Sample records for occultation refractivity profiles

  1. Evaluation of Refractivity Profiles from CHAMP and SAC-C GPS Radio Occultation

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Ao, Chi On; Joiner, Joanna; delaTorreJuarez, Manuel; Hoff, Raymond

    2002-01-01

    The GeoForschungsZentrum's Challenging Minisatellite Payload for Geophysical Research and Application (CHAMP, Germany-US) and the Comision Nacional de Actividades Especiales' Satelite de Aplicaciones Cientificas-C (SAC-C, Argentina-US) missions are the first missions to carry a second-generation Blackjack Global Positioning System (GPS) receiver. One of the new features of this receiver is its ability to sense the lower troposphere closer to the surface than the proof-of-concept GPS Meteorology experiment (GPS/MET). Since their launch, CHAMP and SAC-C have collected thousands of GPS radio occultations, representing a wealth of measurements available for data assimilation and Numerical Weather Prediction (NWP). In order to evaluate the refractivity data derived by the Jet Propulsion Laboratory (JPL) from raw radio occultation measurements, we use Data Assimilation Office (DAO) 6-hour forecasts as an independent state of the atmosphere. We compare CHAMP and SAC-C refractivity (processed by JPL) with refractivity calculated from the DAO global fields of temperature, water vapor content and humidity. We show statistics of the differences as well as histograms of the differences.

  2. Recovery of refractivity profiles and pressure and temperature distributions in the lower atmosphere from satellite-to-satellite radio occultation data

    NASA Technical Reports Server (NTRS)

    Murray, C. W., Jr.

    1977-01-01

    The feasibility of recovering parameters from one-way range rate between two earth orbiting spacecraft during occultation of the tracking signal by the earth's lower atmosphere. The tracking data is inverted by an integral transformation (Abel transform) to obtain a vertical refractivity profile above the point of closest approach of the ray connecting the satellites. Pressure and temperature distributions can be obtained from values of dry refractivity using the hydrostatic equation and perfect gas law. Two methods are investigated for recovering pressure and temperature parameters. Results show that recovery is much more sensitive to satellite velocity errors than to satellite position errors. An error analysis is performed. An example is given demonstrating recovery of parameters from radio occultation data obtained during satellite-to-satellite tracking of Nimbus 6 by the ATS 6 satellite.

  3. On the reduction of occultation light curves. [stellar occultations by planets

    NASA Technical Reports Server (NTRS)

    Wasserman, L.; Veverka, J.

    1973-01-01

    The two basic methods of reducing occultation light curves - curve fitting and inversion - are reviewed and compared. It is shown that the curve fitting methods have severe problems of nonuniqueness. In addition, in the case of occultation curves dominated by spikes, it is not clear that such solutions are meaningful. The inversion method does not suffer from these drawbacks. Methods of deriving temperature profiles from refractivity profiles are then examined. It is shown that, although the temperature profiles are sensitive to small errors in the refractivity profile, accurate temperatures can be obtained, particularly at the deeper levels of the atmosphere. The ambiguities that arise when the occultation curve straddles the turbopause are briefly discussed.

  4. Estimation and evaluation of COSMIC radio occultation excess phase using undifferenced measurements

    NASA Astrophysics Data System (ADS)

    Xia, Pengfei; Ye, Shirong; Jiang, Kecai; Chen, Dezhong

    2017-05-01

    In the GPS radio occultation technique, the atmospheric excess phase (AEP) can be used to derive the refractivity, which is an important quantity in numerical weather prediction. The AEP is conventionally estimated based on GPS double-difference or single-difference techniques. These two techniques, however, rely on the reference data in the data processing, increasing the complexity of computation. In this study, an undifferenced (ND) processing strategy is proposed to estimate the AEP. To begin with, we use PANDA (Positioning and Navigation Data Analyst) software to perform the precise orbit determination (POD) for the purpose of acquiring the position and velocity of the mass centre of the COSMIC (The Constellation Observing System for Meteorology, Ionosphere and Climate) satellites and the corresponding receiver clock offset. The bending angles, refractivity and dry temperature profiles are derived from the estimated AEP using Radio Occultation Processing Package (ROPP) software. The ND method is validated by the COSMIC products in typical rising and setting occultation events. Results indicate that rms (root mean square) errors of relative refractivity differences between undifferenced and atmospheric profiles (atmPrf) provided by UCAR/CDAAC (University Corporation for Atmospheric Research/COSMIC Data Analysis and Archive Centre) are better than 4 and 3 % in rising and setting occultation events respectively. In addition, we also compare the relative refractivity bias between ND-derived methods and atmPrf profiles of globally distributed 200 COSMIC occultation events on 12 December 2013. The statistical results indicate that the average rms relative refractivity deviation between ND-derived and COSMIC profiles is better than 2 % in the rising occultation event and better than 1.7 % in the setting occultation event. Moreover, the observed COSMIC refractivity profiles from ND processing strategy are further validated using European Centre for Medium

  5. Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction.

    PubMed

    Dalaudier, F; Kan, V; Gurvich, A S

    2001-02-20

    We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth's atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.

  6. Stellar occultation studies of the solar system

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1979-01-01

    The paper covers the principles, observational procedures, and results relating to occultations of stars by solar system bodies other than the moon. Physical processes involved in occultations are presented including (1) extinction by ring material, (2) differential refraction by a planetary atmosphere, (3) extinction by a planetary atmosphere, and (4) Fresnel diffraction by sharp edges. It is noted that from a sufficient number of immersion and emersion timings of a stellar occultation, the radius and ellipticity of the occulting body can be accurately determined. From an occultation by a planet having an atmosphere, temperature, pressure, and number density profiles can be obtained along with information about the composition of the atmosphere and the extinction.

  7. Critical Analysis of Different Methods to Retrieve Atmosphere Humidity Profiles from GNSS Radio Occultation Observations

    NASA Astrophysics Data System (ADS)

    Vespe, Francesco; Benedetto, Catia

    2013-04-01

    The huge amount of GPS Radio Occultation (RO) observations currently available thanks to space mission like COSMIC, CHAMP, GRACE, TERRASAR-X etc., have greatly encouraged the research of new algorithms suitable to extract humidity, temperature and pressure profiles of the atmosphere in a more and more precise way. For what concern the humidity profiles in these last years two different approaches have been widely proved and applied: the "Simple" and the 1DVAR methods. The Simple methods essentially determine dry refractivity profiles from temperature analysis profiles and hydrostatic equation. Then the dry refractivity is subtracted from RO refractivity to achieve the wet component. Finally from the wet refractivity is achieved humidity. The 1DVAR approach combines RO observations with profiles given by the background models with both the terms weighted with the inverse of covariance matrix. The advantage of "Simple" methods is that they are not affected by bias due to the background models. We have proposed in the past the BPV approach to retrieve humidity. Our approach can be classified among the "Simple" methods. The BPV approach works with dry atmospheric CIRA-Q models which depend on latitude, DoY and height. The dry CIRA-Q refractivity profile is selected estimating the involved parameters in a non linear least square fashion achieved by fitting RO observed bending angles through the stratosphere. The BPV as well as all the other "Simple" methods, has as drawback the unphysical occurrence of negative "humidity". Thus we propose to apply a modulated weighting of the fit residuals just to minimize the effects of this inconvenient. After a proper tuning of the approach, we plan to present the results of the validation.

  8. A Prototype Balloon-borne GPS Occultation Profiling System for Polar Studies

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Maldonado Vargas, J.; Cocquerez, P.; Rabier, F.; Guidard, V.

    2011-12-01

    Global warming has focused attention on the polar regions and recent changes in the distribution of sea and land ice. This provides motivation for improving climate and weather models in order to understand the potential future evolution of the cryosphere. Accurate modeling of climate and weather relies heavily on remote sensing observations because of the inaccessibility to in-situ meteorological observations. However, validating satellite observations over the poles, and testing their reliable assimilation into numerical weather prediction models, is challenging because of the extreme environment, topography, and land surface characteristics. Any additional upper-air observations to help confirm and improve the results from satellite data assimilation are useful for this long-term objective. We have developed a stratospheric balloon-borne GPS radio occultation system, in order to provide refractivity and derived temperature profiles for this purpose. We present the prototype instrument that flew in the first research campaign of its type during October-November 2010, as part of the Antarctic CONCORDIASI campaign to demonstrate the feasibility of the concept. Preliminary comparisons of observed excess phase delay profiles agree with those simulated from nearby Météofrance ARPEGE model profiles. During the two balloon flights, which lasted a combined total of 107 days, more than 700 occultations were recorded, this number being limited by the data transmission rates. More than 35% of the profiles descended as low as 5km above sea level. The potential for contributing to the goal of improving atmospheric models in the Antarctic is discussed, and several suggestions are made for further improvements to the system.

  9. Pioneer 10 and 11 radio occultations by Jupiter. [atmospheric temperature structure

    NASA Technical Reports Server (NTRS)

    Kliore, A. J.; Woiceshyn, P. M.; Hubbard, W. B.

    1977-01-01

    Results on the temperature structure of the Jovian atmosphere are reviewed which were obtained by applying an integral inversion technique combined with a model for the planet's shape based on gravity data to Pioneer 10 and 11 radio-occultation data. The technique applied to obtain temperature profiles from the Pioneer data consisted of defining a center of refraction based on a computation of the radius of curvature in the plane of refraction and the normal direction to the equipotential surface at the closest approach point of a ray. Observations performed during the Pioneer 10 entry and exit and the Pioneer 11 exit are analyzed, sources of uncertainty are identified, and representative pressure-temperature profiles are presented which clearly show a temperature inversion between 10 and 100 mb. Effects of zonal winds on the reliability of radio-occultation temperature profiles are briefly discussed.

  10. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground

    NASA Astrophysics Data System (ADS)

    Hurter, F.; Maier, O.

    2013-11-01

    We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a) zenith path delays that are a byproduct of the GPS (global positioning system) processing, (b) ground meteorological measurements, (c) wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d) radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is -16% and quartiles are 5% to 40% for the lower

  11. Effects of turbulence on average refraction angles in occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Eshleman, V. R.; Haugstad, B. S.

    1978-01-01

    Four separable effects of atmospheric turbulence on average refraction angles in occultation experiments are derived from a simplified analysis, and related to more general formulations by B. S. Haugstad. The major contributors are shown to be due to gradients in height of the strength of the turbulence, and the sense of the resulting changes in refraction angles is explained in terms of Fermat's principle. Because the results of analyses of such gradient effects by W. B. Hubbard and J. R. Jokipii are expressed in other ways, a special effort is made to compare all of the predictions on a common basis. We conclude that there are fundamental differences, and use arguments based on energy conservation and Fermat's principle to help characterize the discrepancies.

  12. New Atmospheric Observations from the Airborne GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS)

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Xie, F.; Muradyan, P.; Garrison, J. L.; Lulich, T.; Voo, J.; Larson, K. M.

    2008-12-01

    The Airborne GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) was deployed on the NCAR HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) aircraft to make atmospheric observations over the Gulf of Mexico coastal region in February 2008. The objective of the measurements was to test the performance of the system in comparisons with radiosonde profiles and dropsonde profiles that were also collected during the field campaign. The airborne GNSS radio occultation measures of GNSS signals from satellites that are setting or rising behind the Earth's limb relative to the receiver on board an aircraft. High-gain side-looking antennas and a 10MHz GPS Recording System that records the raw RF signal make this set of instrumentation unique, and especially adapted for open-loop tracking observations in the lower atmosphere. Measurements of the amount of refraction in the signal ray paths are inverted using an Abel transform procedure to retrieve a profile of refractivity, which depends on atmospheric pressure, temperature and relative humidity. The airborne geometry, in contrast to the space- borne satellite occultation geometry, is affected by a large drift in the tangent point location, that is the location of the closest point to the Earth surface, as the ray path descends in the atmosphere. Therefore plans for the validation campaign included releasing dropsondes in the plane of the line of sight of the satellite-receiver occultation geometry in order to study this effect. Careful timing and location of the flight path was used to coordinate occultation times with operational and supplementary radiosonde launches. A total of 6 days of balloon sounding data were collected with 20 dropsondes and 28 supplementary radiosonde profiles. A discussion of the technical performance of the system will be presented, which describes the signal characteristics and antenna performance. Preliminary results on the quality of retrieved

  13. Refraction of Radio Waves on the Radio-Occultation Satellite-to-Satellite Paths as a Characteristic of the Atmospheric State

    NASA Astrophysics Data System (ADS)

    Matyugov, S. S.; Yakovlev, O. I.; Pavelyev, A. G.; Pavelyev, A. A.; Anufriev, V. A.

    2017-10-01

    We present the results of analyzing the radio-wave refractive characteristics measured on the radio-occultation paths between the GPS navigation satellites and the FORMOSAT-3 research satellites in the central region of the European territory of Russia in 2007-2013. The diurnal, seasonal, and annual variations in the refraction angle at altitudes of 2 to 25 km are discussed. It is shown that the refraction angle can be used as an independent characteristic of the atmospheric state and its long-term variation trends. Diurnal and nocturnal variations in the refraction angle in the winter and summer seasons are analyzed. Trends in the atmospheric refraction variations over seven years are discussed.

  14. Vertical Profiles of Phosphine and Ammonia on Saturn Derived from the First Cassini RSS Occultation Observation Using Forward Modeling

    NASA Astrophysics Data System (ADS)

    Mohammed, P. N.; Steffes, P. G.; Kliore, A. J.; Anabtawi, A.; Asmar, S. W.; Barbinis, E.; Goltz, G.; Johnston, D.; Marouf, E. A.

    2005-08-01

    The results from the first Cassini Radio Science Subsystem(RSS) occultation, which occurred at the Rev 7 periapse, are being used to derive profiles of the atmospheric constituents encountered by the three frequency (S-, X-, and Ka-band) radio link. A computer model has been developed to simulate ray paths and the ray path parameters in the atmosphere of Saturn encountered during occultation (see Mohammed and Steffes, Bull. Amer. Astron. Soc., 36, no. 4, 1107, 2004). This forward model, which can be used on any oblate planet, will be used to determine the refractive defocusing and derive the profiles of phosphine and ammonia using data observed at Ka-band (32 GHz or 9.3 mm), X-band (8.4 GHz or 3.6 cm) and S-band (2.3 GHz or 13 cm). The results of laboratory measurements of the 9 mm opacity of phosphine and ammonia (Mohammed and Steffes, ICARUS 166, 425-435, 2003) and the centimeter wavelength opacity of these constituents measured under simulated conditions for Saturn (see, e.g., Hoffman et. al. ICARUS 152, 172-184, 2001) were incorporated into the forward radio occultation model used in these derivations.

  15. Sampling the Vertical Moisture Structure of an Atmospheric River Event Using Airborne GPS Radio Occultation Profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Malloy, K.; Murphy, B.; Sussman, J.; Zhang, W.

    2015-12-01

    Atmospheric rivers (ARs) are of high concern in California, bringing significant rain to the region over extended time periods of up to 5 days, potentially causing floods, and more importantly, contributing to the Sierra snowpack that provides much of the regional water resources. The CalWater project focuses on predicting the variability of the West Coast water supply, including improving AR forecasting. Unfortunately, data collection over the ocean remains a challenge and impacts forecasting accuracy. One novel technique to address this issue includes airborne GPS radio occultation (ARO), using broadcast GPS signals from space to measure the signal ray path bending angle and refractivity to retrieve vertical water vapor profiles. The Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) system was developed for this purpose for recording and processing high-sample rate (10MHz) signals in the lower troposphere. Previous studies (Murphy et al, 2014) have shown promising results in acquiring airborne GPS RO data, comparing it to dropsondes and numerical weather models. CalWater launched a field campaign in the beginning of 2015 which included testing GISMOS ARO on the NOAA GIV aircraft for AR data acquisition, flying into the February 6th AR event that brought up to 35 cm of rain to central California. This case study will compare airborne GPS RO refractivity profiles to the NCEP-NCAR final reanalysis model and dropsonde profiles. We will show the data distribution and explain the sampling characteristics, providing high resolution vertical information to the sides of the aircraft in a manner complementary to dropsondes beneath the flight track. We will show how this method can provide additional reliable data during the development of AR storms.

  16. Assimilation of Radio Occultation Data From the Chinese Fengyun Meterological Satellite at GRAPES

    NASA Astrophysics Data System (ADS)

    LIU, Y.

    2016-12-01

    GNOS (GNSS Occultation Sounder) is a new radio occultation payload onboard the Chinese FY-3 series satellites, which probes the Earth's neutral atmosphere and the ionosphere. GNOS is capable of tracking the signals of both the Beidou (the Chinese navigation satellite system) and the GPS navigation satellite systems. The first FY-3C satellite with GNOS launch on 23 September 2013 successfully, and has more than 500 RO events daily, including approximately 400 GPS and 100 Beidou RO events. In this paper the data quality from FY3C GNOS, including GPS and Beidou radio accultation data, will be presented. The impact experiments of assimilating GNOS radio accultation refractivity profiles in GRAPES (Global and Regional Assimilation Prediction System) a new generation numerical model system of China Meteorological Administration, are also presented. Results show that the lowest probing height of 90% GNOS profile can reach 4KM away from the surface. The bias of GNOS refractivity profiles compared to reanalysis and radiosonde data is greater than those of COSMIC and GRAS, but after data quality control the standard deviation of GNOS refractivity is approximately 2%. The results of the GNOS assimilation experiments show that GNOS data can improve the analysis in the upper troposphere and lower stratosphere, particularly in the southern hemisphere and the ocean, which produce the neutral and positive impacts in GRAPES assimilation system. The combined impact of assimilating both GPS and Beidou GNOS radio occultation is greater than assimilating either instrument individually.

  17. Sensing Water Vapon via Spacecraft Radio Occultation Observations

    NASA Technical Reports Server (NTRS)

    Kursinski, E. Robert; Hajj, George A.

    2000-01-01

    The radio occultation technique has been used to characterize planetary atmospheres since the 1960's spanning atmospheric pressures from 16 microbars to several bars. In 1988, the use of GPS signals to make occultation observations of Earth's atmosphere was realized by Tom Yunck and Gunnar Lindal at JPL. In the GPS to low-Earth-orbiter limb- viewing occultation geometry, Fresnel diffraction yield a unique combination of high vertical resolution of 100 m to 1 km at long wavelengths (approx. 20 cm) insensitive to particulate scattering which allows routine limb sounding from the lower mesosphere through the troposphere. A single orbiting GPS/GLONASS receiver can observe - 1000 to 1400 daily occultations providing as many daily, high vertical resolution soundings as the present global radiosonde network, but with far more evenly distributed, global coverage. The occultations yield profiles of refractivity as a function of height. In the cold, dry conditions of the upper troposphere and above (T less than 240 K), profiles of density, pressure (geopotential), and temperature can be derived. Given additional temperature information, water vapor can be derived in the midddle and lower troposphere with a unique combination of vertical resolution, global distribution and insensitivity to clouds and precipitation to an accuracy of approx. 0.2 g/kg. At low latitudes, moisture profiles will be accurate to 1-5% within the convective boundary layer and better than 20% below 6 to 7 km. Accuracies of climatological averages should be approx. 0. 1 g/kg limited by the biases in the temperature estimates. To use refractivity to constrain water vapor, knowledge of temperature is required. The simplest approach is to use the temperature field from an analysis such as the 6 hour ECMWF global analysis interpolated to the locations of each occultation. A better approach is to combine the temperature and moisture fields from such an analysis with the occultation refractivity in a weighting

  18. Errors incurred in profile reconstruction and methods for increasing inversion accuracies for occultation type measurements

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Pirraglia, J. A.

    1972-01-01

    A method for augmenting the occultation experiment is described for slightly refractive media. This method which permits separation of the components of the gradient of refractivity, appears applicable to most of the planets for a major portion of their atmospheres and ionospheres. The analytic theory is given, and the results of numerical tests with a radially and angularly varying model of an ionosphere are discussed.

  19. Correcting negatively biased refractivity below ducts in GNSS radio occultation: an optimal estimation approach towards improving planetary boundary layer (PBL) characterization

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Nung; de la Torre Juárez, Manuel; Ao, Chi O.; Xie, Feiqin

    2017-12-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) measurements are promising in sensing the vertical structure of the Earth's planetary boundary layer (PBL). However, large refractivity changes near the top of PBL can cause ducting and lead to a negative bias in the retrieved refractivity within the PBL (below ˜ 2 km). To remove the bias, a reconstruction method with assumption of linear structure inside the ducting layer models has been proposed by Xie et al. (2006). While the negative bias can be reduced drastically as demonstrated in the simulation, the lack of high-quality surface refractivity constraint makes its application to real RO data difficult. In this paper, we use the widely available precipitable water (PW) satellite observation as the external constraint for the bias correction. A new framework is proposed to incorporate optimization into the RO reconstruction retrievals in the presence of ducting conditions. The new method uses optimal estimation to select the best refractivity solution whose PW and PBL height best match the externally retrieved PW and the known a priori states, respectively. The near-coincident PW retrievals from AMSR-E microwave radiometer instruments are used as an external observational constraint. This new reconstruction method is tested on both the simulated GNSS-RO profiles and the actual GNSS-RO data. Our results show that the proposed method can greatly reduce the negative refractivity bias when compared to the traditional Abel inversion.

  20. Peripheral refraction profiles in subjects with low foveal refractive errors.

    PubMed

    Tabernero, Juan; Ohlendorf, Arne; Fischer, M Dominik; Bruckmann, Anna R; Schiefer, Ulrich; Schaeffel, Frank

    2011-03-01

    To study the variability of peripheral refraction in a population of 43 subjects with low foveal refractive errors. A scan of the refractive error in the vertical pupil meridian of the right eye of 43 subjects (age range, 18 to 80 years, foveal spherical equivalent, < ± 2.5 diopter) over the central ± 45° of the visual field was performed using a recently developed angular scanning photorefractor. Refraction profiles across the visual field were fitted with four different models: (1) "flat model" (refractions about constant across the visual field), (2) "parabolic model" (refractions follow about a parabolic function), (3) "bi-linear model" (linear change of refractions with eccentricity from the fovea to the periphery), and (4) "box model" ("flat" central area with a linear change in refraction from a certain peripheral angle). Based on the minimal residuals of each fit, the subjects were classified into one of the four models. The "box model" accurately described the peripheral refractions in about 50% of the subjects. Peripheral refractions in six subjects were better characterized by a "linear model," in eight subjects by a "flat model," and in eight by the "parabolic model." Even after assignment to one of the models, the variability remained strikingly large, ranging from -0.75 to 6 diopter in the temporal retina at 45° eccentricity. The most common peripheral refraction profile (observed in nearly 50% of our population) was best described by the "box model." The high variability among subjects may limit attempts to reduce myopia progression with a uniform lens design and may rather call for a customized approach.

  1. Designs and Materials for Better Coronagraph Occulting Masks

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham

    2010-01-01

    New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical

  2. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from

  3. Pioneer-Venus radio occultation (ORO) data reduction: Profiles of 13 cm absorptivity

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1990-01-01

    In order to characterize possible variations in the abundance and distribution of subcloud sulfuric acid vapor, 13 cm radio occultation signals from 23 orbits that occurred in late 1986 and 1987 (Season 10) and 7 orbits that occurred in 1979 (Season 1) were processed. The data were inverted via inverse Abel transform to produce 13 cm absorptivity profiles. Pressure and temperature profiles obtained with the Pioneer-Venus night probe and the northern probe were used along with the absorptivity profiles to infer upper limits for vertical profiles of the abundance of gaseous H2SO4. In addition to inverting the data, error bars were placed on the absorptivity profiles and H2SO4 abundance profiles using the standard propagation of errors. These error bars were developed by considering the effects of statistical errors only. The profiles show a distinct pattern with regard to latitude which is consistent with latitude variations observed in data obtained during the occultation seasons nos. 1 and 2. However, when compared with the earlier data, the recent occultation studies suggest that the amount of sulfuric acid vapor occurring at and below the main cloud layer may have decreased between early 1979 and late 1986.

  4. High Resolution Asteroid Profile by Multi Chord Occultation Observations

    NASA Astrophysics Data System (ADS)

    Degenhardt, Scott

    2009-05-01

    For millennia man has observed celestial objects occulting other bodies and distant stars. We have used these celestial synchronicities to measure the properties of objects. On January 1, 1801 Italian astronomer Giusappe Piazzi discovered the first asteroid that would soon be named Ceres. To date 190,000 of these objects have been catalogued, but only a fraction of these have accurate measurements of their true size and shape. The International Occultation Timing Association (IOTA) currently facilitates the prediction and reduction of asteroidal occultations. By measuring the shadow cast on the earth by an asteroid during a stellar occultation one can directly measure the physical size, shape, and position in space of this body to accuracies orders of magnitudes better than the best ground based adaptive optics telescope and can provide verification to 3D inverted reflective lightcurve prediction models. Recent novel methods developed by IOTA involving an individual making multiple observations through unattended remote observing stations have made way for numerous chords of occultation measurement through a single body yielding high resolution profiles of asteroid bodies. Methodology of how observing stations are deployed will be demonstrated, results of some of these observations are presented as comparisons to their inverted lightcurve are shown.

  5. Measurement of refractive index profile of non-symmetric, complex silica preforms with high refractive index differences

    NASA Astrophysics Data System (ADS)

    Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel

    2016-04-01

    Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.

  6. ACCURATE: Greenhouse Gas Profiles Retrieval from Combined IR-Laser and Microwave Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Proschek, Veronika; Kirchengast, Gottfried; Schweitzer, Susanne; Fritzer, Johannes

    2010-05-01

    The new climate satellite concept ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the already better studied LEO-LEO microwave occultation (LMO) technique. Resulting occultation events are evenly distributed around the world, have high vertical resolution and accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 μm for ACCURATE). These signals are absorbed by various trace species in the Earth's atmosphere. Profiles of the concentration of the absorbing species can be derived from signal transmission measurements. Accurately known temperature, pressure and humidity profiles derived from simultaneously measured LMO signals are essential pre-information for the retrieval of the trace species profiles. These LMO signals lie in the microwave band region from 17-23 GHz and, optionally, 178-195 GHz. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (GHG) (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O), with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction, and scintillation strength. We introduce the methodology to retrieve GHG profiles from quasi-realistic forward-simulated intensities of LIO signals and thermodynamic profiles retrieved in a preceding step from LMO signals. Key of the retrieval methodology is the differencing of two LIO transmission signals, one being GHG sensitive on a target

  7. Stellar occultation spikes as probes of atmospheric structure and composition. [for Jupiter

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.

    1976-01-01

    The characteristics of spikes observed in occultation light curves of Beta Scorpii by Jupiter are discussed in terms of the gravity-gradient model. The occultation of Beta Sco by Jupiter on May 13, 1971, is reviewed, and the gravity-gradient model is defined as an isothermal atmosphere of constant composition in which the refractivity is a function only of the radial coordinate from the center of refraction, which is assumed to lie parallel to the local gravity gradient. The derivation of the occultation light curve in terms of the atmosphere, the angular diameter of the occulted star, and the occultation geometry is outlined. It is shown that analysis of the light-curve spikes can yield the He/H2 concentration ratio in a well-mixed atmosphere, information on fine-scale atmospheric structure, high-resolution images of the occulted star, and information on ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients, and it is concluded that the spikes are the result of local atmospheric density variations: atmospheric layers, density waves, or turbulence.

  8. Refractive-index profiling of embedded microstructures in optical materials

    NASA Astrophysics Data System (ADS)

    Dave, Digant P.; Milner, Thomas E.

    2002-04-01

    We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

  9. The BHVI-EyeMapper: peripheral refraction and aberration profiles.

    PubMed

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C; Holden, Brien A

    2014-10-01

    The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, -3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (-2.00 to -5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to -5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development.

  10. The BHVI-EyeMapper: Peripheral Refraction and Aberration Profiles

    PubMed Central

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C.; Holden, Brien A.

    2014-01-01

    ABSTRACT Purpose The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Methods Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, −3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (−2.00 to −5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. Results As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. Conclusions The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to −5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development. PMID:25105690

  11. Interferometric analysis of the ablation profile in refractive surgery

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, M. I.; López-Olazagasti, E.; Rosales, M. A.; Ramírez-Zavaleta, G.; Cantú, R.; Tepichín, E.

    2008-08-01

    In ophthalmology, the laser excimer corneal surface ablation used to correct the refractive eye defects, such as myopia, astigmatism and hyperopia and, more recently, presbyopia is known as refractive surgery. Typically, the characterization of the corresponding technique, as well as the laser accuracy, is performed by analyzing standard ablation profiles made on PMMA (polymethylmethacrylate) plates. A drawback of this technique is that those plates do not necessarily represent the dimensions of the cornea during the ablation. On the other hand, due to the time varying process of the eye aberrations, the direct eye refractometric measurements can produce some errors. We report in this work the interferometric analysis of the ablation profile obtained with refractive surgery, applied directly on a contact lens. In this case, the resultant ablation profile might be closer to the real profile as well as time invariant. We use, as a reference, a similar contact lens without ablation. The preliminary results of the characterization of the corresponding ablation profile are also presented.

  12. Peripheral refractive correction and automated perimetric profiles.

    PubMed

    Wild, J M; Wood, J M; Crews, S J

    1988-06-01

    The effect of peripheral refractive error correction on the automated perimetric sensitivity profile was investigated on a sample of 10 clinically normal, experienced observers. Peripheral refractive error was determined at eccentricities of 0 degree, 20 degrees and 40 degrees along the temporal meridian of the right eye using the Canon Autoref R-1, an infra-red automated refractor, under the parametric conditions of the Octopus automated perimeter. Perimetric sensitivity was then undertaken at these eccentricities (stimulus sizes 0 and III) with and without the appropriate peripheral refractive correction using the Octopus 201 automated perimeter. Within the measurement limits of the experimental procedures employed, perimetric sensitivity was not influenced by peripheral refractive correction.

  13. Evaluation of atmospheric profiles derived from single- and zero-difference excess phase processing of BeiDou radio occultation data from the FY-3C GNOS mission

    NASA Astrophysics Data System (ADS)

    Bai, Weihua; Liu, Congliang; Meng, Xiangguang; Sun, Yueqiang; Kirchengast, Gottfried; Du, Qifei; Wang, Xianyi; Yang, Guanglin; Liao, Mi; Yang, Zhongdong; Zhao, Danyang; Xia, Junming; Cai, Yuerong; Liu, Lijun; Wang, Dongwei

    2018-02-01

    The Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) is one of the new-generation payloads onboard the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. The GNOS was designed for acquiring setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BeiDou System (BDS) and the US Global Positioning System (GPS). An ultra-stable oscillator with 1 s stability (Allan deviation) at the level of 10-12 was installed on the FY-3C GNOS, and thus both zero-difference and single-difference excess phase processing methods should be feasible for FY-3C GNOS observations. In this study we focus on evaluating zero-difference processing of BDS RO data vs. single-difference processing, in order to investigate the zero-difference feasibility for this new instrument, which after its launch in September 2013 started to use BDS signals from five geostationary orbit (GEO) satellites, five inclined geosynchronous orbit (IGSO) satellites and four medium Earth orbit (MEO) satellites. We used a 3-month set of GNOS BDS RO data (October to December 2013) for the evaluation and compared atmospheric bending angle and refractivity profiles, derived from single- and zero-difference excess phase data, against co-located profiles from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. We also compared against co-located refractivity profiles from radiosondes. The statistical evaluation against these reference data shows that the results from single- and zero-difference processing are reasonably consistent in both bias and standard deviation, clearly demonstrating the feasibility of zero differencing for GNOS BDS RO observations. The average bias (and standard deviation) of the bending angle and refractivity profiles were found to be about 0.05 to 0.2 % (and 0.7 to 1.6 %) over the upper troposphere and lower stratosphere. Zero differencing was found

  14. Validation of ionospheric electron density profiles inferred from GPS occultation observations of the GPS/MET experiment

    NASA Astrophysics Data System (ADS)

    Kawakami, Todd Mori

    In April of 1995, the launch of the GPS Meteorology Experiment (GPS/MET) onboard the Orbview-1 satellite, formerly known as Microlab-1, provided the first technology demonstration of active limb sounding of the Earth's atmosphere with a low Earth orbiting spacecraft utilizing the signals transmitted by the satellites of the Global Positioning System (GPS). Though the experiment's primary mission was to probe the troposphere and stratosphere, GPS/MET was also capable of making radio occultation observations of the ionosphere. The application of the GPS occultation technique to the upper atmosphere created a unique opportunity to conduct ionospheric research with an unprecedented global distribution of observations. For operational support requirements, the Abel transform could be employed to invert the horizontal TEC profiles computed from the L1 and L2 phase measurements observed by GPS/MET into electron density profiles versus altitude in near real time. The usefulness of the method depends on how effectively the TEC limb profiles can be transformed into vertical electron density profiles. An assessment of GPS/MET's ability to determine electron density profiles needs to be examined to validate the significance of the GPS occultation method as a new and complementary ionospheric research tool to enhance the observational databases and improve space weather modeling and forecasting. To that end, simulations of the occultation observations and their inversions have been conducted to test the Abel transform algorithm and to provide qualitative information about the type and range of errors that might be experienced during the processing of real data. Comparisons of the electron density profiles inferred from real GPS/MET observations are then compared with coincident in situ measurements from the satellites of Defense Meteorological Satellite Program (DMSP) and ground-based remote sensing from digisonde and incoherent scatter radar facilities. The principal focus of

  15. Exploring earth's atmosphere with radio occultation: contributions to weather, climate and space weather

    NASA Astrophysics Data System (ADS)

    Anthes, R. A.

    2011-01-01

    The launch of the proof-of-concept mission GPS/MET in 1995 began a revolution in profiling earth's atmosphere through radio occultation (RO). GPS/MET; subsequent single-satellite missions CHAMP, SAC-C, GRACE, METOP-A, and TerraSAR-X; and the six-satellite constellation, FORMOSAT-3/COSMIC, have proven the theoretical capabilities of RO to provide accurate and precise profiles of electron density in the ionosphere and refractivity, containing information on temperature and water vapor, in the stratosphere and troposphere. This paper summarizes results from these RO missions and the applications of RO observations to atmospheric research and operational weather analysis and prediction.

  16. Refraction in the lower troposphere: Higher order image distortion effects due to refractive profile curvature

    NASA Astrophysics Data System (ADS)

    Short, Daniel J.

    There are many applications that rely on the propagation of light through the atmosphere - all of which are subject to atmospheric conditions. While there are obvious processes such as scattering due to particulates like clouds and dust that affect the received intensity of the radiation, the clear atmosphere can also cause significant effects. Refraction is a clear air effect that can cause a variety of phenomena such as apparent relocation, stretching and compression of objects when viewed through the atmosphere. Recently, there has been significant interest in studying the refractive effects for low angle paths within the troposphere, and in particular, near-horizontal paths in the Earth's boundary layer, which is adjacent to the ground. Refractive effects in this case become problematic for many terrestrial optical applications. For example, the pointing of a free space optical communication or a remote sensing system can suffer wandering effects, high-resolution imagery can present distorted and/or dislocated targets, optical tracking of targets can be inaccurate, and optical geodetic surveying accuracy is also very sensitive to the effects of refraction. The work in this dissertation was inspired by data from a time-lapse camera system that collects images of distant targets over a near-horizontal path along the ground. This system was used previously to study apparent diurnal image displacement and this dissertation extends that work by exploring the higher order effects that result from curvature in the vertical refractive index profile of the atmosphere. There are surprisingly few experiments involving atmospheric refractive effects that carefully correlate field data to analytical expressions and other factors such as meteorological data. In working with the time-lapse data, which is comprised of sequences of hundreds or thousands of images collected over durations of weeks or months, it is important to develop straightforward analysis techniques that can

  17. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  18. Design of refractive laser beam shapers to generate complex irradiance profiles

    NASA Astrophysics Data System (ADS)

    Li, Meijie; Meuret, Youri; Duerr, Fabian; Vervaeke, Michael; Thienpont, Hugo

    2014-05-01

    A Gaussian laser beam is reshaped to have specific irradiance distributions in many applications in order to ensure optimal system performance. Refractive optics are commonly used for laser beam shaping. A refractive laser beam shaper is typically formed by either two plano-aspheric lenses or by one thick lens with two aspherical surfaces. Ray mapping is a general optical design technique to design refractive beam shapers based on geometric optics. This design technique in principle allows to generate any rotational-symmetric irradiance profile, yet in literature ray mapping is mainly developed to transform a Gaussian irradiance profile to a uniform profile. For more complex profiles especially with low intensity in the inner region, like a Dark Hollow Gaussian (DHG) irradiance profile, ray mapping technique is not directly applicable in practice. In order to these complex profiles, the numerical effort of calculating the aspherical surface points and fitting a surface with sufficient accuracy increases considerably. In this work we evaluate different sampling approaches and surface fitting methods. This allows us to propose and demonstrate a comprehensive numerical approach to efficiently design refractive laser beam shapers to generate rotational-symmetric collimated beams with a complex irradiance profile. Ray tracing analysis for several complex irradiance profiles demonstrates excellent performance of the designed lenses and the versatility of our design procedure.

  19. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  20. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  1. Structure of scintillations in Neptune's occultation shadow

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Lellouch, Emmanuel; Sicardy, Bruno; Brahic, Andre; Vilas, Faith

    1988-01-01

    An exceptionally high-quality data set from a Neptune occultation is used here to derive a number of new results about the statistical properties of the fluctuations of the intensity distribution in various parts of Neptune's occultation shadow. An approximate numerical ray-tracing model which successfully accounts for many of the qualitative aspects of the observed intensity fluctuation distribution is introduced. Strong refractive scintillation is simulated by including the effects of 'turbulence' with projected atmospheric properties allowed to vary in both the direction perpendicular and parallel to the limb, and an explicit two-dimensional picture of a typical intensity distribution throughout an occulting planet's shadow is presented. The results confirm the existence of highly anisotropic turbulence.

  2. Constraints on Pluto's Hazes from 2-Color Occultation Lightcurves

    NASA Astrophysics Data System (ADS)

    Hartig, Kara; Barry, T.; Carriazo, C. Y.; Cole, A.; Gault, D.; Giles, B.; Giles, D.; Hill, K. M.; Howell, R. R.; Hudson, G.; Loader, B.; Mackie, J. A.; Olkin, C. B.; Rannou, P.; Regester, J.; Resnick, A.; Rodgers, T.; Sicardy, B.; Skrutskie, M. F.; Verbiscer, A. J.; Wasserman, L. H.; Watson, C. R.; Young, E. F.; Young, L. A.; Buie, M. W.; Nelson, M.

    2015-11-01

    The controversial question of aerosols in Pluto's atmosphere first arose in 1988, when features in a Pluto occultation lightcurve were alternately attributed to haze opacity (Elliot et al. 1989) or a thermal inversion (Eshleman 1989). A stellar occultation by Pluto in 2002 was observed from several telescopes on Mauna Kea in wavelengths ranging from R- to K-bands (Elliot et al. 2003). This event provided compelling evidence for haze on Pluto, since the mid-event baseline levels were systematically higher at longer wavelengths (as expected if there were an opacity source that scattered more effectively at shorter wavelengths). However, subsequent occultations in 2007 and 2011 showed no significant differences between visible and IR lightcurves (Young et al. 2011).The question of haze on Pluto was definitively answered by direct imaging of forward-scattering aerosols by the New Horizons spacecraft on 14-JUL-2015. We report on results of a bright stellar occultation which we observed on 29-JUN-2015 in B- and H-bands from both grazing and central sites. As in 2007 and 2011, we see no evidence for wavelength-dependent extinction. We will present an analysis of haze parameters (particle sizes, number density profiles, and fractal aggregations), constraining models of haze distribution to those consistent with and to those ruled out by the occultation lightcurves and the New Horizons imaging.References:Elliot, J.L., et al., "Pluto's Atmosphere." Icarus 77, 148-170 (1989)Eshleman, V.R., "Pluto's Atmosphere: Models based on refraction, inversion, and vapor pressure equilibrium." Icarus 80 439-443 (1989)Elliot, J.L., et al., "The recent expansion of Pluto's atmosphere." Nature 424 165-168 (2003)Young, E.F., et al., "Search for Pluto's aerosols: simultaneous IR and visible stellar occultation observations." EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France (2011)

  3. Observations with the GISMOS Airborne Radio Occultation System

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar; Haase, Jennifer; Garrison, James; Lulich, Tyler; Xie, Feiqin

    2010-05-01

    The spatial sample density of temperature and moisture profiles derived from the current spaceborne GPS radio occultation (RO) constellation is limited by the number of occultation satellites in operation. With the current RO satellite configuration, only one RO profile per day is typically available in a 160,000 square kilometer area in the mid-latitude and tropics and slightly more in high latitudes. The airborne RO technique, which has the GPS receiver onboard an airplane, offers flexibility and much denser sampling for targeted observation within 400 km of the aircraft, and provides comparable high vertical resolution to that of the spaceborne case. With an airborne system, targeted measurements can be planned in an optimal geometry to study the accuracy of RO measurements in the lower troposphere where strong vertical gradients in moisture might lead to disruption of signal tracking. These dense measurements can also be used to test assimilation techniques of refractivity and lower tropospheric moisture derived from RO data. In February 2008, the GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS), developed at Purdue University, was successfully deployed on the NSF HIAPER aircraft for series of research flights in the Gulf of Mexico coastal region to validate the airborne observing system. During this campaign, occultation observations were collected in conjunction with supplemental radiosonde and dropsonde soundings. RO signals were recorded using side-looking GPS antennas and dual frequency GPS receivers. However, these conventional phase-locked-loop GPS receivers cannot always track the signal in the lower troposphere, where there are rapid phase accelerations caused by highly variable moisture structures. To extend the observations deeper into the atmosphere, the raw signal from occulting satellites is recorded at 10MHz sampling interval by a GPS recording system (GRS). Open-loop (OL) tracking, which replaces the traditional GPS

  4. Atmospheric constituent density profiles from full disk solar occultation experiments

    NASA Technical Reports Server (NTRS)

    Lumpe, J. D.; Chang, C. S.; Strickland, D. J.

    1991-01-01

    Mathematical methods are described which permit the derivation of the number of density profiles of atmospheric constituents from solar occultation measurements. The algorithm is first applied to measurements corresponding to an arbitrary solar-intensity distribution to calculate the normalized absorption profile. The application of Fourier transform to the integral equation yields a precise expression for the corresponding number density, and the solution is employed with the data given in the form of Laguerre polynomials. The algorithm is employed to calculate the results for the case of uniform distribution of solar intensity, and the results demonstrate the convergence properties of the method. The algorithm can be used to effectively model representative model-density profiles with constant and altitude-dependent scale heights.

  5. Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere.

    PubMed

    Kliore, A; Cain, D L; Levy, G S; Eshleman, V R; Fjeldbo, G; Drake, F D

    1965-09-10

    Changes in the frequency, phase, and amplitude of the Mariner IV radio signal, caused by passage through the atmosphere and ionosphere of Mars, were observed immediately before and after occultation by the planet. Preliminary analysis of these effects has yielded estimates of the refractivity and density of the atmosphere near the surface, the scale height in the atmosphere, and the electron density profile of the Martian ionosphere. The atmospheric density, temperature, and scale height are lower than previously predicted, as are the maximum density, temperature, scale height, and altitude of the ionosphere.

  6. Using GPS radio occultation data in the study of tropical cyclogenesis

    NASA Astrophysics Data System (ADS)

    Didlake, A. C., Jr.; Kuo, Y. B.; Metcalfe, T.

    2005-12-01

    Numerous studies have examined atmospheric conditions and patterns in tropical cyclogenesis. Although much has been accomplished, a complete understanding of tropical cyclogenesis is hindered by the lack of data in the regions where formation occurs. The GPS (Global Positioning System) radio occultation technique can provide valuable data in key areas. In GPS radio occultation, GPS satellites emit radio signals through the atmosphere that are received by another satellite in a low Earth orbit. Various atmospheric properties are calculated based on the alteration of the signal. This study assessed the value of GPS radio occultation data in the study of tropical cyclogenesis by examining storms of the 2002 Western North Pacific typhoon season. The signature of precursor disturbances to tropical cyclogenesis was determined by analyzing composites of data from the NCEP Aviation (AVN) analysis over four days. Similar composites of GPS radio occultation data were produced. The AVN analysis showed strong signals of precursor disturbances in the low-level wind fields and atmospheric refractivity. The GPS radio occultation data detected similarly increased refractivity values in corresponding regions, but had sizeable measurement differences with the AVN analysis. These differences were attributed to AVN analysis error due to the lack of input observational data and the high accuracy of GPS radio occultation measurements. Further comparisons showed that with the limited quantity of data currently available, GPS radio occultation by itself was not sufficient to detect precursor disturbances. It can best be used in data assimilation to improve the analysis and forecasts of tropical storms.

  7. High spatial resolution multi-color observations of Neptune during occultation by the moon

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1976-01-01

    Preparations for the observation of Mars occultation using the 36 inch telescope on a C-141 airborne observatory were described, including technical improvements made to existing equipment. The abstracts of the following four publications supported by the grant were presented: (1) atmosphere composition from refractivity measurements made during occultations, (2) how big is lapetus?, (3) the diameter of Titan, (4) design and operating characteristics of voltage to frequency converters suited for occultation work. The planned observation of the April 8, 1976 occultation of the epsilon Gem star from the C-141 airborne observatory was described.

  8. Improved planetary boundary layer retrievals using a combination of direct and reflected bending angles from radio occultations

    NASA Astrophysics Data System (ADS)

    Wang, K. N.; Ao, C. O.; de la Torre Juarez, M.

    2017-12-01

    As a remote sensing technique, Global Positioning System (GPS) radio occultation (RO) is a suitable method to observe lower troposphere due to its high vertical resolution and cloud-penetrating capability. However, super-refraction (SR), or ducting, caused by large refractivity gradients usually associated with the top of the planetary boundary layer, can violate the uniqueness condition necessary for the traditional inverse Abel transform. Consequently, the retrieved refractivity, which is the minimum profile among an infinite number of potential solutions corresponding to the same bending angle profile, will be negatively biased under ducting layers. Previous research has shown that optimal estimation techniques that combine low altitude RO retrievals and the collocated precipitable water (PW) estimates can effectively reduce the negative RO bias and enhance the data quality under the ducting layer (Wang et al, 2017). Here we propose an improvement that uses the reflected RO bending angle observation information as a source for refractivity constraints. The RO signal reflected from the Earth surface profile can be reconstructed by solely using GPS-RO data without requiring external information such as PW. The radio holographic (RH) method is adapted here to calculate the reflected RO bending angle, and the forward model simulation is implemented to validate this preliminary concept. Our results suggest that this new approach can distinguish between different refractivity profiles when ducting occurs and theoretically this should reduce the negative bias. In addition, It also improves the RO observation in lower troposphere by capturing the sharpness and height of the critical layer separating the free troposphere from the boundary layer.

  9. Sensitivity of airborne radio occultation to tropospheric properties over ocean and land

    NASA Astrophysics Data System (ADS)

    Xie, Feiqin; Adhikari, Loknath; Haase, Jennifer S.; Murphy, Brian; Wang, Kuo-Nung; Garrison, James L.

    2018-02-01

    Airborne radio occultation (ARO) measurements collected during a ferry flight at the end of the PRE-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field campaign from the Virgin Islands to Colorado are analyzed. The large contrast in atmospheric conditions along the flight path from the warm and moist Caribbean Sea to the much drier and cooler continental conditions provides a unique opportunity to address the sensitivity of ARO measurements to the tropospheric temperature and moisture changes. This long flight at nearly constant altitude (˜ 13 km) provided an optimal configuration for simultaneous high-quality ARO measurements from two high-gain side-looking antennas, as well as one relatively lower gain zenith (top) antenna. The omnidirectional top antenna has the advantage of tracking robustly more occulting satellites in all direction as compared to the limited-azimuth tracking of the side-looking antennas. Two well-adapted radio-holographic bending angle retrieval methods, full-spectrum inversion (FSI) and phase matching (PM), were compared with the standard geometric-optics (GO) retrieval method. Comparison of the ARO retrievals from the top antenna with the near-coincident ECMWF reanalysis-interim (ERA-I) profiles shows only a small root-mean-square (RMS) refractivity difference of ˜ 0.3 % in the drier upper troposphere from ˜ 5 to ˜ 11.5 km over both land and ocean. Both the FSI and PM methods improve the ARO retrievals in the moist lower troposphere and reduce the negative bias found in the GO retrieval due to atmospheric multipath. In the lowest layer of the troposphere, the ARO refractivity derived using FSI shows a negative bias of about -2 %. The increase of the refractivity bias occurs below 5 km over the ocean and below 3.5 km over land, corresponding to the approximate altitude of large vertical moisture gradients above the ocean and land surface, respectively. In comparisons to radiosondes, the FSI ARO soundings capture well

  10. A technique for routinely updating the ITU-R database using radio occultation electron density profiles

    NASA Astrophysics Data System (ADS)

    Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno

    2013-09-01

    Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).

  11. Calculations of atmospheric refraction for spacecraft remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1983-01-01

    Analytical solutions to the refraction integrals appropriate for ray trajectories along slant paths through the atmosphere are derived in this paper. This type of geometry is commonly encountered in remote-sensing applications utilizing an occultation technique. The solutions are obtained by evaluating higher-order terms from expansion of the refraction integral and are dependent on the vertical temperature distributions. Refraction parameters such as total refraction angles, air masses, and path lengths can be accurately computed. It is also shown that the method can be used for computing refraction parameters in astronomical refraction geometry for large zenith angles.

  12. Profile inversion in presence of ray bending

    NASA Technical Reports Server (NTRS)

    Wallio, H. A.; Grossi, M. D.

    1972-01-01

    Inversion of radio occultation data for planetary atmospheres and ionospheres has been performed using the seismological Herglotz-Wiechert method, as adapted by Phinney and Anderson to the radio-occultation case. Profile reconstruction performed in computer simulated experiments with this approach have been compared with the ones obtained with the straight-ray Abel transform. For a thin atmosphere and ionosphere, like the ones encountered on Mars, microwave occultation data can be inverted accurately with both methods. For a dense ionosphere like the sun's corona, ray bending of microwaves is severe, and recovered refractivity by the Herglotz-Wiechert method provides significant improvement over the straight-ray Abel transform: the error reduces from more than 60% to less than 20% at a height of 60,000 km above the base of the corona.

  13. Uranus occults SAO158687. [stellar occultation and planetary parametric observation

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.; Millis, R. L.

    1977-01-01

    Experience gained in obtaining atmospheric parameters, oblatenesses, and diameters of Jupiter and Mars from recent stellar occultations by these planets is used to predict what can be learned from the March 1977 occultation of the star SAO158687 by Uranus. The spectra of this star and Uranus are compared to indicate the relative instrument intensities of the two objects, the four passbands where the relative intensities are most nearly equal are listed, and expected photon fluxes from the star are computed on the assumption that it has UBVRI colors appropriate for a K5 main-sequence object. It is shown that low photon noise errors can be achieved by choosing appropriate passbands for observation, and the rms error expected for the Uranus temperature profiles obtained from the occultation light curves is calculated. It is suggested that observers of this occultation should record their data digitally for optimum time resolution.

  14. Occultation studies of planets and satellites: The occultation of epsilon Geminorum by Mars

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.; Sagan, C.

    1977-01-01

    The occultation of epsilon Geminorum by Mars on 1976 April 8 was observed at three wavelengths and 4 ms time resolution with the 91 cm telescope. Temperature, pressure, and number density profiles of the Martian atmosphere were obtained for both the immersion and emersion events. Within the altitude range of 50 to 80 km above the mean surface, the mean temperature is 145 K, and the profiles exhibit wavelike structures with a peak to peak amplitude of 35 K and a vertical scale of about 20 km. The ratio of the refractivity of the atmosphere at 4500 A and 7500 A, determined from the time shift of the light curves for these wavelengths, is consistent with the atmospheric composition measured by Viking 1, 15 weeks later. From the central flash - a bright feature in the light curve midway between immersion and emersion - an optical depth is found at 4500 A of 3.3 plus or minus 1.7 per km atm (about 0.23 per equivalent Martian air mass) for the atmosphere about 25 km above the mean surface, near the south polar region. This large value and its weak wavelength dependence rule out Rayleigh scattering as the principal cause of the observed extinction.

  15. Winds and the occultation experiment. [for Venus and Mars atmospheric parameters

    NASA Technical Reports Server (NTRS)

    Gross, S. H.

    1974-01-01

    A spacecraft orbiting about another planet, such as Mars or Venus, may be used to obtain data about the pressure, density, and temperature fields over the planet from multiple occultations if the orbit precesses or retrogresses. Under certain conditions successive occultations will provide mean dynamic information such as wind speeds over the time and spacing intervals. It is shown that data concerning winds may be found by comparing refractivity information rather than pressure or temperature.

  16. A unique airborne observation. [Martian atmospheric temperature and abundances from occultation of Epsilon Geminorum

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E.; Church, C.

    1976-01-01

    The occultation of 3rd magnitude Epsilon Geminorum by Mars was observed using a 36-inch telescope equipped with a photoelectric photometer at the bent Cassegrain focus, carried aboard the Kuiper Airborne Observatory at altitudes up to 45,000 feet. Scintillation from the earth's atmosphere was greatly reduced in comparison with ground observations. The observations clearly show the central flash, caused by the symmetrical refraction of light by the atmosphere of Mars. The data are being analyzed to obtain temperature profiles and to assess the relative abundance of argon and carbon dioxide in the atmosphere of the planet.

  17. Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the

  18. Atmospheric soundings by SPICAM occultation observations: aerosol and ozone vertical profiles

    NASA Astrophysics Data System (ADS)

    Montmessin, F.

    2005-12-01

    The SPICAM instrument is a highly versatile, dual spectrometer probing both the UV and the NIR spectral region and is currently flying around Mars onboard Mars Express. Since the beginning of MEx operations, SPICAM has collected about thousand atmospheric profiles while observing in a solar or a stellar occultation mode. UV spectra bear the signatures of several species; i.e carbon dioxide, ozone and aerosols, while infrared spectra potentially bring information on atmospheric condensates and on water vapor. This presentation will focus on the measured aerosol, ozone and water vapor profiles. For the aerosol, we will emphasize the numerous observations made in the polar night and will also discuss some high altitude clouds discovered in the southern hemisphere. Ozone and water vapor profiles will be presented along with some General Circulation Model comparisons. This work has been supported by CNES.

  19. Study of the technique of stellar occultation

    NASA Technical Reports Server (NTRS)

    Hays, P. B.; Graves, M. E.; Roble, R. G.; Shah, A. N.

    1973-01-01

    The results are reported of a study of the stellar occultation technique for measuring the composition of the atmosphere. The intensity of starlight was monitored during the occultation using the Wisconsin stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-A2). A schematic diagram of an occultation is shown where the change in intensity at a given wavelength is illustrated. The vertical projection of the attenuation region is typically 60 km deep for molecular oxygen and 30 km deep for ozone. Intensity profiles obtained during various occultations were analyzed by first determining the tangential columm density of the absorbing gases, and then Abel inverting the column densities to obtain the number density profile. Errors are associated with each step in the inversion scheme and have been considered as an integral part of this study.

  20. Occultation studies of the Solar System

    NASA Technical Reports Server (NTRS)

    Millis, Robert L.

    1987-01-01

    The planetary occultation program began at Lowell Observatory in 1973 with a worldwide campaign to observe mutual occultations and eclipses of the Galilean Satellites. Then the temperature profile of the Martian atmosphere was measured from data taken during the occultation of epsilon Geminorum, the Rings of Uranus were discovered as they occulted SAO 158687, and the dimensions of Pallas were measured when that minor planet occulted SAO 85009. In 1979 the present grant was initiated, providing funds for portable photometric instrumentation used to observe occultations by asteroids as well as by Uranus and Neptune. Software for predicting occultations of catalog stars by asteroids, planets, and comets was written in 1983. Lowell currently provides most of the available predictions for asteroid occultations. Realizing in 1983 that the lack of a high-quality astrometric telescope dedicated to occultation work was limiting progress, an 18-inch, F/8 lens was acquired and adapted to an existing mounting at Lowell. Although acquisition of the lens and implementation of the new telescope has been accomplished primarily with non-grant funds, the instrument makes a major contribution to occultation research.

  1. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Kirchengast, G.; Proschek, V.

    2011-10-01

    LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that

  2. On the determination and investigation of the terrestrial ionospheric refractive indices using GEOS-3/ATS-6 satellite-to-satellite tracking data

    NASA Technical Reports Server (NTRS)

    Liu, A. S.

    1978-01-01

    When the radio link between two satellites (GEOS-3/ATS-6) is intercepted by the earth's ionosphere and neutral atmosphere, a change in the Doppler frequency results. Travel through the atmosphere causes the Doppler phase to be advanced in the ionosphere's portion and retarded in the neutral portion of the atmosphere. Analysis of the shortening and lengthening of the phase of the Satellite-to-Satellite Tracking (SST) data that passed within 40-700 km above the earth's surface during its ATS-6 to GEOS-3 to ATS-6 path, caused by the atmosphere, results in refractivity versus height profiles. The SST Doppler data were used directly to adjust the GEOS-3 orbit. Perturbation from the Moon, Sun and a 15th order/degree earth gravity field were included in the orbit solution. This orbit was continued through the occultation period and a model ionosphere was estimated by a least-square adjustment of the Chapman ionosphere parameters from the SST data residuals. The refractivity profile obtained by this model ionosphere was compared to a refractivity profile obtained by a direct integral inversion of the SST data residuals. Systematic differences between the 2 methods were caused by orbital errors, which propagated into the solution. The SST data yielded refractive index profiles in a novel economical manner because no additional or special on-board equipment were required.

  3. An occultation satellite system for determining pressure levels in the atmosphere

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.; Lusignan, B. B.

    1972-01-01

    An operational two-satellite microwave occultation system will establish a pressure reference level to be used in fixing the temperature-pressure profile generated by the SIRS infrared sensor as a function of altitude. In the final error analysis, simulated data for the SIRS sensor were used to test the performance of the occultation system. The results of this analysis indicate that the occultation system is capable of measuring the altitude of the 300-mb level to within 24 mrms, given a maximum error of 2 K in the input temperature profile. The effects of water vapor can be corrected by suitable climatological profiles, and improvements in the accuracy of the SIRS instrument should yield additional improvements in the performance of the occultation system.

  4. The atmosphere of Neptune - Results of radio occultation measurements with the Voyager 2 spacecraft

    NASA Technical Reports Server (NTRS)

    Lindal, G. F.; Lyons, J. R.; Sweetnam, D. N.; Eshleman, V. R.; Hinson, D. P.

    1990-01-01

    This paper presents the vertical temperature and composition profiles of Neptune's troposphere and stratosphere, covering an altitude of 250 km, obtained from radio tracking data that were acquired during Voyager-2's occultation by Neptune, which began near 62 deg N planetographic latitude and ended near 45 deg S latitude. In the computations, the He/H2 abundance ratio 15/85 was adapted, which is consistent with solar abundance estimates and with recent results from Uranus. It was assumed that aerosols and heavier gases such as CH4, NH3, H2S, and H2O have a negligible effect on the microwave refractivity above the 0.5 bar pressure level.

  5. Refractive-index profile and physical process determination in thick gratings in electrooptic crystals

    NASA Technical Reports Server (NTRS)

    Su, S. F.; Gaylord, T. K.

    1976-01-01

    A method for determining the refractive index profile of thick phase gratings in linear electrooptic crystals is presented. This method also determines the effective photovoltaic electric field and the relative contributions of diffusion and drift during hologram recording. The method requires only a knowledge of the modulation ratio during hologram recording and the fundamental and the higher-order diffraction efficiencies of the grating. As an illustration of the method, the refractive index profile, the effective photovoltaic field, and the relative contributions of diffusion and drift are determined from experimental measurements for a lithium niobate holographic grating.

  6. Calculated occultation profiles of Io and the hot spots

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Soderblom, L. A.; Matson, D. L.; Johnson, T. V.; Lunine, J. I.

    1986-01-01

    Occultations of Io by other Galilean satellites in 1985 provide a means to locate volcanic hot spots and to model their temperatures. The expected time variations in the integral reflected and emitted radiation of the occultations are computed as a function of wavelength (visual to 8.7 microns). The best current ephemerides were used to calculate the geometry of each event as viewed from earth. Visual reflectances were modeled from global mosaics of Io. Thermal emission from the hot spots was calculated from Voyager 1 IRIS observations and, for regions unobserved by IRIS, from a model based on the distribution of low-albedo features. The occultations may help determine (1) the location and temperature distribution of Loki; (2) the source(s) of excess emission in the region from long 50 deg to 200 deg and (3) the distribution of small, high-temperature sources.

  7. Stratospheric H2O and HNO3 profiles derived from solar occultation measurements

    NASA Technical Reports Server (NTRS)

    Fischer, H.; Fergg, F.; Rabus, D.; Burkert, P.

    1985-01-01

    Compact two-channel radiometers for solar occultation experiments have been constructed in order to measure stratospheric trace gases. The instruments can be used as filter- or correlation-type radiometers, depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the filter-type measurements, profiles of the trace gases H2O and HNO3 are inferred for the height region between the tropopause and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the trace gas profiles. The derived H2O and HNO3 profiles are assessed against the observations of other authors and are discussed in the light of the trace gas distributions calcualted from photochemical models.

  8. Joint profiling of greenhouse gases, isotopes, thermodynamic variables, and wind from space by combined microwave and IR laser occultation: the ACCURATE concept

    NASA Astrophysics Data System (ADS)

    Kirchengast, G.; Schweitzer, S.

    2008-12-01

    The ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) mission was conceived at the Wegener Center in late 2004 and subsequently proposed in 2005 by an international team of more than 20 scientific partners from more than 12 countries to an ESA selection process for next Earth Explorer Missions. While the mission was not selected for formal pre-phase A study, it received very positive evaluation and was recommended for further development and demonstration. ACCURATE employs the occultation measurement principle, known for its unique combination of high vertical resolution, accuracy and long-term stability, in a novel way. It systematically combines use of highly stable signals in the MW 17-23/178-196 GHz bands (LEO-LEO MW crosslink occultation) with laser signals in the SWIR 2-2.5 μm band (LEO-LEO IR laser crosslink occultation) for exploring and monitoring climate and chemistry in the atmosphere with focus on the UTLS region (upper troposphere/lower stratosphere, 5-35 km). The MW occultation is an advanced and at the same time compact version of the LEO-LEO MW occultation concept, studied in 2002-2004 for the ACE+ mission project of ESA for frequencies including the 17-23 GHz band, complemented by U.S. study heritage for frequencies including the 178-196 GHz bands (R. Kursinski et al., Univ. of Arizona, Tucson). The core of ACCURATE is tight synergy of the IR laser crosslinks with the MW crosslinks. The observed parameters, obtained simultaneously and in a self-calibrated manner based on Doppler shift and differential log-transmission profiles, comprise the fundamental thermodynamic variables of the atmosphere (temperature, pressure/geopotential height, humidity) retrieved from the MW bands, complemented by line-of-sight wind, six greenhouse gases (GHGs) and key species of UTLS chemistry (H2O, CO2, CH4, N2O, O3, CO) and four CO2 and H2O isotopes (HDO, H218O, 13CO2, C18OO) from the SWIR band. Furthermore, profiles of

  9. ASTEROID SIZING BY RADIOGALAXY OCCULTATION AT 5 GHZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtinen, K.; Muinonen, K.; Poutanen, M.

    Stellar occultations by asteroids observed at visual wavelengths have been an important tool for studying the size and shape of asteroids and for revising the orbital parameters of asteroids. At radio frequencies, a shadow of an asteroid on the Earth is dominated by diffraction effects. Here, we show, for the first time, that a single observation of an occultation of a compact radio source at a frequency of 5 GHz can be used to derive the effective size of the occulting object and to derive the distance between the observer and the center of the occultation path on the Earth.more » The derived diameter of the occulting object, asteroid (115) Thyra, is 75 ± 6 km. The observed occultation profile shows features that cannot be explained by diffraction of a single asteroid.« less

  10. Improvements to GPS Airborne Radio Occultation in the Lower Troposphere Through Implementation of the Phase Matching Method

    NASA Astrophysics Data System (ADS)

    Wang, K.-N.; Garrison, J. L.; Haase, J. S.; Murphy, B. J.

    2017-10-01

    Airborne radio occultation (ARO) is a remote sensing technique for atmospheric sounding using Global Positioning System signals received by an airborne instrument. The atmospheric refractivity profile, which depends on pressure, temperature, and water vapor, can be retrieved by measuring the signal delay due to the refractive medium through which the signal traverses. The ARO system was developed to make repeated observations within an individual meteorological event such as a tropical storm, regardless of the presence of clouds and precipitation, and complements existing observation techniques such as dropsondes and satellite remote sensing. RO systems can suffer multipath ray propagation in the lower troposphere if there are strong refractivity gradients, for example, due to a highly variable moisture distribution or a sharp boundary layer, interfering with continuous carrier phase tracking as well as complicating retrievals. The phase matching method has now been adapted for ARO and is shown to reduce negative biases in the refractivity retrieval by providing robust retrievals of bending angle in the presence of multipath. The retrieval results are presented for a flight campaign in September 2010 for Hurricane Karl in the Caribbean Sea. The accuracy is assessed through comparison with the European Centre for Medium Range Weather Forecasts Interim Reanalysis. The fractional difference in refractivity can be maintained at a standard deviation of 2% from flight level down to a height of 2 km. The phase matching method decreases the negative refractivity bias by as much as 4% over the classical geometrical optics retrieval method.

  11. Performance of greenhouse gas profiling by infrared-laser and microwave occultation in cloudy air

    NASA Astrophysics Data System (ADS)

    Proschek, V.; Kirchengast, G.; Emde, C.; Schweitzer, S.

    2012-12-01

    ACCURATE is a proposed future satellite mission enabling simultaneous measurements of greenhouse gases (GHGs), wind and thermodynamic variables from Low Earth Orbit (LEO). The measurement principle is a combination of LEO-LEO infrared-laser occultation (LIO) and microwave occultation (LMO), the LMIO method, where the LIO signals are very sensitive to clouds. The GHG retrieval will therefore be strongly influenced by clouds in parts of the troposphere. The IR-laser signals, at wavelengths within 2--2.5μ m, are chosen to measure six GHGs (H2O, CO2, CH4, N2O, O3, CO; incl.~key isotopes 13CO2, C18OO, HDO). The LMO signals enable to co-measure the thermodynamic variables. In this presentation we introduce the algorithm to retrieve GHG profiles under cloudy-air conditions by using quasi-realistic forward simulations, including also influence of Rayleigh scattering, scintillations and aerosols. Data from CALIPSO--Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations--with highest vertical resolution of about 60 m and horizontal resolution of about 330 m were used for simulation of clouds. The IR-laser signals consist for each GHG of a GHG-sensitive and a close-by reference signal. The key process, ``differencing'' of these two signals, removes the atmospheric ``broadband'' effects, resulting in a pure GHG transmission profile. Very thin ice clouds, like sub-visible cirrus, are fairly transparent to the IR-laser signals, thicker and liquid water clouds block the signals. The reference signal is used to produce a cloud layering profile from zero to blocking clouds and is smoothed in a preprocess to suppress scintillations. Sufficiently small gaps, of width <2 km in the cloud layering profile, are found to enable a decent retrieval of entire GHG profiles over the UTLS under broken cloudiness and are therefore bridged by interpolation. Otherwise in case of essentially continuous cloudiness the profiles are found to terminate at cloud top level. The accuracy of

  12. Refractive Thinking Profile In Solving Mathematical Problem Reviewed from Students Math Capability

    NASA Astrophysics Data System (ADS)

    Maslukha, M.; Lukito, A.; Ekawati, R.

    2018-01-01

    Refraction is a mental activity experienced by a person to make a decision through reflective thinking and critical thinking. Differences in mathematical capability have an influence on the difference of student’s refractive thinking processes in solving math problems. This descriptive research aims to generate a picture of refractive thinking of students in solving mathematical problems in terms of students’ math skill. Subjects in this study consisted of three students, namely students with high, medium, and low math skills based on mathematics capability test. Data collection methods used are test-based methods and interviews. After collected data is analyzed through three stages that are, condensing and displaying data, data display, and drawing and verifying conclusion. Results showed refractive thinking profiles of three subjects is different. This difference occurs at the planning and execution stage of the problem. This difference is influenced by mathematical capability and experience of each subject.

  13. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.; Tyler, G. L.

    1983-01-01

    The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.

  14. GNSS Clock Error Impacts on Radio Occultation Retrievals

    NASA Astrophysics Data System (ADS)

    Weiss, Jan; Sokolovskiy, Sergey; Schreiner, Bill; Yoon, Yoke

    2017-04-01

    We assess the impacts of GPS and GLONASS clock errors on radio occultation retrieval of bending angle, refractivity, and temperature from low Earth orbit. The major contributing factor is the interpretation of GNSS clock offsets sampled at 30 sec or longer intervals. Using 1 Hz GNSS clock estimates as truth we apply several interpolation and fitting schemes to evaluate how they affect the accuracy of atmospheric retrieval products. The results are organized by GPS and GLONASS space vehicle and the GNSS clock interpolation/fitting scheme. We find that bending angle error is roughly similar for all current GPS transmitters (about 0.7 mcrad) but note some differences related to the type of atomic oscillator onboard the transmitter satellite. GLONASS bending angle errors show more variation over the constellation and are approximately two times larger than GPS. An investigation of the transmitter clock spectra reveals this is due to more power in periods between 2-10 sec. Retrieved refractivity and temperature products show clear differences between GNSS satellite generations, and indicate that GNSS clocks sampled at intervals smaller than 5 sec significantly improve accuracy, particularly for GLONASS. We conclude by summarizing the tested GNSS clock estimation and application strategies in the context of current and future radio occultation missions.

  15. A Numerical Method for Calculating Stellar Occultation Light Curves from an Arbitrary Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Chamberlain, D. M.; Elliot, J. L.

    1997-01-01

    We present a method for speeding up numerical calculations of a light curve for a stellar occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry. This improved speed makes least-squares fitting for model parameters practical. Our method takes as input several sets of values for the first two radial derivatives of the refractivity at different values of model parameters, and interpolates to obtain the light curve at intermediate values of one or more model parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets of all sizes. We also present the results of a series of tests showing that our method calculates light curves that are correct to an accuracy of 10(exp -4) of the unocculted stellar flux. The test benchmarks are (i) an atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii) an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors of no more than 10(exp -4), with the largest errors occurring in small planets. These errors are well below the precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity derivatives and then form light curves from the interpolated values, rather than interpolating the light curves themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can be sampled as coarsely as two points per scale height.

  16. First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE)

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.

    2018-05-01

    Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.

  17. Signal analysis and radioholographic methods for airborne radio occultations

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Nung

    Global Positioning System (GPS) radio occultation (RO) is an atmospheric sounding technique utilizing the change in propagation direction and delay of the GPS signal to measure refractivity, which provides information on temperature and humidity. The GPS-RO technique is now operational on several Low Earth Orbiting (LEO) satellite missions. Nevertheless, when observing localized transient events, such as tropical storms, current LEO satellite systems cannot provide sufficiently high temporal and spatial resolution soundings. An airborne RO (ARO) system has therefore been developed for localized GPS-RO campaigns. The open-loop (OL) tracking in post-processing is used to cross-correlates the received Global Navigation Satellite System (GNSS) signal with an internally generated local carrier signal predicted from a Doppler model and extract the atmospheric refractivity information. OL tracking also allows robust processing of rising GPS signals using backward tracking, which will double the observed occultation event numbers. RO signals in the lower troposphere are adversely affected by rapid phase accelerations and severe signal power fading, however. The negative bias caused by low signal-to-noise ratio (SNR) and multipath ray propagation limits the depth of tracking in the atmosphere. Therefore, we developed a model relating the SNR to the variance in the residual phase of the observed signal produced from OL tracking, and its applicability to airborne data is demonstrated. We then apply this model to set a threshold on refractivity retrieval, based upon the cumulative unwrapping error bias, to determine the altitude limit for reliable signal tracking. To enhance the SNR and decrease the unwrapping error rate, the CIRA-Q climatological model and signal residual phase pre-filtering are utilized to process the ARO residual phase. This more accurately modeled phase and less noisy received signal are shown to greatly reduce the bias caused by unwrapping error at lower

  18. Experiment D005: Star occultation navigation

    NASA Technical Reports Server (NTRS)

    Silva, R. M.; Jorris, T. R.; Vallerie, E. M., III

    1971-01-01

    The usefulness of star occultation measurements for space navigation and the determination of a horizon density profile which could be used to update atmospheric models for horizon-based measurement systems were studied. The time of occultation of a known star by a celestial body, as seen by an orbiting observer, determines a cylinder of position, the axis of which is the line through the star and the body center, and the radius of which is equal to the occulting-body radius. The dimming percentage, with respect to the altitude of this grazing ray from the star to the observer, is a percentage altitude for occultation. That is, the star can be assumed to be occulted when it reaches a predetermined percentage of its unattenuated value. The procedure used was to measure this attenuation with respect to time to determine the usefulness of the measurements for autonomous space navigation. In this experiment, the crewmembers had to accomplish star acquisition, identification, calibration, and tracking. Instrumentation was required only for measurement of the relative intensity of the star as it set into the atmosphere.

  19. Turbulence in planetary occultations. IV - Power spectra of phase and intensity fluctuations

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.

    1979-01-01

    Power spectra of phase and intensity scintillations during occultation by turbulent planetary atmospheres are significantly affected by the inhomogeneous background upon which the turbulence is superimposed. Such coupling is particularly pronounced in the intensity, where there is also a marked difference in spectral shape between a central and grazing occultation. While the former has its structural features smoothed by coupling to the inhomogeneous background, such features are enhanced in the latter. Indeed, the latter power spectrum peaks around the characteristic frequency that is determined by the size of the free-space Fresnel zone and the ray velocity in the atmosphere; at higher frequencies strong fringes develop in the power spectrum. A confrontation between the theoretical scintillation spectra computed here and those calculated from the Mariner 5 Venus mission by Woo et al. (1974) is inconclusive, mainly because of insufficient statistical resolution. Phase and/or intensity power spectra computed from occultation data may be used to deduce characteristics of the turbulence and to distinguish turbulence from other perturbations in the refractive index. Such determinations are facilitated if observations are made at two or more frequencies (radio occultation) or in two or more colors (stellar occultation).

  20. Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1983-01-01

    The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.

  1. Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles

    NASA Astrophysics Data System (ADS)

    Schwarz, Jakob; Kirchengast, Gottfried; Schwaerz, Marc

    2018-05-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere - such as pressure, temperature, and tropospheric water vapor profiles (involving background information) - can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP); Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and Meteorological Operational Satellite A (MetOp). The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together

  2. The Northrop Grumman External Occulter Testbed: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Lo, Amy; Glassman, T.; Lillie, C.

    2007-05-01

    We have built a subscale testbed to demonstrate and validate the performance of the New Worlds Observer (NWO), a terrestrial planet finder external-occulter mission concept. The external occulter concept allows observations of nearby exo-Earths using two spacecraft: one carrying an occulter that is tens of meters in diameter and the other carrying a generic space telescope. The occulter is completely opaque, resembling a flower, with petals having a hypergaussian profile that enable 10-10 intensity suppression of stars that potentially harbor terrestrial planets. The baseline flight NWO system has a 30 meter occulter flying 30,000 km in front of a 4 meter class telescope. Testing the flight configuration on the ground is not feasible, so we have matched the Fresnel number of the flight configuration ( 10) using a subscale occulter. Our testbed consists of an 80 meter length evacuated tube, with a high precision occulter in the center of the tube. The occulter is 4 cm in diameter, manufactured with ¼ micron metrological accuracy and less than 2 micron tip truncation. This mimics a 30 meter occulter with millimeter figure accuracy and less than centimeter tip truncation. Our testbed is an evolving experiment, and we report here the first, preliminary, results using a single wavelength laser (532 nm) as the source.

  3. INTEGRATED AND FIBER OPTICS: Investigation of the refractive index profile of inhomogeneous iron garnet films containing bismuth

    NASA Astrophysics Data System (ADS)

    Arzamastseva, G. V.; Kravchenko, V. B.; Filimonova, L. M.

    1989-02-01

    The refractive index n of quasihomogeneous iron garnet films with the composition (YGdYb)3 - xBixFe5 - yAlyO12 increased considerably as a result of reduction in the growth temperature Tg. This was attributed mainly by an increase in x and a reduction in y. The dependences n(Tg) were used to select the conditions for growth of inhomogeneous (across the thickness) films and to predict the refractive index profile n(z), where z was measured from the free surface along the normal to the film. The spectra of optical modes were analyzed in the WKB approximation and this yielded the n(z) profiles for films with a refractive index n decreasing monotonically from the free surface and for films with the symmetric profile n(z) (buried waveguides). The n(z) profiles were compared with the distributions of the compensation temperature Tc(z), and of x(z) and y(z) across the thickness.

  4. On Combining Thermal-Infrared and Radio-Occultation Data of Saturn's Atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schinder, P. J.; Conrath, B. J.

    2008-01-01

    Radio-occultation and thermal-infrared measurements are complementary investigations for sounding planetary atmospheres. The vertical resolution afforded by radio occultations is typically approximately 1 km or better, whereas that from infrared sounding is often comparable to a scale height. On the other hand, an instrument like CIRS can easily generate global maps of temperature and composition, whereas occultation soundings are usually distributed more sparsely. The starting point for radio-occultation inversions is determining the residual Doppler-shifted frequency, that is the shift in frequency from what it would be in the absence of the atmosphere. Hence the positions and relative velocities of the spacecraft, target atmosphere, and DSN receiving station must be known to high accuracy. It is not surprising that the inversions can be susceptible to sources of systematic errors. Stratospheric temperature profiles on Titan retrieved from Cassini radio occultations were found to be very susceptible to errors in the reconstructed spacecraft velocities (approximately equal to 1 mm/s). Here the ability to adjust the spacecraft ephemeris so that the profiles matched those retrieved from CIRS limb sounding proved to be critical in mitigating this error. A similar procedure can be used for Saturn, although the sensitivity of its retrieved profiles to this type of error seems to be smaller. One issue that has appeared in inverting the Cassini occultations by Saturn is the uncertainty in its equatorial bulge, that is, the shape in its iso-density surfaces at low latitudes. Typically one approximates that surface as a geopotential surface by assuming a barotropic atmosphere. However, the recent controversy in the equatorial winds, i.e., whether they changed between the Voyager (1981) era and later (after 1996) epochs of Cassini and some Hubble observations, has made it difficult to know the exact shape of the surface, and it leads to uncertainties in the retrieved

  5. Towards evaluating the intensity of convective systems by using GPS radio occultation profiles

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Steiner, Andrea K.; Kirchengast, Gottfried

    2015-04-01

    Deep convective systems, also more casually often just called storms, are destructive weather phenomena causing every year many deaths, injuries and damages and accounting for major economic losses in several countries. The number and intensity of such phenomena increased over the last decades in some areas of the globe, including Europe. Damages are mostly caused by strong winds and heavy rain and these parameters are strongly connected to the structure of the storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes which are still mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in-situ measurements during extreme events are too sparse or not reliable and most ongoing satellite missions do not provide suitable time/space coverage. With this study we propose a new method for detecting the convection intensity in terms of rain rate and surface wind speed by using meteorological surface measurements in combination with atmospheric profiles from Global Positioning System (GPS) radio occultation observations, which are available in essentially all weather conditions and with global coverage. The analysis of models indicated a relationship between the cloud top altitude and the intensity of a storm. We thus use GPS radio occultation bending angle profiles for detecting the storm's cloud top altitude and we correlate this value to the rain rate and wind speed measured by meteorological station networks in two different regions, the WegenerNet climate station network (South-Eastern Styria, Austria) and the Atmospheric Radiation Measurement site (ARM, Southern Great Plains, USA), respectively. The results show a good correlation between the cloud top altitude and the maximum rain rate in the monitored areas, while this is not found for maximum wind speed. We conclude from this

  6. The Atmosphere of Titan from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Schinder, Paul J.; Flasar, F. M.; Marouf, E. A.; French, R. G.; McGhee, C. A.; Kliore, A. J.; Rappaport, N.; Nagy, A. F.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.

    2006-09-01

    The first two radio occultations of Cassini by Titan occurred on March 19 and May 20, 2006. On March 19, the ingress occultation occurred at a latitude of 31 S, and egress at 53 S. On May 20, ingress was at 33 S, and egress at 34 S. We present the temperature-pressure profiles for the atmosphere of Titan for these 4 locations.

  7. Chiron stellar occultation candidates: 1993-1996

    NASA Technical Reports Server (NTRS)

    Bus, S. J.; Wasserman, L. H.; Elliot, J. L.

    1994-01-01

    A photographic search was conducted for stars that may be occulted by the unusual solar system object (2060) Chiron during the period from fall 1993 through summer 1996. 44 candidates were identified to a limiting V magnitude of 16, and for which the minimum appulse separation with Chiron is predicted to be less than 2.5 arcsec. The successful observation of a stellar occultation by Chiron would give a direct measure of its diameter (currently estimated to be between 60 and 300 km), and would help considerably in constraining Chiron's surface properties and volatile makeup. If at the time of the occultation, Chiron exhibits a significant coma, there is also the potential for measuring the optical-depth profile of the dust in its inner coma.

  8. Stellar Occultation Probe of Triton's Atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    The goals of this research were (i) to better characterize Triton's atmospheric structure by probing a region not well investigated by Voyager and (ii) to begin acquiring baseline data for an investigation of the time evolution of the atmosphere which will set limits on the thermal conductivity of the surface and the total mass of N2 in the atmosphere. Our approach was to use observations (with the Kuiper Airborne Observatory) of a stellar occultation by Triton that was predicted to occur on 1993 July 10. As described in the attached reprint, we achieved these objectives through observation of this occultation and a subsequent one with the KAO in 1995. We found new results about Triton's atmospheric structure from the analysis of the two occultations observed with the KAO and ground-based data. These stellar occultation observations made both in the visible and infrared, have good spatial coverage of Triton including the first Triton central-flash observations, and are the first data to probe the 20-100 km altitude level on Triton. The small-planet light curve model of Elliot and Young (AJ 103, 991-1015) was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements. However, asymmetry observed in the central flash indicates the atmosphere is not homogeneous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent-isothermal temperature of the atmosphere is 47 +/- 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 +/- 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989 (Strobel et al, Icarus 120, 266-289). The atmospheric

  9. GPS radio occultation simulation experiments for the upcoming Strateole-2 superpressure balloon campaign investigating equatorial waves

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Cao, B.; Alexander, M. J.; Zhang, W.

    2017-12-01

    Deep tropical convection influences the transport of mass and momentum from the equatorial upper troposphere into the lower stratosphere through the generation and interaction of waves at a broad range of scales. The France-US collaborative Stratéole-2 project will explore equatorial waves in the tropopause region with super-pressure balloons, designed to drift on quasi-Lagrangian trajectories in the lower stratosphere. The Stratéole-2 program will launch 5 balloons from the Seychelles in the Indian Ocean in 2018-2019, and 20 balloons in 2020-2021, each with a flight duration of about 80 days. Five balloons will carry the Radio OCcultation (ROC2) instrument at 20 km altitude to execute a continuous sequence of temperature profiles on either side of the balloon trajectory to sample the equatorial wave field in three dimensions. It will also carry a micro-lidar for detecting cirrus and convective cloud tops. The goals are to describe the horizontal and vertical structure of tropical waves and their impact on cirrus formation and to investigate the relationships of waves to convective clouds. The GPS measurements quantify wave activity by providing precise estimates of balloon velocity and height perturbations due to waves and by providing refractivity profiles that are sensitive to vertical temperature fluctuations caused by waves. We present ray-tracing simulations of the propagation of GPS signals through the Earth's atmosphere, where they will be bent and delayed due to the gradient of atmospheric refractive index. European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are used to construct the refractive index of the equatorial atmosphere, in which abundant atmospheric waves are present. With the known GPS signal geometry, the excess phase/Doppler are simulated that reflect the wave signatures. The resulting refractivity retrievals provide guidance for interpreting the spectral range of waves that the ROC2 instruments are most likely to reveal.

  10. The Structure of Titan's Atmosphere from Cassini Radio Occultations

    NASA Technical Reports Server (NTRS)

    Schinder, Paul J.; Flasar, F. Michael; Marouf, Essam A.; French, Richard G.; McGhee, Colleen A.; Kliore, Arvydas J.; Rappaport, Nicole J.; Barbinis, Elias; Fleischman, Don; Anabtawi, Aseel

    2011-01-01

    We present results from the two radio occultations of the Cassini spacecraft by Titan in 2006, which probed mid-southern latitudes. Three of the ingress and egress soundings occurred within a narrow latitude range, 31.34 deg S near the surface, and the fourth at 52.8 deg S. Temperature - altitude profiles for all four occultation soundings are presented, and compared with the results of the Voyager 1 radio occultation (Lindal et al., 1983), the HASI instrument on the Huygens descent probe (Fulchignoni et al., 2005), and Cassini CIRS results (Flasar et al., 2005; Achterberg et al., 2008b). Sources of error in the retrieved temperature - altitude profiles are also discussed, and a major contribution is from spacecraft velocity errors in the reconstructed ephemeris. These can be reduced by using CIRS data at 300 km to make along-track adjustments of the spacecraft timing. The occultation soundings indicate that the temperatures just above the surface at 31-34 deg S are about 93 K, while that at 53 deg S is about 1 K colder. At the tropopause, the temperatures at the lower latitudes are all about 70 K, while the 53 deg S profile is again 1 K colder. The temperature lapse rate in the lowest 2 km for the two ingress (dawn) profiles at 31 and 33 deg S lie along a dry adiabat except within approximately 200m of the surface, where a small stable inversion occurs. This could be explained by turbulent mixing with low viscosity near the surface. The egress profile near 34 deg S shows a more complex structure in the lowest 2 km, while the egress profile at 53 deg S is more stable.

  11. Recovery of atmospheric refractivity profiles from simulated satellite-to-satellite tracking data

    NASA Technical Reports Server (NTRS)

    Murray, C. W., Jr.; Rangaswamy, S.

    1975-01-01

    Techniques for recovering atmospheric refractivity profiles from simulated satellite-to-satellite tracking data are documented. Examples are given using the geometric configuration of the ATS-6/NIMBUS-6 Tracking Experiment. The underlying refractivity model for the lower atmosphere has the spherically symmetric form N = exp P(s) where P(s) is a polynomial in the normalized height s. For the simulation used, the Herglotz-Wiechert technique recovered values which were 0.4% and 40% different from the input values at the surface and at a height of 33 kilometers, respectively. Using the same input data, the model fitting technique recovered refractivity values 0.05% and 1% different from the input values at the surface and at a height of 50 kilometers, respectively. It is also shown that if ionospheric and water vapor effects can be properly modelled or effectively removed from the data, pressure and temperature distributions can be obtained.

  12. Electron densities in the ionosphere of Mars: A comparison of MARSIS and radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Flynn, Casey L.; Andrews, David J.; Duru, Firdevs; Morgan, David D.

    2016-10-01

    Radio occultation electron densities measurements from the Mariner 9 and Viking spacecraft, which orbited Mars in the 1970s, have recently become available in a digital format. These data are highly complementary to the radio occultation electron density profiles from Mars Global Surveyor, which were restricted in solar zenith angle and altitude. We have compiled data from the Mariner 9, Viking, and Mars Global Surveyor radio occultation experiments for comparison to electron density measurements made by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), the topside radar sounder on Mars Express, and MARSIS-based empirical density models. We find that the electron densities measured by radio occultation are in generally good agreement with the MARSIS data and model, especially near the altitude of the peak electron density but that the MARSIS data and model display a larger plasma scale height than the radio occultation profiles at altitudes between the peak density and 200 km. Consequently, the MARSIS-measured and model electron densities are consistently larger than radio occultation densities at altitudes 200-300 km. Finally, we have analyzed transitions in the topside ionosphere, at the boundary between the photochemically controlled and transport-controlled regions, and identified the average transition altitude, or altitude at which a change in scale height occurs. The average transition altitude is 200 km in the Mariner 9 and Viking radio occultation profiles and in profiles of the median MARSIS radar sounding electron densities.

  13. Do Peripheral Refraction and Aberration Profiles Vary with the Type of Myopia? - An Illustration Using a Ray-Tracing Approach

    PubMed Central

    Bakaraju, Ravi C.; Ehrmann, Klaus; Papas, Eric B.; Ho, Arthur

    2010-01-01

    Purpose Myopia is considered to be the most common refractive error occurring in children and young adults, around the world. Motivated to elucidate how the process of emmetropization is disrupted, potentially causing myopia and its progression, researchers have shown great interest in peripheral refraction. This study assessed the effect of the myopia type, either refractive or axial, on peripheral refraction and aberration profiles. Methods Using customized schematic eye models for myopia in a ray tracing algorithm, peripheral aberrations, including the refractive error, were calculated as a function of myopia type. Results In all the selected models, hyperopic shifts in the mean spherical equivalent (MSE) component were found whose magnitude seemed to be largely dependent on the field angle. The MSE profiles showed larger hyperopic shifts for the axial type of myopic models than the refractive ones and were evident in -4 and -6 D prescriptions. Additionally, greater levels of astigmatic component (J180) were also seen in axial-length-dependent models, while refractive models showed higher levels of spherical aberration and coma. Conclusion This study has indicated that myopic eyes with primarily an axial component may have a greater risk of progression than their refractive counterparts albeit with the same degree of refractive error. This prediction emerges from the presented theoretical ray tracing model and, therefore, requires clinical confirmation.

  14. Wave-optics uncertainty propagation and regression-based bias model in GNSS radio occultation bending angle retrievals

    NASA Astrophysics Data System (ADS)

    Gorbunov, Michael E.; Kirchengast, Gottfried

    2018-01-01

    A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA) retrieval in the lower troposphere and introduce (1) an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2) the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT) amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and

  15. Anomalous waves propagating at very high frequency in the atmosphere and their disturbances due to changes in refractivity profiles

    NASA Astrophysics Data System (ADS)

    Alam, Imtiaz; Waqar, Asad; Aamir, Muhammad; Hassan, Shahzad; Shah, Syed Asim Ali

    2018-03-01

    Anomalous waves propagation is severely affected due to almost always present variations in refractivity under various environmental conditions at different time, location and frequency. These conditions, representing different state of the atmosphere including e.g. foggy, rainy and cloudy etc., not only degrade the quality of the signal but sometimes completely eradicate the communication link. Such severe impact on propagation cannot be ignored by the designers of communication systems. The aim of this research is to present correlation between experimental and modelled link losses for variations in refractivity values recommended by International Telecommunication Union-Recommendations (ITU-R) as well as that of standard profiles. To do so, a communication setup of 50 km over the Sea operating experimentally over a period of a year at 240 MHz is analyzed for different refractivity profiles and their impact on propagation. A median value is taken for every set of 6000 values taken from the recorded data set of more than 48 million experimental link losses. This reduces the huge data set of the experimental link losses to 8000 values only. This reduced data set of experimental and modelled link losses were correlated and investigated for different evaporation duct heights throughout the year. For the considered link, the ITU-R refractivity profile was found to perform better than the standard refractivity profile. However, the new findings as observed in this research, which may be helpful for the recommendations authorities, is the existing of evaporation duct up to 10 m height.

  16. Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation

    NASA Astrophysics Data System (ADS)

    Psiaki, M. L.

    2014-12-01

    A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated

  17. Titan's Upper Atmosphere from Cassini/UVIS Solar Occultations

    NASA Astrophysics Data System (ADS)

    Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N2 in the range 1100-1600 km and vertical profiles of CH4 in the range 850-1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH4 mole fractions, and average temperatures for the upper atmosphere obtained from the N2 profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  18. Theoretical analyses of the refractive implications of transepithelial PRK ablations.

    PubMed

    Arba Mosquera, Samuel; Awwad, Shady T

    2013-07-01

    To analyse the refractive implications of single-step, transepithelial photorefractive keratectomy (TransPRK) ablations. A simulation for quantifying the refractive implications of TransPRK ablations has been developed. The simulation includes a simple modelling of corneal epithelial profiles, epithelial ablation profiles as well as refractive ablation profiles, and allows the analytical quantification of the refractive implications of TransPRK in terms of wasted tissue, achieved optical zone (OZ) and induced refractive error. Wasted tissue occurs whenever the actual corneal epithelial profile is thinner than the applied epithelial ablation profile, achieved OZ is reduced whenever the actual corneal epithelial profile is thicker than the applied epithelial ablation profile and additional refractive errors are induced whenever the actual difference centre-to-periphery in the corneal epithelial profile deviates from the difference in the applied epithelial ablation profile. The refractive implications of TransPRK ablations can be quantified using simple theoretical simulations. These implications can be wasted tissue (∼14 µm, if the corneal epithelial profile is thinner than the ablated one), reduced OZ (if the corneal epithelial profile is thicker than ablated one, very severe for low corrections) and additional refractive errors (∼0.66 D, if the centre-to-periphery progression of the corneal epithelial profile deviates from the progression of the ablated one). When TransPRK profiles are applied to normal, not previously treated, non-pathologic corneas, no specific refractive implications associated to the transepithelial profile can be anticipated; TransPRK would provide refractive outcomes equal to those of standard PRK. Adjustments for the planned OZ and, in the event of retreatments, for the target sphere can be easily derived.

  19. The occultation of Kappa Geminorum by Eros. [stellar occultation observed for asteroid size and shape

    NASA Technical Reports Server (NTRS)

    Oleary, B.; Marsden, B. G.; Dragon, R.; Hauser, E.; Mcgrath, M.; Backus, P.; Robkoff, H.

    1976-01-01

    The paper discusses predictions and observations of the occultation of Kappa Gem by (433) Eros on January 24, 1975. Several positive and negative observations made in western New England are described. Local circumstances for the occultation are reconstructed, and the size and shape of Eros are determined analytically as well as graphically. The calculations yield two extremes for the cross section: a circle 23 km in diameter or a somewhat irregular figure 20 km by 6 or 7 km. Arguments based on the expected albedo of the asteroid suggest that the circle should be warped into an ellipse 21 by 13 km or that the irregular figure might be one component of a dumbbell-like profile.

  20. CRUSTAL REFRACTION PROFILE OF THE LONG VALLEY CALDERA, CALIFORNIA, FROM THE JANUARY 1983 MAMMOTH LAKES EARTHQUAKE SWARM.

    USGS Publications Warehouse

    Luetgert, James H.; Mooney, Walter D.

    1985-01-01

    Seismic-refraction profiles recorded north of Mammoth Lakes, California, using earthquake sources from the January 1983 swarm complement earlier explosion refraction profiles and provide velocity information from deeper in the crust in the area of the Long Valley caldera. Eight earthquakes from a depth range of 4. 9 to 8. 0 km confirm the observation of basement rocks with seismic velocities ranging from 5. 8 to 6. 4 km/sec extending at least to depths of 20 km. The data provide further evidence for the existence of a partial melt zone beneath Long Valley caldera and constrain its geometry. Refs.

  1. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  2. Long-term variations in abundance and distribution of sulfuric acid vapor in the Venus atmosphere inferred from Pioneer Venus and Magellan radio occultation studies

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Steffes, P. G.

    1992-01-01

    Radio occultation experiments have been used to study various properties of planetary atmospheres, including pressure and temperature profiles, and the abundance profiles of absorbing constituents in those planetary atmospheres. However, the reduction of amplitude data from such experiments to determine abundance profiles requires the application of the inverse Abel transform (IAT) and numerical differentiation of experimental data. These two operations preferentially amplify measurement errors above the true signal underlying the data. A new technique for processing radio occultation data has been developed that greatly reduces the errors in the derived absorptivity and abundance profiles. This technique has been applied to datasets acquired from Pioneer Venus Orbiter radio occultation studies and more recently to experiments conducted with the Magellan spacecraft. While primarily designed for radar studies of the Venus surface, the high radiated power (EIRP) from the Magellan spacecraft makes it an ideal transmitter for measuring the refractivity and absorptivity of the Venus atmosphere by such experiments. The longevity of the Pioneer Venus Orbiter has made it possible to study long-term changes in the abundance and distribution of sulfuric acid vapor, H2SO4(g), in the Venus atmosphere between 1979 and 1992. The abundance of H2SO4(g) can be inferred from vertical profiles of 13-cm absorptivity profiles retrieved from radio occultation experiments. Data from 1979 and 1986-87 suggest that the abundance of H2SO4(g) at latitudes northward of 70 deg decreased over this time period. This change may be due to a period of active volcanism in the late 1970s followed by a relative quiescent period, or some other dynamic process in the Venus atmosphere. While the cause is not certain, such changes must be incorporated into dynamic models of the Venus atmosphere. Potentially, the Magellan spacecraft will extend the results of Pioneer Venus Orbiter and allow the continued

  3. Profile of refractive errors in European Caucasian children with Autistic Spectrum Disorder; increased prevalence and magnitude of astigmatism.

    PubMed

    Anketell, Pamela M; Saunders, Kathryn J; Gallagher, Stephen; Bailey, Clare; Little, Julie-Anne

    2016-07-01

    Autistic Spectrum Disorder (ASD) is a common neurodevelopmental disorder characterised by impairment of communication, social interaction and repetitive behaviours. Only a small number of studies have investigated fundamental clinical measures of vision including refractive error. The aim of this study was to describe the refractive profile of a population of children with ASD compared to typically developing (TD) children. Refractive error was assessed using the Shin-Nippon NVision-K 5001 open-field autorefractor following the instillation of cyclopentolate hydrochloride 1% eye drops. A total of 128 participants with ASD (mean age 10.9 ± 3.3 years) and 206 typically developing participants (11.5 ± 3.1 years) were recruited. There was no significant difference in median refractive error, either by spherical equivalent or most ametropic meridian between the ASD and TD groups (Spherical equivalent, Mann-Whitney U307 = 1.15, p = 0.25; Most Ametropic Meridian, U305 = 0.52, p = 0.60). Median refractive astigmatism was -0.50DC (range 0.00 to -3.50DC) for the ASD group and -0.50DC (Range 0.00 to -2.25DC) for the TD group. Magnitude and prevalence of refractive astigmatism (defined as astigmatism ≥1.00DC) was significantly greater in the ASD group compared to the typically developing group (ASD 26%, TD 8%, magnitude U305 = 3.86, p = 0.0001; prevalence (χ12=17.71 , p < 0.0001). This is the first study to describe the refractive profile of a population of European Caucasian children with ASD compared to a TD population of children. Unlike other neurodevelopmental conditions, there was no increased prevalence of spherical refractive errors in ASD but astigmatic errors were significantly greater in magnitude and prevalence. This highlights the need to examine refractive errors in this population. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  4. Occultation Lightcurves for Selected Pluto Volatile Transport Models

    NASA Astrophysics Data System (ADS)

    Young, L. A.

    2004-11-01

    The stellar occultations by Pluto in 1988 and 2002 are demonstrably sensitive to changes in Pluto's atmosphere near one microbar (Elliot and Young 1992, AJ 103, 991; Elliot et al. 2003, Nature 424, 165; Sicardy 2003, Nature 424, 168). However, Pluto volatile-transport models focus on the changes in the atmospheric pressure at the surface (e.g., Hansen and Paige 1996, Icarus 20, 247; Stansberry and Yelle 1999, Icarus 141, 299). What's lacking is a connection between predictions about the surface properties and either temperature and pressure profiles measurable from stellar occultations, or the occultation light curve morphology itself. Radiative-conductive models can illuminate this connection. I will illustrate how Pluto's changing surface pressure, temperature, and heliocentric distance may affect occultation light curves for a selection of existing volatile transport models. Changes in the light curve include the presence or absence of an observable ``kink'' (or departure from an isothermal light curve), the appearance of non-zero minimum flux levels, and the detectability of the solid surface. These light curves can serve as examples of what we may anticipate during the upcoming Pluto occultation season, as Pluto crosses the galactic plane.

  5. Visible spectral imager for occultation and nightglow (VISION) for the PICASSO Mission

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe; Dekemper, Emmanuel; Vanhellemont, Filip

    2015-10-01

    PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT, Clyde Space Ltd. (UK), and the Centre Spatial de Liège (BE). VTT Technical Research Centre of Finland Ltd. will deliver the Visible Spectral Imager for Occultation and Nightglow (VISION) for the PICASSO mission. The VISION targets primarily the observation of the Earth's atmospheric limb during orbital Sun occultation. By assessing the radiation absorption in the Chappuis band for different tangent altitudes, the vertical profile of the ozone is retrieved. A secondary objective is to measure the deformation of the solar disk so that stratospheric and mesospheric temperature profiles are retrieved by inversion of the refractive raytracing problem. Finally, occasional full spectral observations of polar auroras are also foreseen. The VISION design realized with commercial of the shelf (CoTS) parts is described. The VISION instrument is small, lightweight (~500 g), Piezo-actuated Fabry-Perot Interferometer (PFPI) tunable spectral imager operating in the visible and near-infrared (430 - 800 nm). The spectral resolution over the whole wavelength range will be better than 10 nm @ FWHM. VISION has is 2.5° x 2.5° total field of view and it delivers maximum 2048 x 2048 pixel spectral images. The sun image size is around 0.5° i.e. ~500 pixels. To enable fast spectral data image acquisition VISION can be operated with programmable image sizes. VTT has previously developed PFPI tunable filter based AaSI Spectral Imager for the Aalto-1 Finnish CubeSat. In VISION the requirements of the spectral resolution and stability are tighter than in AaSI. Therefore the optimization of the of the PFPI gap control loop for the operating temperature range and vacuum conditions has to be improved. VISION optical, mechanical and electrical design is described.

  6. Cassini First Diametric Radio Occultation of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; Ambrosini, R.; McGhee, C.; Schinder, P.; Anabtawi, A.; Barbinis, E.; Goltz, G.; Thomson, F.; Wong, K.

    2005-05-01

    We present preliminary results expected from the first planned Cassini radio occultation observation of Saturn's rings, to be conducted on May 3rd, 2005. The path of Cassini as seen from Earth (the occultation track) has been designed to cross the rings from the west to the east ansa almost diametrically, allowing for occultation of all major ring features at two widely separated longitudes (about 180 deg apart). The duration of the geometric occultation is about 1.5 hours on each side. During the occultation, Cassini transmits through the rings three coherent monochromatic radio signals of wavelength 0.94, 3.6, and 13 cm (Ka-, X-, and S-band respectively), a capability unique to Cassini. The perturbed signals received at the Earth are recorded at the NASA DSN complexes at Goldstone and Canberra. Both direct and forward-scattered components of the signal may be identified in spectrograms of the received signals. The time history of the extinction of the direct signal is expected to yield high-spatial-resolution optical depth and phase shift profiles of ring structure. The timing of the occultation was optimized to allow probing the rings when the ring-opening-angle B (the angle between the line-of-sight and the ring plane) is relatively large (B = 23 deg), hence maximizing chances of measuring for the first time the structure of the relatively optically thick Ring B. In a similar experiment by Voyager in 1980, excessive signal attenuation along the long path within the nearly closed rings (B = 5.9 deg) limited the utility of the observations in relatively thick ring regions, in particular the main Ring B. For the Cassini optimized occultation geometry, a large B, slow radial velocity along the occultation track, and much improved phase stability of the reference ultrastable oscillator (USO) on board Cassini combine to promise achievable radial resolution approaching 100 m over a good fraction of the rings. Measurement of the amplitude and phase of the diffracted

  7. Progress in Turbulence Detection via GNSS Occultation Data

    NASA Technical Reports Server (NTRS)

    Cornman, L. B.; Goodrich, R. K.; Axelrad, P.; Barlow, E.

    2012-01-01

    The increased availability of radio occultation (RO) data offers the ability to detect and study turbulence in the Earth's atmosphere. An analysis of how RO data can be used to determine the strength and location of turbulent regions is presented. This includes the derivation of a model for the power spectrum of the log-amplitude and phase fluctuations of the permittivity (or index of refraction) field. The bulk of the paper is then concerned with the estimation of the model parameters. Parameter estimators are introduced and some of their statistical properties are studied. These estimators are then applied to simulated log-amplitude RO signals. This includes the analysis of global statistics derived from a large number of realizations, as well as case studies that illustrate various specific aspects of the problem. Improvements to the basic estimation methods are discussed, and their beneficial properties are illustrated. The estimation techniques are then applied to real occultation data. Only two cases are presented, but they illustrate some of the salient features inherent in real data.

  8. Refraction near the horizon

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Liller, William

    1990-01-01

    Variations in astronomical refraction near the horizon are examined. Sunset timings, a sextant mounted on a tripod, and a temperature profile are utilized to derive the variations in refraction data, collected from 7 locations. It is determined that the refraction ranges from 0.234 to 1.678 deg with an rms deviation of 0.16, and it is observed that the variation is larger than previously supposed. Some applications for the variation of refraction value are discussed.

  9. The power of vertical geolocation of atmospheric profiles from GNSS radio occultation.

    PubMed

    Scherllin-Pirscher, Barbara; Steiner, Andrea K; Kirchengast, Gottfried; Schwärz, Marc; Leroy, Stephen S

    2017-02-16

    High-resolution measurements from Global Navigation Satellite System (GNSS) radio occultation (RO) provide atmospheric profiles with independent information on altitude and pressure. This unique property is of crucial advantage when analyzing atmospheric characteristics that require joint knowledge of altitude and pressure or other thermodynamic atmospheric variables. Here we introduce and demonstrate the utility of this independent information from RO and discuss the computation, uncertainty, and use of RO atmospheric profiles on isohypsic coordinates-mean sea level altitude and geopotential height-as well as on thermodynamic coordinates (pressure and potential temperature). Using geopotential height as vertical grid, we give information on errors of RO-derived temperature, pressure, and potential temperature profiles and provide an empirical error model which accounts for seasonal and latitudinal variations. The observational uncertainty of individual temperature/pressure/potential temperature profiles is about 0.7 K/0.15%/1.4 K in the tropopause region. It gradually increases into the stratosphere and decreases toward the lower troposphere. This decrease is due to the increasing influence of background information. The total climatological error of mean atmospheric fields is, in general, dominated by the systematic error component. We use sampling error-corrected climatological fields to demonstrate the power of having different and accurate vertical coordinates available. As examples we analyze characteristics of the location of the tropopause for geopotential height, pressure, and potential temperature coordinates as well as seasonal variations of the midlatitude jet stream core. This highlights the broad applicability of RO and the utility of its versatile vertical geolocation for investigating the vertical structure of the troposphere and stratosphere.

  10. Predicting fiber refractive index from a measured preform index profile

    NASA Astrophysics Data System (ADS)

    Kiiveri, P.; Koponen, J.; Harra, J.; Novotny, S.; Husu, H.; Ihalainen, H.; Kokki, T.; Aallos, V.; Kimmelma, O.; Paul, J.

    2018-02-01

    When producing fiber lasers and amplifiers, silica glass compositions consisting of three to six different materials are needed. Due to the varying needs of different applications, substantial number of different glass compositions are used in the active fiber structures. Often it is not possible to find material parameters for theoretical models to estimate thermal and mechanical properties of those glass compositions. This makes it challenging to predict accurately fiber core refractive index values, even if the preform index profile is measured. Usually the desired fiber refractive index value is achieved experimentally, which is expensive. To overcome this problem, we analyzed statistically the changes between the measured preform and fiber index values. We searched for correlations that would help to predict the Δn-value change from preform to fiber in a situation where we don't know the values of the glass material parameters that define the change. Our index change models were built using the data collected from preforms and fibers made by the Direct Nanoparticle Deposition (DND) technology.

  11. Overview of SPICAV occultation results for the UV channel

    NASA Astrophysics Data System (ADS)

    Montmessin, Franck; Bertaux, Jean-Loup; Belyaev, Denis; Marcq, Emmanuel; Korablev, Oleg; Vandaele, Ann-Carine; Fedorova, Anna

    The SPICAV instrument onboard the Venus Express spacecraft is a multi-channel suite cov-ering the far ultraviolet to the mid-infrared. In this presentation, we will focus on the results obtained by the UV channel during stellar occultations observations. Stellar occultation tech-nique possesses well-known advantages: self-calibration, low sensitivity to instrument aging, simple laws of radiative transfer. In addition, occultation with stars permit to cover a broad range of latitudes at any given season and they provide optimal geometrical registration. Since Venus Express orbit insertion, several hundreds of occultations have been performed by SPI-CAV, yielding profiles of atmospheric constituents between 80 and 140 km. In the SPICAV UV range, CO2 possesses a broad signature shortward of 200 nm which allows one to retrieve CO2 concentration and subsequently to deduce atmospheric pressure and temperature profiles in the upper mesosphere and in the thermosphere. The Venusian thermosphere shows excessive variability, with the equivalent of more than three scale heights change in density in less than a few days. No other spectral signature besides that of CO2 and haze particles was expected to appear in SPICAV ultraviolet spectra at this altitude range but a consistent search was undertaken, revealing the presence of aan ozone at 100 km (¡108 cm-3) and of sulfur dioxide above 90 km at a concentration of 0.1 to 1 ppm.

  12. Reflective Occultation Mask for Evaluation of Occulter Designs for Planet Finding

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Lyon, Richard; Shiri, Shahram; Roman, Patrick

    2011-01-01

    Advanced formation flying occulter designs utilize a large occulter mask flying in formation with an imaging telescope to block and null starlight to allow imaging of faint planets in exosolar systems. A paper describes the utilization of subscale reflective occultation masks to evaluate formation flying occulter designs. The use of a reflective mask allows mounting of the occulter by conventional means and simplifies the test configuration. The innovation alters the test set-up to allow mounting of the mask using standard techniques to eliminate the problems associated with a standard configuration. The modified configuration uses a reflective set-up whereby the star simulator reflects off of a reflective occulting mask and into an evaluation telescope. Since the mask is sized to capture all rays required for the imaging test, it can be mounted directly to a supporting fixture without interfering with the beam. Functionally, the reflective occultation mask reflects light from the star simulator instead of transmitting it, with a highly absorptive carbon nanotube layer simulating the occulter blocking mask. A subscale telescope images the star source and companion dim source that represents a planet. The primary advantage of this is that the occulter can be mounted conventionally instead of using diffractive wires or magnetic levitation.

  13. Probing the Martian Atmosphere with MAVEN/IUVS Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Gröller, H.; Yelle, R. V.; Koskinen, T.; Montmessin, F.; Lacombe, G.; Schneider, N. M.; Deighan, J.; Stewart, I. F.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; Stiepen, A.; Lefèvre, F.; McClintock, B.; Clarke, J. T.; Holsclaw, G.; Mahaffy, P. R.; Bougher, S. W.; Jakosky, B. M.

    2015-12-01

    We present the first results of FUV and MUV stellar occultations taken with the Imaging UltraViolet Spectrometer (IUVS) onboard MAVEN. The FUV and MUV channels of the IUVS together cover the spectral range from 115 to 330 nm. The first two campaigns were executed during March 24 and March 26, 2015, and during May 17 and May 18, 2015, respectively. So far 13 occultations could be used to retrieve CO2 and O2 number densities in the altitude range between 100 and 150 km from the first occultation campaign. From the second occultation campaign number densities for CO2, O3, and aerosols were obtained between 20 and 100 km altitude. Temperature profiles for the same altitude ranges were calculated by applying the constraint of hydrostatic equilibrium to the CO2 densities. With a cadence of 2.6 s, including a 2.0 s integration time, the altitude resolution of the density and temperature profiles is between 1.5 and 4.5 km, depending on the geometry of the particular occultation. The retrieved density profiles of CO2 and O2 agree with previous measurements obtained by the Mars Express SPICAM instrument and by Viking 1 and 2. The corresponding O2 mixing ratios range from 1 to 5 x 10-3, also in agreement with previous observations. The temperatures that we retrieved agree with the models in the Mars Climate Database (MCD) between 10-2 and 10-4 Pa. At lower pressures, however, the measured temperatures are on average 70 K to 100 K cooler than the temperatures predicted by the MCD. This is because the model temperatures increase steadily with altitude above the mesopause whereas the observed temperatures decrease at pressures less than 3.5 x 10-5 Pa, reaching a minimum near 7 x 10-6 Pa. The large differences between the MCD and our results indicate that global models of thermal structure around the mesopause need to be revised.

  14. The diameter of Juno from its occultation of AG + 0 deg 1022

    NASA Technical Reports Server (NTRS)

    Millis, R. L.; Wasserman, L. H.; Bowell, E.; Franz, O. G.; White, N. M.; Lockwood, G. W.; Nye, R.; Bertram, R.; Klemola, A.; Dunham, E.; hide

    1981-01-01

    The occultation on Dec. 11, 1979, of AG + 0 deg 1022 by Juno was observed photoelectrically from 15 sites distributed across the occultation track. The observations are well represented by a mean elliptical limb profile having semimajor and semiminor axes of 145.2 + or 0.8 and 122.8 + or - 1.9 km, respectively. The corresponding effective diameter of Juno is 267 + or - 5 km, where the uncertainty has been conservatively increased to reflect the presence of limb irregularities clearly seen in the observations. Published radiometric and polarimetric diameters for Juno are 6% to 7% smaller than the occultation result. No secondary occultations attributable to possible satellites of Juno were recorded at any of 23 photoelectrically equipped observing sites.

  15. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, S.; Bramstedt, K.; Hilker, M.; Liebing, P.; Plieninger, J.; Reuter, M.; Rozanov, A.; Bovensmann, H.; Burrows, J. P.

    2015-11-01

    Stratospheric profiles of methane (CH4) and carbon dioxide (CO2) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called "Onion Peeling DOAS" (ONPD) which combines an onion peeling approach with a weighting function DOAS (Differential Optical Absorption Spectroscopy) fit. By use of updated pointing information and optimisation of the data selection and of the retrieval approach the altitude range for reasonable CH4 could be extended to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5-10 % for CH4 and 2-3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002-April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated, which are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.

  16. Radio Occultation Measurements of Pluto's Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.; Summers, M. E.; Woods, W. W.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.; Gladstone, R.; Greathouse, T.; Kammer, J.; Parker, A. H.; Parker, J. W.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A.; Tsang, C.; Versteeg, M.

    2015-12-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto's lower atmosphere. Preliminary analysis yields a surface pressure of about 10 microbars, smaller than expected. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters.

  17. Integral Analysis of Seismic Refraction and Ambient Vibration Survey for Subsurface Profile Evaluation

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Kamarudin, A. F.; Rosli, S.; Fauziah, A.; Akmal, M. A. K.; Aziman, M.; Azhar, A. T. S.; Ashraf, M. I. M.; Shaylinda, M. Z. N.; Rais, Y.; Ishak, M. F.; Alel, M. N. A.

    2018-04-01

    Geotechnical site investigation as known as subsurface profile evaluation is the process of subsurface layer characteristics determination which finally used for design and construction phase. Traditionally, site investigation was performed using drilling technique thus suffers from several limitation due to cost, time, data coverage and sustainability. In order to overcome those problems, this study adopted surface techniques using seismic refraction and ambient vibration method for subsurface profile depth evaluation. Seismic refraction data acquisition and processing was performed using ABEM Terraloc and OPTIM software respectively. Meanwhile ambient vibration data acquisition and processing was performed using CityShark II, Lennartz and GEOPSY software respectively. It was found that studied area consist of two layers representing overburden and bedrock geomaterials based on p-wave velocity value (vp = 300 – 2500 m/s and vp > 2500 m/s) and natural frequency value (Fo = 3.37 – 3.90 Hz) analyzed. Further analysis found that both methods show some good similarity in term of depth and thickness with percentage accuracy at 60 – 97%. Consequently, this study has demonstrated that the application of seismic refractin and ambient vibration method was applicable in subsurface profile depth and thickness estimation. Moreover, surface technique which consider as non-destructive method adopted in this study was able to compliment conventional drilling method in term of cost, time, data coverage and environmental sustainaibility.

  18. Feasibility of Juno radio occultations of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Phipps, P. H.; Withers, P.

    2016-12-01

    Jupiter's magnetosphere is driven by internally produced plasma. The innermost Galilean satellite, Io, isthe dominant source of this plasma. Volcanoes on Io's surface create an atmosphere of sulfur and oxygenwhich escapes into Jupiter's magnetosphere and becomes ionized. This ionized material is trapped byJupiter's magnetic field and creates a torus of plasma centered at Io's orbital radius, called the Io plasmatorus. This torus is divided into three regions distinct in both density and composition. Densities in thistorus can be probed by spacecraft via radio occultations. A radio occultation occurs when plasma comesbetween a spacecraft and a receiver during a time when the spacecraft is sending a radio signal. The Junospacecraft, which arrived in orbit around Jupiter in July 2016, is in an orbit which will be ideal forperforming radio occultations of the Io plasma torus. We test the feasibility of using thetelecommunications system on the Juno spacecraft to perform a radio occultation. Io plasma torusdensities derived from Voyager 1 data are used in creating a model torus. Using the Ka and X-band radiofrequencies we derive vertical profiles for the total electron content of the modeled Io plasma torus. AMarkov Chain Monte Carlo fit is performed on the derived profiles to extract, for each of the torusregions, the scale height and peak total electron content. The scale height can be used to derive atemperature for the torus while the peak total electron content can be used to derive the peak electrondensity. We show that Juno radio occultation measurements of the Io plasma torus are feasible andscientifically valuable.

  19. TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations,more » and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.« less

  20. Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy.

    PubMed

    Pace, P; Huntington, Shane; Lyytikäinen, K; Roberts, A; Love, J

    2004-04-05

    We show a quantitative connection between Refractive Index Profiles (RIP) and measurements made by an Atomic Force Microscope (AFM). Germanium doped fibers were chemically etched in hydrofluoric acid solution (HF) and the wet etching characteristics of germanium were studied using an AFM. The AFM profiles were compared to both a concentration profile of the preform determined using a Scanning Electron Microscope (SEM) and a RIP of the fiber measured using a commercial profiling instrument, and were found to be in excellent agreement. It is now possible to calculate the RIP of a germanium doped fiber directly from an AFM profile.

  1. Profiles of stratospheric chlorine nitrate (ClONO2) from atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Mahieu, E.; Goldman, A.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.

    1994-01-01

    Stratospheric volume mixing ratio profiles of chlorine nitrate (ClONO2) have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded at latitudes between 14 deg N and 54 deg S by the atmospheric trace molecule spectroscopy Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 1 shuttle mission (March 24 to April 2, 1992). The results were obtained from nonlinear least squares fittings of the ClONO2 nu(sub 4) band Q branch at 780.21/cm with improved spectroscopic parameters generated on the basis of recent laboratory work. The individual profiles, which have an accuracy of about +/- 20%, are compared with previous observations and model calculations.

  2. Refractive collimation beam shaper design and sensitivity analysis using a free-form profile construction method.

    PubMed

    Tsai, Chung-Yu

    2017-07-01

    A refractive laser beam shaper comprising two free-form profiles is presented. The profiles are designed using a free-form profile construction method such that each incident ray is directed in a certain user-specified direction or to a particular point on the target surface so as to achieve the required illumination distribution of the output beam. The validity of the proposed design method is demonstrated by means of ZEMAX simulations. The method is mathematically straightforward and easily implemented in computer code. It thus provides a convenient tool for the design and sensitivity analysis of laser beam shapers and similar optical components.

  3. Radio Occultation Measurements of Pluto’s Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Linscott, Ivan; Tyler, Len; Bird, Mike; Paetzold, Martin; Strobel, Darrell; Summers, Mike; Woods, Will; Stern, Alan; Weaver, Hal; Olkin, Cathy; Young, Leslie; Ennico, Kimberly; Gladstone, Randy; Greathouse, Tommy; Kammer, Josh; Parker, Alex; Parker, Joel; Retherford, Kurt; Schindhelm, Eric; Singer, Kelsi; Steffl, Andrew; Tsang, Con; Versteeg, Maarten

    2015-11-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto’s lower atmosphere. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters. This work is supported by the NASA New Horizons Mission.

  4. Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment

    NASA Technical Reports Server (NTRS)

    Festou, M. C.; Atreya, S. K.; Donahue, T. M.; Sandel, B. R.; Shemansky, D. E.; Broadfoot, A. L.

    1981-01-01

    During the occultation of the star Regulus (B7 type) by Jupiter as seen from the Voyager 2 spacecraft on July 9, 1979, two absorbing regions were detected. Between 911 and 1200 A, H2 was absorbing over a 600 km altitude range. Above 1300 A, the rapid increase of the absorption by the hydrocarbons was observed over an altitude interval of approximately 100 km with a height resolution of 3 km. The analysis of these absorption features has provided the height profiles of molecular hydrogen, methane, ethane, and acetylene, as well as the thermal profile in the upper atmosphere of Jupiter. Combining the Voyager ultraviolet spectrometer results with other data, such as those obtained by the Voyager infrared and radioscience instruments, has yielded a comprehensive model of the composition and structure of the atmosphere of Jupiter.

  5. Refractivity variations and propagation at Ultra High Frequency

    NASA Astrophysics Data System (ADS)

    Alam, I.; Najam-Ul-Islam, M.; Mujahid, U.; Shah, S. A. A.; Ul Haq, Rizwan

    Present framework is established to deal with the refractivity variations normally affected the radio waves propagation at different frequencies, ranges and different environments. To deal such kind of effects, many researchers proposed several methodologies. One method is to use the parameters from meteorology to investigate these effects of variations in refractivity on propagation. These variations are region specific and we have selected a region of one kilometer height over the English Channel. We have constructed different modified refractivity profiles based on the local meteorological data. We have recorded more than 48 million received signal strength from a communication links of 50 km operating at 2015 MHz in the Ultra High Frequency band giving path loss between transmitting and receiving stations of the experimental setup. We have used parabolic wave equation method to simulate an hourly value of signal strength and compared the obtained simulated loss to the experimental loss. The analysis is made to compute refractivity distribution of standard (STD) and ITU (International Telecommunication Union) refractivity profiles for various evaporation ducts. It is found that a standard refractivity profile is better than the ITU refractivity profiles for the region at 2015 MHz. Further, it is inferred from the analysis of results that 10 m evaporation duct height is the dominant among all evaporation duct heights considered in the research.

  6. Occultation of Epsilon Geminorum by Mars. II - The structure and extinction of the Martian upper atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; French, R. G.; Dunham, E.; Gierasch, P. J.; Veverka, J.; Church, C.; Sagan, C.

    1977-01-01

    The occultation of Epsilon Geminorum by Mars on April 8, 1976, was observed at three wavelengths and 4-ms time resolution with the 91-cm telescope aboard NASA's G. P. Kuiper Airborne Observatory. Temperature, pressure, and number-density profiles of the Martian atmosphere were obtained for both the immersion and emersion events. Within the altitude range 50-80 km above the mean surface, the mean temperature is about 145 K, and the profiles exhibit wavelike structures with a peak-to-peak amplitude of 35 K and a vertical scale of about 20 km. The ratio of the refractivity of the atmosphere at 4500 A and 7500 A is consistent with the atmospheric composition measured by Viking 1. From the 'central flash' - a bright feature in the light curve midway between immersion and emersion - an optical depth at 4500 A of 3.3 + or - 1.7 per km atm (about 0.23 per equivalent Martian air mass) is found for the atmosphere about 25 km above the mean surface near the south polar region. This large value and its weak wavelength dependence rule out Rayleigh scattering as the principal cause of the observed extinction.

  7. Layered Structures and Internal Waves in the Ionosphere and Atmosphere as Seen from GPS Occultation Data

    NASA Astrophysics Data System (ADS)

    Pavelyev, Alexander; Pavelyev, Alexander; Gubenko, Vladimir; Wickert, Jens; Liou, Yuei An

    High-precision signals emitted by GPS satellites create favourable conditions both for monitoring of the atmosphere and ionosphere and for investigation of the radio wave propagation effects. Comparative theoretical and experimental analysis of the phase and amplitude variations of the GPS radio-holograms discovered a relationship which relates the refraction attenuation, the phase path excess acceleration and Doppler frequency via a classical dynamics equationtype. The advantages of the introduced relationship consist in: (1) a possibility to separate the layered structure and turbulence contributions to RO signal; (2) a possibility to estimate the absorption in the atmosphere by dividing the refraction attenuations found from amplitude and phase data; (3) a possibility to locate the tangent point in the atmosphere with accuracy in the distance from the standard position of of about ±100 km. The suggested method has a general importance because it may be applied for analysis in the trans-ionospheric satellite-to-Earth links. We showed also that the amplitude variations of GPS occultation signals are very sensitive sensors to the internal waves in the atmosphere. The sensitivity of the amplitude method is inversely proportional to the square of the vertical period of the internal wave, indicating high sensitivity of the amplitude data to the wave structures with small vertical periods in the 0.8-4 km interval. Combined analysis of the amplitude and phase of radio occultation signal allows one to determine with high level of reliability the main characteristics of the atmospheric and ionospheric layeres including the vertical distribution of the refractivity, electron density and their gradients. A possibility exists to measure important parameters of the internal waves: the intrinsic phase speed, the horizontal wind perturbations and, under some assumptions, the intrinsic frequency as functions of height in the atmosphere. A new technique has been applied to

  8. Evaluating the lower-tropospheric COSMIC GPS radio occultation sounding quality over the Arctic

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Xie, Feiqin; Ao, Chi O.

    2018-04-01

    Lower-tropospheric moisture and temperature measurements are crucial for understanding weather prediction and climate change. Global Positioning System radio occultation (GPS RO) has been demonstrated as a high-quality observation technique with high vertical resolution and sub-kelvin temperature precision from the upper troposphere to the stratosphere. In the tropical lower troposphere, particularly the lowest 2 km, the quality of RO retrievals is known to be degraded and is a topic of active research. However, it is not clear whether similar problems exist at high latitudes, particularly over the Arctic, which is characterized by smooth ocean surface and often negligible moisture in the atmosphere. In this study, 3-year (2008-2010) GPS RO soundings from COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) over the Arctic (65-90° N) show uniform spatial sampling with average penetration depth within 300 m above the ocean surface. Over 70 % of RO soundings penetrate deep into the lowest 300 m of the troposphere in all non-summer seasons. However, the fraction of such deeply penetrating profiles reduces to only about 50-60 % in summer, when near-surface moisture and its variation increase. Both structural and parametric uncertainties of GPS RO soundings were also analyzed. The structural uncertainty (due to different data processing approaches) is estimated to be within ˜ 0.07 % in refractivity, ˜ 0.72 K in temperature, and ˜ 0.05 g kg-1 in specific humidity below 10 km, which is derived by comparing RO retrievals from two independent data processing centers. The parametric uncertainty (internal uncertainty of RO sounding) is quantified by comparing GPS RO with near-coincident radiosonde and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim profiles. A systematic negative bias up to ˜ 1 % in refractivity below 2 km is only seen in the summer, which confirms the moisture impact on GPS RO quality.

  9. Predicted occultation of Regulus

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2014-03-01

    The predicted occultation of Regulus (alpha Leo) by the magnitude-12.4 V asteroid (163) Erigone on 2014 March 20 at approximately 02:06 a.m. EDT (06:06 UT) is discussed. The occultation track includes Bermuda and northwest along a corridor stretching from the mid-Atlantic USA through Ontario, Canada. Unusual things about this occultation include the facts that the track includes major metropolitan areas such as New York City, and the star being occulted is one of the brightest in the Northern sky and is in a constellation pattern that makes it easy to find. The International Occultation Timing Association (IOTA) website (http://occultations.org/Regulus2014/) has comprehensive information about this predicted occultation and observing and reporting instructions, as well as links to other resources. In addition to witnessing a very rare event (Regulus is the brightest star ever to be predicted to be occulted from the USA), the possibilities for science include these three:! determining the shape of Erigone, detecting a possible companion of Erigone, and detecting the suspected white dwarf companion of Regulus. See the Alert Notice for details.

  10. Using GPS radio occultations to infer the water vapor feedback

    NASA Astrophysics Data System (ADS)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Fetzer, Eric J.

    2016-11-01

    The air refractive index at L-band frequencies depends on the air's water vapor content and density. Exploiting this relationship, we derive for the first time a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model by using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated by using the Atmospheric Infrared Sounder and the NASA's Modern-Era Retrospective Analysis for Research and Applications data sets. Because of their high sensitivity to fractional changes in water vapor, current and future GPS RO observations show great promise in monitoring climate feedback and their trends.

  11. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis

  12. Deep shadow occulter

    NASA Technical Reports Server (NTRS)

    Cash, Webster (Inventor)

    2010-01-01

    Methods and apparatus are disclosed for occulting light. The occulter shape suppresses diffraction at any given size or angle and is practical to build because it can be made binary to avoid scatter. Binary structures may be fully opaque or fully transmitting at specific points. The diffraction suppression is spectrally broad so that it may be used with incoherent white light. An occulter may also include substantially opaque inner portion and an at least partially transparent outer portion. Such occulters may be used on the ground to create a deep shadow in a short distance, or may be used in space to suppress starlight and reveal exoplanets.

  13. The Research and Education Collaborative Occultation Network: A System for Coordinated TNO Occultation Observations

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Keller, John M.

    2016-03-01

    We describe a new system and method for collecting coordinated occultation observations of trans-Neptunian objects (TNOs). Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited span of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations as small as contact systems. Traditional occultation efforts strive to get a prediction sufficiently good to place mobile ground stations in the shadow track. Our system takes a new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km so that we ensure two chords at our limiting size. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from International Occultation Timing Association members. At our minimum size, two stations will record an event while the other stations will be probing the inner regions for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We present a full description of the system we have developed for the continued exploration of the Kuiper Belt.

  14. Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records.

    PubMed

    Hubert, D; Lambert, J-C; Verhoelst, T; Granville, J; Keppens, A; Baray, J-L; Cortesi, U; Degenstein, D A; Froidevaux, L; Godin-Beekmann, S; Hoppel, K W; Kyrölä, E; Leblanc, T; Lichtenberg, G; McElroy, C T; Murtagh, D; Nakane, H; Querel, R; Russell, J M; Salvador, J; Smit, H G J; Stebel, K; Steinbrecht, W; Strawbridge, K B; Stübi, R; Swart, D P J; Taha, G; Thompson, A M; Urban, J; van Gijsel, J A E; von der Gathen, P; Walker, K A; Wolfram, E; Zawodny, J M

    2016-01-01

    The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20-40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5-12% and the drifts are at most ±5% decade -1 (or even ±3 % decade -1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the

  15. Ground-Based Assessment of the Bias and Long-Term Stability of Fourteen Limb and Occultation Ozone Profile Data Records

    NASA Technical Reports Server (NTRS)

    Hubert, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; Keppens, A.; Baray, J.-L.; Cortesi, U.; Degenstein, D. A.; Froidevaux, L.; Godin-Beekmann, S.; hide

    2016-01-01

    The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20-40 kilometers the satellite ozone measurement biases are smaller than plus or minus 5 percent, the short-term variabilities are less than 5-12 percent and the drifts are at most plus or minus 5 percent per decade (or even plus or minus 3 percent per decade for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10 percent and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS

  16. Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records

    PubMed Central

    Hubert, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; Keppens, A.; Baray, J.-L.; Cortesi, U.; Degenstein, D. A.; Froidevaux, L.; Godin-Beekmann, S.; Hoppel, K. W.; Kyrölä, E.; Leblanc, T.; Lichtenberg, G.; McElroy, C. T.; Murtagh, D.; Nakane, H.; Querel, R.; Russell, J. M.; Salvador, J.; Smit, H. G. J.; Stebel, K.; Steinbrecht, W.; Strawbridge, K. B.; Stübi, R.; Swart, D. P. J.; Taha, G.; Thompson, A. M.; Urban, J.; van Gijsel, J. A. E.; von der Gathen, P.; Walker, K. A.; Wolfram, E.; Zawodny, J. M.

    2018-01-01

    The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20–40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5–12% and the drifts are at most ±5% decade−1 (or even ±3 % decade−1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on

  17. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    USGS Publications Warehouse

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  18. Analysis of a Triple Star System Occulted By Saturn’s Rings

    NASA Astrophysics Data System (ADS)

    Bratcher, Allison; Colwell, J. E.; Bolin, B.

    2012-10-01

    On January 4, 2012, the Ultraviolet Imaging Spectrograph aboard the Cassini Spacecraft observed Saturn’s rings as they occulted the triple star system, Iota Orionis. Remarkably, the brightest star was occulted by the moon Prometheus, and we provide the timing information of first and last contact for navigation purposes and a chord across the moon. The large separation of the individual stars projected in the ring plane makes it possible to measure the profiles of narrow features in the rings as they were occulted by each of the three stars. This occultation thus provides a unique opportunity to measure short-scale longitudinal variations in narrow ringlets with stellar occultation data that usually provide only a single longitudinal sample. Iota Orionis has a low elevation angle (B=1.4 degrees) above the plane of the rings, enhancing the sensitivity of the occultation (by a factor of 1/sin(B)=41) to the optically thin regions of the rings such as the C Ring and the Cassini Division as well as faint ringlets in the Encke gap. We distinguished the three signals by creating a model triple star signal using data from another occultation. We were able to identify several faint, narrow ringlets, including two in the Encke gap, occulted by two of the three stars and more prominent ringlets, such as the Huygens ringlet, in all three stellar light curves. We present the equivalent widths of these ringlets in the data from this triple star system and limits on ring variability over the azimuthal separation of the stars that ranges from 6000 km at the inner C ring to 200 km at the outer A ring.

  19. Shape and Size of Patroclus and Menoetius from a Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Olkin, Catherine B.; Merline, William J.; Timerson, Brad; Herald, Dave; Owen, William M.; Abramson, Harry B.; Abramson, Katherine J.; Breit, Derek C.; Caton, D. B.; Conard, Steve J.; Croom, Mark A.; Dunford, R. W.; Dunford, J. A.; Dunham, David W.; Ellington, Chad K.; Liu, Yanzhe; Maley, Paul D.; Olsen, Aart M.; Royer, Ronald; Scheck, Andrew E.; Sherrod, Clay; Sherrod, Lowell; Swift, Theodore J.; Taylor, Lawrence W.; Venable, Roger

    2014-11-01

    We will present results of a stellar occultation by the Jupiter Trojan asteroid, Patroclus and its nearly equal size moon, Menoetius. The occultation was observed widely across the United States on 2013 Oct 21 UT. Eleven sites out of 36 successfully recorded an occultation. Seven chords across Patroclus yielded a elliptical limb fit of 124.6 km by 98.2 km. There were six chords across Menoetius that yielded an elliptical limb fit of 117.2 km by 93.0 km. There were three sites that got chords on both objects. At the time of the occultation we measured a separation of 0.247 arcsec and a position angle for Menoetius of 265.7 deg measured eastward from J2000 North. More surprisingly, there were two sites that should have seen an occultation by Menoetius but instead never saw the star disappear. These two non-detections indicate the presence of a large void on the southern limb of the satellite. The observations are consistent with a large impact basin centered on the rotation pole. The depth of the projected crater profile is roughly 15 km, measured from the elliptical limb profile. The inferred diameter of the crater would be about 85 km. Combining this occultation data with previous lightcurve data, the axial ratios (ignoring the mass void) of both objects is 1.26:1.19:1 indicative of a mostly oblate ellipsoid with a slight asymmetry in its equatorial projection. These results are consistent with a fully tidally evolved system with the mass void or putative crater in a position consistent with principal axis rotation that is itself consistent with the largely oblate shape. Note: the location for IOTA listed in the affiliations is not correct (but was required to be entered) as there is no location for this global virtual organization. This research is funded, in part, by NSF AST-1212159.

  20. GNSS Radio Occultation Excess Phase Processing with Integrated Uncertainty Estimation for Thermodynamic Cal/Val of Passive Atmospheric Sounders and Climate Science

    NASA Astrophysics Data System (ADS)

    Innerkofler, J.; Pock, C.; Kirchengast, G.; Schwaerz, M.; Jaeggi, A.; Andres, Y.; Marquardt, C.; Hunt, D.; Schreiner, W. S.; Schwarz, J.

    2017-12-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) is a highly valuable satellite remote sensing technique for atmospheric and climate sciences, including calibration and validation (cal/val) of passive sounding instruments such as radiometers. It is providing accurate and precise measurements in the troposphere and stratosphere regions with global coverage, long-term stability, and virtually all-weather capability since 2001. For fully exploiting the potential of RO data as a cal/val reference and climate data record, uncertainties attributed to the data need to be assessed. Here we focus on the atmospheric excess phase data, based on the raw occultation tracking and orbit data, and its integrated uncertainty estimation within the new Reference Occultation Processing System (rOPS) developed at the WEGC. These excess phases correspond to integrated refractivity, proportional to pressure/temperature and water vapor, and are therefore highly valuable reference data for thermodynamic cal/val of passive (radiometric) sounder data. In order to enable high accuracy of the excess phase profiles, accurate orbit positions and velocities as well as clock estimates of the GNSS transmitter satellites and RO receiver satellites are determined using the Bernese and Napeos orbit determination software packages. We find orbit uncertainty estimates of about 5 cm (position) / 0.05 mm/s (velocity) for daily orbits for the MetOp, GRACE, and CHAMP RO missions, and decreased uncertainty estimates near 20 cm (position) / 0.2 mm/s (velocity) for the COSMIC RO mission. The strict evaluation and quality control of the position, velocity, and clock accuracies of the daily LEO and GNSS orbits assure smallest achievable uncertainties in the excess phase data. We compared the excess phase profiles from WEGC against profiles from EUMETSAT and UCAR. Results show good agreement in line with the estimated uncertainties, with millimetric differences in the upper stratosphere and

  1. The Thermal Structure of Triton's Atmosphere: Results from the 1993 and 1995 Occultations

    NASA Astrophysics Data System (ADS)

    Olkin, C. B.; Elliot, J. L.; Hammel, H. B.; Cooray, A. R.; McDonald, S. W.; Foust, J. A.; Bosh, A. S.; Buie, M. W.; Millis, R. L.; Wasserman, L. H.; Dunham, E. W.; Young, L. A.; Howell, R. R.; Hubbard, W. B.; Hill, R.; Marcialis, R. L.; McDonald, J. S.; Rank, D. M.; Holbrook, J. C.; Reitsema, H. J.

    1997-09-01

    This paper presents new results about Triton's atmospheric structure from the analysis of all ground-based stellar occultation data recorded to date, including one single-chord occultation recorded on 1993 July 10 and nine occultation lightcurves from the double-star event on 1995 August 14. These stellar occultation observations made both in the visible and in the infrared have good spatial coverage of Triton, including the first Triton central-flash observations, and are the first data to probe the altitude level 20-100 km on Triton. The small-planet lightcurve model of J. L. Elliot and L. A. Young (1992,Astron. J.103,991-1015) was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude, indicating that Triton's atmosphere is spherically symmetric at ∼50-km altitude to within the error of the measurements; however, asymmetry observed in the central flash indicates the atmosphere is not homogeneous at the lowest levels probed (∼20-km altitude). From the average of the 1995 occultation data, the equivalent-isothermal temperature of the atmosphere is 47 ± 1 K and the atmospheric pressure at 1400-km radius (∼50-km altitude) is 1.4 ± 0.1 μbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989 (D. F. Strobel, X. Zhu, M. E. Summers, and M. H. Stevens, 1996,Icarus120,266-289). The atmospheric temperature from the occultation is 5 K colder than that predicted by the model and the observed pressure is a factor of 1.8 greater than the model. In our opinion, the disagreement in temperature and pressure is probably due to modeling problems at the microbar level, since measurements at this level have not previously been made. Alternatively, the difference could be due to seasonal change in Triton's atmospheric structure.

  2. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-05-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  3. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-11-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  4. Crustal structure of Yunnan province, People's Republic of China, from seismic refraction profiles

    USGS Publications Warehouse

    Kan, R.-J.; Hu, H.-X.; Zeng, R.-S.; Mooney, W.D.; McEvilly, T.V.

    1986-01-01

    Seismic refraction, profiles in Yunnan Province, southwestern China, define the crustal structure in an area of active tectonics, on the southern end of the Himalaya-Burma arc. The crustal thickness ranges from 38 to 46 kilometers, and the relatively low mean crustal velocity indicates a crustal composition compatible with normal continental crust and consisting mainly of meta-sedimentary and silicic intrusive rocks, with little mafic or ultramafic component. This composition suggests a crustal evolution involving sedimentary processes on the flank of the Yangtze platform rather than the accretion of oceanic island arcs, as has been proposed. An anomalously low upper-mantle velocity observed on one profile, but not on another at right angles to it may indicate active tectonic processes in the mantle or seismic anisotropy.

  5. Crustal Structure of Yunnan Province, People's Republic of China, from Seismic Refraction Profiles.

    PubMed

    Kan, R J; Hu, H X; Zeng, R S; Mooney, W D; McEvilly, T V

    1986-10-24

    Seismic refraction, profiles in Yunnan Province, southwestern China, define the crustal structure in an area of active tectonics on the southern end of the Himalaya-Burma arc. The crustal thickness ranges from 38 to 46 kilometers, and the relatively low mean crustal velocity indicates a crustal composition compatible with normal continental crust and consisting mainly of meta-sedimentary and silicic intrusive rocks, with little mafic or ultramafic component. This composition suggests a crustal evolution involving sedimentary processes on the flank of the Yangtze platform rather than the accretion of oceanic island arcs, as has been proposed. An anomalously low upper-mantle velocity observed on one profile but not on another at right angles to it may indicate active tectonic processes in the mantle or seismic anisotropy.

  6. Interpretation of a seismic refraction profile across the Roosevelt Hot Springs, Utah and vicinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertson, R.C.; Smith, R.B.

    1979-03-01

    In April 1977, a seismic refraction profile was recorded across the Milford Valley, the Roosevelt Hot Springs KGRA, and the northern Mineral Mountains in southwestern Utah. Seven shot points were used to provide multiple subsurface seismic refraction coverage along the 30 km east-west profile line. Since an inspection of power spectrums revealed large components of 60 Hz noise on some traces, computer routines were used to low-pass filter all seismograms. Amplitude information was utilized by normalizing all traces that recorded the same blast. Subsurface structural modeling was conducted by means of first arrival P-wave delay-time analysis and ray tracing. Herglotz-Wiechertmore » travel-time inversion was used for the velocity-depth distribution in the Mineral Mountains. The interpretation of the P-wave travel-times suggests that the Milford Valley fill consists of two units with a total thickness of at least 1.8 km. In the vicinity of the Roosevelt KGRA, a thin low velocity alluvial layer covers a basement igneous complex with a velocity of 5.2 km/s. Granite velocities between 3.3 km/s and 4.0 km/s were calculated from the travel-times in the Mineral Mountains.« less

  7. Local time dependence of the thermal structure in the Venusian equatorial region revealed by Akatsuki radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Ando, H.; Fukuhara, T.; Takagi, M.; Imamura, T.; Sugimoto, N.; Sagawa, H.

    2017-12-01

    The radio occultation technique is one of the most useful methods to retrieve vertical temperature profiles in planetary atmospheres. Ultra-Stable Oscillator (USO) onboard Venus Climate Orbiter, Akatsuki, enables us to investigate the thermal structure of the Venus atmosphere between about 40-90 km levels. It is expected that 35 temperature profiles will be obtained by the radio occultation measurements of Akatsuki until August 2017. Static stability derived from the temperature profiles shows its local time dependence above the cloud top level at low-latitudes equatorward of 25˚. The vertical profiles of the static stability in the dawn and dusk regions have maxima at 77 km and 82 km levels, respectively. A general circulation model (GCM) for the Venus atmosphere (AFES-Venus) reproduced the thermal structures above the cloud top qualitatively consistent with the radio occultation measurements; the maxima of the static stability are seen both in the dawn and dusk regions, and the local maximum of the static stability in the dusk region is located at a highler level than in the dawn region. Comparing the thermal structures between the radio occultation measurements and the GCM results, it is suggested that the distribution of the static stability above the cloud top could be strongly affected by the diurnal tide. The thermal tide influences on the thermal structure as well as atmospheric motions above the cloud level. In addition, it is shown that zonally averaged zonal wind at about 80 km altitude could be roughly estimated from the radio occultation measurements using the dispersion relation of the internal gravity wave.

  8. Cassini Radio Occultation by Enceladus Plume

    NASA Astrophysics Data System (ADS)

    Kliore, A.; Armstrong, J.; Flasar, F.; French, R.; Marouf, E.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Aguilar, R.; Rochblatt, D.

    2006-12-01

    A fortuitous Cassini radio occultation by Enceladus plume occurs on September 15, 2006. The occultation track (the spacecraft trajectory in the plane of the sky as viewed from the Earth) has been designed to pass behind the plume (to pass above the south polar region of Enceladus) in a roughly symmetrical geometry centered on a minimum altitude above the surface of about 20 km. The minimum altitude was selected primarily to ensure probing much of the plume with good confidence given the uncertainty in the spacecraft trajectory. Three nearly-pure sinusoidal signals of 0.94, 3.6, and 13 cm-wavelength (Ka-, X-, and S-band, respectively) are simultaneously transmitted from Cassini and are monitored at two 34-m Earth receiving stations of the Deep Space Network (DSN) in Madrid, Spain (DSS-55 and DSS-65). The occultation of the visible plume is extremely fast, lasting less than about two minutes. The actual observation time extends over a much longer time interval, however, to provide a good reference baseline for potential detection of signal perturbations introduced by the tenuous neutral and ionized plume environment. Given the likely very small fraction of optical depth due to neutral particles of sizes larger than about 1 mm, detectable changes in signal intensity is perhaps unlikely. Detection of plume plasma along the radio path as perturbations in the signals frequency/phase is more likely and the magnitude will depend on the electron columnar density probed. The occultation time occurs not far from solar conjunction time (Sun-Earth-probe angle of about 33 degrees), causing phase scintillations due to the solar wind to be the primary limiting noise source. We estimate a delectability limit of about 1 to 3E16 electrons per square meter columnar density assuming about 100 seconds integration time. Potential measurement of the profile of electron columnar density along the occultation track is an exciting prospect at this time.

  9. The Occult Today: Why?

    ERIC Educational Resources Information Center

    Kessler, Gary E.

    1975-01-01

    Author offered some reflections on the "why" of the contemporary interest in the occult. He attempted to convince the reader that, if he or she has been surprised by the recent rise of occultism, sober reflection will dispell some fears and, perhaps, even convince him or her that occultism is not merely superstition. (Author/RK)

  10. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  11. Studies in occultation astronomy

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1980-01-01

    Major scientific results are summarized for the following studies: (1) observations of the 8 April 1976 occultation of epsilon Geminorum by Mars; (2) studies in occultation techniques; and (3) the March 1974 occultation of Saturn by the Moon. A re-analysis of the 1974 lunar occultation of the Titan indicates that Titan is strongly limb darkened, with D approximately greater than 5800km; there is internal evidence in the data that Titan's atmosphere is inhomogeneous; and that observations are inconsistent with any sample homogeneous model atmosphere which matches the P (lambda) and Beta (lambda) observations of Titan.

  12. Repeatability and Reproducibility of Virtual Subjective Refraction.

    PubMed

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-10-01

    To establish the repeatability and reproducibility of a virtual refraction process using simulated retinal images. With simulation software, aberrated images corresponding with each step of the refraction process were calculated following the typical protocol of conventional subjective refraction. Fifty external examiners judged simulated retinal images until the best sphero-cylindrical refraction and the best visual acuity were achieved starting from the aberrometry data of three patients. Data analyses were performed to assess repeatability and reproducibility of the virtual refraction as a function of pupil size and aberrometric profile of different patients. SD values achieved in three components of refraction (M, J0, and J45) are lower than 0.25D in repeatability analysis. Regarding reproducibility, we found SD values lower than 0.25D in the most cases. When the results of virtual refraction with different pupil diameters (4 and 6 mm) were compared, the mean of differences (MoD) obtained were not clinically significant (less than 0.25D). Only one of the aberrometry profiles with high uncorrected astigmatism shows poor results for the M component in reproducibility and pupil size dependence analysis. In all cases, vision achieved was better than 0 logMAR. A comparison between the compensation obtained with virtual and conventional subjective refraction was made as an example of this application, showing good quality retinal images in both processes. The present study shows that virtual refraction has similar levels of precision as conventional subjective refraction. Moreover, virtual refraction has also shown that when high low order astigmatism is present, the refraction result is less precise and highly dependent on pupil size.

  13. New Occultation Systems and the 2005 July 11 Charon Occultation

    NASA Astrophysics Data System (ADS)

    Young, L. A.; French, R. G.; Gregory, B.; Olkin, C. B.; Ruhland, C.; Shoemaker, K.; Young, E. F.

    2005-08-01

    Charon's density is an important input to models of its formation and internal structure. Estimates range from 1.59 to 1.83 g/cm3 (Olkin et al. 2003. Icarus 164, 254), with Charon's radius as the main source of uncertainty. Reported values of Charon's radius from mutual events range from 593±13 (Buie et al. 1992, Icarus 97, 211) to 621±21 km (Young & Binzel 1994, Icarus 108), while an occultation observed from a single site gives a lower limit on the radius of 601.5 km (Walker 1980 MNRAS 192, 47; Elliot & Young 1991, Icarus 89, 244). On 2005 July 11 UT (following this abstract submission date), Charon is predicted to occult the star C313.2. If successful, this event will be the first Charon occultation observed since 1980, and the first giving multiple chords across Charon's disk. This event is expected to measure Charon's radius to 1 km. Our team is observing from three telescopes in Chile, the 4.0-m Blanco and the 0.9-m telescopes at Cerro Tololo and the 4.2-m SOAR telescope at Cerro Pachon. At SOAR, we will be using the camera from our new PHOT systems (Portable High-speed Occultation Telescopes). The PHOT camera is a Princeton Instrument MicroMAX:512BFT from Roper Scientific, a 512×512 frame-transfer CCD with a readnoise of only 3 electrons at the 100 kHz digitization rate. The camera's exposures are triggered by a custom built, compact, stand-alone GPS-based pulse-train generator. A PHOT camera and pulse-train generator were used to observe the occultation of 2MASS 1275723153 by Pluto on 2005 June 15 UT from Sommers-Bausch Observatory in Boulder Colorado; preliminary analysis shows this was at best a grazing occultation from this site and a successful engineering run for the July 11 Charon occultation. The work was supported, in part, by NSF AST-0321338 (EFY) and NASA NNG-05GF05G (LAY).

  14. Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere

    NASA Astrophysics Data System (ADS)

    Patel, H. S.; Kushwaha, P. K.; Swami, M. K.

    2018-05-01

    Photonic nanojets (PNJs) owing to their sub-wavelength near-field features have found many interesting applications like nanoscopy, nano photolithography, high density optical storage, enhancement of Raman signal and single molecule spectroscopy etc. More recently, the focus of research has been on tailoring of PNJs either for better confinement and thus higher peak intensity or for elongation of nanojet for high resolution far field applications. In this paper, we show that crescent-shape refractive index profile (CSRP) of microspheres can be used to generate highly confined PNJ. By optimizing the refractive index of different layers in CSRP microsphere, we show a free space confinement down to ∼ λ / 4 . 5 (FWHM ∼ 110 nm for excitation with 500 nm wavelength). Further, it was observed that the optical properties of substrates also modulate the PNJ characteristics and lead to a further improvement in the transverse confinement to ∼ λ / 6 . 7.

  15. Atmospheric refraction errors in laser ranging systems

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.

    1976-01-01

    The effects of horizontal refractivity gradients on the accuracy of laser ranging systems were investigated by ray tracing through three dimensional refractivity profiles. The profiles were generated by performing a multiple regression on measurements from seven or eight radiosondes, using a refractivity model which provided for both linear and quadratic variations in the horizontal direction. The range correction due to horizontal gradients was found to be an approximately sinusoidal function of azimuth having a minimum near 0 deg azimuth and a maximum near 180 deg azimuth. The peak to peak variation was approximately 5 centimeters at 10 deg elevation and decreased to less than 1 millimeter at 80 deg elevation.

  16. A variational regularization of Abel transform for GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Wee, Tae-Kwon

    2018-04-01

    In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity

  17. The Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E. A. (Editor); Hudson, H. S. (Editor); Dabbs, J. R. (Editor); Baity, W. A. (Editor)

    1983-01-01

    Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility.

  18. Ionospheric Signatures in Radio Occultation Data

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Ao, Chi; Iijima, Byron A.; Kursinkski, E. Robert

    2012-01-01

    We can extend robustly the radio occultation data record by 6 years (+60%) by developing a singlefrequency processing method for GPS/MET data. We will produce a calibrated data set with profile-byprofile data characterization to determine robust upper bounds on ionospheric bias. Part of an effort to produce a calibrated RO data set addressing other key error sources such as upper boundary initialization. Planned: AIRS-GPS water vapor cross validation (water vapor climatology and trends).

  19. Measurement of stellar occultations

    NASA Astrophysics Data System (ADS)

    Eberle, Andreas

    2008-09-01

    Whenever an asteroid occults a star, we have the opportunity to study that asteroid in great detail. As frequently shown in the past, amateur astronomers1 have the necessary equipment to measure such events successfully2. Combined with the dense net of amateur observatories and online coordination tools3 for movable stations, they can create fine grids to detect even small bodies. The analysis of these events gives us the possibility to receive high precision astrometry data, to determine the asteroids size and shape (and therefore its albedo), and even to collect information on the star itself.4 While usually a set of several light curves is required to do so, a single recording5 of (10734) Wieck's occultation of HIP 22157 on 2008 Feb 08 was sufficient to retrieve the necessary data6. 1 Observation campaigns are organized by the International Occultation Timing Association (IOTA), http://www.iota-es.de/ 2 for results see e.g. euraster.net by E. Frappa, http://www.euraster.net/ 3 Occult Watcher by H. Pavlov, http://www.hristopavlov.net/OccultWatcher/OccultWatcher.html 4 see K. Miyashita's analysis of the observation of the occultation of TYC 1886-01206-1 by Kalliope and Linus, http://www005.upp.so-net.ne.jp/k miyash/occ02/kalliope/doublestar en.html 5 recording obtained by H. Michels, MPC Station Code 240 6 using Limovie by K. Miyashita

  20. Effects of horizontal refractivity gradients on the accuracy of laser ranging to satellites

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1976-01-01

    Numerous formulas have been developed to partially correct laser ranging data for the effects of atmospheric refraction. All the formulas assume the atmospheric refractivity profile is spherically symmetric. The effects of horizontal refractivity gradients are investigated by ray tracing through spherically symmetric and three-dimensional refractivity profiles. The profiles are constructed from radiosonde data. The results indicate that the horizontal gradients introduce an rms error of approximately 3 cm when the satellite is near 10 deg elevation. The error decreases to a few millimeters near zenith.

  1. Studies of planetary upper atmospheres through occultations

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1982-01-01

    The structure, composition, dynamics and energy balance of planetary upper atmospheres through interpretation of steller occultation data from Uranus is discussed. The wave-optical problem of modelling strong scintillation for arbitrary turbulent atmospheres is studied, as well as influence of turbulence. It was concluded that quasi-global features of atmospheric structure are accurately determined by numerical inversion. Horizontally inhomogeneous structures are filtered out and have little effect on temperature profiles.

  2. Spherical Occulter Coronagraph Cubesat

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M. (Inventor); Rabin, Douglas M. (Inventor); Reginald, Nelson (Inventor); Gong, Qian (Inventor); Shah, Neerav (Inventor); Chamberlin, Phillip C. (Inventor)

    2018-01-01

    The present invention relates to a space-based instrument which provides continuous coronal electron temperature and velocity images, for a predetermined period of time, thereby improving the understanding of coronal evolution and how the solar wind and Coronal Mass Ejection transients evolve from the low solar atmosphere through the heliosphere for an entire solar rotation. Specifically, the present invention relates to using a 6U spherical occulter coronagraph CubeSat, and a relative navigational system (RNS) that controls the position of the spacecraft relative to the occulting sphere. The present invention innovatively deploys a free-flying spherical occulter, and after deployment, the actively controlled CubeSat will provide an inertial formation flying with the spherical occulter and Sun.

  3. Observing Climate with GNSS Radio Occultation: Characterization and Mitigation of Systematic Errors

    NASA Astrophysics Data System (ADS)

    Foelsche, U.; Scherllin-Pirscher, B.; Danzer, J.; Ladstädter, F.; Schwarz, J.; Steiner, A. K.; Kirchengast, G.

    2013-05-01

    GNSS Radio Occultation (RO) data a very well suited for climate applications, since they do not require external calibration and only short-term measurement stability over the occultation event duration (1 - 2 min), which is provided by the atomic clocks onboard the GPS satellites. With this "self-calibration", it is possible to combine data from different sensors and different missions without need for inter-calibration and overlap (which is extremely hard to achieve for conventional satellite data). Using the same retrieval for all datasets we obtained monthly refractivity and temperature climate records from multiple radio occultation satellites, which are consistent within 0.05 % and 0.05 K in almost any case (taking global averages over the altitude range 10 km to 30 km). Longer-term average deviations are even smaller. Even though the RO record is still short, its high quality already allows to see statistically significant temperature trends in the lower stratosphere. The value of RO data for climate monitoring is therefore increasingly recognized by the scientific community, but there is also concern about potential residual systematic errors in RO climatologies, which might be common to data from all satellites. We started to look at different error sources, like the influence of the quality control and the high altitude initialization. We will focus on recent results regarding (apparent) constants used in the retrieval and systematic ionospheric errors. (1) All current RO retrievals use a "classic" set of (measured) constants, relating atmospheric microwave refractivity with atmospheric parameters. With the increasing quality of RO climatologies, errors in these constants are not negligible anymore. We show how these parameters can be related to more fundamental physical quantities (fundamental constants, the molecular/atomic polarizabilities of the constituents of air, and the dipole moment of water vapor). This approach also allows computing

  4. Fabrication of refractive index distributions in polymer using a photochemical reaction

    NASA Astrophysics Data System (ADS)

    Kada, Takeshi; Obara, Atsushi; Watanabe, Toshiyuki; Miyata, Seizo; Liang, Chuan Xin; Machida, Hideaki; Kiso, Koichi

    2000-01-01

    We demonstrate that a photochemical reaction can create various distributions of refractive index in polymer. When the polymer containing a photochemically active material is irradiated by UV light, the photochemical reaction which breaks the π-conjugated system in the material and decreases its linear polarizability can reduce refractive index of the polymer. We prepared a PMMA film added DMAPN ((4-N,N-dimethylaminophenyl)-N'-phenylnitrone) with a rate of 23 wt % by use of spin coating. Electronic structural change of DMAPN and refractive indices of the film before and after UV irradiation were evaluated by UV absorption spectra and m-line method, respectively. The UV irradiation decreased λmax at 380 nm in the absorption spectra, which is attributed to nitrone, and the refractive indices exponentially with irradiation time. The change of refractive indices reached 0.028. The refractive index profile upon depth of the film was investigated by measuring refractive indices of stacked DMAPN/PMMA films. When UV with a power of 10.7 mW/cm2 irradiated upon three stacked DMAPN/PMMA films for 35 s, variation of the refractive index change showed a quadratic profile. The refractive index profile with various irradiation time can be accounted with the combination of the chemical kinetics with the steady state approximation and Lambert-Beer's law. Thus, the photochemical reaction can be used to control the refractive index distribution in polymer.

  5. Profile of refractive errors in cerebral palsy: impact of severity of motor impairment (GMFCS) and CP subtype on refractive outcome.

    PubMed

    Saunders, Kathryn J; Little, Julie-Anne; McClelland, Julie F; Jackson, A Jonathan

    2010-06-01

    To describe refractive status in children and young adults with cerebral palsy (CP) and relate refractive error to standardized measures of type and severity of CP impairment and to ocular dimensions. A population-based sample of 118 participants aged 4 to 23 years with CP (mean 11.64 +/- 4.06) and an age-appropriate control group (n = 128; age, 4-16 years; mean, 9.33 +/- 3.52) were recruited. Motor impairment was described with the Gross Motor Function Classification Scale (GMFCS), and subtype was allocated with the Surveillance of Cerebral Palsy in Europe (SCPE). Measures of refractive error were obtained from all participants and ocular biometry from a subgroup with CP. A significantly higher prevalence and magnitude of refractive error was found in the CP group compared to the control group. Axial length and spherical refractive error were strongly related. This relation did not improve with inclusion of corneal data. There was no relation between the presence or magnitude of spherical refractive errors in CP and the level of motor impairment, intellectual impairment, or the presence of communication difficulties. Higher spherical refractive errors were significantly associated with the nonspastic CP subtype. The presence and magnitude of astigmatism were greater when intellectual impairment was more severe, and astigmatic errors were explained by corneal dimensions. Conclusions. High refractive errors are common in CP, pointing to impairment of the emmetropization process. Biometric data support this In contrast to other functional vision measures, spherical refractive error is unrelated to CP severity, but those with nonspastic CP tend to demonstrate the most extreme errors in refraction.

  6. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, Stefan; Bramstedt, Klaus; Hilker, Michael; Liebing, Patricia; Plieninger, Johannes; Reuter, Max; Rozanov, Alexei; Sioris, Christopher E.; Bovensmann, Heinrich; Burrows, John P.

    2016-04-01

    Stratospheric profiles of methane (CH4) and carbon dioxide (CO2) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called onion peeling DOAS (ONPD), which combines an onion peeling approach with a weighting function DOAS (differential optical absorption spectroscopy) fit in the spectral region between 1559 and 1671 nm. By use of updated pointing information and optimisation of the data selection as well as of the retrieval approach, the altitude range for reasonable CH4 could be broadened from 20 to 40 km to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles (17-45 km) of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5-10 % for CH4 and 2-3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002-April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated. CH4 trends above about 20 km are not significantly different from zero and the trend at 17 km is about 3 ppbv year-1. The derived CO2 trends show a general decrease with altitude with values of about 1.9 ppmv year-1 at 21 km and about 1.3 ppmv year-1 at 39 km. These results are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.

  7. [Clinical assessment of occult infections in children].

    PubMed

    Sporisević, L; Bajraktarević, A; Begić, Z

    2000-01-01

    Children's occult infections are characterised presenting pathogenic bacteries in blood of children in age 3 to 36 months, but they are good general aspect and orderly immunologic status and they don't have signs of focal infection. Manifestation of occult infections determined: age of child, increasing bodies temperature, testsphysical observance and clinical-biochemistry tests. Prevalence of manifestation occult infections is 3-8%, but they manifest ni a form occult bacteremia, occult pneumonia nad occult urinary infection. Methodic, systematic admission and adequate clinical-biochemical monitoring, we minimise sequeles of occult infections. Risk of serious sequeles at occult infections is importantly decreasing by epidemiological changes that it rises by using vaccination against Haemophilus influenzae and Streptococcus pneumoniae is leading ethiological source. Many contraversal opinions are presented in glance of therapeutic strategy at children's occult infection. Future of solutions at many hesitations ni context diagnosis and therapy of occult infections is established in using recent detectional tests /pneumococcus PCR, plasmas tumor reaction, interleukin lâ/ and preventive intervetions activities /conjugated pneumococcus vaccination/.

  8. Cassini Radio Occultations of Saturn's Rings: Scattered Signal and Particle Sizes

    NASA Astrophysics Data System (ADS)

    Thomson, F.; Wong, K.; Marouf, E.; French, R.; Rappaport, N.; McGhee, C.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.

    2005-08-01

    Eight Cassini radio occultations of Saturn's rings were conducted from May 3 to September 5, 2005. During any given occultation, Cassini transmits Ka-, X-, and S-band sinusoidal signals (0.94, 3.6, and 13 cm-wavelength) through the rings. Spectral analysis of the perturbed signals received at stations of the Deep Space Network (DSN) reveals two distinct signal components. The first is the direct signal, a narrowband component representing the incident sinusoid emerging from the rings reduced in amplitude and changed in phase. The second is the scattered signal, a broadband component, representing near-forward scattering by ring particles. After reconstruction to remove diffraction effects, time history of the direct signal yields profiles of ring structure at resolution approaching ˜50 m. Of primary concern here is the broadband component. For the first time ever, clearly detectable scattered signals were observed at all three (Ka/X/S) bands. A single X/S radio occultation by Voyager 1 in 1980 detected scattered signal at X-band only, primarily because of the small ring opening angle B=5.9o at the time, compared with 19.1 ≤ B ≤ 23.6o for Cassini. Time histories of the observed spectra (spectrograms) and their dependence on wavelength provide important information about physical ring properties, including abundance of meter-size particles, particle crowding, clustering, spatial anisotropy, vertical ring profile and thickness. Cassini occultation orbits were optimized to map scattering by individual ring features into nearly non-overlapping spectral bands, allowing unambiguous identification of the contribution of ring features to the computed spectrograms. We present Ka/X/S spectrograms over the full extent of the ring system and relate their behavior to observed ring structure. The spectrograms imply presence of meters-size particles throughout the ring system. Preliminary results regarding the particle size distribution and vertical ring profile of selected

  9. 21 CFR 864.6550 - Occult blood test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Occult blood test. 864.6550 Section 864.6550 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6550 Occult blood test. (a) Identification. An occult blood test is a device used to detect occult blood in urine or feces. (Occult blood is...

  10. 21 CFR 864.6550 - Occult blood test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Occult blood test. 864.6550 Section 864.6550 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6550 Occult blood test. (a) Identification. An occult blood test is a device used to detect occult blood in urine or feces. (Occult blood is...

  11. 21 CFR 864.6550 - Occult blood test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Occult blood test. 864.6550 Section 864.6550 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6550 Occult blood test. (a) Identification. An occult blood test is a device used to detect occult blood in urine or feces. (Occult blood is...

  12. 21 CFR 864.6550 - Occult blood test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Occult blood test. 864.6550 Section 864.6550 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6550 Occult blood test. (a) Identification. An occult blood test is a device used to detect occult blood in urine or feces. (Occult blood is...

  13. 21 CFR 864.6550 - Occult blood test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Occult blood test. 864.6550 Section 864.6550 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6550 Occult blood test. (a) Identification. An occult blood test is a device used to detect occult blood in urine or feces. (Occult blood is...

  14. Saudi Arabian seismic deep-refraction profiles; final project report

    USGS Publications Warehouse

    Healy, J.H.; Mooney, W.D.; Blank, H.R.; Gettings, M.E.; Kohler, W.M.; Lamson, R.J.; Leone, L.E.

    1983-01-01

    In February 1978 a seismic deep-refraction profile was recorded by the U.S. Geological Survey along a 1000-km line across the Arabian Shield in western Saudi Arabia. The line begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, leads southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan (Tihamat-Asir), and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, including 19 in the Farasan Islands. Six shot points were used: five on land, with most charges placed below the water table in drill holes, and one at sea, with charges placed on the sea floor and detonated from a ship. Slightly more than 61 metric tons of explosives were used in 19 discrete firings. Seismic energy was recorded by 100 newly-developed portable seismic stations deployed in approximately 200 km-long arrays for each firing. Each station consisted of a standard 2-Hz vertical component geophone coupled to a self-contained analog recording instrument equipped with a magnetic-tape cassette. In this final report, we fully document the field and data-processing procedures and present the final seismogram data set as both a digital magnetic tape and as record sections for each shot point. Record sections include a normalized set of seismograms, reduced at 6 km/s, and a true-amplitude set, reduced at 8 km/s, which have been adjusted for amplifier gain, individual shot size, and distance from the shot point. Appendices give recorder station and shot information, digital data set descriptions, computer program listings, arrival times used in the interpretation, and a bibliography of reports published as a result of this project. We used two-dimensional ray-tracing techniques in the data analysis, and our interpretation is based primarily on horizontally layered models. The Arabian Shield is composed, to first-order, of two layers, each about 20 km

  15. Wave-vector and polarization dependence of conical refraction.

    PubMed

    Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2013-02-25

    We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.

  16. Occultation of Epsilon Geminorum by Mars - Evidence for atmospheric tides

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; French, R. G.; Dunham, E.; Gierasch, P. J.; Veverka, J.; Church, C.; Sagan, C.

    1977-01-01

    Epsilon Geminorum occultation data obtained on April 8, 1976, with the aid of a 91-cm telescope aboard the NASA Kuiper Airborne Observatory have provided a basis for the determination of temperature, pressure, and number density profiles of the Martian atmosphere. The results concerning the temperature profiles are compared with those of Viking 1 reported by Nier et al. (1976) and with theoretical predictions of thermally driven tides in the Martian atmosphere made by Zurek (1976).

  17. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  18. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  19. TE modes of UV-laser generated waveguides in a planar polymer chip of parabolic refractive index profile

    NASA Astrophysics Data System (ADS)

    Shams El-Din, M. A.

    2018-04-01

    The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.

  20. The effects of atmospheric refraction on the accuracy of laser ranging systems

    NASA Technical Reports Server (NTRS)

    Zanter, D. L.; Gardner, C. S.; Rao, N. N.

    1976-01-01

    Correction formulas derived by Saastamoinen and Marini, and the ray traces through the refractivity profiles all assume a spherically symmetric refractivity profile. The errors introduced by this assumption were investigated by ray tracing through three-dimensional profiles. The results of this investigation indicate that the difference between ray traces through the spherically symmetric and three-dimensional profiles is approximately three centimeters at 10 deg and decreases to less than one half of a centimeter at 80 deg. If the accuracy desired in future laser ranging systems is less than a few centimeters, Saastamoinen and Marini's formulas must be altered to account for the fact that the refractivity profile is not spherically symmetric.

  1. Occulting focal plane masks for Terrestrial Planet Finder Coronagraph: design, fabrication, simulations and test results

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Hoppe, Daniel J.; Halverson, Peter G.; Wilson, Daniel W.; Echternach, Pierre M.; Shi, Fang; Lowman, Andrew E.; Niessner, Albert F.; Trauger, John T.; Shaklan, Stuart B.

    2005-01-01

    Occulting focal plane masks for the Terrestrial Planet Finder Coronagraph (TPF-C) could be designed with continuous gray scale profile of the occulting pattern such as 1-sinc2 on a suitable material or with micron-scale binary transparent and opaque structures of metallic pattern on glass. We have designed, fabricated and tested both kinds of masks. The fundamental characteristics of such masks and initial test results from the High Contrast Imaging Test bed (HCIT) at JPL are presented.

  2. Structure of the Atmosphere of Saturn at Low Latitudes: Results from the First Six Cassini Radio Occultation Experiments

    NASA Astrophysics Data System (ADS)

    Schinder, P. J.; Flasar, F. M.; Kliore, A. J.; Rappaport, N. J.; Asmar, S.; Anabtawi, A.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; French, R. G.; McGhee, C. A.; Marouf, E. A.

    2005-08-01

    On May 3, 2005 occurred the first of a series of seven occultations of Cassini by Saturn which have taken or will take place during the spring and summer of 2005. These near diametric occultations cover a latitude range of between 8 N and 10 S planetocentric latitude, and will give us a detailed look at the structure of the low latitude neutral atmosphere of Saturn down to ˜ 1.6 \\ bar. These occultations are the first to be done at three wavelengths (S, X, and Ka bands) simultaneously. Preliminary results of the occultations that have occurred to date show abundant small scale structure in the temperature-pressure profiles, and a recurring temperature inversion starting at about 100 mbar and extending to roughly 200 mbar.

  3. Triton stellar occultation candidates - 1992-1994

    NASA Technical Reports Server (NTRS)

    Mcdonald, S. W.; Elliot, J. T.

    1992-01-01

    A search for Triton stellar occultation candidates for the period 1992-1994 has been completed with CCD strip-scanning observations. The search reached an R magnitude of about 17.4 and found 129 candidates within 1.5 arcsec of Triton's ephemeris during this period. Of these events, around 30 occultations are expected to be visible from the earth, indicating that a number of Triton occultation events should be visible from major observatories. Even the faintest of the present candidate events could produce useful occultation data if observed with a large enough telescope. The present astrometric accuracy is inadequate to identify which of these appulse events will produce occultations on the earth; further astrometry is needed to refine the predictions for positive occultation identification. To aid in selecting candidates for additional astrometric and photometric studies, finder charts and earth-based visibility charts for each event are included.

  4. Density Waves in Saturn's Rings from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    French, R. G.; Rappaport, N. J.; Marouf, E. A.; McGhee, C. A.

    2005-12-01

    The Cassini Radio Science Team conducted a set of optimized diametric occultations by Saturn and its rings from May to September 2005, providing 11 separate probes of Saturn's ionosphere and atmosphere, and 12 optical depth profiles of the complete ring system. Each event was observed by the stations of the Deep Space Net (DSN) at three radio frequencies (S, X, Ka bands, with corresponding wavelengths of ? = 13, 3.6, and 0.9 cm). Very accurate pointing by the spacecraft and ground antennas resulted in stable baseline signal levels, and the relatively large ring opening angle (B=19-25°) permitted us to probe even quite dense ring regions with excellent SNR. The RSS occultation technique enables us to recover very fine detailed radial structure by correcting for diffraction effects. Multiple occultation chords, covering a variety of ring longitudes and ring opening angles, reveal the structure of the rings in remarkable detail, including density and bending waves, satellite wakes, and subtle variations at the 100-m radius scale. Janus and Epimetheus are responsible for a particularly rich set of density waves, and their coorbital interactions result in a complex interplay of time-variable ring structure over the 8-year libration period of the two satellites. We compare the first-order 2:1, 4:3, 5:4, and 6:5 coorbital density waves from multiple occultation chords to linear density wave models based on a dynamical model of the orbital exchange between the moons. From the observed dispersion relation of the wave crests, we infer the surface mass density and eccentricity gradient of particle streamlines, and match the detailed shapes of the wave crests using a non-linear analysis. Second-order coorbital features are also evident, and there are even hints of third-order density waves in the high SNR radio occultation data.

  5. The diameter of Pallas from its occultation of SAO 85009

    NASA Technical Reports Server (NTRS)

    Wasserman, L. H.; Millis, R. L.; Franz, O. G.; Bowell, E.; Giclas, H. L.; Martin, L. J.; Elliot, J. L.; Dunham, E.; Mink, D.; White, N. M.

    1979-01-01

    The May 29, 1978, occultation of SAO 85009 by Pallas was observed photoelectrically at seven widely spaced sites. The observations are well represented by an elliptical apparent limb profile having semimajor and semiminor axes of 279.5 + or - 2.9 and 262.7 + or - 4.5 km, respectively. Combining these results with published information on the light curve and rotational pole position, Pallas's mean diameter is found to be 538 + or - 12 km, which yields a mean density for Pallas of 2.8 + or - 0.5 g/cu cm and a visual geometric albedo of 0.103 + or - 0.005. The diameter of Pallas as determined from this occultation is significantly smaller than the values derived by radiometric, polarimetric, and double-image techniques.

  6. Layer structure of the Venus daytime ionosphere from Venera-15,-16 radio occultation

    NASA Astrophysics Data System (ADS)

    Gavrik, Anatoly

    Up to now more than five hundred radio occultation experiments had been carried out by different missions to research physical properties of the Venus ionosphere. The purpose of this report is to show new properties of the Venus daytime ionosphere reanalyzing Venera-15,-16 dual-frequency occultation data. The high coherence and stability of radio signals of Venera- 15,-16 at wave lengths 32 cm and 8 cm, along with the fact, that the refractive amplification at 32 cm in the ionosphere exceeds by factor 6 the refractive amplification at 13 cm used by others researches, have allowed to perform analysis of radiophysical parameters in the Venus ionosphere more accurate. Progress in the radiovision theory and up-to-date digital processing techniques have provided an opportunity to discover unknown layered structure of the Venus daytime ionosphere. We offer the new technique of the data analysis that allows us to separate influence of noise, ionosphere and atmosphere on the radio occultation results. We point out that significant gradient variations in the vertical distribution of the electron density are observed in the region of maximum electron density of the daytime ionosphere at altitudes of 150-175 km. That testifies layered structure of this part of the Venus ionosphere. The results of data analysis reveal the regular existence of the ionospheric layers in the bottom daytime ionosphere at altitudes from 80 up to 115 km. The bottom border of the ionosphere part can vary in the range of 80-100 km, and gradients of the electron density show strong variability. We detect the wave structure in the top atmosphere and in the bottom ionosphere at altitudes from 60 up to 115 km as well. It is difficult to obtain correct electron density in the region, where we have detected the new ionospheric layers. Relative errors of the electron density are greater than 100% at altitudes between 80 and 120 km. The bottom part of the ionosphere is more variable, than overlying area of

  7. On the origin of the ionosphere at Moon : a study using results from Chandrayaan-I S-band radio occultation experiment and a photochemical model

    NASA Astrophysics Data System (ADS)

    Kailasam Madathil, Ambili; Bhardwaj, Anil; Choudhary, Raj Kumar

    2016-07-01

    Using Chandrayaan-1 communication link between orbiter and ground (S-band frequency), the presence of ionosphere at Moon has been explored using Radio Occultation technique. Results obtained from the observations conducted between July 30 and August 14, 2009 show evidence for a possible existence of the Ionosphere at Moon. A few seconds before the occultation of Chandrayaan-1 radio signals, extra fluctuation in the rate of change of difference between the theoretically estimated Doppler and observed Doppler was observed. The fluctuation was more pronounced when the probing radio waves were crossing through the day-night terminator. Using standard onion-peeling technique to invert the phase changes in radio signals to the refractivity of the medium, we estimated the bending angle and hence the electron density profiles for the Lunar medium. The estimated electron density near the Lunar surface was of the order of 400 - 1000 cm ^{-3} which decreased monotonically with increasing altitude till about 40 km above the surface where it became negligible. The observed electron density was compared with the results from a model which was developed based on CHACE measurements abroad Moon Impact Probe of Chandrayaan-I. The model included the photo chemical reactions and solar wind interactions of the lunar plasma. We propose that the ionosphere over Moon could have molecular origin with H _{2}O ^{+},CO_{2} ^{+} and H_{3}O ^{+} as dominant ions.

  8. Sat-sat Radio Occultation Experiment between Yinghuo-1 and Phobos-Grunt at Mars

    NASA Astrophysics Data System (ADS)

    Zhao, Hua; Sun, Yue-Qiang; Wu, Ji

    Sat-sat Radio Occultation Experiment between Yinghuo-1 and Phobos-Grunt at Mars Hua Zhao1, J. Wu1, Y. Q. Sun1, G. W. Zhu1, Q. F. Du1, X. Hu1, A. Zakharov2 1Center for Space Science and Applied Research (CSSAR), Chinese Academy of Sciences, Beijing, China 2IKI, Russian Academy of Sciences, Moscow, Russia Abstract: A micro-satellite, Yinghuo-1, would be launched with Phobos-Grunt in October, 2009 to investigate the space environment around Mars. A coordinated radio occultation experiment would be carried out between YH-1 and Phobos-Grunt. A radio wave transmitter is mounted on Phobos-Grunt to beam out radio wave at 400/800 MHz in 6W output to YH-1, and a radio receiver is installed on YH-1 to measure the phase shift and xxx during the occultation opportunities. The total electron content (TEC) can be obtained from the occultation experiment, and the Martian electron density profiles would be driven out. After inserting into Mars orbit, YH-1 would be separated from Phobos-Grunt with a relative speed of 2m/s, and the orbits of YH-1 and Phobos-Grunt are placed in the same plan near the Mars equator, and the ROE would have opportunities to measure the Mars ionospheric electron density profiles in the altitude range 50—300 km with solar zenith angle (SZA) smaller than 43o, and larger than 138o. The micro-strip antenna is used for the receiver on YH-1, and the sensitivity of the receiver is about -145dBm.

  9. Stratospheric N2O5, CH4, and N2O profiles from IR solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Camy-Peyret, C.; Flaud, J.-M.; Perrin, A.; Rinsland, C. P.; Goldman, A.; Murcray, F. J.

    1993-01-01

    Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052/cm resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur l'Adour, France (44 N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246/cm band. Assuming a total intensity of 4.32 x 10 exp -17 cm/molecule/sq cm independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv, interpolated to 2 km height spacings, are 1.64 +/- 0.49 at 37.5 km, 1.92 +/- 0.56 at 35.5 km, 2.06 +/- 0.47 at 33.5 km, 1.95 +/- 0.42 at 31.5 km, 1.60 +/- 0.33 at 29.5 km, 1.26 +/- 0.28 at 27.5 km, and 0.85 +/- 0.20 at 25.5 km. Error bars indicate the estimated 1-sigma uncertainty including the error in the total band intensity. The retrieved profiles are compared with previous measurements and photochemical model results.

  10. Progress on the occulter experiment at Princeton

    NASA Astrophysics Data System (ADS)

    Cady, Eric; Balasubramanian, Kunjithapatham; Carr, Michael; Dickie, Matthew; Echternach, Pierre; Groff, Tyler; Kasdin, Jeremy; Laftchiev, Christian; McElwain, Michael; Sirbu, Dan; Vanderbei, Robert; White, Victor

    2009-08-01

    An occulter is used in conjunction with a separate telescope to suppress the light of a distant star. To demonstrate the performance of this system, we are building an occulter experiment in the laboratory at Princeton. This experiment will use an etched silicon mask as the occulter, with some modifications to try to improve the performance. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. We present the progress of this experiment and expectations for future work.

  11. Radio occultation measurements of Pluto's neutral atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I. R.; Young, L. A.; Tyler, G. L.; Stern, S. A.; Beyer, R. A.; Bird, M. K.; Ennico, K.; Gladstone, G. R.; Olkin, C. B.; Pätzold, M.; Schenk, P. M.; Strobel, D. F.; Summers, M. E.; Weaver, H. A.; Woods, W. W.

    2017-07-01

    On 14 July 2015 New Horizons performed a radio occultation (RO) that sounded Pluto's atmosphere down to the surface. The sensitivity of the measurements was enhanced by a unique configuration of ground equipment and spacecraft instrumentation. Signals were transmitted simultaneously by four antennas of the NASA Deep Space Network, each radiating 20 kW at a wavelength of 4.2 cm. The polarization was right circular for one pair of signals and left circular for the other pair. New Horizons received the four signals and separated them by polarization for processing by two independent receivers, each referenced to a different ultra-stable oscillator. The two data streams were digitized, filtered, and stored on the spacecraft for later transmission to Earth. The results reported here are the first to utilize the complete set of observations. We calibrated each signal to remove effects not associated with Pluto's atmosphere, including the limb diffraction pattern. We then applied a specialized method of analysis to retrieve profiles of number density, pressure, and temperature from the combined phase measurements. Occultation entry sounded the atmosphere at sunset at 193.5°E, 17.0°S - on the southeast margin of an ice-filled basin known informally as Sputnik Planitia (SP); occultation exit occurred at sunrise at 15.7°E, 15.1°N - near the center of the Charon-facing hemisphere. Above 1215 km radius (∼25 km altitude) there is no discernible difference between the measurements at entry and exit, and the RO profiles are consistent with results derived from ground-based stellar occultation measurements. At lower altitudes the RO measurements reveal horizontal variations in atmospheric structure that had not been observed previously, and they are the first to reach the ground. The entry profile has a strong temperature inversion that ends 3.5 km above the surface, and the temperature in the cold boundary layer beneath the inversion is nearly constant, 38.9 ± 2.1 K, and

  12. [Stellar Occultation Studies of Small Bodies in the Outer Solar System: Accomplishments, Status, and Plans

    NASA Technical Reports Server (NTRS)

    Elliott, James

    2005-01-01

    Bodies residing in the outer solar system exhibit unique physical processes, and some of the lessons learned from them can be applied to understanding what occurred in the outer solar system during its formation and early evolution. Pluto, the largest known Kuiper Belt object (KBO), and its near twin Triton--an ex-KBO that has been captured by Neptune--have nitrogen atmospheres that are in vapor-pressure equilibrium with surface ice. These atmospheres are most sensitively probed from Earth by the technique of Stellar occultations, which can provide the temperature and pressure profiles of these atmospheres at a spatial resolution of a few kilometers. Recent results from occultations show that the surface pressure of Triton's atmosphere has been increasing and that the shape of the atmosphere deviates from its expected spherical figure. With the occultation technique we can also learn the sizes of smaller bodies that have formed in the outer solar system: Charon, the Centaurs, and KBOs. Our proposed program involves identifying occultation candidates, predicting occultations, observing occultations, analysis of the data, and synthesis of the occultation results with other data. The main goals for our proposed work are to (i) further observe occultations by Triton with the objectives of understanding its pressure changes, distortion, and enigmatic thermal structure (ii) determine whether the abrupt drop in Pluto's stellar occultation light curve is caused by a sharp thermal gradient near its surface or by atmospheric haze, (iii) further observations to characterize the potential collapse of Pluto's atmosphere as it recedes from the sun (information that should be of interest to the Pluto-Kuiper Express), ( iv ) determine Charon's radius more accurately than can be done with the mutual events to derive a better estimate of Charon's density, and ( v ) directly determine the size (and albedo) of Centaurs with the goal of more accurately estimating the sizes of KBOS.

  13. Several Well-observed Asteroidal Occultations in 2010

    NASA Astrophysics Data System (ADS)

    Timerson, Brad; Durech, J.; Abramson, H.; Brooks, J.; Caton, D.; Clark, D.; Conard, S.; Cooke, B.; Dunham, D. W.; Dunham, J.; Edberg, S.; Ellington, C.; Faircloth, J.; Herchak, S.; Iverson, E.; Jones, R.; Lucas, G.; Lyzenga, G.; Maley, P.; Martinez, L.; Menke, J.; Mroz, G.; Nolan, P.; Peterson, R.; Preston, S.; Rattley, G.; Ray, J.; Scheck, A.; Stamm, J.; Stanton, R.; Suggs, R.; Tatum, R.; Thomas, W.

    2011-10-01

    During 2010 IOTA observers in North America reported about 190 positive observations for 106 asteroid occultation events. For several asteroids, this included observations with multiple chords. For two events, an inversion model was available. An occultation by 16 Psyche on 2010 August 21 yielded a best-fit ellipse of 235.4 x 230.4 km. On 2010 December 24, an occultation by 93 Minerva produced a best-fit ellipse of 179.4 x 133.4 km. An occultation by 96 Aegle on 2010 October 29 yielded a best-fit ellipse of 124.9 x 88.0 km. An occultation by 105 Artemis on 2010 June 24 showed a best-fit ellipse of 125.0 x 92.0 km. An occultation by 375 Ursula on 2010 December 4 produced a best-fit ellipse of 125.0 km x 135.0 km. Of note are two events not summarized in this article. On 2010 August 31, an occultation by 695 Bella yielded a new double star. That event will be summarized in the JDSO. Finally, on 2010 April 6, an occultation of zeta Ophiuchi by 824 Anastasia was observed by 65 observers at 69 locations. Unfortunately a large shift in the path yielded only 4 chords. Results of that event, and all the events mentioned here, can be found on the North American Asteroidal Occultation Results web page.

  14. Stellar Occultation Studies of the Solar System

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    Earth-based observations of stellar occultations provide extremely high spatial resolution for bodies in the outer solar system, about 10,000 times better than that of traditional imaging observations. Stellar occultation data can be used to establish the structure of atmospheres and rings of solar system bodies at high spatial resolution. Airborne occultation observations are particularly effective, since the controlled mobility of the observing platform allows the observer to fly within the optimum part of the occultation shadow for most events that are visible from Earth. Airborne observations are carried out above any clouds and are nearly free of scintillation noise from the Earth's atmosphere. KAO occultation observations resulted in the first detection of gravity waves in the Martian atmosphere, discovery of the Uranian rings, the first detection of Pluto's atmosphere, the first Earth-based investigations of Triton's atmosphere, and the discovery of narrow jets from Chiron's nucleus. The first SOFIA occultation opportunity will be an investigation of Pluto's atmospheric structure in November, 2002, and will resolve a problem that has lingered since the KAO discovery observation fourteen years earlier. We plan to continue our successful airborne occultation program with the greatly enhanced capability provided by SOFIA. We propose here to replace our KAO occultation photometer with one having twice the throughput, half the noise, a somewhat wider wavelength range, four times the field of view, and ten times the frame rate to optimize its performance and to capitalize on the larger collecting area offered by SOFIA. It will also allow for simultaneous visible and IR occultation observations, greatly enriching the results that we can obtain from occultations. We call this new imaging occultation photometer HOPI (High-speed Occultation Photometer and Imager). HOPI will provide a signal-to-noise ratio two to four times that of our present photometer for a given

  15. Predicted occultations by Uranus - 1981-1984

    NASA Technical Reports Server (NTRS)

    Klemola, A. R.; Mink, D. J.; Elliot, J. L.

    1981-01-01

    Predictions are presented for 11 occultations by and appulses to Uranus and its ring system for ten stars from 1981 through 1984. The brightest stars are occulted on April 26, 1981 (BD - 19 deg 4222) and on April 22, 1982 (Hyd - 20 deg 51699). The ring system occults the same star twice during March 1983 (Hyd - 21 deg 64352).

  16. Halogen Occultation Experiment (HALOE) optical filter characterization

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1989-01-01

    The Halogen Occultation Experiment (HALOE) is a solar occultation experiment that will fly on the Upper Atmosphere Research Satellite to measure mixing ratio profiles of O3, H2O, NO2, NO, CH4, HCl, and HF. The inversion of the HALOE data will be critically dependent on a detailed knowledge of eight optical filters. A filter characterization program was undertaken to measure in-band transmissions, out-of-band transmissions, in-band transmission shifts with temperature, reflectivities, and age stability. Fourier Transform Infrared Spectrometers were used to perform measurements over the spectral interval 400/cm to 6300/cm (25 micrometers to 1.6 micrometers). Very high precision (0.1 percent T) in-band measurements and very high resolution (0.0001 percent T) out-of-band measurements have been made. The measurements revealed several conventional leaks at 0.01 percent transmission and greatly enhanced (1,000) leaks to the 2-element filters when placed in a Fabry-Perot cavity. Filter throughput changes by 5 percent for a 25 C change in filter temperature.

  17. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices.

    PubMed

    Bachim, Brent L; Gaylord, Thomas K

    2005-01-20

    A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

  18. Radio occultation experiments with INAF-IRA radiotelescopes.

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.

    The Radio Occultation research program performed at the Medicina and Noto Radioastronomical Stations of the Istituto Nazionale di Astrofisica (INAF) - Istituto di Radioastronomia (IRA) includes observations of spacecraft by satellite and satellite by satellite events. The Lunar Radio Occultation (LRO) part of the program consists in collecting data of the lunar Total Electron Content (TEC), at different limb longitudes and at different time, in order to study long term variation of the Moon's ionosphere. The LRO program started at Medicina in September 2006 with the observation of the European probe SMART-1 during its impact on the lunar soil. It proceeded in 2007 with the observation of the lunar occultations of Saturn and Venus, and with the observation of Mars in 2008. On this occasion the probes Cassini, Venus Express, Mars Express, Mars Reconaissance Orbiter and Mars Odissey were respectively occulted by the moon. On Dec 1st 2008 a Venus lunar occultation occurred. On that occasion we performed the first Italian-VLBI (I-VLBI) tracking experiment by detecting the carrier signals coming from the Venus Express (VEX) spacecraft with both the IRA radiotelescopes together with the Matera antenna of the Italian Space Agency. The second part of the radio occultation program includes the observation of satellite by satellite occultation events, as well as mutual occultations of Jupiter satellites. These events are referred to as mutual phenomena (PHEMU). These observations are aimed to measure the radio flux variation during the occultation and to derive surface spatial characteristics such as Io's hot spots. In this work preliminary results of the Radio Occultation program will be presented.

  19. Radiologically occult medulloblastoma with hydrocephalus: case report.

    PubMed

    Honma, Hirokuni; Ogiwara, Hideki

    2017-09-01

    There have been no reports of occult medulloblastoma nor noncommunicating hydrocephalus due to radiologically occult brain tumors. Herein, we report radiologically occult medulloblastoma with noncommunicating hydrocephalus. A 3-year-old boy presented with macrocephaly, visual field constriction, and papilledema. Neuroimagings showed enlargement of the ventricles without any mass lesions. The CT cisternography did not show influx of the contrast into the ventricles, which suggested local cerebrospinal fluid (CSF) circulatory disturbance at the outlet of the fourth ventricle. Due to possible obstructive nature of hydrocephalus, endoscopic third ventriculostomy (ETV) was performed. Three months after the ETV, he presented with repeated vomiting. Neuroimagings showed a 3-cm fourth ventricular mass with progressive hydrocephalus. Surgical resection was performed, which revealed the pathology was medulloblastoma. We report the case of radiologically occult medulloblastoma which was demonstrated radiologically in the follow-up period of ETV for noncommunicating hydrocephalus of uncertain etiology. This is the first description of a radiologically occult medulloblastoma and also the first description of an occult brain tumor with noncommunicating hydrocephalus. The occult brain tumor may be included in the etiology of hydrocephalus.

  20. All-solid tellurite optical fiber with transversely disordered refractive index profile and its optical image transport performance

    NASA Astrophysics Data System (ADS)

    Tong, Hoang Tuan; Kuroyanagi, Shunei; Suzuki, Takenobu; Ohishi, Yasutake

    2018-02-01

    All-solid tellurite-glass optical rod and fiber with transversely-disordered refractive index profile were successfully fabricated to study the transport of infrared images by using transverse localization of light. The fabrication was carried out by using stack-and-draw and rod-in-tube techniques. The fabricated tellurite optical rod and fiber were composed of high-index and low-index units which were arranged randomly in the transverse plane but were invariant in the longitudinal direction. The diameter of each unit was approximately 1.0 μm. The high-index and low-index materials were TeO2-Li2O-WO3-MoO3-Nb2O5 (TLWMN) glass and TeO2-ZnO-Na2O-La2O3 (TZNL) glass, respectively. At 1550 nm, their refractive index difference Δn is 0.096. To investigate the optical image transport capability, A CW laser light at 1550 nm was used as an input probe beam and the 1951 U.S. Air Force test target was installed in front of 10-cm-long segments of the fabricated rod and fiber in the experimental setup. The output signal was recorded by a beam profiler. As a result, clear transported images of numbers and lines on the test target were obtained.

  1. Precise determination of the refractive index of suspended particles: light transmission as a function of refractive index mismatch

    NASA Astrophysics Data System (ADS)

    McClymer, J. P.

    2016-08-01

    Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.

  2. Observing Tropospheric Water Vapor by Radio Occultation using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kursinski, E. R.; Hajj, G. A.; Hardy, K. R.; Romans, L. J.; Schofield, J. T.

    1995-01-01

    Given the importance of water vapor to weather, climate and hydrology, global humidity observations from satellites are critical. At low latitudes, radio occultation observations of Earth's atmosphere using the Global Positioning System (GPS) satellites allow water vapor profiles to be retrieved with accuracies of 10 to 20% below 6 to 7 km altitude and approx. 5% or better within the boundary layer. GPS observations provide a unique combination of accuracy, vertical resolution (less than or equal to 1 km) and insensitivity to cloud and aerosol particles that is well suited to observations of the lower troposphere. These characteristics combined with the inherent stability of radio occultation observations make it an excellent candidate for the measurement of long term trends.

  3. Waves in the Martian Atmosphere: Results from MGS Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Hinson, D. P.; Tyler, G. L.

    1999-01-01

    Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.

  4. [Progress in research of occult hepatitis B virus infection].

    PubMed

    Huang, X Y; Shi, Q F; Huang, T

    2017-05-10

    Occult hepatitis B virus infection is a worldwide public health problem, which seriously affects the clinical diagnosis of hepatitis B and threatens the safety of blood transfusion. The concept of occult hepatitis B virus infection, the pathogenesis of occult hepatitis B virus infection, the prevalence of occult hepatitis B virus infection in different groups, including healthy population and different patients, and the possibility of transmission were summarized. The prevalence of occult hepatitis B virus infection was found in healthy population and different patients, and there is possibility of occult hepatitis B virus infection to be transmitted through blood transfusion. The paper provides a comprehensive introduction of the pathogenesis and prevalence of occult hepatitis B virus infection. More attention should be paid to occult hepatitis B virus infection.

  5. New perspectives in occult hepatitis C virus infection

    PubMed Central

    Carreño, Vicente; Bartolomé, Javier; Castillo, Inmaculada; Quiroga, Juan Antonio

    2012-01-01

    Occult hepatitis C virus (HCV) infection, defined as the presence of HCV RNA in liver and in peripheral blood mononuclear cells (PBMCs) in the absence of detectable viral RNA in serum by standard assays, can be found in anti-HCV positive patients with normal serum levels of liver enzymes and in anti-HCV negative patients with persistently elevated liver enzymes of unknown etiology. Occult HCV infection is distributed worldwide and all HCV genotypes seem to be involved in this infection. Occult hepatitis C has been found not only in anti-HCV positive subjects with normal values of liver enzymes or in chronic hepatitis of unknown origin but also in several groups at risk for HCV infection such as hemodialysis patients or family members of patients with occult HCV. This occult infection has been reported also in healthy populations without evidence of liver disease. Occult HCV infection seems to be less aggressive than chronic hepatitis C although patients affected by occult HCV may develop liver cirrhosis and even hepatocellular carcinoma. Thus, anti-HCV negative patients with occult HCV may benefit from antiviral therapy with pegylated-interferon plus ribavirin. The persistence of very low levels of HCV RNA in serum and in PBMCs, along with the maintenance of specific T-cell responses against HCV-antigens observed during a long-term follow-up of patients with occult hepatitis C, indicate that occult HCV is a persistent infection that is not spontaneously eradicated. This is an updated report on diagnosis, epidemiology and clinical implications of occult HCV with special emphasis on anti-HCV negative cases. PMID:22736911

  6. Method of Modeling and Simulation of Shaped External Occulters

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G. (Inventor); Clampin, Mark (Inventor); Petrone, Peter, III (Inventor)

    2016-01-01

    The present invention relates to modeling an external occulter including: providing at least one processor executing program code to implement a simulation system, the program code including: providing an external occulter having a plurality of petals, the occulter being coupled to a telescope; and propagating light from the occulter to a telescope aperture of the telescope by scalar Fresnel propagation, by: obtaining an incident field strength at a predetermined wavelength at an occulter surface; obtaining a field propagation from the occulter to the telescope aperture using a Fresnel integral; modeling a celestial object at differing field angles by shifting a location of a shadow cast by the occulter on the telescope aperture; calculating an intensity of the occulter shadow on the telescope aperture; and applying a telescope aperture mask to a field of the occulter shadow, and propagating the light to a focal plane of the telescope via FFT techniques.

  7. Occult Participation: Its Impact on Adolescent Development.

    ERIC Educational Resources Information Center

    Tennant-Clark, Cynthia M.; And Others

    1989-01-01

    Investigated relationship between occult participation, substance abuse, and level of self-esteem among 25 clinical (alcohol or drug treatment) and 25 nonclinical adolescents. Results indicated that adolescent substance abuse and occult participation were significantly related. Found significant differences between high versus low occult groups…

  8. Stratospheric N2O5, CH4, and N2O Profiles from IR Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Peyeret, C. Camy; Flaud, J.-M.; Perrin, A.; Rinsland, C. P.; Goldman, A.; Murcray, F. J.

    1993-01-01

    Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052/ cm resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur I'Adour, France (44 deg N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246/ cm band. Assuming a total intensity of 4.32 x 10(exp 17)cm(exp -1) molecule sq cm(exp -2) independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv (parts per billion by volume, 10(exp -9)), interpolated to 2 km height spacings, are 1.64 +/- 0.49 at 37.5 km, 1.92 +/- 0.56 at 35.5 km, 2.06 +/- 0.47 at 33.5 km, 1.95 +/- 0.42 at 31.5 km, 1.60 +/- 0.33 at 29.5 km, 1.26 +/- 0.28 at 27.5 km, and 0.85 +/- 0.20 at 25.5 km. Error bars indicate the estimated I-sigma uncertainty including the error in the total band intensity (+/- 20% has been assumed). The retrieved profiles are compared with previous measurements and photochemical model results.

  9. Analyzing refractive index profiles of confined fluids by interferometry.

    PubMed

    Kienle, Daniel F; Kuhl, Tonya L

    2014-12-02

    This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.

  10. Triton stellar occultation candidates: 1995-1999

    NASA Technical Reports Server (NTRS)

    Mcdonald, S. W.; Elliot, J. L.

    1995-01-01

    We have completed a search for candidates for stellar occultations by Triton over the years 1995-1999. CCd strip scan images provided star positions in the relevant sky area to a depth of about 17.5 R magnitude. Over this time period, we find that Triton passes within 1.0 arcsec of 75 stars. Appulses with geocentric minimum separations of less than 0.35 arcsec will result in stellar occultations, but further astrometry and photometry is necessary to refine individual predictions for identification of actual occultations. Finder charts are included to aid in further studies and prediction refinement. The two most promising potential occultations, Tr176 and Tr180, occur in 1997.

  11. Exploring the Solar System with Stellar Occultations

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E. W.

    1984-01-01

    By recording the light intensity as a function of time when a planet occults a relatively bright star, the thermal structure of the upper atmosphere of the planet can be probed. The main feature of stellar occultation observations is their high spatial resolution, typically several thousand times better than the resolution achievable with ground-based imaging. Five stellar occultations have been observed. The main results of these observations are summarized. Stellar occultations have been observed on Uranus, Mars, Pallas, Neptune and the Jovian Ring.

  12. Abundances of O3 and O2 in the Martian Atmosphere Retrieved from MAVEN/IUVS Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Gröller, H.; Lefèvre, F.; Gonzalez-Galindo, F.; Yelle, R. V.; Koskinen, T.; Montmessin, F.; Schneider, N.; Deighan, J.; Jain, S.

    2017-12-01

    We present O3 and O2 abundances retrieved from stellar occultations taken with the Imaging UltraViolet Spectrometer (IUVS) on MAVEN. The IUVS instrument has two separate spectral channels, the FUV and the MUV channel from 110 to 190 nm and from 180 to 340 nm, respectively. The O3 absorption feature is present in the MUV channel, whereas the O2 absorption features are in the FUV channel. So far, 15 stellar occultation campaigns have been executed on average every two to three months; covering more than one Martian year. During these campaigns, more than 900 stellar occultations were recorded. From those 900 stellar occultations, around 50 % can be used for O2 detection and around 25 % for O3. We detect O3 in almost 40 % of the occultations that can be used for O3 retrievals. The obtained O3 profiles are between 20 and 60 km and show a maximum number density around 30 to 40 km. The peak O3 number density varies almost one order of magnitude; between a few times 108 cm-3 and 2 x 109 cm-3. Our measurements show that the most O3 is present during the first half of the Martian year (up to a solar longitude of around 140°, end of northern summer) with a maximum around 60° solar longitude (close to aphelion). In most of the cases, the retrieved O3 profiles are in agreement with the LMD-MGCM predicted values. However, in some cases a difference in altitude and pressure space can be seen. Furthermore, during the northern early spring season, higher number densities at altitudes above 40 km can be seen in the data. The retrieved density profiles of O2 cover an altitude range from around 90 km up to 150 km. The corresponding O2 mixing ratios range from 1 to 9 x 10-3, also in agreement with previous observations. Even though the O2 mixing ratio shows high variability, the mean value seems to be constant with solar longitude. The obtained O2 profiles agree with previous measurements obtained by the Mars Express SPICAM instrument and by the Viking mass spectrometer. Furthermore

  13. Overview of refractive surgery.

    PubMed

    Bower, K S; Weichel, E D; Kim, T J

    2001-10-01

    Patients with myopia, hyperopia and astigmatism can now reduce or eliminate their dependence on contact lenses and eyeglasses through refractive surgery that includes radial keratotomy (RK), photorefractive keratectomy (PRK), laser-assisted in situ keratomileusis (LASIK), laser thermal keratoplasty (LTK) and intrastromal corneal rings (ICR). Since the approval of the excimer laser in 1995, the popularity of RK has declined because of the superior outcomes from PRK and LASIK. In patients with low-to-moderate myopia, PRK produces stable and predictable results with an excellent safety profile. LASIK is also efficacious, predictable and safe, with the additional advantages of rapid vision recovery and minimal pain. LASIK has rapidly become the most widely performed refractive surgery, with high patient and surgeon satisfaction. Noncontact Holium: YAG LTK provides satisfactory correction in patients with low hyperopia. ICR offers patients with low myopia the potential advantage of removal if the vision outcome is unsatisfactory. Despite the current widespread advertising and media attention about laser refractive surgery, not all patients are good candidates for this surgery. Family physicians should be familiar with the different refractive surgeries and their potential complications.

  14. Occult hemorrhage in children with severe ITP.

    PubMed

    Flores, Adolfo; Buchanan, George R

    2016-03-01

    Little is known about the frequency and significance of clinically unapparent or occult hemorrhage in ITP. Therefore, we prospectively explored the sites and frequency of occult bleeding in children with severe ITP at diagnosis or upon symptomatic relapse in a prospective, single-institution cohort study of patients ≤ 18 years of age and a platelet count ≤ 10,000/mm(3) . Data collected included bleeding severity assessment, urinalysis, fecal occult blood testing, and non-contrast brain MRI. Stool and urine samples were tested within 7 days of diagnosis or symptomatic relapse. Three months after diagnosis or relapse a noncontrast brain MRI evaluated hemosiderin deposits resulting from prior localized hemorrhage. Fifty-two ITP patients were enrolled with a mean platelet count of 4,000/mm(3) . A significant occurrence of occult hemorrhage was identified in the urine (27%) compared with clinically overt hematuria (0.91%, P < 0.0005). CNS microbleeding in the superficial cortex of the left frontal lobe was identified in one child with occult bleeding in the urinary tract. There was no relationship between occult hemorrhage and bleeding manifestations on physical examination. Occult hemorrhage was not a harbinger of subsequent bleeding. Our findings suggest that occult hemorrhage occurs with greater frequency than overt bleeding in children with severe ITP. CNS microbleeding is a potential risk in this patient population. Assessment of brain microbleeds and microscopic hematuria in this patient population require additional study. © 2015 Wiley Periodicals, Inc.

  15. Estimation of ionospheric sporadic E intensities from GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Arras, C.; Wickert, J.

    2018-06-01

    The radio occultation experiment aboard the FORMOSAT-3/COSMIC satellites enables the observation of phenomena in Earth's ionosphere on a global scale. Numerous radio occultation profiles are used to analyse the occurrence of sporadic E layers as well as its properties. We will present a new method to approach additionally to the presence of sporadic E also its intensity which is closely related to the blanketing frequency (fbEs) provided by ionosondes. We observed that the sporadic E occurrence and its intensity show a highly developed annual cycle with high occurrence rates and intensities in the actual summer hemisphere. The global latitude/longitude distribution of both parameters is strongly related to Earth's magnetic field which is reflected by the missing of sporadic E observations along the magnetic equator.

  16. An ionospheric occultation inversion technique based on epoch difference

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Xiong, Jing; Zhu, Fuying; Yang, Jian; Qiao, Xuejun

    2013-09-01

    Of the ionospheric radio occultation (IRO) electron density profile (EDP) retrievals, the Abel based calibrated TEC inversion (CTI) is the most widely used technique. In order to eliminate the contribution from the altitude above the RO satellite, it is necessary to utilize the calibrated TEC to retrieve the EDP, which introduces the error due to the coplanar assumption. In this paper, a new technique based on the epoch difference inversion (EDI) is firstly proposed to eliminate this error. The comparisons between CTI and EDI have been done, taking advantage of the simulated and real COSMIC data. The following conclusions can be drawn: the EDI technique can successfully retrieve the EDPs without non-occultation side measurements and shows better performance than the CTI method, especially for lower orbit mission; no matter which technique is used, the inversion results at the higher altitudes are better than those at the lower altitudes, which could be explained theoretically.

  17. Lunar occultations of Aldebaran and other late-type stars observed from Devasthal

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Sharma, S.; Pandey, A. K.; Pandey, R.; Sinha, T.; Norharizan, M. D.

    2018-02-01

    We report on lunar occultations of Aldebaran (α Tau) and other ten, mostly late-type, stars observed with the Devasthal 1.3-m telescope. We derive a detailed brightness profile for Aldebaran, confirming the presence of asymmetries already recently described in a related work. We test the origin of such asymmetries by means of simulations of the effect of scintillation on the reconstructed profiles. We also derive angular diameters for two M giants, Z Cnc and SAO 161635, which we discuss in the context of previous determinations. We find first-time companions around two other stars, SAO 161665 and WZ Psc, and we detect one more previously known binary, SAO 94060. This is the first systematic effort to observe lunar occultations events at this facility, and demonstrates the capability to carry out milliarcsecond-level investigations on sources down to ≈ 9 mag. We plan to continue this routine program in the coming years, eventually utilizing also the 3.6 m DOT telescope recently erected at Devasthal for deeper sensitivity and higher accuracy.

  18. Radio Occultation Measurements of Pluto's Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Linscott, Ivan; Young, Leslie; Stern, S. Alan; Bird, Mike; Ennico, Kimberly; Gladstone, Randy; Olkin, Catherine B.; Pätzold, Martin; Strobel, Darrell F.; Summers, Michael; Tyler, G. Leonard; Weaver, Harold A.; Woods, Will; New Horizons Science Team

    2016-10-01

    The reconnaissance of the Pluto System by New Horizons in July 2015 included a radio occultation at Pluto. The observation was performed with signals transmitted simultaneously by four antennas of the NASA Deep Space Network, two at the Goldstone complex in California and two at the Canberra complex in Australia. Each antenna radiated 20 kW without modulation at a wavelength of 4.17 cm. New Horizons received the four signals with its 2.1-m high-gain antenna, where the signals were split into pairs and processed independently by two identical REX radio science instruments. Each REX relied on a different ultra-stable oscillator as its frequency reference. The signals were digitized and filtered, and the data samples were stored on the spacecraft for later transmission to Earth. Six months elapsed before all data had arrived on the ground, and the results reported here are the first to utilize the complete set of observations. Pluto's tenuous atmosphere is a significant challenge for radio occultation sounding, which led us to develop a specialized method of analysis. We began by calibrating each signal to remove effects not associated with Pluto's atmosphere, including the diffraction pattern from Pluto's surface. We reduced the noise and increased our sensitivity to the atmosphere by averaging the results from the four signals, while using other combinations of the signals to characterize the noise. We then retrieved profiles of number density, pressure, and temperature from the averaged phase profiles at both occultation entry and exit. Finally, we used a combination of analytical methods and Monte Carlo simulations to determine the accuracy of the measurements. The REX profiles provide the first direct measure of the surface pressure and temperature structure in Pluto's lower atmosphere. There are significant differences between the structure at entry (193.5°E, 17.0°S, sunset) and exit (15.7°E, 15.1°N, sunrise), which arise from spatial variations in surface

  19. Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas.

    PubMed

    Koch, Jeffrey A; Landen, Otto L; Suter, Laurence J; Masse, Laurent P; Clark, Daniel S; Ross, James S; Mackinnon, Andrew J; Meezan, Nathan B; Thomas, Cliff A; Ping, Yuan

    2013-05-20

    X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.

  20. Spatial variation of stratospheric aerosol acidity and model refractive index - Implications of recent results

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hamill, P.

    1984-01-01

    Recent experimental results indicate that little or no solid ammonium sulfate is present in background stratospheric aerosols. Other results allow straightforward calculation of sulfuric acid/water droplet properties (acidity, specific gravity, refractive index) as functions of stratospheric temperature and humidity. These results are combined with a variety of latitudinal and seasonal temperature and humidity profiles to obtain corresponding profiles of droplet properties. These profiles are used to update a previous model of stratospheric aerosol refractive index. The new model retains the simplifying approximation of vertically constant refractive index in the inner stratosphere, but has sulfuric acid/water refractive index values that significantly exceed the previously used room temperature values. Mean conversion ratios (e.g., extinction-to-number, backscatter-to-volume) obtained using Mie scattering calculations with the new refractive indices are very similar to those obtained for the old indices, because the effects of deleting ammonium sulfate and increasing acid indices tend to cancel each other.

  1. Optical performance of the New Worlds Occulter

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan W.; Lo, Amy S.; Glassman, Tiffany M.; Cash, Webster

    2007-04-01

    The New Worlds Observer (NWO) is a multiple spacecraft mission that is capable of detecting and characterizing extra-solar planets and planetary systems. NWO consists of an external occulter and a generic space telescope, flying in tandem. The external occulter has specific requirements on its shape and size, while the telescope needs no special modification beyond that required to do high-quality astrophysical observations. The occulter is a petal-shaped, opaque screen that creates a high-suppression shadow large enough to accommodate the telescope. This article reports on the optical performance of the novel New Worlds occulter design. It also introduces two new aspects of its optical performance which enhance the detectability of extra-solar planets. We also include a brief discussion of the buildability and the tolerances of the occulter. It is also shown that an occulter design can be found for any set of science requirements. We show that NWO is a viable mission concept for the study of extra-solar planets. To cite this article: J.W. Arenberg et al., C. R. Physique 8 (2007).

  2. Occultations by 81 Terpsichore and 694 Ekard in 2009 at Different Rotational Phase Angles

    NASA Astrophysics Data System (ADS)

    Timerson, Brad; Durech, J.; Pilcher, F.; Albers, J.; Beard, T.; Berger, B.; Berman, B.; Breit, D.; Case, T.; Collier, D.; Dantowitz, R.; Davies, T.; Desmarais, V.; Dunham, D.; Dunham, J.; Garlitz, J.; Garrett, L.; George, T.; Hill, M.; Hughes, Z.; Jacobson, G.; Kozubal, M.; Liu, Y.; Maley, P.; Morgan, W.; Morris, P.; Mroz, G.; Pool, S.; Preston, S.; Shelton, R.; Welch, S.; Westfall, J.; Whitman, A.; Wiggins, P.

    2010-10-01

    During 2009, IOTA observers in North America reported about 250 positive observations for 94 asteroidal occultation events. For two asteroids this included observations of multiple chords on two different dates which allowed well-defined profiles to be obtained at different rotational phase angles. Occultations by 81 Terpsichore on 2009 November 19 and 2009 December 25 yielded best-fit ellipses of 134.0 x 108.9 km and 123.6 x 112.2 km, respectively. Observations of 694 Ekard on 2009 September 23 and 2009 November 8 yielded fitted ellipses of 124.9 x 88.0 km and 88.5 x 104.0 km, respectively.

  3. Investigation of the Wave Propagation of Vector Modes of Light in a Spherically Symmetric Refractive Index Profile

    NASA Astrophysics Data System (ADS)

    Pozderac, Preston; Leary, Cody

    We investigated the solutions to the Helmholtz equation in the case of a spherically symmetric refractive index using three different methods. The first method involves solving the Helmholtz equation for a step index profile and applying further constraints contained in Maxwell's equations. Utilizing these equations, we can simultaneously solve for the electric and magnetic fields as well as the allowed energies of photons propagating in this system. The second method applies a perturbative correction to these energies, which surfaces when deriving a Helmholtz type equation in a medium with an inhomogeneous refractive index. Applying first order perturbation theory, we examine how the correction term affects the energy of the photon. In the third method, we investigate the effects of the above perturbation upon solutions to the scalar Helmholtz equation, which are separable with respect to its polarization and spatial degrees of freedom. This work provides insights into the vector field structure of a photon guided by a glass microsphere.

  4. Nondestructive measurement of an optical fiber refractive-index profile by a transmitted-light differential interference contact microscope.

    PubMed

    Liu, Zhongyao; Dong, Xiaoman; Chen, Qianghua; Yin, Chunyong; Xu, Yuxian; Zheng, Yingjun

    2004-03-01

    A novel transmitted-light differential interference contrast (DIC) system is used for nondestructive measurement of the refractive-index profile (RIP) of an optical fiber. By means of this system the phase of a measured light beam can be modulated with an analyzer, and the phase distribution of a fiber is obtained by calculation of the various interference patterns. The measurement theory and structure and some typical applications of this system are demonstrated. The results of measuring RIPs in graded-index fiber are presented. Both the experimental results and theoretical analysis show that the system takes the advantage of high index resolution and of sufficient measurement accuracy for measuring the refractive index of the optical fiber. The system has strong ability to overcome environmental disturbance because of its common-path design. Moreover, one can use the system to measure the RIP along the fiber axis and acquire an image of the three-dimensional RIP of the fiber.

  5. Evaluation for Occult Fractures in Injured Children

    PubMed Central

    French, Benjamin; Song, Lihai; Feudtner, Chris

    2015-01-01

    OBJECTIVES: To examine variation across US hospitals in evaluation for occult fractures in (1) children <2 years old diagnosed with physical abuse and (2) infants <1 year old with injuries associated with a high likelihood of abuse and to identify factors associated with such variation. METHODS: We performed a retrospective study in children <2 years old with a diagnosis of physical abuse and in infants <1 year old with non-motor vehicle crash–related traumatic brain injury or femur fractures discharged from 366 hospitals in the Premier database from 2009 to 2013. We examined across-hospital variation and identified child- and hospital-level factors associated with evaluation for occult fractures. RESULTS: Evaluations for occult fractures were performed in 48% of the 2502 children with an abuse diagnosis, in 51% of the 1574 infants with traumatic brain injury, and in 53% of the 859 infants with femur fractures. Hospitals varied substantially with regard to their rates of evaluation for occult fractures in all 3 groups. Occult fracture evaluations were more likely to be performed at teaching hospitals than at nonteaching hospitals (all P < .001). The hospital-level annual volume of young, injured children was associated with the probability of occult fracture evaluation, such that hospitals treating more young, injured patients were more likely to evaluate for occult fractures (all P < .001). CONCLUSIONS: Substantial variation in evaluation for occult fractures among young children with a diagnosis of abuse or injuries associated with a high likelihood of abuse highlights opportunities for quality improvement in this vulnerable population. PMID:26169425

  6. Evaluation for Occult Fractures in Injured Children.

    PubMed

    Wood, Joanne N; French, Benjamin; Song, Lihai; Feudtner, Chris

    2015-08-01

    To examine variation across US hospitals in evaluation for occult fractures in (1) children <2 years old diagnosed with physical abuse and (2) infants <1 year old with injuries associated with a high likelihood of abuse and to identify factors associated with such variation. We performed a retrospective study in children <2 years old with a diagnosis of physical abuse and in infants <1 year old with non-motor vehicle crash-related traumatic brain injury or femur fractures discharged from 366 hospitals in the Premier database from 2009 to 2013. We examined across-hospital variation and identified child- and hospital-level factors associated with evaluation for occult fractures. Evaluations for occult fractures were performed in 48% of the 2502 children with an abuse diagnosis, in 51% of the 1574 infants with traumatic brain injury, and in 53% of the 859 infants with femur fractures. Hospitals varied substantially with regard to their rates of evaluation for occult fractures in all 3 groups. Occult fracture evaluations were more likely to be performed at teaching hospitals than at nonteaching hospitals (all P < .001). The hospital-level annual volume of young, injured children was associated with the probability of occult fracture evaluation, such that hospitals treating more young, injured patients were more likely to evaluate for occult fractures (all P < .001). Substantial variation in evaluation for occult fractures among young children with a diagnosis of abuse or injuries associated with a high likelihood of abuse highlights opportunities for quality improvement in this vulnerable population. Copyright © 2015 by the American Academy of Pediatrics.

  7. Nonscanning Moiré deflectometry for measurement of nonlinear refractive index and absorption coefficient of liquids.

    PubMed

    Farahani, Shahrzad Shahrabi; Madanipour, Khosro; Koohian, Ata

    2017-05-01

    In this work, a nonscanning measurement technique is presented for determining the nonlinear refractive index and absorption coefficient of liquid media based on Moiré deflectometry. In the proposed method two lasers are used: a low power, wide beam as probe and a high power with specific wavelength as a pump. Interaction of the pump laser beam with the nonlinear sample changes the refractive index, which leads to change in convergence/divergence of the collimated incident probe laser beam. The induced deflection is monitored by Moiré deflectometry. If the pump laser has a Gaussian intensity profile, the refractive index profile of the sample is Gaussian, too. Measuring the deflection angle of the probe beam by Moiré fringes deflection, and by using the inverse Abel transform integral, the refractive index profile and nonlinear refractive index can be determined. This method is fast, easy, and insensitive to environmental noise and allows real-time measurement. Also, the refractive index profile of the interacted medium with pump laser can be achieved by this technique. As a liquid sample, a DCJ dye in water solution was studied. The value of nonlinear refractive index, n2, and absorption coefficient, α, were obtained -2.54×10-4  cm2 w-1 and 1.368  cm-1, respectively.

  8. Recovering fluorophore concentration profiles from confocal images near lateral refractive index step changes.

    PubMed

    Jonášová, Eleonóra Parelius; Bjørkøy, Astrid; Stokke, Bjørn Torger

    2016-12-01

    Optical aberrations due to refractive index mismatches occur in various types of microscopy due to refractive differences between the sample and the immersion fluid or within the sample. We study the effects of lateral refractive index differences by fluorescence confocal laser scanning microscopy due to glass or polydimethylsiloxane cuboids and glass cylinders immersed in aqueous fluorescent solution, thereby mimicking realistic imaging situations in the proximity of these materials. The reduction in fluorescence intensity near the embedded objects was found to depend on the geometry and the refractive index difference between the object and the surrounding solution. The observed fluorescence intensity gradients do not reflect the fluorophore concentration in the solution. It is suggested to apply a Gaussian fit or smoothing to the observed fluorescence intensity gradient and use this as a basis to recover the fluorophore concentration in the proximity of the refractive index step change. The method requires that the reference and sample objects have the same geometry and refractive index. The best results were obtained when the sample objects were also used for reference since small differences such as uneven surfaces will result in a different extent of aberration.

  9. Molecular Mechanisms Underlying Occult Hepatitis B Virus Infection

    PubMed Central

    Samal, Jasmine; Kandpal, Manish

    2012-01-01

    Summary: Chronic hepatitis B virus (HBV) infection is a complex clinical entity frequently associated with cirrhosis and hepatocellular carcinoma (HCC). The persistence of HBV genomes in the absence of detectable surface antigenemia is termed occult HBV infection. Mutations in the surface gene rendering HBsAg undetectable by commercial assays and inhibition of HBV by suppression of viral replication and viral proteins represent two fundamentally different mechanisms that lead to occult HBV infections. The molecular mechanisms underlying occult HBV infections, including recently identified mechanisms associated with the suppression of HBV replication and inhibition of HBV proteins, are reviewed in detail. The availability of highly sensitive molecular methods has led to increased detection of occult HBV infections in various clinical settings. The clinical relevance of occult HBV infection and the utility of appropriate diagnostic methods to detect occult HBV infection are discussed. The need for specific guidelines on the diagnosis and management of occult HBV infection is being increasingly recognized; the aspects of mechanistic studies that warrant further investigation are discussed in the final section. PMID:22232374

  10. Image Analysis of the 2012 Pluto (Near) Occultation

    DTIC Science & Technology

    2013-09-01

    Image Analysis of the 2012 Pluto (Near) Occultation Keith T. Knox Air Force Research Laboratory ABSTRACT Imagery was gathered at the AMOS...observatory on the 3.6-meter telescope for the expected occultation of a star by the dwarf planet, Pluto , on 29 June 2012. The imagery was taken at...5 Hz for 40 minutes before and after the expected time of occultation. The initial analysis of the photometry indicated that Pluto did not occult

  11. Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation.

    PubMed

    Tabernero, Juan; Schaeffel, Frank

    2009-10-01

    A new device was designed to provide fast measurements (4 s) of the peripheral refraction (90 degrees central horizontal field). Almost-continuous traces are obtained with high angular resolution (0.4 degrees) while the subject is fixating a central stimulus. Three-dimensional profiles can also be measured. The peripheral refractions in 10 emmetropic subjects were studied as a function of accommodation (200 cm, 50 cm, and 25 cm viewing distances). Peripheral refraction profiles were largely preserved during accommodation but were different in each individual. Apparently, the accommodating lens changes its focal length evenly over the central 90 degrees of the visual field.

  12. Femtosecond laser-induced refractive index modification in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.

    2005-04-01

    We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.

  13. Ionospheric Remote Sensing using GPS Radio Occultation and Ultraviolet Photometry aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Powell, S. P.; O'Hanlon, B.; Humphreys, T.; Bishop, R. L.; Stephan, A. W.; Gross, J.; Chakrabarti, S.

    2017-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiment launched to the International Space Station (ISS) on February 19, 2017 as part of the Space Test Program Houston #5 payload (STP-H5). After early orbit testing, GROUP-C began routine science operations in late April. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal nighttime ionospheric gradients and an advanced software-defined GPS receiver providing ionospheric electron density profiles, scintillation measurements, and lower atmosphere profiles. GROUP-C and a companion experiment, the Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES), offer a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor approaches, including ionospheric tomography. Data are collected continuously across low- and mid-latitudes as the ISS orbit precesses through all local times every 60 days. The GROUP-C GPS sensor routinely collects dual-frequency GPS occultations, makes targeted raw signal captures of GPS and Galileo occultations, and includes multiple antennas to characterize multipath in the ISS environment. The UV photometer measures the 135.6 nm ionospheric recombination airglow emision along the nightside orbital track. We present the first analysis of ionospheric observations, discuss the challenges and opportunities of remote sensing from the ISS platform, and explore how these new data help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere relevant to the upcoming GOLD and ICON missions.

  14. The 2003 November 14 occultation by Titan of TYC 1343-1865-1. II. Analysis of light curves

    NASA Astrophysics Data System (ADS)

    Zalucha, A.; Fitzsimmons, A.; Elliot, J. L.; Thomas-Osip, J.; Hammel, H. B.; Dhillon, V. S.; Marsh, T. R.; Taylor, F. W.; Irwin, P. G. J.

    2007-12-01

    We observed a stellar occultation by Titan on 2003 November 14 from La Palma Observatory using ULTRACAM with three Sloan filters: u, g, and i (358, 487, and 758 nm, respectively). The occultation probed latitudes 2° S and 1° N during immersion and emersion, respectively. A prominent central flash was present in only the i filter, indicating wavelength-dependent atmospheric extinction. We inverted the light curves to obtain six lower-limit temperature profiles between 335 and 485 km (0.04 and 0.003 mb) altitude. The i profiles agreed with the temperature measured by the Huygens Atmospheric Structure Instrument [Fulchignoni, M., and 43 colleagues, 2005. Nature 438, 785-791] above 415 km (0.01 mb). The profiles obtained from different wavelength filters systematically diverge as altitude decreases, which implies significant extinction in the light curves. Applying an extinction model [Elliot, J.L., Young, L.A., 1992. Astron. J. 103, 991-1015] gave the altitudes of line of sight optical depth equal to unity: 396±7 and 401±20 km ( u immersion and emersion); 354±7 and 387±7 km ( g immersion and emersion); and 336±5 and 318±4 km ( i immersion and emersion). Further analysis showed that the optical depth follows a power law in wavelength with index 1.3±0.2. We present a new method for determining temperature from scintillation spikes in the occulting body's atmosphere. Temperatures derived with this method are equal to or warmer than those measured by the Huygens Atmospheric Structure Instrument. Using the highly structured, three-peaked central flash, we confirmed the shape of Titan's middle atmosphere using a model originally derived for a previous Titan occultation [Hubbard, W.B., and 45 colleagues, 1993. Astron. Astrophys. 269, 541-563].

  15. A Trio of Well-Observed Asteroid Occultations in 2008

    NASA Astrophysics Data System (ADS)

    Timerson, Brad; Durech, J.; Aguirre, S.; Benner, L.; Blacnhette, D.; Breit, D.; Campbell, S.; Campbell, R.; Carlisle, R.; Castro, E.; Clark, D.; Clark, J.; Correa, A.; Coughlin, K.; Degenhardt, S.; Dunham, D.; Fleishman, R.; Frankenberger, R.; Gabriel, P.; Harris, B.; Herald, D.; Hicks, M.; Hofler, G.; Holmes, A.; Jones, R.; Lambert, R.; Lucas, G.; Lyzenga, G.; Macdougal, C.; Maley, P.; Morgan, W.; Mroz, G.; Nolthenius, R.; Nugent, R.; Preston, S.; Rodriguez, C.; Royer, R.; Sada, P.; Sanchez, E.; Sanford, B.; Sorensen, R.; Stanton, R.; Venable, R.; Vincent, M.; Wasson, R.; Wilson, E.

    2009-07-01

    During 2008, IOTA observers in North America recorded observations for about 100 asteroidal occultation events. Of these, three events were notable for producing well-defined profiles as a result of a large number of well-spaced observation sites at each event. Detailed profiles are presented for three events having the most extensive observations: 9 Metis on 2008 September 12, an irregular ellipse measuring 176.1 ± 3.1 x 161.1 ± 10.5 km; 19 Fortuna on 2008 June 18, an irregular ellipse measuring 229.7 ± 1.7 x 193.6 ± 1.7 km; 135 Hertha on 2008 December 11, an irregular ellipse measuring 101.0 ± 2.1 x 59.3 ± 2.1 km.

  16. Occult pneumomediastinum in blunt chest trauma: clinical significance.

    PubMed

    Rezende-Neto, J B; Hoffmann, J; Al Mahroos, M; Tien, H; Hsee, L C; Spencer Netto, F; Speers, V; Rizoli, S B

    2010-01-01

    Thoracic injuries are potentially responsible for 25% of all trauma deaths. Chest X-ray is commonly used to screen patients with chest injury. However, the use of computed tomography (CT) scan for primary screening is increasing, particularly for blunt trauma. CT scans are more sensitive than chest X-ray in detecting intra-thoracic abnormalities such as pneumothoraces and pneumomediastinums. Pneumomediastinum detected by chest X-ray or "overt pneumomediastinum", raises the concern of possible aerodigestive tract injuries. In contrast, there is scarce information on the clinical significance of pneumomediastinum diagnosed by CT scan only or "occult pneumomediastinum". Therefore we investigated the clinical consequences of occult pneumomediastinum in our blunt trauma population. A 2-year retrospective chart review of all blunt chest trauma patients with initial chest CT scan admitted to a level I trauma centre. Data extracted from the medical records include; demographics, occult, overt, or no pneumomediastinum, the presence of intra-thoracic aerodigestive tract injuries (trachea, bronchus, and/or esophagus), mechanism and severity of injury, endotracheal intubation, chest thoracostomy, operations and radiological reports by an attending radiologist. All patients with intra-thoracic aerodigestive tract injuries from 1994 to 2004 were also investigated. Of 897 patients who met the inclusion criteria 839 (93.5%) had no pneumomediastinum. Five patients (0.6%) had overt pneumomediastinum and 53 patients (5.9%) had occult pneumomediastinum. Patients with occult pneumomediastinum had significantly higher ISS and AIS chest (p<0.0001) than patients with no pneumomediastinum. A chest thoracostomy tube was more common (p<0.0001) in patients with occult pneumomediastinum (47.2%) than patients with no pneumomediastinum (10.4%), as well as occult pneumothorax. None of the patients with occult pneumomediastinum had aerodigestive tract injuries (95%CI 0-0.06). Follow up CT scan of

  17. Occult urolithiasis in asymptomatic primary hyperparathyroidism.

    PubMed

    Tay, Yu-Kwang Donovan; Liu, Minghao; Bandeira, Leonardo; Bucovsky, Mariana; Lee, James A; Silverberg, Shonni J; Walker, Marcella D

    2018-05-01

    Recent international guidelines suggest renal imaging to detect occult urolithiasis in all patients with asymptomatic primary hyperparathyroidism (PHPT), but data regarding their prevalence and associated risk factors are limited. We evaluated the prevalence and risk factors for occult urolithiasis. Cross-sectional analysis of 96 asymptomatic PHPT patients from a university hospital in the United States with and without occult nephrolithiasis. Occult urolithiasis was identified in 21% of patients. Stone formers had 47% higher 24-hour urinary calcium excretion (p = 0.002). Although available in only a subset of patients (n = 28), activated vitamin D [1,25(OH) 2 D] was 29% higher (p = 0.02) in stone formers. There was no difference in demographics, BMI, calcium or vitamin D intake, other biochemistries, renal function, BMD, or fractures. Receiver operating characteristic curves indicated that urinary calcium excretion and 1,25(OH) 2 D had an area under the curve of 0.724 (p = 0.003) and 0.750 (p = 0.04), respectively. A urinary calcium threshold of >211mg/day provided a sensitivity of 84.2% and a specificity of 55.3% while a 1,25(OH) 2 D threshold of >91pg/mL provided a sensitivity and specificity of 62.5% and 90.0% respectively for the presence of stones. Occult urolithiasis is present in about one-fifth of patients with asymptomatic PHPT and is associated with higher urinary calcium and 1,25(OH) 2 D. Given that most patients will not have occult urolithiasis, targeted imaging in those most likely to have occult stones rather than screening all asymptomatic PHPT patients may be useful. The higher sensitivity of urinary calcium versus 1,25(OH) 2 D suggests screening those with higher urinary calcium may be an appropriate approach.

  18. Progress on an external occulter testbed at flight Fresnel numbers

    NASA Astrophysics Data System (ADS)

    Kim, Yunjong; Sirbu, Dan; Galvin, Michael; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2016-01-01

    An external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. Laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The occulter testbed uses 78 m optical propagation distance to realize the flight Fresnel numbers. We will use an etched silicon mask as the occulter. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the mechanical design of the testbed. We compare the experimental results with simulations that predict the ultimate contrast performance.

  19. Earth rotation derived from occultation records

    NASA Astrophysics Data System (ADS)

    Sôma, Mitsuru; Tanikawa, Kiyotaka

    2016-04-01

    We determined the values of the Earth's rotation parameter, ΔT = T T - UT, around AD 500 after confirming that the value of the tidal acceleration, dot{n}, of the lunar motion remained unchanged during the period between ancient times and the present. For determining of ΔT, we used contemporaneous occultations of planets by the Moon. In general, occultation records are not useful. However, there are some records that give us a stringent condition for the range of ΔT. Records of the lunar occultations in AD 503 and AD 513 are such examples. In order to assure the usefulness of this occultation data, we used contemporaneous annular and total solar eclipses, which have not been used in the preceding work. This is the first work in which the lunar occultation data have been used as primary data to determine the value of ΔT together with auxiliary contemporaneous annular and total solar eclipses. Our ΔT value is less than a smoothed value (Stephenson 1997) by at least 450 s. The result is consistent with our earlier results obtained from solar eclipses.

  20. Association of preS/S Mutations with Occult Hepatitis B Virus (HBV) Infection in South Korea: Transmission Potential of Distinct Occult HBV Variants

    PubMed Central

    Kim, Hong; Kim, Bum-Joon

    2015-01-01

    Occult hepatitis B virus infection (HBV) is characterized by HBV DNA positivity but HBV surface antigen (HBsAg) negativity. Occult HBV infection is associated with a risk of HBV transmission through blood transfusion, hemodialysis, and liver transplantation. Furthermore, occult HBV infection contributes to the development of cirrhosis and hepatocellular carcinoma. We recently reported the characteristic molecular features of mutations in the preS/S regions among Korean individuals with occult infections caused by HBV genotype C2; the variants of preS and S related to severe liver diseases among chronically infected patients were also responsible for the majority of HBV occult infections. We also reported that HBsAg variants from occult-infected Korean individuals exhibit lower HBsAg secretion capacity but not reduced HBV DNA levels. In addition, these variants exhibit increased ROS-inducing capacity compared with the wild-type strain, linking HBV occult infections to liver cell damage. Taken together, our previous reports suggest the transmission potential of distinct HBV occult infection-related variants in South Korea. PMID:26084041

  1. Association of preS/S Mutations with Occult Hepatitis B Virus (HBV) Infection in South Korea: Transmission Potential of Distinct Occult HBV Variants.

    PubMed

    Kim, Hong; Kim, Bum-Joon

    2015-06-15

    Occult hepatitis B virus infection (HBV) is characterized by HBV DNA positivity but HBV surface antigen (HBsAg) negativity. Occult HBV infection is associated with a risk of HBV transmission through blood transfusion, hemodialysis, and liver transplantation. Furthermore, occult HBV infection contributes to the development of cirrhosis and hepatocellular carcinoma. We recently reported the characteristic molecular features of mutations in the preS/S regions among Korean individuals with occult infections caused by HBV genotype C2; the variants of preS and S related to severe liver diseases among chronically infected patients were also responsible for the majority of HBV occult infections. We also reported that HBsAg variants from occult-infected Korean individuals exhibit lower HBsAg secretion capacity but not reduced HBV DNA levels. In addition, these variants exhibit increased ROS-inducing capacity compared with the wild-type strain, linking HBV occult infections to liver cell damage. Taken together, our previous reports suggest the transmission potential of distinct HBV occult infection-related variants in South Korea.

  2. Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki

    NASA Astrophysics Data System (ADS)

    Imamura, Takeshi; Ando, Hiroki; Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Yamazaki, Atsushi; Sato, Takao M.; Noguchi, Katsuyuki; Futaana, Yoshifumi; Oschlisniok, Janusz; Limaye, Sanjay; Choudhary, R. K.; Murata, Yasuhiro; Takeuchi, Hiroshi; Hirose, Chikako; Ichikawa, Tsutomu; Toda, Tomoaki; Tomiki, Atsushi; Abe, Takumi; Yamamoto, Zen-ichi; Noda, Hirotomo; Iwata, Takahiro; Murakami, Shin-ya; Satoh, Takehiko; Fukuhara, Tetsuya; Ogohara, Kazunori; Sugiyama, Ko-ichiro; Kashimura, Hiroki; Ohtsuki, Shoko; Takagi, Seiko; Yamamoto, Yukio; Hirata, Naru; Hashimoto, George L.; Yamada, Manabu; Suzuki, Makoto; Ishii, Nobuaki; Hayashiyama, Tomoko; Lee, Yeon Joo; Nakamura, Masato

    2017-10-01

    After the arrival of Akatsuki spacecraft of Japan Aerospace Exploration Agency at Venus in December 2015, the radio occultation experiment, termed RS (Radio Science), obtained 19 vertical profiles of the Venusian atmosphere by April 2017. An onboard ultra-stable oscillator is used to generate stable X-band downlink signals needed for the experiment. The quantities to be retrieved are the atmospheric pressure, the temperature, the sulfuric acid vapor mixing ratio, and the electron density. Temperature profiles were successfully obtained down to 38 km altitude and show distinct atmospheric structures depending on the altitude. The overall structure is close to the previous observations, suggesting a remarkable stability of the thermal structure. Local time-dependent features are seen within and above the clouds, which is located around 48-70 km altitude. The H2SO4 vapor density roughly follows the saturation curve at cloud heights, suggesting equilibrium with cloud particles. The ionospheric electron density profiles are also successfully retrieved, showing distinct local time dependence. Akatsuki RS mainly probes the low and middle latitude regions thanks to the near-equatorial orbit in contrast to the previous radio occultation experiments using polar orbiters. Studies based on combined analyses of RS and optical imaging data are ongoing.[Figure not available: see fulltext.

  3. Can manipulation of orthokeratology lens parameters modify peripheral refraction?

    PubMed

    Kang, Pauline; Gifford, Paul; Swarbrick, Helen

    2013-11-01

    To investigate changes in peripheral refraction, corneal topography, and aberrations induced by changes in orthokeratology (OK) lens parameters in myopes. Subjects were fitted with standard OK lenses that were worn overnight for 2 weeks. Peripheral refraction, corneal topography, and corneal surface aberrations were measured at baseline and after 14 nights of OK lens wear. Subsequent to a 2-week washout period, subjects were refitted with another set of lenses where one eye was randomly assigned to wear an OK lens with a smaller optic zone diameter (OZD) and the other eye with a steeper peripheral tangent. Measurements were taken again at a second baseline and after 14 days of overnight wear of the second OK lens set. Standard OK lenses with a 6-mm OZD and 1/4 peripheral tangent caused significant changes in both peripheral refraction and corneal topography. Significant hyperopic shift occurred in the central visual field (VF) while a myopic shift was found at 35 degrees in the nasal VF. OK induced significant reductions in corneal power at all positions along the horizontal corneal chord except at 2.4 mm nasal where there was no significant change and at 2.8 mm nasal where there was an increase in corneal refractive power. A positive shift in spherical aberration was induced for all investigated lens designs except for the 1/2 tangent design when calculated over a 4-mm pupil. Reducing OZD and steepening the peripheral tangent did not cause significant changes in peripheral refraction or corneal topography profiles across the horizontal meridian. OK lenses caused significant changes in peripheral refraction, corneal topography, and corneal surface aberrations. Modifying OZD and peripheral tangent made no significant difference to the peripheral refraction or corneal topography profile. Attempting to customize refraction and topography changes through manipulation of OK lens parameters appears to be a difficult task.

  4. Probing Titan's atmosphere with a stellar occultation

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1991-01-01

    The 3 July, 1989 occultation of 28 Sgr by Titan is discussed. The star was readily detectable throughout the occultation, reaching a minimum normalized flux of about 0.05. The occultation probed Titan's atmosphere in a region not studied by the Voyager spacecraft. The region is important for the aerobraking of Titan entry probes, and direct information about its properties is important for the Cassini mission. Occultation data (normalized stellar flux vs universal time) is shown in chart form for NASA supported stations, along with data from a collaborating group at the Wise observatory in Israel. Strong scintillation data of the star is noticeable in the data records, and provides information on waves/turbulence in Titan's high atmosphere.

  5. Theoretical performance of serrated external occulters for solar coronagraphy. Application to ASPIICS

    NASA Astrophysics Data System (ADS)

    Rougeot, R.; Aime, C.

    2018-04-01

    Context. This study is made in the context of the future solar coronagraph ASPIICS of the ESA formation-flying mission Proba-3. Aims: In the context of solar coronagraphy, we provide a comparative study of the theoretical performance of serrated (or toothed) external occulters by varying the number and size of the teeth, which we compare to the sharp-edged and apodized disks. The tooth height is small (a few centimeters), to avoid hindering the observation of the solar corona near the limb. We first analyze the diffraction pattern produced by such occulters. In a second step, we compute the umbra profile by integration over the Sun. Methods: We explored a few methods to compute the diffraction pattern. Two of them were implemented. The first is based on 2D fast Fourier transformation (FFT) routines and a multiplication by the Fresnel filter of the form exp(-iπλzu2). Simple rules were derived and discussed to set the sampling conditions. The Maggi-Rubinowicz representation is then proposed as an alternative method, and is proven to be very efficient for this study. Results: Serrated occulters tend to create a two-level intensity pattern, the inner being the darker, which perfectly matches a previously reported geometrical prediction. The diffraction in this central region is lower by two to four orders of magnitude when compared to the sharp-edged disk. The achieved umbra level at the center ranges from 10-4 to below 10-7, depending on the geometry of the teeth. Conclusions: Our study shows that serrated occulters can achieve a high rejection and can almost reach the performance of the apodized disk when very many teeth are used. We prove that shaped occulters must be preferred to simple disks in solar and stellar coronagraphy.

  6. A study on characterization of stratospheric aerosol and gas parameters with the spacecraft solar occultation experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1977-01-01

    Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.

  7. Io hot spots - Infrared photometry of satellite occultations

    NASA Technical Reports Server (NTRS)

    Goguen, J. D.; Matson, D. L.; Sinton, W. M.; Howell, R. R.; Dyck, H. M.

    1988-01-01

    Io's active hot spots, which are presently mapped on the basis of IR photometry of this moon's occultation by other Gallilean satellites, are obtained with greatest spatial resolution near the sub-earth point. A model is developed for the occultation lightcurves, and its fitting to the data defines the apparent path of the occulting satellite relative to Io; the mean error in apparent relative position of occulting satellites is of the order of 178 km. A heretofore unknown, 20-km diameter hot spot is noted on Io's leading hemisphere.

  8. Strong scintillations during atmospheric occultations Theoretical intensity spectra. [radio scattering during spacecraft occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1986-01-01

    Each of the two Voyager spacecraft launched in 1977 has completed a reconnaissance of the Jovian and Saturnian systems. In connection with occultation experiments, strong scintillations were observed. Further theoretical work is required before these scintillations can be interpreted. The present study is, therefore, concerned with the derivation of a theory for strong scattering during atmospheric occultation experiments, taking into account as fundamental quantity of interest the spatial spectrum (or spectral density) of intensity fluctuations. Attention is given to a theory for intensity spectra, and numerical calculations. The new formula derived for Phi-i accounts for strong scattering of electromagnetic waves during atmospheric occultations.

  9. OCCULT-ORSER complete conversational user-language translator

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; Young, K.

    1981-01-01

    Translator program (OCCULT) assists non-computer-oriented users in setting up and submitting jobs for complex ORSER system. ORSER is collection of image processing programs for analyzing remotely sensed data. OCCULT is designed for those who would like to use ORSER but cannot justify acquiring and maintaining necessary proficiency in Remote Job Entry Language, Job Control Language, and control-card formats. OCCULT is written in FORTRAN IV and OS Assembler for interactive execution.

  10. A refraction-corrected tomographic algorithm for immersion laser-ultrasonic imaging of solids with piecewise linear surface profile

    NASA Astrophysics Data System (ADS)

    Zarubin, V.; Bychkov, A.; Simonova, V.; Zhigarkov, V.; Karabutov, A.; Cherepetskaya, E.

    2018-05-01

    In this paper, a technique for reflection mode immersion 2D laser-ultrasound tomography of solid objects with piecewise linear 2D surface profiles is presented. Pulsed laser radiation was used for generation of short ultrasonic probe pulses, providing high spatial resolution. A piezofilm sensor array was used for detection of the waves reflected by the surface and internal inhomogeneities of the object. The original ultrasonic image reconstruction algorithm accounting for refraction of acoustic waves at the liquid-solid interface provided longitudinal resolution better than 100 μm in the polymethyl methacrylate sample object.

  11. Sizes, Shapes, and Satellites of Asteroids from Occultations

    NASA Astrophysics Data System (ADS)

    Waring Dunham, David; Herald, David Russell; Preston, Steve; Timerson, Bradley; Maley, Paul; Frappa, Eric; Hayamizu, Tsutomu; Talbot, John; Poro, Atila

    2015-08-01

    For 40 years, the sizes and shapes of dozens of asteroids have been determined from observations of asteroidal occultations. Some of the first evidence for satellites of asteroids was obtained from the early efforts; now, the orbits and sizes of some satellites discovered by other means have been refined from occultation observations. Also, several close binary stars have been discovered, and the angular diameters of some stars have been measured from analysis of these observations. The International Occultation Timing Association (IOTA) coordinates this activity worldwide, from predicting and publicizing the events, to accurately timing the occultations from as many stations as possible, and publishing and archiving the observations.The release of the Hipparcos and Tycho catalogs in 1997, from ESA’s Hipparcos space mission, revolutionized asteroidal occultation work, increasing the routine accuracy of the predictions and the annual number of observations by an order of magnitude. IOTA developed an efficient procedure for predicting the occultations using a combination of new star catalogs, based on Hipparcos and new star catalogs, generated mainly at the U. S. Naval Observatory (USNO), and new observations of asteroids relative to the improved astrometric nets mainly from USNO’s Flagstaff Astrometric Scanning Transit Telescope and JPL’s Table Mountain Observatory. In addition, many IOTA observers now use inexpensive low-light-level video cameras and specially built GPS video time inserters to accurately time the events. This automation has also allowed some observers to deploy multiple remote video stations across occultation paths. Then, one observer can record several “chords” across the asteroid. The cameras are sensitive enough that easily-hidden telescopes, many of which can be packed in standard air travel suitcases, can be used for many of the predicted occultations. IOTA’s network of regional coordinators collect and reduce the observations

  12. The influence of NO and ClO variations at twilight on the interpretation of solar occultation measurements

    NASA Technical Reports Server (NTRS)

    Boughner, R.; Larsen, J. C.; Natarajan, M.

    1980-01-01

    Measurement of short-lived photochemically-produced species in the stratosphere by solar occultation is difficult because the rapid variation of such species near the terminator introduces ambiguities in interpreting the measured absorption in terms of meaningful atmospheric abundances. These variations produce tangent path concentrations that are asymmetric relative to the tangent point, as opposed to the symmetrical distribution usually assumed in most inversion algorithms. Neglect of this asymmetry may yield an inverted profile that deviates significantly from the true sunset/sunrise profile. In the present paper, the influence of this effect on solar occultation measurements of ClO and NO is examined. The results show that average inhomogeneity factors, which measure the concentration variation along the tangent path and which can be calculated from a photochemical model, can indicate which species require more careful data analysis.

  13. Effect of refractive error on temperament and character properties.

    PubMed

    Kalkan Akcay, Emine; Canan, Fatih; Simavli, Huseyin; Dal, Derya; Yalniz, Hacer; Ugurlu, Nagihan; Gecici, Omer; Cagil, Nurullah

    2015-01-01

    To determine the effect of refractive error on temperament and character properties using Cloninger's psychobiological model of personality. Using the Temperament and Character Inventory (TCI), the temperament and character profiles of 41 participants with refractive errors (17 with myopia, 12 with hyperopia, and 12 with myopic astigmatism) were compared to those of 30 healthy control participants. Here, temperament comprised the traits of novelty seeking, harm-avoidance, and reward dependence, while character comprised traits of self-directedness, cooperativeness, and self-transcendence. Participants with refractive error showed significantly lower scores on purposefulness, cooperativeness, empathy, helpfulness, and compassion (P<0.05, P<0.01, P<0.05, P<0.05, and P<0.01, respectively). Refractive error might have a negative influence on some character traits, and different types of refractive error might have different temperament and character properties. These personality traits may be implicated in the onset and/or perpetuation of refractive errors and may be a productive focus for psychotherapy.

  14. The occult submucous cleft palate.

    PubMed

    Kaplan, E N

    1975-10-01

    We have studied 41 patients with classic submucous cleft and 32 cases with occult submucous cleft. Both groups have the same anatomic abnormality that leads to velar dysfunction-the insertion of the palate muscles onto the hard palate rather than onto the midline soft palate raphe. However, the occult submucous cleft palate does not have the classic triad of bifid uvula, hard palate bony notch, and furrow in the midline of the soft palate. Characteristic facial features, cephalmetric x-rays, and cine voice studies can help make a presumptive diagnosis of occult submucous cleft palate. Surgical management includes a diagnostic palate exploration to identify muscle configuration followed by levator muscle sling reconstruction, palate pushback, and pharyngeal flap. Excellent speech results are obtained except with patients having palate paresis.

  15. Zonal Winds Between 25 and 120 Km Retrieved from Solar Occultation Spectra. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Vancleef, Garrett Warren; Shaw, John H.

    1989-01-01

    Atmospheric winds at heights between 25 and 120 km have been retrieved with precisions of 5/ms from the Doppler shifts of atmospheric absorption lines measured from a satellite-borne instrument. Lines of the upsilon 3 CO2 and upsilon 2 H2O rotation-vibration bands caused by gases in the instrument allowed the instrumental frequency scale to be absolutely calibrated so that accurate relative speeds could be obtained. By comparing the positions of both sets of instrumental lines the calibration of the frequency scale was determined to be stable to a precision of less than 2 x 10(-5) cm during the course of each occultation. It was found that the instrumental resolution of 0.015 cm after apodization, the signal to noise ratio of about 100 and stable calibration allowed relative speeds to be determined to a precision of 5 ms or better by using small numbers of absorption lines between 1600 and 3200 cm. Absolute absorption line positions were simultaneously recovered to precisions of 5 x 10(-5) cm or better. The wind speed profiles determined from four sunset occultations and one sunrise occultation show remarkable similarities in the magnitudes and directions of the zonal wind velocities as functions of height. These wind profiles appear to be manifestations of atmospheric tides.

  16. The Structure of Chariklo’s Rings from Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Bérard, D.; Sicardy, B.; Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Ortiz, J.-L.; Duffard, R.; Morales, N.; Meza, E.; Leiva, R.; Benedetti-Rossi, G.; Vieira-Martins, R.; Gomes Júnior, A.-R.; Assafin, M.; Colas, F.; Dauvergne, J.-L.; Kervella, P.; Lecacheux, J.; Maquet, L.; Vachier, F.; Renner, S.; Monard, B.; Sickafoose, A. A.; Breytenbach, H.; Genade, A.; Beisker, W.; Bath, K.-L.; Bode, H.-J.; Backes, M.; Ivanov, V. D.; Jehin, E.; Gillon, M.; Manfroid, J.; Pollock, J.; Tancredi, G.; Roland, S.; Salvo, R.; Vanzi, L.; Herald, D.; Gault, D.; Kerr, S.; Pavlov, H.; Hill, K. M.; Bradshaw, J.; Barry, M. A.; Cool, A.; Lade, B.; Cole, A.; Broughton, J.; Newman, J.; Horvat, R.; Maybour, D.; Giles, D.; Davis, L.; Paton, R. A.; Loader, B.; Pennell, A.; Jaquiery, P.-D.; Brillant, S.; Selman, F.; Dumas, C.; Herrera, C.; Carraro, G.; Monaco, L.; Maury, A.; Peyrot, A.; Teng-Chuen-Yu, J.-P.; Richichi, A.; Irawati, P.; De Witt, C.; Schoenau, P.; Prager, R.; Colazo, C.; Melia, R.; Spagnotto, J.; Blain, A.; Alonso, S.; Román, A.; Santos-Sanz, P.; Rizos, J.-L.; Maestre, J.-L.; Dunham, D.

    2017-10-01

    Two narrow and dense rings (called C1R and C2R) were discovered around the Centaur object (10199) Chariklo during a stellar occultation observed on 2013 June 3. Following this discovery, we planned observations of several occultations by Chariklo’s system in order to better characterize the physical properties of the ring and main body. Here, we use 12 successful occulations by Chariklo observed between 2014 and 2016. They provide ring profiles (physical width, opacity, edge structure) and constraints on the radii and pole position. Our new observations are currently consistent with the circular ring solution and pole position, to within the ±3.3 km formal uncertainty for the ring radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal significant width variations from ˜5 to 7.5 km. The width of the fainter ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and outer edges of C1R are consistent with infinitely sharp boundaries, with typical upper limits of one kilometer for the transition zone between the ring and empty space. No constraint on the sharpness of C2R’s edges is available. A 1σ upper limit of ˜20 m is derived for the equivalent width of narrow (physical width < 4 km) rings up to distances of 12,000 km, counted in the ring plane.

  17. Assessment of refractive outcome of femtosecond-assisted LASIK for hyperopia correction

    PubMed Central

    El-Naggar, Mohamed Tarek; Hovaghimian, Dikran Gilbert

    2017-01-01

    Introduction Laser vision correction for hyperopia is challenging. The purpose of the study was to assess the refractive outcomes of femtosecond-assisted laser in situ keratomileusis (LASIK) for hyperopic correction using wavefront-optimized ablation profiles. Methods This retrospective case series study included 20 Egyptian patients (40 eyes) with hyperopia or hyperopic astigmatism with a mean manifest refraction spherical equivalent (MRSE) of +2.55D±1.17 (range from +1.00 to +6.00) who had uneventful femtosecond-a assisted LASIK with wavefront-optimized aspheric ablation profile using refractive surgery suite (WaveLight FS200 Femtosecond Laser and WaveLight EX500 Excimer Laser) performed in the Research Institute of Ophthalmology and International Eye Hospital, Giza, Egypt. Statistical analysis was done using Microsoft Excel (Microsoft Corporation, Seattle, WA, USA). Results The procedure significantly reduced the MRSE and cylinder post-operatively (95% were ± 0.50D and 100% ± 1.00 D), with stability of refraction and UDVA over the follow-up period (up to 12 months) after surgery. No eye lost any line of the CDVA, which reflects the excellent safety profile of the procedure; on the other hand, one eye (5%) gained one line and one eye (5%) even gained two lines. There were no significant complications during the procedure. Conclusions Femtosecond-assisted laser in situ keratomileusis for hyperopia showed predictable, effective, and safe refractive outcomes that were stable through 12 months. Longer follow-up period is required to detect any further regression PMID:28461870

  18. COMPLEX VARIABILITY OF THE H{alpha} EMISSION LINE PROFILE OF THE T TAURI BINARY SYSTEM KH 15D: THE INFLUENCE OF ORBITAL PHASE, OCCULTATION BY THE CIRCUMBINARY DISK, AND ACCRETION PHENOMENA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Catrina M.; Johns-Krull, Christopher M.; Mundt, Reinhard

    2012-06-01

    We have obtained 48 high-resolution echelle spectra of the pre-main-sequence eclipsing binary system KH 15D (V582 Mon, P = 48.37 days, e {approx} 0.6, M{sub A} = 0.6 M{sub Sun }, M{sub B} = 0.7 M{sub Sun }). The eclipses are caused by a circumbinary disk (CBD) seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingressmore » and egress events. The H{alpha} line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to 'edge effects' and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the H{alpha} emission line profile changes from an inverse P-Cygni-type profile during ingress to an enhanced double-peaked profile, with both a blue and a red emission component, during egress. Each of these interpreted variations are complicated by the fact that there is also a chaotic, irregular component present in these profiles. We find that the complex data set can be largely understood in the context of accretion onto the stars from a CBD with gas flows as predicted by the models of eccentric T Tauri binaries put forward by Artymowicz and Lubow, Guenther and Kley, and de Val-Borro et al. In particular, our data provide strong support for the pulsed accretion phenomenon, in which enhanced accretion occurs during and after perihelion passage.« less

  19. Application and Limitations of GPS Radio Occultation (GPS-RO) Data for Atmospheric Boundary Layer Height Detection over the Arctic.

    NASA Astrophysics Data System (ADS)

    Ganeshan, M.; Wu, D. L.

    2014-12-01

    Due to recent changes in the Arctic environment, it is important to monitor the atmospheric boundary layer (ABL) properties over the Arctic Ocean, especially to explore the variability in ABL clouds (such as sensitivity and feedback to sea ice loss). For example, radiosonde and satellite observations of the Arctic ABL height (and low-cloud cover) have recently suggested a positive response to sea ice loss during October that may not occur during the melt season (June-September). Owing to its high vertical and spatiotemporal resolution, an independent ABL height detection algorithm using GPS Radio Occultation (GPS-RO) refractivity in the Arctic is explored. Similar GPS-RO algorithms developed previously typically define the level of the most negative moisture gradient as the ABL height. This definition is favorable for subtropical oceans where a stratocumulus-topped ABL is often capped by a layer of sharp moisture lapse rate (coincident with the temperature inversion). The Arctic Ocean is also characterized by stratocumulus cloud cover, however, the specific humidity does not frequently decrease in the ABL capping inversion. The use of GPS-RO refractivity for ABL height retrieval therefore becomes more complex. During winter months (December-February), when the total precipitable water in the troposphere is a minimum, a fairly straightforward algorithm for ABL height retrieval is developed. The applicability and limitations of this method for other seasons (Spring, Summer, Fall) is determined. The seasonal, interannual and spatial variability in the GPS-derived ABL height over the Arctic Ocean, as well as its relation to the underlying surface (ice vs. water), is investigated. The GPS-RO profiles are also explored for the evidence of low-level moisture transport in the cold Arctic environment.

  20. Crustal structure of the Southern Rio Grande rift determined from seismic refraction profiling

    NASA Technical Reports Server (NTRS)

    Sinno, Y. A.; Keller, G. R.; Harder, S. H.; Daggett, P. H.; Morgan, P.

    1986-01-01

    As part of a major cooperative seismic experiment, a series of seismic refraction profiles have been recorded in south-central New Mexico with the goal of determining the crustal structure in the southern Rio Grande rift. The data gathered greatly expand the seismic data base in the area, and consist of three interlocking regional profiles: a reversed E-W line across the rift, an unreversed N-S axial line, and an unreversed SW-SE line. The reversed E-W line shows no significant dip along the Moho (32 km thick crust) and a 7.7 km/s Pn velocity. Results from the N-S axial line and the NW-SE line indicate an apparent Pn velocity of 7.95 km/s and significant dip along the Moho with crustal thinning toward the south and southeast. When interpreted together, these data indicate a crustal thinning in the southern rift of 4-6 km with respect to the northern rift and the adjacent Basin and Range province, and establish the regional Pn velocity to be approximately 7.7 km/s. These results suggest that the Rio Grande rift can be identified as a crustal feature separate and distinct from the Basin and Range province.

  1. Refractive-index measurement and inverse correction using optical coherence tomography.

    PubMed

    Stritzel, Jenny; Rahlves, Maik; Roth, Bernhard

    2015-12-01

    We describe a novel technique for determination of the refractive index of hard biological tissue as well as nonopaque technical samples based on optical coherence tomography (OCT). Our method relies on an inverse refractive-index correction (I-RIC), which matches a measured feature geometry distorted due to refractive-index boundaries to its real geometry. For known feature geometry, the refractive index can be determined with high precision from the best match between the distorted and corrected images. We provide experimental data for refractive-index measurements on a polymethylmethacrylate (PMMA) and on an ex vivo porcine cranial-bone, which are compared to reference measurements and previously published data. Our method is potentially capable of in vivo measurements on rigid biological tissue such as bone as, for example, is required to improve guidance in robot-aided surgical interventions and also for retrieving complex refractive-index profiles of compound materials.

  2. New seismic Vp- and Vp/Vs- models of HUKKA 2007 wide-angle reflection and refraction profile in northern Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Tiira, T.; Janik, T.; Kozlovskaya, E.; Grad, M.; Korja, A.; Komminaho, K.; Hegedüs, E.; Kovács, C. A.; Silvennoinen, H.; Brückl, E.

    2012-04-01

    We study the block structure within accreationary orogens. We present an example from northern part of the Fennoscandian Shield transected by deep seismic sounding profile HUKKA 2007. The 455 km long profile runs in NNW-SSE direction from Kittilä in northwestern Finnish Lapland to Kostamush in Russia near central part of the border between Finland and Russia. We present 2-D seismic velocity model (Vp and Vp/Vs ratio in the crust, depth to the Moho and depth to the intracrustal reflectors) along HUKKA 2007 wide-angle reflection and refraction profile in northern Finland. Commercial and military chemical explosions at 7 shot points were used as sources of the seismic energy. The shots were recorded by 115 recording stations deployed along the profile with an average station spacing of 3.45 km. The field recordings were cut and sorted into shot gathers. The 2-D velocity model of the HUKKA 2007 profile was developed by SEIS83 forward raytracing package using arrivals of major refracted and reflected P- and S-wave phases. In general the velocities vary in the upper crust between 5.8 and 6.1 km/s. Interesting features are three high P wave velocity (6.30-6.35 km/s) bodies in the upper crust. Two small bodies lie close to surface at first 100 km and the third one can be followed from 200 to 350 km along the profile reaching depth of 5-10 km. The central part of the profile (between 120 and 220 km) has a zone of low (lower than 6 km/s) P-wave velocity in the uppermost crust. This zone is about 4 km thick. In addition, the velocity model along the HUKKA 2007 profile shows significant difference in crustal velocity structure between the northern (up to 120 km) and southern parts of the profile. The differences in P-wave velocities and Vp/Vs ratio can be followed throughout the crust down to the Moho boundary. This suggests that the HUKKA 2007 profile transects a major terrane boundary. However, the position of this boundary with respect to major crustal units is

  3. Comment on the paper "Mars Express radio occultation data: A novel analysis approach" by Grandin et al. (2014)

    NASA Astrophysics Data System (ADS)

    Pätzold, M.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Tyler, G. L.

    2016-10-01

    In their recent paper, Grandin et al. (2014) claim to have developed a novel approach, principally a ray tracing method, to analyze radio sounding data from occulted spacecraft signals by planetary atmospheres without the usual assumptions of the radio occultation inversion method of a stratified, layered, symmetric atmosphere. They apply their "new approach" to observations of the Mars Express Radio Science (MaRS) experiment and compare their resulting temperature, neutral number density, and electron density profiles with those from MaRS, claiming that there is good agreement with the observations. The fact is, however, that there are serious disagreements in the most important altitude ranges. Their temperature profile shows a 30 K shift or a 300σ (1σ standard deviation = 0.1 K for the MaRS profile near the surface) difference toward warmer temperatures at the surface when compared with MaRS, while the MaRS profile is in best agreement with the profile from the Mars Climate Data Base V5.0 (MCD V5.0). Their full temperature profile from the surface to 250 km altitude deviates significantly from the MCD V5.0 profile. Their ionospheric electron density profile is considerably different from that derived from the MaRs observations. Although Grandin et al. (2014) claim to derive the neutral number density and temperature profiles above 200 km, including the asymptotic exosphere temperature, it is simply not possible to derive this information from what is essentially noise.

  4. Seismic refraction survey of the ANS preferred site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.K.; Hopkins, R.A.; Doll, W.E.

    1992-02-01

    Between September 19, 1991 and October 8, 1991 personnel from Martin Marietta Energy Systems, Inc. (Energy Systems), Automated Sciences Group, Inc., and Marrich, Inc. performed a seismic refraction survey at the Advanced Neutron Source (ANS) preferred site. The purpose of this survey was to provide estimates of top-of-rock topography, based on seismic velocities, and to delineate variations in rock and soil velocities. Forty-four seismic refraction spreads were shot to determine top-of-rock depths at 42 locations. Nine of the seismic spreads were shot with long offsets to provide 216 top-of-rock depths for 4 seismic refraction profiles. The refraction spread locations weremore » based on the grid for the ANS Phase I drilling program. Interpretation of the seismic refraction data supports the assumption that the top-of-rock surface generally follows the local topography. The shallow top-of-rock interface interpreted from the seismic refraction data is also supported by limited drill information at the site. Some zones of anomalous data are present that could be the result of locally variable weathering, a localized variation in shale content, or depth to top-of-rock greater than the site norm.« less

  5. An occultation satellite system for determining pressure levels in the atmosphere

    NASA Technical Reports Server (NTRS)

    Morrison, A. R.; Vngar, S. G.; Lusignan, B. B.

    1974-01-01

    A two-satellite microwave occultation system is described that will fix, as an absolute function of altitude, the pressure-temperature profile generated by a passive infrared sounder. The 300 mb pressure level is determined to within 24 m rms, assuming the temperture errors produced by the infrared sensor are not greater than 2 K rms. Error caused by water vapor in the radio path is corrected by climatological adjustments. A ground test of the proposed system is described. A microwave signal propagating between two mountain tops was found to be subject to periods of intense fading. Computer analysis of the raypath between the transmitting and receiving stations indicates that multipath and defocusing were responsible for this fading. It is unlikely that an operational pressure-reference-level system will be subject to the deep fades observed in the ground test, because the phenomena are associated with lower altitudes than the closest approach altitude of an occultation-system raypath.

  6. Pluto's Solar Occultation from New Horizons

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Kammer, Joshua; Steffl, Andrew J.; Gladstone, Randy; Summers, Michael; Strobel, Darrell F.; Hinson, David P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; McComas, Dave; New Horizons Atmospheres Science Theme Team

    2017-10-01

    The Alice instrument on NASA’s New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. We derived line-of-sight abundances and local number densities for the major species (N2 and CH4) and minor hydrocarbons (C2H2, C2H4, C2H6), and line-of-sight optical depth and extinction coefficients for the haze. Our major conclusions are that (1) we confirmed temperatures in Pluto’s upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K, and subsequently lower escape rates, (2) the lower atmosphere was very stable, placing the homopause within 12 km of the surface, (3) the abundance profiles of the “C2Hx hydrocarbons” had non-exponential density profiles that compare favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, and (4) haze had an extinction coefficient approximately proportional to N2 density.This work was supported by NASA’s New Horizons project.

  7. Laser characterization of the depth profile of complex refractive index of PMMA implanted with 50 keV silicon ions

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.

    2013-03-01

    The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).

  8. Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids.

    PubMed

    Kim, Iltai; Kihm, Kenneth D

    2010-02-01

    Time-dependent and near-field nanoparticle concentrations are determined by correlating the surface plasmon resonance (SPR) reflectance intensities with the effective refractive index (ERI) of the nanofluid under evaporation. A critical angle measurement for total internal reflection identifies the ERI of the nanofluid at different nanoparticle concentrations. The corresponding SPR reflectance intensities correlate the nanofluidic ERI with the nanoparticle concentrations. Example applications for evaporating nanofluidic droplets containing 47 nmAl(2)O(3) particles demonstrate the feasibility of this new imaging tool for measuring time-resolved and full-field nanoparticle concentration profiles.

  9. Testing for Occult Heartworm Infection

    PubMed Central

    Stogdale, L.

    1984-01-01

    Heartworm infection in dogs is endemic in southern Ontario but occurs only sporadically throughout the remainder of Canada. The disease may either be associated with microfilariae in the patient's blood, a patent infection, or it may be occult. This paper describes a case of occult dirofilariasis in a dog, with emphasis on the diagnosis. A patent infection could be missed if the clinician tests an insufficient amount of blood. He should perform multiple concentration tests using either the modified Knott's technique or a filtration method. Occult infections occur in prepatent or unisexual infections, when the worms become sterile following therapy, or when the host produces antibodies that result in the destruction of the microfilariae. The recent release of a kit which detects the presence of antibodies to the adult heartworms now enables veterinarians to make an accurate diagnosis in the vast majority of dogs. PMID:17422386

  10. Fecal Occult Blood Test (FOBT): MedlinePlus Lab Test Information

    MedlinePlus

    ... medlineplus.gov/labtests/fecaloccultbloodtestfobt.html Fecal Occult Blood Test (FOBT) To use the sharing features on this ... enable JavaScript. What is a Fecal Occult Blood Test? A fecal occult blood test (FOBT) looks at ...

  11. A Digital Video System for Observing and Recording Occultations

    NASA Astrophysics Data System (ADS)

    Barry, M. A. Tony; Gault, Dave; Pavlov, Hristo; Hanna, William; McEwan, Alistair; Filipović, Miroslav D.

    2015-09-01

    Stellar occultations by asteroids and outer solar system bodies can offer ground based observers with modest telescopes and camera equipment the opportunity to probe the shape, size, atmosphere, and attendant moons or rings of these distant objects. The essential requirements of the camera and recording equipment are: good quantum efficiency and low noise; minimal dead time between images; good horological faithfulness of the image timestamps; robustness of the recording to unexpected failure; and low cost. We describe an occultation observing and recording system which attempts to fulfil these requirements and compare the system with other reported camera and recorder systems. Five systems have been built, deployed, and tested over the past three years, and we report on three representative occultation observations: one being a 9 ± 1.5 s occultation of the trans-Neptunian object 28978 Ixion (m v =15.2) at 3 seconds per frame; one being a 1.51 ± 0.017 s occultation of Deimos, the 12 km diameter satellite of Mars, at 30 frames per second; and one being a 11.04 ± 0.4 s occultation, recorded at 7.5 frames per second, of the main belt asteroid 361 Havnia, representing a low magnitude drop (Δm v = ~0.4) occultation.

  12. Atmospheric microwave refractivity and refraction

    NASA Technical Reports Server (NTRS)

    Yu, E.; Hodge, D. B.

    1980-01-01

    The atmospheric refractivity can be expressed as a function of temperature, pressure, water vapor content, and operating frequency. Based on twenty-year meteorological data, statistics of the atmospheric refractivity were obtained. These statistics were used to estimate the variation of dispersion, attenuation, and refraction effects on microwave and millimeter wave signals propagating along atmospheric paths. Bending angle, elevation angle error, and range error were also developed for an exponentially tapered, spherical atmosphere.

  13. Titan solar occultation observations reveal transit spectra of a hazy world.

    PubMed

    Robinson, Tyler D; Maltagliati, Luca; Marley, Mark S; Fortney, Jonathan J

    2014-06-24

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan's atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration's (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88-5 μm at a resolution of 12-18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan's haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1-10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA's James Webb Space Telescope.

  14. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.

    PubMed

    Mao, Xiaole; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun

    2009-07-21

    We report a tunable optofluidic microlens configuration named the Liquid Gradient Refractive Index (L-GRIN) lens for focusing light within a microfluidic device. The focusing of light was achieved through the gradient refractive index (GRIN) within the liquid medium, rather than via curved refractive lens surfaces. The diffusion of solute (CaCl(2)) between side-by-side co-injected microfluidic laminar flows was utilized to establish a hyperbolic secant (HS) refractive index profile to focus light. Tailoring the refractive index profile by adjusting the flow conditions enables not only tuning of the focal distance (translation mode), but also shifting of the output light direction (swing mode), a second degree of freedom that to our knowledge has yet to be accomplished for in-plane tunable microlenses. Advantages of the L-GRIN lens also include a low fluid consumption rate, competitive focusing performance, and high compatibility with existing microfluidic devices. This work provides a new strategy for developing integrative tunable microlenses for a variety of lab-on-a-chip applications.

  15. Ultrasound for diagnosing radiographically occult scaphoid fracture.

    PubMed

    Kwee, Robert M; Kwee, Thomas C

    2018-04-04

    To systematically review the literature on the performance of ultrasound in diagnosing radiographically occult scaphoid fracture. A systematic search was performed in the MEDLINE and Embase databases. Original studies investigating the performance of ultrasound in diagnosing radiographically occult scaphoid fracture in more than 10 patients were eligible for inclusion. Studies that included both radiographically apparent and occult scaphoid fractures (at initial radiography) were only included if independent data on radiographically occult fractures were reported. Methodological quality of the studies included was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Accuracy data were extracted. Sensitivity and specificity were pooled with a bivariate random-effects model. The inclusion criteria were met by 7 studies; total sample size comprised 314 patients. All studies, except 1, included cortical disruption of the scaphoid in their diagnostic criteria. The sensitivity and specificity of ultrasound in diagnosing radiographically occult scaphoid fracture ranged from 77.8% to 100% and from 71.4% to 100% respectively, with pooled estimates of 85.6% (95% CI: 73.9%, 92.6%) and 83.3% % (95% CI: 72.0%, 90.6%) respectively. Exclusion of two studies with a high risk of bias in any QUADAS-2 domain did not affect the pooled results. Ultrasound can diagnose radiographically occult scaphoid fracture with a fairly high degree of accuracy. Because of its relatively low costs and fairly high sensitivity, ultrasound seems more cost-effective than empiric cast immobilization and may be used when CT and MRI are not readily available.

  16. [Peripheral refraction: cause or effect of refraction development?

    PubMed

    Tarutta, E P; Iomdina, E N; Kvaratskheliya, N G; Milash, S V; Kruzhkova, G V

    to study peripheral refraction and the shape of the eyeball in children with different clinical refraction. Using an original method, peripheral refraction was measured at 10-12 degrees temporally and nasally from the fovea in 56 right eyes with different clinical, or axial, refraction of 20 boys and 36 girls aged 7 to 16 years (11.9±1.17 years on average). The shape of the eyeball was judged of by the ratio of its anterior-posterior axial length (AL) to horizontal diameter (HD). The incidence and value of peripheral myopic defocus in children appeared to decrease with clinical refraction increasing from high hyperopia to high myopia. This was the first time, mixed peripheral refraction was found in children, occurring more frequently in higher myopia. This mixed peripheral defocus, shown to be a transitional stage between relative peripheral myopia and relative hyperopia, indicates non-uniform stretching of posterior pole tissues in the course of refraction development and myopia progression. As ocular refraction increases from high hyperopia to high myopia, the growth of AL outpaces that of HD. Obviously, natural peripheral defocus results from changes in size and shape of the eyeball in the course of refraction development.

  17. Occulting Light Concentrators in Liquid Scintillator Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Buizza Avanzini, Margherita; Cabrera, Anatael; Dusini, Stefano; Grassi, Marco; He, Miao; Wu, Wenjie

    2017-09-01

    The experimental efforts characterizing the era of precision neutrino physics revolve around collecting high-statistics neutrino samples and attaining an excellent energy and position resolution. Next generation liquid-based neutrino detectors, such as JUNO, HyperKamiokande, etc, share the use of a large target mass, and the need of pushing light collection to the edge for maximal calorimetric information. Achieving high light collection implies considerable costs, especially when considering detector masses of several kt. A traditional strategy to maximize the effective photo-coverage with the minimum number of PMTs relies on Light Concentrators (LC), such as Winston Cones. In this paper, the authors introduce a novel concept called Occulting Light Concentrators (OLC), whereby a traditional LC gets tailored to a conventional PMT, by taking into account its single-photoelectron collection efficiency profile and thus occulting the worst performing portion of the photocathode. Thus, the OLC shape optimization takes into account not only the optical interface of the PMT, but also the maximization of the PMT detection performances. The light collection uniformity across the detector is another advantage of the OLC system. By considering the case of JUNO, we will show OLC capabilities in terms of light collection and energy resolution.

  18. Nondimensional Representations for Occulter Design and Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Cady, Eric

    2011-01-01

    An occulter is a spacecraft with a precisely-shaped optical edges which ies in formation with a telescope, blocking light from a star while leaving light from nearby planets una ected. Using linear optimization, occulters can be designed for use with telescopes over a wide range of telescope aperture sizes, science bands, and starlight suppression levels. It can be shown that this optimization depends primarily on a small number of independent nondimensional parameters, which correspond to Fresnel numbers and physical scales and enter the optimization only as constraints. We show how these can be used to span the parameter space of possible optimized occulters; this data set can then be mined to determine occulter sizes for various mission scenarios and sets of engineering constraints.

  19. Sizes, Shapes, and Satellites of Asteroids from Occultations

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Herald, David; Preston, Steve; Timerson, Brad; Maley, Paul; Frappa, Eric; Hayamizu, Tsutomu; Talbot, John; Poro, Atila

    2016-01-01

    For 40 years, the sizes and shapes of many dozens of asteroids have been determined from observations of asteroidal occultations, and over a thousand high-precision positions of the asteroids relative to stars have been measured. Some of the first evidence for satellites of asteroids was obtained from the early efforts; now, the orbits and sizes of some satellites discovered by other means have been refined from occultation observations. Also, several close binary stars have been discovered, and the angular diameters of some stars have been measured from analysis of these observations. The International Occultation Timing Association (IOTA) coordinates this activity worldwide, from predicting and publicizing the events, to accurately timing the occultations from as many stations as possible, and publishing and archiving the observations.

  20. Mutations Associated With Occult Hepatitis B in HIV-Positive South Africans

    PubMed Central

    Powell, Eleanor A.; Gededzha, Maemu P.; Rentz, Michael; Rakgole, Nare J.; Selabe, Selokela G.; Seleise, Tebogo A.; Mphahlele, M. Jeffrey; Blackard, Jason T.

    2015-01-01

    Occult hepatitis B is characterized by the absence of hepatitis B surface antigen (HBsAg) but the presence of HBV DNA. Because diagnosis of hepatitis B virus (HBV) typically includes HBsAg detection, occult HBV remains largely undiagnosed. Occult HBV is associated with increased risk of hepatocellular carcinoma, reactivation to chronic HBV during immune suppression, and transmission during blood transfusion and liver transplant. The mechanisms leading to occult HBV infection are unclear, although viral mutations are likely a significant factor. In this study, sera from 394 HIV-positive South Africans were tested for HBV DNA and HBsAg. For patients with detectable HBV DNA, the overlapping surface and polymerase open reading frames (ORFs) were sequenced. Occult-associated mutations—those mutations found exclusively in individuals with occult HBV infection but not in individuals with chronic HBV infection from the same cohort or GenBank references—were identified. Ninety patients (22.8%) had detectable HBV DNA. Of these, 37 had detectable HBsAg, while 53 lacked detectable surface antigen. The surface and polymerase ORFs were cloned successfully for 19 patients with chronic HBV and 30 patients with occult HBV. In total, 235 occult-associated mutations were identified. Ten occult-associated mutations were identified in more than one patient. Additionally, 15 amino acid positions had two distinct occult-associated mutations at the same residue. Occult-associated mutations were common and present in all regions of the surface and polymerase ORFs. Further study is underway to determine the effects of these mutations on viral replication and surface antigen expression in vitro. PMID:25164924

  1. Mutations associated with occult hepatitis B in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Gededzha, Maemu P; Rentz, Michael; Rakgole, Nare J; Selabe, Selokela G; Seleise, Tebogo A; Mphahlele, M Jeffrey; Blackard, Jason T

    2015-03-01

    Occult hepatitis B is characterized by the absence of hepatitis B surface antigen (HBsAg) but the presence of HBV DNA. Because diagnosis of hepatitis B virus (HBV) typically includes HBsAg detection, occult HBV remains largely undiagnosed. Occult HBV is associated with increased risk of hepatocellular carcinoma, reactivation to chronic HBV during immune suppression, and transmission during blood transfusion and liver transplant. The mechanisms leading to occult HBV infection are unclear, although viral mutations are likely a significant factor. In this study, sera from 394 HIV-positive South Africans were tested for HBV DNA and HBsAg. For patients with detectable HBV DNA, the overlapping surface and polymerase open reading frames (ORFs) were sequenced. Occult-associated mutations-those mutations found exclusively in individuals with occult HBV infection but not in individuals with chronic HBV infection from the same cohort or GenBank references-were identified. Ninety patients (22.8%) had detectable HBV DNA. Of these, 37 had detectable HBsAg, while 53 lacked detectable surface antigen. The surface and polymerase ORFs were cloned successfully for 19 patients with chronic HBV and 30 patients with occult HBV. In total, 235 occult-associated mutations were identified. Ten occult-associated mutations were identified in more than one patient. Additionally, 15 amino acid positions had two distinct occult-associated mutations at the same residue. Occult-associated mutations were common and present in all regions of the surface and polymerase ORFs. Further study is underway to determine the effects of these mutations on viral replication and surface antigen expression in vitro. © 2014 Wiley Periodicals, Inc.

  2. Design of an occulter testbed at flight Fresnel numbers

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Kasdin, N. Jeremy; Kim, Yunjong; Vanderbei, Robert J.

    2015-01-01

    An external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. Laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we are designing and building a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. Here, we present a sample design operating at a flight Fresnel number and is thus representative of a realistic space mission. We present calculations of experimental limits arising from the finite size and propagation distance available in the testbed, limitations due to manufacturing feature size, and non-ideal input beam. We demonstrate how the testbed is designed to be feature-size limited, and provide an estimation of the expected performance.

  3. Refraction of microwave signals by water vapor

    NASA Technical Reports Server (NTRS)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  4. Diagnostic strategy for occult hepatitis B virus infection

    PubMed Central

    Ocana, Sara; Casas, Maria Luisa; Buhigas, Ingrid; Lledo, Jose Luis

    2011-01-01

    In 2008, the European Association for the study of the liver (EASL) defined occult hepatitis B virus infection (OBI) as the “presence of hepatitis B virus (HBV) DNA in the liver (with detectable or undetectable HBV DNA in the serum) of individuals testing hepatitis B surface antigen (HBsAg) negative by currently available assays”. Several aspects of occult HBV infection are still poorly understood, including the definition itself and a standardized approach for laboratory-based detection, which is the purpose of this review. The clinical significance of OBI has not yet been established; however, in terms of public health, the clinical importance arises from the risk of HBV transmission. Consequently, it is important to detect high-risk groups for occult HBV infection to prevent transmission. The main issue is, perhaps, to identify the target population for screening OBI. Viremia is very low or undetectable in occult HBV infection, even when the most sensitive methods are used, and the detection of the viral DNA reservoir in hepatocytes would provide the best evaluation of occult HBV prevalence in a defined set of patients. However, this diagnostic approach is obviously unsuitable: blood detection of occult hepatitis B requires assays of the highest sensitivity and specificity with a lower limit of detection < 10 IU/mL for HBV DNA and < 0.1 ng/mL for HBsAg. PMID:21472120

  5. Portable high speed photometry systems for observing occultations

    NASA Astrophysics Data System (ADS)

    Elliot, J. L.; Dunham, E. W.

    1986-09-01

    Ring orbit studies for Uranus have been particularly fruitful because of the ability, through occultations, to obtain data of high spatial resolution at the rate of 1 to 2 times per year. The occultation program at M.I.T. involves: (1) identifying the scientific questions that can be answered by occultation events, (2) predicting the zone of visibility for the useful events, (3) maintaining and improving a set of portable high-speed photometric systems, (4) obtaining the observations, and (5) reducing the data and interpreting the results. Two stellar occultations by Uranus occurred in May 1985, and were observed with a network of large telescopes that encompassed the Northern and Southern Hemispheres. Portable quartz-oscillator time standards were used at all observatories, and were calibrated before and after each event. Observations obtained form Cerro Tololo and McDonald Observatories of the 4 May and 24 May 1985 occultations by the Uranian rings clearly show a companion to the delta ring on both the immersion and emersion traces. The occultation by Ceres that occurred on 12 November 1984 was observed. Preliminary results give a mean diameter of 933 + or - 10 km, which implies a geometric albedo, Pv = 0.07 + or - 0.01 and a density 2.7 + or - 0.3 gm cu/cm. Hence Ceres is likely composed of silicate material throughout.

  6. First results from stellar occultations in the "GAIA era"

    NASA Astrophysics Data System (ADS)

    Benedetti-Rossi, G.; Vieira-Martins, R.; Sicardy, B.

    2017-09-01

    Stellar occultation is a powerful technique to study distant solar system bodies. It allows high angular resolution of the occulting body from the analysis of a light curve acquired with high temporal resolution with uncertainties comparable as probes. In the "GAIA era", stellar occultations is now able to obtain even more impressive results such as the presence of atmosphere, rings and topographic features.

  7. Solar Occultation Retrieval Algorithm Development

    NASA Technical Reports Server (NTRS)

    Lumpe, Jerry D.

    2004-01-01

    This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.

  8. Occult Intertrochanteric Fracture Mimicking the Fracture of Greater Trochanter.

    PubMed

    Chung, Phil Hyun; Kang, Suk; Kim, Jong Pil; Kim, Young Sung; Lee, Ho Min; Back, In Hwa; Eom, Kyeong Soo

    2016-06-01

    Occult intertrochanteric fractures are misdiagnosed as isolated greater trochanteric fractures in some cases. We investigated the utility of three-dimensional computed tomography (3D-CT) and magnetic resonance imaging (MRI) in the diagnosis and outcome management of occult intertrochanteric fractures. This study involved 23 cases of greater trochanteric fractures as diagnosed using plain radiographs from January 2004 to July 2013. Until January 2008, 9 cases were examined with 3D-CT only, while 14 cases were screened with both 3D-CT and MRI scans. We analyzed diagnostic accuracy and treatment results following 3D-CT and MRI scanning. Nine cases that underwent 3D-CT only were diagnosed with isolated greater trochanteric fractures without occult intertrochanteric fractures. Of these, a patient with displacement received surgical treatment. Of the 14 patients screened using both CT and MRI, 13 were diagnosed with occult intertrochanteric fractures. Of these, 11 were treated with surgical intervention and 2 with conservative management. Three-dimensional CT has very low diagnostic accuracy in diagnosing occult intertrochanteric fractures. For this reason, MRI is recommended to confirm a suspected occult intertrochanteric fracture and to determine the most appropriate mode of treatment.

  9. Reflected ray retrieval from radio occultation data using radio holographic filtering of wave fields in ray space

    NASA Astrophysics Data System (ADS)

    Gorbunov, Michael E.; Cardellach, Estel; Lauritsen, Kent B.

    2018-03-01

    Linear and non-linear representations of wave fields constitute the basis of modern algorithms for analysis of radio occultation (RO) data. Linear representations are implemented by Fourier Integral Operators, which allow for high-resolution retrieval of bending angles. Non-linear representations include Wigner Distribution Function (WDF), which equals the pseudo-density of energy in the ray space. Representations allow for filtering wave fields by suppressing some areas of the ray space and mapping the field back from the transformed space to the initial one. We apply this technique to the retrieval of reflected rays from RO observations. The use of reflected rays may increase the accuracy of the retrieval of the atmospheric refractivity. Reflected rays can be identified by the visual inspection of WDF or spectrogram plots. Numerous examples from COSMIC data indicate that reflections are mostly observed over oceans or snow, in particular over Antarctica. We introduce the reflection index that characterizes the relative intensity of the reflected ray with respect to the direct ray. The index allows for the automatic identification of events with reflections. We use the radio holographic estimate of the errors of the retrieved bending angle profiles of reflected rays. A comparison of indices evaluated for a large base of events including the visual identification of reflections indicated a good agreement with our definition of reflection index.

  10. Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons

    NASA Astrophysics Data System (ADS)

    Gilpin, Shay; Rieckh, Therese; Anthes, Richard

    2018-05-01

    Radio occultation (RO) and radiosonde (RS) comparisons provide a means of analyzing errors associated with both observational systems. Since RO and RS observations are not taken at the exact same time or location, temporal and spatial sampling errors resulting from atmospheric variability can be significant and inhibit error analysis of the observational systems. In addition, the vertical resolutions of RO and RS profiles vary and vertical representativeness errors may also affect the comparison. In RO-RS comparisons, RO observations are co-located with RS profiles within a fixed time window and distance, i.e. within 3-6 h and circles of radii ranging between 100 and 500 km. In this study, we first show that vertical filtering of RO and RS profiles to a common vertical resolution reduces representativeness errors. We then test two methods of reducing horizontal sampling errors during RO-RS comparisons: restricting co-location pairs to within ellipses oriented along the direction of wind flow rather than circles and applying a spatial-temporal sampling correction based on model data. Using data from 2011 to 2014, we compare RO and RS differences at four GCOS Reference Upper-Air Network (GRUAN) RS stations in different climatic locations, in which co-location pairs were constrained to a large circle ( ˜ 666 km radius), small circle ( ˜ 300 km radius), and ellipse parallel to the wind direction ( ˜ 666 km semi-major axis, ˜ 133 km semi-minor axis). We also apply a spatial-temporal sampling correction using European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) gridded data. Restricting co-locations to within the ellipse reduces root mean square (RMS) refractivity, temperature, and water vapor pressure differences relative to RMS differences within the large circle and produces differences that are comparable to or less than the RMS differences within circles of similar area. Applying the sampling correction shows the most significant

  11. Refractive accuracy with light-adjustable intraocular lenses.

    PubMed

    Villegas, Eloy A; Alcon, Encarna; Rubio, Elena; Marín, José M; Artal, Pablo

    2014-07-01

    To evaluate efficacy, predictability, and stability of refractive treatments using light-adjustable intraocular lenses (IOLs). University Hospital Virgen de la Arrixaca, Murcia, Spain. Prospective nonrandomized clinical trial. Eyes with a light-adjustable IOL (LAL) were treated with spatial intensity profiles to correct refractive errors. The effective changes in refraction in the light-adjustable IOL after every treatment were estimated by subtracting those in the whole eye and the cornea, which were measured with a Hartmann-Shack sensor and a corneal topographer, respectively. The refractive changes in the whole eye and light-adjustable IOL, manifest refraction, and visual acuity were obtained after every light treatment and at the 3-, 6-, and 12-month follow-ups. The study enrolled 53 eyes (49 patients). Each tested light spatial pattern (5 spherical; 3 astigmatic) produced a different refractive change (P<.01). The combination of 2 light adjustments induced a maximum change in spherical power of the light-adjustable IOL of between -1.98 diopters (D) and +2.30 D and in astigmatism of up to -2.68 D with axis errors below 9 degrees. Intersubject variability (standard deviation) ranged between 0.10 D and 0.40 D. The 2 required lock-in procedures induced a small myopic shift (range +0.01 to +0.57 D) that depended on previous adjustments. Light-adjustable IOL implantation achieved accurate refractive outcomes (around emmetropia) with good uncorrected distance visual acuity, which remained stable over time. Further refinements in nomograms and in the treatment's protocol would improve the predictability of refractive and visual outcomes with these IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Experimental verification and simulation of negative index of refraction using Snell's law.

    PubMed

    Parazzoli, C G; Greegor, R B; Li, K; Koltenbah, B E C; Tanielian, M

    2003-03-14

    We report the results of a Snell's law experiment on a negative index of refraction material in free space from 12.6 to 13.2 GHz. Numerical simulations using Maxwell's equations solvers show good agreement with the experimental results, confirming the existence of negative index of refraction materials. The index of refraction is a function of frequency. At 12.6 GHz we measure and compute the real part of the index of refraction to be -1.05. The measurements and simulations of the electromagnetic field profiles were performed at distances of 14lambda and 28lambda from the sample; the fields were also computed at 100lambda.

  13. Wet refractivity tomography with an improved Kalman-Filter method

    NASA Astrophysics Data System (ADS)

    Cao, Yunchang; Chen, Yongqi; Li, Pingwha

    2006-10-01

    An improved retrieval method, which uses the solution with a Gaussian constraint as the initial state variables for the Kalman Filtering (KF) method, was developed to retrieve the wet refractivity profiles from slant wet delays (SWD) extracted by the double-differenced (DD) GPS method. The accuracy of the GPS-derived SWDs is also tested in this study against the measurements of a water vapor radiometer (WVR) and a weather model. It is concluded that the GPS-derived SWDs have similar accuracy to those measured with WVR and are much higher in quality than those derived from the weather model used. The developed method is used to retrieve the 3D wet refractivity distribution in the Hong Kong region. The retrieved profiles agree well with the radiosonde observations, with a difference of about 4 mm km-1 in the low levels. The accurate profiles obtained with this method are applicable in a number of meteorological applications.

  14. First light of an external occulter testbed at flight Fresnel numbers

    NASA Astrophysics Data System (ADS)

    Kim, Yunjong; Sirbu, Dan; Hu, Mia; Kasdin, Jeremy; Vanderbei, Robert J.; Harness, Anthony; Shaklan, Stuart

    2017-01-01

    Many approaches have been suggested over the last couple of decades for imaging Earth-like planets. One of the main candidates for creating high-contrast for future Earth-like planets detection is an external occulter. The external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. The occulter is typically tens of meters in diameter and the separation from the telescope is of the order of tens of thousands of kilometers. Optical testing of a full-scale external occulter on the ground is impossible because of the long separations. Therefore, laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The goal of this experiment is to demonstrate a pupil plane suppression of better than 1e-9 with a corresponding image plane contrast of better than 1e-11. The occulter testbed uses a 77.2 m optical propagation distance to realize the flight Fresnel number of 14.5. The scaled mask is placed at 27.2 m from the artificial source and the camera is located 50.0 m from the scaled mask. We will use an etched silicon mask, manufactured by the Microdevices Lab(MDL) of the Jet Propulsion Laboratory(JPL), as the occulter. Based on conversations with MDL, we expect that 0.5 μm feature size is an achievable resolution in the mask manufacturing process and is therefore likely the indicator of the best possible performance. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the experimental setup of the testbed. We compare the experimental results with simulations

  15. Possible occultation by Pluto from US East Coast

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-06-01

    We have been asked to help disseminate the news of a possible occultation by Pluto visible to observers on the US East coast. Although the AAVSO does not ordinarily issue announcements of upcoming occultations, in this case the object is Pluto and the NASA New Horizons mission (http://www.nasa.gov/mission_pages/newhorizons/main/index.html) will be visiting Pluto in 2015. The information below has been supplied by Dr. Leslie Young (Southwest Research Institute), who is coordinating this observing campaign on Pluto. Dr. Young is also Deputy Project Scientist for the New Horizons mission. ALERT: Possible Pluto occultation Wednesday night (2012/06/14 03:28 UT) from US East coast. CONTACT: Leslie Young (layoung@boulder.swri.edu; work: 303-546-6057; skype: drpluto). Also see our planning pages in progress at http://wiki.boulder.swri.edu/mediawiki/index.php/2012-06-14_Pluto_occultation. Pluto's thin, nitrogen atmosphere is in vapor-pressure equilibrium with the surface ice, and changes seasonally. We've seen it double since 1988, and now we measure its pressure once or twice a year. The technique we use is stellar occultation, when a star passes behind Pluto's atmosphere. The atmosphere defocuses the starlight. By the timing of the fading of the star, we measure the pressure and temperature in Pluto's atmosphere at ~10 km resolution. MORE INFORMATION: See http://wiki.boulder.swri.edu/mediawiki/index.php/2012-06-14_Pluto_occultation.

  16. On the possible use of radio occultation middle latitude electron density profiles to retrieve thermospheric parameters

    NASA Astrophysics Data System (ADS)

    Mikhailov, Andrei V.; Belehaki, Anna; Perrone, Loredanna; Zolesi, Bruno; Tsagouri, Ioanna

    2014-04-01

    This paper investigates possible use of middle latitude daytime COSMIC and CHAMP ionospheric radio occultation (IRO) electron density profiles (EDPs) to retrieve thermospheric parameters, based on the Mikhailov et al. (2012) method. The aim of this investigation is to assess the applicability of this type of observations for the routine implementation of the method. According to the results extracted from the analysis presented here, about half of COSMIC IRO EDP observed under solar minimum (2007-2008) conditions gave neutral gas density with an inaccuracy close to the declared absolute inaccuracy ±(10-15)% of CHAMP observations, with the results being better than the empirical models JB-2008 and MSISE-00 provide. For the other half of IRO EDP, either the solution provided by the method had to be rejected due to insufficient accuracy or no solution could be obtained. For these cases, the parameters foF2 and hmF2 extracted from the corresponding IRO profiles have been found to be inconsistent with the classic mid-latitude daytime F2-layer formalism that the method relies on, and they are incompatible with the general trend provided by the IRI model. For solar maximum conditions (2002) the method was tested with IRO EDP from CHAMP and it is indicated that its performance is quite stable in the sense that a solution could be obtained for all the cases analyzed here. However available CHAMP EDP are confined by ~ 400 km in altitude and this might be the reason for the 20% bias of the retrieved densities toward larger values in respect to the observed densities. IRO observations up to 600 km under solar maximum are required to confirm the exact performance of the method.

  17. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    NASA Astrophysics Data System (ADS)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  18. Revisiting the 1988 Pluto Occultation

    NASA Astrophysics Data System (ADS)

    Bosh, Amanda S.; Dunham, Edward W.; Young, Leslie A.; Slivan, Steve; Barba née Cordella, Linda L.; Millis, Robert L.; Wasserman, Lawrence H.; Nye, Ralph

    2015-11-01

    In 1988, Pluto's atmosphere was surmised to exist because of the surface ices that had been detected through spectroscopy, but it had not yet been directly detected in a definitive manner. The key to making such a detection was the stellar occultation method, used so successfully for the discovery of the Uranian rings in 1977 (Elliot et al. 1989; Millis et al. 1993) and before that for studies of the atmospheres of other planets.On 9 June 1988, Pluto occulted a star, with its shadow falling over the South Pacific Ocean region. One team of observers recorded this event from the Kuiper Airborne Observatory, while other teams captured the event from various locations in Australia and New Zealand. Preceding this event, extensive astrometric observations of Pluto and the star were collected in order to refine the prediction.We will recount the investigations that led up to this important Pluto occultation, discuss the unexpected atmospheric results, and compare the 1988 event to the recent 2015 event whose shadow followed a similar track through New Zealand and Australia.

  19. Occult Intertrochanteric Fracture Mimicking the Fracture of Greater Trochanter

    PubMed Central

    Chung, Phil Hyun; Kang, Suk; Kim, Jong Pil; Kim, Young Sung; Back, In Hwa; Eom, Kyeong Soo

    2016-01-01

    Purpose Occult intertrochanteric fractures are misdiagnosed as isolated greater trochanteric fractures in some cases. We investigated the utility of three-dimensional computed tomography (3D-CT) and magnetic resonance imaging (MRI) in the diagnosis and outcome management of occult intertrochanteric fractures. Materials and Methods This study involved 23 cases of greater trochanteric fractures as diagnosed using plain radiographs from January 2004 to July 2013. Until January 2008, 9 cases were examined with 3D-CT only, while 14 cases were screened with both 3D-CT and MRI scans. We analyzed diagnostic accuracy and treatment results following 3D-CT and MRI scanning. Results Nine cases that underwent 3D-CT only were diagnosed with isolated greater trochanteric fractures without occult intertrochanteric fractures. Of these, a patient with displacement received surgical treatment. Of the 14 patients screened using both CT and MRI, 13 were diagnosed with occult intertrochanteric fractures. Of these, 11 were treated with surgical intervention and 2 with conservative management. Conclusion Three-dimensional CT has very low diagnostic accuracy in diagnosing occult intertrochanteric fractures. For this reason, MRI is recommended to confirm a suspected occult intertrochanteric fracture and to determine the most appropriate mode of treatment. PMID:27536653

  20. RECON - A new system for probing the outer solar system with stellar occultations

    NASA Astrophysics Data System (ADS)

    Buie, M. W.; Keller, J. M.; Wasserman, L. H.

    2015-10-01

    The Research and Education Collaborative Occultation Network (RECON) is a new system for coordinated occultation observations of outer solar system objects. Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited duration of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations too small to be resolved directly. Our system takes the new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from the International Occultation Timing Association. At our minimum size, two stations will record an event while the other stations will be probing for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We have successfully completed our first TNO observation which is presented in the compainion paper by G. Rossi et al (this conference).

  1. Gradient polymer network liquid crystal with a large refractive index change.

    PubMed

    Ren, Hongwen; Xu, Su; Wu, Shin-Tson

    2012-11-19

    A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells' movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.

  2. Titan solar occultation observations reveal transit spectra of a hazy world

    PubMed Central

    Robinson, Tyler D.; Maltagliati, Luca; Marley, Mark S.; Fortney, Jonathan J.

    2014-01-01

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan’s atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration’s (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88–5 μm at a resolution of 12–18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan’s haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1–10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA’s James Webb Space Telescope. PMID:24876272

  3. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  4. The Treatment of the Occult in General Encyclopedias.

    ERIC Educational Resources Information Center

    Sonnenfeld, Gary F.

    This paper is a content analysis of three general encyclopedias, "Encyclopedia Americana" (EA), "Encyclopaedia Brittanica" (EB), and "World Book Encyclopedia" (WBC), which quantifies the treatment of the occult. Entries are selected from each by starting with the article "Occultism" and tracing all…

  5. Synergy Between Occultation, Limb and Nadir Satellite Data to Study Atmospheric Ozone, Aerosols and Radiation

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Loughman, R. P.; Ziemke, J. R.

    2017-12-01

    There is a widespread concern in the atmospheric chemistry community about the continuity of long-term datasets of ozone and related species needed to understand changes in Earth's atmospheric composition, particularly in the climate-sensitive upper tropospheric/lower stratospheric (UTLS) region. The MLS instrument on NASA 's Aura satellite designed to make such measurements is now more than 13 years old. The Canadian ACE-FTS solar occultation instrument is even older, and ESA's MIPAS instrument ceased operation in 2012. There are currently no plans to replace these instruments. Yet, at the same time for some of the atmospheric composition products we are arguably entering a golden era in space-based measurements. New generation of nadir-viewing instruments operating in IR, VIS and UV wavelengths are already flying and soon there will be 3 UV/VIS instruments in geostationary orbits. The limb-viewing component of the OMPS instrument launched on the Suomi NPP satellite in 2011 is capable of measuring ozone and aerosols at 2 km vertical resolution down to about 12 km. NASA is building another copy of this instrument for launch on JPSS-2 in 2022 and there are plans to build more. The SAGE III instrument installed on the International Space Station earlier this year has restarted the venerable time series of ozone and aerosols that ended in 2005 with the demise of SAGE II. However, we argue that to make best use of these assets it is desirable to take advantage of the synergies between these instruments. Several multi-instrument tropospheric ozone products are already available. We expect continued efforts to improve these products by doing joint retrieval of limb, IR and UV nadir data. Another promising area is to combine solar occultation and limb-scattered data to produce aerosol extinction profiles at high spatial resolution, and to constrain aerosol size distribution parameters and refractive indices- an approach similar to the almucantar technique pioneered by the

  6. Pluto's Radius

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Young, L. A.; Buie, M.

    2007-10-01

    The size of Pluto has been difficult to measure. Stellar occultations by Pluto have not yet probed altitudes lower than 1198 km, assuming the clear atmosphere model of Elliot, Person and Qu (2003). Differential refraction by Pluto's atmosphere attenuates the light from an occulted star to a level that is indistinguishable from the zero-level baseline long before Pluto's solid surface is a factor. Since Charon has no detectable atmosphere, its radius was well determined from a stellar occultation in 2005 (Gulbis et al. 2006, Sicardy et al. 2006). Combined with the mutual event photometry (Charon transited Pluto every 6.38 days between 1986 through 1992) - for which differential refraction is a negligible effect - the well-known radius of Charon translates into a more accurate radius for Pluto's solid surface. Our preliminary solid radius estimate for Pluto is 1161 km. We will discuss error bars and the correlations of this determination with Pluto albedo maps. We will also discuss the implications for Pluto's thermal profile, surface temperature and pressure, and constraints on the presence of a haze layer. This work is funded by NASA's Planetary Astronomy program. References Elliot, J.L., Person, M.J., & Qu, S. 2003, "Analysis of Stellar Occultation Data. II. Inversion, with Application to Pluto and Triton." AJ, 126, 1041. Gulbis, A.A.S. et al. 2006, "Charon's radius and atmospheric constraints from observations of a stellar occultation." Nature, 49, 48. Sicardy, B. et al. 2006, "Charon's size and an upper limit on its atmosphere from a stellar occultation." Nature, 49, 52.

  7. All about Occultation.

    ERIC Educational Resources Information Center

    Riddle, Bob

    2001-01-01

    Describes occultation events involving the moon, when the moon blocks the view of planets or stars. Describes other events such as a partial solar eclipse, a penumbral lunar eclipse, meteor showers, and moon phases. Provides a list of internet resources related to these events. (DLH)

  8. Occult Carbon Monoxide Poisoning

    PubMed Central

    Kirkpatrick, John N.

    1987-01-01

    A syndrome of headache, fatigue, dizziness, paresthesias, chest pain, palpitations and visual disturbances was associated with chronic occult carbon monoxide exposure in 26 patients in a primary care setting. A causal association was supported by finding a source of carbon monoxide in a patient's home, workplace or vehicle; results of screening tests that ruled out other illnesses; an abnormally high carboxyhemoglobin level in 11 of 14 patients tested, and abatement or resolution of symptoms when the source of carbon monoxide was removed. Exposed household pets provided an important clue to the diagnosis in some cases. Recurrent occult carbon monoxide poisoning may be a frequently overlooked cause of persistent or recurrent headache, fatigue, dizziness, paresthesias, abdominal pain, diarrhea and unusual spells. PMID:3825110

  9. Occult carbon monoxide poisoning.

    PubMed

    Kirkpatrick, J N

    1987-01-01

    A syndrome of headache, fatigue, dizziness, paresthesias, chest pain, palpitations and visual disturbances was associated with chronic occult carbon monoxide exposure in 26 patients in a primary care setting. A causal association was supported by finding a source of carbon monoxide in a patient's home, workplace or vehicle; results of screening tests that ruled out other illnesses; an abnormally high carboxyhemoglobin level in 11 of 14 patients tested, and abatement or resolution of symptoms when the source of carbon monoxide was removed. Exposed household pets provided an important clue to the diagnosis in some cases. Recurrent occult carbon monoxide poisoning may be a frequently overlooked cause of persistent or recurrent headache, fatigue, dizziness, paresthesias, abdominal pain, diarrhea and unusual spells.

  10. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.

    2017-10-01

    The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.

  11. Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation

    NASA Astrophysics Data System (ADS)

    Widemann, T.; Sicardy, B.; Dusser, R.; Martinez, C.; Beisker, W.; Bredner, E.; Dunham, D.; Maley, P.; Lellouch, E.; Arlot, J.-E.; Berthier, J.; Colas, F.; Hubbard, W. B.; Hill, R.; Lecacheux, J.; Lecampion, J.-F.; Pau, S.; Rapaport, M.; Roques, F.; Thuillot, W.; Hills, C. R.; Elliott, A. J.; Miles, R.; Platt, T.; Cremaschini, C.; Dubreuil, P.; Cavadore, C.; Demeautis, C.; Henriquet, P.; Labrevoir, O.; Rau, G.; Coliac, J.-F.; Piraux, J.; Marlot, Ch.; Marlot, C.; Gorry, F.; Sire, C.; Bayle, B.; Simian, E.; Blommers, A. M.; Fulgence, J.; Leyrat, C.; Sauzeaud, C.; Stephanus, B.; Rafaelli, T.; Buil, C.; Delmas, R.; Desnoux, V.; Jasinski, C.; Klotz, A.; Marchais, D.; Rieugnié, M.; Bouderand, G.; Cazard, J.-P.; Lambin, C.; Pujat, P.-O.; Schwartz, F.; Burlot, P.; Langlais, P.; Rivaud, S.; Brochard, E.; Dupouy, Ph.; Lavayssière, M.; Chaptal, O.; Daiffallah, K.; Clarasso-Llauger, C.; Aloy Doménech, J.; Gabaldá-Sánchez, M.; Otazu-Porter, X.; Fernández, D.; Masana, E.; Ardanuy, A.; Casas, R.; Ros, J. A.; Casarramona, F.; Schnabel, C.; Roca, A.; Labordena, C.; Canales-Moreno, O.; Ferrer, V.; Rivas, L.; Ortiz, J. L.; Fernández-Arozena, J.; Martín-Rodríguez, L. L.; Cidadão, A.; Coelho, P.; Figuereido, P.; Gonçalves, R.; Marciano, C.; Nunes, R.; Ré, P.; Saraiva, C.; Tonel, F.; Clérigo, J.; Oliveira, C.; Reis, C.; Ewen-Smith, B. M.; Ward, S.; Ford, D.; Gonçalves, J.; Porto, J.; Laurindo Sobrinho, J.; Teodoro de Gois, F.; Joaquim, M.; Afonso da Silva Mendes, J.; van Ballegoij, E.; Jones, R.; Callender, H.; Sutherland, W.; Bumgarner, S.; Imbert, M.; Mitchell, B.; Lockhart, J.; Barrow, W.; Cornwall, D.; Arnal, A.; Eleizalde, G.; Valencia, A.; Ladino, V.; Lizardo, T.; Guillén, C.; Sánchez, G.; Peña, A.; Radaelli, S.; Santiago, J.; Vieira, K.; Mendt, H.; Rosenzweig, P.; Naranjo, O.; Contreras, O.; Díaz, F.; Guzmán, E.; Moreno, F.; Omar Porras, L.; Recalde, E.; Mascaró, M.; Birnbaum, C.; Cósias, R.; López, E.; Pallo, E.; Percz, R.; Pulupa, D.; Simbaña, X.; Yajamín, A.; Rodas, P.; Denzau, H.; Kretlow, M.; Valdés Sada, P.; Hernández, R.; Hernández, A.; Wilson, B.; Castro, E.; Winkel, J. M.

    2009-02-01

    On September 8, 2001 around 2 h UT, the largest uranian moon, Titania, occulted Hipparcos star 106829 (alias SAO 164538, a V=7.2, K0 III star). This was the first-ever observed occultation by this satellite, a rare event as Titania subtends only 0.11 arcsec on the sky. The star's unusual brightness allowed many observers, both amateurs or professionals, to monitor this unique event, providing fifty-seven occultations chords over three continents, all reported here. Selecting the best 27 occultation chords, and assuming a circular limb, we derive Titania's radius: R=788.4±0.6km ( 1-σ error bar). This implies a density of ρ=1.711±0.005gcm using the value GM=(2.343±0.006)×10ms derived by Taylor [Taylor, D.B., 1998. Astron. Astrophys. 330, 362-374]. We do not detect any significant difference between equatorial and polar radii, in the limit r-r=-1.3±2.1km, in agreement with Voyager limb image retrieval during the 1986 flyby. Titania's offset with respect to the DE405 + URA027 (based on GUST86 theory) ephemeris is derived: Δαcos(δ)=-108±13 mas and Δδ=-62±7 mas (ICRF J2000.0 system). Most of this offset is attributable to a Uranus' barycentric offset with respect to DE405, that we estimate to be: Δαcos(δ)=-100±25mas and Δδ=-85±25 mas at the moment of occultation. This offset is confirmed by another Titania stellar occultation observed on August 1st, 2003, which provides an offset of Δαcos(δ)=-127±20 mas and Δδ=-97±13 mas for the satellite. The combined ingress and egress data do not show any significant hint for atmospheric refraction, allowing us to set surface pressure limits at the level of 10-20 nbar. More specifically, we find an upper limit of 13 nbar ( 1-σ level) at 70 K and 17 nbar at 80 K, for a putative isothermal CO 2 atmosphere. We also provide an upper limit of 8 nbar for a possible CH 4 atmosphere, and 22 nbar for pure N 2, again at the 1-σ level. We finally constrain the stellar size using the time-resolved star disappearance

  12. The clinical significance of occult gynecologic primary tumours in metastatic cancer.

    PubMed

    Hannouf, M B; Winquist, E; Mahmud, S M; Brackstone, M; Sarma, S; Rodrigues, G; Rogan, P K; Hoch, J S; Zaric, G S

    2017-10-01

    We estimated the frequency of occult gynecologic primary tumours (gpts) in patients with metastatic cancer from an uncertain primary and evaluated the effect on disease management and overall survival (os). We used Manitoba administrative health databases to identify all patients initially diagnosed with metastatic cancer during 2002-2011. We defined patients as having an "occult" primary tumour if the primary was classified at least 6 months after the initial diagnosis. Otherwise, we considered patients to have "obvious" primaries. We then compared clinicopathologic and treatment characteristics and 2-year os for women with occult and with obvious gpts. We used Cox regression adjustment and propensity score methods to assess the effect on os of having an occult gpt. Among the 5953 patients diagnosed with metastatic cancer, occult primary tumours were more common in women ( n = 285 of 2552, 11.2%) than in men ( n = 244 of 3401, 7.2%). In women, gpts were the most frequent occult primary tumours ( n = 55 of 285, 19.3%). Compared with their counterparts having obvious gpts, women with occult gpts ( n = 55) presented with similar histologic and metastatic patterns but received fewer gynecologic diagnostic examinations during diagnostic work-up. Women with occult gpts were less likely to undergo surgery, waited longer for radiotherapy, and received a lesser variety of chemotherapeutic agents. Having an occult compared with an obvious gpt was associated with decreased os (hazard ratio: 1.62; 95% confidence interval: 1.2 to 2.35). Similar results were observed in adjusted analyses. In women with metastatic cancer from an uncertain primary, gpts constitute the largest clinical entity. Accurate diagnosis of occult gpts early in the course of metastatic cancer might lead to more effective treatment decisions and improved survival outcomes.

  13. Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation.

    PubMed

    Khan, Adnan; Pope, James M; Verkicharla, Pavan K; Suheimat, Marwan; Atchison, David A

    2018-03-01

    We investigated changes in ciliary body ring diameter, lens dimensions and lens refractive index distributions with accommodation in young adults. A 3T clinical magnetic resonance imaging scanner imaged right eyes of 38 18-29 year old participants using a multiple spin echo sequence to determine accommodation-induced changes along lens axial and equatorial directions. Accommodation stimuli were approximately 1 D and 5 D. With accommodation, ciliary body ring diameter, and equatorial lens diameter decreased (-0.43 ± 0.31 mm and -0.30 ± 0.23 mm, respectively), and axial lens thickness increased ( + 0.34 ± 0.16 mm). Lens shape changes cause redistribution of the lens internal structure, leading to change in refractive index distribution profiles. With accommodation, in the axial direction refractive index profiles became flatter in the center and steeper near the periphery of the lens, while in the equatorial direction they became steeper in the center and flatter in the periphery. The results suggest that the anatomical accuracy of lens optical models can be improved by accounting for changes in the refractive index profile during accommodation.

  14. Comparison of Aberrations After Standard and Customized Refractive Surgery

    NASA Astrophysics Data System (ADS)

    Fang, L.; He, X.; Wang, Y.

    2013-09-01

    To detect possible differences in residual wavefront aberrations between standard and customized laser refractive surgery based onmathematical modeling, the residual optical aberrations after conventional and customized laser refractive surgery were compared accordingto the ablation profile with transition zone. The results indicated that ablation profile has a significant impact on the residual aberrations.The amount of residual aberrations for conventional correction is higher than that for customized correction. Additionally, the residualaberrations for high myopia eyes are markedly larger than those for moderate myopia eyes. For a 5 mm pupil, the main residual aberrationterm is coma and yet it is spherical aberration for a 7 mm pupil. When the pupil diameter is the same as optical zone or greater, themagnitudes of residual aberrations is obviously larger than that for a smaller pupil. In addition, the magnitudes of the residual fifth orsixth order aberrations are relatively large, especially secondary coma in a 6 mm pupil and secondary spherical aberration in a 7 mm pupil.Therefore, the customized ablation profile may be superior to the conventional correction even though the transition zone and treatmentdecentration are taken into account. However, the customized ablation profile will still induce significant amount of residual aberrations.

  15. Occult spondyloarthritis in inflammatory bowel disease.

    PubMed

    Bandinelli, Francesca; Manetti, Mirko; Ibba-Manneschi, Lidia

    2016-02-01

    Spondyloarthritis (SpA) is a frequent extra-intestinal manifestation in patients with inflammatory bowel disease (IBD), although its real diffusion is commonly considered underestimated. Abnormalities in the microbioma and genetic predisposition have been implicated in the link between bowel and joint inflammation. Otherwise, up to date, pathogenetic mechanisms are still largely unknown and the exact influence of the bowel activity on rheumatic manifestations is not clearly explained. Due to evidence-based results of clinical studies, the interest on clinically asymptomatic SpA in IBD patients increased in the last few years. Actually, occult enthesitis and sacroiliitis are discovered in high percentages of IBD patients by different imaging techniques, mainly enthesis ultrasound (US) and sacroiliac joint X-ray examinations. Several diagnostic approaches and biomarkers have been proposed in an attempt to correctly classify and diagnose clinically occult joint manifestations and to define clusters of risk for patient screening, although definitive results are still lacking. The correct recognition of occult SpA in IBD requires an integrated multidisciplinary approach in order to identify common diagnostic and therapeutic strategies. The use of inexpensive and rapid imaging techniques, such as US and X-ray, should be routinely included in daily clinical practice and trials to correctly evaluate occult SpA, thus preventing future disability and worsening of quality of life in IBD patients.

  16. The influence of NO and ClO variations at twilight on the interpretation of solar occultation measurements

    NASA Technical Reports Server (NTRS)

    Boughner, R.; Larsen, J. C.; Natarajan, M.

    1980-01-01

    The influence of short lived photochemically produced species on solar occultation measurements of ClO and NO was examined. Time varying altitude profiles of ClO and NO were calculated with a time dependent photochemical model to simulate the distribution of these species during a solar occultation measurement. These distributions were subsequently used to calculate simulated radiances for various tangent paths from which mixing ratios were inferred with a conventional technique that assumes spherical symmetry. These results show that neglecting the variation of ClO in the retrieval process produces less than a 10 percent error between the true and inverted profile for both sunrise and sunset above 18 km. For NO, errors are less than 10 percent for tangent altitudes above about 35 km for sunrise and sunset; at lower altitudes, the error increases, approaching 100 percent at altitudes near 25 km. the results also show that average inhomogeneity factors, which measure the concentration variation along the tangent path and which can be calculated from a photochemical model, can indicate which species require more careful data analysis.

  17. All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.; hide

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.

  18. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; hide

    2010-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.

  19. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications

  20. Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic reflection/refraction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brocher, T.M.; Fuis, G.S.; Fisher, M.A.

    1993-04-01

    In the northern Gulf of Alaska and Prince William Sound, wide-angle seismic reflection/refraction profiling, earthquake studies, and laboratory measurements of physical properties are used to determine the geometry of the Prince William and Yakutat terranes, and the subducting Pacific plate. In this complex region, the Yakutat terrane is underthrust beneath the Prince William terrane, and both terranes are interpreted to be underlain by the Pacific plate. Wide-angle seismic reflection/refraction profiles recorded along 5 seismic lines are used to unravel this terrane geometry. Modeled velocities in the upper crust of the Prince William terrane (to 18-km depth) agree closely with laboratorymore » velocity measurements of Orca Group phyllites and quartzofeldspathic graywackes (the chief components of the Prince William terrane) to hydrostatic pressures as high as 600 MPa (6 KBAR). An interpretation consistent with these data extends the Prince William terrane to at least 18-km depth. A landward dipping reflection at depths of 16--24 km is interpreted as the base of the Prince William terrane. This reflector corresponds to the top of the Wadati-Benioff zone seismicity and is interpreted as the megathrust. Beneath this reflector is a 6.9-km/s refractor, that is strongly reflective and magnetic, and is interpreted to be gabbro in Eocene age oceanic crust of the underthrust Yakutat terrane. Both wide-angle seismic and magnetic anomaly data indicate that the Yakutat terrane has been underthrust beneath the Prince William terrane for at least a few hundred kilometers. Wide-angle seismic data are consistent with a 9 to 10[degree] landward dip of the subducting Pacific plate, distinctly different from the inferred average 3 to 4[degree] dip of the overlying 6.9-km/s refractor and Wadati-Benioff seismic zone. The preferred interpretation of the geophysical data is that one composite plate, composed of the Pacific and Yakutat plates, is subducting beneath southern Alaska.« less

  1. Effect of single vision soft contact lenses on peripheral refraction.

    PubMed

    Kang, Pauline; Fan, Yvonne; Oh, Kelly; Trac, Kevin; Zhang, Frank; Swarbrick, Helen

    2012-07-01

    To investigate changes in peripheral refraction with under-, full, and over-correction of central refraction with commercially available single vision soft contact lenses (SCLs) in young myopic adults. Thirty-four myopic adult subjects were fitted with Proclear Sphere SCLs to under-correct (+0.75 DS), fully correct, and over-correct (-0.75 DS) their manifest central refractive error. Central and peripheral refraction were measured with no lens wear and subsequently with different levels of SCL central refractive error correction. The uncorrected refractive error was myopic at all locations along the horizontal meridian. Peripheral refraction was relatively hyperopic compared to center at 30 and 35° in the temporal visual field (VF) in low myopes and at 30 and 35° in the temporal VF and 10, 30, and 35° in the nasal VF in moderate myopes. All levels of SCL correction caused a hyperopic shift in refraction at all locations in the horizontal VF. The smallest hyperopic shift was demonstrated with under-correction followed by full correction and then by over-correction of central refractive error. An increase in relative peripheral hyperopia was measured with full correction SCLs compared with no correction in both low and moderate myopes. However, no difference in relative peripheral refraction profiles were found between under-, full, and over-correction. Under-, full, and over-correction of central refractive error with single vision SCLs caused a hyperopic shift in both central and peripheral refraction at all positions in the horizontal meridian. All levels of SCL correction caused the peripheral retina, which initially experienced absolute myopic defocus at baseline with no correction, to experience absolute hyperopic defocus. This peripheral hyperopia may be a possible cause of myopia progression reported with different types and levels of myopia correction.

  2. Explaining negative refraction without negative refractive indices.

    PubMed

    Talalai, Gregory A; Garner, Timothy J; Weiss, Steven J

    2018-03-01

    Negative refraction through a triangular prism may be explained without assigning a negative refractive index to the prism by using array theory. For the case of a beam incident upon the wedge, the array theory accurately predicts the beam transmission angle through the prism and provides an estimate of the frequency interval at which negative refraction occurs. The hypotenuse of the prism has a staircase shape because it is built of cubic unit cells. The large phase delay imparted by each unit cell, combined with the staircase shape of the hypotenuse, creates the necessary conditions for negative refraction. Full-wave simulations using the finite-difference time-domain method show that array theory accurately predicts the beam transmission angle.

  3. The stellar occultation by the dwarf planet Haumea

    NASA Astrophysics Data System (ADS)

    Santos-Sanz, Pablo; Ortiz, Jose Luis; Sicardy, Bruno; Rossi, Gustavo; Berard, Diane; Morales, Nicolas; Duffard, Rene; Braga-Ribas, Felipe; Hopp, Ulrich; Ries, Christoph; Nascimbeni, Valerio; Marzari, Francesco; Granata, Valentina; Pál, András; Kiss, Csaba; Pribulla, Theodor; Milan Komzík, Richard; Hornoch, Kamil; Pravec, Petr; Bacci, Paolo; Maestripieri, Martina; Nerli, Luca; Mazzei, Leonardo; Bachini, Mauro; Martinelli, Fabio; Succi, Giacomo; Ciabattari, Fabrizio; Mikuz, Herman; Carbognani, Albino; Gaehrken, Bernd; Mottola, Stefano; Hellmich, Stephan; Rommel, Flavia; Fernández-Valenzuela, Estela; Campo Bagatin, Adriano; Haumea occultation international Collaboration: https://cloud.iaa.csic.es/public.php?service=files&t=d9276f8ab1a316cef13bee28bef75add

    2017-10-01

    The dwarf planet Haumea is a very peculiar Trans-Neptunian Object (TNO) with unique and exotic characteristics. It is currently classified as one of the five dwarf planets of the solar system, and it is the only one for which size, shape, albedo, density and other basic properties were not accurately known. To solve that we predicted an occultation of the star GaiaDR1 1233009038221203584 by Haumea and organized observations within the expected shadow path. Medium/large telescopes were needed to record the occultation with enough signal to noise ratio because the occulted star is of similar brightness as Haumea (R~17.7 mag). We will report results derived from this successful stellar occultation by Haumea on 2017 January 21st. The occultation was positive from 12 telescopes at 10 observing stations in Europe: the Asiago Observatory 1.8m telescope (Italy), the Mount Agliale Observatory 0.5m telescope (Italy), the Lajatico Astronomical Centre 0.5m telescope (Italy), the S.Marcello Pistoiese Observatory 0.6m telescope (Italy), the Crni Vrh Observatory 0.6m telescope (Slovenia), the Ondrejov Observatory 0.65m telescope (Czech Republic), the Bavarian Public Observatory 0.81m telescope (Germany), the Konkoly Observatory 1m and 0.6m telescopes (Hungary), the Skalnate Pleso Observatory 1.3m telescope (Slovakia), and the Wendelstein Observatory 2m and 0.4m telescopes (Germany). This is the occultation by a TNO with the largest number of chords ever recorded.Part of this work has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 687378.

  4. Occult diaphragmatic injuries caused by stab wounds.

    PubMed

    Leppäniemi, Ari; Haapiainen, Reijo

    2003-10-01

    Missed diaphragmatic perforation caused by penetrating trauma can lead to subsequent strangulation of a hollow viscus, which has prompted the use of invasive diagnostic procedures to exclude occult diaphragmatic injuries in asymptomatic, high-risk patients. The objective of this study was to determine the incidence of occult diaphragmatic injuries caused by stab wounds of the lower chest and upper abdomen, and to examine the natural history and consequences of missed diaphragmatic injuries. On the basis of patient data from two previous randomized studies from our institution, a retrospective analysis was performed on 97 patients treated for anterior stab wounds located between the nipple line, the umbilical level, and the posterior axillary lines not having indications for immediate surgical exploration. The patients were divided into two groups on the basis of their initial randomized management (open or laparoscopic exploration vs. expectant observation). In the exploration group (n = 47), four diaphragmatic injuries (9%) were detected (three left-sided and one right-sided). Excluding patients with associated injuries requiring surgical repair, the incidence of occult diaphragmatic injuries was 3 of 43 (7%). In the observation group (n = 50), there were two patients (4%) with delayed presentation of missed left-sided diaphragmatic injury 2 and 23 months later, respectively. Both injuries resulted from stab wounds of the left flank and presented with herniation of the stomach or small bowel and colon. The overall incidence of occult diaphragmatic injuries in left-sided thoracoabdominal stab wounds was 4 of 24 (17%), and was much lower after stab wounds of left epigastrium (0%), right lower chest (0%), and right epigastrium (4%). In asymptomatic patients with anterior or flank stab wounds of the lower chest or upper abdominal area, the risk of an occult diaphragmatic injury is approximately 7% which, if undetected, is associated with a high risk of subsequent

  5. Occult Cushing's syndrome in type-2 diabetes.

    PubMed

    Catargi, Bogdan; Rigalleau, Vincent; Poussin, Agathe; Ronci-Chaix, Nathalie; Bex, Veronique; Vergnot, Vincent; Gin, Henri; Roger, Patrick; Tabarin, Antoine

    2003-12-01

    Subclinical Cushing's syndrome (SCS) caused by adrenal incidentalomas is frequently associated with overweight and insulin resistance. Metabolic syndrome X may therefore be a clue to the presence of CS. However, the incidence of CS in this situation remains unknown. We have conducted a prospective study to evaluate the prevalence of occult CS in overweight, type-2 diabetic patients devoided of specific clinical symptoms of CS. Two hundred overweight, type-2 diabetic patients, consecutively referred for poor metabolic control (HbA(1C) > 8%), were studied as inpatients. A first screening step was performed with the 1-mg overnight dexamethasone suppression test (DST) using a revised criterion for cortisol suppression (60 nmol/liter) to maximize the sensitivity of the procedure. A second confirmatory step of biochemical investigations (midnight plasma cortisol concentration, plasma cortisol circadian rhythm, morning plasma ACTH concentration, 24-h urinary free cortisol, and 4-mg i.v. DST) was performed in patients with impaired 1-mg DST. A third step of imaging studies was performed according to the results of second-step investigations. Fifty-two patients had impaired 1-mg DST. Among these, 47 were further evaluated. Thirty were considered as false positives of the 1-mg DST, whereas 17 displayed at least one additional biological abnormality of the hypothalamic-pituitary-adrenal axis. Definitive occult CS was identified in four patients (2% of the whole series) with Cushing's disease (n = 3) and surgically proven adrenal adenoma (n = 1). Definitive diagnosis remains to be established in seven additional patients (3.5%) with mild occult CS associated with unsuppressed plasma ACTH concentrations and a unilateral adrenal tumor of 10-29 mm in size showing prevalent uptake at radiocholesterol scintigraphy. In conclusion, a relatively high prevalence of occult CS was found in our study. Further studies are needed to evaluate the impact of the cure of occult CS on obesity

  6. Close Double Stars from Occultation Video Recordings

    NASA Astrophysics Data System (ADS)

    Waring Dunham, David; George, Anthony; Loader, Brian; Herald, David Russell

    2015-08-01

    Astronomers around the world, both amateur and professional, have been recording lunar and asteroidal occultations of close double stars during the past several years using inexpensive but quite sensitive video cameras that are now available. Several new double stars have been discovered, and the parameters of many close systems have been determined. Besides rather good measurements of the relative magnitudes of the components, the actual separations and position angles can be measured if observations of the same event are made from two or more separate stations. These observations collected by the International Occultation Timing Association (IOTA) are published in the Journal of Double Star Observations. Recently, IOTA has encouraged the observation of occultations of stars in the Kepler 2 program, which is interested in data about close duplicity that affects their analyses for exoplanet transits.

  7. Critical review on refractive surgical lasers

    NASA Astrophysics Data System (ADS)

    Lin, J. T.

    1995-03-01

    The current status of refractive surgical lasers (including excimer and nonexcimer lasers) is reviewed with an emphasis on photorefractive keratectomy (PRK). The correlation of engineering parameters and the clinical requirements with optimal conditions are presented. The fundamentals of corneal reshaping with formulas for ablation profiles and the advantages of the multizone method are discussed. Updated information on the Mini-Excimer PRK laser system, with an emphasis on the scanning delivery device, is presented. PMMA ablation profiles performed by standard diaphragm and scanning modes are compared for surface ablation quality. Scanning mode ablation patterns for myopia, hyperopia, and regular and irregular astigmatism are presented.

  8. Regional Scale Meteorological Analysis and Prediction Using GPS Occultation and EOS Data

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Shum, C. K.; Zhao, Changyin; Kuo, Bill; Rocken, Chris

    2004-01-01

    The main objective of the research under this award is to improve regional meteorological analysis and prediction for traditionally data limited regions, particularly over the Southern Ocean and Antarctica, using the remote sensing observations from current and upcoming GPS radio occultation missions and the EOS instrument suite. The major components of this project are: 1.Develop and improve the methods for retrieving temperature, moisture, and pressure profiles from GPS radio occultation data and EOS radiometer data. 2. Develop and improve a regional scale data assimilation system (MM5 4DVAR). 3. Perform case studies involving data analysis and numerical modeling to investigate the impact of different data for regional meteorological analysis and the importance of data assimilation for regional meteorological simulation over the Antarctic region. 4. Apply the findings and improvements from the above studies to weather forecasting experiments. 5. In the third year of the award we made significant progress toward the remaining goals of the project. The work included carefully evaluating the performance of an atmospheric mesoscale model, the Polar MM5 in Antarctic applications and improving the upper boundary condition.

  9. Atmosphere and ionosphere of venus from the mariner v s-band radio occultation measurement.

    PubMed

    Kliore, A; Levy, G S; Cain, D L; Fjeldbo, G; Rasool, S I

    1967-12-29

    Measurements of the frequency, phase, and amplitude of the S-band radio signal of Mariner V as it passed behind Venus were used to obtain the effects of refraction in its atmosphere and ionosphere. Profiles of refractivity, temperature, pressure, and density in the neutral atmosphere, as well as electron density in the daytime ionosphere, are presented. A constant scale height was observed above the tropopause, and the temperature increased with an approximately linear lapse rate below the tropopause to the level at which signal was lost, presumably because heavy defocusing attenuation occurred as critical refraction was approached. An ionosphere having at least two maxima was observed at only 85 kilometers above the tropopause.

  10. New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Toon, Geoffrey C.; Boone, Chris D.; Strong, Kimberly

    2016-03-01

    Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5-5 km, and we analyse 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an intercomparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between -5 and +2 K and that our retrieved profiles have no seasonal or zonal biases but do have a warm bias in the stratosphere and a cold bias in the

  11. Wave optics-based LEO-LEO radio occultation retrieval

    NASA Astrophysics Data System (ADS)

    Benzon, Hans-Henrik; Høeg, Per

    2016-06-01

    This paper describes the theory for performing retrieval of radio occultations that use probing frequencies in the XK and KM band. Normally, radio occultations use frequencies in the L band, and GPS satellites are used as the transmitting source, and the occultation signals are received by a GPS receiver on board a Low Earth Orbit (LEO) satellite. The technique is based on the Doppler shift imposed, by the atmosphere, on the signal emitted from the GPS satellite. Two LEO satellites are assumed in the occultations discussed in this paper, and the retrieval is also dependent on the decrease in the signal amplitude caused by atmospheric absorption. The radio wave transmitter is placed on one of these satellites, while the receiver is placed on the other LEO satellite. One of the drawbacks of normal GPS-based radio occultations is that external information is needed to calculate some of the atmospheric products such as the correct water vapor content in the atmosphere. These limitations can be overcome when a proper selected range of high-frequency waves are used to probe the atmosphere. Probing frequencies close to the absorption line of water vapor have been included, thus allowing the retrieval of the water vapor content. Selecting the correct probing frequencies would make it possible to retrieve other information such as the content of ozone. The retrieval is performed through a number of processing steps which are based on the Full Spectrum Inversion (FSI) technique. The retrieval chain is therefore a wave optics-based retrieval chain, and it is therefore possible to process measurements that include multipath. In this paper simulated LEO to LEO radio occultations based on five different frequencies are used. The five frequencies are placed in the XK or KM frequency band. This new wave optics-based retrieval chain is used on a number of examples, and the retrieved atmospheric parameters are compared to the parameters from a global European Centre for Medium

  12. Distribution of the GNSS-LEO occultation events over Egypt

    NASA Astrophysics Data System (ADS)

    Ghoniem, Ibrahim; Mousa, Ashraf El-Kutb; El-Fiky, Gamal

    2017-06-01

    The space-based GNSS RO technique is a promising tool for monitoring the Earth's atmosphere and ionosphere (Mousa et al., 2006). The current paper presents the distribution of the occultation events over Egypt using the operating LEO satellites and GNSS by its two operating systems. By the present research, Egypt could raise NWP Models efficiency by improving meteorological data quality. Twenty operating LEO missions (e.g. Argentinean SAC-C, European MetOp-A, German TerraSAR-X, Indian OceanSat-2, etc.) sent by different countries all over the world were used to derive the occultation events position through Egypt borders by receiving signal from the American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS). Approximately 20,000 km Altitude satellites are transmitting enormous number of rays by the day to approximately 800 km satellites passing by the Earth atmosphere. Our mission is to derive all of these rays position (start and end) by calculating satellites position by the time, determine the rays in the occultation case and derive the atmosphere tangent point position for all occultating rays on the Earth surface (Occultation Events).

  13. Diagnostic accuracy of oblique chest radiograph for occult pneumothorax: comparison with ultrasonography.

    PubMed

    Matsumoto, Shokei; Sekine, Kazuhiko; Funabiki, Tomohiro; Orita, Tomohiko; Shimizu, Masayuki; Hayashida, Kei; Kazamaki, Taku; Suzuki, Tatsuya; Kishikawa, Masanobu; Yamazaki, Motoyasu; Kitano, Mitsuhide

    2016-01-01

    An occult pneumothorax is a pneumothorax that is not seen on a supine chest X-ray but is detected by computed tomography scanning. However, critical patients are difficult to transport to the computed tomography suite. We previously reported a method to detect occult pneumothorax using oblique chest radiography (OXR). Several authors have also reported that ultrasonography is an effective technique for detecting occult pneumothorax. The aim of this study was to evaluate the usefulness of OXR in the diagnosis of the occult pneumothorax and to compare OXR with ultrasonography. All consecutive blunt chest trauma patients with clinically suspected pneumothorax on arrival at the emergency department were prospectively included at our tertiary-care center. The patients underwent OXR and ultrasonography, and underwent computed tomography scans as the gold standard. Occult pneumothorax size on computed tomography was classified as minuscule, anterior, or anterolateral. One hundred and fifty-nine patients were enrolled. Of the 70 occult pneumothoraces found in the 318 thoraces, 19 were minuscule, 32 were anterior, and 19 were anterolateral. The sensitivity and specificity of OXR for detecting occult pneumothorax was 61.4 % and 99.2 %, respectively. The sensitivity and specificity of lung ultrasonography was 62.9 % and 98.8 %, respectively. Among 27 occult pneumothoraces that could not be detected by OXR, 16 were minuscule and 21 could be conservatively managed without thoracostomy. OXR appears to be as good method as lung ultrasonography in the detection of large occult pneumothorax. In trauma patients who are difficult to transfer to computed tomography scan, OXR may be effective at detecting occult pneumothorax with a risk of progression.

  14. Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 2: Results from the October 1991 experiments

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Steffes, Paul G.; Hinson, David P.; Twicken, Joseph D.; Tyler, G. Leonard

    1994-01-01

    On October 5 and 6, 1991, three dual-frequency ingress radio occultation experiments were conducted at Venus during consecutive orbits of the Magellan spacecraft. The radio signals probed a region of the atmosphere near 65 deg N, with a solar zenith angle of 108 deg, reaching below 35 km at 3.6 cm, and below 34 km at 13 cm (above a mean radius of 6052 km). The high effective isotropic radiated power (EIRP) of the Magellan spacecraft and highly successful attitude maneuvers allowed these signals to probe deeper than any previous radio occultation experiment and also resulted in the most accurate thermal and sulfuric acid vapor abundance profiles ever obtained at Venus through radio occultation techniques. The performance of the spacecraft and the experiment design are discussed in an accompanying paper. Average electron density profiles retrieved from the data possess peaks between 2600 and 6000/cu cm, well below typical values of 10,000/cu cm retrieved in 1979 by Pioneer Venus at similar solar zenith angles. Other basic results include vertical profiles of temperature, pressure, and density in the neutral atmosphere, 13- and 3.6-cm absorpttivity, and H2SO4 (g) abundance below the main cloud layer. H2SO4 (g) becomes significant below 50 km, reaching peaks between 18 and 24 ppm near 39 km before dropping precipitously below 38 km. These sharp decreases confirm the thermal decomposition of sulfuric acid vapor below 39 km. Since the Venus atmosphere rotated approximately 10 deg between experiments, the data contain information about the horizontal variability of the atmosphere. All derived profiles exhibit significant variations from orbit to orbit, indicating the presence of dynamical processes between 33 and 200 km. In particular, the orbit-to-orbit variations in temperature and in H2SO4 (g) abundance appear to be correlated, suggesting that a common mechanism may be responsible for the observed spatial variations.

  15. Optimization of torque on an optically driven micromotor by manipulation of the index of refraction

    NASA Astrophysics Data System (ADS)

    Wing, Frank M., III; Mahajan, Satish; Collett, Walter

    2004-12-01

    Since the 1970"s, the focused laser beam has become a familiar tool to manipulate neutral, dielectric micro-objects. A number of authors, including Higurashi and Gauthier, have described the effects of radiation pressure from laser light on microrotors. Collett, et al. developed a wave, rather than a ray optic, approach in the calculation of such forces on a microrotor for the first time. This paper describes a modification to the design of a laser driven, radiation pressure microrotor, intended to improve the optically generated torque. Employing the wave approach, the electric and magnetic fields in the vicinity of the rotor are calculated using the finite difference time domain (FDTD) method, which takes into account the wave nature of the incident light. Forces are calculated from the application of Maxwell"s stress tensor over the surfaces of the rotor. Results indicate a significant increase in torque when the index of refraction of the microrotor is changed from a single value to an inhomogeneous profile. The optical fiber industry has successfully employed a variation in the index of refraction across the cross section of a fiber for the purpose of increasing the efficiency of light transmission. Therefore, it is hoped that various fabrication methods can be utilized for causing desired changes in the index of refraction of an optically driven microrotor. Various profiles of the index of refraction inside a microrotor are considered for optimization of torque. Simulation methodology and results of torque on a microrotor for various profiles of the index of refraction are presented. Guidelines for improvised fabrication of efficient microrotors may then be obtained from these profiles.

  16. Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings

    PubMed Central

    Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng

    2013-01-01

    We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10−5. PMID:24141267

  17. Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings.

    PubMed

    Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng

    2013-10-17

    We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10⁻⁵.

  18. The clinical significance of occult gynecologic primary tumours in metastatic cancer

    PubMed Central

    Hannouf, M.B.; Winquist, E.; Mahmud, S.M.; Brackstone, M.; Sarma, S.; Rodrigues, G.; Rogan, P.K.; Hoch, J.S.; Zaric, G.S.

    2017-01-01

    Objective We estimated the frequency of occult gynecologic primary tumours (gpts) in patients with metastatic cancer from an uncertain primary and evaluated the effect on disease management and overall survival (os). Methods We used Manitoba administrative health databases to identify all patients initially diagnosed with metastatic cancer during 2002–2011. We defined patients as having an “occult” primary tumour if the primary was classified at least 6 months after the initial diagnosis. Otherwise, we considered patients to have “obvious” primaries. We then compared clinicopathologic and treatment characteristics and 2-year os for women with occult and with obvious gpts. We used Cox regression adjustment and propensity score methods to assess the effect on os of having an occult gpt. Results Among the 5953 patients diagnosed with metastatic cancer, occult primary tumours were more common in women (n = 285 of 2552, 11.2%) than in men (n = 244 of 3401, 7.2%). In women, gpts were the most frequent occult primary tumours (n = 55 of 285, 19.3%). Compared with their counterparts having obvious gpts, women with occult gpts (n = 55) presented with similar histologic and metastatic patterns but received fewer gynecologic diagnostic examinations during diagnostic work-up. Women with occult gpts were less likely to undergo surgery, waited longer for radiotherapy, and received a lesser variety of chemotherapeutic agents. Having an occult compared with an obvious gpt was associated with decreased os (hazard ratio: 1.62; 95% confidence interval: 1.2 to 2.35). Similar results were observed in adjusted analyses. Conclusions In women with metastatic cancer from an uncertain primary, gpts constitute the largest clinical entity. Accurate diagnosis of occult gpts early in the course of metastatic cancer might lead to more effective treatment decisions and improved survival outcomes. PMID:29089807

  19. Design of graded refractive index profile for silica multimode optical fibers with improved effective modal bandwidth for short-distance laser-based multi-Gigabit data transmission over "O"-band

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.; Zhukov, Alexander E.

    2017-04-01

    High bit rate laser-based data transmission over silica optical fibers with enlarged core diameter in comparison with standard singlemode fibers is found variety infocommunication applications. Since IEEE 802.3z standard was ratified on 1998 this technique started to be widely used for short-range in-premises distributed multi-Gigabit networks based on new generation laser optimized multimode fibers 50/125 of Cat. OM2…OM4. Nowadays it becomes to be in demand for on-board cable systems and industrial network applications requiring 1Gps and more bit rates over fibers with extremely enlarged core diameter up to 100 μm. This work presents an alternative method for design the special refractive index profiles of silica few-mode fibers with extremely enlarged core diameter, that provides modal bandwidth enhancing under a few-mode regime of laser-based data optical transmission. Here some results are presented concerning with refractive index profile synthesis for few-mode fibers with reduced differential mode delay for "O"-band central region, as well as computed differential mode delay spectral curves corresponding to profiles for fibers 50/125 and 100/125 for in-premises and on-board/industrial cable systems.

  20. Pluto-Charon Stellar Occultation Candidates: 1990-1995

    NASA Technical Reports Server (NTRS)

    Dunham, E. W.; McDonald, S. W.; Elliot, J. L.

    1991-01-01

    We have carried out a search to identify stars that might be occulted by Pluto or Charon during the period 1990-1995 and part of 1996. This search was made with an unfiltered CCD camera operated in the strip scanning mode, and it reaches an R magnitude of approximately 17.5-about 1.5 mag fainter than previous searches. Circumstances for each of the 162 potential occultations are given, including an approximate R magnitude of the star, which allows estimation of the signal-to-noise ratio (S/N) for observation of each occultation. The faintest stars in our list would yield an S/N of about 20 for a 1 S integration when observed with a CCD detector on an 8 m telescope under a dark sky. Our astrometric precision (+/- 0.2 arcsec, with larger systematic errors possible for individual cases) is insufficient to serve as a final prediction for these potential occultations, but is sufficient to identify stars deserving of further, more accurate, astrometric observations. Statistically, we expect about 32 of these events to be observable somewhere on Earth. The number of events actually observed will be substantially smaller because of clouds and the sparse distribution of large telescopes. Finder charts for each of the 91 stars involved are presented.

  1. Pluto-Charon stellar occultation candidates - 1990-1995

    NASA Technical Reports Server (NTRS)

    Dunham, E. W.; Mcdonald, S. W.; Elliot, J. L.

    1991-01-01

    A search to identify stars that might be occulted by Pluto or Charon during the period 1990-1995 and part of 1996 is studied. This search was made with an unfiltered CCD camera operated in the strip scanning mode, and it reaches an R magnitude of approximately 17.5 - about 1.5 mag fainter than previous searches. Circumstances for each of the 162 potential occultations are given, including an approximate R magnitude of the star, which allows estimation of the signal-to-noise ratio (S/N) for observation of each occultation. The faintest stars in the list would yield an S/N of about 20 for a 1 s integration when observed with a CCD detector on an 8 m telescope under a dark sky. The astrometric precision (+/- 0.2 arcsec, with larger systematic errors possible for individual cases) is insufficient to serve as a final prediction for these potential occultations, but is sufficient to identify stars deserving of further, more accurate, astrometric observations. Statistically, about 32 of these events to be observable somewhere on earth are expected. The number of events actually observed will be substantially smaller because of clouds and the sparse distribution of large telescopes. Finder charts for each of the 91 stars involved are presented.

  2. TopoGreenland: crustal structure in central-eastern Greenland along a new refraction profile

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Thybo, Hans; Field Team TopoGreenland

    2013-04-01

    We present the seismic structure in the interior of Greenland based on the first measurements by the seismic refraction/wide angle reflection method. Previous seismic surveys have only been carried out offshore and near the coast of Greenland, where the crustal structure is affected by oceanic break-up and may not be representative of the interior of the island. Acquisition of geophysical data in onshore Greenland is logistically complicated by the presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The EW-trending profile extends 310 km inland from the approximate edge of the stable ice cap near Scoresby Sund across the center of the ice cap. The planned extension of the profile by use of OBSs and air gun shooting in Scoresbysund Fjord to the east coast of Greenland was unfortunately canceled, because navigation was prevented by ice drift. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Two-dimensional velocity model based on tomographic inversion and forward ray tracing modeling shows a decrease of crustal thickness from 47 km below the center of Greenland in the western part to 40 km in the eastern part of the profile. Earlier studies show that crustal thickness further decreases eastward to ca. 30 km below the fjord system, but details of the changes are unknown. Relatively high lower crustal velocities (Vp 6.8 - 7.3) in the western part of the TopoGreenland profile may indicate past collision tectonics or may be related or to the passage of the Iceland mantle plume. The origin of the pronounced circum-Atlantic mountain ranges in Norway and eastern Greenland

  3. Uniform refraction in negative refractive index materials.

    PubMed

    Gutiérrez, Cristian E; Stachura, Eric

    2015-11-01

    We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.

  4. CT detection of occult pneumothorax in head trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocino, I.M.; Miller, M.H.; Frederick, P.R.

    1984-11-01

    A prospective evaluation for occult pneumothorax was performed in 25 consecutive patients with serious head trauma by combining a limited chest CT examination with the emergency head CT examination. Of 21 pneuomothoraces present in 15 patients, 11 (52%) were found only by chest CT and were not identified clinically or by supine chest radiograph. Because of pending therapeutic measures, chest tubes were placed in nine of the 11 occult pneumothoraces, regardless of the volume. Chest CT proved itself as the most sensitive method for detection of occult pneumothorax, permitting early chest tube placement to prevent transition to a tension pneumothoraxmore » during subsequent mechanical ventilation or emergency surgery under general anesthesia.« less

  5. Bone scanning in the detection of occult fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batillas, J.; Vasilas, A.; Pizzi, W.F.

    1981-07-01

    The potential role of bone scanning in the early detection of occult fractures following acute trauma was investigated. Technetium 99m pyrophosphate bone scans were obtained in patients with major clinical findings and negative or equivocal roentgenograms following trauma. Bone scanning facilitated the prompt diagnosis of occult fractures in the hip, knee, wrist, ribs and costochondral junctions, sternum, vertebrae, sacrum, and coccyx. Several illustrative cases are presented. Roentgenographic confirmation occurred following a delay of days to weeks and, in some instances, the roentgenographic findings were subtle and could be easily overlooked. This study demonstrates bone scanning to be invaluable and definitivemore » in the prompt detection of occult fractures.« less

  6. Exploring the Solar System using stellar occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno

    2018-04-01

    Stellar occultations by solar system objects allow kilometric accuracy, permit the detection of tenuous atmospheres (at nbar level), and the discovery of rings. The main limitation was the prediction accuracy, typically 40 mas, corresponding to about 1,000 km projected at the body. This lead to large time dedicated to astrometry, tedious logistical issues, and more often than not, mere miss of the event. The Gaia catalog, with sub-mas accuracy, hugely improves both the star positions, resulting in achievable accuracies of about 1 mas for the shadow track on Earth. This permits much more carefully planned campaigns, with success rate approaching 100%, weather permitting. Scientific perspectives are presented, e.g. central flashes caused by Plutos atmosphere revealing hazes and winds near its surface, grazing occultations showing topographic features, occultations by Chariklos rings unveiling dynamical features such as proper mode ``breathing''.

  7. Review: Occult hepatitis C virus infection: still remains a controversy.

    PubMed

    Vidimliski, Pavlina Dzekova; Nikolov, Igor; Geshkovska, Nadica Matevska; Dimovski, Aleksandar; Rostaing, Lionel; Sikole, Aleksandar

    2014-09-01

    Occult hepatitis C virus (HCV) infection is characterized by the presence of HCV RNA in the liver cells or peripheral blood mononuclear cells of the patients whose serum samples test negative for HCV RNA, with or without presence of HCV antibodies. The present study reviews the existing literature on the persistence of occult hepatitis C virus infection, with description of the clinical characteristics and methods for identification of occult hepatitis C. Occult hepatitis C virus infection was detected in patients with abnormal results of liver function tests of unknown origin, with HCV antibodies and HCV RNA negativity in serum, and also in patients with spontaneous or treatment-induced recovery from hepatitis C. The viral replication in the liver cells and/or peripheral blood mononuclear cells was present in all clinical presentations of occult hepatitis C. The peripheral blood mononuclear cells represent an extra-hepatic site of HCV replication. The reason why HCV RNA was not detectable in the serum of patients with occult hepatitis C, could be the low number of circulating viral particles not detectable by the diagnostic tests with low sensitivity. It is uncertain whether occult hepatitis C is a different clinical entity or just a form of chronic hepatitis C virus infection. Data accumulated over the last decade demonstrated that an effective approach to the diagnosis of HCV infection would be the implementation of more sensitive HCV RNA diagnostic assays, and also, examination of the presence of viral particles in the cells of the immune system. © 2014 Wiley Periodicals, Inc.

  8. The eye lens: age-related trends and individual variations in refractive index and shape parameters.

    PubMed

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-10-13

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.

  9. The eye lens: age-related trends and individual variations in refractive index and shape parameters

    PubMed Central

    Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto

    2015-01-01

    The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418

  10. Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation

    PubMed Central

    Khan, Adnan; Pope, James M.; Verkicharla, Pavan K.; Suheimat, Marwan; Atchison, David A.

    2018-01-01

    We investigated changes in ciliary body ring diameter, lens dimensions and lens refractive index distributions with accommodation in young adults. A 3T clinical magnetic resonance imaging scanner imaged right eyes of 38 18-29 year old participants using a multiple spin echo sequence to determine accommodation-induced changes along lens axial and equatorial directions. Accommodation stimuli were approximately 1 D and 5 D. With accommodation, ciliary body ring diameter, and equatorial lens diameter decreased (–0.43 ± 0.31 mm and –0.30 ± 0.23 mm, respectively), and axial lens thickness increased ( + 0.34 ± 0.16 mm). Lens shape changes cause redistribution of the lens internal structure, leading to change in refractive index distribution profiles. With accommodation, in the axial direction refractive index profiles became flatter in the center and steeper near the periphery of the lens, while in the equatorial direction they became steeper in the center and flatter in the periphery. The results suggest that the anatomical accuracy of lens optical models can be improved by accounting for changes in the refractive index profile during accommodation. PMID:29541520

  11. Predictions of stellar occultations by TNOs/Centaurs using Gaia

    NASA Astrophysics Data System (ADS)

    Desmars, Josselin; Camargo, Julio; Berard, Diane; Sicardy, Bruno; Leiva, Rodrigo; Vieira-Martins, Roberto; Braga-Ribas, Felipe; Assafin, Marcelo; Rossi, Gustavo; Chariklo occultations Team, Rio Group, Lucky Star Occultation Team, Granada Occultation Team

    2017-10-01

    Stellar occultations are the unique technique from the ground to access physical parameters of the distant solar system objects, such as the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings, jets).Predictions of stellar occultations require accurate positions of the star and the object.The Gaia DR1 catalog now allows to get stellar position to the milliarcsecond (mas) level. The main uncertainty in the prediction remains in the position of the object (tens to hundreds of mas).Now, we take advantage of the NIMA method for the orbit determination that uses the most recent observations reduced by the Gaia DR1 catalog and the astrometric positions derived from previous positive occultations.Up to now, we have detected nearly 50 positive occultations for about 20 objects that provide astrometric positions of the object at the time of the occultation. The uncertainty of these positions only depends on the uncertainty on the position of the occulted stars, which is a few mas with the Gaia DR1 catalog. The main limitation is now on the proper motion of the star which is only given for bright stars in the Tycho-Gaia Astrometric Solution. This limitation will be solved with the publicationof the Gaia DR2 expected on April 2018 giving proper motions and parallaxes for the Gaia stars. Until this date, we use hybrid stellar catalogs (UCAC5, HSOY) that provide proper motions derived from Gaia DR1 and another stellar catalog.Recently, the Gaia team presented a release of three preliminary Gaia DR2 stellar positions involved in the occultations by Chariklo (22 June and 23 July 2017) and by Triton (5 October 2017).Taking the case of Chariklo as an illustration, we will present a comparison between the proper motions of DR2 and the other catalogs and we will show how the Gaia DR2 will lead to a mas level precision in the orbit and in the prediction of stellar

  12. High spatial resolution with zoomable saw-tooth refractive lenses?

    NASA Astrophysics Data System (ADS)

    Jark, Werner

    2011-09-01

    Refractive x-ray lenses can be assembled from two opposing saw-tooth structures, when they are inclined with respect to each other and almost touch at one end. An incident plane wave will then traverse a varying number of triangular prisms, which direct the beam towards the optical axis and focus it. Optically speaking the plane wave traverses a parabolic lens profile, which is approximated by trapezoidal segments. The parabolic profile will focus ideally, when a lens can be discussed in the "thin lens" approximation. Now the saw-tooth refractive lens is found to be too "thick". The residual aberrations limit the focusing capability to just submicrometer focusing, significantly above the limit in diffraction limited focusing. It is shown that the aberrations can be removed by introducing a variation into the originally constant saw-tooth angle. After this modification the lens can be operated in the diffraction limited regime. Spot sizes even below 0.1 micrometer are then feasible. This performance in terms of spatial resolution is found to be limited to focusing to microspots and is not available, when the saw-tooth refractive lens is used in an imaging setup. In this case the spatial resolution deteriorates rapidly with increasing off axis distance of the object to be imaged.

  13. Detection of Occult Invasion in Melanoma In Situ.

    PubMed

    Bax, Michael J; Johnson, Timothy M; Harms, Paul W; Schwartz, Jennifer L; Zhao, Lili; Fullen, Douglas R; Chan, May P

    2016-11-01

    It is unclear why some patients with in situ melanoma develop metastases. Few reports demonstrate occult invasion with immunohistochemistry staining, which were discordant with reports interpreting such staining as false-positive. To investigate the occurrence of occult invasive disease within in situ melanoma by using methods to circumvent potential limitations in prior study designs. Unequivocal in situ melanoma without associated nevi or regression was identified using a consecutive sample of 33 cases plus 1 index case in an academic medical center. After cutting deeper into the most representative tissue block, 3 sequential slides were stained with hematoxylin-eosin (H-E), melanoma antigen (melan-A), and again with H-E. Melan-A-stained slides showing definitive invasion were double-stained with Sry-related HMg-Box gene 10 (SOX10) to confirm the melanocytic nature of the cells of interest. The study evaluated the possibilities of occult invasion detected by immunohistochemistry, sectioning deeper into the tissue block, or both. Slides were independently scored by 3 dermatopathologists with interrater reliability assessed. The study was conducted from January 1, 2012, to July 31, 2014. Assessment of the occurrence of occult invasion, diagnosis of invasion by immunohistochemistry alone vs cutting deeper into the tissue block, and occurrence of false-positive results using immunohistochemistry alone. Occult invasive melanoma was detected in 11 of 33 consecutive cases (33%) of previously diagnosed unequivocal in situ melanoma. Six of 11 melanomas (55%) were diagnosable only by immunohistochemistry. The remaining 5 tumors (45%) were diagnosable by both melan-A and H-E staining, likely as a result of simply cutting deeper into the tissue block. Four cases (12%) showed a few melan-A-positive cells in the dermis, which was insufficient for a diagnosis of invasive melanoma and most consistent on a cytomorphologic basis with occult nevi. Although rare, in situ melanoma

  14. A search for stellar occultations by Uranus, Neptune, Pluto, and their satellites: 1990-1999

    NASA Technical Reports Server (NTRS)

    Mink, Douglas J.

    1991-01-01

    A search for occultations of stars by Uranus, Neptune, and Pluto between 1990 and 1999 was carried out by combining ephemeris information and star positions using very accurate occultation modeling software. Stars from both the Space Telescope Guide Catalog and photographic plates taken by Arnold Klemola at Lick Observatory were compared with planet positions from the JPL DE-130 ephemeris, with local modifications for Pluto and Charon. Some 666 possible occultations by the Uranian ring, 143 possible occultations by Neptune, and 40 possible occultations by Pluto and/or Charon were found among stars with visual magnitudes as faint as 16. Before the star positions could be obtained, the occultation prediction software was used to aid many observers in observing the occultation of 28 Sagitarii by Saturn in July 1989. As a test on other outer solar system objects, 17 possible occultations were found in a search of the Guide Star Catalog for occultations by 2060 Chiron, and interesting object between Saturn and Uranus which shows both cometary and asteroidal properties.

  15. A search for stellar occultations by Uranus, Neptune, Pluto, and their satellites: 1990-1999

    NASA Astrophysics Data System (ADS)

    Mink, Douglas J.

    1991-03-01

    A search for occultations of stars by Uranus, Neptune, and Pluto between 1990 and 1999 was carried out by combining ephemeris information and star positions using very accurate occultation modeling software. Stars from both the Space Telescope Guide Catalog and photographic plates taken by Arnold Klemola at Lick Observatory were compared with planet positions from the JPL DE-130 ephemeris, with local modifications for Pluto and Charon. Some 666 possible occultations by the Uranian ring, 143 possible occultations by Neptune, and 40 possible occultations by Pluto and/or Charon were found among stars with visual magnitudes as faint as 16. Before the star positions could be obtained, the occultation prediction software was used to aid many observers in observing the occultation of 28 Sagitarii by Saturn in July 1989. As a test on other outer solar system objects, 17 possible occultations were found in a search of the Guide Star Catalog for occultations by 2060 Chiron, and interesting object between Saturn and Uranus which shows both cometary and asteroidal properties.

  16. Structure of Triton's atmosphere from the occultation of Tr176

    NASA Astrophysics Data System (ADS)

    Sicardy, B.; Mousis, O.; Beisker, W.; Hummel, E.; Hubbard, W. B.; Hill, R.; Reitsema, H. J.; Anderson, P.; Ball, L.; Downs, B.; Hutcheon, S.; Moy, M.; Nielsen, G.; Pink, I.; Walters, R.

    1998-09-01

    The occultation of the star Tr176 by Triton (Mc Donald & Elliot, AJ 109, 1352, 1995) was observed on 18 July 1997 from three stations in Queensland, Australia (Bundaberg, Ducabrook and Lochington) and one station in Texas, USA (Brownsville). All observations were made with CCD (no filter) and with portable C14 telescopes, except at Bundaberg, where a fixed 48-cm telescope was used. Time sampling rate ranges from 0.33 sec (Bundaberg) to 0.66 sec (Ducabrook and Lochington), with the intermediate value 0.5 sec at Brownsville. Isothermal fits were performed to the lightcurves in order to determine the isothermal temperature, T_iso, and the radius at half-level, R_{1/2}, of Triton's atmosphere (assumed to be composed of pure N_2). Considering the level of noise, we cannot detect any departure from isothermal profiles, and we do not see any deviations from spherical shape. A global fit yields T_iso = 53.7 +/- 2 K and R_{1/2} = 1456 +/- 3 km. We also derive the pressure at 1400 km: p1400 = 1.9 +/- 0.3 mu bars. We will discuss these results and compare them with previous works obtained by Voyager teams from the 1989 observations, and by Olkin et al. (Icarus 129, 178, 1997), who analyze two Triton occultations observed in July 1993 (Tr60) and August 1995 (Tr148). We observe a general increase of pressure at 1400 km, since Olkin et al. derive p1400 = 1.4 +/- 0.1 mu bars from the Tr148 event. This result is actually confirmed by a recent work by Elliot et al., (Nature 393, 765 1998), who note a global warming on Triton, based in particular on a new HST occultation observation in November 1997 (Tr180).

  17. Radio Occultation Investigation of the Rings of Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Marouf, Essam A.

    1997-01-01

    The proposed work addresses two main objectives: (1) to pursue the development of the random diffraction screen model for analytical/computational characterization of the extinction and near-forward scattering by ring models that include particle crowding, uniform clustering, and clustering along preferred orientations (anisotropy). The characterization is crucial for proper interpretation of past (Voyager) and future (Cassini) ring, occultation observations in terms of physical ring properties, and is needed to address outstanding puzzles in the interpretation of the Voyager radio occultation data sets; (2) to continue the development of spectral analysis techniques to identify and characterize the power scattered by all features of Saturn's rings that can be resolved in the Voyager radio occultation observations, and to use the results to constrain the maximum particle size and its abundance. Characterization of the variability of surface mass density among the main ring, features and within individual features is important for constraining the ring mass and is relevant to investigations of ring dynamics and origin. We completed the developed of the stochastic geometry (random screen) model for the interaction of electromagnetic waves with of planetary ring models; used the model to relate the oblique optical depth and the angular spectrum of the near forward scattered signal to statistical averages of the stochastic geometry of the randomly blocked area. WE developed analytical results based on the assumption of Poisson statistics for particle positions, and investigated the dependence of the oblique optical depth and angular spectrum on the fractional area blocked, vertical ring profile, and incidence angle when the volume fraction is small. Demonstrated agreement with the classical radiative transfer predictions for oblique incidence. Also developed simulation procedures to generate statistical realizations of random screens corresponding to uniformly packed

  18. The impact of spherical symmetry assumption on radio occultation data inversion in the ionosphere: An assessment study

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Notarpietro, R.; Nava, B.

    2014-02-01

    'Onion-peeling' is a very common technique used to invert Radio Occultation (RO) data in the ionosphere. Because of the implicit assumption of spherical symmetry for the electron density (N(e)) distribution in the ionosphere, the standard Onion-peeling algorithm could give erroneous concentration values in the retrieved electron density profile. In particular, this happens when strong horizontal ionospheric electron density gradients are present, like for example in the Equatorial Ionization Anomaly (EIA) region during high solar activity periods. In this work, using simulated RO Total Electron Content (TEC) data computed by means of the NeQuick2 ionospheric electron density model and ideal RO geometries, we tried to formulate and evaluate an asymmetry level index for quasi-horizontal TEC observations. The asymmetry index is based on the electron density variation that a signal may experience along its path (satellite to satellite link) in a RO event and is strictly dependent on the occultation geometry (e.g. azimuth of the occultation plane). A very good correlation has been found between the asymmetry index and errors related to the inversion products, in particular those concerning the peak electron density NmF2 estimate and the Vertical TEC (VTEC) evaluation.

  19. Exploring small bodies in the outer solar system with stellar occultations

    NASA Technical Reports Server (NTRS)

    Elliot, Jim L.; Dunham, Edward W.; Olkin, C. B.

    1995-01-01

    Stellar occultation observations probe the atmospheric structure and extinction of outer solar system bodies with a spatial resolution of a few kilometers, and an airborne platform allows the observation of occultations by small bodies that are not visible from fixed telescopes. Results from occultations by Triton, Pluto, and Chiron observed with KAO are discussed, and future directions for this program are presented.

  20. Diffraction-based analysis of tunnel size for a scaled external occulter testbed

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2016-07-01

    For performance verification of an external occulter mask (also called a starshade), scaled testbeds have been developed to measure the suppression of the occulter shadow in the pupil plane and contrast in the image plane. For occulter experiments the scaling is typically performed by maintaining an equivalent Fresnel number. The original Princeton occulter testbed was oversized with respect to both input beam and shadow propagation to limit any diffraction effects due to finite testbed enclosure edges; however, to operate at realistic space-mission equivalent Fresnel numbers an extended testbed is currently under construction. With the longer propagation distances involved, diffraction effects due to the edge of the tunnel must now be considered in the experiment design. Here, we present a diffraction-based model of two separate tunnel effects. First, we consider the effect of tunnel-edge induced diffraction ringing upstream from the occulter mask. Second, we consider the diffraction effect due to clipping of the output shadow by the tunnel downstream from the occulter mask. These calculations are performed for a representative point design relevant to the new Princeton occulter experiment, but we also present an analytical relation that can be used for other propagation distances.

  1. Atmospheric diurnal and semi-diurnal variations observed with GPS radio occultation soundings

    NASA Astrophysics Data System (ADS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.

    2009-11-01

    Diurnal and semi-diurnal variations, driven by solar forcing, are two fundamental modes in the Earth's weather and climate system. Radio occultation (RO) measurements from the six COSMIC satellites (Constellation Observing System for Meteorology Ionosphere and Climate) provide rather uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal and semi-diurnal variations of both temperature and refractivity from two-year (2007-2008) COSMIC RO measurements in the troposphere and stratosphere. The RO observations reveal both propagating and trapped vertical structures of diurnal and semi-diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity decreases with altitude from a local maximum in the planetary boundary layer and reaches the minimum around 14 km and then further increase amplitude in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from upper troposphere to the stratopause with a vertical wavelength of about 25 km. Below 500 hPa (~5.5 km), seasonal variations of the peak diurnal amplitude in the tropics follow the solor forcing change in latitude, while at 30 km the seasonal pattern reverses with the diurnal amplitude peaking at the opposite side of the equator relative to the solar forcing. Polar regions shows large diurnal variations in the stratosphere with strong seasonal variations and the cause(s) of these variations require further investigations.

  2. Earth Occultation Monitoring with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique (EOT). Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors for daily monitoring. Light curves, updated daily, are available on our website http://heastro.phys.lsu.edu/gbm. Our software is also capable of performing the Earth occultation monitoring using up to 128 energy bands, or any combination of those bands, using our 128-channel, 4-s CSPEC data. The GBM BGO detectors, sensitive from about 200 keV to 40 keV, can also be used with this technique. In our standard application of the EOT, we use a catalog of sources to drive the measurements. To ensure that our catalog is complete, our team has developed an Earth occultation imaging method. In this talk, I will describe both techniques and the current data products available. I will highlight recent and important results from the GBM EOT, including the current status of our observations of hard X-ray variations in the Crab Nebula.

  3. Microvolume index of refraction determinations by interferometric backscatter

    NASA Astrophysics Data System (ADS)

    Bornhop, Darryl J.

    1995-06-01

    A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.

  4. Observation and Interpretation of Lunar Occultations. Ph.D. Thesis; [Uranus and beta Capricorni

    NASA Technical Reports Server (NTRS)

    Radick, R. R.

    1978-01-01

    The importance of timings and high resolution astrometry in occultation observations is discussed as well as the occultation process itself. The design and operation of the telescope, photodetector, and data acquisition systems are described. Methods are presented for data analysis and model fitting. Observations of beta Capricorni and Uranus occultations are examined. General conclusions concerning occultation observations are explored and future activities at Prairie Observatory are discussed.

  5. Occult chemical deposition to a Maritime forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vong, R.J.; Kowalski, A.S.

    1996-12-31

    Studies of chemical fluxes from the atmosphere to vegetated surfaces have suggested that, along with conventional wet and dry processes, an additional chemical input occurs when wind-blown cloud droplets are directly intercepted by vegetation. This cloud water deposition process has been sometimes termed {open_quote}occult deposition{close_quote} because the water fluxes cannot ordinarily be observed using rain gauges. Such occult deposition of cloud water has rarely been measured directly, in part because of the complexity of the governing turbulent transfer process. However, reviews by the National Acidic Precipitation Assessment Program (NAPAP SoS/T-2,6) have suggested that the chemical flux to be forest declinemore » in the eastern USA. This paper presents direct field measurements occult chemical fluxes to a silver fir forest located in complex terrain on the Olympic Peninsula near the coast of Washington State, USA.« less

  6. A statistical model to estimate refractivity turbulence structure constant C sub n sup 2 in the free atmosphere

    NASA Technical Reports Server (NTRS)

    Warnock, J. M.; Vanzandt, T. E.

    1986-01-01

    A computer program has been tested and documented (Warnock and VanZandt, 1985) that estimates mean values of the refractivity turbulence structure constant in the stable free atmosphere from standard National Weather Service balloon data or an equivalent data set. The program is based on the statistical model for the occurrence of turbulence developed by VanZandt et al. (1981). Height profiles of the estimated refractivity turbulence structure constant agree well with profiles measured by the Sunset radar with a height resolution of about 1 km. The program also estimates the energy dissipation rate (epsilon), but because of the lack of suitable observations of epsilon, the model for epsilon has not yet been evaluated sufficiently to be used in routine applications. Vertical profiles of the refractivity turbulence structure constant were compared with profiles measured by both radar and optical remote sensors and good agreement was found. However, at times the scintillometer measurements were less than both the radar and model values.

  7. Precipitation information from GNSS Polarimetric Radio Occultation observations

    NASA Astrophysics Data System (ADS)

    Padulles, R.; Cardellach, E.; Turk, J.; Tomás, S.; Ao, C. O.; de la Torre-Juárez, M.

    2017-12-01

    There is currently a gap in satellite observations of the moisture structure during heavy precipitation conditions, since infrared and microwave sounders cannot sense water vapor structure near the surface in the presence of intense precipitation. Conversely, Global Navigation Satellite System (GNSS) Radio Occultations (RO) can profile the moisture structure with high precision and vertical resolution, but cannot directly indicate the presence of precipitation. Polarimetric RO (PRO) measurements have been proposed as a method to characterize heavy rain in GNSS RO, by measuring the polarimetric differential phase delay induced by large size hydrometeors. The PRO concept will be tested from space for the first time on board the Spanish PAZ satellite, planned for launch by the end of 2017. Therefore, for the first time ever, GNSS RO measurements will be taken at two polarizations, to exploit the potential capabilities of polarimetric RO for detecting and quantifying heavy precipitation events. If the concept is proved, PAZ will mean a new application of the GNSS Radio-Occultation observations, by providing coincident thermodynamic and precipitation information with high vertical resolution within regions with thick clouds. Before the launch, a series of studies have been performed in order to assess the retrieval of precipitation information from the polarimetric observations. These studies have been based on coincident observations from the COSMIC / FORMOSAT-3 RO satellite constellation, and TRMM and GPM missions. This massive collocation exercise allowed us to build a series of Look Up Tables that relate probabilistically the precipitation intensity to the polarimetric observables. Such studies needed a previous characterization of the polarimetric observable, since it contains contributions from the ionosphere and the emitting and receiving systems. For this purpose, complete end-to-end simulations have been performed, where information from the ionospheric state

  8. Altimetry Using GPS-Reflection/Occultation Interferometry

    NASA Technical Reports Server (NTRS)

    Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi

    2008-01-01

    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.

  9. Partially Transparent Petaled Mask/Occulter for Visible-Range Spectrum

    NASA Technical Reports Server (NTRS)

    Shiri, Ron Shahram; Wasylkiwskyj, Wasyl

    2013-01-01

    The presence of the Poisson Spot, also known as the spot of Arago, has been known since the 18th century. This spot is the consequence of constructive interference of light diffracted by the edge of the obstacle where the central position can be determined by symmetry of the object. More recently, many NASA missions require the suppression of this spot in the visible range. For instance, the exoplanetary missions involving space telescopes require telescopes to image the planetary bodies orbiting central stars. For this purpose, the starlight needs to be suppressed by several orders of magnitude in order to image the reflected light from the orbiting planet. For the Earth-like planets, this suppression needs to be at least ten orders of magnitude. One of the common methods of suppression involves sharp binary petaled occulters envisioned to be placed many thousands of miles away from the telescope blocking the starlight. The suppression of the Poisson Spot by binary sharp petal tips can be problematic when the thickness of the tips becomes smaller than the wavelength of the incident beam. First they are difficult to manufacture and also it invalidates the laws of physical optics. The proposed partially transparent petaled masks/occulters compensate for this sharpness with transparency along the surface of the petals. Depending on the geometry of the problem, this transparency can be customized such that only a small region of the petal is transparent and the remaining of the surface is opaque. This feature allows easy fabrication of this type of occultation device either as a mask or occulter. A partially transparent petaled mask/ occulter has been designed for the visible spectrum range. The mask/occulter can suppress the intensity along the optical axis up to ten orders of magnitude. The design process can tailor the mask shape, number of petals, and transparency level to the near-field and farfield diffraction region. The mask/occulter can be used in space

  10. General Information about Metastatic Squamous Neck Cancer with Occult Primary

    MedlinePlus

    ... Occult Primary Treatment (Adult) (PDQ®)–Patient Version General Information About Metastatic Squamous Neck Cancer with Occult Primary ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  11. Modelling the horizontal structure of mid-latitude E(s) from its refraction effects on F-region echoes

    NASA Astrophysics Data System (ADS)

    Barnes, R. I.

    1991-02-01

    The observation of the refraction of F-region echoes presently reported implies that significant horizontal structure exists within some E(s) clouds. A modeling of the data collected with the Bribie Island HF radar indicates that wind shear variations can account for examples in which irregularities either pass through, or pass with, existing layers of E(s) which create the cloudy, nonblanketing variety of E(s). The blanketing variety of E(s) seems to have little or no horizontal structure, and most likely drifts with the same velocity as the irregularities which produce nonblanketing E(s). Irregularities with strong horizontal gradients act as diverging lenses, leading to an overestimation of cloud size via simple occulting geometry.

  12. Phased Array GNSS Antenna for the FORMOSAT-7/COSMIC-2 Radio Occultation Mission

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry; Young, Larry E.; Meehan, Tom K.

    2012-01-01

    Future GNSS remote sensing instruments such as the TriG receiver require more capable antennas than those flown on missions such as COSMIC. To maximize the number of ionospheric and atmospheric profiles, the TriG receiver will be capable of tracking legacy and new GPS signals such as L5, L2C and L1C; GLONASS CDMA and Galileo E1 and E5a. There has been an in-house effort at JPL to develop a set of antennas that would provide excellent Radio Occultations performance as well as navigation and ionospheric profiling. This effort is on-going but near completion for the manufacture and delivery of a set of flight antennas for the FORMOSAT-7/COSMIC-2 mission.

  13. [Epidemiology of refractive errors].

    PubMed

    Wolfram, C

    2017-07-01

    Refractive errors are very common and can lead to severe pathological changes in the eye. This article analyzes the epidemiology of refractive errors in the general population in Germany and worldwide and describes common definitions for refractive errors and clinical characteristics for pathologicaal changes. Refractive errors differ between age groups due to refractive changes during the life time and also due to generation-specific factors. Current research about the etiology of refractive errors has strengthened the influence of environmental factors, which led to new strategies for the prevention of refractive pathologies.

  14. Refractive index, molar refraction and comparative refractive index study of propylene carbonate binary liquid mixtures.

    PubMed

    Wankhede, Dnyaneshwar Shamrao

    2012-06-01

    Refractive indices (n) have been experimentally determined for the binary liquid-liquid mixtures of Propylene carbonate (PC) (1) with benzene, ethylbenzene, o-xylene and p-xylene (2) at 298.15, 303.15 and 308.15 K over the entire mole fraction range. The experimental values of n are utilised to calculate deviation in refractive index (Δn), molar refraction (R) and deviation in molar refraction (ΔR). A comparative study of Arago-Biot (A-B), Newton (NW), Eyring and John (E-J) equations for determining refractive index of a liquid has been carried out to test their validity for all the binary mixtures over the entire composition range at 298.15 K. Comparison of various mixing relations is represented in terms of average deviation (AVD). The Δn and ΔR values have been fitted to Redlich-Kister equation at 298.15 K and standard deviations have been calculated. The results are discussed in terms of intermolecular interactions present amongst the components.

  15. The estimation of lower refractivity uncertainty from radar sea clutter using the Bayesian—MCMC method

    NASA Astrophysics Data System (ADS)

    Sheng, Zheng

    2013-02-01

    The estimation of lower atmospheric refractivity from radar sea clutter (RFC) is a complicated nonlinear optimization problem. This paper deals with the RFC problem in a Bayesian framework. It uses the unbiased Markov Chain Monte Carlo (MCMC) sampling technique, which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework. In contrast to the global optimization algorithm, the Bayesian—MCMC can obtain not only the approximate solutions, but also the probability distributions of the solutions, that is, uncertainty analyses of solutions. The Bayesian—MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar sea-clutter data. Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter. The inversion algorithm is assessed (i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data; (ii) the one-dimensional (1D) and two-dimensional (2D) posterior probability distribution of solutions.

  16. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  17. Recent progress on external occulter technology for imaging exosolar planets

    NASA Astrophysics Data System (ADS)

    Kasdin, N. J.; Vanderbei, R. J.; Sirbu, D.; Samuels, J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Martin, S.

    Imaging planets orbiting nearby stars requires a system for suppressing the host starlight by at least ten orders of magnitude. One such approach uses an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. Much progress has been made recently in designing, testing and manufacturing starshade technology. In this paper we describe the design of starshades and report on recent accomplishments in manufacturing and measuring a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions (TDEM) program. We demonstrate that the as-built petal is consistent with a full-size occulter achieving better than 10-10 contrast. We also discuss laboratory testing at the Princeton Occulter Testbed. These experiments use sub-scale, long-distance beam propagation to verify the diffraction analysis associated with occulter starlight suppression. We demonstrate roughly 10-10 suppression in the laboratory and discuss the important challenges and limitations.

  18. Comparison of objective refraction in darkness to cycloplegic refraction: a pilot study.

    PubMed

    Vasudevan, Balamurali; Ciuffreda, Kenneth J; Meehan, Kelly; Grk, Dejana; Cox, Misty

    2016-03-01

    The aim was to assess non-cycloplegic objective refraction in darkness using an open-field auto-refractor, and furthermore to compare it with distance cycloplegic subjective refraction and distance cycloplegic retinoscopy in the light, in children and young adults. Twenty-three, visually-normal, young-adults (46 eyes) ages 23 to 31 years, and five children (10 eyes) ages five to 12 years, participated in the study. The spherical component of their refraction ranged from -2.25 D to +3.75 D with a mean of +1.80 D, and a mean cylinder of -0.70 D. Three techniques were used to assess refractive error. An objective measure of the non-cycloplegic refractive state was obtained using an open-field autorefractor (WAM-5500) after five minutes in the dark to allow for dissipation of accommodative transients and relaxation of accommodation. In addition, both distance retinoscopy and subjective distance refraction were performed following cycloplegia (Cyclopentolate, 1%) using conventional clinical procedures. All measurements were obtained on the same day within a single session. The spherical component of the refraction was compared among the three techniques in both the children and adults. There was no significant difference in spherical refraction among the three techniques: non-cycloplegic objective refraction in the dark, distance cycloplegic retinoscopy and distance cycloplegic subjective refraction, in either the adults [F(2, 137) = 0.79, p = 0.45] or the children [F(2, 27) = 0.47, p = 0.62]. Mean difference in the spherical component between refraction in the dark and the cycloplegic distance retinoscopy was -0.34 D (r = 0.89) in the adults and +0.14 D (r = 0.96) in the children. The mean difference in spherical component between refraction in the dark and the cycloplegic distance subjective refraction was -0.25 D (r = 0.92) in the adults and -0.05 D (r = 0.95) in the children. Comparison of the spherical refractive component between the three techniques was not

  19. Cassini RSS occultation observations of density waves in Saturn's rings

    NASA Astrophysics Data System (ADS)

    McGhee, C. A.; French, R. G.; Marouf, E. A.; Rappaport, N. J.; Schinder, P. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.

    2005-08-01

    On May 3, 2005, the first of a series of eight nearly diametric occultations by Saturn's rings and atmosphere took place, observed by the Cassini Radio Science (RSS) team. Simultaneous high SNR measurements at the Deep Space Network (DSN) at S, X, and Ka bands (λ = 13, 3.6, and 0.9 cm) have provided a remarkably detailed look at the radial structure and particle scattering behavior of the rings. By virtue of the relatively large ring opening angle (B=-23.6o), the slant path optical depth of the rings was much lower than during the Voyager epoch (B=5.9o), making it possible to detect many density waves and other ring features in the Cassini RSS data that were lost in the noise in the Voyager RSS experiment. Ultimately, diffraction correction of the ring optical depth profiles will yield radial resolution as small as tens of meters for the highest SNR data. At Ka band, the Fresnel scale is only 1--1.5 km, and thus even without diffraction correction, the ring profiles show a stunning array of density waves. The A ring is replete with dozens of Pandora and Prometheus inner Lindblad resonance features, and the Janus 2:1 density wave in the B ring is revealed with exceptional clarity for the first time at radio wavelengths. Weaker waves are abundant as well, and multiple occultation chords sample a variety of wave phases. We estimate the surface mass density of the rings from linear density wave models of the weaker waves. For stronger waves, non-linear models are required, providing more accurate estimates of the wave dispersion relation, the ring surface mass density, and the angular momentum exchange between the rings and satellite. We thank the DSN staff for their superb support of these complex observations.

  20. Preliminary evaluation of the diffraction behind the PROBA 3/ASPIICS optimized occulter

    NASA Astrophysics Data System (ADS)

    Baccani, Cristian; Landini, Federico; Romoli, Marco; Taccola, Matteo; Schweitzer, Hagen; Fineschi, Silvano; Bemporad, Alessandro; Loreggia, Davide; Capobianco, Gerardo; Pancrazzi, Maurizio; Focardi, Mauro; Noce, Vladimiro; Thizy, Cédric; Servaye, Jean-Sébastien; Renotte, Etienne

    2016-07-01

    PROBA-3 is a technological mission of the European Space Agency (ESA), devoted to the in-orbit demon- stration of formation flying (FF) techniques and technologies. ASPIICS is an externally occulted coronagraph approved by ESA as payload in the framework of the PROBA-3 mission and is currently in its C/D phase. FF offers a solution to investigate the solar corona close the solar limb using a two-component space system: the external occulter on one spacecraft and the optical instrument on the other, separated by a large distance and kept in strict alignment. ASPIICS is characterized by an inter-satellite distance of ˜144 m and an external occulter diameter of 1.42 m. The stray light due to the diffraction by the external occulter edge is always the most critical offender to a coronagraph performance: the designer work is focused on reducing the stray light and carefully evaluating the residuals. In order to match this goal, external occulters are usually characterized by an optimized shape along the optical axis. Part of the stray light evaluation process is based on the diffraction calculation with the optimized occulter and with the whole solar disk as a source. We used the field tracing software VirtualLabTM Fusion by Wyrowski Photonics [1] to simulate the diffraction. As a first approach and in order to evaluate the software, we simulated linear occulters, through as portions of the flight occulter, in order to make a direct comparison with the Phase-A measurements [2].

  1. Stellar Occultation Studies of Pluto, Triton, Charon, and Chiron

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    2002-01-01

    Bodies inhabiting the outer solar system are of interest because, due to the colder conditions, they exhibit unique physical processes. Also, some of the lessons learned from them can be applied to understanding what occurred in the outer solar system during its formation and early evolution. The thin atmospheres of Pluto and Triton have structure that is not yet understood, and they have been predicted to undergo cataclysmic seasonal changes. Charon may have an atmosphere - we don't know. Chiron exhibits cometary activity so far from the sun (much further than most comets), so that H2O sublimation cannot be the driving mechanism. Probing these bodies from Earth with a spatial resolution of a few kilometers can be accomplished only with the stellar occultation technique. In this program we find and predict stellar occultation events by small outer-solar system bodies and then attempt observations of the ones that can potentially answer interesting questions. We also develop new methods of data analysis for occultations and secure other observations that are necessary for interpretation of the occultation data.

  2. Artificial dielectric stepped-refractive-index lens for the terahertz region.

    PubMed

    Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M

    2018-02-05

    In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.

  3. [A retrospective analysis on occult neck lymphatic metastasis in early tongue cancer].

    PubMed

    Gong, Q L; Bian, C; Liu, H

    2016-10-07

    Objective: To investigate the number and level of occult neck lymphatic metastasis for squamous cell carcinoma of tongue in clinical stage Ⅰ/Ⅱ, and the relationship between cell differentiation and occult neck lymphatic metastasis. Methods: A total of 101 cases diagnosed preoperatively as having squamous cell carcinoma of tongue in clinical stage Ⅰ/Ⅱ (cT1/T2N0M0) between January 2005 and April 2015 were analysed retrospectively. Whether presence of occult neck lymphatic metastasis in these cases was studied. Results: Occult neck lymphatic metastases were found in 22 (21.78%) of 101 cases, 10 men and 12 women, with an age range of 22 to 83 years. There was not statistically significant association between tumor size or cell differentiation and occult neck lymphatic metastasis ( P >0.05). The metastasis occurred most commonly in level Ⅱ, followed by levelsⅠ, Ⅲ and Ⅳ. There was no lymph node metastasis in Level Ⅴ. There were total 20 cases with occult neck lymphatic metastasis in at least one of levelⅠ, Ⅱ, Ⅲ(90.9%), One of these case was skipping metastasis in level Ⅲ(4.6%). Conclusion: The early tongue cancer has a high rate of occult lymph metastasis, which occurs commonly in levels Ⅱ, Ⅰ and Ⅲ, but there is not significant association between the metastasis and tumor size or cell differentiation.

  4. Wave optics of the central spot in planetary occultations

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1977-01-01

    The detection of a bright central spot during the occultation of epsilon Geminorum by Mars demonstrates that an exponentially-stratified planetary atmosphere can act as a lens providing very high resolution of distant objects (e.g., quasars, white dwarfs, and pulsars). The diffraction nature of the central occultation spot is investigated, with special reference to Mars and Venus. In practice, however, central occultations by these planets are seldom observable from the earth's surface, and spacecraft would have to be used to obtain a suitable orientation for observers. Further difficulties may be encountered in image deconvolution needed for extended objects, in location of the image of a true point source, and in compensation for peculiarities of planets and their atmospheres.

  5. Investigation of particle sizes in Pluto's atmosphere from the 29 June 2015 occultation

    NASA Astrophysics Data System (ADS)

    Sickafoose, Amanda A.; Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfüller, E.; de, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristam, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    The 29 June 2015 observations of a stellar occultation by Pluto, from SOFIA and ground-based sites in New Zealand, indicate that haze was present in the lower atmosphere (Bosh et al., this conference). Previously, slope changes in the occultation light curve profile of Pluto’s lower atmosphere have been attributed to haze, a steep thermal gradient, and/or a combination of the two. The most useful diagnostic for differentiating between these effects has been observing occultations over a range of wavelengths: haze scattering and absorption are functions of particle size and are wavelength dependent, whereas effects due to a temperature gradient should be largely independent of observational wavelength. The SOFIA and Mt. John data from this event exhibit obvious central flashes, from multiple telescopes observing over a range of wavelengths at each site (Person et al. and Pasachoff et al., this conference). SOFIA data include Red and Blue observations from the High-speed Imaging Photometer for Occultations (HIPO, at ~ 500 and 850 nm), First Light Infrared Test Camera (FLITECAM, at ~1800 nm), and the Focal Plan Imager (FPI+, at ~ 600 nm). Mt. John data include open filter, g', r', i', and near infrared. Here, we analyze the flux at the bottom of the light curves versus observed wavelength. We find that there is a distinct trend in flux versus wavelength, and we discuss applicable Mie scattering models for different particle size distributions and compositions (as were used to characterize haze in Pluto's lower atmosphere in Gulbis et al. 2015).SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by the National Research Foundation of South Africa, NASA SSO grants NNX15AJ82G (Lowell Observatory), PA NNX10AB27G (MIT), and PA NNX12AJ29G (Williams College), and the NASA

  6. The Occult: Diabolica to Alchemists

    ERIC Educational Resources Information Center

    Delaney, Oliver J.

    1971-01-01

    The 91 items in this bibliography deal with works of occult science. The material is subdivided into biographies, dictionaries, encyclopedias, handbooks, noteworthy histories, indices, annuals, and a few miscellany works with treatises. (95 references) (Author)

  7. Comparison of self-refraction using a simple device, USee, with manifest refraction in adults.

    PubMed

    Annadanam, Anvesh; Varadaraj, Varshini; Mudie, Lucy I; Liu, Alice; Plum, William G; White, J Kevin; Collins, Megan E; Friedman, David S

    2018-01-01

    The USee device is a new self-refraction tool that allows users to determine their own refractive error. We evaluated the ease of use of USee in adults, and compared the refractive error correction achieved with USee to clinical manifest refraction. Sixty adults with uncorrected visual acuity <20/30 and spherical equivalent between -6.00 and +6.00 diopters completed manifest refraction and self-refraction. Subjects had a mean (±SD) age of 53.1 (±18.6) years, and 27 (45.0%) were male. Mean (±SD) spherical equivalent measured by manifest refraction and self-refraction were -0.90 D (±2.53) and -1.22 diopters (±2.42), respectively (p = 0.001). The proportion of subjects correctable to ≥20/30 in the better eye was higher for manifest refraction (96.7%) than self-refraction (83.3%, p = 0.005). Failure to achieve visual acuity ≥20/30 with self-refraction in right eyes was associated with increasing age (per year, OR: 1.05; 95% CI: 1.00-1.10) and higher cylindrical power (per diopter, OR: 7.26; 95% CI: 1.88-28.1). Subjectively, 95% of participants thought USee was easy to use, 85% thought self-refraction correction was better than being uncorrected, 57% thought vision with self-refraction correction was similar to their current corrective lenses, and 53% rated their vision as "very good" or "excellent" with self-refraction. Self-refraction provides acceptable refractive error correction in the majority of adults. Programs targeting resource-poor settings could potentially use USee to provide easy on-site refractive error correction.

  8. Comparison of self-refraction using a simple device, USee, with manifest refraction in adults

    PubMed Central

    Annadanam, Anvesh; Mudie, Lucy I.; Liu, Alice; Plum, William G.; White, J. Kevin; Collins, Megan E.; Friedman, David S.

    2018-01-01

    Background The USee device is a new self-refraction tool that allows users to determine their own refractive error. We evaluated the ease of use of USee in adults, and compared the refractive error correction achieved with USee to clinical manifest refraction. Methods Sixty adults with uncorrected visual acuity <20/30 and spherical equivalent between –6.00 and +6.00 diopters completed manifest refraction and self-refraction. Results Subjects had a mean (±SD) age of 53.1 (±18.6) years, and 27 (45.0%) were male. Mean (±SD) spherical equivalent measured by manifest refraction and self-refraction were –0.90 D (±2.53) and –1.22 diopters (±2.42), respectively (p = 0.001). The proportion of subjects correctable to ≥20/30 in the better eye was higher for manifest refraction (96.7%) than self-refraction (83.3%, p = 0.005). Failure to achieve visual acuity ≥20/30 with self-refraction in right eyes was associated with increasing age (per year, OR: 1.05; 95% CI: 1.00–1.10) and higher cylindrical power (per diopter, OR: 7.26; 95% CI: 1.88–28.1). Subjectively, 95% of participants thought USee was easy to use, 85% thought self-refraction correction was better than being uncorrected, 57% thought vision with self-refraction correction was similar to their current corrective lenses, and 53% rated their vision as “very good” or “excellent” with self-refraction. Conclusion Self-refraction provides acceptable refractive error correction in the majority of adults. Programs targeting resource-poor settings could potentially use USee to provide easy on-site refractive error correction. PMID:29390026

  9. Saudi Arabian seismic-refraction profile: A traveltime interpretation of crustal and upper mantle structure

    USGS Publications Warehouse

    Mooney, W.D.; Gettings, M.E.; Blank, H.R.; Healy, J.H.

    1985-01-01

    The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea. Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives. The Mohorovic??ic?? discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth. The crustal and upper mantle velocity structure of the Arabian Shield is

  10. Evaluations of refraction competencies of ophthalmic technicians in Mozambique.

    PubMed

    Shah, Kajal; Naidoo, Kovin; Chagunda, Margarida; Loughman, James

    2016-01-01

    Ophthalmic technicians (OT) work at health facilities in Mozambique and are trained to provide primary and secondary eye care services including basic refraction. This study was designed to assess OT competence and confidence in refraction, and investigate whether an upskilling programme is effective in developing their competence and confidence at refraction. Thirty-one trainee OTs and 16 qualified OTs were recruited to the study. A background questionnaire was administered to determine the demographic profile of the OTs. A confidence levels questionnaire explored their self-reported skills. Clinical competencies were assessed in relation to knowledge (theory exam) and clinical skills (patient exams). 11 OTs were upskilled and the clinical evaluations carried out post training. Initial evaluations demonstrated that confidence and competence levels varied depending on the OTs training (location and duration), and their location of work (clinical load, availability of equipment and other eye care personnel). The qualified OTs were more competent than trainee OTs in most of the evaluations. Post upskilling results demonstrated significant positive impact on confidence and competence levels. These evaluations identified factors affecting the refraction competencies of the OTs and demonstrated that upskilling is effective in improving confidence and competence levels for refraction. They demonstrate the need for a refraction competency framework. The overarching aim of this research was to inform the development of a nationwide programme of OT mentoring, upskilling and leading to the establishment of clinical competency standards for the new OT curricula, relevant to the professional demands. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  11. Ray tracing evaluation of a technique for correcting the refraction errors in satellite tracking data

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.; Hendrickson, B. E.

    1978-01-01

    Errors may be introduced in satellite laser ranging data by atmospheric refractivity. Ray tracing data have indicated that horizontal refractivity gradients may introduce nearly 3-cm rms error when satellites are near 10-degree elevation. A correction formula to compensate for the horizontal gradients has been developed. Its accuracy is evaluated by comparing it to refractivity profiles. It is found that if both spherical and gradient correction formulas are employed in conjunction with meteorological measurements, a range resolution of one cm or less is feasible for satellite elevation angles above 10 degrees.

  12. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    NASA Astrophysics Data System (ADS)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  13. Seroprevalence of occult hepatitis B among Egyptian paediatric hepatitis C cancer patients.

    PubMed

    Raouf, H E; Yassin, A S; Megahed, S A; Ashour, M S; Mansour, T M

    2015-02-01

    Occult hepatitis B infection is characterized by the presence of hepatitis B virus (HBV) DNA in the serum in the absence of hepatitis B surface antigen (HBsAg). Prevalence of hepatitis C virus (HCV) infections in Egypt is among the highest in the world. In this study, we aim at analysing the rates of occult HBV infections among HCV paediatric cancer patients in Egypt. The prevalence of occult HBV was assessed in two groups of paediatric cancer patients (HCV positive and HCV negative), in addition to a third group of paediatric noncancer patients, which was used as a general control. All groups were negative for HBsAg and positive for HCV antibody. HBV DNA was detected by nested PCR and real-time PCR. HCV was detected by real-time PCR. Sequencing was carried out in order to determine HBV genotypes to all HBV patients as well as to detect any mutation that might be responsible for the occult phenotype. Occult hepatitis B infection was observed in neither the non-HCV paediatric cancer patients nor the paediatric noncancer patients but was found in 31% of the HCV-positive paediatric cancer patients. All the detected HBV patients belonged to HBV genotype D, and mutations were found in the surface genome of HBV leading to occult HBV. Occult HBV infection seems to be relatively frequent in HCV-positive paediatric cancer patients, indicating that HBsAg negativity is not sufficient to completely exclude HBV infection. These findings emphasize the importance of considering occult HBV infection in HCV-positive paediatric cancer patients especially in endemic areas as Egypt. © 2014 John Wiley & Sons Ltd.

  14. Occult Hepatitis B Virus Infection in a Previously Vaccinated Injection Drug User.

    PubMed

    Powell, Eleanor A; Razeghi, Sanam; Zucker, Stephen; Blackard, Jason T

    2016-02-01

    Occult hepatitis B virus (HBV) is defined by the presence of HBV DNA in patient sera in the absence of HBsAg. Occult HBV has been associated with hepatocellular carcinoma, reactivation during immune suppression, and transmission to others. While the hepatitis B vaccine is very effective at preventing chronic HBV infection, recent studies indicate it is less effective at preventing occult HBV following infant vaccination. No studies, however, have examined the efficacy of adult HBV vaccination at preventing occult HBV. Here, we present the first report of occult HBV following adult vaccination. A 21-year old Caucasian female presented with tricuspid valve endocarditis secondary to methicillin-susceptible Staphylococcus aureus with non-ischemic cardiomyopathy. She reported active use of intravenous drugs. Her liver enzymes were elevated (ALT = 1873 IU/mL; AST = 4518 IU/mL), and she was found to have HCV and occult HBV. HBV viral loads ranged from 4608 - 8364 copies IU/mL during hospitalization. The patient's HBV was sequenced and found to be genotype D3 without any known diagnostic escape mutations. Immune complexes that may have prevented HBsAg detection were not observed. HBV vaccination in infancy is effective at preventing chronic HBV infection but is less effective at preventing occult HBV infection. Similar studies examining the efficacy of adult HBV vaccination in preventing occult HBV have not been performed. This case highlights the importance of carefully determining the HBV status of high-risk individuals, as vaccination history and the presence of anti-HBs may not be adequate to rule out HBV infection, even in the absence of HBsAg.

  15. Periprosthetic Occult Fractures of the Acetabulum Occur Frequently During Primary THA.

    PubMed

    Hasegawa, Kazuhiro; Kabata, Tamon; Kajino, Yoshitomo; Inoue, Daisuke; Tsuchiya, Hiroyuki

    2017-02-01

    Periprosthetic fractures of the acetabulum occurring during primary THA are rare. Periprosthetic occult fractures are defined as those not identified by the surgeon during the procedure which might be missed on a routine postoperative radiograph. However, it is unclear how frequently these fractures occur and whether their presence affects functional recovery. In this study, using routine CT scans that were obtained as part of another primary hip arthroplasty study protocol, we retrospectively assessed (1) the prevalence of occult fractures of the acetabulum occurring during primary THA, (2) the location of occult fractures of the acetabulum during THA, and (3) risk factors contributing to such occult fractures. Between 2004 and 2013, our institute performed 585 primary THAs (cementless or hybrid) in 494 patients with DICOM pre- and postoperative CT; during the period in question, all patients undergoing THA underwent CT before and after surgery. Preoperative CT images were taken as part of a CT-based three-dimensional templating software and navigation system. Postoperative CT images were taken an average of 1 week after surgery as part of a different protocol to evaluate cup position, restoration of leg length and offset, volume of postoperative hematoma to assess anticoagulation effects after THA, and fractures that were not found on routine postoperative radiographs (which we defined as occult fractures). Patients with a history of prior pelvic osteotomy, trauma, and infection were excluded (88 patients/99 hips); 406 patients (102 males and 304 females; 486 hips) form the basis of this report. The mean age of the patients was 60 ± 11 years, with a mean BMI of 23 ± 4 kg/m 2 . The mean followup of the patients with periprosthetic fracture of the acetabulum was 58 ± 28 months (range, 12-131 months). Potential risk factors for occult acetabular fracture including age, sex, BMI, preoperative diagnosis, additional dome screw fixation, composition and size of each

  16. Occult cancer detection in patients with hemostatic disorder and venous thromboembolism.

    PubMed

    Husseinzadeh, Holleh; Carrier, Marc

    2018-03-01

    There are physiologic ties between Von Willebrand Factor (VWF) and circulating tumor cells. VWF appears to play a role in tumor biology, but it is unclear whether cancer behavior differs in Von Willebrand Disease. In patients presenting with venous thromboembolism (VTE), occult cancer is frequently considered as an underlying cause. The prevalence of occult cancer after provoked VTE is low (3%); therefore, cancer screening in these patients is not routinely recommended. In those with unprovoked VTE, occult cancer is more prevalent, estimated between 4 and 10%. Due to this elevated risk, occult cancer screening is recommended in this population. Multiple studies have investigated whether a "limited" approach (including history and physical exam, basic labs, and chest X-ray) versus "extensive" approach (addition of advanced imaging, such as computer tomography) is more effective. Current data fails to demonstrate extensive screening strategies diagnose more occult cancer, miss fewer cancers during follow up, or improve cancer-related mortality. Furthermore, many patients may be needlessly exposed to unnecessary diagnostic procedures with their associated complications and costs, as well as significant anxiety. Therefore, the decision to perform additional testing should be made on a case-by-case basis. Additional studies are needed to identify subgroups of patients with unprovoked VTE at highest risk for occult cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Astrometry of Single-Chord Occultations: Application to the 1993 Triton Event

    NASA Technical Reports Server (NTRS)

    Olkin, Catherine B.; Elliot, J. L.; Bus, Schelte J.; McDonald, Stephen W.; Dahn, Conrad C.

    1996-01-01

    This paper outlines a method for reducing astrometric data to derive the closest approach time and distance to the center of an occultation shadow for a single observer. The method applies to CCD frames, strip scans or photographic plates and uses a set of field stars of unknown positions to define a common coordinate system for all frames. The motion of the occulting body is used to establish the transformation between this common coordinate system and the celestial coordinate system of the body's ephemeris. This method is demonstrated by application to the Tr6O occultation by Triton on 1993 July 10 UT. Over an interval of four nights that included the occultation time, 80 frames of Triton and Tr6O were taken near the meridian with the U.S. Naval Observatory (USNO) 61-inch astrometric reflector. Application of the method presented here to these data yields a closest approach distance of 359 +/- 133 km (corresponding to 0.017 +/- 0.006 arcsec) for the occultation chord obtained with the Kuiper Airborne Observatory (KAO). Comparison of the astrometric closest approach time with the KAO light-curve midtime shows a difference of 2.2 +/- 4.1 s. Relative photometry of Triton and Tr6O, needed for photometric calibration of the occultation light curve, is also presented.

  18. Crustal structure of the Central-Eastern Greenland: results from the TopoGreenland refraction profile

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Thybo, Hans

    2014-05-01

    Until present, seismic surveys have only been carried out offshore and near the coasts of Greenland, where the crustal structure is affected by oceanic break-up. We present the deep seismic structure of the crust of the interior of Greenland, based on the new and the only existing so far seismic refraction/wide-angle reflection profile. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass, made acquisition of geophysical data logistically complicated. The profile extends 310 km inland in E-W direction from the approximate edge of the stable ice cap near the Scoresby Sund across the center of the ice cap. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Given that the data acquisition was affected by the thick ice sheet, we questioned the quality of seismic records in such experiment setup. We have developed an automatic routine to check the amplitudes and spectra of the selected seismic phases and to check the differences/challenges in making seismic experiments on ice and the effects of ice on data interpretation. Using tomographic inversion and forward ray tracing modelling we have obtained the two-dimensional velocity model down to a 50 km depth. The model shows a decrease of crustal thickness from 47 km below the centre of Greenland in the western part of the profile to 40 km in its eastern part. Relatively high lower crustal velocities (Vp 6.8 - 7.3 km/s) in the western part of the TopoGreenland profile may result from past collision tectonics or, alternatively, may be related to the speculated passage of the Iceland mantle plume. Comparison of our results

  19. [Occultism, parapsychology and the esoteric from the perspective of psychopathology].

    PubMed

    Scharfetter, C

    1998-10-01

    The concepts and main themes of occultism, parapsychology and esoterics are set in comparison to religion, spirituality, mysticism. The cultural relativity of these concepts is emphasised. Occultism means dealing with phenomena, processes, and/or powers which are not accessible to "normal perception". The manipulation of such powers is effected via (white, black, grey) magic. Parapsychology, in its popular sense, deals with occult phenomena, whereas scientific parapsychology investigates them empirically. Esoterics is a complex of beliefs within a hermetic tradition about occult processes and about desting after death. Transpersonal psychology deals with these issues while calling them "spiritual". Effects of paranormal experiences and actions on the side of the actor as well as the adept are discussed: personality types, interpersonal effects, crises and psychoses (mediumistic psychoses). The concept of dissociation of subpersonalities (subselves) appears to be a viable perspective to explain these phenomena. In mediumistic psychoses, the splitting of non-ego parts of the psyche leads to a manifestation of schizophrenic symptoms. Dangers for mental health are an ego inflation by self-attribution of "superhuman" power. A personality disposition for parapsychological perception and/or action may be seen in schizotypia and similar near-psychotic "personalities up the border". Adepts of occultism may present with a "false self" in the sense of Winnicott.

  20. Refraction effects on the Galileo probe telemetry carrier frequency

    NASA Technical Reports Server (NTRS)

    Atkinson, D. H.; Spilker, T. R.

    1991-01-01

    As the Galileo probe relay radio link (RRL) signal propagates outward through the Jovian atmosphere, the atmosphere will manifest itself in two ways. First, the geometric path length of the signal is increased, resulting in a small change of the RRL signal departure angle from the proble (transmitter). Secondly, the velocity of the signal is decreased. For a spherical, static atmosphere with a known profile of refractivity versus altitude the effects of refraction on the RRL frequency can be found using a variation of standard ray-tracing techniques, whereby the ray departure angle is found by an iterative process. From the dispersive characteristics of a mixture of hydrogen and helium with trace amounts of methane and ammonia a simple model of the Jovian atmosphere is constructed assuming spherical symmetry and uniform mixing. The contribution to the RRL Doppler frequency arising from refraction is calculated, and its effect on the Doppler wind measurements is discussed.

  1. McDonald's and the Occult.

    ERIC Educational Resources Information Center

    Singer, Barry

    1979-01-01

    Discusses "occult" and "paranormal" literature which is often mistaken for nonfiction. Suggests that most publishers are unwilling to publish scientific perspectives on the paranormal because such writings would be unmarketable. Journal availability: see SO 507 190. (KC)

  2. ACCURATE: Influence of Cloud Layers and Aerosol on Infrared Laser Occultation Signals for Sensing of Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Proschek, V.; Schweitzer, S.; Emde, C.; Ladstädter, F.; Fritzer, J.; Kirchengast, G.

    2009-04-01

    ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer), a new climate satellite concept, enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the well-studied but not yet flown LEO-LEO microwave occultation (LMO) technique. As intrinsic to the space-borne occultation technique, the measurements are evenly distributed around the world, have high vertical resolution and high accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 m in the case of ACCURATE) which are absorbed by various trace species in the Earth's atmosphere. From signal transmission measurements, profiles of the concentration of the absorbing species can be derived given that temperature and pressure are accurately known from LMO. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O) with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction and scintillation strength. This contribution presents an overview on the ACCURATE mission design and the expected accuracy of retrieved atmospheric variables and further focuses on the influence of clouds and aerosols on propagating LIO signals. Special emphasis will be given to sub-visible cirrus clouds which are semi-transparent to infrared signals. A simple frequency dependent cloud extinction parametrization was included into the occultation propagation software EGOPS and evaluated against results of the

  3. Refractive errors.

    PubMed

    Schiefer, Ulrich; Kraus, Christina; Baumbach, Peter; Ungewiß, Judith; Michels, Ralf

    2016-10-14

    All over the world, refractive errors are among the most frequently occuring treatable distur - bances of visual function. Ametropias have a prevalence of nearly 70% among adults in Germany and are thus of great epidemiologic and socio-economic relevance. In the light of their own clinical experience, the authors review pertinent articles retrieved by a selective literature search employing the terms "ametropia, "anisometropia," "refraction," "visual acuity," and epidemiology." In 2011, only 31% of persons over age 16 in Germany did not use any kind of visual aid; 63.4% wore eyeglasses and 5.3% wore contact lenses. Refractive errors were the most common reason for consulting an ophthalmologist, accounting for 21.1% of all outpatient visits. A pinhole aperture (stenopeic slit) is a suitable instrument for the basic diagnostic evaluation of impaired visual function due to optical factors. Spherical refractive errors (myopia and hyperopia), cylindrical refractive errors (astigmatism), unequal refractive errors in the two eyes (anisometropia), and the typical optical disturbance of old age (presbyopia) cause specific functional limitations and can be detected by a physician who does not need to be an ophthalmologist. Simple functional tests can be used in everyday clinical practice to determine quickly, easily, and safely whether the patient is suffering from a benign and easily correctable type of visual impairment, or whether there are other, more serious underlying causes.

  4. A radio source occultation experiment with comet Austin 1982g, with unusual results

    NASA Technical Reports Server (NTRS)

    De Pater, I.; Ip, W.-H.

    1984-01-01

    A radio source occultation by comet Austin 1982g was observed on September 15-16, 1982. A change in the apparent position of 1242 + 41 by 1.3 arcsec occurred when the source was 220,000 km away from the cometary ion tail. If this change was due to refraction by the cometary plasma, it indicates an electron density of the plasma of about 10,000/cu cm. When the radio source was on the other side of the plasma tail, at a distance of 230,000 km, the position angle of the electric vector of the radio source changed gradually over about 140 deg within two hours. This observation cannot be explained in terms of ionospheric Faraday rotation, and results from either an intrinsic change in the radio source or Faraday rotation in the cometary plasma due to a change in the direction and/or strength of the magnetic field. In the latter case, the cometary coma must have an electron density and a magnetic field strength orders of magnitude larger than current theories predict.

  5. Changes in Pluto's Atmosphere Revealed by Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Widemann, Thomas; Lellouch, Emmanuel; Veillet, Christian; Colas, Francois; Roques, Francoise; Beisker, Wolfgang; Kretlow, Mike; Cuillandre, Jean-Charles; Hainaut, Olivier

    After the discovery and study of Pluto's tenuous atmosphere in 1985 and 1988 with stellar occultations 14 years were necessary before two other occultations by the planet could be observed on 20 July 2002 and 21 August 2002 from Northern Chile with a portable telescope and from CFHT in Hawaii respectively. These occultations reveal drastric changes in Pluto's nitrogen atmosphere whose pressure increased by a factor two or more since 1988. In spite of an increasing distance to the Sun (and a correlated decrease of solar energy input at Pluto) this increase can be explained by the fact that Pluto's south pole went from permanent darkness to permanent illumination between 1988 and 2002. This might cause the sublimation of the south polar cap and the increase of pressure which could go on till 2015 according to current nitrogen cycle models. Furthermore we detect temperature contrasts between the polar and the equatorial regions probed on Pluto possibly caused by different diurnally averaged insolations at those locations. Finally spikes observed in the light curves reveal a dynamical activity in Pluto's atmosphere.

  6. Prevalence of occult inflammatory bowel disease in ankylosing spondylitis.

    PubMed Central

    Costello, P B; Alea, J A; Kennedy, A C; McCluskey, R T; Green, F A

    1980-01-01

    Fifty-five patients with ankylosing spondylitis and 16 control patients matched for sex and age were examined for evidence of occult inflammatory bowel disease. In all patients evaluation included history and physical examination, barium enema, sigmoidoscopy, and rectal biopsy. The results of this study suggest that there is no increased prevalence of occult inflammatory bowel disease in patients with ankylosing spondylitis. PMID:7436576

  7. Prevalence of occult inflammatory bowel disease in ankylosing spondylitis.

    PubMed

    Costello, P B; Alea, J A; Kennedy, A C; McCluskey, R T; Green, F A

    1980-10-01

    Fifty-five patients with ankylosing spondylitis and 16 control patients matched for sex and age were examined for evidence of occult inflammatory bowel disease. In all patients evaluation included history and physical examination, barium enema, sigmoidoscopy, and rectal biopsy. The results of this study suggest that there is no increased prevalence of occult inflammatory bowel disease in patients with ankylosing spondylitis.

  8. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    NASA Astrophysics Data System (ADS)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  9. New advances in amblyopia therapy II: refractive therapies.

    PubMed

    Kraus, Courtney L; Culican, Susan M

    2018-06-05

    The treatment of anisometropic or ametropic amblyopia has traditionally enjoyed a high treatment success rate. Early initiation and consistent use of spectacle correction can completely resolve amblyopia in a majority of patients. For those with anisometropic amblyopia that fail to improve with glasses wear alone, patching or atropine penalisation can lead to equalisation of visual acuity. However, successful treatment requires full-time compliance with refractive correction and this can be a challenge for a patient population that often has one eye with good acuity without correction. Other barriers for a select population with high anisometropic or ametropic amblyopia include rejection of glasses for various reasons including discomfort, behavioural or sensory problems, postural issues and visually significant aniseikonia. When consistent wear of optical correction proves difficult and patching/atropine remains a major obstacle, surgical correction of refractive error has proven success in achieving vision improvement. Acting as a means to achieve spectacle independence or reducing the overall needed refractive correction, refractive surgery can offer a unique treatment option for this patient population. Laser surgery, phakic intraocular lenses and clear lens exchange are three approaches to altering the refractive state of the eye. Each has documented success in improving vision, particularly in populations where glasses wear has not been possible. Surgical correction of refractive error has a risk profile greater than that of more traditional therapies. However, its use in a specific population offers the opportunity for improving visual acuity in children who otherwise have poor outcomes with glasses and patching/atropine alone. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Observational Constraints on the Water Vapor Feedback Using GPS Radio Occultations

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Fetzer, E. J.

    2016-12-01

    The air refractive index at L-band frequencies depends on the air's density and water vapor content. Exploiting these relationships, we derive a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. Current research indicates that GPS RO data sets can capture the amount of water vapor in very dry and very moist air more efficiently than other observing platforms, possibly suggesting larger water vapor feedback than previously known. Inter-comparing the dq/dTs among different data sets will provide us with additional constraints on the water vapor feedback. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated using Atmospheric Infrared Sounder (AIRS) and NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data sets. In particular, the GPS RO-derived dq/dTs is larger by 6% than that estimated using the AIRS data set. This agrees with past evidence that AIRS may be dry-biased in the upper troposphere. Compared to the MERRA estimations, the GPS RO-derived dq/dTs is 10% smaller, also agreeing with previous results that show that MERRA may have a wet bias in the upper troposphere. Because of their high sensitivity to fractional changes in water vapor, and their inherent long-term accuracy, current and future GPS RO observations show great promise in monitoring climate feedbacks and their trends.

  11. Lunar occultation of Saturn. IV - Astrometric results from observations of the satellites

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.; Elliot, J. L.

    1978-01-01

    The method of determining local lunar limb slopes, and the consequent time scale needed for diameter studies, from accurate occultation timings at two nearby telescopes is described. Results for photoelectric observations made at Mauna Kea Observatory during the occultation of Saturn's satellites on March 30, 1974, are discussed. Analysis of all observations of occultations of Saturn's satellites during 1974 indicates possible errors in the ephemerides of Saturn and its satellites.

  12. Pluto's Atmospheric Figure from the P131.1 Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Elliot, J. L.; Clancy, K. B.; Kern, S. D.; Salyk, C. V.; Tholen, D. J.; Pasachoff, J. M.; Babcock, B. A.; Souza, S. P.; Ticehurst, D. R.; Hall, D.; Roberts, L. C., Jr.; Bosh, A. S.; Buie, M. W.; Dunham, E. W.; Olkin, C. B.; Taylor, B.; Levine, S. E.; Eikenberry, S. S.; Moon, D.-S.; Osip, D. J.

    2003-05-01

    The stellar occultation by Pluto of the 15th magnitude star designated P131.1 (McDonald and Elliot, AJ, 119, 1999) on 2002 August 21 (UT) provided the first significant chance to compare Pluto's atmospheric structure to that determined from the 1988 occultation of P8 (Millis, et al., Icarus, 105, 282). The P131.1 occultation was observed from several stations in Hawaii and the western United States (Elliot et al., Nature, in press, 2003). Numerous occultation chords were obtained enabling us to examine Pluto's atmospheric figure. The light curves from the observations were analyzed together in the occultation coordinate system of Elliot et al., (AJ, 106, 2544). The Mauna Kea and Lick datasets straddle the center of Pluto's figure, providing strong constraints on model fits to cross sections of the atmospheric shape. In 1988, Millis (et al., Icarus, 105, 282) did not report any deviation from sphericity in Pluto's atmospheric figure. From the 2002 data, Pluto;s isobars at the radii probed by the occultation ( 1250 km) appear to be distorted from a circular cross-section. Least-squares fits to this cross-section by elliptical models reveal ellipticities in the range 0.05-0.08 although the shape may be more complex than ellipsoidal. The orientation of the distortion appears uncorrelated with Pluto;s rotational axis. Taken at face value, this ellipticity could imply wind speeds of up to twice the sonic speed ( 200 m/s), which would be difficult to explain. Similar distortions have been reported for Triton's atmosphere (Elliot, J. L., et al., Icarus 148, 347). This work has been supported in part by Research Corporation, the Air Force Research Laboratory, NSF, and NASA.

  13. Refractive Errors

    MedlinePlus

    ... and lens of your eye helps you focus. Refractive errors are vision problems that happen when the shape ... cornea, or aging of the lens. Four common refractive errors are Myopia, or nearsightedness - clear vision close up ...

  14. Refraction test

    MedlinePlus

    ... purpose is to determine whether you have a refractive error (a need for glasses or contact lenses). For ... glasses or contact lenses) is normal, then the refractive error is zero (plano) and your vision should be ...

  15. Detection of occult endocervical glandular dysplasia in cervical conization specimens for squamous lesions.

    PubMed

    Sopracordevole, F; Clemente, N; Alessandrini, L; Di Giuseppe, J; Cigolot, F; Buttignol, M; Ciavattini, A; Canzonieri, V

    2017-03-01

    The aim of this work was to evaluate the incidence of occult cervical glandular intraepithelial neoplasia (CGIN) and adenocarcinoma of the cervix (AC) in women treated with CO2-laser conization for cervical intraepithelial neoplasia (CIN) or squamocellular cervical cancer (SCC). The medical records of all women with a histological diagnosis of squamous lesions of the uterine cervix (persistent CIN1, CIN2, CIN3 and SCC) who were subsequently treated with CO2-laser conization at our institution, during the period from January 1991 to December 2014, were analyzed in a retrospective case series. Among the 1004 women fulfilling the study inclusion/exclusion criteria, 77 cases (7.7%) of occult glandular lesions (CGIN and AC) were detected on the final cone specimen (48 cases of occult low-grade cervical glandular intraepithelial neoplasia (LCGIN), 25 cases of occult high-grade cervical glandular intraepithelial neoplasia (HCGIN), and four cases of occult "usual-type" AC). No difference in the mean age between women diagnosed with occult glandular lesions and women without occult glandular lesions on the final specimen emerged (39.1±9.3 vs 38.4±9.4, p=0.5). In women with occult LCGIN on cone specimen, mean follow-up of 48 months was reported (range 7-206 months) and no cases of progression to HCGIN or AC were observed. In conclusion, a relatively high rate of occult glandular lesions was found in women treated for squamous lesions. The natural history of CGIN is still uncertain and, in particular, there are some controversies as to whether LCGIN is a precursor lesion of HCGIN or AC. In this context the role of pathologists become very important since the appropriate diagnosis of these lesions could have potential implications in the clinical management of these patients. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Quantification of scaling exponents and dynamical complexity of microwave refractivity in a tropical climate

    NASA Astrophysics Data System (ADS)

    Fuwape, Ibiyinka A.; Ogunjo, Samuel T.

    2016-12-01

    Radio refractivity index is used to quantify the effect of atmospheric parameters in communication systems. Scaling and dynamical complexities of radio refractivity across different climatic zones of Nigeria have been studied. Scaling property of the radio refractivity across Nigeria was estimated from the Hurst Exponent obtained using two different scaling methods namely: The Rescaled Range (R/S) and the detrended fluctuation analysis(DFA). The delay vector variance (DVV), Largest Lyapunov Exponent (λ1) and Correlation Dimension (D2) methods were used to investigate nonlinearity and the results confirm the presence of deterministic nonlinear profile in the radio refractivity time series. The recurrence quantification analysis (RQA) was used to quantify the degree of chaoticity in the radio refractivity across the different climatic zones. RQA was found to be a good measure for identifying unique fingerprint and signature of chaotic time series data. Microwave radio refractivity was found to be persistent and chaotic in all the study locations. The dynamics of radio refractivity increases in complexity and chaoticity from the Coastal region towards the Sahelian climate. The design, development and deployment of robust and reliable microwave communication link in the region will be greatly affected by the chaotic nature of radio refractivity in the region.

  17. Ground Support Network for Operational Radio Occultation Missions

    NASA Astrophysics Data System (ADS)

    Zandbergen, R.; Enderle, W.; Marquardt, C.; Wollenweber, F.

    2012-04-01

    The EUMETSAT/ESA Metop/EPS GRAS radio occultation mission stands out for its operational nature. From the beginning, EUMETSAT has decided to rely on an operational system for provision of the auxiliary GPS products that are needed in the occultation processing. This system is the GRAS Ground Support Network (GSN), operated in the Navigation Facility of ESOC in Darmstadt, which was first presented at EGU in 2008. The GRAS GSN is driven primarily by timeliness, availability and accuracy requirements. The performance of the GSN, measured on a monthly basis, has not only consistently met these requirements since the start of its operations, but has also been improved through several system enhancements. Currently, an additional service is being delivered on an experimental basis, consisting of a near-real time Navigation Bit Stream product, which will allow the processing of open-loop data, further increasing the scientific return of the GRAS instrument, or any other radio occultation mission using this data. This paper will present the GRAS GSN in its current configuration, and demonstrate its excellent performance in terms of accuracy, availability and timeliness. The application of the bit stream data will be shown. Some future evolution perspectives of the GRAS GSN will also be addressed. It will be demonstrated that the GRAS GSN has the potential of serving also other present and future radio occultation missions.

  18. Impact of fecal occult blood on obscure gastrointestinal bleeding: Observational study

    PubMed Central

    Kobayashi, Yuka; Watabe, Hirotsugu; Yamada, Atsuo; Suzuki, Hirobumi; Hirata, Yoshihiro; Yamaji, Yutaka; Yoshida, Haruhiko; Koike, Kazuhiko

    2015-01-01

    AIM: To elucidate the association between small bowel diseases (SBDs) and positive fecal occult blood test (FOBT) in patients with obscure gastrointestinal bleeding (OGIB). METHODS: Between February 2008 and August 2013, 202 patients with OGIB who performed both capsule endoscopy (CE) and FOBT were enrolled (mean age; 63.6 ± 14.0 years, 118 males, 96 previous overt bleeding, 106 with occult bleeding). All patients underwent immunochemical FOBTs twice prior to CE. Three experienced endoscopists independently reviewed CE videos. All reviews and consensus meeting were conducted without any information on FOBT results. The prevalence of SBDs was compared between patients with positive and negative FOBT. RESULTS: CE revealed SBDs in 72 patients (36%). FOBT was positive in 100 patients (50%) and negative in 102 (50%). The prevalence of SBDs was significantly higher in patients with positive FOBT than those with negative FOBT (46% vs 25%, P = 0.002). In particular, among patients with occult OGIB, the prevalence of SBDs was higher in positive FOBT group than negative FOBT group (45% vs 18%, P = 0.002). On the other hand, among patients with previous overt OGIB, there was no significant difference in the prevalence of SBDs between positive and negative FOBT group (47% vs 33%, P = 0.18). In disease specific analysis among patients with occult OGIB, the prevalence of ulcer and tumor were higher in positive FOBT group than negative FOBT group. In multivariate analysis, only positive FOBT was a predictive factors of SBDs in patients with OGIB (OR = 2.5, 95%CI: 1.4-4.6, P = 0.003). Furthermore, the trend was evident among patients with occult OGIB who underwent FOBT on the same day or a day before CE. The prevalence of SBDs in positive vs negative FOBT group were 54% vs 13% in patients with occult OGIB who underwent FOBT on the same day or the day before CE (P = 0.001), while there was no significant difference between positive and negative FOBT group in those who underwent

  19. Impact of fecal occult blood on obscure gastrointestinal bleeding: observational study.

    PubMed

    Kobayashi, Yuka; Watabe, Hirotsugu; Yamada, Atsuo; Suzuki, Hirobumi; Hirata, Yoshihiro; Yamaji, Yutaka; Yoshida, Haruhiko; Koike, Kazuhiko

    2015-01-07

    To elucidate the association between small bowel diseases (SBDs) and positive fecal occult blood test (FOBT) in patients with obscure gastrointestinal bleeding (OGIB). Between February 2008 and August 2013, 202 patients with OGIB who performed both capsule endoscopy (CE) and FOBT were enrolled (mean age; 63.6 ± 14.0 years, 118 males, 96 previous overt bleeding, 106 with occult bleeding). All patients underwent immunochemical FOBTs twice prior to CE. Three experienced endoscopists independently reviewed CE videos. All reviews and consensus meeting were conducted without any information on FOBT results. The prevalence of SBDs was compared between patients with positive and negative FOBT. CE revealed SBDs in 72 patients (36%). FOBT was positive in 100 patients (50%) and negative in 102 (50%). The prevalence of SBDs was significantly higher in patients with positive FOBT than those with negative FOBT (46% vs 25%, P = 0.002). In particular, among patients with occult OGIB, the prevalence of SBDs was higher in positive FOBT group than negative FOBT group (45% vs 18%, P = 0.002). On the other hand, among patients with previous overt OGIB, there was no significant difference in the prevalence of SBDs between positive and negative FOBT group (47% vs 33%, P = 0.18). In disease specific analysis among patients with occult OGIB, the prevalence of ulcer and tumor were higher in positive FOBT group than negative FOBT group. In multivariate analysis, only positive FOBT was a predictive factors of SBDs in patients with OGIB (OR = 2.5, 95%CI: 1.4-4.6, P = 0.003). Furthermore, the trend was evident among patients with occult OGIB who underwent FOBT on the same day or a day before CE. The prevalence of SBDs in positive vs negative FOBT group were 54% vs 13% in patients with occult OGIB who underwent FOBT on the same day or the day before CE (P = 0.001), while there was no significant difference between positive and negative FOBT group in those who underwent FOBT two or more days

  20. Uncorrected refractive errors.

    PubMed

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  1. Uncorrected refractive errors

    PubMed Central

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship. PMID:22944755

  2. Scaled model guidelines for solar coronagraphs' external occulters with an optimized shape.

    PubMed

    Landini, Federico; Baccani, Cristian; Schweitzer, Hagen; Asoubar, Daniel; Romoli, Marco; Taccola, Matteo; Focardi, Mauro; Pancrazzi, Maurizio; Fineschi, Silvano

    2017-12-01

    One of the major challenges faced by externally occulted solar coronagraphs is the suppression of the light diffracted by the occulter edge. It is a contribution to the stray light that overwhelms the coronal signal on the focal plane and must be reduced by modifying the geometrical shape of the occulter. There is a rich literature, mostly experimental, on the appropriate choice of the most suitable shape. The problem arises when huge coronagraphs, such as those in formation flight, shall be tested in a laboratory. A recent contribution [Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757] provides the guidelines for scaling the geometry and replicate in the laboratory the flight diffraction pattern as produced by the whole solar disk and a flight occulter but leaves the conclusion on the occulter scale law somehow unjustified. This paper provides the numerical support for validating that conclusion and presents the first-ever simulation of the diffraction behind an occulter with an optimized shape along the optical axis with the solar disk as a source. This paper, together with Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757, aims at constituting a complete guide for scaling the coronagraphs' geometry.

  3. Characterization of the occult nature of injury for frequently occurring motor vehicle crash injuries.

    PubMed

    Schoell, Samantha L; Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Winslow, James E; Stitzel, Joel D

    2017-01-01

    Occult injuries are not easily detected and can be potentially life-threatening. The purpose of this study was to quantify the perceived occultness of the most frequent motor vehicle crash injuries according to emergency medical services (EMS) professionals. An electronic survey was distributed to 1,125 EMS professionals who were asked to quantify the likelihood that first responders would miss symptoms related to a particular injury on a 5-point Likert scale. The Occult Score for each injury was computed from the average of all the survey responses and normalized to be a continuous metric ranging from 0 to 1 where 0 is a non-occult (highly apparent on initial presentation) injury and 1 is an occult (unapparent on initial presentation) injury. Overall, 110,671 survey responses were collected. The Occult Score ranged from 0 to 1 with a mean, median, and standard deviation of 0.443, 0.450, and 0.233, respectively. When comparing the Occult Score of an injury to its corresponding AIS severity, there was no relationship between the metrics. When stratifying by body region, injury type, and AIS severity, it was evident that AIS 2-4 abdominal injuries with lacerations, hemorrhage, or contusions were perceived as the most occult injuries. Timely triage is key to reduce the morbidity and mortality associated with occult injuries. The Occult Score developed in this study to describe the predictability of an injury in a motor vehicle crash will be used as part of a larger effort, including incorporation into an advanced automatic crash notification (AACN) algorithm to detect crash conditions associated with a patient's need for prompt treatment at a trauma center. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Reproducibility of manifest refraction between surgeons and optometrists in a clinical refractive surgery practice.

    PubMed

    Reinstein, Dan Z; Yap, Timothy E; Carp, Glenn I; Archer, Timothy J; Gobbe, Marine

    2014-03-01

    To measure and compare the interobserver reproducibility of manifest refraction according to a standardized protocol for normal preoperative patients in a refractive surgery practice. Private clinic, London, United Kingdom. Retrospective case series. This retrospective study comprised patients attending 2 preoperative refractions before laser vision correction. The first manifest refraction was performed by 1 of 7 optometrists and the second manifest refraction by 1 of 2 surgeons, all trained using a standard manifest refraction protocol. Spherocylindrical data were converted into power vectors for analysis. The dioptric power differences between observers were calculated and analyzed. One thousand nine hundred twenty-two consecutive eyes were stratified into a myopia group and a hyperopia group and then further stratified by each surgeon-optometrist combination. The mean surgeon-optometrist dioptric power difference was 0.21 diopter (D) (range 0.15 to 0.32 D). The mean difference in spherical equivalent refraction was 0.03 D, with 95% of all refractions within ±0.44 D for all optometrist-surgeon combinations. The severity of myopic or hyperopic ametropia did not affect the interobserver reproducibility of the manifest refraction. There was close agreement in refraction between surgeons and optometrists using a standard manifest refraction protocol of less than 0.25 D. This degree of interobserver repeatability is similar to that in intraobserver repeatability studies published to date and may represent the value of training and the use of a standard manifest refraction protocol between refraction observers in a refractive surgery practice involving co-management between surgeons and optometrists. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Information content in reflected signals during GPS Radio Occultation observations

    NASA Astrophysics Data System (ADS)

    Aparicio, Josep M.; Cardellach, Estel; Rodríguez, Hilda

    2018-04-01

    The possibility of extracting useful information about the state of the lower troposphere from the surface reflections that are often detected during GPS radio occultations (GPSRO) is explored. The clarity of the reflection is quantified, and can be related to properties of the surface and the low troposphere. The reflected signal is often clear enough to show good phase coherence, and can be tracked and processed as an extension of direct non-reflected GPSRO atmospheric profiles. A profile of bending angle vs. impact parameter can be obtained for these reflected signals, characterized by impact parameters that are below the apparent horizon, and that is a continuation at low altitude of the standard non-reflected bending angle profile. If there were no reflection, these would correspond to tangent altitudes below the local surface, and in particular below the local mean sea level. A forward operator is presented, for the evaluation of the bending angle of reflected GPSRO signals, given atmospheric properties as described by a numerical weather prediction system. The operator is an extension, at lower impact parameters, of standard bending angle operators, and reproduces both the direct and reflected sections of the measured profile. It can be applied to the assimilation of the reflected section of the profile as supplementary data to the direct section. Although the principle is also applicable over land, this paper is focused on ocean cases, where the topographic height of the reflecting surface, the sea level, is better known a priori.

  6. Enabling Narrow(est) IWA Coronagraphy with STIS BAR5 and BAR10 Occulters

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; Gaspar, Andras; Debes, John; Gull, Theodore; Hines, Dean; Apai, Daniel; Rieke, George

    2017-09-01

    The Space Telescope Imaging Spectrograph's (STIS) BAR5 coronagraphic occulter was designed to provide high-contrast, visible-light, imaging in close (> 0.15") angular proximity to bright point-sources. We explored and verified the functionality and utility of the BAR5 occulter. We also investigated, and herein report on, the use of the BAR10 rounded corners as narrow-angle occulters and compare IWA vs. contrast performance for the BAR5, BAR10, and Wedge occulters. With that, we provide recommendations for the most efficacious BAR5 and BAR10 use on-orbit in support of GO science.

  7. Occult Klebsiella pneumoniae bacteremia at emergency department: A single center experience.

    PubMed

    Chang, Eileen Kevyn; Kao, Kai-Liang; Tsai, Mao-Song; Yang, Chia-Jui; Huang, Yu-Tsung; Liu, Chia-Ying; Liao, Chun-Hsing

    2015-12-01

    Patients with undetected bacteremia when discharged from a hospital are considered to have occult bacteremia. Klebsiella pneumoniae bacteremia (KPB) is endemic to Taiwan. Our purpose was to study the impact of occult KPB. We retrospectively reviewed the records of patients who were discharged from our emergency department (ED) and subsequently diagnosed with KPB (occult bacteremia), from January 2008 to March 2014. All patients are followed for at least 3 months after the index ED visit. The study group was compared to KPB patients who were directly hospitalized (DH) from ED in 2008. Thirty-day mortality was the primary endpoint. A total of 913 patients were admitted to our ED with KPB, and 88 of these patients (9.6%) had occult KPB. Among them, 43 had second ED visit and 41 were admitted. The overall 30-day mortality was 2.3%. Relative to patients with occult KPB, DH patients had more respiratory tract infections (p < 0.001) but fewer other intra-abdominal infections (p = 0.015). Liver abscess was the major diagnosis for the second ED visit (37.2%). DH patients had significantly greater 30-day mortality than that of overall patients with KPB (19.2% vs.2.3%, p < 0.001). Most patients with occult KPB had favorable outcomes, but about half of them required a second ED visit. Clinicians should aggressively follow patients with occult KPB and should seek to identify the focus of infection in this endemic area. Copyright © 2015. Published by Elsevier B.V.

  8. Occult HBV infection in HIV-infected adults and evaluation of pooled NAT for HBV.

    PubMed

    Dinesha, T R; Boobalan, J; Sivamalar, S; Subashini, D; Solomon, S S; Murugavel, K G; Balakrishnan, P; Smith, D M; Saravanan, S

    2018-06-01

    The study aimed to determine the prevalence of occult hepatitis B virus infection among HIV-infected persons and to evaluate the use of a pooling strategy to detect occult HBV infection in the setting of HIV infection. Five hundred and two HIV-positive individuals were tested for HBV, occult HBV and hepatitis C and D with serologic and nucleic acid testing (NAT). We also evaluated a pooled NAT strategy for screening occult HBV infection among the HIV-positive individuals. The prevalence of HBV infection among HIV-positive individuals was 32 (6.4%), and occult HBV prevalence was 10%. The pooling HBV NAT had a sensitivity of 66.7% and specificity of 100%, compared to HBV DNA NAT of individual samples. In conclusion, this study found a high prevalence of occult HBV infection among our HIV-infected population. We also demonstrated that pooled HBV NAT is highly specific, moderately sensitive and cost-effective. As conventional HBV viral load assays are expensive in resource-limited settings such as India, pooled HBV DNA NAT might be a good way for detecting occult HBV infection and will reduce HBV-associated complications. © 2018 John Wiley & Sons Ltd.

  9. David Levy's Guide to Eclipses, Transits, and Occultations

    NASA Astrophysics Data System (ADS)

    Levy, David H.

    2010-08-01

    Introduction; Part I. The Magic and History of Eclipses: 1. Shakespeare, King Lear, and the Great Eclipse of 1605; 2. Three centuries later: Einstein, relativity, and the solar eclipse of 1919; 3. What causes solar and lunar eclipses; Part II. Observing Solar Eclipses: 4. Safety considerations; 5. What to expect during a partial eclipse; 6. Annular eclipses and what to see in them; 7. Total eclipse of the Sun: introduction to the magic; 8. The onset: temperature drop, Baily's Beads, Diamond Ring; 9. Totality: Corona, Prominences, Chromosphere, and surrounding area; 10. Photographing and imaging a solar eclipse; Part III. Observing Lunar Eclipses: 11. Don't forget the penumbral eclipses!; 12. Partial lunar eclipses; 13. Total lunar eclipses; 14. Photographing and imaging lunar eclipses; Part IV. Occultations: 15. When the Moon occults a star; Part V. Transits: 16. When planets cross the Sun; Part VI. My Favorite Eclipses: 17. A personal canon of eclipses, occultations, and transits I have seen; Appendices; Index.

  10. Occult traumatic hemothorax: when can sleeping dogs lie?

    PubMed

    Bilello, John F; Davis, James W; Lemaster, Deborah M

    2005-12-01

    Size of traumatic occult hemothorax on admission requiring drainage has not been defined. Computed axial tomography (CAT) may guide drainage criteria. A retrospective review of patients with hemothoraces on CAT was performed. Extrapolating previously described methods of pleural fluid measurement, hemothoraces were quantified using the fluid stripe in the dependent pleural "gutter." Data included patient age, injury severity, and intervention (thoracentesis or tube thoracostomy). Seventy-eight patients with 99 occult hemothoraces met the criteria for study inclusion: 52 hemothoraces qualified as "minimal" and 47 as "moderate/large." Eight patients (15%) in the minimal group and 31 patients (66%) in the moderate/large group underwent intervention (P < .001). There was no difference in patient age, injury severity, ventilator requirement, or presence of pulmonary contusion. CAT in stable blunt-trauma patients can predict which patients with occult hemothorax are likely to undergo intervention. Patients with hemothorax > or = 1.5 cm on CAT were 4 times more likely to undergo drainage intervention compared with those having hemothorax < 1.5 cm.

  11. Influence of stromal refractive index and hydration on corneal laser refractive surgery.

    PubMed

    de Ortueta, Diego; von Rüden, Dennis; Magnago, Thomas; Arba Mosquera, Samuel

    2014-06-01

    To evaluate the influence of the stromal refractive index and hydration on postoperative outcomes in eyes that had corneal laser refractive surgery using the Amaris laser system. Augenzentrum Recklinghausen, Recklinghausen, Germany. Comparative case series. At the 6-month follow-up, right eyes were retrospectively analyzed. The effect of the stromal refractive index and hydration on refractive outcomes was assessed using univariate linear and multilinear correlations. Sixty eyes were analyzed. Univariate linear analyses showed that the stromal refractive index and hydration were correlated with the thickness of the preoperative exposed stroma and was statistically different for laser in situ keratomileusis and laser-assisted subepithelial keratectomy treatments. Univariate multilinear analyses showed that the spherical equivalent (SE) was correlated with the attempted SE and stromal refractive index (or hydration). Analyses suggest overcorrections for higher stromal refractive index values and for lower hydration values. The stromal refractive index and hydration affected postoperative outcomes in a subtle, yet significant manner. An adjustment toward greater attempted correction in highly hydrated corneas and less intended correction in low hydrated corneas might help optimize refractive outcomes. Mr. Magnago and Dr. Arba-Mosquera are employees of and Dr. Diego de Ortueta is a consultant to Schwind eye-tech-solutions GmbH & Co. KG. Mr. Rüden has no financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.

    PubMed

    Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan

    2015-02-01

    Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating

  13. Occult Nodal Disease Prevalence and Distribution in Recurrent Laryngeal Cancer Requiring Salvage Laryngectomy.

    PubMed

    Birkeland, Andrew C; Rosko, Andrew J; Issa, Mohamad R; Shuman, Andrew G; Prince, Mark E; Wolf, Gregory T; Bradford, Carol R; McHugh, Jonathan B; Brenner, J Chad; Spector, Matthew E

    2016-03-01

    The indications for neck dissection concurrent with salvage laryngectomy in the clinically N0 setting remain unclear. Our goals were to determine the prevalence of occult nodal disease, analyze nodal disease distribution patterns, and identify predictors of occult nodal disease in a salvage laryngectomy cohort. Case series with planned data collection. Tertiary academic center. Patients with persistent or recurrent laryngeal squamous cell carcinoma (LSCC) after radiation/chemoradiation failure undergoing salvage laryngectomy with neck dissection. We analyzed a single-institution retrospective case series of patients between 1997 and 2014 and identified those who had clinically N0 (cN0) necks (n = 203). Clinical and pathologic data, including nodal prevalence and distribution, were collected and statistical analyses performed. Overall, cN0 necks had histologically positive occult nodes in 17% (n = 35) of cases. Univariate predictors of occult nodal positivity included recurrent T4 stage (34% T4 vs 12% non-T4; P = .0003) and supraglottic subsite (28% supraglottic vs 10% nonsupraglottic; P = .0006). Histologically positive nodes associated with supraglottic primaries were most frequently positive in ipsilateral levels II and III (17% and 16%). Positive nodes for glottic LSCC were most frequently positive in the ipsilateral and contralateral paratracheal nodes (11% and 9%). Histologically positive occult nodes are identified in 17% of cN0 patients undergoing salvage laryngectomy with neck dissection. Occult nodal disease varies in frequency and distribution based on tumor subsite. Predictors of high (>20%) occult nodal positivity include T4 tumors and supraglottic subsite. In glottic LSCC, the most frequent sites of occult nodal disease are the paratracheal nodal basins. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  14. Observations of the 8 December 1987 occultation of AG +40 deg 0783 by 324 Bamberga

    NASA Technical Reports Server (NTRS)

    Millis, R. L.; Wasserman, L. H.; Franz, O. G.; Bowell, E.; Nye, R. A.; Thompson, D. T.; White, N. M.; Hubbard, W. B.; Eplee, R. E., Jr.; Yeomans, D. K.

    1989-01-01

    The occultation of AG+40 deg 0783 by 324 Bamberga on 8 December 1987 was observed at 13 sites in the United States, Japan, and China. At four sites the event was observed photoelectrically; the other observations were visual. A least-squares fit of a circular limb profile to the data gives a diameter of 227.6 + or - 1.9 km. However, this solution is inconsistent with a negative visual observation near the northern edge of the ground track. The inconsistency cannot be removed by assuming an elliptical profile. The data suggest that Bamberga, despite its low-amplitude lightcurve, may depart significantly from a spherical or ellipsoidal shape. The asteroid also appears to be at least 10 percent smaller than indicated by infrared radiometry.

  15. Observations of the 8 December 1987 occultation of AG+40 deg 0783 by 324 Bamberga

    NASA Technical Reports Server (NTRS)

    Millis, R. L.; Wasserman, L. H.; Franz, O. G.; Bowell, E.; Nye, R. A.; Thompson, D. T.; White, N. M.; Hubbard, W. B.; Eplee, R. E., Jr.; Lebofsky, L. A.

    1988-01-01

    The occultation of AG+40 deg 0783 by 324 Bamberga on 8 December 1987 was observed at 13 sites in the United States, Japan, and China. At four sites the event was observed photoelectrically; the other observations were visual. A least-squares fit of a circular limb profile to the data gives a diameter of 227.6 + or - 1.9 km. However, this solution is inconsistent with a negative visual observation near the northern edge of the ground track. The inconsistency cannot be removed by assuming an elliptical profile. The data suggest that Bamberga, despite its low-amplitude lightcurve, may depart significantly from a spherical or ellipsoidal shape. The asteroid also appears to be at least 10 percent smaller than indicated by infrared radiometry.

  16. Adjustable internal structure for reconstructing gradient index profile of crystalline lens.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V; Pierscionek, Barbara K

    2014-03-01

    Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models. The refractive index profile assigned to this rotationally symmetric geometry is calculated numerically, yet it is shown that this does not limit the model. The study provides a basis for developing lens models with sophisticated external and internal structures without the need for analytical solutions to calculate refractive index profiles.

  17. Managing residual refractive error after cataract surgery.

    PubMed

    Sáles, Christopher S; Manche, Edward E

    2015-06-01

    We present a review of keratorefractive and intraocular approaches to managing residual astigmatic and spherical refractive error after cataract surgery, including laser in situ keratomileusis (LASIK), photorefractive keratectomy (PRK), arcuate keratotomy, intraocular lens (IOL) exchange, piggyback IOLs, and light-adjustable IOLs. Currently available literature suggests that laser vision correction, whether LASIK or PRK, yields more effective and predictable outcomes than intraocular surgery. Piggyback IOLs with a rounded-edge profile implanted in the sulcus may be superior to IOL exchange, but both options present potential risks that likely outweigh the refractive benefits except in cases with large residual spherical errors. The light-adjustable IOL may provide an ideal treatment to pseudophakic ametropia by obviating the need for secondary invasive procedures after cataract surgery, but it is not widely available nor has it been sufficiently studied. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Biopsy of CT-Occult Bone Lesions Using Anatomic Landmarks for CT Guidance.

    PubMed

    Hillen, Travis J; Talbert, Robert J; Friedman, Michael V; Long, Jeremiah R; Jennings, Jack W; Wessell, Daniel E; Baker, Jonathan C

    2017-07-01

    The purpose of this study is to evaluate the histopathologic diagnostic yield, sample size, procedural time, and dose-length product (DLP) for the biopsy of CT-occult lesions found at MRI or PET or both. A retrospective review of our radiology information system for biopsies of CT-occult lesions using CT guidance from January 1, 2010, through December 31, 2014, was performed and compared with a selection of CT-guided biopsies of CT-evident bone lesions during the same period. The data were then evaluated for diagnostic yield of histopathologic diagnosis, procedural time, use of sedation medication, DLP, and size of specimens obtained. A total of 30 CT-occult biopsies met the inclusion criteria. Twenty-seven of those biopsies had results that were concordant with the patient's primary histopathologic diagnosis, imaging findings, and clinical course. In the CT-evident lesion group, concordant histopathologic abnormalities were identified in 27 of 30 patients. There was a statistically significant increase in number of samples obtained for the CT-evident lesions compared with CT-occult lesions. There was no statistically significant difference in total specimen length, DLP, number of CT scans, procedural time, or use of sedation medication between the CT-occult and CT-evident biopsy groups. Biopsy of CT-occult lesions using anatomic landmarks achieves diagnostic yields similar to those for CT-guided biopsy of CT-evident lesions.

  19. Chemical Data Assimilation: A Case Study of Solar Occultation Data From the Atlas 1 Mission of the Atmospheric Trace Molecule Spectroscopy Experiment

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Khattatov, B.; Mussa, H.

    2003-01-01

    A key advantage of using data assimilation is the propagation of information from data-rich regions to data-poor regions, which is particularly relevant to the use of solar occultation data such as from ATMOS. For the first time an in depth uncertainty analyses is included in a photochemical model-data intercomparison including observation, representativeness, and theoretical uncertainty. Chemical data assimilation of solar occultation measurements can be used to reconstruct full diurnal cycles and to evaluate their chemical self-consistency. This paper considers as an example the measurements made by the Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) instrument Atlas-1 during March 1992 for a vertical profile flow tracking coordinates at an equivalent PV latitude of 38 S. ATMOS was chosen because it simultaneously observes several species. This equivalent PV latitude was chosen as it was where ATMOS n observed the atmosphere's composition over the largest range of altitudes. A single vertical profile was used so that the detailed diurnal information that assimilation utilizes could be highlighted. There is generally good self-consistency between the ATMOS Atlas-1 observations and photochemical theory.

  20. Laboratory Verification of Occulter Contrast Performance and Formation Flight

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan

    2014-01-01

    Direct imaging of an exo-Earth is a difficult technical challenge. First, the intensity ratio between the parent star and its dim, rocky planetary companion is expected to be ten billion times. Additionally, for a planetary companion in the habitable zone the angular separation to the star is very small, such that only nearby stars are feasible targets. An external occulter is a spacecraft that is flown in formation with the observing space telescope and blocks starlight prior to the entrance pupil. Its shape must be specially designed to control for diffraction and be tolerant of errors such as misalignment, manufacturing, and deformations. In this dissertation, we present laboratory results pertaining to the optical verification of the contrast performance of a scaled occulter and implementation of an algorithm for the alignment of the telescope in the shadow of the occulter. The experimental testbed is scaled from space dimensions to the laboratory by maintaining constant Fresnel numbers while preserving an identical diffraction integral. We present monochromatic results in the image plane showing contrast better than 10 orders of magnitude, consistent with the level required for imaging an Exo-earth, and obtained using an optimized occulter shape. We compare these results to a baseline case using a circular occulter and to the theoretical predictions. Additionally, we address the principal technical challenge in the formation flight problem through demonstration of an alignment algorithm that is based on out-of-band leaked light. Such leaked light can be used a map to estimate the location of the telescope in the shadow and perform fine alignment during science observations.

  1. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    PubMed

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  2. Occurrence of occult CSF leaks during standard FESS procedures.

    PubMed

    Bucher, S; Kugler, A; Probst, E; Epprecht, L; Stadler, R S; Holzmann, D; Soyka, M B

    2018-03-18

    To determine the incidence of occult cerebrospinal fluid leaks (CSF) after functional endoscopic sinus surgery (FESS) and to evaluate the diagnostic performance of beta2-transferrin in blood-contaminated conditions. Prospective cohort study. An analysis of 57 intraoperative samples using hydrogel 6 beta2-transferrin assay after FESS was undertaken. In case of CSF positive samples and continuing rhinorrhea, reanalysis after more than 1 year was conducted. In-vivo analysis of a primary spontaneous CSF leak sample took place to verify difficulties in detecting beta2-transferrin in blood-contaminated settings. Own titrations were performed to evaluate detection limits of CSF by beta2-transferrin and beta-trace protein assays in these settings. An incidence of 13% for occult CSF leaks after FESS was found. In blood-contaminated conditions, routine beta2-transferrin assays showed low sensitivity. In over 1 year follow-up, all samples were negative for CSF and none of them developed clinical relevant CSF leaks or meningitis. Occult and clinically irrelevant CSF leaks do occur in a significant proportion of patients during and shortly after FESS. Intra- and postoperatively, routine beta2-transferrin assays show low sensitivity. They should not be used in these settings. The clinical course of patients with occult CSF leaks indicated possibility of an uneventful follow-up.

  3. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.

    2015-08-10

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only amore » minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.« less

  4. Crustal structure of the Kermadec arc from MANGO seismic refraction profiles

    NASA Astrophysics Data System (ADS)

    Bassett, Dan; Kopp, Heidrun; Sutherland, Rupert; Henrys, Stuart; Watts, Anthony B.; Timm, Christian; Scherwath, Martin; Grevemeyer, Ingo; de Ronde, Cornel E. J.

    2016-10-01

    Three active-source seismic refraction profiles are integrated with morphological and potential field data to place the first regional constraints on the structure of the Kermadec subduction zone. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure previously known as the 32°S boundary. We use residual bathymetry to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the fore-arc with VP 6.5-7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110 ± 20 km), and strike ( 005° south of 25°S). South of the CKD the fore-arc is structurally homogeneous downdip with VP 5.7-7.3 km s-1. In the Havre Trough back-arc, crustal thickness south of the CKD is 8-9 km, which is up to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. We suggest that the Eocene arc did not extend along the current length of the Tonga-Kermadec trench. The Eocene arc was originally connected to the Three Kings Ridge, and the CKD was likely formed during separation and easterly translation of an Eocene arc substrate during the early Oligocene. We suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin and along-strike variations in the duration of arc volcanism.

  5. Optimization of the occulter for the Solar Orbiter/METIS coronagraph

    NASA Astrophysics Data System (ADS)

    Landini, Federico; Vivès, Sébastien; Romoli, Marco; Guillon, Christophe; Pancrazzi, Maurizio; Escolle, Clement; Focardi, Mauro; Antonucci, Ester; Fineschi, Silvano; Naletto, Giampiero; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Spadaro, Daniele

    2012-09-01

    METIS (Multi Element Telescope for Imaging and Spectroscopy investigation), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona, by means of an integrated instrument suite located on a single optical bench and sharing the same aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. Coronagraphs history teaches that a particular attention must be dedicated to the occulter optimization. The METIS occulting system is of particular interest due to its innovative concept. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. A breadboard of the occulting assembly (BOA) has been manufactured in order to perform stray light tests in front of two solar simulators (in Marseille, France and in Torino, Italy). A first measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe the BOA design, the laboratory set-up and the preliminary results.

  6. 3D refractive index measurements of special optical fibers

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  7. Forthcoming Occultations of Astrometric Radio Sources by Planets

    NASA Technical Reports Server (NTRS)

    L'vov, Victor; Malkin, Zinovy; Tsekmeister, Svetlana

    2010-01-01

    Astrometric observations of radio source occultations by solar system bodies may be of large interest for testing gravity theories, dynamical astronomy, and planetary physics. In this paper, we present an updated list of the occultations of astrometric radio sources by planets expected in the coming years. Such events, like solar eclipses, generally speaking can only be observed in a limited region. A map of the shadow path is provided for the events that will occurr in regions with several VLBI stations and hence will be the most interesting for radio astronomy experiments.

  8. Radioimmune localization of occult carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duda, R.B.; Zimmer, A.M.; Rosen, S.T.

    1990-07-01

    Patients with a rising serum carcinoembryonic antigen level and no clinical or roentgenographic evidence of recurrent or metastatic cancer present a treatment dilemma. Eleven such patients, 10 with a previously treated colorectal carcinoma and 1 with a previously treated breast carcinoma, received an injection of the anticarcinoembryonic antigen monoclonal antibody ZCE-025 labeled with the radioisotope indium 111. Nuclear scintigraphy was performed on days 3 and 5 through 7 to detect potential sites of tumor recurrence. The monoclonal antibody scan accurately predicted the presence or absence of occult malignancy in 7 (64%) patients. Second-look laparotomy confirmed the monoclonal antibody scan resultsmore » in the patients with colorectal cancer, and magnetic resonance imaging confirmed metastatic breast cancer. This study demonstrates that In-ZCE-025 can localize occult carcinoma and may assist the surgeon in facilitating the operative exploration. In-ZCE-025 assisted in the initiation of adjuvant therapy for the patient with breast cancer.« less

  9. Stray light rejection in giant externally-occulted solar coronagraphs: experimental developments

    NASA Astrophysics Data System (ADS)

    Venet, M.; Bazin, C.; Koutchmy, S.; Lamy, P.

    2017-11-01

    The advent of giant, formation-flight, externally-occulted solar coronagraphs such as ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire [1,2,3,4]) selected by the European Space Agency (ESA) for its third PROBA (Project for On-Board Autonomy) mission of formation flying demonstration (presently in phase B) and Hi-RISE proposed in the framework of ESA Cosmic Vision program, presents formidable challenges for the study and calibration of instrumental stray light. With distances between the external occulter (EO) and the optical pupil (OP) exceeding hundred meters and occulter sizes larger than a meter, it becomes impossible to perform tests at the real scale. The requirement to limit the over-occultation to less than 1.05 Rsun, orders of magnitude to what has been achieved so far in past coronagraphs, further adds to the challenge. We are approaching the problem experimentally using reduced scale simulators and present below a progress report of our work.

  10. Characterization of the occult nature of frequently occurring pediatric motor vehicle crash injuries.

    PubMed

    Doud, Andrea N; Schoell, Samantha L; Talton, Jennifer W; Barnard, Ryan T; Petty, John K; Stitzel, Joel D; Weaver, Ashley A

    2018-04-01

    Occult injuries are those likely to be missed on initial assessment by first responders and, though initially asymptomatic, they may present suddenly and lead to rapid patient decompensation. No scoring systems to quantify the occultness of pediatric injuries have been established. Such a scoring system will be useful in the creation of an Advanced Automotive Crash Notification (AACN) system that assists first responders in making triage decisions following a motor vehicle crash (MVC). The most frequent MVC injuries were determined for 0-4, 5-9, 10-14 and 15-18 year olds. For each age-specific injury, experts with pediatric trauma expertise were asked to rate the likelihood that the injury may be missed by first responders. An occult score (ranging from 0-1) was calculated by averaging and normalizing the responses of the experts polled. Evaluation of all injuries across all age groups demonstrated greater occult scores for the younger age groups compared to older age groups (mean occult score 0-4yo: 0.61 ± 0.23, 5-9yo: 0.53 ± 0.25, 10-14yo: 0.48 ± 0.23, and 15-18yo: 0.42 ± 0.22, p < 0.01). Body-region specific occult scores revealed that experts judged abdominal, spine and thoracic injuries to be more occult than injuries to other body regions. The occult scores suggested that injuries are more difficult to detect in younger age groups, likely given their inability to express symptoms. An AACN algorithm that can predict the presence of clinically undetectable injuries at the scene can improve triage of children with these injuries to higher levels of care. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. [Occult hepatitis B virus infection in normal population, Xiamen].

    PubMed

    He, Shuizhen; Su, Chenghao; Shen, Litong; Niu, Jianjun

    2015-02-01

    To investigate the prevalence of occult HBV infection in the normal population in Xiamen. 4 437 registered permanent residents, aged 1-59 years old, were selected in Xiamen using stratified random sampling method from September to October in 2006. Serum samples were obtained, the basic characteristics, inoculation of HBV vaccine, and liver disease were surveyed. The serum samples were tested five HBV seroimmunological markers. The HBsAg-negative specimens were subjected to HBV-DNA detection by nested PCR targeting for multiple gene segments. The amplified products were sequenced and the sequence was used for determination of HBV genotype and mutation analysis of amino acids located in HBsAg "a" epitope. Subjects with serum detectable HBV-DNA and negative result of HBsAg were considered as occult HBV infection. Among the 4 437 subjects, 482 individuals were observed HBsAg positive and 3 944 were observed negative. Of the 3 955 HBsAg- negative specimens, 27 occult HBV infections were determined with the positive rate of 0.68% (27/3 955). There were 16 samples with genotype B and 11 with genotype C. 3 types of amino acid (AA) mutation (M133T, T140I, G145R) that influence "a" epitope conformation were observed in 9 subjects with occult HBV infection. S region was successfully sequenced in 312 of the 482 HBsAg positive samples. In subjects with occult HBV infection, the infection rate of genotype C HBV (40.74%, 11/27), inoculation rate of HBV vaccine (62.96%, 17/27), positive rate of HBsAb (51.85%, 14/27), and mutation rate of critical amino acid of "a" epitope (33.33%, 9/27) were higher than HBsAg positive individuals (22.76% (71/312), 13.78% (43/312),0.32% (1/312),0.99% (31/312), respectively), and all the difference were significant (χ(2) = 4.29, 41.26, 156.00, 13.07, respectively, and P value = 0.038, <0.001, <0.001, <0.001, respectively). While the average age in subjects with occult HBV infection (18.3 ± 16.2) were lower than that in HBsAg positive infection (34

  12. Stellar occultation candidates from the guide star catalog. I - Saturn, 1991-1999

    NASA Technical Reports Server (NTRS)

    Bosh, A. S.; Mcdonald, S. W.

    1992-01-01

    A list of 203 potential occultations by Saturn and its ring of stars from the HST Guide Star Catalog (GSC) during the years 1991-1999 is presented. This list features many fainter candidates than do current occultation candidate lists for Saturn; these fainter stars can also provide a high signal-to-noise ratio if observed with a large telescope or in the IR where Saturn and its rings have absorption bands. The occultation circumstances are listed, as well as star information found in the GSC.

  13. Advanced Electrocardiography Can Identify Occult Cardiomyopathy in Doberman Pinschers

    NASA Technical Reports Server (NTRS)

    Spiljak, M.; Petric, A. Domanjko; Wilberg, M.; Olsen, L. H.; Stepancic, A.; Schlegel, T. T.; Starc, V.

    2011-01-01

    Recently, multiple advanced resting electrocardiographic (A-ECG) techniques have improved the diagnostic value of short-duration ECG in detection of dilated cardiomyopathy (DCM) in humans. This study investigated whether 12-lead A-ECG recordings could accurately identify the occult phase of DCM in dogs. Short-duration (3-5 min) high-fidelity 12-lead ECG recordings were obtained from 31 privately-owned, clinically healthy Doberman Pinschers (5.4 +/- 1.7 years, 11/20 males/females). Dogs were divided into 2 groups: 1) 19 healthy dogs with normal echocardiographic M-mode measurements: left ventricular internal diameter in diastole (LVIDd . 47mm) and in systole (LVIDs . 38mm) and normal 24-hour ECG recordings (<50 ventricular premature complexes, VPCs); and 2) 12 dogs with occult DCM: 11/12 dogs had increased M-mode measurements (LVIDd . 49mm and/or LVIDs . 40mm) and 5/11 dogs had also >100 VPCs/24h; 1/12 dogs had only abnormal 24-hour ECG recordings (>100 VPCs/24h). ECG recordings were evaluated via custom software programs to calculate multiple parameters of high-frequency (HF) QRS ECG, heart rate variability, QT variability, waveform complexity and 3-D ECG. Student's t-tests determined 19 ECG parameters that were significantly different (P < 0.05) between groups. Principal component factor analysis identified a 5-factor model with 81.4% explained variance. QRS dipolar and non-dipolar voltages, Cornell voltage criteria and QRS waveform residuum were increased significantly (P < 0.05), whereas mean HF QRS amplitude was decreased significantly (P < 0.05) in dogs with occult DCM. For the 5 selected parameters the prediction of occult DCM was performed using a binary logistic regression model with Chi-square tested significance (P < 0.01). ROC analyses showed that the five selected ECG parameters could identify occult ECG with sensitivity 89% and specificity 83%. Results suggest that 12-lead A-ECG might improve diagnostic value of short-duration ECG in earlier detection

  14. Risk factors of occult malignancy in patients with unprovoked venous thromboembolism.

    PubMed

    Robin, Philippe; Le Roux, Pierre-Yves; Tromeur, Cécile; Planquette, Benjamin; Prévot-Bitot, Nathalie; Lavigne, Christian; Pastre, Jean; Merah, Adel; Couturaud, Francis; Le Gal, Grégoire; Salaun, Pierre-Yves

    2017-11-01

    Venous thromboembolism (VTE) can occur as the first manifestation of an underlying occult malignancy. It remains unclear whether or not a better selection of high risk patients might lead to more efficient occult cancer screening strategies. Our aim was to assess the predictors of occult malignancy diagnosis in patients with unprovoked VTE. Univariate analyses were performed to assess the effect of candidate predictors on occult cancer detection in patients enrolled in a prospective, multicenter, randomized, controlled study (MVTEP study) whose primary aim was to compare a limited screening strategy with a strategy combining limited screening and FDG PET/CT in patients with unprovoked VTE. This trial is completed and registered with ClinicalTrials.gov, number NCT00964275. Between March 3, 2009, and August 18, 2012, 399 patients were included. Five patients withdrew consent and refused the use of their data, and no VTE was confirmed in 2 patients who were excluded from this analysis. A total of 25 (6.4%) out of the 392 analysed patients received a new diagnosis of malignancyduring the 2-years follow-up. Age≥50years (p=0.01), male gender (p=0.04), leukocytes count (p=0.01), and platelets count (p=0.03) were associated with occult cancer detection. Patients with leukocytosis or thrombocytosis had a risk of cancer way above 10%. Previous VTE and smoker status (combining previous and current smokers) were not associated with occult cancer diagnosis (p>0.05). Demographic characteristics (age and sex), and laboratory tests (high platelets and leukocytes counts) may be associated with cancer detection in patients withunprovoked VTE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Magnitudes of selected stellar occultation candidates for Pluto and other planets, with new predictions for Mars and Jupiter

    NASA Technical Reports Server (NTRS)

    Sybert, C. B.; Bosh, A. S.; Sauter, L. M.; Elliot, J. L.; Wasserman, L. H.

    1992-01-01

    Occultation predictions for the planets Mars and Jupiter are presented along with BVRI magnitudes of 45 occultation candidates for Mars, Jupiter, Saturn, Uranus, and Pluto. Observers can use these magnitudes to plan observations of occultation events. The optical depth of the Jovian ring can be probed by a nearly central occultation on 1992 July 8. Mars occults an unusually red star in early 1993, and the occultations for Pluto involving the brightest candidates would possibly occur in the spring of 1992 and the fall of 1993.

  16. Evaluation and Improved Use of Fecal Occult Blood Test in the Constipated Child.

    PubMed

    Kilway, Denise M

    2016-01-01

    This quality improvement project examined the use of fecal occult blood test in the constipated child in a pediatric gastroenterology outpatient clinic. A retrospective chart review was completed on 100 children seen for an initial visit with the gastroenterology provider. The number of fecal occult blood tests performed and the child's coinciding symptoms were tallied and compared with the North American Society of Pediatric Gastroenterology, Hepatology, and Nutrition recommendations. An educational intervention was held with the pediatric gastroenterology providers consisting of a PowerPoint presentation summarizing aims of the quality improvement project and reviewing recommendations for use of fecal occult blood test in the constipated child. Pre- and post-intervention chart review data sets were compared. Results showed a 19.6% decrease in the use of fecal occult blood tests performed during the post-intervention timeframe. However, when used in conjunction with North American Society of Pediatric Gastroenterology, Hepatology, and Nutrition recommendations, the appropriateness of fecal occult blood test use increased by 71.4% in the post-intervention patients. Reviewing the recommendations with gastroenterology providers assisted in optimizing the meaningful use of fecal occult blood test, improving quality and safety of care for children seen in the pediatric gastroenterology outpatient clinic.

  17. Seismic reflection data imaging and interpretation from Braniewo2014 experiment using additional wide-angle refraction and reflection and well-logs data

    NASA Astrophysics Data System (ADS)

    Trzeciak, Maciej; Majdański, Mariusz; Białas, Sebastian; Gaczyński, Edward; Maksym, Andrzej

    2015-04-01

    Braniewo2014 reflection and refraction experiment was realized in cooperation between Polish Oil and Gas Company (PGNiG) and the Institute of Geophysics (IGF), Polish Academy of Sciences, near the locality of Braniewo in northern Poland. PGNiG realized a 20-km-long reflection profile, using vibroseis and dynamite shooting; the aim of the reflection survey was to characterise Silurian shale gas reservoir. IGF deployed 59 seismic stations along this profile and registered additional full-spread wide-angle refraction and reflection data, with offsets up to 12 km; maximum offsets from the seismic reflection survey was 3 km. To improve the velocity information two velocity logs from near deep boreholes were used. The main goal of the joint reflection-refraction interpretation was to find relations between velocity field from reflection velocity analysis and refraction tomography, and to build a velocity model which would be consistent for both, reflection and refraction, datasets. In this paper we present imaging results and velocity models from Braniewo2014 experiment and the methodology we used.

  18. Occultation Predictions Using CCD Strip-Scanning Astrometry

    NASA Technical Reports Server (NTRS)

    Dunham, Edward W.; Ford, C. H.; Stone, R. P. S.; McDonald, S. W.; Olkin, C. B.; Elliot, J. L.; Witteborn, Fred C. (Technical Monitor)

    1994-01-01

    We are developing the method of CCD strip-scanning astrometry for the purpose of deriving reliable advance predictions for occultations involving small objects in the outer solar system. We are using a camera system based on a Ford/Loral 2Kx2K CCD with the Crossley telescope at Lick Observatory for this work. The columns of die CCD are aligned East-West, the telescope drive is stopped, and the CCD is clocked at the same rate that the stars drift across it. In this way we obtain arbitrary length strip images 20 arcmin wide with 0.58" pixels. Since planets move mainly in RA, it is possible to obtain images of the planet and star to be occulted on the same strip well before the occultation occurs. The strip-to-strip precision (i.e. reproducibility) of positions is limited by atmospheric image motion to about 0.1" rms per strip. However, for objects that are nearby in R.A., the image motion is highly correlated and their relative positions are good to 0.02" rms per strip. We will show that the effects of atmospheric image motion on a given strip can be removed if a sufficient number of strips of a given area have been obtained. Thus, it is possible to reach an rms precision of 0.02" per strip, corresponding to about 0.3 of Pluto or Triton's angular radius. The ultimate accuracy of a prediction based on strip-scanning astrometry is currently limited by the accuracy of the positions of the stars in the astrometric network used and by systematic errors most likely due to the optical system. We will show the results of . the prediction of some recent occultations as examples of the current capabilities and limitations of this technique.

  19. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    NASA Technical Reports Server (NTRS)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.; hide

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  20. Occult cancer-related first venous thromboembolism is associated with an increased risk of recurrent venous thromboembolism.

    PubMed

    Gran, O V; Braekkan, S K; Paulsen, B; Skille, H; Rosendaal, F R; Hansen, J-B

    2017-07-01

    Essentials Recurrence risk after an occult cancer-related incident venous thromboembolism (VTE) is unknown. We compared the risk of VTE recurrence in occult-, overt- and non-cancer related first VTE. Patients with occult-cancer related first VTE had the highest risk of VTE recurrence. The high recurrence risk in occult cancer is likely due to the advanced cancers. Background Although venous thromboembolism (VTE) is associated with a high recurrence rate, the absolute recurrence rates for cancer-related VTE, particularly occult cancer, are not well known. Objectives To investigate the risk of VTE recurrence in patients with occult and overt cancer-related VTE. Methods Incident VTE events among participants of the first to sixth Tromsø surveys occurring in the period 1994-2012 were included. Occult cancer was defined as cancer diagnosed within a year following a VTE, and overt cancer was defined as cancer diagnosed within the 2 years before a VTE. Results Among 733 patients with incident VTE, 110 had overt cancer and 40 had occult cancer. There were 95 recurrent VTE events during a median of 3.2 years of follow-up. The 1-year cumulative incidence of VTE recurrence was 38.6% in subjects with occult cancer, 15.5% in subjects with overt cancer, and 3.8% in non-cancer subjects. The 1-year risk of recurrence was 12-fold (hazard ratio [HR] 12.4, 95% confidence interval [CI] 5.9-26.3) higher in subjects with occult cancer and four-fold (HR 4.3, 95% CI 2.0-9.2) higher in subjects with overt cancer than in non-cancer subjects. The occult cancers associated with VTE recurrence were typically located at prothrombotic sites (i.e. lung and gastrointestinal) and presented at advanced stages. The majority (69%) of recurrences in subjects with occult cancer occurred before or shortly after cancer diagnosis, and were therefore not treatment-related. Conclusion Our findings suggest that the increased risk of recurrence in patients with occult cancer is mainly attributable to the

  1. Evidence of Asymmetries in the Aldebaran Photosphere from Multi-Wavelength Lunar Occultations

    NASA Astrophysics Data System (ADS)

    Dyachenko, V.; Richichi, A.; Pandey, A.; Sharma, S.; Tasuya, O.; Balega, Yu.; Beskakotov, A.; Rastegaev, D.

    2017-06-01

    We present the results of three lunar occultations of the K5 giant Aldebaran, observed in late 2015 and early 2016. The 6-m SAO, 1.3-m Devasthal, and 2.4-m TNT telescopes were used to obtain light curves with few ms sampling and at wavelengths ranging from the ultraviolet to the red. These were fitted using uniform -disk (UD) models and then converted to limb-darkened (LD) models using Kurucz's atmospheric models. The resulting diameter values are in good agreement with previous determinations, with an average LD diameter of 20.3 milliseconds of arc. We have also been able to use model-independent methods to reconstruct the star's brightness profile and have found indications that the photospheric brightness profile of Aldebaran may not have been symmetric, a finding already reported by other authors for this and for similar late-type stars. The presence of surface spots on a scale of a few milliarcseconds is a likely explanation of the observed asymmetries.

  2. An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, M.H.G.; Luhmann, J.G.; Kliore, A.J.

    1990-10-01

    An analysis of Mars and Venus nightside electron density profiles obtained with radio occultation methods shows how the nightside ionospheres of both planets vary with solar zenith angle. From previous studies it is known that the dayside peak electron densities at Mars and Venus show a basic similarity in that they both exhibit Chapman layer-like behavior. In contrast, the peak altitudes at mars behave like an ideal Chapman layer on the dayside, whereas the altitude of the peak at Venus is fairly constant up to the terminator. The effect of major dust storms can also be seen in the peakmore » altitudes at Mars. All Venus nightside electron density profiles show a distinct main peak for both solar minimum and maximum, whereas many profiles from the nightside of Mars do not show any peak at all. This suggests that the electron density in the Mars nightside ionosphere is frequently too low to be detected by radio occultation. On the Pioneer Venus orbiter, disappearing ionospheres were observed near solar maximum in the in-situ data when the solar wind dynamic pressure was exceptionally high. This condition occurs because the high solar wind dynamic pressure decreases the altitude of the ionopause near the terminator below {approximately}250 km, thus reducing the normal nightward transport of dayside ionospheric plasma. On the basis of the Venus observations, one might predict that if a positive correlation of nightside peak density with dynamic pressure was found, it could mean that transport from the dayside is the only significant source for the nightside ionosphere of Mars. The lack of a correlation would imply that the precipitation source at Mars is quite variable.« less

  3. Unsuccesfull occultation observation of stars by asteroids

    NASA Astrophysics Data System (ADS)

    Gaina, Alex; Maley, Paul D.

    2010-12-01

    A report is given about an attempt to observe occultations of stars HIP 7268 and TYC1868-02234-01 by asteroids Tisiphone and Thisbe on 3 november 2010 in Chisinau, The Republic of Moldova, which was placed very close to the central line of the occultations in spite of. The main cause of the insucces was weather. Few days before a cyclon developed above the Black Sea, while above the Western Europe, including Greece the sky was covered during many days. Some critics are made concerning the preparation of astronomical facilities in the Republic of Moldova for succesfull observations. The meteo conditions in Lozova-Ciuciuleni were better, but bad, than in other parts of the Republic of Moldova.

  4. Is an objective refraction optimised using the visual Strehl ratio better than a subjective refraction?

    PubMed

    Hastings, Gareth D; Marsack, Jason D; Nguyen, Lan Chi; Cheng, Han; Applegate, Raymond A

    2017-05-01

    To prospectively examine whether using the visual image quality metric, visual Strehl (VSX), to optimise objective refraction from wavefront error measurements can provide equivalent or better visual performance than subjective refraction and which refraction is preferred in free viewing. Subjective refractions and wavefront aberrations were measured on 40 visually-normal eyes of 20 subjects, through natural and dilated pupils. For each eye a sphere, cylinder, and axis prescription was also objectively determined that optimised visual image quality (VSX) for the measured wavefront error. High contrast (HC) and low contrast (LC) logMAR visual acuity (VA) and short-term monocular distance vision preference were recorded and compared between the VSX-objective and subjective prescriptions both undilated and dilated. For 36 myopic eyes, clinically equivalent (and not statistically different) HC VA was provided with both the objective and subjective refractions (undilated mean ± S.D. was -0.06 ± 0.04 with both refractions; dilated was -0.05 ± 0.04 with the objective, and -0.05 ± 0.05 with the subjective refraction). LC logMAR VA provided by the objective refraction was also clinically equivalent and not statistically different to that provided by the subjective refraction through both natural and dilated pupils for myopic eyes. In free viewing the objective prescription was preferred over the subjective by 72% of myopic eyes when not dilated. For four habitually undercorrected high hyperopic eyes, the VSX-objective refraction was more positive in spherical power and VA poorer than with the subjective refraction. A method of simultaneously optimising sphere, cylinder, and axis from wavefront error measurements, using the visual image quality metric VSX, is described. In myopic subjects, visual performance, as measured by HC and LC VA, with this VSX-objective refraction was found equivalent to that provided by subjective refraction, and was typically preferred

  5. Is an objective refraction optimised using the visual Strehl ratio better than a subjective refraction?

    PubMed Central

    Hastings, Gareth D.; Marsack, Jason D.; Nguyen, Lan Chi; Cheng, Han; Applegate, Raymond A.

    2017-01-01

    Purpose To prospectively examine whether using the visual image quality metric, visual Strehl (VSX), to optimise objective refraction from wavefront error measurements can provide equivalent or better visual performance than subjective refraction and which refraction is preferred in free viewing. Methods Subjective refractions and wavefront aberrations were measured on 40 visually-normal eyes of 20 subjects, through natural and dilated pupils. For each eye a sphere, cylinder, and axis prescription was also objectively determined that optimised visual image quality (VSX) for the measured wavefront error. High contrast (HC) and low contrast (LC) logMAR visual acuity (VA) and short-term monocular distance vision preference were recorded and compared between the VSX-objective and subjective prescriptions both undilated and dilated. Results For 36 myopic eyes, clinically equivalent (and not statistically different) HC VA was provided with both the objective and subjective refractions (undilated mean ±SD was −0.06 ±0.04 with both refractions; dilated was −0.05 ±0.04 with the objective, and −0.05 ±0.05 with the subjective refraction). LC logMAR VA provided by the objective refraction was also clinically equivalent and not statistically different to that provided by the subjective refraction through both natural and dilated pupils for myopic eyes. In free viewing the objective prescription was preferred over the subjective by 72% of myopic eyes when not dilated. For four habitually undercorrected high hyperopic eyes, the VSX-objective refraction was more positive in spherical power and VA poorer than with the subjective refraction. Conclusions A method of simultaneously optimising sphere, cylinder, and axis from wavefront error measurements, using the visual image quality metric VSX, is described. In myopic subjects, visual performance, as measured by HC and LC VA, with this VSX-objective refraction was found equivalent to that provided by subjective refraction

  6. Virtual edge illumination and one dimensional beam tracking for absorption, refraction, and scattering retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot

    2014-03-31

    We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal.

  7. Recurring sets of recurring starspot occultations on exoplanet host Qatar-2

    NASA Astrophysics Data System (ADS)

    Močnik, T.; Southworth, J.; Hellier, C.

    2017-10-01

    We announce the detection of recurring sets of recurring starspot occultation events in the short-cadence K2 light curve of Qatar-2, a K dwarf star transited every 1.34 d by a hot Jupiter. In total, we detect 34 individual starspot occultation events, caused by five different starspots, occulted in up to five consecutive transits or after a full stellar rotation. The longest recurring set of recurring starspot occultations spans over three stellar rotations, setting a lower limit for the longest starspot lifetime of 58 d. Starspot analysis provided a robust stellar rotational period measurement of 18.0 ± 0.2 d and indicates that the system is aligned, having a sky-projected obliquity of 0° ± 8°. A pronounced rotational modulation in the light curve has a period of 18.2 ± 1.6 d, in agreement with the rotational period derived from the starspot occultations. We tentatively detect an ellipsoidal modulation in the phase curve, with a semi-amplitude of 18 ppm, but cannot exclude the possibility that this is the result of red noise or imperfect removal of the rotational modulation. We detect no transit-timing and transit-duration variations with upper limits of 15 s and 1 min, respectively. We also reject any additional transiting planets with transit depths above 280 ppm in the orbital period region 0.5-30 d.

  8. A method to detect occult pneumothorax with chest radiography.

    PubMed

    Matsumoto, Shokei; Kishikawa, Masanobu; Hayakawa, Koichi; Narumi, Atsushi; Matsunami, Katsutoshi; Kitano, Mitsuhide

    2011-04-01

    Small pneumothoraces are often not visible on supine screening chest radiographs because they develop anteriorly to the lung. These pneumothoraces are termed occult. Occult pneumothoraces account for an astonishingly high 52% to 63% of all traumatic pneumothoraces. A 19-year-old obese woman was involved in a head-on car accident. The admission anteroposterior chest radiographs were unremarkable. Because of the presence of right chest tenderness and an abrasion, we suspected the presence of a pneumothorax. Thus, we decided to take a supine oblique chest radiograph of the right side of the thorax, which clearly revealed a visceral pleural line, consistent with a diagnosis of traumatic pneumothorax. A pneumothorax may be present when a supine chest radiograph reveals either an apparent deepening of the costophrenic angle (the "deep sulcus sign") or the presence of 2 diaphragm-lung interfaces (the "double diaphragm sign"). However, in practice, supine chest radiographs have poor sensitivity for occult pneumothoraces. Oblique chest radiograph is a useful and fast screening tool that should be considered for cases of blunt chest trauma, especially when transport of critically ill patients to the computed tomographic suite is dangerous or when imminent transfer to another hospital is being arranged and early diagnosis of an occult pneumothorax is essential. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  9. Refractive errors and schizophrenia.

    PubMed

    Caspi, Asaf; Vishne, Tali; Reichenberg, Abraham; Weiser, Mark; Dishon, Ayelet; Lubin, Gadi; Shmushkevitz, Motti; Mandel, Yossi; Noy, Shlomo; Davidson, Michael

    2009-02-01

    Refractive errors (myopia, hyperopia and amblyopia), like schizophrenia, have a strong genetic cause, and dopamine has been proposed as a potential mediator in their pathophysiology. The present study explored the association between refractive errors in adolescence and schizophrenia, and the potential familiality of this association. The Israeli Draft Board carries a mandatory standardized visual accuracy assessment. 678,674 males consecutively assessed by the Draft Board and found to be psychiatrically healthy at age 17 were followed for psychiatric hospitalization with schizophrenia using the Israeli National Psychiatric Hospitalization Case Registry. Sib-ships were also identified within the cohort. There was a negative association between refractive errors and later hospitalization for schizophrenia. Future male schizophrenia patients were two times less likely to have refractive errors compared with never-hospitalized individuals, controlling for intelligence, years of education and socioeconomic status [adjusted Hazard Ratio=.55; 95% confidence interval .35-.85]. The non-schizophrenic male siblings of schizophrenia patients also had lower prevalence of refractive errors compared to never-hospitalized individuals. Presence of refractive errors in adolescence is related to lower risk for schizophrenia. The familiality of this association suggests that refractive errors may be associated with the genetic liability to schizophrenia.

  10. UV stellar occultation measurements of nighttime equatorial ozone

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Liu, S. C.; Wasser, B.; Atreya, S. K.; Donahue, T. M.; Drake, J. F.

    1977-01-01

    The ultraviolet spectrometer-telescope on Copernicus was used for stellar occultation measurements of atmospheric ozone. Two sets of observations of the target star Beta-Cen were carried out on 26 July 1975 and 13-14 June 1976 at wavelengths from 2550 A to 3100 A. After unfolding of the data, ozone density profiles near the equator within 3 hours of local midnight were obtained at altitudes from 47 to 114 km. A secondary maximum at 97 km has been observed in both sets of data. The ozone density between 47 and 75 km is a factor of 2 to 3 times as large as current models predict. At the lower boundary, about half the ozone destruction should be caused by NOx and ClOx. Above 55 km, virtually all loss is due to HOx. These results suggest an overestimate of HOx and ClOx loss processes or a serious underestimate of the Ox production rate.

  11. Research on global plasmaspheric electron content by using LEO occultation and GPS data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yao, Yibin

    2015-05-01

    This paper investigates the characteristics of global plasmaspheric electron content (pTEC) using COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) occultation and GPS (Global Positioning System) data. The ionospheric electron content (iTEC) within 100-1000 km was obtained by fitting the COSMIC occultation electron density profiles, and the pTEC was obtained by subtracting the iTEC from CODE (Center for Orbit Determination in Europe) GIM (global ionosphere maps) TEC provided by University of Bern. This paper also investigates the characteristics of pTEC variations with local time, latitude and season. The results show that in 2011, the worldwide average of pTEC was 4.02 TECu, which is consistent with the findings of other studies. The pTEC shows significant diurnal variation characteristics, that is, pTEC is higher during daytime than during nighttime, but the percentage contribution of pTEC to GPS TEC is higher during nighttime than during daytime. The pTEC varies with the seasons, pTEC hemispheres symmetrically during spring and autumn, while pTEC in the summer hemisphere is higher than that in the winter hemisphere. Moreover, the percentage contribution of pTEC to GPS TEC (total electron content) is higher in winter hemisphere than in summer hemisphere.

  12. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in

    2015-02-15

    algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less

  13. Developing an Optical Lunar Occultation Measurement Reduction System for Observations at Kaau Observatory

    NASA Astrophysics Data System (ADS)

    Malawi, Abdulrahman A.

    2013-06-01

    We present here a detailed explanation of the reduction method that we use to determine the angular diameters of the stars occulted by the dark limb of the moon. This is a main part of the lunar occultation observation program running at King Abdul Aziz University observatory since late 1993. The process is based on the least square model fitting method of analyzing occultation data, first introduced by Nather et al. (Astron. J. 75:963, 1970).

  14. Refraction in Adults with Diabetes

    PubMed Central

    Klein, Barbara E. K.; Lee, Kristine E.; Klein, Ronald

    2010-01-01

    Objective(s) Examine refraction, change in refraction, and risk factors for change in refraction in adults with type 1 and type 2 diabetes. Methods Population based study. Modified Early Treatment of Diabetic Retinopathy Study refractions and a standard history were obtained for all participants. Baseline and ten-year follow-up data were available. Results Age was significantly associated with refraction in persons with younger-onset diabetes (T1D) and those with older-onset diabetes (T2D); refractions were similar for both groups. Persons of similar age with T1D were likely to be more myopic than those with T2D (P<.01). Years of education were significantly associated with more myopic refraction (P<.0001). In those with T1D on average there was a −.35 diopter (D) change in refraction over 10 years. However, there was a systematic decrease in myopic shift with increasing age at baseline. Those with longer duration of diabetes and with proliferative retinopathy were more likely to have hyperopic shifts in refraction. In those with T2D there was, on average, a +.25D change in refraction over the 10 years but there was little consistency in the amount of change by age at baseline. There were no other significant effects on change in refraction in this group. Conclusions In persons of similar age, those with T1D are likely to be slightly more myopic than those with T2D. Overall, mean refractions and the important risk factors of age and education are similar to those reported in non-diabetic populations. PMID:21220629

  15. Occult hepatitis B virus infection in hematopoietic stem cell donors in a hepatitis B virus endemic area.

    PubMed

    Hui, Chee-kin; Sun, Jian; Au, Wing-yan; Lie, Albert K W; Yueng, Yui-hung; Zhang, Hai-ying; Lee, Nikki P; Hou, Jin-ling; Liang, Raymond; Lau, George K K

    2005-06-01

    The acquisition of hepatitis B virus (HBV) infection following organ transplantation from donors with occult HBV infection is an important cause of morbidity and mortality. The aim of this study is to determine the prevalence of occult HBV in allogeneic hematopoietic stem cell (HSC) transplantation donors. We performed a retrospective study on 124 consecutive hepatitis B surface antigen negative HSC donors. Their serum samples were analyzed by PCR for the pre-S/S, pre-core/core and X regions of the virus. Samples reactive by at least two PCR assays were considered HBV-DNA positive. Nineteen of the 124 HSC donors (15.3%) had occult HBV infection. Sixteen of these 19 donors with occult HBV infection (84.2%) tested positive for hepatitis B core antibody while 78 of 105 subjects (74.3%) without occult HBV infection were also positive (P=0.56). Fourteen of the 19 donors (73.7%) with occult HBV infection tested positive for hepatitis B surface antibody while 67 of the 105 subjects without occult HBV infection were also positive (P=0.45). The prevalence of occult HBV infection among HSC donors in Hong Kong is high. Anti-HBc and anti-HBs status had no significant correlation with the presence of occult HBV infection.

  16. Air-cooling mathematical analysis as inferred from the air-temperature observation during the 1st total occultation of the Sun of the 21st century at Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Peñaloza-Murillo, Marcos A.; Pasachoff, Jay M.

    2015-04-01

    We analyze mathematically air temperature measurements made near the ground by the Williams College expedition to observe the first total occultation of the Sun [TOS (commonly known as a total solar eclipse)] of the 21st century in Lusaka, Zambia, in the afternoon of June 21, 2001. To do so, we have revisited some earlier and contemporary methods to test their usefulness for this analysis. Two of these methods, based on a radiative scheme for solar radiation modeling and that has been originally applied to a morning occultation, have successfully been combined to obtain the delay function for an afternoon occultation, via derivation of the so-called instantaneous temperature profiles. For this purpose, we have followed the suggestion given by the third of these previously applied methods to calculate this function, although by itself it failed to do so at least for this occultation. The analysis has taken into account the limb-darkening, occultation and obscuration functions. The delay function obtained describes quite fairly the lag between the solar radiation variation and the delayed air temperature measured. Also, in this investigation, a statistical study has been carried out to get information on the convection activity produced during this event. For that purpose, the fluctuations generated by turbulence has been studied by analyzing variance and residuals. The results, indicating an irreversible steady decrease of this activity, are consistent with those published by other studies. Finally, the air temperature drop due to this event is well estimated by applying the empirical scheme given by the fourth of the previously applied methods, based on the daily temperature amplitude and the standardized middle time of the occultation. It is demonstrated then that by using a simple set of air temperature measurements obtained during solar occultations, along with some supplementary data, a simple mathematical analysis can be achieved by applying of the four

  17. Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery.

    PubMed

    Queirós, António; Amorim-de-Sousa, Ana; Lopes-Ferreira, Daniela; Villa-Collar, César; Gutiérrez, Ángel Ramón; González-Méijome, José Manuel

    2018-01-01

    To characterize the axial and off-axis refraction across four meridians of the retina in myopic eyes before and after Orthokeratology (OK) and LASIK surgery. Sixty right eyes with a spherical equivalent (M) between - 0.75 to - 5.25 D (cylinder <- 1.00 D) underwent LASIK (n = 26) or OK (n = 34) to treat myopia. Axial and off-axis refraction were measured with an open-field autorefractometer before and after stabilized treatments. Off-axis measurements were obtained for the horizontal (35° nasal and temporal retina) and vertical (15° superior and inferior retina) meridians, and for two oblique directions (45-225° and 135-315°) up to 20° of eccentricity. The refractive profile was addressed as relative peripheral refractive error (RPRE). OK and LASIK post-treatment results showed an increase of myopic relative refraction at several eccentric locations. At the four meridians evaluated, the M component of the pre-treatment RPRE values was not statistically different ( p > 0.05) from the post-treatment RPRE within 30° and 20° of the central visual field after LASIK and OK, respectively. These results demonstrated that the treatment zone warrants an optimal central field of vision. The present study gives an overview of RPRE after refractive corneal reshaping treatments (OK and LASIK) across vertical, horizontal and two oblique meridians together. This allows a 3D representation of RPRE at the retina and shows that the myopic shift induced by both treatments is more relevant in horizontal directions.

  18. Distributions and Seasonal Variations of Tropospheric Ethene (C2H4) from Atmospheric Chemistry Experiment (ACE-FTS) Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Herbin, H.; Hurtmans, D.; Clarisse, L.; Turquety, S.; Clerbaux, C.; Rinsland, Curtis P.; Boone, C.; Bernath, P. F.; Coheur, P.-F.

    2009-01-01

    This work reports the first measurements of ethene (C2H4) distributions in the upper troposphere. These are obtained by retrieving vertical profiles from 5 to 20 km from infrared solar occultation spectra recorded in 2005 and 2006 by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS). Background volume mixin^ ratios (vmrs) ranging from a few to about 50 pptv (10(exp -1) are measured at the different altitudes, while for certain occultations, vmrs as high as 200 pptv are observed. Zonal distributions and vertically resolved latitudinal distributions are derived for the two year period analyzed, highlighting spatial - including a North-South gradient - as well as seasonal variations. We show the latter to be more pronounced at the highest latitudes, presumably as a result of less active photochemistry during winter. The observation of C2H4 enhancements in remote Arctic regions at high latitudes is consistent with the occurrence of fast transport processes of gaseous pollution from the continents leading to Arctic haze. Citation: Herbin, H., D. Hurtmans, L. Clarisse, S. Turquety, C. Clerbaux, C. P. Rinsland, C. Boone, P. F. Bernath, and P.-F. Colieur (2009), Distributions and seasonal variations of tropospheric ethene (C2H4) from Atmospheric Chemistry Experiment (ACE-FTS) solar occultation spectra,

  19. The optimization of the inverted occulter of the solar orbiter/METIS coronagraph/spectrometer

    NASA Astrophysics Data System (ADS)

    Landini, F.; Vives, S.; Romoli, M.; Guillon, C.; Pancrazzi, M.; Escolle, C.; Focardi, M.; Fineschi, S.; Antonucci, E.; Nicolini, G.; Naletto, G.; Nicolosi, P.; Spadaro, D.

    2017-11-01

    The coronagraph/spectrometer METIS (Multi Element Telescope for Imaging and Spectroscopy), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona. It is an integrated instrument suite located on a single optical bench and sharing a unique aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. The experience built on all the previous space coronagraphs forces designers to dedicate a particular attention to the occulter optimization. Two breadboards were manufactured to perform occulter optimization measurements: BOA (Breadboard of the Occulting Assembly) and ANACONDA (AN Alternative COnfiguration for the Occulting Native Design Assembly). A preliminary measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe BOA and ANACONDA designs, the laboratory set-up and the preliminary results.

  20. Understanding refraction contrast using a comparison of absorption and refraction computed tomographic techniques

    NASA Astrophysics Data System (ADS)

    Wiebe, S.; Rhoades, G.; Wei, Z.; Rosenberg, A.; Belev, G.; Chapman, D.

    2013-05-01

    Refraction x-ray contrast is an imaging modality used primarily in a research setting at synchrotron facilities, which have a biomedical imaging research program. The most common method for exploiting refraction contrast is by using a technique called Diffraction Enhanced Imaging (DEI). The DEI apparatus allows the detection of refraction between two materials and produces a unique ''edge enhanced'' contrast appearance, very different from the traditional absorption x-ray imaging used in clinical radiology. In this paper we aim to explain the features of x-ray refraction contrast as a typical clinical radiologist would understand. Then a discussion regarding what needs to be considered in the interpretation of the refraction image takes place. Finally we present a discussion about the limitations of planar refraction imaging and the potential of DEI Computed Tomography. This is an original work that has not been submitted to any other source for publication. The authors have no commercial interests or conflicts of interest to disclose.

  1. Linkage analysis of quantitative refraction and refractive errors in the Beaver Dam Eye Study.

    PubMed

    Klein, Alison P; Duggal, Priya; Lee, Kristine E; Cheng, Ching-Yu; Klein, Ronald; Bailey-Wilson, Joan E; Klein, Barbara E K

    2011-07-13

    Refraction, as measured by spherical equivalent, is the need for an external lens to focus images on the retina. While genetic factors play an important role in the development of refractive errors, few susceptibility genes have been identified. However, several regions of linkage have been reported for myopia (2q, 4q, 7q, 12q, 17q, 18p, 22q, and Xq) and for quantitative refraction (1p, 3q, 4q, 7p, 8p, and 11p). To replicate previously identified linkage peaks and to identify novel loci that influence quantitative refraction and refractive errors, linkage analysis of spherical equivalent, myopia, and hyperopia in the Beaver Dam Eye Study was performed. Nonparametric, sibling-pair, genome-wide linkage analyses of refraction (spherical equivalent adjusted for age, education, and nuclear sclerosis), myopia and hyperopia in 834 sibling pairs within 486 extended pedigrees were performed. Suggestive evidence of linkage was found for hyperopia on chromosome 3, region q26 (empiric P = 5.34 × 10(-4)), a region that had shown significant genome-wide evidence of linkage to refraction and some evidence of linkage to hyperopia. In addition, the analysis replicated previously reported genome-wide significant linkages to 22q11 of adjusted refraction and myopia (empiric P = 4.43 × 10(-3) and 1.48 × 10(-3), respectively) and to 7p15 of refraction (empiric P = 9.43 × 10(-4)). Evidence was also found of linkage to refraction on 7q36 (empiric P = 2.32 × 10(-3)), a region previously linked to high myopia. The findings provide further evidence that genes controlling refractive errors are located on 3q26, 7p15, 7p36, and 22q11.

  2. Linkage Analysis of Quantitative Refraction and Refractive Errors in the Beaver Dam Eye Study

    PubMed Central

    Duggal, Priya; Lee, Kristine E.; Cheng, Ching-Yu; Klein, Ronald; Bailey-Wilson, Joan E.; Klein, Barbara E. K.

    2011-01-01

    Purpose. Refraction, as measured by spherical equivalent, is the need for an external lens to focus images on the retina. While genetic factors play an important role in the development of refractive errors, few susceptibility genes have been identified. However, several regions of linkage have been reported for myopia (2q, 4q, 7q, 12q, 17q, 18p, 22q, and Xq) and for quantitative refraction (1p, 3q, 4q, 7p, 8p, and 11p). To replicate previously identified linkage peaks and to identify novel loci that influence quantitative refraction and refractive errors, linkage analysis of spherical equivalent, myopia, and hyperopia in the Beaver Dam Eye Study was performed. Methods. Nonparametric, sibling-pair, genome-wide linkage analyses of refraction (spherical equivalent adjusted for age, education, and nuclear sclerosis), myopia and hyperopia in 834 sibling pairs within 486 extended pedigrees were performed. Results. Suggestive evidence of linkage was found for hyperopia on chromosome 3, region q26 (empiric P = 5.34 × 10−4), a region that had shown significant genome-wide evidence of linkage to refraction and some evidence of linkage to hyperopia. In addition, the analysis replicated previously reported genome-wide significant linkages to 22q11 of adjusted refraction and myopia (empiric P = 4.43 × 10−3 and 1.48 × 10−3, respectively) and to 7p15 of refraction (empiric P = 9.43 × 10−4). Evidence was also found of linkage to refraction on 7q36 (empiric P = 2.32 × 10−3), a region previously linked to high myopia. Conclusions. The findings provide further evidence that genes controlling refractive errors are located on 3q26, 7p15, 7p36, and 22q11. PMID:21571680

  3. Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Zander, R.; Rinsland, C. P.; Russell, J. M., III; Farmer, C. B.; Norton, R. H.

    1988-01-01

    This paper presents the results on the volume mixing ratio profiles of carbonyl sulfide and hydrogen cyanide, deduced from the spectroscopic analysis of IR solar absorption spectra obtained in the occultation mode with the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during its mission aboard Spacelab 3. A comparison of the ATMOS measurements for both northern and southern latitudes with previous field investigations at low midlatitudes shows a relatively good agreement. Southern Hemisphere volume mixing ratio profiles for both molecules were obtained for the first time, as were the profiles for the Northern Hemisphere covering the upper troposphere and the lower stratosphere simultaneously.

  4. Preliminary Error Budget for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Gubbels, Timothy; Barnes, Robert

    2011-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those in the IPCC Report. A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO Project will implement a spaceborne earth observation mission designed to provide rigorous SI traceable observations (i.e., radiance, reflectance, and refractivity) that are sensitive to a wide range of key decadal change variables, including: 1) Surface temperature and atmospheric temperature profile 2) Atmospheric water vapor profile 3) Far infrared water vapor greenhouse 4) Aerosol properties and anthropogenic aerosol direct radiative forcing 5) Total and spectral solar

  5. Evidence of asymmetries in the Aldebaran photosphere from multiwavelength lunar occultations

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Dyachenko, V.; Pandey, A. K.; Sharma, S.; Tasuya, O.; Balega, Y.; Beskakotov, A.; Rastegaev, D.; Dhillon, V. S.

    2017-01-01

    We have recorded three lunar occultations of Aldebaran (α Tau) at different telescopes and using various band-passes, from the ultraviolet to the far red. The data have been analysed using both model-dependent and model-independent methods. The derived uniform-disc angular diameter values have been converted to limb-darkened values using model atmosphere relations and are found in broad agreement among themselves and with previous literature values. The limb-darkened diameter is about 20.3 mas on average. However, we have found indications that the photospheric brightness profile of Aldebaran may have not been symmetric, a finding already reported by other authors for this and for similar late-type stars. At the sampling scale of our brightness profile, between 1 and 2 mas, the uniform and limb-darkened disc models may not be a good description for Aldebaran. The asymmetries appear to differ with wavelength and over the 137-d time span of our measurements. Surface spots appear as a likely explanation for the differences between observations and the models.

  6. Effect of Occult Metastases on Survival in Node-Negative Breast Cancer

    PubMed Central

    Weaver, Donald L.; Ashikaga, Takamaru; Krag, David N.; Skelly, Joan M.; Anderson, Stewart J.; Harlow, Seth P.; Julian, Thomas B.; Mamounas, Eleftherios P.; Wolmark, Norman

    2011-01-01

    BACKGROUND Retrospective and observational analyses suggest that occult lymph-node metastases are an important prognostic factor for disease recurrence or survival among patients with breast cancer. Prospective data on clinical outcomes from randomized trials according to sentinel-node involvement have been lacking. METHODS We randomly assigned women with breast cancer to sentinel-lymph-node biopsy plus axillary dissection or sentinel-lymph-node biopsy alone. Paraffin-embedded tissue blocks of sentinel lymph nodes obtained from patients with pathologically negative sentinel lymph nodes were centrally evaluated for occult metastases deeper in the blocks. Both routine staining and immunohistochemical staining for cytokeratin were used at two widely spaced additional tissue levels. Treating physicians were unaware of the findings, which were not used for clinical treatment decisions. The initial evaluation at participating sites was designed to detect all macrometastases larger than 2 mm in the greatest dimension. RESULTS Occult metastases were detected in 15.9% (95% confidence interval [CI], 14.7 to 17.1) of 3887 patients. Log-rank tests indicated a significant difference between patients in whom occult metastases were detected and those in whom no occult metastases were detected with respect to overall survival (P = 0.03), disease-free survival (P = 0.02), and distant-disease–free interval (P = 0.04). The corresponding adjusted hazard ratios for death, any outcome event, and distant disease were 1.40 (95% CI, 1.05 to 1.86), 1.31 (95% CI, 1.07 to 1.60), and 1.30 (95% CI, 1.02 to 1.66), respectively. Five-year Kaplan-Meier estimates of overall survival among patients in whom occult metastases were detected and those without detectable metastases were 94.6% and 95.8%, respectively. CONCLUSIONS Occult metastases were an independent prognostic variable in patients with sentinel nodes that were negative on initial examination; however, the magnitude of the difference in

  7. [Surgical Diagnosis and Treatment of Primary Hyperthyroidism Complicated with Occult Thyroid Carcinoma].

    PubMed

    Wu, Xin; Yu, Jian-chun; Kang, Wei-ming; Ma, Zhi-qiang; Ye, Xin

    2015-08-01

    To evaluate the surgical diagnosis and treatment of primary hyperthyroidism complicated with occult thyroid carcinoma. Data of 51 cases of primary hyperthyroidism complicated with occult thyroid carcinoma admitted during January 2004 to November 2014 were analyzed retrospectively. The incidence of occult thyroid carcinoma was 5.03% in hyperthyroidism,and 47 cases (92.16%) were female. The preoperative diagnosis of all these 51 cases was primary hyperthyroidism and 11 cases were diagnosed thyroid carcinoma at the same time;25 cases were diagnosed thyroid carcinoma by frozen section and the remaining 26 cases were diagnosed by postoperative pathology. Finally,26 cases underwent subtotal thyroidectomy,4 cases underwent total thyroidectomy, and 21 cases underwent total thyroidectomy with lymphadenectomy. The tumor size ranged from 0.1 to 1.0 cm [mean:(0.63 ± 0.35) cm]. The lesions were less than or equal to 0.5 cm in 28 cases (54.9%). The follow-up lasted from 1 to 121 months [mean:(28.6 ± 22.7)months] in 43 patients,and all of them survived. Primary hyperthyroidism complicated with occult thyroid carcinoma is commonly found in female patients. Preoperative diagnosis is difficult. Ultrasound is the major examining method. Frozen section can increase the detection rate. The postoperative prognosis of hyperthyroidism complicated with occult thyroid carcinoma is satisfactory.

  8. Occult fractures of the knee: tomographic evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apple, J.S.; Martinez, S.; Allen, N.B.

    1983-08-01

    Seven adults with painful effusions of the knee were examined for occult fractures using pluridirectional tomograph in the coronal and lateral planes. Six patients (ages 50 to 82 years) were osteopenic and gave histories ranging from none to mild trauma; one 26-year-old man was not osteopenic and had severe trauma. In all cases, routine radiographs were interpreted as negative, but tomography demonstrated a fracture. Five fractures were subchondral. Bone scans in 2 patients were positive. The authors conclude that osteopenic patients with a painful effusion of the knee should be considered to have an occult fracture. While bone scans maymore » be helpful, tomography is recommended as the procedure of choice to define the location and extent of the fracture.« less

  9. Occult Metastases in Pelvic Lymphadenectomy Specimens From Patients With Urothelial Carcinoma of the Bladder.

    PubMed

    Gordetsky, Jennifer; Gibson, Briana; Stevens, Todd M; Ellenburg, J Luke; Grizzle, William; Rais-Bahrami, Soroush

    2016-08-01

    To identify occult metastases within lymph nodes (LNs) reported as negative by routine histologic evaluation. In patients with high-grade, muscle-invasive urothelial carcinoma (UC) of the bladder, pelvic lymphadenectomy during radical cystectomy demonstrates a survival advantage, increasing with the number of LNs removed, even if negative for metastatic disease. This finding may potentially be explained by the presence of occult metastases. Radical cystectomy specimens with high-grade UC invading the perivesical tissue and negative LNs (pT3N0) between 2000 and 2014 were reviewed. Five levels were cut for each LN block. Two sections were cut per level: 1 stained for hematoxylin and eosin and 1 for AE1/AE3. Micrometastases were defined as tumor deposits >0.2 mm but <2 mm. Isolated tumor cells were defined as ≤0.2 mm. Medical records and survival data were reviewed. We identified 21 cases, consisting of 370 lymph nodes. Six of 21 patients (29%) had occult metastases, including 5 occult metastatic UC and 1 occult metastatic prostate adenocarcinoma. There were 10 positive LNs; 2 macrometastases, 2 micrometastases, and 6 with ITCs. Two of 6 patients (33%) had lymphovascular invasion identified in the primary tumor. Kaplan-Meier analysis showed no significant difference in overall survival between the group of patients who remained N0 versus those upstaged due to discovery of occult metastases (P-value = .42). In patients with pT3 UC undergoing cystectomy, we demonstrated the presence of occult metastases in 29% of patients. The high percentage of occult metastases present in these cases possibly explains the proven survival advantage of removing "negative" LNs. This finding might also have implications in the histologic evaluation of LNs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Predictive Power of Distal Radial Metaphyseal Tenderness for Diagnosing Occult Fracture.

    PubMed

    Glickel, Steven Z; Hinojosa, Lauren; Eden, Claire M; Balutis, Elaine; Barron, O Alton; Catalano, Louis W

    2017-10-01

    To correlate the physical examination finding of distal radial metaphyseal tenderness with plain radiographic and magnetic resonance imaging after acute wrist injury to diagnose occult distal radius fractures. We hypothesized that persistent distal radial metaphyseal tenderness 2 weeks after acute injuries is predictive of an occult fracture. Twenty-nine adult patients presented, after acute trauma, with distal radial metaphyseal tenderness and initial plain radiographs and/or fluoroscopic images that did not show a distal radius fracture. Patients were reevaluated clinically and radiographically at approximately 2 weeks after initial presentation. Patients with persistent distal radial tenderness and negative radiographs underwent magnetic resonance imaging to definitively diagnose an occult distal radius fracture. We calculated the sensitivity and positive predictive value for persistent distal radial metaphyseal tenderness using a 95% confidence interval and standard formulas. Both radiographs and magnetic resonance imaging were used as our endpoint diagnosis for a distal radius fracture. We diagnosed 28 occult distal radius fractures, 8 by follow-up radiograph and 20 by magnetic resonance imaging. The positive predictive value for patients who completed the protocol was 96%. One patient who did not have an occult distal radius fracture had a fracture of the ulnar styloid. Tenderness of the distal radial metaphysis after wrist injury is strongly suggestive of a distal radius fracture despite both normal plain radiographs and fluoroscopic images. Diagnostic III. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. Occult HCV Infection: The Current State of Knowledge

    PubMed Central

    Rezaee-Zavareh, Mohammad Saeid; Hadi, Reza; Karimi-Sari, Hamidreza; Hossein Khosravi, Mohammad; Ajudani, Reza; Dolatimehr, Fardin; Ramezani-Binabaj, Mahdi; Miri, Seyyed Mohammad; Alavian, Seyed Moayed

    2015-01-01

    Context Occult HCV infection (OCI) is defined as the presence of HCV-RNA in hepatocytes and the absence of HCV in the serum according to usual tests. We aimed to define OCI and provide information about the currently available diagnostic methods. Then we focus on specific groups that are at high risk of OCI and finally investigate immune responses to OCI and the available treatment approaches. Evidence Acquisition PubMed, Scopus and Google Scholar were comprehensively searched with combination of following keywords: “occult”, “hepatitis C virus” and “occult HCV infection”. The definition of OCI, diagnostic methods, specific groups that are at high risk and available treatment approaches were extract from literature. An analysis of available articles on OCI also was done based on Scopus search results. Results OCI has been reported in several high-risk groups, especially in hemodialysis patients and subjects with cryptogenic liver disease. Furthermore, some studies have proposed a specific immune response for OCI in comparison with chronic hepatitis C (CHC). Conclusions With a clinical history of approximately 11 years, occult HCV infection can be considered an occult type of CHC. Evidences suggest that considering OCI in these high-risk groups seems to be necessary. We suggest that alternative diagnostic tests should be applied and that there is a need for the participation of all countries to determine the epidemiology of this type of HCV infection. Additionally, evaluating OCI in blood transfusion centers and in patients who receive large amounts of blood and clotting factors, such as patients with hemophilia, should be performed in future projects. PMID:26734487

  12. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2017-08-01

    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.

  13. On the wavelength dependence of the effects of turbulence on average refraction angles in occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.; Eshleman, V. R.

    1979-01-01

    The dependence of the effects of planetary atmospheric turbulence on radio or optical wavelength in occultation experiments is discussed, and the analysis of Hubbard and Jokipii (1977) is criticized. It is argued that in deriving a necessary condition for the applicability of their method, Hubbard and Jokipii neglect a factor proportional to the square of the ratio of atmospheric or local Fresnel zone radius and the inner scale of turbulence, and fail to establish sufficient conditions, thereby omitting the square of the ratio of atmospheric scale height and the local Fresnel zone radius. The total discrepancy is said to mean that the results correspond to geometrical optics instead of wave optics, as claimed, thus being inapplicable in a dicussion of wavelength dependence. Calculations based on geometrical optics show that the bias in the average bending angle depends on the wavelength in the same way as does the bias in phase path caused by turbulence in a homogeneous atmosphere. Hubbard and Jokipii comment that the criterion of Haugstad and Eshleman is incorrect and show that there is a large wave optical domain where the results are independent of wavelength.

  14. Overt Skeletal Metastases in a Patient of Occult (Microscopic) Follicular Thyroid Carcinoma: a Rare Case.

    PubMed

    Jha, Chandan Kumar; Agrawal, Vinita; Mishra, Anjali; Pradhan, P K

    2018-03-01

    Occult follicular thyroid carcinoma (FTC) presenting as distant metastases is a rare occurrence. However, despite being occult in majority of these cases, primary tumor can be detected on thyroid imaging or during surgery. Here, we present an extremely rare case of an occult FTC with overt skeletal metastases in which primary tumor was discernible only on microscopic examination.

  15. Capturing Characteristics of Atmospheric Refractivity Using Observations and Modeling Approaches

    DTIC Science & Technology

    2015-06-01

    Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Electromagnetic wave...INTENTIONALLY LEFT BLANK v ABSTRACT Electromagnetic wave propagation is sensitive to gradients of refractivity derived from atmospheric temperature...evaporation duct profiles is then run through AREPS to calculate the propagation loss of EM energy along the path of varying geometric and transmitter setups

  16. Orbital Metastasis: Rare Initial Presentation of an Occult Gall Bladder Carcinoma.

    PubMed

    Jain, Tarun Kumar; Parihar, Ashwin Singh; Sood, Ashwani; Basher, Rajender Kumar; Bollampally, Neeraja; Shekhawat, Amit Singh; Mittal, Bhagwant Rai

    2018-03-01

    Orbital metastases are known to arise from primary breast carcinoma followed by prostate, malignant melanoma, and lung carcinoma. We report a case of orbital metastasis as the initial presentation of an occult primary gall bladder carcinoma. The FDG PET/CT helped in localizing the occult distant primary site, which previously escaped detection, and also enabled the evaluation of orbital metastasis.

  17. Prevalence of occult hepatitis C infection in chronic hemodialysis and kidney transplant patients.

    PubMed

    Baid-Agrawal, Seema; Schindler, Ralf; Reinke, Petra; Staedtler, Adrienne; Rimpler, Sunda; Malik, Barbara; Frei, Ulrich; Berg, Thomas

    2014-05-01

    Detection of hepatitis C virus (HCV) RNA in peripheral blood mononuclear cells (PBMC) and/or hepatocytes in absence of HCV RNA in serum, designated as 'occult HCV infection', has been a matter of controversy in recent years. We investigated for the first time the prevalence of occult HCV infection in large cohorts of chronic hemodialysis (CHD) and kidney transplant (KTx) patients. We enrolled 417 CHD patients, 417 KTx recipients and 2 control groups - 25 anti-HCV (antibody against HCV)-positive and HCV RNA-positive patients with chronic hepatitis C, and 40 anti-HCV-, HCV RNA-, and HBsAg-negative healthy subjects. HCV RNA was tested in serum and PBMC using a sensitive commercial assay. In CHD patients, the prevalence of anti-HCV was 3.6% (15/417) and of positive serum HCV RNA 2.4% (10/417). HCV RNA was detected in PBMC in 1/407 (0.25%) HCV serum RNA-negative patients ("occult HCV infection"). In KTx recipients, prevalence of anti-HCV was 4.8% (20/417) and of positive serum HCV RNA 4.6% (19/417). Occult HCV infection was found in 2/398 (0.5%) serum HCV RNA-negative patients. On a mean longitudinal follow-up of 30months of the 3 patients with occult HCV infection, there was no clinical or virological evidence of HCV infection. The prevalence of occult HCV infection was very low in our CHD and KTx patients, and it did not appear to be clinically relevant. Further studies in geographic populations with high HCV endemicity are required to clarify the significance of occult HCV infection in these patient groups. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. A prospective evaluation of occult disorders in obstructed defecation using the 'iceberg diagram'.

    PubMed

    Pescatori, M; Spyrou, M; Pulvirenti d'Urso, A

    2006-11-01

    Surgical treatment of constipation and obstructed defecation (OD) carries frequent recurrences, as OD is an 'iceberg syndrome' characterized by 'underwater rocks' or occult diseases which may affect the outcome of surgery. The aim of this study was to evaluate occult disorders in order to alert the clinician of these and minimize failures. One hundred consecutive constipated patients with OD symptoms, 81 female patients, median age 52 years, underwent perineal examination, proctoscopy, anorectal manometry, and anal/vaginal ultrasound. Anorectal physiology and imaging tests were also carried out when indicated, as well as psychological and urogynaecological consultation. Symptoms were graded using a modified 1-20 constipation score. Both evident (e.g. rectocele) and occult (e.g. anismus) diseases were prospectively evaluated using a novel 'iceberg diagram'. The type of treatment, whether conservative or surgical, was also recorded. Fifty-four (54%) patients had both mucosal prolapse and rectocele. All patients had at least two occult OD-related diseases, 66 patients had at least three: anxiety-depression, anismus and rectal hyposensation were the most frequent (66%, 44% and 33% respectively). The median constipation score was 11 (range 2-20), the median number of 'occult disorders' was 5 (range 2-8). Conservative treatment was carried out in most patients. Surgery was carried out in 14 (14%) patients. The novel 'iceberg diagram' allowed the adequate evaluation of OD-related occult diseases and better selection of patients for treatment. Most were managed conservatively, and only a minority were treated by surgery.

  19. A prospective evaluation of occult disorders in obstructed defecation using the 'iceberg diagram'.

    PubMed

    Pescatori, M; Spyrou, M; Pulvirenti d'Urso, A

    2007-06-01

    Surgical treatment of constipation and obstructed defecation (OD) carries frequent recurrences, as OD is an 'iceberg syndrome' characterized by 'underwater rocks' or occult diseases which may affect the outcome of surgery. The aim of this study was to evaluate occult disorders, in order to alert the clinician of these and minimize failures. One hundred consecutive constipated patients with OD symptoms, 81 women, median age 52 years, underwent perineal examination, proctoscopy, anorectal manometry and anal/vaginal ultrasound (US). Anorectal physiology and imaging tests were also carried out when indicated, as well as psychological and urogynaecological consultations. Symptoms were graded using a modified 1-20 constipation score. Both evident (e.g. rectocele) and occult (e.g. anismus) diseases were prospectively evaluated using a novel 'iceberg diagram'. The type of treatment, whether conservative or surgical, was also recorded. Fifty-four (54%) patients had both mucosal prolapse and rectocele. All patients had at least two occult OD-related diseases, 66 patients had at least three of them: anxiety-depression, anismus and rectal hyposensation were the most frequent (66%, 44% and 33%, respectively). The median constipation score was 11 (range 2-20), the median number of 'occult disorders' was 5 (range 2-8). Conservative treatment was carried out in most cases. Surgery was carried out in 14 (14%) patients. The novel 'iceberg diagram' allowed the adequate evaluation of OD-related occult diseases and better selection of patients for treatment. Most were managed conservatively, and only a minority were treated by surgery.

  20. Occult head injury is common in children with concern for physical abuse.

    PubMed

    Boehnke, Mitchell; Mirsky, David; Stence, Nicholas; Stanley, Rachel M; Lindberg, Daniel M

    2018-04-13

    Studies evaluating small patient cohorts have found a high, but variable, rate of occult head injury in children <2 years old with concern for physical abuse. The American College of Radiology (ACR) recommends clinicians have a low threshold to obtain neuroimaging in these patients. Our aim was to determine the prevalence of occult head injury in a large patient cohort with suspected physical abuse using similar selection criteria from previous studies. Additionally, we evaluated proposed risk factors for associations with occult head injury. This was a retrospective, secondary analysis of data collected by an observational study of 20 U.S. child abuse teams that evaluated children who underwent subspecialty evaluation for concern of abuse. We evaluated children <2 years old and excluded those with abnormal mental status, bulging fontanelle, seizure, respiratory arrest, underlying neurological condition, focal neurological deficit or scalp injury. One thousand one hundred forty-three subjects met inclusion criteria and 62.5% (714) underwent neuroimaging with either head computed tomography or magnetic resonance imaging. We found an occult head injury prevalence of 19.7% (141). Subjects with emesis (odds ratio [OR] 3.5, 95% confidence interval [CI] 1.8-6.8), macrocephaly (OR 8.5, 95% CI 3.7-20.2), and loss of consciousness (OR 5.1, 95% CI 1.2-22.9) had higher odds of occult head injury. Our results show a high prevalence of occult head injury in patients <2 years old with suspected physical abuse. Our data support the ACR recommendation that clinicians should have a low threshold to perform neuroimaging in patients <2 years of age.