCI at study baseline. Fifteen voxel clusters of decreased grey matter in participants with delusions were detected. Prominent grey matter decrease was observed in the right precentral gyrus, right inferior frontal gyrus, right insula, and left middle occipital gyrus, areas that may be involved in control of thought and emotions. Greater right fronto-temporal grey matter atrophy was observed in MCI or early AD participants with delusions compared to matched patients without delusions. Consistent with our predictions, asymmetric grey matter atrophy in the right hemisphere may contribute to development of delusions through loss of executive inhibition.

  7. Reading therapy strengthens top–down connectivity in patients with pure alexia

    PubMed Central

    Penny, William; Barnes, Gareth R.; Crewes, Hilary; Wise, Richard J. S.; Price, Cathy J.; Leff, Alexander P.

    2013-01-01

    This study tested the efficacy of audio-visual reading training in nine patients with pure alexia, an acquired reading disorder caused by damage to the left ventral occipitotemporal cortex. As well as testing the therapy’s impact on reading speed, we investigated the functional reorganization underlying therapy-induced behavioural changes using magnetoencephalography. Reading ability was tested twice before training (t1 and t2) and twice after completion of the 6-week training period (t3 and t4). At t3 there was a significant improvement in word reading speed and reduction of the word length effect for trained words only. Magnetoencephalography at t3 demonstrated significant differences in reading network connectivity for trained and untrained words. The training effects were supported by increased bidirectional connectivity between the left occipital and ventral occipitotemporal perilesional cortex, and increased feedback connectivity from the left inferior frontal gyrus. Conversely, connection strengths between right hemisphere regions became weaker after training. PMID:23884814

  8. Long-term occipital nerve stimulation for drug-resistant chronic cluster headache.

    PubMed

    Leone, Massimo; Proietti Cecchini, Alberto; Messina, Giuseppe; Franzini, Angelo

    2017-07-01

    Introduction Chronic cluster headache is rare and some of these patients become drug-resistant. Occipital nerve stimulation has been successfully employed in open studies to treat chronic drug-resistant cluster headache. Data from large group of occipital nerve stimulation-treated chronic cluster headache patients with long duration follow-up are advantageous. Patients and methods Efficacy of occipital nerve stimulation has been evaluated in an experimental monocentric open-label study including 35 chronic drug-resistant cluster headache patients (mean age 42 years; 30 men; mean illness duration: 6.7 years). The primary end-point was a reduction in number of daily attacks. Results After a median follow-up of 6.1 years (range 1.6-10.7), 20 (66.7%) patients were responders (≥50% reduction in headache number per day): 12 (40%) responders showed a stable condition characterized by sporadic attacks, five responders had a 60-80% reduction in headache number per day and in the remaining three responders chronic cluster headache was transformed in episodic cluster headache. Ten (33.3%) patients were non-responders; half of these have been responders for a long period (mean 14.6 months; range 2-48 months). Battery depletion (21 patients 70%) and electrode migration (six patients - 20%) were the most frequent adverse events. Conclusions Occipital nerve stimulation efficacy is confirmed in chronic drug-resistant cluster headaches even after an exceptional long-term follow-up. Tolerance can occur years after improvement.

  9. Fusiform gyrus face selectivity relates to individual differences in facial recognition ability.

    PubMed

    Furl, Nicholas; Garrido, Lúcia; Dolan, Raymond J; Driver, Jon; Duchaine, Bradley

    2011-07-01

    Regions of the occipital and temporal lobes, including a region in the fusiform gyrus (FG), have been proposed to constitute a "core" visual representation system for faces, in part because they show face selectivity and face repetition suppression. But recent fMRI studies of developmental prosopagnosics (DPs) raise questions about whether these measures relate to face processing skills. Although DPs manifest deficient face processing, most studies to date have not shown unequivocal reductions of functional responses in the proposed core regions. We scanned 15 DPs and 15 non-DP control participants with fMRI while employing factor analysis to derive behavioral components related to face identification or other processes. Repetition suppression specific to facial identities in FG or to expression in FG and STS did not show compelling relationships with face identification ability. However, we identified robust relationships between face selectivity and face identification ability in FG across our sample for several convergent measures, including voxel-wise statistical parametric mapping, peak face selectivity in individually defined "fusiform face areas" (FFAs), and anatomical extents (cluster sizes) of those FFAs. None of these measures showed associations with behavioral expression or object recognition ability. As a group, DPs had reduced face-selective responses in bilateral FFA when compared with non-DPs. Individual DPs were also more likely than non-DPs to lack expected face-selective activity in core regions. These findings associate individual differences in face processing ability with selectivity in core face processing regions. This confirms that face selectivity can provide a valid marker for neural mechanisms that contribute to face identification ability.

  10. Sleep-Wake Differences in Relative Regional Cerebral Metabolic Rate for Glucose among Patients with Insomnia Compared with Good Sleepers.

    PubMed

    Kay, Daniel B; Karim, Helmet T; Soehner, Adriane M; Hasler, Brant P; Wilckens, Kristine A; James, Jeffrey A; Aizenstein, Howard J; Price, Julie C; Rosario, Bedda L; Kupfer, David J; Germain, Anne; Hall, Martica H; Franzen, Peter L; Nofzinger, Eric A; Buysse, Daniel J

    2016-10-01

    The neurobiological mechanisms of insomnia may involve altered patterns of activation across sleep-wake states in brain regions associated with cognition, self-referential processes, affect, and sleep-wake promotion. The objective of this study was to compare relative regional cerebral metabolic rate for glucose (rCMR glc ) in these brain regions across wake and nonrapid eye movement (NREM) sleep states in patients with primary insomnia (PI) and good sleeper controls (GS). Participants included 44 PI and 40 GS matched for age (mean = 37 y old, range 21-60), sex, and race. We conducted [ 18 F]fluoro-2-deoxy-D-glucose positron emission tomography scans in PI and GS during both morning wakefulness and NREM sleep at night. Repeated measures analysis of variance was used to test for group (PI vs. GS) by state (wake vs. NREM sleep) interactions in relative rCMR glc . Significant group-by-state interactions in relative rCMR glc were found in the precuneus/posterior cingulate cortex, left middle frontal gyrus, left inferior/superior parietal lobules, left lingual/fusiform/occipital gyri, and right lingual gyrus. All clusters were significant at P corrected < 0.05. Insomnia was characterized by regional alterations in relative glucose metabolism across NREM sleep and wakefulness. Significant group-by-state interactions in relative rCMR glc suggest that insomnia is associated with impaired disengagement of brain regions involved in cognition (left frontoparietal), self-referential processes (precuneus/posterior cingulate), and affect (left middle frontal, fusiform/lingual gyri) during NREM sleep, or alternatively, to impaired engagement of these regions during wakefulness. © 2016 Associated Professional Sleep Societies, LLC.

  11. Glutamate receptor activation in the kindled dentate gyrus.

    PubMed

    Behr, J; Heinemann, U; Mody, I

    2000-01-01

    The contribution of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA), and kainate receptor activation to the enhanced seizure susceptibility of the dentate gyrus was investigated in an experimental model of temporal lobe epilepsy. Using the specific NMDA and AMPA receptor antagonists D-APV and SYM 2206, we examined alterations in glutamate receptor-dependent synaptic currents 48 hours and 28 days after kindling in field-potential and voltage-clamp recordings. Forty-eight hours after kindling, the fractions of AMPA and NMDA receptor-mediated excitatory postsynaptic current components shifted dramatically in favor of the NMDA receptor-mediated response. Four weeks after kindling, however, AMPA and NMDA receptor-mediated excitatory postsynaptic currents reverted to control-like values. Neither single nor repetitive perforant path stimuli evoked kainate receptor-mediated excitatory postsynaptic currents in dentate gyrus granule cells of control or kindled rats. The enhanced excitability of the kindled dentate gyrus 48 hours after the last seizure most likely results from transiently enhanced NMDA receptor activation. The NMDA receptor seems to play a critical role in the induction of the kindled state rather than in the persistence of the enhanced seizure susceptibility.

  12. A Common CYFIP1 Variant at the 15q11.2 Disease Locus Is Associated with Structural Variation at the Language-Related Left Supramarginal Gyrus

    PubMed Central

    Woo, Young Jae; Wang, Tao; Guadalupe, Tulio; Nebel, Rebecca A.; Vino, Arianna; Del Bene, Victor A.; Molholm, Sophie; Ross, Lars A.; Zwiers, Marcel P.; Fisher, Simon E.; Foxe, John J.; Abrahams, Brett S.

    2016-01-01

    Copy number variants (CNVs) at the Breakpoint 1 to Breakpoint 2 region at 15q11.2 (BP1-2) are associated with language-related difficulties and increased risk for developmental disorders in which language is compromised. Towards underlying mechanisms, we investigated relationships between single nucleotide polymorphisms (SNPs) across the region and quantitative measures of human brain structure obtained by magnetic resonance imaging of healthy subjects. We report an association between rs4778298, a common variant at CYFIP1, and inter-individual variation in surface area across the left supramarginal gyrus (lh.SMG), a cortical structure implicated in speech and language in independent discovery (n = 100) and validation cohorts (n = 2621). In silico analyses determined that this same variant, and others nearby, is also associated with differences in levels of CYFIP1 mRNA in human brain. One of these nearby polymorphisms is predicted to disrupt a consensus binding site for FOXP2, a transcription factor implicated in speech and language. Consistent with a model where FOXP2 regulates CYFIP1 levels and in turn influences lh.SMG surface area, analysis of publically available expression data identified a relationship between expression of FOXP2 and CYFIP1 mRNA in human brain. We propose that altered CYFIP1 dosage, through aberrant patterning of the lh.SMG, may contribute to language-related difficulties associated with BP1-2 CNVs. More generally, this approach may be useful in clarifying the contribution of individual genes at CNV risk loci. PMID:27351196

  13. Anhedonia correlates with abnormal functional connectivity of the superior temporal gyrus and the caudate nucleus in patients with first-episode drug-naive major depressive disorder.

    PubMed

    Yang, Xin-Hua; Tian, Kai; Wang, Dong-Fang; Wang, Yi; Cheung, Eric F C; Xie, Guang-Rong; Chan, Raymond C K

    2017-08-15

    Recent empirical findings have suggested that imbalanced neural networks may underlie the pathophysiology of major depressive disorder (MDD). However, the contribution of the superior temporal gyrus (STG) and the caudate nucleus to its pathophysiology remains unclear. Functional magnetic resonance imaging (MRI) date were acquired from 40 patients with first-episode drug-naive MDD and 36 matched healthy controls during wakeful rest. We used whole-brain voxel-wise statistical maps to quantify within-group resting state functional connectivity (RSFC) and between-group differences of bilateral caudate and STG seeds. Compared with healthy controls, first-episode MDD patients were found to have reduced connectivity between the ventral caudate and several brain regions including the superior frontal gyrus (SFG), the superior parietal lobule (SPL) and the middle temporal gyrus (MTG), as well as increased connectivity with the cuneus. We also found increased connectivity between the left STG and the precuneus, the angular gyrus and the cuneus. Moreover, we found that increased anhedonia severity was correlated with the magnitude of ventral caudate functional connectivity with the cuneus and the MTG in MDD patients. Due to our small sample size, we did not correct the statistical threshold in the correlation analyses between clinical variables and connectivity abnormalities. The present study suggests that anhedonia is mainly associated with altered ventral caudate-cortical connectivity and highlights the importance of the ventral caudate in the neurobiology of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Occipital Face Area Is Causally Involved in Facial Viewpoint Perception

    PubMed Central

    Poltoratski, Sonia; König, Peter; Blake, Randolph; Tong, Frank; Ling, Sam

    2015-01-01

    Humans reliably recognize faces across a range of viewpoints, but the neural substrates supporting this ability remain unclear. Recent work suggests that neural selectivity to mirror-symmetric viewpoints of faces, found across a large network of visual areas, may constitute a key computational step in achieving full viewpoint invariance. In this study, we used repetitive transcranial magnetic stimulation (rTMS) to test the hypothesis that the occipital face area (OFA), putatively a key node in the face network, plays a causal role in face viewpoint symmetry perception. Each participant underwent both offline rTMS to the right OFA and sham stimulation, preceding blocks of behavioral trials. After each stimulation period, the participant performed one of two behavioral tasks involving presentation of faces in the peripheral visual field: (1) judging the viewpoint symmetry; or (2) judging the angular rotation. rTMS applied to the right OFA significantly impaired performance in both tasks when stimuli were presented in the contralateral, left visual field. Interestingly, however, rTMS had a differential effect on the two tasks performed ipsilaterally. Although viewpoint symmetry judgments were significantly disrupted, we observed no effect on the angle judgment task. This interaction, caused by ipsilateral rTMS, provides support for models emphasizing the role of interhemispheric crosstalk in the formation of viewpoint-invariant face perception. SIGNIFICANCE STATEMENT Faces are among the most salient objects we encounter during our everyday activities. Moreover, we are remarkably adept at identifying people at a glance, despite the diversity of viewpoints during our social encounters. Here, we investigate the cortical mechanisms underlying this ability by focusing on effects of viewpoint symmetry, i.e., the invariance of neural responses to mirror-symmetric facial viewpoints. We did this by temporarily disrupting neural processing in the occipital face area (OFA) using

  15. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    PubMed

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  16. Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?

    PubMed

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S

    2015-09-01

    Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region

  17. Altered cerebral activity associated with topiramate and its withdrawal in patients with epilepsy with language impairment: An fMRI study using the verb generation task.

    PubMed

    Tang, Yingying; Xia, Wei; Yu, Xiaofeng; Zhou, Bo; Wu, Xintong; Lui, Su; Luo, Chunyan; Huang, Xiaoqi; Ouyang, Luo; Chen, Qin; Gong, Qiyong; Zhou, Dong

    2016-06-01

    Topiramate (TPM) is well recognized for its negative effects on language in healthy volunteers and patients with epilepsy. The aim of this study was to investigate the brain activation and deactivation patterns in TPM-treated patients with epilepsy with language impairment and their dynamic alteration during TPM withdrawal using functional magnetic resonance imaging (fMRI) with the verb generation task (VGT). Twelve patients with epilepsy experiencing subjective language disfluency after TPM add-on treatment (TPM-on) and thirty sex- and age-matched healthy controls (HCs) were recruited. All subjects received a battery of neuropsychological tests and an fMRI scan with the VGT. Withdrawal of TPM was attempted in all patients. Only six patients reached complete withdrawal without seizure relapses (TPM-off), and these patients underwent a reassessment of neuropsychological and neuroimaging tests. The neuropsychological tests demonstrated objective language impairments in TPM-on patients. Compared with the HCs, the bilateral medial prefrontal cortex and the posterior midline and lateral parts of the default mode network (DMN) (including the bilateral posterior cingulate cortex (PCC), the right medial prefrontal cortex, the right angular gyrus, the right inferior temporal gyrus, and the bilateral supramarginal gyrus) in TPM-on patients failed to deactivate during the VGT. Their task-induced activation patterns were largely similar to those of the HCs. After TPM withdrawal, partial improvement of both task-induced deactivation of the DMN (the left parahippocampal gyrus and the bilateral PCC) and task-related activation of the language network (the right middle frontal gyrus and the left superior occipital gyrus) was identified along with partial improvement of neuropsychological tests. Task-induced deactivation is a more sensitive neuroimaging biomarker for the impaired language performance in patients administered TPM than task-induced activation. Disruption and

  18. Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes.

    PubMed

    Kaufmann, Liane; Vogel, Stephan E; Starke, Marc; Kremser, Christian; Schocke, Michael; Wood, Guilherme

    2009-08-05

    Functional magnetic resonance imaging (fMRI) studies investigating the neural mechanisms underlying developmental dyscalculia are scarce and results are thus far inconclusive. Main aim of the present study is to investigate the neural correlates of nonsymbolic number magnitude processing in children with and without dyscalculia. 18 children (9 with dyscalculia) were asked to solve a non-symbolic number magnitude comparison task (finger patterns) during brain scanning. For the spatial control task identical stimuli were employed, instructions varying only (judgment of palm rotation). This design enabled us to present identical stimuli with identical visual processing requirements in the experimental and the control task. Moreover, because numerical and spatial processing relies on parietal brain regions, task-specific contrasts are expected to reveal true number-specific activations. Behavioral results during scanning reveal that despite comparable (almost at ceiling) performance levels, task-specific activations were stronger in dyscalculic children in inferior parietal cortices bilaterally (intraparietal sulcus, supramarginal gyrus, extending to left angular gyrus). Interestingly, fMRI signal strengths reflected a group x task interaction: relative to baseline, controls produced significant deactivations in (intra)parietal regions bilaterally in response to number but not spatial processing, while the opposite pattern emerged in dyscalculics. Moreover, beta weights in response to number processing differed significantly between groups in left - but not right - (intra)parietal regions (becoming even positive in dyscalculic children). Overall, findings are suggestive of (a) less consistent neural activity in right (intra)parietal regions upon processing nonsymbolic number magnitudes; and (b) compensatory neural activity in left (intra)parietal regions in developmental dyscalculia.

  19. The role of the right superior temporal gyrus in stimulus-centered spatial processing.

    PubMed

    Shah-Basak, Priyanka P; Chen, Peii; Caulfield, Kevin; Medina, Jared; Hamilton, Roy H

    2018-05-01

    Although emerging neuropsychological evidence supports the involvement of temporal areas, and in particular the right superior temporal gyrus (STG), in allocentric neglect deficits, the role of STG in healthy spatial processing remains elusive. While several functional brain imaging studies have demonstrated involvement of the STG in tasks involving explicit stimulus-centered judgments, prior rTMS studies targeting the right STG did not find the expected neglect-like rightward bias in size judgments using the conventional landmark task. The objective of the current study was to investigate whether disruption of the right STG using inhibitory repetitive transcranial magnetic stimulation (rTMS) could impact stimulus-centered, allocentric spatial processing in healthy individuals. A lateralized version of the landmark task was developed to accentuate the dissociation between viewer-centered and stimulus-centered reference frames. We predicted that inhibiting activity in the right STG would decrease accuracy because of induced rightward bias centered on the line stimulus irrespective of its viewer-centered or egocentric locations. Eleven healthy, right-handed adults underwent the lateralized landmark task. After viewing each stimulus, participants had to judge whether the line was bisected, or whether the left (left-long trials) or the right segment (right-long trials) of the line was longer. Participants repeated the task before (pre-rTMS) and after (post-rTMS) receiving 20 min of 1 Hz rTMS over the right STG, the right supramarginal gyrus (SMG), and the vertex (a control site) during three separate visits. Linear mixed models for binomial data were generated with either accuracy or judgment errors as dependent variables, to compare 1) performance across trial types (bisection, non-bisection), and 2) pre- vs. post-rTMS performance between the vertex and the STG and the vertex and the SMG. Line eccentricity (z = 4.31, p < 0.0001) and line bisection (z

  20. The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interference Resolution in Verbal Working Memory

    ERIC Educational Resources Information Center

    Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian

    2009-01-01

    During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…

  1. Peripheral nerve stimulation for occipital neuralgia: surgical leads.

    PubMed

    Kapural, Leonardo; Sable, James

    2011-01-01

    Peripheral nerve stimulation (PNS) has been used for the treatment of various neuropathic pain disorders, including occipital neuralgia, for the patients who failed less-invasive therapeutic approaches. Several different mechanisms of pain relief were proposed when PNS is used to treat occipital neuralgia and clinical studies using various types of electrical leads suggested largely positive clinical responses in patients with mostly refractory, severe neuropathic pain. With advancements in cylindrical lead design for PNS and placement/implantation techniques, there are very few clear indications where 'paddle' (surgical) leads could be advantageous. Those include patients who experienced repeated migration of cylindrical lead as paddle lead may provide greater stability, who are experiencing unpleasant recruitment of surrounding muscle and/or motor nerve stimulation and for cases where skin erosions were caused by a cylindrical lead. However, disregarding the type of lead used, multiple clinical advantages of this minimally invasive, easily reversible approach include relatively low morbidity and a high treatment efficacy. Copyright © 2011 S. Karger AG, Basel.

  2. Pulsed radiofrequency for the treatment of occipital neuralgia: a prospective study with 6 months of follow-up.

    PubMed

    Vanelderen, Pascal; Rouwette, Tom; De Vooght, Pieter; Puylaert, Martine; Heylen, René; Vissers, Kris; Van Zundert, Jan

    2010-01-01

    Occipital neuralgia is a paroxysmal nonthrobbing, stabbing pain in the area of the greater or lesser occipital nerve caused by irritation of these nerves. Although several therapies have been reported, no criterion standard has emerged. This study reports on the results of a prospective trial with 6 months of follow-up in which pulsed radiofrequency treatment of the greater and/or lesser occipital nerve was used to treat this neuralgia. Patients presenting with clinical findings suggestive of occipital neuralgia and a positive test block of the occipital nerves with 2 mL of local anesthetic underwent a pulsed radiofrequency procedure of the culprit nerves. Mean scores for pain, quality of life, and medication intake were measured 1, 2, and 6 months after the procedure. Pain was measured by the visual analog and Likert scales, quality of life was measured by a modified brief pain questionnaire, and medication intake was measured by a Medication Quantification Scale. During a 29-month period, 19 patients were included in the study. Mean visual analog scale and median Medication Quantification Scale scores declined by 3.6 units (P = 0.002) and 8 units (P = 0.006), respectively, during 6 months. Approximately 52.6% of patients reported a score of 6 (pain improved substantially) or higher on the Likert scale after 6 months. No complications were reported. Pulsed radiofrequency treatment of the greater and/or lesser occipital nerve is a promising treatment of occipital neuralgia. This study warrants further placebo-controlled trials.

  3. Cultural differences in the lateral occipital complex while viewing incongruent scenes

    PubMed Central

    Yang, Yung-Jui; Goh, Joshua; Hong, Ying-Yi; Park, Denise C.

    2010-01-01

    Converging behavioral and neuroimaging evidence indicates that culture influences the processing of complex visual scenes. Whereas Westerners focus on central objects and tend to ignore context, East Asians process scenes more holistically, attending to the context in which objects are embedded. We investigated cultural differences in contextual processing by manipulating the congruence of visual scenes presented in an fMR-adaptation paradigm. We hypothesized that East Asians would show greater adaptation to incongruent scenes, consistent with their tendency to process contextual relationships more extensively than Westerners. Sixteen Americans and 16 native Chinese were scanned while viewing sets of pictures consisting of a focal object superimposed upon a background scene. In half of the pictures objects were paired with congruent backgrounds, and in the other half objects were paired with incongruent backgrounds. We found that within both the right and left lateral occipital complexes, Chinese participants showed significantly greater adaptation to incongruent scenes than to congruent scenes relative to American participants. These results suggest that Chinese were more sensitive to contextual incongruity than were Americans and that they reacted to incongruent object/background pairings by focusing greater attention on the object. PMID:20083532

  4. The association between hemispheric specialization for language production and for spatial attention depends on left-hand preference strength.

    PubMed

    Zago, Laure; Petit, Laurent; Mellet, Emmanuel; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2016-12-01

    Cerebral lateralization for language production and spatial attention and their relationships with manual preference strength (MPS) were assessed in a sample of 293 healthy volunteers, including 151 left-handers, using fMRI during covert sentence production (PROD) and line bisection judgment (LBJ) tasks, as compared to high- and low-level reference tasks. At the group level, we found the expected complementary hemispheric specialization (HS) with leftward asymmetries for PROD within frontal and temporal regions and rightward asymmetries for LBJ within frontal and posterior occipito-parieto-temporal regions. Individual hemispheric (HLI) and regional (frontal and occipital) lateralization indices (LI) were then calculated on the activation maps for PROD and LBJ. We found a correlation between the degree of rightward cerebral asymmetry and the leftward behavioral attentional bias recorded during LBJ task. This correlation was found when LBJ-LI was computed over the hemispheres, in the frontal lobes, but not in the occipital lobes. We then investigated whether language production and spatial attention cerebral lateralization relate to each other, and whether manual preference was a variable that impacted the complementary HS of these functions. No correlation was found between spatial and language LIs in the majority of our sample of participants, including right-handers with a strong right-hand preference (sRH, n=97) and mixed-handers (MH, n=97), indicating that these functions lateralized independently. By contrast, in the group of left-handers with a strong left-hand preference (sLH, n= 99), a negative correlation was found between language and spatial lateralization. This negative correlation was found when LBJ-LI and PROD-LI were computed over the hemispheres, in the frontal lobes and between the occipital lobes for LBJ and the frontal lobes for PROD. These findings underline the importance to include sLH in the study sample to reveal the underlying mechanisms of

  5. Selectivity for the human body in the fusiform gyrus.

    PubMed

    Peelen, Marius V; Downing, Paul E

    2005-01-01

    Functional neuroimaging studies have revealed human brain regions, notably in the fusiform gyrus, that respond selectively to images of faces as opposed to other kinds of objects. Here we use fMRI to show that the mid-fusiform gyrus responds with nearly the same level of selectivity to images of human bodies without faces, relative to tools and scenes. In a group-average analysis (n = 22), the fusiform activations identified by contrasting faces versus tools and bodies versus tools are very similar. Analyses of within-subjects regions of interest, however, show that the peaks of the two activations occupy close but distinct locations. In a second experiment, we find that the body-selective fusiform region, but not the face-selective region, responds more to stick figure depictions of bodies than to scrambled controls. This result further distinguishes the two foci and confirms that the body-selective response generalizes to abstract image formats. These results challenge accounts of the mid-fusiform gyrus that focus solely on faces and suggest that this region contains multiple distinct category-selective neural representations.

  6. Temporal characteristics of audiovisual information processing.

    PubMed

    Fuhrmann Alpert, Galit; Hein, Grit; Tsai, Nancy; Naumer, Marcus J; Knight, Robert T

    2008-05-14

    In complex natural environments, auditory and visual information often have to be processed simultaneously. Previous functional magnetic resonance imaging (fMRI) studies focused on the spatial localization of brain areas involved in audiovisual (AV) information processing, but the temporal characteristics of AV information flow in these regions remained unclear. In this study, we used fMRI and a novel information-theoretic approach to study the flow of AV sensory information. Subjects passively perceived sounds and images of objects presented either alone or simultaneously. Applying the measure of mutual information, we computed for each voxel the latency in which the blood oxygenation level-dependent signal had the highest information content about the preceding stimulus. The results indicate that, after AV stimulation, the earliest informative activity occurs in right Heschl's gyrus, left primary visual cortex, and the posterior portion of the superior temporal gyrus, which is known as a region involved in object-related AV integration. Informative activity in the anterior portion of superior temporal gyrus, middle temporal gyrus, right occipital cortex, and inferior frontal cortex was found at a later latency. Moreover, AV presentation resulted in shorter latencies in multiple cortical areas compared with isolated auditory or visual presentation. The results provide evidence for bottom-up processing from primary sensory areas into higher association areas during AV integration in humans and suggest that AV presentation shortens processing time in early sensory cortices.

  7. Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia.

    PubMed

    Tamboer, P; Vorst, H C M; Ghebreab, S; Scholte, H S

    2016-01-01

    Meta-analytic studies suggest that dyslexia is characterized by subtle and spatially distributed variations in brain anatomy, although many variations failed to be significant after corrections of multiple comparisons. To circumvent issues of significance which are characteristic for conventional analysis techniques, and to provide predictive value, we applied a machine learning technique--support vector machine--to differentiate between subjects with and without dyslexia. In a sample of 22 students with dyslexia (20 women) and 27 students without dyslexia (25 women) (18-21 years), a classification performance of 80% (p < 0.001; d-prime = 1.67) was achieved on the basis of differences in gray matter (sensitivity 82%, specificity 78%). The voxels that were most reliable for classification were found in the left occipital fusiform gyrus (LOFG), in the right occipital fusiform gyrus (ROFG), and in the left inferior parietal lobule (LIPL). Additionally, we found that classification certainty (e.g. the percentage of times a subject was correctly classified) correlated with severity of dyslexia (r = 0.47). Furthermore, various significant correlations were found between the three anatomical regions and behavioural measures of spelling, phonology and whole-word-reading. No correlations were found with behavioural measures of short-term memory and visual/attentional confusion. These data indicate that the LOFG, ROFG and the LIPL are neuro-endophenotype and potentially biomarkers for types of dyslexia related to reading, spelling and phonology. In a second and independent sample of 876 young adults of a general population, the trained classifier of the first sample was tested, resulting in a classification performance of 59% (p = 0.07; d-prime = 0.65). This decline in classification performance resulted from a large percentage of false alarms. This study provided support for the use of machine learning in anatomical brain imaging.

  8. Machine learning and dyslexia: Classification of individual structural neuro-imaging scans of students with and without dyslexia

    PubMed Central

    Tamboer, P.; Vorst, H.C.M.; Ghebreab, S.; Scholte, H.S.

    2016-01-01

    Meta-analytic studies suggest that dyslexia is characterized by subtle and spatially distributed variations in brain anatomy, although many variations failed to be significant after corrections of multiple comparisons. To circumvent issues of significance which are characteristic for conventional analysis techniques, and to provide predictive value, we applied a machine learning technique – support vector machine – to differentiate between subjects with and without dyslexia. In a sample of 22 students with dyslexia (20 women) and 27 students without dyslexia (25 women) (18–21 years), a classification performance of 80% (p < 0.001; d-prime = 1.67) was achieved on the basis of differences in gray matter (sensitivity 82%, specificity 78%). The voxels that were most reliable for classification were found in the left occipital fusiform gyrus (LOFG), in the right occipital fusiform gyrus (ROFG), and in the left inferior parietal lobule (LIPL). Additionally, we found that classification certainty (e.g. the percentage of times a subject was correctly classified) correlated with severity of dyslexia (r = 0.47). Furthermore, various significant correlations were found between the three anatomical regions and behavioural measures of spelling, phonology and whole-word-reading. No correlations were found with behavioural measures of short-term memory and visual/attentional confusion. These data indicate that the LOFG, ROFG and the LIPL are neuro-endophenotype and potentially biomarkers for types of dyslexia related to reading, spelling and phonology. In a second and independent sample of 876 young adults of a general population, the trained classifier of the first sample was tested, resulting in a classification performance of 59% (p = 0.07; d-prime = 0.65). This decline in classification performance resulted from a large percentage of false alarms. This study provided support for the use of machine learning in anatomical brain imaging. PMID:27114899

  9. Left Posterior Parietal Cortex Participates in Both Task Preparation and Episodic Retrieval

    PubMed Central

    Phillips, Jeffrey S.; Velanova, Katerina; Wolk, David A.; Wheeler, Mark E.

    2012-01-01

    Optimal memory retrieval depends not only on the fidelity of stored information, but also on the attentional state of the subject. Factors such as mental preparedness to engage in stimulus processing can facilitate or hinder memory retrieval. The current study used functional magnetic resonance imaging (fMRI) to distinguish preparatory brain activity before episodic and semantic retrieval tasks from activity associated with retrieval itself. A catch-trial imaging paradigm permitted separation of neural responses to preparatory task cues and memory probes. Episodic and semantic task preparation engaged a common set of brain regions, including the bilateral intraparietal sulcus (IPS), left fusiform gyrus (FG), and the pre-supplementary motor area (pre-SMA). In the subsequent retrieval phase, the left IPS was among a set of frontoparietal regions that responded differently to old and new stimuli. In contrast, the right IPS responded to preparatory cues with little modulation during memory retrieval. The findings support a strong left-lateralization of retrieval success effects in left parietal cortex, and further indicate that left IPS performs operations that are common to both task preparation and memory retrieval. Such operations may be related to attentional control, monitoring of stimulus relevance, or retrieval. PMID:19285142

  10. Relational vs. attributive interpretation of nominal compounds differentially engages angular gyrus and anterior temporal lobe

    PubMed Central

    Boylan, Christine; Trueswell, John C.; Thompson-Schill, Sharon L.

    2018-01-01

    The angular gyrus (AG) and anterior temporal lobe (ATL) have been found to respond to a number of tasks involving combinatorial processing. In this study, we investigate the conceptual combination of nominal compounds, and ask whether ATL/AG activity is modulated by the type of combinatorial operation applied to a nominal compound. We compare relational and attributive interpretations of nominal compounds and find that ATL and AG both discriminate these two types, but in distinct ways. While right AG demonstrated greater positive task-responsive activity for relational compounds, there was a greater negative deflection in the BOLD response in left AG for relational compounds. In left ATL, we found an earlier peak in subjects’ BOLD response curves for attributive interpretations. In other words, we observed dissociations in both AG and ATL between relational and attributive nominal compounds, with regard to magnitude in the former and to timing in the latter. These findings expand on prior studies that posit roles for both AG and ATL in conceptual processing generally, and in conceptual combination specifically, by indicating possible functional specializations of these two regions within a larger conceptual knowledge network. PMID:28236762

  11. The transverse occipital ligament: anatomy and potential functional significance.

    PubMed

    Tubbs, R Shane; Griessenauer, Christoph J; McDaniel, Jenny Gober; Burns, Amanda M; Kumbla, Anjali; Cohen-Gadol, Aaron A

    2010-03-01

    Knowledge of the anatomy of ligaments that bind the craniocervical junction is important for treating patients with lesions of this region. Although the anatomy and function of these ligaments have been well described, those of the transverse occipital ligament (TOL) have remained enigmatic. To describe the anatomy and functions of the transverse occipital ligament. Via a posterior approach, 9 cadaveric specimens underwent dissection of the craniocervical junction with special attention to the presence and anatomy of the TOL. The TOL was identified in 77.8% of the specimens. The ligament was found to be rectangular with fibers running horizontally between the lateral aspects of the foramen magnum. The attachment of each ligament near the occipital condyle was consistent, and each ligament was found superior to the transverse portion of the cruciform ligament and inserted just posterior to the lateral attachment sites of the alar ligaments. The average width, length, and thickness of the TOL was 0.34, 1.94, and 0.13 cm, respectively. The TOL in some specimens also had connections to the alar and transverse ligaments. The TOL was found in the majority of our specimens. The possible functions of this ligament when attached to the alar ligaments include providing additional support to these structures in stabilizing lateral bending, flexion, and axial rotation of the head. Knowledge of this ligament may aid in further understanding craniocervical stability and help in differentiating normal from pathology via imaging modalities.

  12. Occipital Neuralgia from C2 Cavernous Malformation

    PubMed Central

    Ha, Sang-woo; Choi, Jin-gyu; Son, Byung-chul

    2018-01-01

    A unique case is presented of chronic occipital neuralgia (ON) caused by cavernous malformation (CM) in the intramedullary C2 spinal cord and subsequent pain relief and remodeling of allodynic pain following dorsal root rhizotomy. A 53-year-old male presented with a 30-year history of chronic allodynic, paroxysmal lancinating pain in the greater and lesser occipital nerves. Typically, the pain was aggravated with neck extension and head movement. Magnetic resonance imaging showed a CM in the right posterolateral side of the intramedullary C2 cord. Considering potential risks associated with removal of the lesion, intradural C1-3 dorsal root rhizotomy with dentate ligament resection was performed. The paroxysmal lancinating pain of ON was significantly alleviated, and the remodeling of the extent of allodynic pain was noted after C1-3 dorsal root rhizotomy. These changes gradually occurred during the second postoperative month, and this effect was maintained for 24 months postoperatively. Significant reduction in chronic allodynic pain of secondary ON caused by cervicomedullary CM involving central sensitization in the trigeminocervical complex was observed with reduction of irritating, afferent input with C1-C3 dorsal root rhizotomy. PMID:29682056

  13. Occipital Neuralgia from C2 Cavernous Malformation.

    PubMed

    Ha, Sang-Woo; Choi, Jin-Gyu; Son, Byung-Chul

    2018-01-01

    A unique case is presented of chronic occipital neuralgia (ON) caused by cavernous malformation (CM) in the intramedullary C2 spinal cord and subsequent pain relief and remodeling of allodynic pain following dorsal root rhizotomy. A 53-year-old male presented with a 30-year history of chronic allodynic, paroxysmal lancinating pain in the greater and lesser occipital nerves. Typically, the pain was aggravated with neck extension and head movement. Magnetic resonance imaging showed a CM in the right posterolateral side of the intramedullary C2 cord. Considering potential risks associated with removal of the lesion, intradural C1-3 dorsal root rhizotomy with dentate ligament resection was performed. The paroxysmal lancinating pain of ON was significantly alleviated, and the remodeling of the extent of allodynic pain was noted after C1-3 dorsal root rhizotomy. These changes gradually occurred during the second postoperative month, and this effect was maintained for 24 months postoperatively. Significant reduction in chronic allodynic pain of secondary ON caused by cervicomedullary CM involving central sensitization in the trigeminocervical complex was observed with reduction of irritating, afferent input with C1-C3 dorsal root rhizotomy.

  14. Effects of Fronto-Temporal Transcranial Direct Current Stimulation on Auditory Verbal Hallucinations and Resting-State Functional Connectivity of the Left Temporo-Parietal Junction in Patients With Schizophrenia

    PubMed Central

    Mondino, Marine; Jardri, Renaud; Suaud-Chagny, Marie-Françoise; Saoud, Mohamed; Poulet, Emmanuel; Brunelin, Jérôme

    2016-01-01

    Auditory verbal hallucinations (AVH) in patients with schizophrenia are associated with abnormal hyperactivity in the left temporo-parietal junction (TPJ) and abnormal connectivity between frontal and temporal areas. Recent findings suggest that fronto-temporal transcranial Direct Current stimulation (tDCS) with the cathode placed over the left TPJ and the anode over the left prefrontal cortex can alleviate treatment-resistant AVH in patients with schizophrenia. However, brain correlates of the AVH reduction are unclear. Here, we investigated the effect of tDCS on the resting-state functional connectivity (rs-FC) of the left TPJ. Twenty-three patients with schizophrenia and treatment-resistant AVH were randomly allocated to receive 10 sessions of active (2 mA, 20min) or sham tDCS (2 sessions/d for 5 d). We compared the rs-FC of the left TPJ between patients before and after they received active or sham tDCS. Relative to sham tDCS, active tDCS significantly reduced AVH as well as the negative symptoms. Active tDCS also reduced rs-FC of the left TPJ with the left anterior insula and the right inferior frontal gyrus and increased rs-FC of the left TPJ with the left angular gyrus, the left dorsolateral prefrontal cortex and the precuneus. The reduction of AVH severity was correlated with the reduction of the rs-FC between the left TPJ and the left anterior insula. These findings suggest that the reduction of AVH induced by tDCS is associated with a modulation of the rs-FC within an AVH-related brain network, including brain areas involved in inner speech production and monitoring. PMID:26303936

  15. Altered white matter integrity and development in children with autism: a combined voxel-based morphometry and diffusion imaging study.

    PubMed

    Mengotti, Paola; D'Agostini, Serena; Terlevic, Robert; De Colle, Cristina; Biasizzo, Elsa; Londero, Danielle; Ferro, Adele; Rambaldelli, Gianluca; Balestrieri, Matteo; Zanini, Sergio; Fabbro, Franco; Molteni, Massimo; Brambilla, Paolo

    2011-02-01

    A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism. Twenty children with autism (mean age= 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values. Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development. These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may

  16. Neural activation during response inhibition is associated with adolescents’ frequency of risky sex and substance use

    PubMed Central

    Feldstein Ewing, Sarah W.; Houck, Jon M.; Bryan, Angela D.

    2015-01-01

    While many have identified the important role of the developing brain in youth risk behavior, few have examined the relationship between salient cognitive factors (response inhibition) and different types of real-world adolescent health risk behaviors (substance use and risky sex) within the same sample of youth. We therefore sought to examine these relationships with 95 high-risk youth (ages 14-18; M age = 16.29 years). We examined the relationship between blood oxygen level dependent (BOLD) response to an fMRI-based cognitive task designed to assess response inhibition (Go/NoGo) and past month risk behavior (number of substance use days; number of unprotected sex days). For this sample of youth, we found significant negative correlations between past month substance use and response inhibition within the left inferior frontal gyrus (IFG) and right insula (uncorrected p < .001; extent threshold ≥ 10 voxels). In addition, in the same contrast, we found significant positive correlations between past month risky sex and activation within the right IFG and left middle occipital gyrus (uncorrected p < .001; extent threshold ≥ 10 voxels). These results suggest the particular relevance of these regions in this compelling, albeit slightly different pattern of response for adolescent substance use and risky sex. PMID:25532443

  17. Neural activation during response inhibition is associated with adolescents' frequency of risky sex and substance use.

    PubMed

    Feldstein Ewing, Sarah W; Houck, Jon M; Bryan, Angela D

    2015-05-01

    While many have identified the important role of the developing brain in youth risk behavior, few have examined the relationship between salient cognitive factors (response inhibition) and different types of real-world adolescent health risk behaviors such as substance use and risky sex, within the same sample of youth. We therefore sought to examine these relationships with 95 high-risk youth (ages 14-18; M age = 16.29 years). We examined blood oxygen level dependent (BOLD) response to an fMRI-based cognitive task designed to assess response inhibition (Go/NoGo) and past month risk behavior (number of substance use days; number of unprotected sex days). For this sample of youth, we found significant negative correlations between past month substance use and response inhibition within the left inferior frontal gyrus (IFG) and right insula (uncorrected p < .001; extent threshold ≥ 10 voxels). In addition, in the same contrast, we found significant positive correlations between past month risky sex and activation within the right IFG and left middle occipital gyrus (uncorrected p < .001; extent threshold ≥ 10 voxels). These results suggest the particular relevance of these regions in this compelling, albeit slightly different, pattern of response for adolescent risky behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Fusiform Gyrus Dysfunction is Associated with Perceptual Processing Efficiency to Emotional Faces in Adolescent Depression: A Model-Based Approach

    PubMed Central

    Ho, Tiffany C.; Zhang, Shunan; Sacchet, Matthew D.; Weng, Helen; Connolly, Colm G.; Henje Blom, Eva; Han, Laura K. M.; Mobayed, Nisreen O.; Yang, Tony T.

    2016-01-01

    While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed. PMID:26869950

  19. Palilalia, echolalia, and echopraxia-palipraxia as ictal manifestations in a patient with left frontal lobe epilepsy.

    PubMed

    Cho, Yang-Je; Han, Sang-Don; Song, Sook Keun; Lee, Byung In; Heo, Kyoung

    2009-06-01

    Palilalia is a relatively rare pathologic speech behavior and has been reported in various neurologic and psychiatric disorders. We encountered a case of palilalia, echolalia, and echopraxia-palipraxia as ictal phenomena of left frontal lobe epilepsy. A 55-year-old, right-handed man was admitted because of frequent episodes of rapid reiteration of syllables. Video-electroencephalography monitoring revealed stereotypical episodes of palilalia accompanied by rhythmic head nodding and right-arm posturing with ictal discharges over the left frontocentral area. He also displayed echolalia or echopraxia-palipraxia, partially responding to an examiner's stimulus. Magnetic resonance imaging revealed encephalomalacia on the left superior frontal gyrus and ictal single photon emission computed tomography showed hyperperfusion just above the lesion, corresponding to the left supplementary motor area (SMA), and subcortical nuclei. This result suggests that the neuroanatomic substrate involved in the generation of these behaviors as ictal phenomena might exist in the SMA of the left frontal lobe.

  20. Automated measurement of hippocampal subfields in PTSD: Evidence for smaller dentate gyrus volume.

    PubMed

    Hayes, Jasmeet P; Hayes, Scott; Miller, Danielle R; Lafleche, Ginette; Logue, Mark W; Verfaellie, Mieke

    2017-12-01

    Smaller hippocampal volume has been consistently observed as a biomarker of posttraumatic stress disorder (PTSD). However, less is known about individual volumes of the subfields composing the hippocampus such as the dentate gyrus and cornu ammonis (CA) fields 1-4 in PTSD. The aim of the present study was to examine the hypothesis that volume of the dentate gyrus, a region putatively involved in distinctive encoding of similar events, is smaller in individuals with PTSD versus trauma-exposed controls. Ninety-seven recent war veterans underwent structural imaging on a 3T scanner and were assessed for PTSD using the Clinician-Administered PTSD Scale. The hippocampal subfield automated segmentation program available through FreeSurfer was used to segment the CA4/dentate gyrus, CA1, CA2/3, presubiculum, and subiculum of the hippocampus. Results showed that CA4/dentate gyrus subfield volume was significantly smaller in veterans with PTSD and scaled inversely with PTSD symptom severity. These results support the view that dentate gyrus abnormalities are associated with symptoms of PTSD, although additional evidence is necessary to determine whether these abnormalities underlie fear generalization and other memory alterations in PTSD. Published by Elsevier Ltd.

  1. Cortical Integration of Audio-Visual Information

    PubMed Central

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  2. Alexia for Braille following bilateral occipital stroke in an early blind woman.

    PubMed

    Hamilton, R; Keenan, J P; Catala, M; Pascual-Leone, A

    2000-02-07

    Recent functional imaging and neurophysiologic studies indicate that the occipital cortex may play a role in Braille reading in congenitally and early blind subjects. We report on a woman blind from birth who sustained bilateral occipital damage following an ischemic stroke. Prior to the stroke, the patient was a proficient Braille reader. Following the stroke, she was no longer able to read Braille yet her somatosensory perception appeared otherwise to be unchanged. This case supports the emerging evidence for the recruitment of striate and prestriate cortex for Braille reading in early blind subjects.

  3. Long-term outcome and prognostic factors after C2 ganglion decompression in 68 consecutive patients with intractable occipital neuralgia.

    PubMed

    Choi, Kyu-Sun; Ko, Yong; Kim, Young-Soo; Yi, Hyeong-Joong

    2015-01-01

    Occipital neuralgia is a rare cause of severe headache characterized by paroxysmal shooting or stabbing pain in the distribution of the greater occipital or lesser occipital nerve. In cases of intractable occipital neuralgia, a definite cause has not been uncovered, so various types of treatment have been applied. The aim of this study is to evaluate the prognostic factors, safety, and long-term clinical efficacy of second cervical (C2) ganglion decompression for intractable occipital neuralgia. Retrospective analysis was performed in 68 patients with medically refractory occipital neuralgia who underwent C2 ganglion decompression. Factors based on patients' demography, pre- and postoperative headache severity/characteristics, medication use, and postoperative complications were investigated. Therapeutic success was defined as pain relief by at least 50 % without ongoing medication. The visual analog scale (VAS) score was significantly reduced between the preoperative and most recent follow-up period. One year later, excellent or good results were achieved in 57 patients (83.9 %), but poor in 11 patients (16.1 %). The long-term outcome after 5 years was only slightly less than the 1-year outcome; 47 of the 68 patients (69.1 %) obtained therapeutic success. Longer duration of headache (over 13 years; p = 0.029) and presence of retro-orbital/frontal radiation (p = 0.040) were significantly associated with poor prognosis. In the current study, C2 ganglion decompression provided durable, adequate pain relief with minimal complications in patients suffering from intractable occipital neuralgia. Due to the minimally invasive and nondestructive nature of this surgical procedure, C2 ganglion decompression is recommended as an initial surgical treatment option for intractable occipital neuralgia before attempting occipital nerve stimulation. However, further study is required to manage the pain recurrence associated with longstanding nerve injury.

  4. An anatomical study of the transversus nuchae muscle: Application to better understanding occipital neuralgia.

    PubMed

    Watanabe, Koichi; Saga, Tsuyoshi; Iwanaga, Joe; Tabira, Yoko; Yamaki, Koh-Ichi

    2017-01-01

    The transversus nuchae muscle appears inconsistently in the occipital region. It has gained attention as one of the muscles composing the superficial musculoaponeurotic system (SMAS). The purpose of this study was to clarify its detailed anatomical features. We examined 124 sides of 62 cadavers. The transversus nuchae muscle was identified when present and examined after it had been completely exposed. We also examined its relationship to the occipital cutaneous nerves.The transversus nuchae muscle was detected in 40 sides (40/124, 32.2%) of 26 cadavers; it was present bilaterally in 14 and unilaterally in 12. It originated from the external occipital protuberance; 43% of the observed muscles inserted around the mastoid process, and 58% curved upward around the mastoid process and became the uppermost bundle of the platysma. In one case, an additional bundle originated from the lower posterior border of the sternocleidomastoid muscle and coursed obliquely upward along with platysma. Ninety percent of the muscles ran below the sling through which the greater occipital nerve passed; 65% of the lesser occipital nerves ran deep to the muscle, and 55% of the great auricular nerves ran superficial to it. Our observations clarify the unique anatomical features of the transversus nuchae muscle. We found that it occurs at a rate similar to that described in previous reports, but its arrangement is variable. Further investigations will be performed to clarify its innervation and other anatomical features. Clin. Anat. 30:32-38, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation

    PubMed Central

    Peelle, Jonathan E.; Bonner, Michael F.; Grossman, Murray

    2016-01-01

    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex

  6. Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation.

    PubMed

    Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F; Grossman, Murray; Hamilton, Roy H

    2016-03-30

    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend "plaid" and "jacket" as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of "plaid jacket." Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like "tiny radish" relative to non-meaningful combinations, such as "fast blueberry," when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic

  7. EEG Correlates of Preparatory Orienting, Contextual Updating, and Inhibition of Sensory Processing in Left Spatial Neglect.

    PubMed

    Lasaponara, Stefano; D'Onofrio, Marianna; Pinto, Mario; Dragone, Alessio; Menicagli, Dario; Bueti, Domenica; De Lucia, Marzia; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2018-04-11

    attention spared in left spatial neglect? Does the sparing of preparatory orienting have an impact on deficits in reflexive orienting and in the assignment of behavioral relevance to the left space? We show that supramodal preparatory orienting in frontal areas is entirely spared in neglect patients though this does not counterbalance deficits in preparatory parietal-occipital activity, reflexive orienting, and contextual updating. This points at relevant functional dissociations among different components of attention and suggests that improving voluntary attention in N+ might be behaviorally ineffective unless associated with stimulations boosting the response of posterior parietal-occipital areas. Copyright © 2018 the authors 0270-6474/18/383792-17$15.00/0.

  8. Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes

    PubMed Central

    Kaufmann, Liane; Vogel, Stephan E; Starke, Marc; Kremser, Christian; Schocke, Michael; Wood, Guilherme

    2009-01-01

    Background Functional magnetic resonance imaging (fMRI) studies investigating the neural mechanisms underlying developmental dyscalculia are scarce and results are thus far inconclusive. Main aim of the present study is to investigate the neural correlates of nonsymbolic number magnitude processing in children with and without dyscalculia. Methods 18 children (9 with dyscalculia) were asked to solve a non-symbolic number magnitude comparison task (finger patterns) during brain scanning. For the spatial control task identical stimuli were employed, instructions varying only (judgment of palm rotation). This design enabled us to present identical stimuli with identical visual processing requirements in the experimental and the control task. Moreover, because numerical and spatial processing relies on parietal brain regions, task-specific contrasts are expected to reveal true number-specific activations. Results Behavioral results during scanning reveal that despite comparable (almost at ceiling) performance levels, task-specific activations were stronger in dyscalculic children in inferior parietal cortices bilaterally (intraparietal sulcus, supramarginal gyrus, extending to left angular gyrus). Interestingly, fMRI signal strengths reflected a group × task interaction: relative to baseline, controls produced significant deactivations in (intra)parietal regions bilaterally in response to number but not spatial processing, while the opposite pattern emerged in dyscalculics. Moreover, beta weights in response to number processing differed significantly between groups in left – but not right – (intra)parietal regions (becoming even positive in dyscalculic children). Conclusion Overall, findings are suggestive of (a) less consistent neural activity in right (intra)parietal regions upon processing nonsymbolic number magnitudes; and (b) compensatory neural activity in left (intra)parietal regions in developmental dyscalculia. PMID:19653919

  9. Brain activation for reading and listening comprehension: An fMRI study of modality effects and individual differences in language comprehension

    PubMed Central

    Buchweitz, Augusto; Mason, Robert A.; Tomitch, Lêda M. B.; Just, Marcel Adam

    2010-01-01

    The study compared the brain activation patterns associated with the comprehension of written and spoken Portuguese sentences. An fMRI study measured brain activity while participants read and listened to sentences about general world knowledge. Participants had to decide if the sentences were true or false. To mirror the transient nature of spoken sentences, visual input was presented in rapid serial visual presentation format. The results showed a common core of amodal left inferior frontal and middle temporal gyri activation, as well as modality specific brain activation associated with listening and reading comprehension. Reading comprehension was associated with more left-lateralized activation and with left inferior occipital cortex (including fusiform gyrus) activation. Listening comprehension was associated with extensive bilateral temporal cortex activation and more overall activation of the whole cortex. Results also showed individual differences in brain activation for reading comprehension. Readers with lower working memory capacity showed more activation of right-hemisphere areas (spillover of activation) and more activation in the prefrontal cortex, potentially associated with more demand placed on executive control processes. Readers with higher working memory capacity showed more activation in a frontal-posterior network of areas (left angular and precentral gyri, and right inferior frontal gyrus). The activation of this network may be associated with phonological rehearsal of linguistic information when reading text presented in rapid serial visual format. The study demonstrates the modality fingerprints for language comprehension and indicates how low- and high working memory capacity readers deal with reading text presented in serial format. PMID:21526132

  10. Relevance of Spectral Cues for Auditory Spatial Processing in the Occipital Cortex of the Blind

    PubMed Central

    Voss, Patrice; Lepore, Franco; Gougoux, Frédéric; Zatorre, Robert J.

    2011-01-01

    We have previously shown that some blind individuals can localize sounds more accurately than their sighted counterparts when one ear is obstructed, and that this ability is strongly associated with occipital cortex activity. Given that spectral cues are important for monaurally localizing sounds when one ear is obstructed, and that blind individuals are more sensitive to small spectral differences, we hypothesized that enhanced use of spectral cues via occipital cortex mechanisms could explain the better performance of blind individuals in monaural localization. Using positron-emission tomography (PET), we scanned blind and sighted persons as they discriminated between sounds originating from a single spatial position, but with different spectral profiles that simulated different spatial positions based on head-related transfer functions. We show here that a sub-group of early blind individuals showing superior monaural sound localization abilities performed significantly better than any other group on this spectral discrimination task. For all groups, performance was best for stimuli simulating peripheral positions, consistent with the notion that spectral cues are more helpful for discriminating peripheral sources. PET results showed that all blind groups showed cerebral blood flow increases in the occipital cortex; but this was also the case in the sighted group. A voxel-wise covariation analysis showed that more occipital recruitment was associated with better performance across all blind subjects but not the sighted. An inter-regional covariation analysis showed that the occipital activity in the blind covaried with that of several frontal and parietal regions known for their role in auditory spatial processing. Overall, these results support the notion that the superior ability of a sub-group of early-blind individuals to localize sounds is mediated by their superior ability to use spectral cues, and that this ability is subserved by cortical processing in

  11. Antecedent occipital alpha band activity predicts the impact of oculomotor events in perceptual switching

    PubMed Central

    Nakatani, Hironori; van Leeuwen, Cees

    2013-01-01

    Oculomotor events such as blinks and saccades transiently interrupt the visual input and, even though this mostly goes undetected, these brief interruptions could still influence the percept. In particular, both blinking and saccades facilitate switching in ambiguous figures such as the Necker cube. To investigate the neural state antecedent to these oculomotor events during the perception of an ambiguous figure, we measured the human scalp electroencephalogram (EEG). When blinking led to perceptual switching, antecedent occipital alpha band activity exhibited a transient increase in amplitude. When a saccade led to switching, a series of transient increases and decreases in amplitude was observed in the antecedent occipital alpha band activity. Our results suggest that the state of occipital alpha band activity predicts the impact of oculomotor events on the percept. PMID:23745106

  12. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.

    PubMed

    Ptito, M; Fumal, A; de Noordhout, A Martens; Schoenen, J; Gjedde, A; Kupers, R

    2008-01-01

    Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex. The number of cortical sites inducing tactile sensations appeared to be related to the number of hours of Braille reading per day, Braille reading speed and dexterity. These data, taken in conjunction with previous anatomical, behavioural and functional imaging results, suggest the presence of a polysynaptic cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference hypothesis.

  13. Angular Gyrus Involvement at Encoding and Retrieval Is Associated with Durable But Less Specific Memories.

    PubMed

    van der Linden, Marieke; Berkers, Ruud M W J; Morris, Richard G M; Fernández, Guillén

    2017-09-27

    After consolidation, information belonging to a mental schema is better remembered, but such memory can be less specific when it comes to details. A neuronal mechanism consistent with this behavioral pattern could result from a dynamic interaction that entails mediation by a specific cortical network with associated hippocampal disengagement. We now report that, in male and female adult human subjects, encoding and later consolidation of a series of objects embedded in a semantic schema was associated with a buildup of activity in the angular gyrus (AG) that predicted memory 24 h later. In parallel, the posterior hippocampus became less involved as schema objects were encoded successively. Hippocampal disengagement was related to an increase in falsely remembering objects that were not presented at encoding. During both encoding and retrieval, the AG and lateral occipital complex (LOC) became functionally connected and this interaction was beneficial for successful retrieval. Therefore, a network including the AG and LOC enhances the overnight retention of schema-related memories and their simultaneous detachment from the hippocampus reduces the specificity of the memory. SIGNIFICANCE STATEMENT This study provides the first empirical evidence on how the hippocampus and the neocortex interact dynamically when acquiring and then effectively retaining durable knowledge that is associated to preexisting knowledge, but they do so at the cost of memory specificity. This interaction is a fundamental mnemonic operation that has thus far been largely overlooked in memory research. Copyright © 2017 the authors 0270-6474/17/379474-12$15.00/0.

  14. Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.

    PubMed

    Takeda, Atsushi; Tamano, Haruna; Ogawa, Taisuke; Takada, Shunsuke; Nakamura, Masatoshi; Fujii, Hiroaki; Ando, Masaki

    2014-11-01

    The role of perforant pathway-dentate granule cell synapses in cognitive behavior was examined focusing on synaptic Zn(2+) signaling in the dentate gyrus. Object recognition memory was transiently impaired when extracellular Zn(2+) levels were decreased by injection of clioquinol and N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylendediamine. To pursue the effect of the loss and/or blockade of Zn(2+) signaling in dentate granule cells, ZnAF-2DA (100 pmol, 0.1 mM/1 µl), an intracellular Zn(2+) chelator, was locally injected into the dentate molecular layer of rats. ZnAF-2DA injection, which was estimated to chelate intracellular Zn(2+) signaling only in the dentate gyrus, affected object recognition memory 1 h after training without affecting intracellular Ca(2+) signaling in the dentate molecular layer. In vivo dentate gyrus long-term potentiation (LTP) was affected under the local perfusion of the recording region (the dentate granule cell layer) with 0.1 mM ZnAF-2DA, but not with 1-10 mM CaEDTA, an extracellular Zn(2+) chelator, suggesting that the blockade of intracellular Zn(2+) signaling in dentate granule cells affects dentate gyrus LTP. The present study demonstrates that intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory, probably via dentate gyrus LTP expression. Copyright © 2014 Wiley Periodicals, Inc.

  15. Functional substrate for memory function differences between patients with left and right mesial temporal lobe epilepsy associated with hippocampal sclerosis.

    PubMed

    Jin, Seung-Hyun; Chung, Chun Kee

    2015-10-01

    Little is known about the functional substrate for memory function differences in patients with left or right mesial temporal lobe epilepsy (mTLE) associated with hippocampal sclerosis (HS) from an electrophysiological perspective. To characterize these differences, we hypothesized that hippocampal theta connectivity in the resting-state might be different between patients with left and right mTLE with HS and be correlated with memory performance. Resting-state hippocampal theta connectivity, identified via whole-brain magnetoencephalography, was evaluated. Connectivity and memory function in 41 patients with mTLE with HS (left mTLE=22; right mTLE=19) were compared with those in 46 age-matched healthy controls and 28 patients with focal cortical dysplasia (FCD) but without HS. Connectivity between the right hippocampus and the left middle frontal gyrus was significantly stronger in patients with right mTLE than in patients with left mTLE. Moreover, this connectivity was positively correlated with delayed verbal recall and recognition scores in patients with mTLE. Patients with left mTLE had greater delayed recall impairment than patients with right mTLE and FCD. Similarly, delayed recognition performance was worse in patients with left mTLE than in patients with right mTLE and FCD. No significant differences in memory function between patients with right mTLE and FCD were detected. Patients with right mTLE showed significantly stronger hippocampal theta connectivity between the right hippocampus and left middle frontal gyrus than patients with FCD and left mTLE. Our results suggest that right hippocampal-left middle frontal theta connectivity could be a functional substrate that can account for differences in memory function between patients with left and right mTLE. This functional substrate might be related to different compensatory mechanisms against the structural hippocampal lesions in left and right mTLE groups. Given the positive correlation between

  16. Reduced left precentral regional responses in patients with major depressive disorder and history of suicide attempts.

    PubMed

    Tsujii, Noa; Mikawa, Wakako; Tsujimoto, Emi; Adachi, Toru; Niwa, Atsushi; Ono, Hisae; Shirakawa, Osamu

    2017-01-01

    Previous neuroimaging studies have revealed frontal and temporal functional abnormalities in patients with major depressive disorder (MDD) and a history of suicidal behavior. However, it is unknown whether multi-channel near-infrared spectroscopy (NIRS) signal changes among individuals with MDD are associated with a history of suicide attempts and a diathesis for suicidal behavior (impulsivity, hopelessness, and aggression). Therefore, we aimed to explore frontotemporal hemodynamic responses in depressed patients with a history of suicide attempts using 52-channel NIRS. We recruited 30 patients with MDD and a history of suicidal behavior (suicide attempters; SAs), 38 patient controls without suicidal behavior (non-attempters; NAs), and 40 healthy controls (HCs) matched by age, gender ratio, and estimated IQ. Regional hemodynamic responses during a verbal fluency task (VFT) were monitored using NIRS. Our results showed that severities of depression, impulsivity, aggression, and hopelessness were similar between SAs and NAs. Both patient groups had significantly reduced activation compared with HCs in the bilateral frontotemporal regions. Post hoc analyses revealed that SAs exhibited a smaller hemodynamic response in the left precentral gyrus than NAs and HCs. Furthermore, the reduced response in the left inferior frontal gyrus was negatively correlated with impulsivity level and hemodynamic responses in the right middle frontal gyrus were negatively associated with hopelessness and aggression in SAs but not in NAs and HCs. Our findings suggest that MDD patients with a history of suicide attempts demonstrate patterns of VFT-induced NIRS signal changes different from those demonstrated by individuals without a history of suicidal behaviors, even in cases where clinical symptoms are similar. NIRS has a relatively high time resolution, which may help visually differentiate SAs from NAs.

  17. Males and females differ in brain activation during cognitive tasks.

    PubMed

    Bell, Emily C; Willson, Morgan C; Wilman, Alan H; Dave, Sanjay; Silverstone, Peter H

    2006-04-01

    To examine the effect of gender on regional brain activity, we utilized functional magnetic resonance imaging (fMRI) during a motor task and three cognitive tasks; a word generation task, a spatial attention task, and a working memory task in healthy male (n = 23) and female (n = 10) volunteers. Functional data were examined for group differences both in the number of pixels activated, and the blood-oxygen-level-dependent (BOLD) magnitude during each task. Males had a significantly greater mean activation than females in the working memory task with a greater number of pixels being activated in the right superior parietal gyrus and right inferior occipital gyrus, and a greater BOLD magnitude occurring in the left inferior parietal lobe. However, despite these fMRI changes, there were no significant differences between males and females on cognitive performance of the task. In contrast, in the spatial attention task, men performed better at this task than women, but there were no significant functional differences between the two groups. In the word generation task, there were no external measures of performance, but in the functional measurements, males had a significantly greater mean activation than females, where males had a significantly greater BOLD signal magnitude in the left and right dorsolateral prefrontal cortex, the right inferior parietal lobe, and the cingulate. In neither of the motor tasks (right or left hand) did males and females perform differently. Our fMRI findings during the motor tasks were a greater mean BOLD signal magnitude in males in the right hand motor task, compared to females where males had an increased BOLD signal magnitude in the right inferior parietal gyrus and in the left inferior frontal gyrus. In conclusion, these results demonstrate differential patterns of activation in males and females during a variety of cognitive tasks, even though performance in these tasks may not vary, and also that variability in performance may not

  18. Regional grey matter structure differences between transsexuals and healthy controls--a voxel based morphometry study.

    PubMed

    Simon, Lajos; Kozák, Lajos R; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender.

  19. Regional Grey Matter Structure Differences between Transsexuals and Healthy Controls—A Voxel Based Morphometry Study

    PubMed Central

    Simon, Lajos; Kozák, Lajos R.; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender. PMID:24391851

  20. Occipital Nerve Stimulation for the Treatment of Patients With Medically Refractory Occipital Neuralgia: Congress of Neurological Surgeons Systematic Review and Evidence-Based Guideline.

    PubMed

    Sweet, Jennifer A; Mitchell, Laura S; Narouze, Samer; Sharan, Ashwini D; Falowski, Steven M; Schwalb, Jason M; Machado, Andre; Rosenow, Joshua M; Petersen, Erika A; Hayek, Salim M; Arle, Jeffrey E; Pilitsis, Julie G

    2015-09-01

    Occipital neuralgia (ON) is a disorder characterized by sharp, electrical, paroxysmal pain, originating from the occiput and extending along the posterior scalp, in the distribution of the greater, lesser, and/or third occipital nerve. Occipital nerve stimulation (ONS) constitutes a promising therapy for medically refractory ON because it is reversible with minimal side effects and has shown continued efficacy with long-term follow-up. To conduct a systematic literature review and provide treatment recommendations for the use of ONS for the treatment of patients with medically refractory ON. A systematic literature search was conducted using the PubMed database and the Cochrane Library to locate articles published between 1966 and April 2014 using MeSH headings and keywords relevant to ONS as a means to treat ON. A second literature search was conducted using the PubMed database and the Cochrane Library to locate articles published between 1966 and June 2014 using MeSH headings and keywords relevant to interventions that predict response to ONS in ON. The strength of evidence of each article that underwent full text review and the resulting strength of recommendation were graded according to the guidelines development methodology of the American Association of Neurological Surgeons/Congress of Neurological Surgeons Joint Guidelines Committee. Nine studies met the criteria for inclusion in this guideline. All articles provided Class III Level evidence. Based on the data derived from this systematic literature review, the following Level III recommendation can be made: the use of ONS is a treatment option for patients with medically refractory ON.