Sample records for occurring radioactive elements

  1. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    PubMed

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Decontamination of radioisotopes

    PubMed Central

    Domínguez-Gadea, Luis; Cerezo, Laura

    2011-01-01

    Contaminations with radioactive material may occur in several situations related to medicine, industry or research. Seriousness of the incident depends mainly on the radioactive element involved; usually there are no major acute health effects, but in the long term can cause malignancies, leukemia, genetic defects and teratogenic anomalies. The most common is superficial contamination, but the radioactive material can get into the body and be retained by the cells of target organs, injuring directly and permanently sensitive elements of the body. Rapid intervention is very important to remove the radioactive material without spreading it. Work must be performed in a specially prepared area and personnel involved should wear special protective clothing. For external decontamination general cleaning techniques are used, usually do not require chemical techniques. For internal decontamination is necessary to use specific agents, according to the causative element, as well physiological interventions to enhance elimination and excretion. PMID:24376972

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, V.E.

    Naturally occurring radioactivity was measured in the atmospheric emissions and process materials of a thermal phosphate (elemental phosphorus) plant. Representative exhaust stack samples were collected from each process in the plant. The phosphate ore contained 12 to 20 parts per million uranium. Processes, emission points, and emission controls are described. Radioactivity concentrations and emission rates from the sources sampled are given.

  4. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    PubMed

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA).

  5. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale.

    PubMed

    Nelson, Andrew W; Eitrheim, Eric S; Knight, Andrew W; May, Dustin; Mehrhoff, Marinea A; Shannon, Robert; Litman, Robert; Burnett, William C; Forbes, Tori Z; Schultz, Michael K

    2015-07-01

    The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of "produced fluids" generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element-radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides.

  6. Radionuclides in Ecosystems| RadTown USA | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Radioactive elements are part of our ecosystem, part of the air we breathe, the water we drink and the food we eat. Radionuclides can occur naturally, or can be man-made. Over half of the average annual radiation exposure of people in the U.S. comes from natural sources.

  7. Airborne radioactivity survey of parts of Atlantic Ocean beach, Virginia to Florida

    USGS Publications Warehouse

    Moxham, R.M.; Johnson, R.W.

    1953-01-01

    The accompanying maps show the results of an airborne radioactivity survey along the Atlantic Ocean beach from Cape Henry, Virginia to Cape Fear, North Carolina and from Savannah Bach Georgia to Miami Beach, Florida. The survey was made March 23-24, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude, parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the normal 500 foot flight altitude varies with the areal extent radioactivity of the source. For strong sources of radioactivity the width of the zone would be as much as 1,400 feet. The location of the flight lines is shown on the index map below. No abnormal radioactivity was detected along the northern flight line between Cape Henry, Virginia and Cape Fear, North Carolina. Along the southern flight line fourteen areas of abnormal radioactivity were detected between Savannah Beach, Georgia and Anastasia Island, Florida as shown on the map on the left. The abnormal radioactivity is apparently due to radioactive minerals associated with "black sand" deposits with occur locally along the beach in this region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity sue to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given on the accompanying map indicates only those localities of greater-than-average radioactivity and, therefore suggest areas in which uranium and thorium deposits are more likely to occur.

  8. Radioactively Contaminated Sites | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-01-12

    If radioactive materials are used or disposed of improperly, they can contaminate buildings and the environment. Every site requiring cleanup is different depending on the type of facility, the radioactive elements involved and the concentration of the radioactive elements.

  9. Alkalic rocks and resources of thorium and associated elements in the Powderhorn District, Gunnison County, Colorado

    USGS Publications Warehouse

    Olson, J.C.; Hedlund, D.C.

    1981-01-01

    Alkalic igneous rocks and related concentrations of thorium, niobium, rare-earth elements, titanium, and other elements have long been known in the Powderhorn mining district and have been explored intermittently for several decades. The deposits formed chiefly about 570 m.y. (million years) ago in latest Precambrian or Early Cambrian time. They were emplaced in lower Proterozoic (Proterozoic X) metasedimentary, metavolcanic, and plutonic rocks. The complex of alkalic rocks of Iron Hill occupies 31 km 2 (square kilometers) and is composed of pyroxenite, uncompahgrite, ijolite, nepheline syenite, and carbonatite, in order of generally decreasing age. Fenite occurs in a zone, in places more than 0.6 km (kilometer) wide, around a large part of the margin of the complex and adjacent to alkalic dikes intruding Precambrian host rock. The alkalic rocks have a radioactivity, chiefly due to thorium, greater than that of the surrounding Powderhorn Granite (Proterozoic X) and metamorphic rocks. The pyroxenite, uncompahgrite, ijolite, and nepheline syenite, which form more than 80 percent of the complex, have fairly uniform radioactivity. Radioactivity in the carbonatite stock, carbonatite dikes, and the carbonatite-pyroxenite mixed rock zone, however, generally exceeds that in the other rocks of the complex. The thorium concentrations in the Powderhorn district occur in six types of deposits: thorite veins, a large massive carbonatite body, carbonatite dikes, trachyte dikes, magnetite-ilmeniteperovskite dikes or segregations, and disseminations in small, anomalously radioactive plutons chiefly of granite or quartz syenite that are older than rocks of the alkalic complex. The highest grade thorium concentrations in the district are in veins that commonly occur in steeply dipping, crosscutting shear or breccia zones in the Precambrian rocks. They range in thickness from a centimeter or less to 5 m (meters) and are as much as 1 km long. The thorite veins are composed chiefly of potassic feldspar, white to smoky quartz, calcite, barite, goethite, and hematite, and also contain thorite, jasper, magnetite, pyrite, galena, chalcopyrite, sphalerite, synchysite, apatite, fluorite, biotite, sodic amphibole, rutile, monazite, bastnaesite, and vanadinite. The Th0 2 content of the thorite veins ranges from less than 0.01 percent to as much as 4.9 percent in high-grade samples. The Th0 2 content is generally less than 1 percent, however, and is only 0.05 to 0.1 percent in many of the veins examined in the district. Samples of the dolomitic carbonatite of Iron Hill mostly range from 3 to 145 ppm (parts per million) thorium. Thirty samples of the carbonatite dikes, the most radioactive rocks within the complex of Iron Hill, contain about 30 to 3,200 ppm thorium and a trace to about 1.5 percent rare-earth oxides. The magnetite-ilmenite-perovskite rocks have a radioactivity of 2 to 12 times the background of Precambrian granite that is attributable chiefly to thorium substitution for calcium in the perovskite. In two analyses the perovskite contains 0.12 and 0.15 percent Th0 2 . Trachyte dikes as much as 25 m thick cut the Precambrian rocks; their radioactivity is generally about two to four times the background of typical Precambrian granite, is locally higher, but is low relative to other types of thorium concentrations. A finegrained granite that is anomalously radioactive occurs in thick, dikelike plutons as much as 1.2 km wide, or more. The thorium content varies widely within the granite bodies. Eight samples of the granite contain 32 to 281 ppm thorium (averaging 115 ppm). The economic potential of thorium in the Powderhorn district is related in part to other elements such as niobium, titanium, iron, and rare earths. The proportions of niobium and rare earths to thorium vary in different parts of the district. Within the carbonatite body of Iron Hill, the Nb 2 0 5 content greatly exceeds Th0 2 , but the Th0 2 -Nb 2 0 5

  10. Encapsulation/Fixation (E/F) Mechanisms.

    DTIC Science & Technology

    1984-06-18

    occurring. It has been reported that certain "reductant" solutions containing oxalic acid and/or other compounds containing the elements CHON may be...Thus, for Na2Sx + MX2 MSx + 2NaX 1Barney, G.S., wFixation of Radioactive Waste by Hydrothermal Reactions with Clays," Prepared for U.S. Atomic

  11. Prevention measures against radiation exposure to radon in well waters: analysis of the present situation in Finland.

    PubMed

    Turtiainen, Tuukka; Salonen, Laina

    2010-09-01

    Naturally occurring radioactive elements are found in all groundwaters, especially in bedrock waters. Exposure to these radioactive elements increases the risk of cancer. The most significant of these elements is radon which, as a gas, is mobile and dissolves in groundwater. In Finland, water supply plants are obliged to carry out statutory monitoring of the water quality, including radon. Monitoring of private wells, however, is often neglected. In this paper, we outline the problem by reviewing the outcomes of the studies conducted in Finland since the 1960s. We also summarise the development of legislation, regulations and political decisions made so far that have affected the amount of public exposure to radon in drinking water. A review of the studies on radon removal techniques is provided, together with newly obtained results. New data on the transfer of radon from water into indoor air are presented. The new assessments also take into account the expanding use of domestic radionuclide removal units by Finnish households.

  12. Towards the challenging REE exploration in Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, Iwan

    2018-02-01

    Rare earth elements (REE) are the seventeen elements, including fifteen from 57La to 71Lu, in addition to 21Sc and 39Y. In rock-forming minerals, rare earth elements typically occur in compounds as trivalent cations in carbonates, oxides, phosphates, and silicates. The REE occur in a wide range of rock types: igneous, sedimentary and metamorphic rocks. REE are one of the critical metals in the world. Their occurrences are important to supply the world needs on high technology materials. Indonesia has a lot of potential sources of REE that are mainly from residual tin mining processes in Bangka islands, which are associated with radioactive minerals e.g. monazite and xenotime. However, the REE from monazite and xenotime are difficult to extract and contain high radioactivity. Granitoids are widely distributed in Sumatra, Sulawesi, Kalimantan and Papua. They also have a very thick weathering crusts. Important REE-bearing minerals are allanite and titanite. Their low susceptibilities during weathering result an economically potential REE concentration. I-/A- type granitoids and their weathered crusts are important REE sources in Indonesia. Unfortunately, their distribution and genesis have not been deeply studied. Future REE explorations challenge are mainly of the granitoids their weathered crusts. Geochemical and mineralogical characterization of type of granitoids and their weathered crusts, the hydrothermally altered rocks, and clear REE regulation will help discover REE deposits in Indonesia.

  13. Radioactivity of buildings materials available in Slovakia

    NASA Astrophysics Data System (ADS)

    Singovszka, E.; Estokova, A.; Mitterpach, J.

    2017-10-01

    In the last decades building materials, both of natural origin and containing industrial by-products, have been shown to significantly contribute to the exposure of the population to natural radioactivity. As a matter of fact, neither the absorbed dose rate in air due to gamma radiation nor the radon activity concentration are negligible in closed environments. The soil and rocks of the earth contains substances which are naturally radioactive and provide natural radiation exposures. The most important radioactive elements which occur in the soil and in rocks are the long lived primordial isotopes of potassium (40K), uranium (238U) and thorium (232Th). Therefore, additional exposures have to be measured and compared with respect to the natural radiation exposure. Further, it is important to estimate the potential risk from radiation from the environment. The paper presents the results of mass activities of 226Ra, 232Th a 40K radionuclides in cement mortars with addition of silica fume. The gamma index was calculated as well.

  14. ELECTRONIC ANALOG COMPUTER FOR DETERMINING RADIOACTIVE DISINTEGRATION

    DOEpatents

    Robinson, H.P.

    1959-07-14

    A computer is presented for determining growth and decay curves for elements in a radioactive disintegration series wherein one unstable element decays to form a second unstable element or isotope, which in turn forms a third element, etc. The growth and decay curves of radioactive elements are simulated by the charge and discharge curves of a resistance-capacitance network. Several such networks having readily adjustable values are connected in series with an amplifier between each successive pair. The time constant of each of the various networks is set proportional to the half-life of a corresponding element in the series represented and the charge and discharge curves of each of the networks simulates the element growth and decay curve.

  15. RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotopemore » as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value. For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 {+-} 3 is listed in the half-life column as 7 (3). The criteria to include data in this Table, is to be the same as it has been for over sixty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified. It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to. The atomic mass values have been taken primarily from the 2003 Atomic Mass Table. Mass values for those radioisotopes that do not appear in the 2003 Atomic mass Table have been taken from preliminary data of the Atomic Mass Data Center. Most of the quoted half-lives.« less

  16. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10.

    PubMed

    Qu, Yang; Lian, Bin

    2013-05-01

    The aim of this work is to investigate biological leaching of rare earth elements (REEs) and radioactive elements from red mud, and to evaluate the radioactivity of the bioleached red mud used for construction materials. A filamentous, acid-producing fungi named RM-10, identified as Penicillium tricolor, is isolated from red mud. In our bioleaching experiments by using RM-10, a total concentration of 2% (w/v) red mud under one-step bioleaching process was generally found to give the maximum leaching ratios of the REEs and radioactive elements. However, the highest extraction yields are achieved under two-step bioleaching process at 10% (w/v) pulp density. At pulp densities of 2% and 5% (w/v), red mud processed under both one- and two-step bioleaching can meet the radioactivity regulations in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Non-malignant thyroid disease after exposure to radioactive elements during nuclear explosion: a neglected issue.

    PubMed

    Wiwanitkit, Viroj

    2012-01-01

    Recent nuclear explosion in Japan led to a great concern regarding its detrimental effects on health. As obtained data imply the increased risk of thyroid cancer, the prevention is widely suggested. Also the adverse effect of leaked radioactive elements can lead to non-malignant thyroid disease, which is neglected. In this article, non-malignant thyroid disease after exposure to radioactive elements during nuclear explosion was reviewed and discussed.

  18. Geochemical signature of NORM waste in Brazilian oil and gas industry.

    PubMed

    De-Paula-Costa, G T; Guerrante, I C; Costa-de-Moura, J; Amorim, F C

    2018-09-01

    The Brazilian Nuclear Energy Agency (CNEN) is responsible for any radioactive waste storage and disposal in the country. The storage of radioactive waste is carried out in the facilities under CNEN regulation and its disposal is operated, managed and controlled by the CNEN. Oil NORM (Naturally Occurring Radioactive Materials) in this article refers to waste coming from oil exploitation. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of a regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is the modeling of radioisotopes normally present in oil pipe contamination such as 228 Ac, 214 Bi and 214 Pb analyzed by gamma spectrometry. The specific activities of elements from different decay series are plotted in a scatter diagram. This method was successfully tested with gamma spectrometry analyses of oil sludge NORM samples from four different sources obtained from Petrobras reports for the Campos Basin/Brazil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Naturally occurring heavy radioactive elements in the geothermal microcosm of the Los Azufres (Mexico) volcanic complex.

    PubMed

    Abuhani, W A; Dasgupta-Schubert, N; Villaseñor, L M; García Avila, D; Suárez, L; Johnston, C; Borjas, S E; Alexander, S A; Landsberger, S; Suárez, M C

    2015-01-01

    The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to the paleo times when such plant types were ubiquitous, it would mean that the first plants contributed significantly to pedogenesis and the biogeochemical recycling of even the heaviest and radioactive elements. Such plants may potentially be useful for the phytostabilisation of soil moderately contaminated by the NOHRE. Furthermore where applicable, geochronology may require taking into account the influence of the early plants on the NOHRE distributions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 'Detox': science or sales pitch?

    PubMed

    Cohen, Marc

    2007-12-01

    There is no question that the world is becoming increasingly toxic, with worldwide dissemination of industrial chemicals, pesticides, heavy metals and radioactive elements. Many of these toxins have demonstrated harmful effects including cancer, reproductive, metabolic, and mental health effects. It is also known that many toxins undergo bioaccumulation through the food chain and that synergistic effects can occur whereby combinations of toxins can be more potent than the sum of individual toxins.

  1. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...

  2. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...

  3. Ion exchangers in radioactive waste management: natural Iranian zeolites.

    PubMed

    Nilchi, A; Maalek, B; Khanchi, A; Ghanadi Maragheh, M; Bagheri, A; Savoji, K

    2006-01-01

    Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K(d)) of various simulated wastes which were prepared by spiking the radionuclides with (131)I, (99)Mo, (153)Sm, (140)La and (147)Nd. All the zeolite samples used in this study had extremely high absorption value towards (140)La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for (147)Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for (153)Sm; mesolite from Arababad Tabas showed good absorption for (99)Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb (131)I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry.

  4. Determination of naturally occurring radionuclides in soil samples of Ayranci, Turkey

    NASA Astrophysics Data System (ADS)

    Agar, Osman; Eke, Canel; Boztosun, Ismail; Emin Korkmaz, M.

    2015-04-01

    The specific activity, radiation hazard index and the annual effective dose of the naturally occurring radioactive elements (238U, 232Th and 40K) were determined in soil samples collected from 12 different locations in Ayranci region by using a NaI(Tl) gamma-ray spectrometer. The measured activity concentrations of the natural radionuclides in studied soil samples were compared with the corresponding results of different countries and the internationally reported values. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  5. Neutron-Capture Elements in Very Metal-Poor Halo Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.; Sneden, C.; Cowan, J. J.; Lawler, J. E.; Primas, F.; Beers, T. C.; Truran, J. W.

    2000-05-01

    Abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) in metal-poor stars can provide crucial information about the so-called ``third neutron-capture peak,'' and are critical to the radioactive-dating technique that uses unstable thorium and uranium as chronometers. As the relevant transitions occur in the UV and are inaccessable to ground-based telescopes, we have obtained high resolution (R ~= 30,000) UV spectra of 10 very metal-poor (--3.0 <= [Fe/H] <= --1.4) halo giants using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope. Using iterative spectrum synthesis techniques, we derive abundances for some of these heavy elements. We compare our abundances to those predicted for very metal-poor stars based on a scaled solar system rapid-process (production in rapid neutron-capture synthesis events, such as occurs during supernovae explosions). This research is supported by NASA STScI grant GO-08342 and NSF grants AST-9618364 to C.S. and AST-9618332 to J.J.C.

  6. METHOD OF TESTING FOR LEAKS

    DOEpatents

    Creutz, E.C.; McAdams, Wm.A.; Foss, M.H.

    1958-07-22

    A method is described for detecting minute holes In fuel element jackets. The method comprises submerging the jacketed body in an atmosphere of a radioactive gas under pressure, the radioactive emanations from said gas being sufficientiy penetratIng to penetrate the jacket of the jacketed body. After the jacketed body is removed from the radtoactive gas atmosphere, it is exannined for the presence of emanations from radioactive gas which entered the jacketed body through the minute holes. In this manner, the detectton of radioactive emanations is a positive indication that the fuel element is not perfectly sealed.

  7. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    NASA Astrophysics Data System (ADS)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.

  8. Radioactive nuclear waste stabilization - Aspects of solid-state molecular engineering and applied geochemistry

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.

    1983-01-01

    Stabilization techniques for the storage of radioactive wastes are surveyed, with emphasis on immobilization in a primary barrier of synthetic rock. The composition, half-life, and thermal-emission characteristics of the wastes are shown to require thermally stable immobilization enduring at least 100,000 years. Glass materials are determined to be incapable of withstanding the expected conditions, average temperatures of 100-500 C for the first 100 years. The geological-time stability of crystalline materials, ceramics or synthetic rocks, is examined in detail by comparing their components with similar naturally occurring minerals, especially those containing the same radioactive elements. The high-temperature environment over the first 100 years is seen as stabilizing, since it can recrystallize radiation-induced metamicts. The synthetic-rock stabilization technique is found to be essentially feasible, and improvements are suggested, including the substitution of nepheline with freudenbergite and priderite for alkaline-waste stabilization, the maintenance of low oxygen fugacity, and the dilution of the synthetic-rock pellets into an inert medium.

  9. Radioactive mineral spring precipitates, their analytical and statistical data and the uranium connection

    USGS Publications Warehouse

    Cadigan, R.A.; Felmlee, J.K.

    1982-01-01

    Major radioactive mineral springs are probably related to deep zones of active metamorphism in areas of orogenic tectonism. The most common precipitate is travertine, a chemically precipitated rock composed chiefly of calcium carbonate, but also containing other minerals. The mineral springs are surface manifestations of hydrothermal conduit systems which extend downward many kilometers to hot source rocks. Conduits are kept open by fluid pressure exerted by carbon dioxide-charged waters rising to the surface propelled by heat and gas (CO2 and steam) pressure. On reaching the surface, the dissolved carbon dioxide is released from solution, and calcium carbonate is precipitated. Springs also contain sulfur species (for example, H2S and HS-), and radon, helium and methane as entrained or dissolved gases. The HS- ion can react to form hydrogen sulfide gas, sulfate salts, and native sulfur. Chemical salts and native sulfur precipitate at the surface. The sulfur may partly oxidize to produce detectable sulfur dioxide gas. Radioactivity is due to the presence of radium-226, radon-222, radium-228, and radon-220, and other daughter products of uranium-238 and thorium-232. Uranium and thorium are not present in economically significant amounts in most radioactive spring precipitates. Most radium is coprecipitated at the surface with barite. Barite (barium sulfate) forms in the barium-containing spring water as a product of the oxidation of sulfur species to sulfate ions. The relatively insoluble barium sulfate precipitates and removes much of the radium from solution. Radium coprecipitates to a lesser extent with manganese-barium- and iron-oxy hydroxides. R-mode factor analysis of abundances of elements suggests that 65 percent of the variance of the different elements is affected by seven factors interpreted as follows: (1) Silica and silicate contamination and precipitation; (2) Carbonate travertine precipitation; (3) Radium coprecipitation; (4) Evaporite precipitation; (5) Hydrous limonite precipitation and coprecipitated elements including uranium; (6) Rare earth elements deposited with detrital contamination (?); (7) Metal carbonate adsorption and precipitation. Economically recoverable minerals occurring at some localities in spring precipitates are ores of iron, manganese, sulfur, tungsten and barium and ornamental travertine. Continental radioactive mineral springs occur in areas of crustal thickening caused by overthrusting of crustal plates, and intrusion and metamorphism. Sedimentary rocks on the lower plate are trapped between the plates and form a zone of metamorphism. Connate waters, carbonate rocks and organic-carbon-bearing rocks react to extreme pressure and temperature to produce carbon dioxide, and steam. Fractures are forced open by gas and fluid pressures. Deep-circulating meteoric waters then come in contact with the reactive products, and a hydrothermal cell forms. When hot mineral-charged waters reach the surface they form the familiar hot mineral springs. Hot springs also occur in relation to igneous intrusive action or volcanism both of which may be products of the crustal plate overthrusting. Uranium and thorium in the sedimentary rocks undergoing metamorphism are sometimes mobilized, but mobilization is generally restricted to an acid hydrothermal environment; much is redeposited in favorable environments in the metamorphosed sediments. Radium and radon, which are highly mobile in both acid and alkaline aqueous media move upward into the hydrothermal cell and to the surface.

  10. Radioactive mineral springs in Delta County, Colorado

    USGS Publications Warehouse

    Cadigan, Robert A.; Rosholt, John N.; Felmlee, J. Karen

    1976-01-01

    The system of springs in Delta County, Colo., contains geochemical clues to the nature and location of buried uranium-mineralized rock. The springs, which occur along the Gunnison River and a principal tributary between Delta and Paonia, are regarded as evidence of a still-functioning hydrothermal system. Associated with the springs are hydrogen sulfide and sulfur dioxide gas seeps, carbon dioxide gas-powered geysers, thick travertine deposits including radioactive travertine, and a flowing warm-water (41?C) radioactive well. Geochemical study of the springs is based on surface observations, on-site water-property measurements, and sampling of water, travertine, soft precipitates, and mud. The spring deposits are mostly carbonates, sulfates, sulfides, and chlorides that locally contain notable amounts of some elements, such as arsenic, barium, lithium, and radium. Samples from five localities have somewhat different trace element assemblages even though they are related to the same hydrothermal system. All the spring waters but one are dominated by sodium chloride or sodium bicarbonate. The exception is an acid sulfate water with a pH of 2.9, which contains high concentrations of aluminum and iron. Most of the detectable radioactivity is due to the presence of radium-226, a uranium daughter product, but at least one spring precipitate contains abundant radium-228, a thorium daughter product. The 5:1 ratio of radium-228 to radium-226 suggests the proximity of a vein-type deposit as a source for the radium. The proposed locus of a thorium-uranium mineral deposit is believed to lie in the vicinity of Paonia, Colo. Exact direction and depth are not determinable from data now available.

  11. Process for decontaminating radioactive liquids using a calcium cyanamide-containing composition. [Patent application

    DOEpatents

    Silver, G.L.

    1980-09-24

    The present invention provides a process for decontaminating a radioactive liquid containing a radioactive element capable of forming a hydroxide. This process includes the steps of contacting the radioactive liquid with a decontaminating composition and separating the resulting radioactive sludge from the resulting liquid. The decontaminating composition contains calcium cyanamide.

  12. NATURAL RADIOACTIVITY LEVEL AND ELEMENTAL COMPOSITION OF SOIL SAMPLES FROM A HIGH BACKGROUND RADIATION AREA ON EASTERN COAST OF INDIA (ODISHA).

    PubMed

    Sahoo, S K; Kierepko, R; Sorimachi, A; Omori, Y; Ishikawa, T; Tokonami, S; Prasad, G; Gusain, G S; Ramola, R C

    2016-10-01

    A comprehensive study was carried out to determine the radioactivity concentration of soil samples from different sites of a high background radiation area in the eastern coast of India, Odisha state. The dose rate measured in situ varied from 0.25 to 1.2 µSv h -1 The gamma spectrometry measurements indicated Th series elements as the main contributors to the enhanced level of radiation and allowed the authors to find the mean level of the activity concentration (±SD) for 226 Ra, 228 Th and 40 K as 130±97, 1110±890 and 360±140 Bq kg -1 , respectively. Human exposure from radionuclides occurring outdoor was estimated based on the effective dose rate, which ranged from 0.14±0.02 to 2.15±0.26 mSv and was higher than the UNSCEAR annual worldwide average value 0.07 mSv. Additionally, X-ray fluorescence analysis provided information about the content of major elements in samples and indicated the significant amount of Ti (7.4±4.9 %) in soils. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Geochemical mapping of radioactive elements using helicopter-borne gamma-ray spectrometry (Tiouit, Eastern Anti-Atlas, Morocco): Or occurrence and environmental impact

    NASA Astrophysics Data System (ADS)

    Miftah, Abdelhalim; El Azzab, Driss; Attou, Ahmed; Manar, Ahmed; Rachid, Ahmed; Ramhy, Haytam

    2018-03-01

    The spectrometric prospection is a direct geophysical method based on the analysis of the radioactive elements spectra, due to three principal radioactive elements 40K, 238U and 232Th. In order to measure the content of radioactive elements a geophysical helicopter survey was carried out to a flight altitude of 60 m from the subsoil, covering the geological map of Tiouit 1/50,000 with an extent of 45.5 × 29 km2. In this paper, we propose an application in the environment and or occurrence by the production of maps concentration in K, U and Th to delimit the areas with purely natural radioactive risk by the calculation of the dose rate in mSv, the found values show a variation of 0,3 with 1649 mSv with a median value of 0,831 mSv. Moreover, data processing as the horizontal gradient filter which allowed to amplify the spectrometric signatures, this one coupled to the upward continuation, lead us to a better location of the abrupt changes, which materialize by spectrometric lineaments, reflecting the change of the geochemical properties of the basement.

  14. Concentrations of radioactive elements in lunar materials

    NASA Astrophysics Data System (ADS)

    Korotev, Randy L.

    1998-01-01

    As an aid to interpreting data obtained remotely on the distribution of radioactive elements on the lunar surface, average concentrations of K, U, and Th as well as Al, Fe, and Ti in different types of lunar rocks and soils are tabulated. The U/Th ratio in representative samples of lunar rocks and regolith is constant at 0.27; K/Th ratios are more variable because K and Th are carried by different mineral phases. In nonmare regoliths at the Apollo sites, the main carriers of radioactive elements are mafic (i.e., 6-8 percent Fe) impact-melt breccias created at the time of basin formation and products derived therefrom.

  15. Sequential chemical extraction for a phosphogypsum environmental impact evaluation

    NASA Astrophysics Data System (ADS)

    Gennari, R. F.; Garcia, I.; Medina, N. H.; Silveira, M. A. G.

    2013-05-01

    Phosphogypsum (PG) is gypsum generated during phosphoric acid production. PG is stocked in large stacks or accumulated in lakes; it contains heavy metals and naturally occurring radioactive elements. The metal contamination may affect the functionality, sustainability and biodiversity of ecosystems. In this work, PG samples were analyzed by Plasma Spectrometry. Total metal content and in the extractable fraction of chemical elements were determined. For K, Ni, Zn, Cr, Cd, Ba, Pb and U, the results obtained are lower than those obtained in a Idaho plant are including and also lower than those found in the soil, indicating this PG sample analyzed probably will not cause any additional metal neither natural radiation contamination.

  16. Assessment of elemental and NROM/TENORM hazard potential from non-nuclear industries in North Sinai, Egypt.

    PubMed

    El-Mekawy, A F; Badran, H M; Seddeek, M K; Sharshar, T; Elnimr, T

    2015-09-01

    Non-nuclear industries use raw materials containing significant levels of naturally occurring radioactive material (NORM). The processing of these materials may expose workers engaged in or even people living near such sites to technologically enhanced naturally occurring radioactive material (TENORM) above the natural background. Inductively coupled plasma and gamma ray spectrometry have been used to determine major and trace elements and radionuclide concentrations in various samples, respectively, in order to investigate the environmental impact of coal mining and cement plant in North Sinai, Egypt. Generally, very little attention was directed to the large volumes of waste generated by either type of industrial activities. Different samples were analyzed including various raw materials, coal, charcoal, Portland and white cement, sludge, and wastes. Coal mine and cement plant workers dealing with waste and kaolin, respectively, are subjected to a relatively high annual effective dose. One of the important finding is the enhancement of all measured elements and radionuclides in the sludge found in coal mine. It may pose an environmental threat because of its large volume and its use as combustion material. The mine environment may have constituted Al, Fe, Cr, and V pollution source for the local area. Higher concentration of Al, Fe, Mn, B, Co, Cr, Mn, Ni, Sr, V, and TENORM were found in Portland cement and Zn in white cement. Coal has higher concentrations of Al, Fe, B, Co, Cr, and V as well as (226)Ra and (232)Th. The compiled results from the present study and different worldwide investigations demonstrate the obvious unrealistic ranges normally used for (226)Ra and (232)Th activity concentrations in coal and provided ranges for coal, Portland and white cement, gypsum, and limestone.

  17. IUPAC Periodic Table of Isotopes for the Educational Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden N. E.; Holden,N.E.; Coplen,T.B.

    2012-07-15

    John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in thismore » area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).« less

  18. A laboratory activity for teaching natural radioactivity

    NASA Astrophysics Data System (ADS)

    Pilakouta, M.; Savidou, A.; Vasileiadou, S.

    2017-01-01

    This paper presents an educational approach for teaching natural radioactivity using commercial granite samples. A laboratory activity focusing on the topic of natural radioactivity is designed to develop the knowledge and understanding of undergraduate university students on the topic of radioactivity, to appreciate the importance of environmental radioactivity and familiarize them with the basic technology used in radioactivity measurements. The laboratory activity is divided into three parts: (i) measurements of the count rate with a Geiger-Muller counter of some granite samples and the ambient background radiation rate, (ii) measurement of one of the samples using gamma ray spectrometry with a NaI detector and identification of the radioactive elements of the sample, (iii) using already recorded 24 h gamma ray spectra of the samples from the first part (from the Granite Gamma-Ray Spectrum Library (GGRSL) of our laboratory) and analyzing selected peaks in the spectrum, students estimate the contribution of each radioactive element to the total specific activity of each sample. A brief description of the activity as well as some results and their interpretation are presented.

  19. Radioactivity in the environment; a case study of the Puerco and Little Colorado River basins, Arizona and New Mexico

    USGS Publications Warehouse

    Wirt, Laurie

    1994-01-01

    This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents not using public water supplies to determine if their water is safe to use.

  20. Ab initio quantum chemical calculations of the interaction between radioactive elements and imidazolium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Saravanan, A. V. Sai; Abishek, B.; Anantharaj, R.

    2018-04-01

    The fundamental natures of the molecular level interaction and charge transfer between specific radioactive elements and ionic liquids of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([BMIM]+[NTf2]-), 1-Butyl-3-methylimidazolium ethylsulfate ([BMIM]+[ES]-) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]-) were investigated utilising HF theory and B3LYP hybrid DFT. The ambiguity in reaction mechanism of the interacting species dictates to employ Effective Core Potential (ECP) basis sets such as UGBS, SDD, and SDDAll to account for the relativistic effects of deep core electrons in the system involving potential, heavy and hazardous radioactive elements present in nuclear waste. The SCF energy convergence of each system validates the characterisation of the molecular orbitals as a linear combination of atomic orbitals utilising fixed MO coefficients and the optimized geometry of each system is visualised based on which Mulliken partial charge analysis is carried out to account for the polarising behaviour of the radioactive element and charge transfer between the IL phase by comparison with the bare IL species.

  1. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  2. Radioactive ion detector

    DOEpatents

    Bower, Kenneth E.; Weeks, Donald R.

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  3. Radioactive ion detector

    DOEpatents

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  4. Naturally occurring radioactive materials (NORM): a matter of wide societal implication.

    PubMed

    Pescatore, C; Menon, S

    2000-12-01

    Naturally occurring radioactive materials are ubiquitous on Earth and their radioactivity may become concentrated as a result of human activities. Numerous industries produce concentrated radioactivity in their by-products: the coal industry, petroleum extraction and processing, water treatment, etc. The present reference system of radiation protection does not provide a complete framework for the coherent management of all types of radioactively contaminated materials. Inconsistencies in waste management policy and practice can be noted across the board, and especially vis-à-vis the management of radioactive waste from the nuclear industry. This article reviews the present societal approach to manage materials that are radioactive but are often not recognised as being such, and place the management of radioactive materials from the nuclear industry in perspective.

  5. Radiation resistant concrete for applications in nuclear power and radioactive waste industries

    NASA Astrophysics Data System (ADS)

    Burnham, Steven Robert

    Elemental components of ordinary concrete contain a variety of metals and rare earth elements that are susceptible to neutron activation. This activation occurs by means of radiative capture, a neutron interaction that results in formation of radioisotopes such as Co-60, Eu-152, and Eu-154. Studies have shown that these three radioisotopes are responsible for the residual radioactivity found in nuclear power plant concrete reactor dome and shielding walls. Such concrete is classified as Low Level Radioactive Waste (LLRW) and Very Low Level Waste (VLLW) by International Atomic Energy Agency (IAEA) standards and requires disposal at appropriate disposal sites. There are only three such sites in the USA, and every nuclear power plant will produce at the time of decommissioning approximately 1,500 tonnes of activated concrete classified as LLRW and VLLW. NAVA ALIGA (ancient word for a new stone) is a new concrete mixture developed mainly by research as presented in this thesis. The purpose of NAVA ALIGA is to satisfy IAEA clearance levels if used as a material for reactor dome, spent fuel pool, or radioactive waste canisters. NAVA ALIGA will never be activated above the IAEA clearance level after long-term exposure to neutron radiation when used as a material for reactor dome, spent fuel pool, and radioactive waste canisters. Components of NAVA ALIGA were identified using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ISP-MS) to determine trace element composition. In addition, it was tested for compressive strength and permeability, important for nuclear infrastructure. The studied mixture had a high water to cement ratio of 0.56, which likely resulted in the high measured permeability, yet the mixture also showed a compressive strength greater than 6 000 psi after 28 days. In addition to this experimental analysis, which goal was to develop a standard approach to define the concrete mixtures in satisfying the IAEA radiation clearance levels, the NAVA ALIGA concrete was analyzed as to potentially be used together with depleted uranium. This study was purely computational (based on MCNP6 models) and was twofold: to find if this new concrete mix would enhance the radiation shielding properties when combined with depleted uranium and to find if this will be an effective and useful way of using the existing large quantities of disposed depleted uranium.

  6. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    NASA Astrophysics Data System (ADS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-02-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) & 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) &29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  7. X-Ray Illumination of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.; hide

    2011-01-01

    When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.

  8. Challenges associated with the behaviour of radioactive particles in the environment.

    PubMed

    Salbu, Brit; Kashparov, Valery; Lind, Ole Christian; Garcia-Tenorio, Rafael; Johansen, Mathew P; Child, David P; Roos, Per; Sancho, Carlos

    2018-06-01

    A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction of released refractory radionuclides such as uranium (U) and plutonium (Pu) were present as entities ranging from sub microns to fragments. Furthermore, radioactive particles and colloids have been released from reprocessing facilities and civil reactors, from radioactive waste dumped at sea, and from NORM sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics such as particle size distribution, structure, and oxidation state influencing ecosystem transfer depend also on the release scenarios. When radioactive particles are deposited in the environment, weathering processes occur and associated radionuclides are subsequently mobilized, changing the apparent K d . Thus, particles retained in soils or sediments are unevenly distributed, and dissolution of radionuclides from particles may be partial. For areas affected by particle contamination, the inventories can therefore be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. To integrate radioactive particles into environmental impact assessments, key challenges include the linking of particle characteristics to specific sources, to ecosystem transfer, and to uptake and retention in biological systems. To elucidate these issues, the EC-funded COMET and RATE projects and the IAEA Coordinated Research Program on particles have revisited selected contaminated sites and archive samples. This COMET position paper summarizes new knowledge on key sources that have contributed to particle releases, including particle characteristics based on advanced techniques, with emphasis on particle weathering processes as well as on heterogeneities in biological samples to evaluate potential uptake and retention of radioactive particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses.

    PubMed

    Abe, Yoshinari; Iizawa, Yushin; Terada, Yasuko; Adachi, Kouji; Igarashi, Yasuhito; Nakai, Izumi

    2014-09-02

    Synchrotron radiation (SR) X-ray microbeam analyses revealed the detailed chemical nature of radioactive aerosol microparticles emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, resulting in better understanding of what occurred in the plant during the early stages of the accident. Three spherical microparticles (∼2 μm, diameter) containing radioactive Cs were found in aerosol samples collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest of the FDNPP. SR-μ-X-ray fluorescence analysis detected the following 10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Cs, and Ba. In addition, U was found for the first time in two of the particles, further confirmed by U L-edge X-ray absorption near-edge structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the containment vessel as aerosol particles. SR-μ-XANES spectra of Fe, Zn, Mo, and Sn K-edges for the individual particles revealed that they were present at high oxidation states, i.e., Fe(3+), Zn(2+), Mo(6+), and Sn(4+) in the glass matrix, confirmed by SR-μ-X-ray diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as water-soluble radioactive Cs aerosol particles.

  10. Project Physics Text 6, The Nucleus.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Nuclear physics fundamentals are presented in this sixth unit of the Project Physics text for use by senior high students. Included are discussions of radioactivity, taking into account Bacquerel's discovery, radioactive elements, properties of radiations, radioactive transformations, decay series, and half-lives. Isotopes are analyzed in…

  11. Radiolytic hydrogen production in basaltic basement of the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Dzaugis, M. E.; Spivack, A. J.; Dunlea, A. G.; Murray, R. W.; Kelley, K. A.; D'Hondt, S. L.

    2013-12-01

    Water radiolysis is the decomposition of water molecules due to interactions with ionizing radiation from the natural decay of radioactive elements, such as uranium (238U, 235U), thorium (232Th) and potassium (40K). This abiotic process produces electron donors (e.g., H2) and acceptors (e.g., O2) that microorganisms can metabolize for energy. Although water radiolysis has been examined in deep continental crust (Lin et al., 2005) and marine sediment (Blair et al., 2007), it has not been rigorously addressed in oceanic basement. The submarine depth to which life extends on Earth, and the potential for life in basaltic aquifers of other worlds (such as Mars and Europa), may depend on radiolytic production of electron donors and acceptors. In order to quantify the extent to which water radiolysis occurs in the subseafloor basaltic basement, we (i) quantified radioactive element concentrations of basement samples from Integrated Ocean Drilling Program (IODP) Expedition 329 and (ii) developed a quantitative model of H2 production by water radiolysis in the basement aquifer. Modeling radiolytic production of H2 in oceanic basement is difficult because the basement is a heterogeneous environment. Microscale changes in physical properties and chemical composition cause microscale variation in water radiolysis within the basement. During radioactive decay, alpha particles, beta particles and gamma rays are emitted, each with a spectrum of characteristic energies. The distance over which radiation is attenuated depends on the kind of radiation (alpha, beta or gamma), initial energy, and the absorbing material. These properties and the concentration of radioactive elements provide the basis for our preliminary model. We are using inductively coupled plasma emission spectroscopy (ICP-ES), mass spectrometry (ICP-MS) and laser ablation (LA ICP-MS) to map variation in radioelement concentrations from phase to phase (e.g., across successive alteration halos to unaltered rock). The last step in our model combines (i) the rate at which radiation energy is transferred to the water with (ii) published H2 yields per rate of energy transfer.

  12. Natural radioactivity and trace metals in crude oils: implication for health.

    PubMed

    Ajayi, T R; Torto, N; Tchokossa, P; Akinlua, A

    2009-02-01

    Crude oil samples were collected from six different fields in the central Niger Delta in order to determine their natural radioactivity and trace element contents, with the aim of assessing the radiological health implications and environmental health hazard of the metals, and also to provide natural radioactivity baseline data that could be used for more comprehensive future study in this respect. The activity concentrations of the radionuclides were measured using a well, accurately calibrated and shielded vertical cryostat, Canberra coaxial high-purity germanium (HPGe) detector system, and the derived doses were evaluated. The metal concentrations were determined by the graphite furnace atomic absorption spectroscopic (GFAAS) method. The radionuclides identified with reliable regularity belong to the decay series of naturally occurring radionuclides headed by (238)U and (232)Th along with the non-decay series radionuclide, (40)K. The averaged activity concentrations obtained were 10.52 +/- 0.03 Bq kg(-1), 0.80 +/- 0.37 Bq kg(-1) and 0.17 +/- 0.09 Bq kg(-1) for (40)K, (238)U and (232)Th, respectively. The equivalent doses were very low, ranging from 0.0028 to 0.012 mSv year(-1) with a mean value of 0.0070 mSv year(-1). The results obtained were low, and hence, the radioactivity content from the crude oils in the Niger delta oil province of Nigeria do not constitute any health hazard to occupationally exposed workers, the public and the end user. The concentrations of the elements (As, Cd, Co, Fe, Mn, Ni, Se and V) determined ranged from 0.73 to 202.90 ppb with an average of 74.35 ppb for the oil samples analysed. The pattern of occurrence of each element agreed with the earlier studies from other parts of the Niger Delta. It was obvious from this study and previous ones that the Niger Delta oils have low metal contents. However, despite the low concentrations, they could still pose an intrinsic health hazard considering their cumulative effects in the environment. Also, various studies on the impact of oil spillage and activities of oil exploration and production on organisms in the immediate environment suggest this.

  13. Comparison of radioactive transmission and mechanical properties of Portland cement and a modified cement with trommel sieve waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boncukcuoglu, Recep; Icelli, Orhan; Erzeneoglu, Salih

    2005-06-01

    In this study, it was aimed to stabilize trommel sieve waste (TSW) occurring during manufacture of borax from tincal. The effects of TSW added on the mechanical properties and radioactive transmission of modified cement prepared by adding TSW to clinker was investigated. The properties which TSW as additive caused the cement to gain were tested and compared with normal Portland cement. Measurements have been made to determine variation of mass attenuation coefficients of TSW and cement by using an extremely narrow-collimated-beam transmission method in the energy range 15.746-40.930 keV with X-ray transmission method. The characteristic K{alpha} and K{beta} X-rays ofmore » the different elements (Zr, Mo, Ag, In, Sb, Ba and Pr) passed through TSW and cement were detected with a high-resolution Si(Li) detector. Results are presented and discussed in this paper.« less

  14. Hydrothermal transformations in an aluminophosphate glass matrix containing simulators of high-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.

    2016-05-01

    The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.

  15. Reference natural radionuclide concentrations in Australian soils and derived terrestrial air kerma rate.

    PubMed

    Kleinschmidt, R

    2017-06-01

    Sediment from drainage catchment outlets has been shown to be a useful means of sampling large land masses for soil composition. Naturally occurring radioactive material concentrations (uranium, thorium and potassium-40) in soil have been collated and converted to activity concentrations using data collected from the National Geochemistry Survey of Australia. Average terrestrial air kerma rate data are derived using the elemental concentration data, and is tabulated for Australia and states for use as baseline reference information. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Compilation of data on the uranium and equivalent uranium content of samples analyzed by U.S. Geological Survey during a program of sampling mine, mill, and smelter products

    USGS Publications Warehouse

    Hall, Marlene Louise; Butler, Arthur Pierce

    1952-01-01

    In 1942 the Geological Survey began to collect, in response to a request made by the War Production Board, samples of mine, mill, and smelter products. About 1,400 such samples were collected and analyzed spectrographically for about 20 elements that were of strategic importance, in order to determine whether any of the products analyzed might be possible sources of some of the needed elements. When attention was directed to radioactive elements in 1943, most of the samples were scanned for radioactivity. Part of the work was done on behalf of the Division of Raw Materials of the Atomic Energy Commission. The sources, mine mill, smelter, or prospect, from which these samples were collected, the kind of material sampled, i.e. ores, concentrates, middlings, tailings, flue dusts, and so forth, and the radioactivity of the samples are listed in this report. Samples of the materials collected in the course of the Geological Survey’s investigations for uranium are excluded, but about 500 such samples were analyzed spectrographically for some or all of the same 20 elements sought in the samples that are the subject of this report. Most of the samples were tested only for their radioactivity, but a few were analyzed chemically for uranium. The radioactivity of many of the samples tested in the early screening was determined only qualitatively. Several samples were tested at one time, and if the count obtained did not exceed a predetermined minimum above background, the samples were not tested individually. If the count was more than this minimum, the samples were tested individually to identify the radioactive sample or samples and to obtain a quantitative value for the radioactivity. In general, the rough screening served as a basis for separating samples in which the radioactivity amount to less than 0.003 percent equivalent uranium from those in which it exceeded that amount. Some aspects of various phases of the investigation of radioactivity in these samples have been reported in various other reports, as follows.

  17. A potential dating technique using 228Th/228Ra ratio for tracing the chronosequence of elemental concentrations in plants.

    PubMed

    Chao, J H; Niu, H; Chiu, C Y; Lin, C

    2007-06-01

    We propose a radiometric method based on measurement of the radioactivity of the naturally occurring radionuclides (228)Ra and 228)Th and the derived (228)Th/(228)Ra ratios in plant samples to estimate plant age and the corresponding nutritional conditions in a field-growing fern, Dicranopteris linearis. Plant age (tissue age) was associated with the (228)Th/(228)Ra ratio in fronds, which implies the accumulation time of immobile elements in the plant tissue or the life span of the fronds. Results indicated that the accumulation of alkaline earth elements in D. linearis is relatively constant with increased age, while the K concentration is reversed with age because of translocation among plant tissues. Estimation of dating uncertainty based on measurement conditions revealed that the radiometric technique can be applied to trace chronosequential changes of elemental concentrations and environmental pollutants in plants with ages of less than 10-15 years.

  18. Naturally Occurring Radioactive Materials (NORM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, P.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards theymore » present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).« less

  19. Preliminary study of radioactive limonite localities in Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Lovering, T.G.; Beroni, E.P.

    1956-01-01

    Nine radioactive limonite localities of different types were sampled during the spring and fall of 1953 in an effort to establish criteria for differentiating limonite outcrops associated with uranium or thorium deposits from limonite outcrops not associated with such deposits. The samples were analyzed for uranium and thorium by standard chemical methods, for equivalent uranium by the radiometric method, and for a number of common metals by semiquantitative geochemical methods. Correlation coefficients were then calculated for each of the metals with respect to equivalent uranium, and to uranium where present, for all of the samples from each locality. The correlation coefficients may indicate a significant association between uranium or thorium and certain metals. Occurrences of specific that are interpreted as significant very considerably for different uranium localities but are more consistent for the thorium localities. Samples taken from radioactive outcrops in the vicinity of uranium or thorium deposits can be quickly analyzed by geochemical methods for various elements. Correlation coefficients can then be determined for the various elements with respect to uranium or thorium; if any significant correlations are obtained, the elements showing such correlation may be indicators of uranium or thorium. Soil samples of covered areas in the vicinity of the radioactive outcrop may then be analyzed for the indicator elements and any resulting anomalies used as a guide for prospecting where the depth of overburden is too great to allow the use of radiation-detecting instruments. Correlation coefficients of the associated indicator elements, used in conjunction with petrographic evidence, may also be useful in interpreting the origin and paragenesis of radioactive deposits. Changes in color of limonite stains on the outcrop may also be a useful guide to ore in some areas.

  20. Gamma spectrometry application of the Kola Peninsula (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovin, I.V.; Kolesnik, N.N.; Antipov, V.S.

    1973-03-01

    The methods and results are reported of a spectrometric study, carried out with the SP-3 instrument in Pre-Cambrian fornnations in the northwest ranges of Kola Peninsula for clarification of the radiochemical characteristics of the rocks of the region and of the distribution characteristics of radioactive elements in Cu-Ni mineralizations. It was established that the content of radioactive elements in the rocks varies within a wide interval and corresponds basically to the Vinogradov content. The radioactive element content in typical metamorphic and magmatic complexes and sulfide ores was determined. The spectrometric method can be used for the solution of various geologicalmore » problems. It is particularly useful for studying the separation of strata, the genesis of magmatic and metamorphic complexes, and the metamorphic and geochemical zonality and granitization processes. (tr-auth)« less

  1. From prophylaxis to atomic cocktail: circulation of radioiodine.

    PubMed

    Santesmases, María Jesús

    2009-01-01

    This paper is a history of iodine. To trace the trajectory of this element, goiter is used as a guideline for the articulation of a historical account, as a representation of thyroid disorders and of the spaces of knowledge and practices related to iodine. Iodine's journey from goiter treatment and prophylaxis in the late interwar period took on a new course after WWII by including the element's radioactive isotopes. I intend to show how the introduction of radioiodine contributed to stabilize the epistemic role of iodine, in both its non-radioactive and radioactive form, in thyroid gland studies and in the treatment of its disorders.

  2. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Overview of insoluble radioactive cesium particles emitted from the Fukushima Dai-ichi Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Satou, Yukihiko

    2017-04-01

    In the early stage of the Fukushima Dai-ichi Nuclear Power Station (F1NPS) accident, number of spot type contamination has been observed in computed autoradiography (Kashimura 2013, Shibata 2013, Satou 2014). It's means presence of radioactive particles, however, insoluble cesium particle was overlooked because cesium, which is dominant radioactive element in the accident, becomes ionized in the environment. Adachi et al. (2013) showed presence of cesium (Cs)-bearing particles within air dust sample collected at Tsukuba, 170 km south from the Fukushima site, in midnight of 14 to morning of 15 March 2011. These particles were micrometer order small particles and Cs was could be detectable as element using an energy dispersive X-ray spectroscopy (EDX). However, other radioactive elements such as Co-60, Ru-103 and uranium, which were dominant element of radioactive particles delivered from Chernobyl accident, could not detected. Abe et al. (2014) employed a synchrotron radiation (SR)-micro(μ)-X-ray analysis to the Cs-bearing particles, and they were concluded that (1) contained elements derived from nuclear fission processes and from nuclear reactor and fuel materials; (2) were amorphous; (3) were highly oxidized; and (4) consisted of glassy spherules formed from a molten mixture of nuclear fuel and reactor material. In addition, Satou et al. (2016) and Yamaguchi et al. (2016) disclosed that silicate is main component of Cs-bearing particles. Satou et al. (2015) discovered two types of radioactive particles from soil samples collected in the vicinity of the F1NPS. These particles were remained in the natural environment more than four years, silicate is main component in common of each group particles. Group A particles were very similar to Cs-bearing particles reported by Adachi et al. except particle shape. On the other hand, group B is big particles found in north area from the F1NPS, and the strongest particles contained 20 kBq of Cs-137 within a particle. Radioactive ratio of Cs-134/Cs-137 of group A and B is completely different. Group B particles shown 0.92 (mean value) of Cs ratio, and specific radioactivity are much lowers than group A particles. In contrast, activity ratio in group A particles shown 1.0 (mean value), and it was consistent with previous studies by Adachi (2013). The location of soil samples, which was containing group B particles, has been contaminated with radioactive materials from Unit 1 with hydrogen explosion on 12 March (Satou et al. 2014, Chino et al. 2016). More than 300 um of diameter particles has been transported from the Unit 1 of F1NPS. This result shown that the insoluble radioactive cesium particles are emitted from not only Units 2 and/or 3 on 15 March but also Unit 1 on 12 March. The insoluble radioactive Cs particles were spread widely, and it is require to evaluation for particulate percentage of contribution in total emitted radioactive cesium, and long term monitoring of these behaviors.

  4. A Model for the Thermal and Chemical Evolution of the Moon's Interior: Implications for the Onset of Mare Volcanism

    NASA Technical Reports Server (NTRS)

    Hess, Paul C.; Parmentier, E. M.

    1995-01-01

    Crystallization of the lunar magma ocean creates a chemically stratified Moon consisting of an anorthositic crust and magma ocean cumulates overlying the primitive lunar interior. Within the magma ocean cumulates the last liquids to crystallize form dense, ilmenite-rich cumulates that contain high concentrations of incompatible radioactive elements. The underlying olivine-orthopyroxene cumulates are also stratified with later crystallized, denser, more Fe-rich compositions at the top. This paper explores the chemical and thermal consequences of an internal evolution model accounting for the possible role of these sources of chemical buoyancy. Rayleigh-Taylor instability causes the dense ilmenite-rich cumulate layer and underlying Fe-rich cumulates to sink toward the center of the Moon, forming a dense lunar core. After this overturn, radioactive heating within the ilmenite-rich cumulate core heats the overlying mantle, causing it to melt. In this model, the source region for high-TiO2 mare basalts is a convectively mixed layer above the core-mantle boundary which would contain small and variable amounts of admixed ilmenite and KREEP. This deep high-pressure melting, as required for mare basalts, occurs after a reasonable time interval to explain the onset of mare basalt volcanism if the content of radioactive elements in the core and the chemical density gradients above the core are sufficiently high but within a range of values that might have been present in the Moon. Regardless of details implied by particular model parameters, gravitational overturn driven by the high density of magma ocean Fe-rich cumulates should concentrate high-TiO2 mare basalt sources, and probably a significant fraction of radioactive heating, toward the center of the Moon. This will have important implications for both the thermal evolution of the Moon and for mare basalt genesis.

  5. Issues of natural radioactivity in phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnug, E.; Haneklaus, S.; Schnier, C.

    1996-12-31

    The fertilization of phosphorus (P) fertilizers is essential in agricultural production, but phosphates contain in dependence on their origin different amounts of trace elements. The problem of cadmium (Cd) loads and other heavy metals is well known. However, only a limited number of investigations examined the contamination of phosphates with the two heaviest metals, uranium (U) and thorium (Th), which are radioactive. Also potassium (K) is lightly radioactive. Measurements are done n the radioactivity content of phosphates, P fertilizers and soils. The radiation doses to workers and public as well as possible contamination of soils from phosphate rock or fertilizermore » caused by these elements or their daughter products is of interest with regard to radiation protection. The use of P fertilizers is necessary for a sustainable agriculture, but it involves radioactive contamination of soils. The consequences of the use of P fertilizers is discussed, also with regard to existing and proposed legislation. 11 refs., 2 figs., 7 tabs.« less

  6. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMPmore » and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.« less

  7. Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry.

    PubMed

    Fathabadi, N; Farahani, M V; Amani, S; Moradi, M; Haddadi, B

    2011-06-01

    Zircon contains small amounts of uranium, thorium and radium in its crystalline structure. The ceramic industry is one of the major consumers of zirconium compounds that are used as an ingredient at ∼10-20 % by weight in glaze. In this study, seven different ceramic factories have been investigated regarding the presence of radioactive elements with focus on natural radioactivity. The overall objective of this investigation is to provide information regarding the radiation exposure to workers in the ceramic industry due to naturally occurring radioactive materials. This objective is met by collecting existing radiological data specific to glaze production and generating new data from sampling activities. The sampling effort involves the whole process of glaze production. External exposures are monitored using a portable gamma-ray spectrometer and environmental thermoluminescence dosimeters, by placing them for 6 months in some workplaces. Internal routes of exposure (mainly inhalation) are studied using air sampling, and gross alpha and beta counting. Measurement of radon gas and its progeny is performed by continuous radon gas monitors that use pulse ionisation chambers. Natural radioactivity due to the presence of ²³⁸U, ²³²Th and ⁴⁰K in zirconium compounds, glazes and other samples is measured by a gamma-ray spectrometry system with a high-purity germanium detector. The average concentrations of ²³⁸U and ²³²Th observed in the zirconium compounds are >3300 and >550 Bq kg⁻¹, respectively. The specific activities of other samples are much lower than in zirconium compounds. The annual effective dose from external radiation had a mean value of ∼0.13 mSv y⁻¹. Dust sampling revealed the greatest values in the process at the powdering site and hand weighing places. In these plants, the annual average effective dose from inhalation of long-lived airborne radionuclides was 0.226 mSv. ²²²Rn gas concentrations in the glaze production plant and storage warehouse were found to range from 10 to 213 Bq m⁻³. In this study, the estimated annual effective doses to exposed workers were <1 mSv y⁻¹.

  8. Rapid immobilization of simulated radioactive soil waste by microwave sintering.

    PubMed

    Zhang, Shuai; Shu, Xiaoyan; Chen, Shunzhang; Yang, Huimin; Hou, Chenxi; Mao, Xueli; Chi, Fangting; Song, Mianxin; Lu, Xirui

    2017-09-05

    A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd 2 O 3 -containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10 -4 -10 -6 g/(m 2 day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals

    NASA Astrophysics Data System (ADS)

    Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.

    2016-11-01

    Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.

  10. Nuclear and radiological terrorism: continuing education article.

    PubMed

    Anderson, Peter D; Bokor, Gyula

    2013-06-01

    Terrorism involving radioactive materials includes improvised nuclear devices, radiation exposure devices, contamination of food sources, radiation dispersal devices, or an attack on a nuclear power plant or a facility/vehicle that houses radioactive materials. Ionizing radiation removes electrons from atoms and changes the valence of the electrons enabling chemical reactions with elements that normally do not occur. Ionizing radiation includes alpha rays, beta rays, gamma rays, and neutron radiation. The effects of radiation consist of stochastic and deterministic effects. Cancer is the typical example of a stochastic effect of radiation. Deterministic effects include acute radiation syndrome (ARS). The hallmarks of ARS are damage to the skin, gastrointestinal tract, hematopoietic tissue, and in severe cases the neurovascular structures. Radiation produces psychological effects in addition to physiological effects. Radioisotopes relevant to terrorism include titrium, americium 241, cesium 137, cobalt 60, iodine 131, plutonium 238, califormium 252, iridium 192, uranium 235, and strontium 90. Medications used for treating a radiation exposure include antiemetics, colony-stimulating factors, antibiotics, electrolytes, potassium iodine, and chelating agents.

  11. Understanding Release from Actinide Targets -- Recent Results from RIB Development

    NASA Astrophysics Data System (ADS)

    Kronenberg, Andreas; Carter, H. K.; Spejewski, E. H.; Stracener, D. W.

    2006-10-01

    Development of ion beams of short-lived isotopes is crucial for modern nuclear structure and nuclear astrophysics. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory uses the ISOL (Isotope Separation Online) technique to provide radioactive ion beams. So far, uranium carbide has been used as a target to produce neutron-rich fission fragments. Thermodynamic calculations indicate the possibility of in-situ chemical side band formations of volatile species of refractory metals, such as V and Re. These elements release out of oxide targets after production in a nuclear reaction, and can occur only through in-situ formation of their volatile oxide. These have been confirmed experimentally. The results from recent, more detailed investigations of ThO2, UB4 and other actinide targets as well as conclusions from systematic studies will be presented. This research was sponsored by the NNSA under Stewardship Science Academic Alliance program through DOE Cooperative Agreement # DE-FC03-3NA00143.

  12. The Marine Geochemistry of the Rare Earth Elements

    DTIC Science & Technology

    1983-09-01

    C3): 2045-2056. BACON, M.P., P.G. BREWER, D.W. SPENCER, T.W. MURRAY & T. GODDARD (1980). Lead - 210 , polonium - 210 , manganese and iron in the Cariaco...191 La and Pr 197 Ce: its oxidation and reduction 197 Eu 207 4.5. Conclusions 210 CHAPTER 5. Behaviour of the Rare Earth Elements in anoxic waters of...seawater and algal food . When the radioactive particles were no longer available, the accumulated radioactivity of the zooplankters was rapidly lost

  13. [Maria Skłodowska-Curie and Piotr Curie an epoch-makingin year 1898].

    PubMed

    Wielogórski, Zbigniew

    2012-01-01

    For many reasons the year 1898 was unusual for Maria Skłodowska-Curie and her husband. After defining the subject of the doctoral thesis and choosing Henri Becqerel as thesis supervisor, Maria started intensive experimental work. In the allotted room called storeroom, in conditions that were far too inadequate, they managed to put up a unique measuring equipment composed of instruments whose originator was Pierre Curie. In the ionization chamber and in the piezoelectric quartz charges formed, whose mutual neutralization was shown by the quadrant electrometer. Ionization current, which was measured quantitatively, was proportional to the radiation of the sample. Studying many elements, their compounds and minerals enabled Maria to state that uranium is not the only element endowed with the power of radiation; the second one turned out to be thorium. Anomaly detected in the radiation of uranium minerals made it possible for Maria to draw an extremely important conclusion: radioactive uranium and thorium are not the only elements endowed with such an attribute. Pitchblende, which was studied by the Curie couple, had to contain also other radioactive substances. Gustave Bémont also participated in the chemical analysis of the uranium ore and it is worth reminding that he was involved in the discovery of polonium and uranium. The phenomenon of radioactivity couldn't have been explained if it was not for the sources of strong radioactivity. Those sources undoubtedly could have been the discovered elements but their scanty content in the uranium ore made their isolation very difficult and laborious. Access to industrial remains after procession of pitchblende from Jachymov (Sankt Joachimstahl), obtained owing to the mediation of Eduard Suess, provided the source of this raw material. From it, in a shack also called le hangar, the Curie couple isolated the first samples of the radium salt. This element, later extracted by discoverers on a grand scale and handed over in a various forms to researchers and institutions, became a foundation of physics and chemistry of radioactive elements.

  14. Preparing for radiological assessments in the event of a tornado strike at Argonne National Lab. -East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodkind, M.E.; Klimczak, C.A.; Munyon, W.J.

    1993-01-01

    Argonne National Laboratory-East (ANL) is a Department of Energy (DOE)-owned, contractor-operated national laboratory located 22 miles southwest of downtown Chicago on a wooded, 1700-acre site. The principal nuclear facilities at ANL include a large fast neutron source (Intense Pulse Neutron Source) in which high-energy protons strike a uranium target to produce neutrons for research studies; [sup 60]Co irradiation sources; chemical and metallurgical plutonium laboratories, some of which are currently being decommissioned; several large hot cell facilities designed for work with multicurie quantities of actinide elements and irradiated reactor fuel materials; a few small research reactors currently in different phases ofmore » being decommissioned; and a variety of research laboratories handling many different sources in various chemical and physical forms. The hazards analysis for the ANL site shows that tornado strikes are a serious threat. The site has been struck twice in the past 20 yr, receiving only minor building damage and no release of radioactivity to the environment. Although radioactive materials in general are handled in areas that provide good tornado protection, ANL is prepared to address the problems that would occur should there be a loss of control of radioactive materials due to severe building damage.« less

  15. Summary of reconnaissance for radioactive deposits in Alaska, 1945-1954, and an appraisal of Alaskan uranium possibilities

    USGS Publications Warehouse

    Wedow, Helmuth

    1956-01-01

    In the period 1945-1954 over 100 investigations for radioactive source materials were made in Alaska. The nature of these investigations ranged from field examinations of individual prospects or the laboratory analysis of significantly radioactive samples submitted by prospectors to reconnaissance studies of large districts. In this period no deposits of uranium or thorium that would warrant commercial exploitation were discovered. The investigations, however, disclosed that radioactive materials occur in widely scattered areas of Alaska and in widely diverse environments. Many igneous rocks throughout Alaska are weakly radioactive because of uranium- and thorium-bearing accessory minerals, such as allanite, apatite, monazite, sphene, xenotime, and zircon; more rarely the radioactivity of these rocks is due to thorianite or thorite and their uranoan varieties. The felsic rocks, for example, granites and syenites, are generally more radioactive than the mafic igneous rocks. Pegmatites, locally, have also proved to be radioactive, but they have little commercial significance. No primary uranium oxide minerals have been found yet in Alaskan vein deposits, except, perhaps, for a mineral tentatively identified as pitchblende in the Hyder district of southeastern Alaska. However, certain occurrences of secondary uranium minerals, chiefly those of the uranite group, on the Seward Peninsula, in the Russian Mountains, and in the vicinity of Kodiak suggest that pitchblende-type ores may occur at depth beneath zones of alteration. Thorite-bearing veins have been discovered on Prince of Wales Island in southeastern Alaska. Although no deposits or carnotite-type minerals have been found in Alaska, several samples containing such minerals have been submitted by Alaskan prospectors. Efforts to locate the deposits from which these minerals were obtained have been unsuccessful, but review of available geologic data suggests that several Alaskan areas are potentially favorable for carnotite-type deposits. The chief of these areas is the Alaska Peninsula-Cook Inlet area which encompasses most of the reported occurrences of the prospectors' carnotite-type samples. Alaska is also potentially favorable for the occurrence of large bodies of the very low-grade uraniferous sedimentary rocks, such as phosphorites and black shales. This type of deposit, however, has not received much study because of the emphasis on the search for bonanza-type high-grade ores. Uraniferous phosphorites similar to those of Idaho, Montana, and Wyoming occur in northern Alaska on the north flank of the Brooks Range; black shales comparable to the uraniferous shales of the Chattanooga formation of southeastern United States have been noted along the Yukon River near the international boundary. Placer deposits in Alaska have some small potential for the production of the radioactive elements as byproducts of gold- and tin-placer mining. the placer area believed to have the relatively greatest potential in Alaska lies in the Kahiltna River valley where concentrates are known to contain such commercial minerals as ilmenite, cassiterite, platinum, and gold in addition to uranothorianite and monazite. The possibilities of the natural fluids--water and petroleum--have not yet been tested in Alaska to any great extent. Studies of fluids are in progress to determine whether they may be used to discover and define areas potentially favorable for the occurrence of uraniferous lodes.

  16. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale

    PubMed Central

    Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.

    2015-01-01

    Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: an analysis of produced fluids from the Marcellus Shale. Environ Health Perspect 123:689–696; http://dx.doi.org/10.1289/ehp.1408855 PMID:25831257

  17. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOEpatents

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  18. Is it necessary to raise awareness about technologically enhanced naturally occurring radioactive materials?

    PubMed

    Michalik, Bogusław

    2009-10-01

    Since radiation risks are usually considered to be related to nuclear energy, the majority of research on radiation protection has focused on artificial radionuclides in radioactive wastes, spent nuclear fuel or global fallout caused by A-bomb tests and nuclear power plant failures. Far less attention has been paid to the radiation risk caused by exposure to ionizing radiation originating from natural radioactivity enhanced due to human activity, despite the fact that technologically enhanced naturally occurring radioactive materials are common in many branches of the non-nuclear industry. They differ significantly from "classical" nuclear materials and usually look like other industrial waste. The derived radiation risk is usually associated with risk caused by other pollutants and can not be controlled by applying rules designed for pure radioactive waste. Existing data have pointed out a strong need to take into account the non-nuclear industry where materials containing enhanced natural radioactivity occur as a special case of radiation risk and enclose them in the frame of the formal control. But up to now there are no reasonable and clear regulations in this matter. As a result, the non-nuclear industries of concern are not aware of problems connected with natural radioactivity or they would expect negative consequences in the case of implementing radiation protection measures. The modification of widely comprehended environmental legislation with requirements taken from radiation protection seems to be the first step to solve this problem and raise awareness about enhanced natural radioactivity for all stakeholders of concern.

  19. A Living Periodic Table.

    ERIC Educational Resources Information Center

    Marshall, James L.

    2000-01-01

    Introduces a portable and permanent set of the elemental collection including 87 samples of elements which are, minimum, one gram or more. Demonstrates radioactivity, magnetism, fluorescence, melting solids, spectral analysis, and conduction of heat. Includes a display of minerals associated with the elements. (YDS)

  20. Geomicrobiological redox cycling of the transuranic element neptunium.

    PubMed

    Law, Gareth T W; Geissler, Andrea; Lloyd, Jonathan R; Livens, Francis R; Boothman, Christopher; Begg, James D C; Denecke, Melissa A; Rothe, Jörg; Dardenne, Kathy; Burke, Ian T; Charnock, John M; Morris, Katherine

    2010-12-01

    Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.

  1. Distribution of radionuclides during melting of carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the othermore » possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.« less

  2. Neutron- and photon-activation detection limits in breast milk analysis for prospective dose evaluation of the suckling infant.

    PubMed

    Tsipenyuk, Yu M; Firsov, V I; Cantone, M C

    2009-01-01

    Complex situations related to the environment, as in the regions affected by the Chernobyl accident and regions in which nuclear weapons testing were undertaken, as in Semipalatinsk, could be reflected in the trace element content in mothers' milk. The evaluation of fractional transfer to milk of ingested or inhaled activity and of the corresponding dose coefficients for the infant, following a mothers' radioactive intake, can take advantage from wide-ranging studies of elemental and radionuclide contents in mothers' milk. In this work the possibility to determine elements, such as Ru, Zr, Nb, Te, Ce, Th, U, in milk powder has been investigated. Although results from elemental analyses of breast milk are to be found in the literature, the determination of the identified elements has attracted poor attention since they are not considered essential elements from a biological point of view. Nevertheless, in the case of radioactive releases to the environment, such data could be of interest in evaluation of dose to the breast-fed infant.

  3. Effects of produced waters at oilfield production sites on the Osage Indian Reservation, northeastern Oklahoma

    USGS Publications Warehouse

    Otton, James K.; Asher-Bolinder, Sigrid; Owen, Douglass E.; Hall, Laurel

    1997-01-01

    The authors conducted limited site surveys in the Wildhorse and Burbank oilfields on the Osage Indian Reservation, northeastern Oklahoma. The purpose was to document salt scarring, erosion, and soil and water salinization, to survey for radioactivity in oilfield equipment, and to determine if trace elements and naturally occurring radioactive materials (NORM) were present in soils affected by oilfield solid waste and produced waters. These surveys were also designed to see if field gamma spectrometry and field soil conductivity measurements were useful in screening for NORM contamination and soil salinity at these sites. Visits to oilfield production sites in the Wildhorse field in June of 1995 and 1996 confirmed the presence of substantial salt scarring, soil salinization, and slight to locally severe erosion. Levels of radioactivity on some oil field equipment, soils, and road surfaces exceed proposed state standards. Radium activities in soils affected by tank sludge and produced waters also locally exceed proposed state standards. Laboratory analyses of samples from two sites show moderate levels of copper, lead, and zinc in brine-affected soils and pipe scale. Several sites showed detectable levels of bromine and iodine, suggesting that these trace elements may be present in sufficient quantity to inhibit plant growth. Surface waters in streams at two sampled sites exceed total dissolved solid limits for drinking waters. At one site in the Wildhorse field, an EM survey showed that saline soils in the upper 6m extend from a surface salt scar downvalley about 150 m. (Photo [95k]: Dead oak trees and partly revegetated salt scar at Site OS95-2 in the Wildhorse field, Osage County, Oklahoma.) In the Burbank field, limited salt scarring and slight erosion occurs in soils at some sites and low to moderate levels of radioactivity were observed in oil field equipment at some sites. The levels of radioactivity and radium observed in some soils and equipment at these sites are above levels of concern as defined in regulations proposed by the Conference of Radiation Control Program Directors. The volumes of material involved appear to be relatively small for most sites. The lead levels observed in soils affected by tank sludge wastes are about one half of the US Environmental Protection Agency (USEPA) interim remedial action levels used for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites (400 ppm). Field gamma spectrometry proved useful in delineating areas where radium has been added to the natural soil by oilfield solid waste and produced water, although the technique does not meet standards of assessment used in the state of Louisiana which require core sampling of 15 cm intervals and radiochemical analysis in the laboratory. Further work is needed to develop field gamma spectrometry as a substitute for the more expensive coring and laboratory analysis. The ratio of radium-228 to radium-226 may hold promise in evaluating the relative ages of NORM contamination at a site.

  4. Uranium- and thorium-bearing pegmatites of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on themore » geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.« less

  5. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, M.A.; Bowman, H.R.; Huang, L., H.

    A low radioactivity calibration facility has been constructed at the Nevada Test Site (NTS). This facility has four calibration models of natural stone that are 3 ft in diameter and 6 ft long, with a 12 in. cored borehole in the center of each model and a lead-shielded run pipe below each model. These models have been analyzed by laboratory natural gamma ray spectroscopy (NGRS) and neutron activation analysis (NAA) for their K, U, and Th content. Also, 42 other elements were analyzed in the NAA. The /sup 222/Rn emanation data were collected. Calibrating the spectral gamma tool in thismore » low radioactivity calibration facility allows the spectral gamma log to accurately aid in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentrations of these radioactive elements, such as clay-rich zones.« less

  7. Traces of natural radionuclides in animal food

    NASA Astrophysics Data System (ADS)

    Merli, Isabella Desan; da Silveira, Marcilei A. Guazzelli; Medina, Nilberto H.

    2014-11-01

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  8. Radionuclide concentration processes in marine organisms: A comprehensive review.

    PubMed

    Carvalho, Fernando P

    2018-06-01

    The first measurements made of artificial radionuclides released into the marine environment did reveal that radionuclides are concentrated by marine biological species. The need to report radionuclide accumulation in biota in different conditions and geographical areas prompted the use of concentration factors as a convenient way to describe the accumulation of radionuclides in biota relative to radionuclide concentrations in seawater. Later, concentration factors became a tool in modelling radionuclide distribution and transfer in aquatic environments and to predicting radioactivity in organisms. Many environmental parameters can modify the biokinetics of accumulation and elimination of radionuclides in marine biota, but concentration factors remained a convenient way to describe concentration processes of radioactive and stable isotopes in aquatic organisms. Revision of CF values is periodically undertaken by international organizations, such as the International Atomic Energy Agency (IAEA), to make updated information available to the international community. A brief commented review of radionuclide concentration processes and concentration factors in marine organisms is presented for key groups of radionuclides such as fission products, activation products, transuranium elements, and naturally-occurring radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-05

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Radiation effect of neutrons produced by D-D side reactions on a D-3He fusion reactor

    NASA Astrophysics Data System (ADS)

    Bahmani, J.

    2017-04-01

    One of the most important characteristics in D-3He fusion reactors is neutron production via D-D side reactions. The neutrons can activate structural material, degrading them and ultimately converting them into high-level radioactive waste, while it is really costly and difficult to remove them. The neutrons from a fusion reactor could also be used to make weapons-grade nuclear material, rendering such types of fusion reactors a serious proliferation hazard. A related problem is the presence of radioactive elements such as tritium in D-3He plasma, either as fuel for or as products of the nuclear reactions; substantial quantities of radioactive elements would not only pose a general health risk, but tritium in particular would also be another proliferation hazard. The problems of neutron radiation and radioactive element production are especially interconnected because both would result from the D-D side reaction. Therefore, the presentation approach for reducing neutrons via D-D nuclear side reactions in a D-3He fusion reactor is very important. For doing this research, energy losses and neutron power fraction in D-3He fusion reactors are investigated. Calculations show neutrons produced by the D-D nuclear side reaction could be reduced by changing to a more 3He-rich fuel mixture, but then the bremsstrahlung power loss fraction would increase in the D-3He fusion reactor.

  11. Development of a universal solvent for the decontamination of acidic liquid radioactive wastes

    NASA Astrophysics Data System (ADS)

    Todd, T. A.; Brewer, K. N.; Law, J. D.; Wood, D. J.; Herbest, R. S.; Romanovskiy, V. N.; Esimantovskiy, V. M.; Smirnov, I. V.; Babain, V. A.

    1999-01-01

    A teritiary solvent containing chlorinated cobalt dicarbollide, polyethylene glycol and diphenylcarbamoylmethylphosphine oxide was evaluated in different non-nitroaromatic diluents for the separation of cesium, strontium, actinides and rare earth elements from acidic liquid radioactive waste. Decontamination factors of >95% for Cs, 99.7% for Sr, and 99.99% for actinides were achieved in four successive batch contacts using actual radioactive waste. Pilot plant testing in centrifugal contactors using simulated wastes, has demonstrated removal of >99% of all targeted ions.

  12. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakama, M., E-mail: minorusakama@tokushima-u.ac.jp; Nagano, Y.; Kitade, T.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust andmore » those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.« less

  13. Computer program calculates gamma ray source strengths of materials exposed to neutron fluxes

    NASA Technical Reports Server (NTRS)

    Heiser, P. C.; Ricks, L. O.

    1968-01-01

    Computer program contains an input library of nuclear data for 44 elements and their isotopes to determine the induced radioactivity for gamma emitters. Minimum input requires the irradiation history of the element, a four-energy-group neutron flux, specification of an alloy composition by elements, and selection of the output.

  14. Direct charge radioisotope activation and power generation

    DOEpatents

    Lal, Amit; Li, Hui; Blanchard, James P.; Henderson, Douglass L.

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  15. Modern Alchemy.

    ERIC Educational Resources Information Center

    Seaborg, Glenn T.

    1983-01-01

    Reviews the historical development of the periodic table, examining major changes due to understanding of radioactivity, synthetic transmutation by bombardment, differences between transuranium elements and the lanthanide series, and the transactinide elements. Discusses the continuing work on atomic synthesis and its importance in extending our…

  16. Training Activities on Radioactive Waste Management at Moscow SIA -Radon-: Experience, Practice, Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, O.G.; Arustamov, A.E.; Dmitriev, S.A.

    Management of radioactive waste relates to the category of hazardous activities. Hence the requirements to the professional level of managers and personnel working in this industry are very high. Education, training and examination of managers, operators and workers are important elements of assuring safe and efficient operation of radioactive waste management sites. The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided training to waste management personnel for the last 10 years. The paper summarizes the current experiencemore » of the SIA 'Radon' in the organisation and implementation of the IAEA sponsored training and others events and outlines some of strategic educational elements, which IETC will continue to pursue in the coming years. (authors)« less

  17. Oribatid mites and nutrient cycling. [Nutrient release by decomposition of leaf litter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossley, D.A. Jr.

    1976-08-01

    Communities of oribatid mites (Cryptostigmata) in leaf litter and forest soils consist of an impressive number of individuals. Total populations of the order of 10/sup 5/ oribatids per square meter are commonly reported from forest floors. Because of their numbers, oribatids have been believed to be important contributors to the breakdown of organic detritus. Results are reported from studies of mineral or nutrient element cycling in forest floor ecosystems using radioisotopes as tracers. The phenomenon of cycling allows for the study of feedback loops among ecosystem processes, whereas energy flow is unidirectional. Evaluation of feedback loops can be a meansmore » of quantifying indirect effects of consumers. The availability of radioactive isotopes or radioactive analogs of mineral elements allows for the direct measurement of transfer rates. In decomposition studies applications of radioactive tracers have helped to identify pathways of transfer from microflora to oribatids.« less

  18. DANCE : Device for Measurement of (n.g.) Reactions on radioactive Species /

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, E. P.; Dragowsky, M.; Fowler, Malcolm M.

    2001-01-01

    DANCE (Device for Advanced Neutron Capture Experiments) is a 4{pi} 162 element BaF{sub 2} array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's of keV onmore » rare and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species.« less

  19. Monitoring arrangement for vented nuclear fuel elements

    DOEpatents

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  20. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  1. Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution.

    PubMed

    Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R

    2011-09-30

    The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.

  2. Temporal changes in water quality at a childhood leukemia cluster.

    PubMed

    Seiler, Ralph L

    2004-01-01

    Since 1997, 15 cases of acute lymphocytic leukemia and one case of acute myelocytic leukemia have been diagnosed in children and teenagers who live, or have lived, in an area centered on the town of Fallon, Nevada. The expected rate for the population is about one case every five years. In 2001, 99 domestic and municipal wells and one industrial well were sampled in the Fallon area. Twenty-nine of these wells had been sampled previously in 1989. Statistical comparison of concentrations of major ions and trace elements in those 29 wells between 1989 and 2001 using the nonparametric Wilcoxon signed-rank test indicate water quality did not substantially change over that period; however, short-term changes may have occurred that were not detected. Volatile organic compounds were seldom detected in ground water samples and those that are regulated were consistently found at concentrations less than the maximum contaminant level (MCL). The MCL for gross-alpha radioactivity and arsenic, radon, and uranium concentrations were commonly exceeded, and sometimes were greatly exceeded. Statistical comparisons using the nonparametric Wilcoxon rank-sum test indicate gross-alpha and -beta radioactivity, arsenic, uranium, and radon concentrations in wells used by families having a child with leukemia did not statistically differ from the remainder of the domestic wells sampled during this investigation. Isotopic measurements indicate the uranium was natural and not the result of a 1963 underground nuclear bomb test near Fallon. In arid and semiarid areas where trace-element concentrations can greatly exceed the MCL, household reverse-osmosis units may not reduce their concentrations to safe levels. In parts of the world where radon concentrations are high, water consumed first thing in the morning may be appreciably more radioactive than water consumed a few minutes later after the pressure tank has been emptied because secular equilibrium between radon and its immediate daughter progeny is attained in pressure tanks overnight.

  3. Temporal changes in water quality at a childhood leukemia cluster

    USGS Publications Warehouse

    Seiler, R.L.

    2004-01-01

    Since 1997, 15 cases of acute lymphocytic leukemia and one case of acute myelocytic leukemia have been diagnosed in children and teenagers who live, or have lived, in an area centered on the town of Fallon, Nevada. The expected rate for the population is about one case every five years. In 2001, 99 domestic and municipal wells and one industrial well were sampled in the Fallon area. Twenty-nine of these wells had been sampled previously in 1989. Statistical comparison of concentrations of major ions and trace elements in those 29 wells between 1989 and 2001 using the nonparametric Wilcoxon signed-rank test indicate water quality did not substantially change over that period; however, short-term changes may have occurred that were not detected. Volatile organic compounds were seldom detected in ground water samples and those that are regulated were consistently found at concentrations less than the maximum contaminant level (MCL). The MCL for gross-alpha radioactivity and arsenic, radon, and uranium concentrations were commonly exceeded, and sometimes were greatly exceeded. Statistical comparisons using the nonparametric Wilcoxon rank-sum test indicate gross-alpha and -beta radioactivity, arsenic, uranium, and radon concentrations in wells used by families having a child with leukemia did not statistically differ from the remainder of the domestic wells sampled during this investigation. Isotopic measurements indicate the uranium was natural and not the result of a 1963 underground nuclear bomb test near Fallon. In arid and semiarid areas where trace-element concentrations can greatly exceed the MCL, household reverse-osmosis units may not reduce their concentrations to safe levels. In parts of the world where radon concentrations are high, water consumed first thing in the morning may be appreciably more radioactive than water consumed a few minutes later after the pressure tank has been emptied because secular equilibrium between radon and its immediate daughter progeny is attained in pressure tanks overnight.

  4. Applications of nuclear techniques relevant for civil security

    NASA Astrophysics Data System (ADS)

    Valkovi, Vlado

    2006-05-01

    The list of materials which are subject to inspection with the aim of reducing the acts of terrorism includes explosives, narcotics, chemical weapons, hazardous chemicals and radioactive materials. To this we should add also illicit trafficking with human beings. The risk of nuclear terrorism carried out by sub-national groups is considered not only in construction and/or use of nuclear device, but also in possible radioactive contamination of large urban areas. Modern personnel, parcel, vehicle and cargo inspection systems are non-invasive imaging techniques based on the use of nuclear analytical techniques. The inspection systems use penetrating radiations: hard x-rays (300 keV or more) or gamma-rays from radioactive sources (137Cs and 60Co with energies from 600 to 1300 keV) that produce a high resolution radiograph of the load. Unfortunately, this information is ''non-specific'' in that it gives no information on the nature of objects that do not match the travel documents and are not recognized by a visual analysis of the radiographic picture. Moreover, there are regions of the container where x and gamma-ray systems are ''blind'' due to the high average atomic number of the objects irradiated that appear as black spots in the radiographic image. Contrary to that is the use of neutrons; as results of the bombardment, nuclear reactions occur and a variety of nuclear particles, gamma and x-ray radiation is emitted, specific for each element in the bombarded material. The problem of material (explosive, drugs, chemicals, etc.) identification can be reduced to the problem of measuring elemental concentrations. Neutron scanning technology offers capabilities far beyond those of conventional inspection systems. The unique automatic, material specific detection of terrorist threats can significantly increase the security at ports, border-crossing stations, airports, and even within the domestic transportation infrastructure of potential urban targets as well as protecting armed forces and infrastructure.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T F

    Rongelap Atoll experienced close-in ''local fallout'' from nuclear weapons tests conducted by the United States (1946-58) in the northern Marshall Islands. Most of the radiation dose delivered to Rongelap Island residents during the 1950s was from radioactive elements that quickly decayed into non-radioactive elements. Since 1985, the Lawrence Livermore National Laboratory (LLNL) has continued to provide monitoring of radioactive elements from bomb testing in the terrestrial and marine environment of Rongelap Atoll. The only remaining radioactive elements of environmental importance at the atoll are radioactive cesium (cesium-137), radioactive strontium (strontium-90), different types (isotopes) of plutonium, and americium (americium-241). Cesium- 137more » and strontium-90 dissolve in seawater and are continually flushed out of the lagoon into the open ocean. The small amount of residual radioactivity from nuclear weapons tests remaining in the lagoon does not concentrate through the marine food chain. Elevated levels of cesium-137 and strontium-90 are still present in island soils and pose a potential health risk if certain types of local plants and coconut crabs are eaten in large quantities. Cesium-137 is taken up from the soil into plants and edible food products, and may end up in the body of people living on the islands and consuming local food. The presence of cesium-137 in the human body can be detected using a device called a whole body counter. A person relaxes in a chair for a few minutes while counts or measurements are taken using a detector a few inches away from the body. The whole body counting program on Rongelap Island was established in 1999 under a cooperative agreement between the Rongelap Atoll Local Government (RALG), the Republic of the Marshall Islands and the U.S. Department of Energy (DOE). Local technicians from Rongelap continue to operate the facility under supervision of scientists from LLNL. The facility permits resettlement workers living on Rongelap Island to check the amount of cesium-137 in their bodies. The amount of cesium-137 detected in resettlement workers living on Rongelap Island over the past three years is well below the level of radiation exposure considered safe by the Nuclear Claims Tribunal. Returning residents and visitors to Rongelap will also be able to receive a whole body count free of charge to check the level of cesium in their bodies. There is also a very low health risk from exposure to external sources of radiation from visiting or walking around any of the islands on the atoll.« less

  6. Spatial gradient of human health risk from exposure to trace elements and radioactive pollutants in soils at the Puchuncaví-Ventanas industrial complex, Chile.

    PubMed

    Salmani-Ghabeshi, S; Palomo-Marín, M R; Bernalte, E; Rueda-Holgado, F; Miró-Rodríguez, C; Cereceda-Balic, F; Fadic, X; Vidal, V; Funes, M; Pinilla-Gil, E

    2016-11-01

    The Punchuncaví Valley in central Chile, heavily affected by a range of anthropogenic emissions from a localized industrial complex, has been studied as a model environment for evaluating the spatial gradient of human health risk, which are mainly caused by trace elemental pollutants in soil. Soil elemental profiles in 121 samples from five selected locations representing different degrees of impact from the industrial source were used for human risk estimation. Distance to source dependent cumulative non-carcinogenic hazard indexes above 1 for children (max 4.4 - min 1.5) were found in the study area, ingestion being the most relevant risk pathway. The significance of health risk differences within the study area was confirmed by statistical analysis (ANOVA and HCA) of individual hazard index values at the five sampling locations. As was the dominant factor causing unacceptable carcinogenic risk levels for children (<10 -4 ) at the two sampling locations which are closer to the industrial complex, whereas the risk was just in the tolerable range (10 -6 - 10 -4 ) for children and adults in the rest of the sampling locations at the study area. Furthermore, we assessed gamma ray radiation external hazard indexes and annual effective dose rate from the natural radioactivity elements ( 226 Ra, 232 Th and 40 K) levels in the surface soils of the study area. The highest average values for the specific activity of 232 Th (31 Bq kg -1 ), 40 K (615 Bq kg - 1 ), and 226 Ra (25 Bq kg -1 ) are lower than limit recommended by OECD, so no significant radioactive risk was detected within the study area. In addition, no significant variability of radioactive risk was observed among sampling locations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    USGS Publications Warehouse

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  8. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  9. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  10. The emerging Medical and Geological Association.

    USGS Publications Warehouse

    Finkelman, R.B.; Centeno, J.A.; Selinus, O.

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort.

  11. The Emerging Medical and Geological Association

    PubMed Central

    Finkelman, Robert B; Centeno, Jose A; Selinus, Olle

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort. PMID:16555612

  12. Summary of the research work of the Trace Elements Section, Geochemistry and Petrology Branch, for the period January 1-March 31, 1951

    USGS Publications Warehouse

    Rabbitt, John C.

    1951-01-01

    This report summarized the research work of the Trace Elements Section, Geochemistry and Petrology Branch for the period January 1 - March 31, 1951. Work before that is summarized in an earlier report, "Summary of the research work of the Trace Elements Section, Geochemistry and Petrology Branch, for the period April 1, 1948 - December 31, 1950," by John C. Rabbitt (U.S. Geol. Survey Trace Elements Investigations Rept. 148, January 1951). This report will be referred to as TEIR 148. In TEIR 148 the purpose of each project was described and it is not thought necessary to repeat that material. The research work of the section consists of laboratory and related field studies in the following fields: 1. Mineralogic and petrologic investigations of radioactive rocks, minerals, and ores. 2. Investigations of chemical methods of analysis for uranium, thorium, and other elements and compounds in radioactive materials, and related chemical problems. 3. Investigations of spectographic method of analysis for a wide variety of elements in radioactive materials. 4. Investigation of radiometric methods of analysis is applied to radioactive materials. It should be emphasized that the work undertaken so far is almost entirely in the nature of investigations supporting the field appraisal of known uraniferous deposits. A program of more fundamental research, particularly in the mineralogy and geochemistry of uranium, is now being drawn up and will be submitted for approval soon. This report does not deal with the routine analytical work of the Section nor the public-sample program. The analytical work will be summarized in a report to be issued after the end of fiscal year 1951, and a report on the public-sample program is in process. Special thanks are due members of the Section who are engaged in the research work and who have supplied material for this report, the Early Ingerson, Chief of the Geochemistry and Petrology Branch for his critical review, to Jane Titcomb of the editorial staff of the Section for editing the report, and to Virginia Layne of the same staff, for typing the manuscript and the multilith mats.

  13. Scrap metals industry perspective on radioactive materials.

    PubMed

    Turner, Ray

    2006-11-01

    With more than 80 reported/confirmed accidental melts worldwide since 1983 and still counting, potential contamination by radioactive materials remains as a major concern among recycled scrap and steel companies. Some of these events were catastrophic and have cost the industry millions of dollars in business and, at the same time, resulted in declining consumer confidence. It is also known that more events with confirmed radioactive contamination have occurred that involve mining of old steel slag and skull dumps. Consequently, the steel industry has since undergone massive changes that incurred unprecedented expenses through the installation of radiation monitoring systems in hopes of preventing another accidental melt. Despite such extraordinary efforts, accidental melts continue to occur and plague the industry. One recent reported/confirmed event occurred in the Republic of China in 2004, causing the usual lengthy shutdown for expensive decontamination efforts before the steel mill could resume operations. With this perspective in mind, the metal industry has a long-standing opposition to the release of radioactive materials of any kind to commerce for fear of contamination and the potential consequences.

  14. Medical Effects of a Transuranic "Dirty Bomb".

    PubMed

    Durakovic, Asaf

    2017-03-01

    The modern military battlefields are characterized by the use of nonconventional weapons such as encountered in the conflicts of the Gulf War I and Gulf War II. Recent warfare in Iraq, Afghanistan, and the Balkans has introduced radioactive weapons to the modern war zone scenarios. This presents the military medicine with a new area of radioactive warfare with the potential large scale contamination of military and civilian targets with the variety of radioactive isotopes further enhanced by the clandestine use of radioactive materials in the terrorist radioactive warfare. Radioactive dispersal devices (RDDs), including the "dirty bomb," involve the use of organotropic radioisotopes such as iodine 131, cesium 137, strontium 90, and transuranic elements. Some of the current studies of RDDs involve large-scale medical effects, social and economic disruption of the society, logistics of casualty management, cleanup, and transportation preparedness, still insufficiently addressed by the environmental and mass casualty medicine. The consequences of a dirty bomb, particularly in the terrorist use in urban areas, are a subject of international studies of multiple agencies involved in the management of disaster medicine. The long-term somatic and genetic impact of some from among over 400 radioisotopes released in the nuclear fission include somatic and transgenerational genetic effects with the potential challenges of the genomic stability of the biosphere. The global contamination is additionally heightened by the presence of transuranic elements in the modern warzone, including depleted uranium recently found to contain plutonium 239, possibly the most dangerous substance known to man with one pound of plutonium capable of causing 8 billion cancers. The planning for the consequences of radioactive dirty bomb are being currently studied in reference to the alkaline earths, osteotropic, and stem cell hazards of internally deposited radioactive isotopes, in particular uranium and transuranic elements. The spread of radioactive materials in the area of the impact would expose both military and civilian personnel to the blast and dust with both inhalational, somatic, and gastrointestinal exposure, in the aftermath of the deployment of RDDs. The quantities of radioactive materials have proliferated from the original quantity of plutonium first isolated in 1941 from 0.5 mg to the current tens of thousands of kilograms in the strategic nuclear arsenal with the obvious potential consequences to the biosphere and mankind. In an event of RDD employment, the immediate goal of disaster and mass casualty medicine would be a synchronized effort to contain the scope of the event, followed by cleanup and treatment procedures. A pragmatic approach to this problem is not always possible because of unpredictability of the terrorist-use scenarios. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  15. Radioactive dating of the elements

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Thielemann, Friedrich-Karl; Truran, James W.

    1991-01-01

    The extent to which an accurate determination of the age of the Galaxy, and thus a lower bound on the age of the universe, can be obtained from radioactive dating is discussed. Emphasis is given to the use of the long-lived radioactive nuclei Re-187, Th-232, U-238, and U-235. The nature of the production sites of these and other potential Galactic chronometers is examined along with their production ratios. Age determinations from models of nucleocosmochronology are reviewed and compared with age determination from stellar sources and age constraints form cosmological considerations.

  16. Review of nuclear pharmacy practice in hospitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawada, T.K.; Tubis, M.; Ebenkamp, T.

    1982-02-01

    An operational profile for nuclear pharmacy practice is presented, and the technical and professional role of nuclear pharmacists is reviewed. Key aspects of nuclear pharmacy practice in hospitals discussed are the basic facilities and equipment for the preparation, quality control, and distribution of radioactive drug products. Standards for receiving, storing, and processing radioactive material are described. The elements of a radiopharmaceutical quality assurance program, including the working procedures, documentation systems, data analysis, and specific control tests, are presented. Details of dose preparation and administration and systems of inventory control for radioactive products are outlined.

  17. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  18. An industry perspective on commercial radioactive waste disposal conditions and trends.

    PubMed

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  19. Reevaluation of induced radioactivity in 10MeV electron-irradiated pepper for public acceptance

    NASA Astrophysics Data System (ADS)

    Furuta, M.; Katayama, T.; Ito, N.; Mizohata, A.; Toratani, H.; Takeda, A.

    In order to examine whether or not radioactivity could be produced in black pepper and white pepper with 10MeV electrons, the sample was irradiated with 10MeV electrons from a linear accelerator and its radioactivity was measured by gamma-ray spectrometry and beta-ray counting. The patterns of gamma-ray spectra showed that there was no difference between the irradiated and the non-irradiated samples, suggesting that the induced radioactivity in the irradiated sample was below the detection limit of its induced radioactivity. For further estimation, elemental composition was analyzed and photonuclear reactions which could produce radioactivity in the sample were investigated based on the data already published. Some photonuclear target nuclides in the list were spiked to the sample, being checked in the same way. Although short lived photonuclear products were observed, these radioactivities were found to decrease below the detection limit in a week. It is concluded that the induced radioactivity in the 10MeV electron-irradiated pepper and hence, its biological effect is far smaller than the natural radioactivity arising from 40K contained in the non-irradiated sample.

  20. Hyperfine interactions of trans-lead elements studied by nuclear radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansaldo, E.J.

    1973-09-16

    The applications of nuclear radiation methods to the study of hyperfine interactions (hfi) for elements beyond Pb in the periodic table are reviewed. A general discussion of hfi is presented along with a review of specific methods. The techniques are illustrated whenever possible by their application to the actinides, with emphasis on the unsolved aspects of the results. A special method of sample preparation is ion implantation, in which stable or radioactive ions of practically any element are shot into the host, either by means of isotope separators or the recoil energy of nuclear reactions or radioactive decays. The locationmore » of the implanted (recoiled) atom in the lattice has to be assessed for a reliable determination of the hfi. Therefore, a chapter on the channeling technique is also included. (JRD)« less

  1. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  2. Bayesian Integration and Characterization of Composition C-4 Plastic Explosives Based on Time-of-Flight Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Christine M.; Kelly, Ryan T.; Alexander, M. L.

    Key elements regarding the use of non-radioactive ionization sources will be presented as related to explosives detection by mass spectrometry and ion mobility spectrometry. Various non-radioactive ionization sources will be discussed along with associated ionization mechanisms pertaining to specific sample types.

  3. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  4. Purification of lanthanides for double beta decay experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polischuk, O. G.; Barabash, A. S.; Belli, P.

    2013-08-08

    There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain {sup 238}U, {sup 226}Ra and {sup 232,228}Th typically on the level of ∼ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO{sub 2}, Nd{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxidemore » by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R and D of the methods to remove the pollutions with improved efficiency is in progress.« less

  5. Marine plankton as an indicator of low-level radionuclide contamination in the Southern Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, K.V.; Buddemeier, R.W.

    1984-07-01

    We have initiated an investigation of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review shows that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10/sup 4/. In the years 1956-1958, considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by the nuclear tests in the Marshall Islands. Since then, studies have largely been confined to a few selected radionuclides, and by far most of this work has been done inmore » the northern hemisphere. We participated in Operation Deepfreeze 1981, collecting 32 plankton samples from the U.S. Coast Guard Cutter Glacier on its Antarctic cruise, while Battelle Pacific Northwest Laboratories concurrently sampled air, water, rain and fallout. We were able to measure concentrations of the naturally occurring radionuclides /sup 7/Be, /sup 40/K and the U and th series, and we believe that we have detected low levels of /sup 144/Ce and /sup 95/Nb in seven samples ranging as far south as 68/sup 0/. There is a definite association between the radionuclide content of plankton and air filters, suggesting that aerosol resuspension of marine radioactivity may be occurring. Biological identification of the plankton suggests a possible correlation between radionuclide concentration and foraminifera content of the samples. 38 references, 7 figures, 3 tables.« less

  6. Radioactive materials deposition in Iwate prefecture, northeast japan, due to the Fukushima dai-ichi nuclear power plant accident.

    NASA Astrophysics Data System (ADS)

    Itoh, Hideyuki

    2013-04-01

    A catastrophic earthquake occurred in March 11, 2011, and additional tsunami gave the big damage along the pacific coastline of the northeast Japan. Tsunami also caused the accident of Fukushima dai-ichi nuclear power plant (FNPP), released of massive amount of radioactive materials to all over the northeast to central Japan. Ministry of Education, cultural, sports, science and technology (MEXT), Japan, carried out the airborne monitoring survey on several times, however, it is impossible to know the deposition of low level radiation under 0.1μSv/h. On the other hand, radioactive material was detected in Iwate by farm and livestock products, and it was necessary to understand an accurate contamination status in Iwate prefecture. Behavior of radioactive material is very similar to the ashfall by the volcanic eruption. Therefore, it is possible to apply the knowledge of volcanology to evaluation of the natural radiation dose. The author carried out the detailed contamination mapping across the Iwate prefecture. To γ-ray measurement, using scintillation counter A2700 of the clearpulse, measured on 1m grass field above ground, for one minute. The total measurement point became more than 800 point whole in Iwate. Field survey were carried out from April to November, 2011, therefore, it is necessary to consider to the half - life of the radioactive element of the cesium 134 and 137. In this study, the author reconstructed a deposition of April, 2011, just after the accident. In addition, the author also carried out the revision of the natural radiation dose included in the granite and so on. From the result, Concentration of radioactive materials depend on the topography, it tend to high concentrate in the basin or along the valley. The feeble deposition 0.01-0.2μsv/h with the radioactive material was recognized in whole prefecture. High contamination area distributed over the E-W directions widely in the southern part of the prefecture, and it also existence of the hotspots more than 0.5-0.7μSv/h became clear in the high contamination area. This result already released on the web (http://www.poly.iwate-pu.ac.jp, in Japanese) and more than 35,500 inhabitants read it so far. They use this result as a hazard map for the radiation dose.

  7. The discovery of radioactivity

    NASA Astrophysics Data System (ADS)

    Radvanyi, Pierre; Villain, Jacques

    2017-11-01

    The radioactivity of uranium was discovered in 1896 by Henri Becquerel who, starting from a wrong idea, progressively realized what he was observing, regularly informing the French Academy of Sciences of the progress he was doing. In the next years, it was found that thorium was radioactive too, and two new radioactive elements, polonium and radium, were discovered by Pierre and Marie Curie, while a third one, actinium, was identified by André Debierne. The study of the penetrating power and of the effect of electric and magnetic fields allowed scientists to demonstrate the complexity of nuclear radiation with its three components α, β, γ. The Comptes rendus de l'Académie des sciences allow the reader to see how difficult it was to understand the nature of radioactivity, which was essentially elucidated by Ernest Rutherford and Frederick Soddy.

  8. A Californium-252 Neutron Source for Student Use

    ERIC Educational Resources Information Center

    Bowen, H. J.

    1975-01-01

    Describes an undergraduate chemistry experiment which utilizes small samples of Californium 252 as a neutron source for the activation of 12 other elements. The students prepare decay curves of the radioactive isotopes and perform nondestructive activation analyses for gram amounts of some elements. (MLH)

  9. Alimentary Tract Absorption (f1 Values) for Radionuclides in Local and Regional Fallout from Nuclear Tests

    PubMed Central

    Ibrahim, Shawki; Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold

    2009-01-01

    This paper presents gastrointestinal absorption fractions (f1 values) for estimating internal doses from local and regional fallout radionuclides due to nuclear tests. The choice of f1 values are based on specific circumstances of weapons test conditions and a review of reported f1 values for elements in different physical and chemical states. Special attention is given to fallout from nuclear tests conducted at the Marshall Islands. We make a distinction between the f1 values for intakes of radioactive materials immediately after deposition (acute intakes) and intakes that occur in the course of months and years after deposition, following incorporation into terrestrial and aquatic foodstuffs (chronic intakes). Multiple f1 values for different circumstances where persons are exposed to radioactive fallout (e.g. local vs. regional fallout and coral vs. continental tests) are presented when supportive information is available. In some cases, our selected f1 values are similar to those adopted by the ICRP (e.g. iodine and most actinides). However, f1 values for cesium and strontium derived from urine bioassay data of the Marshallese population are notably lower than the generic f1 values recommended by ICRP, particularly for acute intakes from local fallout (0.4 and 0.05 for Cs and Sr, respectively. The f1 values presented here form the first complete set of values relevant to realistic dose assessments for exposure to local or regional radioactive fallout. PMID:20622554

  10. Alimentary tract absorption (f1 values) for radionuclides in local and regional fallout from nuclear tests.

    PubMed

    Ibrahim, Shawki A; Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L

    2010-08-01

    This paper presents gastrointestinal absorption fractions (f1 values) for estimating internal doses from local and regional fallout radionuclides due to nuclear tests. The choice of f1 values are based on specific circumstances of weapons test conditions and a review of reported f1 values for elements in different physical and chemical states. Special attention is given to fallout from nuclear tests conducted at the Marshall Islands. We make a distinction between the f1 values for intakes of radioactive materials immediately after deposition (acute intakes) and intakes that occur in the course of months and years after deposition, following incorporation into terrestrial and aquatic foodstuffs (chronic intakes). Multiple f1 values for different circumstances where persons are exposed to radioactive fallout (e.g., local vs. regional fallout and coral vs. continental tests) are presented when supportive information is available. In some cases, our selected f1 values are similar to those adopted by the International Commission on Radiological Protection (ICRP) (e.g., iodine and most actinides). However, f1 values for cesium and strontium derived from urine bioassay data of the Marshallese population are notably lower than the generic f1 values recommended by ICRP, particularly for acute intakes from local fallout (0.4 and 0.05 for Cs and Sr, respectively). The f1 values presented here form the first complete set of values relevant to realistic dose assessments for exposure to local or regional radioactive fallout.

  11. Proposed changes for part N of suggested state regulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, R.

    1997-02-01

    This paper discusses proposed changes for Part N regulations regarding naturally occuring radioactive materials. It describes the work of the Commission on NORM of the Conference of Radiation Control Program Directors (CRCPD), toward adjusting the regulations. A set of questions was formulated and a review panel established to address these questions and come back with recommended actions. The panel recommended the distinction that the material being regulated is `Technologically Enhanced Naturally Occurring Radioactive Material` (TENORM). By this they mean `naturally occurring radioactive material not regulated under the Atomic Energy Act (AEA) whose radionuclide concentrations have been increased by or asmore » a result of human practices.` Recommendations also include: using a dose based instead of concentration based standard; refined definition of exemptions from regulations; exclusion of radon from Total Effective Dose Equivalent (TEDE) calculations; provide states flexibility in implementation; inclusion of prospective remedial and operations aspects for TENORM; provision of institutional controls.« less

  12. Study of iodine migration in zirconia using stable and radioactive ion implantation

    NASA Astrophysics Data System (ADS)

    Chevarier, N.; Brossard, F.; Chevarier, A.; Crusset, D.; Moncoffre, N.

    1998-03-01

    The large uranium fission cross section leading to iodine and the behaviour of this element in the cladding tube during energy production and afterwards during waste storage is a crucial problem, especially for 129I which is a very long half-life isotope ( T = 1.59 × 10 7yr). Since a combined external and internal oxidation of the zircaloy cladding tube occurs during the reactor processing, iodine diffusion parameters in zirconia are needed. In order to obtain these data, stable iodine atoms were first introduced by ion implantation into zirconia with an energy of 200 keV and a dose equal to 8 × 10 15at cm -2. Diffusion profiles were measured using 3 MeV alpha-particle Rutherford Backscattering Spectrometry at each step of the annealing procedure between 700°C and 900°C. In such experiments a reduced iodine concentration was observed, which correlated to a diffusion-like process. Similar analysis has been performed using radioactive 131I implanted at a very low dose of 10 9 at cm -2. In this case the iodine release is deduced from gamma-ray spectroscopy measurements. The results are discussed in this paper.

  13. Traces of natural radionuclides in animal food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merli, Isabella Desan; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine themore » concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.« less

  14. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  15. Measurement of natural and 137Cs radioactivity concentrations at Izmit Bay (Marmara Sea), Turkey

    NASA Astrophysics Data System (ADS)

    Öksüz, I.; Güray, R. T.; Özkan, N.; Yalçin, C.; Ergül, H. A.; Aksan, S.

    2016-03-01

    In order to determine the radioactivity level at Izmit Bay Marmara Sea, marine sediment samples were collected from five different locations. The radioactivity concentrations of naturally occurring 238U, 232Th and 40K isotopes and also that of an artificial isotope 137Cs were measured by using gamma-ray spectroscopy. Preliminary results show that the radioactivity concentrations of 238U and 232Th isotopes are lower than the average worldwide values while the radioactivity concentrations of the 40K are higher than the average worldwide value. A small amount of 137Cs contamination, which might be caused by the Chernobyl accident, was also detected.

  16. Radioactivity of neutron-irradiated cat's-eye chrysoberyls

    NASA Astrophysics Data System (ADS)

    Tang, S. M.; Tay, T. S.

    1999-04-01

    The recent report of marketing of radioactive chrysoberyl cat's-eyes in South-East Asian markets has led us to use an indirect method to estimate the threat to health these color-enhanced gemstones may pose if worn close to skin. We determined the impurity content of several cat's-eye chrysoberyls from Indian States of Orissa and Kerala using PIXE, and calculated the radioactivity that would be generated from these impurities and the constitutional elements if a chrysoberyl was irradiated by neutrons in a nuclear reactor for color enhancement. Of all the radioactive nuclides that could be created by neutron irradiation, only four ( 46Sc, 51Cr, 54Mn and 59Fe) would not have cooled down within a month after irradiation to the internationally accepted level of specific residual radioactivity of 2 nCi/g. The radioactivity of 46Sc, 51Cr and 59Fe would only fall to this safe limit after 15 months and that of 54Mn could remain above this limit for several years.

  17. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.

    PubMed

    Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki

    2015-04-01

    Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima.

  18. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A Comparative Study Environmental and Radiological Causes Of Cancer In River Nile State, Sudan

    NASA Astrophysics Data System (ADS)

    Hamid, Eyad; Khair, Hatim

    The causes of cancer in River Nile state are differ between environmental and radiological, this paper tried to make comparison between the two causes, to determine the real cause behind the large rising of cancer cases in this state, considering the daily habits for the patients and the possible contamination in the natural resources around them. The noticeable thing that most of cancer cases are might be due to the high concentration of nitrate pollutant detected in natural resources such as drinking water; also by looking to the radioactive elements we see there's high concentration of some radioactive elements specially the K-40 which found in Portulaca Oleracea.

  20. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, S. C.; Oyaizu, M.; Imai, N.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmanlioglu, Ahmet Erdal

    Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less

  2. EMBOLIZATION OF DOG PROSTATES WITH YTTRIUM-90 MICROSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, W.M.

    1963-10-01

    Experiments exploring means for the protection of adjacent normal tissue while delivering a destructive dose of radiation to malignant tissue were conducted. By injection of radioactive ceramic spheres or particles, too large to pass through capillaries or arteriovenous shunts, relatively high doses of radiation can be distributed homogeneously to a circumscribed area. Attempts were made to determine the uniformity of distribution and the radiation effect of varying doses of spheres injected into the arterial supply of the dog prostate. Nonradioactive and radioactive ceramic microspheres of 60 mu dia were used since this size exceeds the diameter of capillaries and arteriovenousmore » shunts. Yttrium-90 microspheres of varying radioactivity were used. Doses injected into right and left hypogastric arteries varied from 0.69 to 28.4 mc/side (92-1260 mc/ g prostate). Homogeneous distribution of radioactivity within the prostate was demonstrated by autoradiography. Distribution to some other organs (rectum, penis, and bladder) occurred because arterial supply to these structures was not isolated and occluded. The amount of radioactivity found in the lungs suggested more venous drainage in some cases than seemed apparent, and because of the infarctions of pelvic organs may have leaked radioactive spheres into the venous circuit. In 6 of the 8 dogs which died prematurely (2 to 7 days after surgery) obvious infarction of the prostate and in some other pelvic structures had occurred. That the radioactivity contributed to the infarction is suggested by the results in the dogs which received large doses of radioactivity (18.9 and 28.4 mc per side) in minimal amounts of spheres (100to 150 mg per side). The intensely concentrated radioactivity within the arteriolar lumens may have caused vasculitis and subsequent thrombosis. Although homogeneous destruction of the prostate gland occurred, the effect of a given dose ranged unpredictably through three groups: no apparent effect at all, destruction of the prostate, and early death with infarction of the prostate and other pelvic organs. It was concluded that with the present technique the range between the dose of radioactivity which caused no obvious response and the dose which is related to acute death is too narrow to allow reasonably predictable results, but that further refinement of technique might increase control over tissue destruction.« less

  3. What is your Cosmic Connection to the Elements?

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Lochner, James; Rohrbach, Gail; Cochrane, Kim

    2003-01-01

    This information and activity booklet describes the roles of the Big Bang, types of stars, supernovae, cosmic ray interactions, and radioactive decay in the formation of the elements. The booklet includes instructions for the following classroom activities, intended for students in Grades 9-12: Grandma's Apple Pie; Cosmic Shuffle; Nickel-odeon; Kinesthetic Big Bang; Elemental Haiku; Cosmic Ray Collisions; Cosmic Abundances; and What's Out There.

  4. Chem I Supplement: Nuclear Synthesis and Identification of New Elements.

    ERIC Educational Resources Information Center

    Seaborg, Glenn T.

    1985-01-01

    As background material for a paper on the transuranium elements (SE 537 837), this article reviews: (1) several descriptive terms; (2) nuclear reactions; (3) radioactive decay modes; (4) chemical background; and (5) experimental methods used in this field of research and more broadly in nuclear chemistry. (Author/JN)

  5. 40 CFR 192.41 - Provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable to the element uranium shall also apply to the element thorium; (b) Provisions applicable to radon-222 shall also apply to radon-220; and (c) Provisions applicable to radium-226 shall also apply to... exposures to the planned discharge of radioactive materials, radon-220 and its daughters excepted, to the...

  6. 40 CFR 192.41 - Provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable to the element uranium shall also apply to the element thorium; (b) Provisions applicable to radon-222 shall also apply to radon-220; and (c) Provisions applicable to radium-226 shall also apply to... exposures to the planned discharge of radioactive materials, radon-220 and its daughters excepted, to the...

  7. The Distribution of Heat-Producing Radioactive Elements in the Deep Earth

    NASA Astrophysics Data System (ADS)

    Chidester, Bethany A.

    The Earth is a heat engine, where large differences in temperature between the interior and the surface drive large-scale movement that manifests as plate tectonics and the geomagnetic field that protects us from the Sun's harmful charged particles. Decay of the long-lived radioactive elements U, Th, and K is expected to contribute as much as 45% of the current heat production in the Earth, and that heat production was five times higher early in Earth's history. It is unclear how this heat source affects the thermal and dynamic evolution of the Earth's core and mantle and how that contribution has changed over geologic time. This dissertation addresses this problem in several different ways. This work represents the first high-pressure, high-temperature metal-silicate partitioning experiments for U, Th, and K in the laser-heated diamond anvil cell at conditions relevant to core formation. A chemical model is developed using parameterization of these partitioning data to constrain the concentrations of each of these elements in the core. Using a numerical calculation, it is then determined how that radioactive heat would contribute to the core's energy and entropy budget through time. One finds that, despite its strong lithophile nature at the surface, U partitions significantly into the metallic phase at increasing temperatures. This may be due to a decrease in U valence from 4+ to 2+ in high-pressure silicate melts, which our data supports. However, K and Th do not exhibit a similar change in behavior at these conditions, and this may drive fractionation between U and Th in the deep mantle. At the most extreme conditions of core formation, enough U could exist in the core to produce up to 4.4 TW of heat 4.5 billion years ago. Potassium could produce much less heat than U early on (< 1 TW), and due to its short half-life, would have decayed away much faster. While this energy source is significantly greater than was previously thought to be possible, it is likely not enough to explain the presence of the geomagnetic field early in Earth's history. I have also completed a synchrotron-based study to determine the phase behavior and equations of state of UO2 and ThO2. ThO 2 undergoes a phase transition from the fluorite- type structure (thorianite) that is stable at ambient conditions to the previously identified cotunnite-type structure around 19 GPa and 1500 K. It remains in the cotunnite-type phase up to 60 GPa and 2500 K. UO2 undergoes several solid phase transitions at high pressure. The fluorite-type (uraninite) to cotunnite-type transition occurs around 20 GPa above 1100 K. At around 35 GPa, a new phase emerges; this phase has been indexed to a tetragonal crystal structure. Finally, at 80 GPa and above, UO2 undergoes another phase transition or dissociates into two separate oxides. This understanding of the phase behavior of the simplest actinide-bearing minerals provides insight into the mineralogical hosts for these radioactive elements, as well as other large cations, in the Earth's deep mantle.

  8. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Bernot

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH andmore » log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.« less

  9. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  10. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    PubMed

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  11. COMMENTS ON THE DEFINITION OF THE CURIE, WITH SPECIAL REFERENCE TO NATURAL RADIOACTIVE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, R.G.; Houtermans, H.

    1962-06-01

    An analysis of maximum permissible levels of radionuclides showed that the definition of the curie, when applied to natural radioactive materials, is ambiguous. The history of the definition of the curie is reviewed. In the past, no clear distinction was raade between the curie as a unit of the quantity of a radioactive substance, and the curie as a unit of radioactivity. This has caused different interpretation of the curic as applied to natural radioactive materials, e.g., natural uranium and natural thorium. A redefinition of the curie as a pure unit of radioactivity is suggested, and maximum permissible levels ormore » concentrations of natural radioactive materials, such as uranium or thorium, should be stated in mass per unit mass or volume of air, water, food, etc. It is recommended that, in legislation listing the amounts of naturally occurring radioactive substances, these amounts be stated in milligrams or Kilograms. (auth)« less

  12. Radiation Basics

    MedlinePlus

    ... EPA’s mission in radiation protection is to protect human health and the environment from the ionizing radiation that comes from human use of radioactive elements. Other agencies regulate the ...

  13. Mineral resource of the month: thorium

    USGS Publications Warehouse

    ,

    2009-01-01

    This article provides information on thorium. Thorium is a natural radioactive element that can be found with other minerals. It can be used to generate power, produce light and transmit energy. Thorium has a potential to be used as a nuclear fuel. This element was discovered by Swedish chemist and mineralogist Jóns Jakob Berzelius in 1828.

  14. Preparation of radioactive iodinated cholylhistamine for use in the radioimmunoassay of cholic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, P.B.; Kinkade, J.M. Jr.; Collins, D.C.

    1977-11-01

    A major handicap in the development of simple and accurate radioimmunoassay procedures for bile acids has been the lack of a radioactive standard of high specific activity. To provide such a compound, we first synthesized cholylhistamine using the carbodiimide reaction. The hypothesized structure was confirmed by elemental analysis, thin-layer chromatography, infrared and mass spectral analysis. The cholylhistamine was then iodinated with /sup 125/I, using the choloramine-T method. The /sup 125/I-cholylhistamine was bound by antisera raised against a cholic acid-bovine serum albumin conjugate. This procedure should prove useful in preparing radioactive conjugates for all of the bile acids.

  15. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    NASA Astrophysics Data System (ADS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  16. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th wasmore » found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)« less

  17. Heavy metals in the atmosphere coming from a copper smelter in Chile

    NASA Astrophysics Data System (ADS)

    Romo-Kröger, C. M.; Morales, J. R.; Dinator, M. I.; Llona, F.; Eaton, L. C.

    The Chilean mine El Teniente is the world's largest underground copper mine. It operates a giant smelter at Caletones (34° 7' S, 70° 27' W) and we have found it is the major source of air contamination in the region. In August 1991 a special circumstance occurred due to a labor strike, with total cessation of activities. A time series analysis of airborne particles collected at a site about 13 km from the smelter was performed in a period including the strike. The PIXE method and other techniques were used to analyse fine (<2.5 μm) and coarse (2.5-15 μm) particles on Nuclepore filters. S, Cu, Zn and As were quite enriched in normal working periods relative to the strike period. Elemental characterization of soil samples by radioactive source analysis demonstrated that this group of elements did not come from airborne soil dust. Cluster analyses of the interelement correlation matrices, resulting from PIXE data, showed one group (Si, K, Ca, Fe) with main origin in soil and another group (S, Cu, Zn, As) coming from the copper smelter.

  18. SU-C-204-03: DFT Calculations of the Stability of DOTA-Based-Radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabibullin, A.R.; Woods, L.M.; Karolak, A.

    2016-06-15

    Purpose: Application of the density function theory (DFT) to investigate the structural stability of complexes applied in cancer therapy consisting of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelated to Ac225, Fr221, At217, Bi213, and Gd68 radio-nuclei. Methods: The possibility to deliver a toxic payload directly to tumor cells is a highly desirable aim in targeted alpha particle therapy. The estimation of bond stability between radioactive atoms and the DOTA chelating agent is the key element in understanding the foundations of this delivery process. Thus, we adapted the Vienna Ab-initio Simulation Package (VASP) with the projector-augmented wave method and a plane-wave basis setmore » in order to study the stability and electronic properties of DOTA ligand chelated to radioactive isotopes. In order to count for the relativistic effect of radioactive isotopes we included Spin-Orbit Coupling (SOC) in the DFT calculations. Five DOTA complex structures were represented as unit cells, each containing 58 atoms. The energy optimization was performed for all structures prior to calculations of electronic properties. Binding energies, electron localization functions as well as bond lengths between atoms were estimated. Results: Calculated binding energies for DOTA-radioactive atom systems were −17.792, −5.784, −8.872, −13.305, −18.467 eV for Ac, Fr, At, Bi and Gd complexes respectively. The displacements of isotopes in DOTA cages were estimated from the variations in bond lengths, which were within 2.32–3.75 angstroms. The detailed representation of chemical bonding in all complexes was obtained with the Electron Localization Function (ELF). Conclusion: DOTA-Gd, DOTA-Ac and DOTA-Bi were the most stable structures in the group. Inclusion of SOC had a significant role in the improvement of DFT calculation accuracy for heavy radioactive atoms. Our approach is found to be proper for the investigation of structures with DOTA-based-radiopharmaceuticals and will enhance our understanding of processes occurring at subatomic levels.« less

  19. Ligand Exchange Kinetics of Environmentally Relevant Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasci, Adele Frances

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb tomore » mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.« less

  20. Caves, mines and subterranean spaces: hazard and risk from exposure to radon.

    NASA Astrophysics Data System (ADS)

    Crockett, R. G. M.; Gillmore, G. K.

    2009-04-01

    Radon is a naturally occurring radioactive gas. It is colourless, odourless and chemically inert. The most hazardous isotope is 222Rn. Radon is formed in the natural environment by the radioactive decay of the element uranium (238U) and is a daughter product of daughter product of radium (226Ra). Uranium and radium are found, in differing degrees, in a wide range of rocks, soils (and building materials that are made from these). Radon concentrations in caves, e.g. limestone caves such as the Great Cave of Niah, Borneo, and caves in the Mendips and Peak District in the UK, has been documented and reveal that both (prehistoric) cave-dwellers and other users such as archaeologists are at risk from exposure to radon a naturally occurring radioactive gas. In general, but dependent on cave geometry and ventilation, radon concentration increases with increasing distance from the entrance, implying that the hazard also increases with distance from the entrance. With regard to mines and mining operations, as well as modern extraction of uranium and radium ores, both ores commonly occur alongside other metallic ores, e.g. silver at Schneeberg and Joachimsthal, and tin in Cornwall, and in some instances, waste from earlier metalliferious mining activity has itself been ‘mined' for uranium and/or radium ores. It is not solely the miners and other subterranean workers which are at risk, other workers and local inhabitants are also at risk. Also, that risk is not eliminated by protection against dust/airborne particulates: the risk from inhalation of radon is only reduced by reducing the inhalation of radon, i.e. use of breathing apparatus. Amongst the general population, radon is the second most significant cause of lung cancer behind tobacco smoking. Estimates vary but 6-9% of lung-cancers are attributable to radon and approximately 2% all cancer deaths are attributable to radon. These proportions will increase in higher-radon environments such as caves, mines and mining areas (via spoil heaps, settlement lagoons etc. containing uranium and radium). We here present an overview of the potential hazard presented by radon in subterranean spaces and by metalliferous mining activities. We also present some speculation as to evidence of (pre-) historic exposure to radon which might potentially exist in archaeological remains and oral traditions. Keywords: radon; caves; metalliferous mining; cave-dwellers; archaeologists.

  1. Measurement of natural and {sup 137}Cs radioactivity concentrations at Izmit Bay (Marmara Sea), Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öksüz, İ., E-mail: ibrahim-ksz@yahoo.com; Güray, R. T., E-mail: tguray@kocaeli.edu.tr; Özkan, N., E-mail: nozkan@kocaeli.edu.tr

    In order to determine the radioactivity level at Izmit Bay Marmara Sea, marine sediment samples were collected from five different locations. The radioactivity concentrations of naturally occurring {sup 238}U, {sup 232}Th and {sup 40}K isotopes and also that of an artificial isotope {sup 137}Cs were measured by using gamma-ray spectroscopy. Preliminary results show that the radioactivity concentrations of {sup 238}U and {sup 232}Th isotopes are lower than the average worldwide values while the radioactivity concentrations of the {sup 40}K are higher than the average worldwide value. A small amount of {sup 137}Cs contamination, which might be caused by the Chernobylmore » accident, was also detected.« less

  2. Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abitz, R.J.

    1996-12-31

    Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less

  3. Mechanism and kinetics of uranium adsorption onto soil around coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Yasim, Nurzulaifa Shaheera Erne Mohd; Ariffin, Nik Azlin Nik; Mohammed, Noradila; Ayob, Syafina

    2017-11-01

    Coal is the largest source of energy in Malaysia providing approximately 80 % of all entire power needs. The combustion of coal concentrates a high content of heavy metals and radioactive elements in the ashes and sludge. Hazardous emissions from coal combustion were deposited into the soil and most likely transported into the groundwater system. The presence of radioactive materials in the ground water system can cause a wide range of environmental impacts and adverse health effects like cancer, impairment of neurological function and cardiovascular disease. However, the soil has a natural capability in adsorption of radioactive materials. Thus, this study was evaluated the adsorption capacity of Uranium onto the soil samples collected nearby the coal-fired power plants. In the batch experiment, parameters that were set constant include pH, the amount of soil and contact time. Various initial concentrations of radionuclides elements in the range of 2 mg/L - 10 mg/L were used. The equilibrium adsorption data was analyzed by the Freundlich isotherm and Langmuir isotherms. Then, the influences of solution pH, contact time and temperature on the adsorption process were investigated. The kinetics of radioactive materials was discussed by pseudo-first-order and pseudo-second-order rate equation. Thus, the data from this study could provide information about the potentiality of soil in sorption of radioactive materials that can be leached into groundwater. Besides that, this study could also be used as baseline data for future reference in the development of adsorption modeling in the calculation of distribution coefficient.

  4. Radiation damage-controlled localization of alteration haloes in albite: implications for alteration types and patterns vis-à-vis mineralization and element mobilization

    NASA Astrophysics Data System (ADS)

    Pal, D. C.; Chaudhuri, T.

    2016-12-01

    Uraninite, besides occurring in other modes, occurs as inclusions in albite in feldspathic schist in the Bagjata uranium deposits, Singhbhum shear zone, India. The feldspathic schist, considered the product of Na-metasomatism, witnessed multiple hydrothermal events, the signatures of which are preserved in the alteration halo in albite surrounding uraninite. Here we report radiation damage-controlled localization of alteration halo in albite and its various geological implications. Microscopic observation and SRIM/TRIM simulations reveal that the dimension of the alteration halo is dependent collectively on the zone of maximum cumulative α dose that albite was subjected to and by the extent of dissolution of uraninite during alteration. In well-preserved alteration haloes, from uraninite to the unaltered part of albite, the alteration minerals are systematically distributed in different zones; zone-1: K-feldspar; zone-2: chlorite; zone-3: LREE-phase/pyrite/U-Y-silicate. Based on textures of alteration minerals in the alteration microdomain, we propose a generalized Na+➔K+➔H+ alteration sequence, which is in agreement with the regional-scale alteration pattern. Integrating distribution of ore and alteration minerals in the alteration zone and their geochemistry, we further propose multiple events of U, REE, and sulfide mineralization/mobilization in the Bagjata deposit. The alteration process also involved interaction of the hydrothermal fluid with uraninite inclusions resulting in resorption of uraninite, redistribution of elements, including U and Pb, and resetting of isotopic clock. Thus, our study demonstrates that alteration halo is a miniature scale-model of the regional hydrothermal alteration types and patterns vis-à-vis mineralization/mobilization. This study further demonstrates that albite is vulnerable to radiation damage and damage-controlled fluid-assisted alteration, which may redistribute metals, including actinides, from radioactive minerals included in albite. This has important implications in geochronology. Such a study can also provide important clues to the chemical behavior of granite, in which albite is a common constituent, in a physico-chemical ambience analogous to a site of deep borehole disposal of radioactive waste.

  5. Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM.

    PubMed

    Mrdakovic Popic, Jelena; Salbu, Brit; Skipperud, Lindis

    2012-01-01

    Transfer of radionuclides ((232)Th and (238)U) and associated metals (As, Cd, Pb and Cr) from soil to free-living earthworm species was investigated in a thorium ((232)Th) rich area in Norway. Sampling took place within former mining sites representing the technologically enhanced naturally occurring radioactive materials (TENORM), at undisturbed site with unique bedrock geology representing the naturally occurring radioactive materials (NORM) and at site outside the (232)Th rich area taken as reference Background site. Soil analysis revealed the elevated levels of investigated elements at NORM and TENORM sites. Based on sequential extraction, uranium ((238)U) and cadmium (Cd) were quite mobile, while the other elements were strongly associated with mineral components of soil. Four investigated earthworm species (Aporrectodea caliginosa, Aporrectodea rosea, Dendrodrilus rubidus and Lumbricus rubellus) showed large individual variability in the accumulation of radionuclides and metals. Differences in uptake by epigeic and endogeic species, as well as differences within same species from the NORM, TENORM and Background sites were also seen. Based on total concentrations in soil, the transfer factors (TF) were in ranges 0.03-0.08 and 0.09-0.25, for (232)Th and (238)U, respectively. TFs for lead (Pb), chromium (Cr) and arsenic (As) were low (less than 0.5), while TFs for Cd were higher (about 10). Using the ERICA tool, the estimated radiation exposure dose rate of the earthworms ranged from 2.2 to 3.9 μGy/h. The radiological risk for investigated earthworms was low (0.28). The obtained results demonstrated that free-living earthworm species can survive in soil containing elevated (232)Th and (238)U, as well As, Cd, Pb and Cr levels, although certain amount of radionuclides was accumulated within their bodies. The present investigation contributes to general better understanding of complex soil-to-biota transfer processes of radionuclides and metals and to assessment of risk for non-human species in the ecosystem with multiple contaminants. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Top Soils Geochemical and Radioactivity Survey of Naples (Italy) Metropolitan.

    NASA Astrophysics Data System (ADS)

    Somma, R.; De Vivo, B.; Cicchella, D.

    2001-05-01

    The metropolitan area of Naples due to intense human activities is an emblematic area affected by various environmental pollution of soils and waters in addition to hydrogeological volcanic, seismic and bradyseismic hazards. The geology of the area is prevailing represented by volcanics erupted, from the Upper Pleistocene to Recent by Mt. Somma-Vesuvius on the east and the Campi Flegrei fields on the west. The morphology of the metropolitan area of Naples city can be subdivided in flat areas, constituted by reworked pyroclastic terrains, and by hills originated by the overlapping of different welded pyroclastic flows (i.e.: Campanian Ignimbrite and Neapoletan Yellow Tuff) intercalated with pyroclastic deposits of different origins (i.e.: Campi Flegrei, Mt. Somma-Vesuvius, Ischia) and ages. In order to compile a multi-element baseline geochemical and radioactivity mapping of the metropolitan area of the Napoli we have sampled for this study, in situ top soil and imported filling material (mainly soil, volcanic ash, pumice and scoriae). The sampling and radioactivity survey has been carried out on about 200 sampling sites covering an area of about 150 Km2, with a grid of 0.5 x 0.5 km in the urbanised downtown and 1 km x 1 km in the sub urban areas. In each site has been determined a radioactivity by a Scintrex GRS-500 at different emission spectra as total radioactivity (> 0.08 MeV and > 0.40 MeV), 238U (at 1.76 MeV mostly from 214Bi), 232Th (at 2.6 MeV mostly from 208Tl) and 40K (at 1.46 MeV mostly for 40K). The range of values of in situ soils are as follow for the in situ soils (Total radioactivity: 1327- 360 and 114- 47; 238U: 2.6- 1.3; 40K: 8.1- 3.1; 232U: 0.5- 0.1). Analyses of major, metallic elements and pH of each soil sample are in progress, while Pb isotopes compositions, for a selected number of samples, will be determined to discriminate the natural (geogenic) from the anthropogenic components in the soils by versus the anthropogenetic origin. The data collected will be statistically analysed and will be utilised, using a GIS, to compile multi-elements geochemical maps of the entire metropolitan areas of the Naples.

  7. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  8. Problems associated with the disposal of radioactive wastes in the sea (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancellin, J.

    1973-06-01

    The disposal of radioactive wastes in the sea (case of the La Hague site) is favored by the physical dispersion and transport of the effluents by marine currents. Concentration and precipitation phenomena can inhibit the dispersion. Research has been effected on the way in which the fixing of pollutants occurs and the degree to which it occurs. Investigations were then carried out on the utilization of the marine environment by man (foodstuffs from the sea, distribution of such products, alimentation, critical population groups). (FR)

  9. The current status of NORM/TENORM industries and establishment of regulatory framework in Korea.

    PubMed

    Chang, Byung-Uck; Kim, Yongjae; Oh, Jang-Jin

    2011-07-01

    During the last several years, a nationwide survey on naturally occurring radioactive material (NORM)/technologically enhanced naturally occurring radioactive materials (TENORM) industries has been conducted. Because of the rapid economic growth in Korea, the huge amount of raw materials, including NORM have been consumed in various industrial areas, and some representative TENORM industries exist in Korea. Recently, the Korean government decided to establish a regulatory framework for natural radiation, including NORM/TENORM and is making efforts to introduce relevant publically consent regulations on the basis of international safety standards.

  10. Radioactive anomaly discrimination from spectral ratios

    DOEpatents

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  11. Water, Water Everywhere but is it Safe to Drink? Some Detrimental Health Effects Associated with Consumption of Groundwater Enriched in Naturally-Occurring Contaminants

    NASA Astrophysics Data System (ADS)

    Fuge, R.

    2007-05-01

    Drinking water represents a major pathway of trace elements into the human body. As such, groundwaters, the chemistry of which reflect water/rock interaction, can be a source of trace elements which will have a marked health effect on humans consuming them. Health problems associated with the consumption of groundwater enriched in various elements and compounds have been recorded for many years. For example, high-arsenic groundwaters used for public water supply were first associated with harmful health effects as early as 1917 in Córdoba Province in Argentina, where the local population suffered from skin disorders. Subsequently, in the 1960s consumption of high-arsenic groundwaters was identified as a factor in the aetiology of "black foot disease", an endemic vascular disease, in Taiwan. However, it is problems associated with the very high-arsenic groundwaters of the highly populous Ganges delta area of Bangladesh and West Bengal that has more recently highlighted the health problem of consuming high-arsenic waters. The most obvious problems of excess arsenic consumption through drinking water are arsenical skin lesions, the severity of which being generally correlated with arsenic content of the water. A high incidence of cancers of the skin, bladder and other organs has been recorded in the high-arsenic drinking water areas of the world. A high incidence of vascular disease, found in the arsenic-rich area of Taiwan, has also been shown to occur in Bangladesh. In addition, it has been suggested that high arsenic in drinking water results in increased incidence of diabetes mellitus. Fluorine is another element long recognised as having a major effect on the well-being of humans. Consumption of high-fluorine waters were first identified as having a detrimental effect on teeth in the 1920s and 30s. It was subsequently shown that where fluorine is present in drinking waters at concentrations of around 0.5 to 1 mg/L it can have beneficial effects on humans, resulting in healthy teeth and bones. However, several areas of the world where potable waters derive from the ground, very high concentrations of fluorine, generally in excess of 4 mg/L have resulted in dental fluorosis and, at very high concentrations, crippling skeletal fluorosis. The detrimental effects of consuming elevated amounts of fluorine-rich drinking water are exacerbated by a poor, low-protein diet. Radioactive elements such as radon and uranium can be transported in groundwater. Domestic water supplies enriched in radon can in some areas represent a major pathway into humans, being released during showering etc, it can be inhaled and as such contributes to the incidence of lung cancer. In addition to the potential health problems of its radioactivity, uranium has been shown to be a nephrotoxin. High-uranium groundwaters consumed by humans over the short term can result in kidney damage.

  12. Development of a Scalable Process Control System for Chemical Soil Washing to Remove Uranyl Oxide

    DTIC Science & Technology

    2015-05-01

    ICET also has a fully equipped counting laboratory for the evaluation of radioactive samples . Photographs of the 1-meter and 3-meter motorized...the leachate will be monitored using a gamma detector. There are numerous naturally occurring radioactive materials in soil . ICET has developed a...48.6% from 238U and 49.2% from 234U. The 238U in NU also contains daughters that are radioactive . This increases the activity of samples over long

  13. β Decay as a Probe of Explosive Nucleosynthesis in Classical Novae

    NASA Astrophysics Data System (ADS)

    Wrede, C.; Bennett, M. B.; Liddick, S. N.; Bardayan, D. W.; Bowe, A.; Brown, B. A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Fry, C.; Glassman, B.; Irvine, D.; José, J.; Langer, C.; Larson, N.; McNeice, E. I.; Meisel, Z.; Montes, F.; Naqvi, F.; Pain, S. D.; O'Malley, P.; Ortez, R.; Ong, W.; Pereira, J.; Pérez-Loureiro, D.; Prokop, C.; Quaglia, J.; Quinn, S.; Santia, M.; Schatz, H.; Schwartz, S. B.; Simon, A.; Shanab, S.; Spyrou, A.; Suchyta, S.; Thiagalingam, E.; Thompson, P.; Walters, M.

    Classical novae are common thermonuclear explosions in the Milky Way galaxy, occurring on the surfaces of white-dwarf stars that are accreting hydrogen-rich material from companion stars. Nucleosynthesis in classical novae depends on radiative proton-capture reaction rates on radioactive nuclides. Many of these reactions cannot be measured directly at current accelerator facilities due to the lack of intense, high-quality, radioactive-ion beams at the relevant energies. Since most of these reactions proceed via resonant capture, their rates can be determined indirectly by measuring the properties of the resonances. At the National Superconducting Cyclotron Laboratory, we have used the β-delayed γ decays of 26P and 31Cl to populate resonances in 26Si and 31S and study the radiative proton captures on 25Al and 30P, respectively. These were two out of the three most important nuclear-physics uncertainties associated with the observable products of nova nucleosynthesis. The 26P experiment has enabled a more accurate estimate of the nova contribution to the long-lived Galactic 26Al detected with γ-ray telescopes. The 31Cl experiment, currently under analysis, will calibrate potential nova thermometers and mixing meters based on elemental abundance ratios, and facilitate the identification of pre-solar nova grain candidates found in primitive meteorites based on isotopic ratios.

  14. Fukushima Nuclear Accident Recorded in Tibetan Plateau Snow Pits

    PubMed Central

    Wang, Ninglian; Wu, Xiaobo; Kehrwald, Natalie; Li, Zhen; Li, Quanlian; Jiang, Xi; Pu, Jianchen

    2015-01-01

    The β radioactivity of snow-pit samples collected in the spring of 2011 on four Tibetan Plateau glaciers demonstrate a remarkable peak in each snow pit profile, with peaks about ten to tens of times higher than background levels. The timing of these peaks suggests that the high radioactivity resulted from the Fukushima nuclear accident that occurred on March 11, 2011 in eastern Japan. Fallout monitoring studies demonstrate that this radioactive material was transported by the westerlies across the middle latitudes of the Northern Hemisphere. The depth of the peak β radioactivity in each snow pit compared with observational precipitation records, suggests that the radioactive fallout reached the Tibetan Plateau and was deposited on glacier surfaces in late March 2011, or approximately 20 days after the nuclear accident. The radioactive fallout existed in the atmosphere over the Tibetan Plateau for about one month. PMID:25658094

  15. Security culture for nuclear facilities

    NASA Astrophysics Data System (ADS)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  16. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  17. 76 FR 57006 - Proposed Generic Communications; Draft NRC Regulatory Issue Summary 2011-XX; NRC Regulation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... amended its regulations to include jurisdiction over discrete sources of radium-226, accelerator-produced radioactive materials, and discrete sources of naturally occurring radioactive material, as required by the... those discrete sources of radium-226 under military control that are subject to NRC regulation, as...

  18. Distribution of naturally occurring radioactivity and ¹³⁷Cs in the marine sediment of Farasan Island, southern Red Sea, Saudi Arabia.

    PubMed

    Al-Zahrany, A A; Farouk, M A; Al-Yousef, A A

    2012-11-01

    The present work is a part of a project dedicated to measure the marine radioactivity near the Saudi Arabian coasts of the Red Sea and Arabian Gulf for establishing a marine radioactivity database, which includes necessary information on the background levels of both naturally occurring and man-made radionuclides in the marine environment. Farasan Islands is a group of 84 islands (archipelago), under the administration of the Kingdom of Saudi Arabia, in the Red Sea with its main island of Farasan, which is 50 km off the coast of Jazan City. The levels of natural radioactivity of (238)U, (235)U, (226)Ra, (232)Th and (40)K and man-made radionuclides such as (137)Cs in the grab sediment and water samples around Farasan Island have been measured using gamma-ray spectroscopy. The average activity concentrations of (238)U, (235)U, (226)Ra, (232)Th, (40)K and (137)Cs in the sediment samples were found to be 35.46, 1.75, 3.31, 0.92, 34.34 and 0.14 Bq kg(-1), respectively.

  19. Radiochemical Analyses of the Filter Cake, Granular Activated Carbon, and Treated Ground Water from the DTSC Stringfellow Superfund Site Pretreatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esser, B K; McConachie, W; Fischer, R

    2005-09-16

    The Department of Toxic Substance Control (DTSC) requested that Lawrence Livermore National Laboratory (LLNL) evaluate the treatment process currently employed at the Department's Stringfellow Superfund Site Pretreatment Plant (PTP) site to determine if wastes originating from the site were properly managed with regards to their radioactivity. In order to evaluate the current management strategy, LLNL suggested that DTSC characterize the effluents from the waste treatment system for radionuclide content. A sampling plan was developed; samples were collected and analyzed for radioactive constituents. Following is brief summary of those results and what implications for waste characterization may be made. (1) Themore » sampling and analysis provides strong evidence that the radionuclides present are Naturally Occurring Radioactive Material (NORM). (2) The greatest source of radioactivity in the samples was naturally occurring uranium. The sample results indicate that the uranium concentration in the filter cake is higher than the Granular Activated Carbon (GAC) samples. (11 -14 and 2-6 ppm respectively). (3) No radiologic background for geologic materials has been established for the Stringfellow site, and comprehensive testing of the process stream has not been conducted. Without site-specific testing of geologic materials and waste process streams, it is not possible to conclude if filter cake and spent GAC samples contain radioactivity concentrated above natural background levels, or if radionuclides are being concentrated by the waste treatment process. Recommendation: The regulation of Technologically Enhanced, Naturally Occurring Radioactive Materials (T-NORM) is complex. Since the results of this study do not conclusively demonstrate that natural radioactive materials have not been concentrated by the treatment process it is recommended that the DTSC consult with the Department of Health Services (DHS) Radiological Health Branch to determine if any further action is warranted. If it were deemed desirable to establish a background for the Stringfellow setting LLNL would recommend that additional samples be taken and analyzed by LLNL using the same methods presented in this report.« less

  20. A study of folate absorption and metabolism in man utilizing carbon-14—labeled polyglutamates synthesized by the solid phase method

    PubMed Central

    Butterworth, C. E.; Baugh, C. M.; Krumdieck, Carlos

    1969-01-01

    The absorption and metabolism of synthetic polyglutamates of folic acid have been compared with free pteroylglutamic acid in four subjects having chronic lymphatic leukemia and one with Hodgkin's granuloma. Pteroylpolyglutamates containing either three or seven glutamate residues were prepared by the solid-phase method permitting placement of carbon-14 labels in either the pteridine ring or in a selected glutamate unit of the gamma peptide chain. Complete dissociation was observed between biological folate activity and radioactivity of plasma after ingestion of pteroyltriglutamate labeled in the middle glutamate. This indicates cleavage to the monoglutamate form at the time of absorption from the intestine or very soon thereafter. A large portion of radioactivity liberated from the middle glutamate is recoverable as carbon dioxide in the exhaled air. Fecal losses of folate tended to be greater with increasing length of the poly-γ-glutamyl chain. Higher blood levels and greater urinary losses of folate tended to occur after ingestion of mono- and triglutamates than with the heptaglutamate. Calculations based on radioactivity determinations in feces plus urinary folate losses, judged by either radioactivity or microbiological assays, indicated net retention of 37-67% of the dose irrespective of chain length ingested and major avenue of loss. During the peak of absorption the folate circulating in plasma was active for both Streptococcus fecalis and Lactobacillus casei and carried specific radioactivity which was virtually identical with that of the administered dose. This suggests that neither methylation, conjugation, nor displacement of nonradioactive folate occurred to any significant extent during the 1st 2 hr. The specific radioactivity of 24-hr urine specimens as measured with L. casei corresponded closely with that of the administered dose. Evidence exists that methylation of the radioactive folate may occur, but significant displacement of nonradioactive methylfolate was not observed under the conditions of this study. Since 50-75% of administered heptaglutamate appears to be absorbable in man, estimates of dietary intake should include this fraction as well as the “free” folate. PMID:4977032

  1. Reconnaissance of radioactive rocks of Maine

    USGS Publications Warehouse

    Nelson, John M.; Narten, Perry F.

    1951-01-01

    The state of Maine was traversed with car-mounted Geiger-Mueller equipment in the late summer of 1948 and the radioactivity of approximately 4,600 miles of road was logged. All samples were analyzed, both in the field by comparing the radioactivity of each sample to the radioactivity of a stranded measured with a simple scaling modification of a portable counter, and in the Geological Survey’s Trace Elements Section Washington Laboratory. Differences between both types of analyses were negligible. The maximum equivalent uranium content of the most radioactive rocks thus analyzed was 0.008 percent. A 1,400-square-mile abnormally radioactive province in southwestern Maine was outlined. The outcrop data obtained from car traversing are evaluated statistically. Cumulative frequency distribution curves are drawn to show the distribution of outcrops at various levels of radioactivity, and straight-line extensions are made to show to maximum probable grade for various rock types and areas in Maine. A maximum grade of 0.055 percent equivalent uranium is thus predicted for the entire state. This prediction necessarily is a broad generalization because large areas of Main are inaccessible for car traversing. A concept of evaluation of an area for possible mineral deposits is proposed on the basis of lithology, and observed and indicated ranges in grade.

  2. European organization for nuclear research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbacher, H.; Tavlet, M.

    1987-09-10

    The CERN Intersecting Storage Rings (ISR) operated from 1971 to 1984. During that time high-energy physics experiments were carried out with 30 GeV colliding proton beams. At the end of this period the machine was decommissioned and dismantled. This involved the movement of about 1000 machine elements, e.g., magnets, vacuum pumps, rf cavities, etc., 2500 racks, 7000 shielding blocks, 3500 km of cables and 7 km of beam piping. All these items were considered to be radioactive until the contrary was proven. They were then sorted, either for storage and reuse or for radioactive or non-radioactive waste. The paper describesmore » the radiation protection surveillance of this project which lasted for five months. It includes the radiation protection standards, the control of personnel and materials, typical radioactivity levels and isotopes, as well as final cleaning and decommissioning of an originally restricted radiation area to a free accessible area.« less

  3. The Radium Terrors. Science Fiction and Radioactivity before the Bomb.

    PubMed

    Candela, Andrea

    2015-01-01

    At the beginning of the 20th century the collective imagination was fascinated and terrified by the discovery of radium. A scientific imagery sprang up around radioactivity and was disseminated by public lectures and newspaper articles discussing the ambiguous power of this strange substance. It was claimed that radium could be used to treat cholera, typhus and tuberculosis, but at the same time there were warnings that it could be used for military purposes. The media and the scientists themselves employed a rich vocabulary influenced by religion, alchemy and magic. The ambivalent power of radioactive elements exerted a great influence on science fiction novelists. This paper will examine some significant works published in Europe, America and Russia during the first decades of the 20th century and their role in the creation of the complex imagery of radioactivity that seized the public imagination long before the invention of the atomic bomb.

  4. Radiological protection in North American naturally occurring radioactive material industries.

    PubMed

    Chambers, D B

    2015-06-01

    All soils and rocks contain naturally occurring radioactive material (NORM). Many ores and raw materials contain relatively high levels of natural radionuclides, and processing such materials can further increase the concentrations of natural radionuclides, sometimes referred to as 'technologically enhanced naturally occurring radioactive material' (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertiliser. Such activities have the potential to result in above background radiation exposure to workers and the public. The objective of this paper is to review the sources and exposure from NORM in North American industries, and provide a perspective on the potential radiological hazards to workers and the environment. Proper consideration of NORM issues is important and needs to be integrated in the assessment of these projects. Concerns over radioactivity and radiation amongst non-governmental organisations and the local public have resulted in the cancellation of NORM mining and mineral extraction projects, as well as inhibition of the safe use of by-product materials from various NORM industries. This paper also briefly comments on the current regulatory framework for NORM (TENORM) in Canada and the USA, as well as the potential implications of the recent activities of the International Commission on Radiological Protection for NORM industries. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit.

    PubMed

    Banks, William A; Gray, Alicia M; Erickson, Michelle A; Salameh, Therese S; Damodarasamy, Mamatha; Sheibani, Nader; Meabon, James S; Wing, Emily E; Morofuji, Yoichi; Cook, David G; Reed, May J

    2015-11-25

    Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using (14)C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to (14)C-sucrose and radioactive albumin. In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with (14)C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and (14)C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is to be dependent on COX but not on oxidative stress. Based on in vivo and in vitro measures of neuroinflammation, it appears that astrocytes, microglia/macrophages, and pericytes play little role in the LPS-mediated disruption of the BBB.

  6. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein

    2015-08-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  7. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.

    2015-12-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  8. Characteristics and genesis of Rare Earth Element (REE) in western Indonesia

    NASA Astrophysics Data System (ADS)

    Handoko, A. D.; Sanjaya, E.

    2018-02-01

    Rare Earth Element (REE) has unique properties that have been used in many hightech applications. The demand of REE increased recently in the world due to its special properties. Although REE concentration in the crust is higher than gold, economically viable deposits are still rare. Reduction of REE exports by China cause increased prices of REE. Due to this condition, exploration of potential REE mines emerged. Indonesia also participates in this phenomenon, and explore the possibility of REE mines in its area. This review will discuss the characteristics and genesis of REE and its occurrence in western Indonesia; focused in Sumatera, Tin Island, and Kalimantan. The review is done based on literature research from several resources about characteristics of rare earth element in general and in the given area. The research shows that the potential REE mines can be found in several different locations in Indonesia, such as Tin Island, Sumatera, and Kalimantan. Most of them are composed of monazite, zircon, and xenotime as rare earth minerals. Monazite iss known for its elevated number of radioactive elements, so study about radioactive content and more environment friendly ore processing becomes compulsory.

  9. New mass-spectrometric facility for the analysis of highly radioactive samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warmack, R.J.; Landau, L.; Christie, W.H.

    A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained.

  10. CONTROL CONSOLE FOR MTR FISSION PRODUCT MONITOR, USED TO DETECT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL CONSOLE FOR MTR FISSION PRODUCT MONITOR, USED TO DETECT BREAKS IN CLADDING OF FUEL ELEMENTS. COUNT-RATE METER IN TOP PANEL INDICATES AMOUNT OF RADIOACTIVITY. LOWER PANELS SUPPLY POWER AND AMPLIFICATION OF SIGNALS GENERATED BY SCINTILLATION COUNTER/PHOTOMULTIPLIER TUBE COMBINATION IN RESPONSE TO RADIOACTIVITY IN A SAMPLE OF THE COOLING WATER. INL NEGATIVE NO. 56-771. Jack L. Anderson, Photographer, 3/15/1956. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. METHOD OF MEASURING THE INTEGRATED ENERGY OUTPUT OF A NEUTRONIC CHAIN REACTOR

    DOEpatents

    Sturm, W.J.

    1958-12-01

    A method is presented for measuring the integrated energy output of a reactor conslsting of the steps of successively irradiating calibrated thin foils of an element, such as gold, which is rendered radioactive by exposure to neutron flux for periods of time not greater than one-fifth the mean life of the induced radioactlvity and producing an indication of the radioactivity induced in each foil, each foil belng introduced into the reactor immediately upon removal of its predecessor.

  12. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jacobsen, Stein; Sasselov, Dimitar D.

    2015-01-01

    We propose to use evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called 'late veneer'. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. We plan to build an integrative model of Earth-like planets from the bottom up. We would like to infer their chemical compositions from their mass-radius relations and their host stars' elemental abundances, and understand the origins of volatile contents (especially water) on their surfaces, and thereby shed light on the origins of life on them.

  13. Technologically enhanced naturally occurring radioactive materials.

    PubMed

    Vearrier, David; Curtis, John A; Greenberg, Michael I

    2009-05-01

    Naturally occurring radioactive materials (NORM) are ubiquitous throughout the earth's crust. Human manipulation of NORM for economic ends, such as mining, ore processing, fossil fuel extraction, and commercial aviation, may lead to what is known as "technologically enhanced naturally occurring radioactive materials," often called TENORM. The existence of TENORM results in an increased risk for human exposure to radioactivity. Workers in TENORM-producing industries may be occupationally exposed to ionizing radiation. TENORM industries may release significant amounts of radioactive material into the environment resulting in the potential for widespread exposure to ionizing radiation. These industries include mining, phosphate processing, metal ore processing, heavy mineral sand processing, titanium pigment production, fossil fuel extraction and combustion, manufacture of building materials, thorium compounds, aviation, and scrap metal processing. A search of the PubMed database ( www.pubmed.com ) and Ovid Medline database ( ovidsp.tx.ovid.com ) was performed using a variety of search terms including NORM, TENORM, and occupational radiation exposure. A total of 133 articles were identified, retrieved, and reviewed. Seventy-three peer-reviewed articles were chosen to be cited in this review. A number of studies have evaluated the extent of ionizing radiation exposure both among workers and the general public due to TENORM. Quantification of radiation exposure is limited because of modeling constraints. In some occupational settings, an increased risk of cancer has been reported and postulated to be secondary to exposure to TENORM, though these reports have not been validated using toxicological principles. NORM and TENORM have the potential to cause important human health effects. It is important that these adverse health effects are evaluated using the basic principles of toxicology, including the magnitude and type of exposure, as well as threshold and dose response.

  14. The Guardian: The Source for Antiterrorism Information. Volume 9, Number 1, April 2007

    DTIC Science & Technology

    2007-04-01

    the fuel in these research reactors is generally not highly radioactive . Unlike the fuel rods in a nuclear power plant, these fuel elements would...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...practices and lessons learned. In addition, we will include Service and issue-specific breakout sessions that will focus on critical AT program elements

  15. 77 FR 18270 - Acceptance Decision for the Unrestricted Use of the Former Michigan Chemical Company-Breckenridge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    .... Louis plant generated a dense, clay-like waste known as ``filter cake,'' which contained elevated levels of uranium and thorium, two naturally- occurring radioactive materials. The radioactive filter cake was buried at the BDS. Burial of the filter cake at the BDS was permitted under AEC license number SMB...

  16. Effect of experimental variables onto Co(2+) and Sr(2+) sorption behavior in red mud-water suspensions.

    PubMed

    Milenković, Aleksandra S; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Živković, Ljiljana S; Vukelić, Nikola S

    2016-07-02

    The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged. The increase of initial cation content and pH resulted in increased equilibrium times and sorption capacity and decreased rate constants. From single metal solutions and various binary mixtures, Co(2+) was sorbed more efficiently and selectively than Sr(2+). While Sr(2+) sorption was reduced by coexisting cations in the order Al(3+) ≥ Ca(2+) >Na(+) ≥Cs(+), removal of Co(2+) was affected by Al(3+) species and complexing agents (EDTA and citrate). Desorption of Co(2+) was negligible in Ca(2+) and Sr(2+) containing media and in solutions with initial pH 4-7. Sr(2+) desorption was generally more pronounced, especially at low pH and in the presence of Co(2+). Collected macroscopic data signify that Co(2+) sorption by red mud minerals occurred via strong chemical bonds, while Sr(2+) was retained mainly by weaker ion-exchange or electrostatic interactions. Results indicate that the rinsed red mud represent an efficient, low-cost sorbent for Co(2+) and Sr(2+) immobilization.

  17. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.« less

  18. Radionuclide Basics: Plutonium

    EPA Pesticide Factsheets

    Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.

  19. Detection sensitivities in 3-8 MeV neutron activation

    NASA Technical Reports Server (NTRS)

    Wahlgren, M. A.; Wing, J.

    1968-01-01

    Study of detection sensitivities of 73 radioactive elements using fast unmoderated neutrons includes experiments for irradiation, cooling and counting conditions. The gamma ray emission spectra is used to identify the unknown material.

  20. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  1. Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  2. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is usedmore » to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.« less

  3. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is drivenmore » by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.« less

  4. Non-combustible waste vitrification with plasma torch melter.

    PubMed

    Park, J K; Moon, Y P; Park, B C; Song, M J; Ko, K S; Cho, J M

    2001-05-01

    Non-combustible radioactive wastes generated from Nuclear Power Plants (NPPs) are composed of concrete, glass, asbestos, metal, sand, soil, spent filters, etc. The melting tests for concrete, glass, sand, and spent filters were carried out using a 60 kW plasma torch system. The surrogate wastes were prepared for the tests. Non-radioactive Co and Cs were added to the surrogates in order to simulate the radioactive waste. Several kinds of surrogate prepared by their own mixture or by single waste were melted with the plasma torch system to produce glassy waste forms. The characteristics of glassy waste forms were examined for the volume reduction factor (VRF) and the leach rate. The VRFs were estimated through the density measurement of the surrogates and the glassy waste forms, and were turned out to be 1.2-2.4. The EPA (Environmental Protection Agency) Toxicity Characteristic Leaching Procedure (TCLP) was used to determine the leach resistance for As, Ba, Hg, Pb, Cd, Cr, Se, Co, and Cs. The leaching index was calculated using the total content of each element in both the waste forms and the leachant. The TCLP tests resulted in that the leach rates for all elements except Co and Cs were lower than those of the Universal Treatment Standard (UTS) limits. There were no UTS limits for Co and Cs, and their leach rate & index from the experiments were resulted in around 10 times higher than those of other elements.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, Wing K.; Pegg, Ian L.; Brandys, Marek

    One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less

  6. Radioactivity of the moon, planets, and meteorites

    NASA Technical Reports Server (NTRS)

    Surkou, Y. A.; Fedoseyev, G. A.

    1977-01-01

    Analytical data is summarized for the content of natural radioactive elements in meteorites, eruptive terrestrial rocks, and also in lunar samples returned by Apollo missions and the Luna series of automatic stations. The K-U systematics of samples analyzed in the laboratory are combined with data for orbital gamma-ray measurements for Mars (Mars 5) and with the results of direct gamma-ray measurements of the surface of Venus by the Venera 8 lander. Using information about the radioactivity of solar system bodies and evaluations of the content of K, U, and Th in the terrestrial planets, we examine certain aspects of the evolution of material in the protoplanetary gas-dust cloud and then in the planets of the solar system.

  7. Radionuclides accumulation in milk and its products

    NASA Astrophysics Data System (ADS)

    Marmuleva, N. I.; Barinov, E. Ya.; Petukhov, V. L.

    2003-05-01

    The problem of radioactive pollution is extremely urgent in Russia in connection with presence of territories polluted by radionuclides on places of nuclear tests, in zones around the enterprises on production, processing and storage of radioactive materials, and also in areas of emergency pollution (Barakhtin, 2001). The aim of our investigation was a determination of the levels of the main radioactive elements - Cs-137 and Sr-90 in diary products. 363 samples of milk, dry milk, butter, cheese and yogurt from Novosibirsk region were examined. Cs-137 level was 3.7...9.2 times higher than Sr-90 one in milk, cheese and yogurt. At the same time the level of these radio nuclides in butter was identical (8.03 Bk/kg).

  8. Design and adaptation of a novel supercritical extraction facility for operation in a glove box for recovery of radioactive elements

    NASA Astrophysics Data System (ADS)

    Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.

    2010-09-01

    The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.

  9. Elemental Analysis and Radionuclides Monitoring of Beach Black Sand at North of Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Ali, Abdallah; Fayez-Hassan, M.; Mansour, N. A.; Mubarak, Fawzia; Ahmed, Talaat Salah; Hassanin, W. F.

    2017-12-01

    A study was carried out on the concentrations of elements presented in beach black sand samples collected from North of Nile Delta along Mediterranean Coast using instrumental neutron activation analysis (INAA) as an effective analysis technique, especially for monitoring elements. The Egyptian Research Reactor-2 (ETRR-2) as a facility was used for the samples irradiation in the thermal mode of a neutron flux 3 × 1011 n/cm2 s. Natural radioactive elements, rare element and heavy elements as U, Th, La, Lu, Sm, Ce, Nd, Eu, Gd, Sc, Tb, Yb, As, Br, Na, Sb, Ba, Co, Cr, Fe, Hg, Hf, Sr, Ta, Zn and Zr were determined with concentrations average values 16.3, 78.8, 195.4, 3.3, 31.3, 445.1, 223, 7.2, 8.5, 97.1, 3.6, 31.1, 6.1, 24.5, 27,236.8, 1.42, 1327.7, 81.1, 1814.3, 263,735, 0.1, 237.3, 878.7, 20.8, 671.1 and 6225.9 (mg/kg), respectively. The experimental data results were analyzed to evidence any correlations of these elements as well as to know the geological formation in the study area. The elements concentrations in the black sand samples were found higher than the world average crustal soil values except for As and Sb. Results were compared with similar beach black sand in previous studies. The enrichment factor (EF) and geoaccumulation index (I geo) for heavy elements were presented to evaluate the contamination rate. We can summarize that exposure for natural radionuclides (U and Th) in this area were still within the acceptable limits due to little time of exposure. Therefore, the black sands from North of Nile Delta are not recommended for use in building constructions due to high radioactive doses.

  10. Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios

    Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less

  11. Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...

    2017-09-29

    Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less

  12. Prospecting for Precious Metals in Ultra-Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.

    2000-05-01

    The chemical compositions of the most metal-poor halo stars are living records of the very early nucleosynthetic history of the Galaxy. Only a few prior generations, if not a single one, of element-donating supernovae could have been responsible for the heavy elements observed in ultra-metal-poor (UMP; [Fe/H] < --2.5) stars. Abundances of the heavy neutron-capture elements (Z > 30) can yield direct information about the supernova progenitors to UMP stars, and abundances of unstable thorium and uranium (Z = 90, 92) can potentially provide age estimates for the Galactic halo. Already, many studies have demonstrated that abundances of rare-earth elements (56 <= Z <= 72) in UMP stars are completely consistent with their production in rapid neutron-capture synthesis (r-process) events, usually believed to occur during supernovae explosions. Therefore, mapping the entire abundance pattern of UMP stars is of significant interest. In particular, abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) could provide crucial information about the so-called ``third r-process peak,'' and are critical to the radioactive-dating technique that uses unstable thorium as a chronometer. Until recently, abundance determinations for these elements have been virtually non-existent, as the strongest relevant transitions lay in the vacuum UV, inaccessible to ground-based observation. The availability of high-resolution space-based spectrometers has opened up new regions of spectral coverage, including precisely the range in wavelength needed to make these sensitive measurements. We have undertaken a study of about 10 metal-poor halo giants to determine the abundances of several of the heaviest neutron-capture elements including platinum, osmium, lead, and gold. Preliminary results indicate that the abundance pattern of heavy neutron-capture elements (56 <= Z <= 82) in UMP stars does mimic a scaled solar system r-process. Thus, the ability to estimate the initial abundances of thorium and uranium is greatly reinforced.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konyashov, Vadim V.; Krasnov, Alexander M.

    Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. Anmore » approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmanlioglu, Ahmet Erdal

    Pre-treatment of radioactive waste is the first step in waste management program that occurs after waste generation from various applications in Turkey. Pre-treatment and characterization practices are carried out in Radioactive Waste Management Unit (RWMU) at Cekmece Nuclear Research and Training Center (CNRTC) in Istanbul. This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes. Pre-treatment practices cover several steps. In thismore » paper, main steps of pre-treatment and characterization are presented. Basically these are; collection, segregation, chemical adjustment, size reduction and decontamination operations. (author)« less

  15. Calculations of the moon's thermal history at different concentrations of radioactive elements, taking into account differentiation on melting

    NASA Technical Reports Server (NTRS)

    Ornatskaya, O. I.; Alber, Y. I.; Ryazantseva, I. L.

    1977-01-01

    Calculations of the thermal history of the moon were done by solving the thermal conductivity equation for the case in which the heat sources are the long lived radioactive elements Th, U, and K-40. The concentrations of these elements were adjusted to give 4 variations of heat flow. Calculations indicated that the moon's interior was heated to melting during the first 0.7 to 2.3 x 10 to the 9th power years. The maximum fusion involved practically the entire moon to a distance from 15 to 45 km beneath the surface, and started 3.5 to 4.0 x 10 to the 9th power years ago, or 2.5 x 3.0 x 10 to the 9th power years ago and continued for 1 to 2 x 10 to the 9th power years. The moon today is cooling. The current thickness of the solid crust is from 150 to 200 km and the heat flow exceeds the stationary value 1.5 fold.

  16. Impacts on water quality by hydraulic fracturing in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Yan, B.; Stute, M.; Chillrud, S. N.; Ross, J. M.; Howarth, M.; Panettieri, R.; Saberi, P.

    2015-12-01

    Shale gas development, including drilling and hydraulic fracturing, is rapidly increasing throughout the United States and, indeed, the rest of the world. Systematic surveys of water quality both pre- and post drilling/production are sparse. To examine the impacts of shale gas production on water quality, pilot studies have been conducted in adjacent counties of western NY (Chemung, Tioga, Broome, and Delaware) and northern PA (Bradford, Susquehanna, and Wayne). These 7 counties along the border of NY and PA share similar geology and demographic compositions and have been identified as a key area to develop shale gas with the key difference that active fracking is occurring in PA but there is no fracking yet in NY. Measurements include a suite of major and trace elements, methane and its stable isotopes, noble gases and tritium for dating purposes, and the primary radioactive elements of potential concern, radon and radium. We found elevated methane levels on both sides of the border. Higher levels of major ions were observed in PA samples close to the gas wells in the valley, possibly from hydraulic fracturing activities. The lab analysis of samples collected in recently launched 100 Bottom Project is ongoing and the results will be presented in this conference.

  17. Mass spectrometry in Earth sciences: the precise and accurate measurement of time.

    PubMed

    Schaltegger, Urs; Wotzlaw, Jörn-Frederik; Ovtcharova, Maria; Chiaradia, Massimo; Spikings, Richard

    2014-01-01

    Precise determinations of the isotopic compositions of a variety of elements is a widely applied tool in Earth sciences. Isotope ratios are used to quantify rates of geological processes that occurred during the previous 4.5 billion years, and also at the present time. An outstanding application is geochronology, which utilizes the production of radiogenic daughter isotopes by the radioactive decay of parent isotopes. Geochronological tools, involving isotopic analysis of selected elements from smallest volumes of minerals by thermal ionization mass spectrometry, provide precise and accurate measurements of time throughout the geological history of our planet over nine orders of magnitude, from the accretion of the proto-planetary disk, to the timing of the last glaciation. This article summarizes the recent efforts of the Isotope Geochemistry, Geochronology and Thermochronology research group at the University of Geneva to advance the U-Pb geochronological tool to achieve unprecedented precision and accuracy, and presents two examples of its application to two significant open questions in Earth sciences: what are the triggers and timescales of volcanic supereruptions, and what were the causes of mass extinctions in the geological past, driven by global climatic and environmental deterioration?

  18. Radioactive impacts on nekton species in the Northwest Pacific and humans more than one year after the Fukushima nuclear accident.

    PubMed

    Men, Wu; Deng, Fangfang; He, Jianhua; Yu, Wen; Wang, Fenfen; Li, Yiliang; Lin, Feng; Lin, Jing; Lin, Longshan; Zhang, Yusheng; Yu, Xingguang

    2017-10-01

    This study investigated the radioactive impacts on 10 nekton species in the Northwest Pacific more than one year after the Fukushima Nuclear Accident (FNA) from the two perspectives of contamination and harm. Squids were especially used for the spatial and temporal comparisons to demonstrate the impacts from the FNA. The radiation doses to nekton species and humans were assessed to link this radioactivity contamination to possible harm. The total dose rates to nektons were lower than the ERICA ecosystem screening benchmark of 10μGy/h. Further dose-contribution analysis showed that the internal doses from the naturally occurring nuclide 210 Po were the main dose contributor. The dose rates from 134 Cs, 137 Cs, 90 Sr and 110m Ag were approximately three or four orders of magnitude lower than those from naturally occurring radionuclides. The 210 Po-derived dose was also the main contributor of the total human dose from immersion in the seawater and the ingestion of nekton species. The human doses from anthropogenic radionuclides were ~ 100 to ~ 10,000 times lower than the doses from naturally occurring radionuclides. A morbidity assessment was performed based on the Linear No Threshold assumptions of exposure and showed 7 additional cancer cases per 100,000,000 similarly exposed people. Taken together, there is no need for concern regarding the radioactive harm in the open ocean area of the Northwest Pacific. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment.

    PubMed

    Hosseini, Ali; Brown, Justin E; Gwynn, Justin P; Dowdall, Mark

    2012-11-01

    Produced water has been described as the largest volume waste stream in the exploration and production process of oil and gas. It is accompanied by discharges of naturally occurring radionuclides raising concerns over the potential radiological impacts of produced water on marine biota. In the Northern European marine environment, radioactivity in produced water has received substantial attention owing to the OSPAR Radioactive Substances Strategy which aims at achieving 'concentrations in the environment near background values for naturally occurring radioactive substances'. This review provides an overview of published research on the impacts to biota from naturally occurring radionuclides discharged in produced water by the offshore oil and gas industry. In addition to summarising studies and data that deal directly with the issue of dose and effect, the review also considers studies related to the impact of added chemicals on the fate of discharged radionuclides. The review clearly illustrates that only a limited number of studies have investigated possible impacts on biota from naturally occurring radionuclides present in produced water. Hence, although these studies indicate that the risk to the environment from naturally occurring radionuclides discharged in produced water is negligible, the substantial uncertainties involved in the assessments of impact make it difficult to be conclusive. With regard to the complexity involved in the problem under consideration there is a pressing need to supplement existing data and acquire new knowledge. Finally, the present work identifies some knowledge gaps to indicate future research requirements. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Advanced Non-Destructive Assessment Technology to Determine the Aging of Silicon Containing Materials for Generation IV Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Koenig, T. W.; Olson, D. L.; Mishra, B.; King, J. C.; Fletcher, J.; Gerstenberger, L.; Lawrence, S.; Martin, A.; Mejia, C.; Meyer, M. K.; Kennedy, R.; Hu, L.; Kohse, G.; Terry, J.

    2011-06-01

    To create an in-situ, real-time method of monitoring neutron damage within a nuclear reactor core, irradiated silicon carbide samples are examined to correlate measurable variations in the material properties with neutron fluence levels experienced by the silicon carbide (SiC) during the irradiation process. The reaction by which phosphorus doping via thermal neutrons occurs in the silicon carbide samples is known to increase electron carrier density. A number of techniques are used to probe the properties of the SiC, including ultrasonic and Hall coefficient measurements, as well as high frequency impedance analysis. Gamma spectroscopy is also used to examine residual radioactivity resulting from irradiation activation of elements in the samples. Hall coefficient measurements produce the expected trend of increasing carrier concentration with higher fluence levels, while high frequency impedance analysis shows an increase in sample impedance with increasing fluence.

  1. The impact of warfare on the soil environment

    NASA Astrophysics Data System (ADS)

    Certini, Giacomo; Scalenghe, Riccardo; Woods, William I.

    2013-12-01

    One of the most dramatic ways humans can affect soil properties is through the performance of military activities. Warfare-induced disturbances to soil are basically of three types - physical, chemical, and biological - and are aimed at causing direct problems to enemies or, more often, are indirect, undesired ramifications. Physical disturbances to soil include sealing due to building of defensive infrastructures, excavation of trenches or tunnels, compaction by traffic of machinery and troops, or cratering by bombs. Chemical disturbances consist of the input of pollutants such as oil, heavy metals, nitroaromatic explosives, organophosphorus nerve agents, dioxins from herbicides, or radioactive elements. Biological disturbances occur as unintentional consequences of the impact on the physical and chemical properties of soil or the deliberate introduction of microorganisms lethal to higher animals and humans such as botulin or anthrax. Soil represents a secure niche where such pathogens can perpetuate their virulence for decades.

  2. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  3. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  4. SHIPPING CONTAINER FOR RADIOACTIVE MATERIAL

    DOEpatents

    Nachbar, H.D.; Biggs, B.B.; Tariello, P.J.; George, K.O.

    1963-01-15

    A shipping container is described for transponting a large number of radioactive nuclear fuel element modules which produce a substantial amount of heat. The container comprises a primary pressure vessel and shield, and a rotatable head having an access port that can be indexed with module holders in the container. In order to remove heat generated in the fuel eleme nts, a heat exchanger is arranged within the container and in contact with a heat exchange fluid therein. The heat exchanger communicates with additional external heat exchangers, which dissipate heat to the atmosphere. (AEC)

  5. Development of nanosensors in nuclear technology

    NASA Astrophysics Data System (ADS)

    Hassan, Thamir A. A.

    2017-01-01

    Selectivity, sensitivity, and stability (three S parameters) are developed as a new range of sensor this provided instruments for harsh, radioactive waste polluted environment monitoring. Isotope effect is very effective for nuclear radiation sensors preparation.in this presentation are reviewed of the development of Nanosensors in nuclear technology, such as high temperature boron and its compounds with suitable physical and chemical features as sensitive element for temperature and nuclear sensor, Boron isotopes based semiconductor nanosensors and studies of the mechanism of the removal uranium from radioactive wastewater with graphene oxide (GO).

  6. RADIOACTIVE BATTERY

    DOEpatents

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  7. Smoking: Do You Really Know the Risks?

    MedlinePlus

    ... Formaldehyde causes leukemia and cancer in respiratory tissues. Polonium-210 is a radioactive element that has been shown ... with most addictive substances, there are some side effects of ... serious health hazard for nonsmokers, especially children. Nonsmokers who have ...

  8. The contribution of Maria Sklodowska-Curie and Pierre Curie to Nuclear and Medical Physics. A hundred and ten years after the discovery of radium.

    PubMed

    Diamantis, Aristidis; Magiorkinis, Emmanouil; Papadimitriou, Athanasios; Androutsos, Georgios

    2008-01-01

    This review aims to commemorate the life, and the accomplishments of Pierre and Marie Curie in Physics and in Medicine. Although they are primarily known for their discoveries of the elements of radium and polonium, which took place two years after the discovery of radioactivity by Henry Becquerel, Pierre's discovery of the piezo-electric phenomenon, his research on crystal symmetry, magnetism and paramagnetic substances, are equally important. With the discovery of the two radioactive elements, Pierre and Marie Curie established the new field of Nuclear Physics. It is not an over-statement to say that their discovery contributed much to our modern way of life. Marie received the Nobel Prize twice and later she became the first woman to become member of the French Academy of Sciences. Today, both Pierre and Marie Curie rest in Panthéon, in Paris.

  9. Radioactive sample effects on EDXRF spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, Christopher G

    2008-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward method to determine sample elemental composition. A spectrum can be collected in a few minutes or less, and elemental content can be determined easily if there is adequate energy resolution. Radioactive alpha emitters, however, emit X-rays during the alpha decay process that complicate spectral interpretation. This is particularly noticeable when using a portable instrument where the detector is located in close proximity to the instrument analysis window held against the sample. A portable EDXRF instrument was used to collect spectra from specimens containing plutonium-239 (a moderate alpha emitter) and americium-241 (amore » heavy alpha emitter). These specimens were then analyzed with a wavelength dispersive XRF (WDXRF) instrument to demonstrate the differences to which sample radiation-induced X-ray emission affects the detectors on these two types of XRF instruments.« less

  10. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  11. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.

  12. Chemical Technology Division annual technical report, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  13. Mining and Exploitation of Rare Earth Elements in Africa as an Engagement Strategy in US Africa Command

    DTIC Science & Technology

    2011-06-17

    rechargeable batteries, cell phones, catalytic converters, fluorescent lights, hybrid vehicle batteries, and other pollution control devices.21 Figure...79 Lee Yong-tim, “South China Villagers Slam Pollution from Rare Earth Mine,” February 22, 2008, http://www.rfa.org/english...writing and implementing new environmental standards. “The rules will limit pollutants allowed in waste water and emissions of radioactive elements

  14. The role of mass spectrometry to study the Oklo-Bangombé natural reactors.

    PubMed

    De Laeter, J R; Hidaka, H

    2007-01-01

    The discovery of the existence of chain reactions at the Oklo natural reactors in Gabon, Central Africa in 1972 was a triumph for the accuracy of mass spectrometric measurements, in that a 0.5% anomaly in the (235)U/(238)U ratio of certain U ore samples indicated a depletion in (235)U. Mass spectrometric techniques thereafter played a dominant role in determining the nuclear parameters of the reactor zones themselves, and in deciphering the geochemical characteristics of various elements in the U-rich ore and in the surrounding rock strata. The variations in the isotopic composition of a large number of elements, caused by a combination of nuclear fission, neutron capture and radioactive decay, provide a powerful tool for investigating this unique geological environment. Mass spectrometry can be used to measure the present-day elemental and isotopic abundances of numerous elements, so as to decipher the past history of the reactors and examine the retentivity/mobility of these elements. Many of the fission products have a radioactive decay history that have been used to date the age and duration of the reactor zones, and to provide insight into their nuclear and geochemical behavior as a function of time. The Oklo fission reactors and their near neighbor at Bangombé, some 30 km to the south-east of Oklo, are unique in that not only did they become critical some 2 x 10(9) years ago, but also the deposits have been preserved over this period of geological time. The long-term geochemical behavior of actinides and fission products have been extensively studied by a variety of mass spectrometric techniques over the past 30 years to provide us with significant information on the mobility/retentivity of this material in a natural geological repository. The Oklo-Bangombé natural reactors are therefore geological analogs that can be evaluated in terms of possible radioactive waste containment sites. As more reactor zones were discovered, it was realized that they could be classified into two groups according to their burial depth in the Oklo mine-site. Reactor Zones 10, 13, and 16 were buried more deeply, and were therefore less weathered than the other zones. The less-weathered zones are of great importance in mobility/retentivity studies and therefore to the question of radioactive waste containment. Isotopic studies of these natural reactors are also of value in physics to examine possible variations in fundamental constants over the past 2 billion years.

  15. In situ chemical analyses of extraterrestrial bodies

    NASA Technical Reports Server (NTRS)

    Economou, Thanasis E.; Turkevich, Anthony L.

    1988-01-01

    One of the most important tasks on any sample return mission will have to be a quick sample characterization in order to guarantee a variety of collected samples. An alpha particle instrument with alpha, proton and X-ray modes can provide a quick and almost complete chemical analysis of Mars samples. This instrument is based on three interactions of the alpha particles from a radioactive source with matter: elastic scattering of the alpha particles by nuclei (alpha mode), (alpha,p) nuclear reaction with some light elements (proton mode), and excitation of the atomic structure of atoms by alpha particles, leading to emission of characteristic X-rays of the lunar surface at three sites during the Surveyor mission of 1967 to 1968. Since then the instrument has been improved and miniaturized substantially. As shown in the past, the alpha particle instrument can operate under Martian conditions without any degradation in the performance. The alpha and proton modes can provide vital information about the light elements, while the X-ray mode with its ambient temperature X-ray detector will be useful for the heavier elements. The excitation of the atomic structure is provided by the same alpha radioactive source that is used by alpha and proton modes or by an auxiliary X-ray source that is selected to enhance the sensitivity to some important geochemical elements.

  16. Source holder collimator for encapsulating radioactive material and collimating the emanations from the material

    DOEpatents

    Laurer, G.R.

    1974-01-22

    This invention provides a transportable device capable of detecting normal levels of a trace element, such as lead in a doughnutshaped blood sample by x-ray fluorescence with a minimum of sample preparation in a relatively short analyzing time. In one embodiment, the blood is molded into a doughnut-shaped sample around an annular array of low-energy radioactive material that is at the center of the doughnut-shaped sample but encapsulated in a collimator, the latter shielding a detector that is close to the sample and facing the same so that the detector receives secondary emissions from the sample while the collimator collimates ths primary emissions from the radioactive material to direct these emissions toward the sample around 360 deg and away from the detector. (Official Gazette)

  17. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  18. Prediction of Radioactive Material Proliferation in Abukuma Basin using USLE

    NASA Astrophysics Data System (ADS)

    Yi, C. J.

    2014-12-01

    Due to the nuclear-power plant accident after the 2011 Great East Japan Earthquake and Tsunami, the residents who had resided within 20 km from the Daiichi Fukushima Nuclear Power Plant had forced to leave their hometown. The impacts by the radioactive contamination extended to numerous social elements, such as food, economy, civil engineering, community rebuilding, etc. Japanese government agencies have measured the level of radioactive contamination in urban, agricultural area, forest, riverine and ocean. The research found that the concentration level of cesium-137 (137Cs) is higher in the forest than an open area such as paddy field or rural town. Litter layers and surface layers, especially, are found to be significantly contaminated. The study calculated the estimation of contaminated soil erosion using the USLE which the idea is based on scenario that addresses a question, what if 137Cs would carry out from the forest after intensive rainfall. Predicting radioactively contaminated areas after intense rainfall is a critical matter for the future watershed risk management.

  19. Determination of beta activity in water

    USGS Publications Warehouse

    Barker, F.B.; Robinson, B.P.

    1963-01-01

    Many elements have one or more naturally radioactive isotopes, and several hundred other radionuclides have been produced artificially. Radioactive substances may be present in natural water as a result of geochemical processes or the release of radioactive waste and other nuclear debris to the environment. The Geological Survey has developed methods for measuring certain of these .radioactive substances in water. Radioactive substances often are present in water samples in microgram quantities or less. Therefore, precautions must be taken to prevent loss of material and to assure that the sample truly represents its source at the time of collection. Addition of acids, complexing agents, or stable isotopes often aids in preventing loss of radioactivity on container walls, on sediment, or on other solid materials in contact with the sample. The disintegration of radioactive atoms is a random process subject to established methods of statistical analysis. Because many water samples contain small amounts of radioactivity, low-level counting techniques must be used. The usual assumption that counting data follow a Gaussian distribution is invalid under these conditions, and statistical analyses must be based on the Poisson distribution. The gross beta activity in water samples is determined from the residue left after evaporation of the sample to dryness. Evaporation is accomplished first in a teflon dish, then the residue is transferred with distilled water to a counting planchet and again is reduced to dryness. The radioactivity on the planchet is measured with an anticoincidence-shielded, low-background, beta counter and is compared with measurements of a strontium-90-yttrium-90 standard prepared and measured in the same manner. Control charts are used to assure consistent operation of the counting instrument.

  20. On the Current Thermal State of Mars.

    NASA Astrophysics Data System (ADS)

    Grott, M.; Breuer, D.

    2008-09-01

    Introduction: The current thermal state of Mars is a fundamental unknown in Mars science. Although is has a huge influence on the planet's current geodynamic activity and controls the possibility for basal melting at the polar caps [1], constraints on this quantities are very scarce. This situation has lately been improved by the study of lithospheric deformation at the north polar cap [2] which constrained the current Martian elastic lithosphere thickness Te, an indirect measure of the temperatures in the planetary interior. Using radar sounding data obtained bySHARAD, the shallow radar onboard the Mars Reconnaissance Orbiter, [2] found that the current Martian lithosphere is extremely stiff and Te is larger than 300 km today. This is surprising as this value is almost twice as large as previously estimated from theoretical considerations and flexure studies [3][1]. In order to be consistent with the planets thermal evolution, [2] argue that the amount of radioactive elements in the Martian interior needs to be subchondritic. This appears to be problematic as geochemical analysis of the SNC meteorites implies higher concentrations of radioactive elements [4]. Furthermore, if the concentration of heat producing elements is indeed reduced, the resulting low interior temperatures will inhibit partial mantle melting and magmatism. However, geological evidence suggests that Mars has been volcanically active in the recent past [5]. In order to address these inconsistencies, we reinvestigate the thermal evolution of Mars and examine its current thermal state for a wide range of initial condition using the current elastic thickness Te and the potential for partial mantle melting to constrain our models. Modeling: We investigate the thermal evolution of Mars by solving the energy balance equations for the core and mantle, treating the mantle energy transport by parametrized convection models. This is done using scaling laws for stagnant lid convection and our model is similar to that of [3]. We ignore crustal production and assume that the bulk of the crust is primordial. Starting from given initial conditions the thermal evolution of Mars is calculated and the current elastic thickness and mantle temperatures are evaluated. Elastic thicknesses are calculated using the strength envelope formalism for given crustal and mantle rheologies [3] and the potential for partial mantle melting is parameterized using the minimum temperature difference between the mantle temperature and the solidus of peridotite which is given by [6]. Partial melting will occur if temperatures locally exceeds the solidus of peridotite Tsol. As lateral inhomogeneities due to thickness variations of the insulating crust can locally increase temperatures by up to 100 K [7] and plumes rising from the coremantle boundary may further increase temperatures by up to 50 K, we will assume that partial mantle melting is feasible if temperatures are lower than Tsol by at most 150 K. Parameters: The current thermal state of Mars is most sensitive to the amount and distribution of radioactive ele- ments and the efficiency of mantle energy transport, which is a strong function of mantle viscosity. We vary the fraction of radiogenic elements in the crust ? between 20 and 80 % and the fraction of radiogenic elements with respect to the reference compositional model ? [4] between 30 and 100 %. The reference mantle viscosity at 1600 K was varied between ?0 = 1019 and 1021 Pa s, corresponding to wet and dry olivine rheologies. Other parameters were kept constant and we use an initial upper mantle temperature of 1800 K, an initial core temperature of 2100 K, a crustal thermal conductivity of 3 W m-1 K-1, a mantle thermal conductivity of 4 W m-1 K-1 and a crustal thickness of 50 km. Fig. 1 shows the temperature structure of one model having 50 % of the radioactive elements in the crust (? = 0.5) and the fraction of radiogenic elements with respect to the reference model is 70 % ? = 0.7. As a comparison, the solidus and liquidus of peridotite are also given. The minimum temperature difference between mantle temperature and solidus is ˜250 K, not allowing for partial mantle melting. Results: Fig. 2 shows contour plots of the elastic thickness Te as a function of the fraction of radiogenic elements in the crust ? and the fraction of radiogenic elements with respect to the reference model ? [4] for (a) a wet mantle rheology and ?0 = 1019 Pa s and (c) a dry mantle rheology and ?0 = 1021 Pa s. Large elastic thicknesses require a small bulk concentration of radioactive elements ? or a large concentration of these elements in the crust ?. The gray areas in Fig.2 correspond to parameter combinations which satisfy the constrains given by Te > 300 km. Fig. 2 also shows contour plots of the minimum tempera- ture difference ?T as a function ? and ? for (b) wet and (d) dry mantle rheologies. Small ?T requires a large bulk concentration of radioactive elements ? or a small concentration of these elements in the crust ?. The gray areas correspond to parameter combinations which satisfy the constrains given by ?T < 150 K. There are no parameter combinations which satisfy both constrains given by Te > 300 km and ?T < 150 K for wet and dry mantle rheologies. The discrepancy is much larger for wet mantle rheologies than for dry ones. Conclusions: The constrains given by large elastic thicknesses and the potential for partial melting in the upper mantle cannot simultaneously be fulfilled using current models. This implies that either the elastic thickness is smaller than determined by [2], that the mantle solidus has been overestimated or that the polar caps are not currently in dynamic equilibrium. If the north polar cap contained CO2 ice, the permittivity of the cap would be reduced [8], allowing for larger deflections [2] and lower elastic thicknesses. This possibility needs to be investigated and the amount of CO2 ice necessary to sufficiently reduce Te should be determined in future work. Also, the solidus of mantle rocks depends on the rock'swater content and this effect should be incorporated into the models as a next step. Together, these effects will possibly allow for combinations of parameters ? and ? which satisfy the elastic thickness and partial melt constrains. Also, for the thermal models presented here, viscoelastic relaxation calculations should be carried out. References: [1] M.A.Wieczorek, Icarus, 10.1016/ j.icarus. 2007.10.026 (2008). [2] R.J. Phillips et al., Science 320, 5880, 1182 (2008) [3] M. Grott, D. Breuer, Icarus 193, 503 (2008). [4] H. Wänke and G. Dreibus, Philos. Trans. R. Soc. London Ser. A 349, 285 (1994). [5] G. Neukum et al., Nature 432, 971 (2004). [6] E. Takahashi, J. Geophys. Res. 95, B10, 1594115954 (1990). [7] S. Schumacher, D. Breuer, Geophys. Res. Lett., 34, 14, L14202 (2007) [8] E. Pettinelli et al, J. Geophyss Res. 108, E4, 101, 8029 (2003)

  1. Proton-proton correlations observed in two-proton radioactivity of 94Ag.

    PubMed

    Mukha, Ivan; Roeckl, Ernst; Batist, Leonid; Blazhev, Andrey; Döring, Joachim; Grawe, Hubert; Grigorenko, Leonid; Huyse, Mark; Janas, Zenon; Kirchner, Reinhard; La Commara, Marco; Mazzocchi, Chiara; Tabor, Sam L; Van Duppen, Piet

    2006-01-19

    The stability and spontaneous decay of naturally occurring atomic nuclei have been much studied ever since Becquerel discovered natural radioactivity in 1896. In 1960, proton-rich nuclei with an odd or an even atomic number Z were predicted to decay through one- and two-proton radioactivity, respectively. The experimental observation of one-proton radioactivity was first reported in 1982, and two-proton radioactivity has now also been detected by experimentally studying the decay properties of 45Fe (refs 3, 4) and 54Zn (ref. 5). Here we report proton-proton correlations observed during the radioactive decay of a spinning long-lived state of the lightest known isotope of silver, 94Ag, which is known to undergo one-proton decay. We infer from these correlations that the long-lived state must also decay through simultaneous two-proton emission, making 94Ag the first nucleus to exhibit one- as well as two-proton radioactivity. We attribute the two-proton emission behaviour and the unexpectedly large probability for this decay mechanism to a very large deformation of the parent nucleus into a prolate (cigar-like) shape, which facilitates emission of protons either from the same or from opposite ends of the 'cigar'.

  2. Effects of groundwater on radionuclides buried at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, B.A.; Maestas, S.; Thompson, J.L.

    A large fraction of the radioactive source from a nuclear test is confined to the cavity created by the event. A {open_quotes}melt glass{close_quotes} accumulates at the bottom of the cavity where the highest concentrations of refractory radionuclides (e.g., Zr-95, Eu-155, Pu-239) are found. Most of the movement of radionuclides underground at the Nevada Test Site occurs through the agency of moving groundwater. Results from samples that were taken from the cavity formed in 1981 by the underground test named Baseball indicate that radioactive materials have remained where they were deposited during the formation of the cavity and chimney. There maymore » not be a mechanism for radionuclides to migrate at this location due to small hydraulic gradients and a low hydraulic conductivity. The study done at this site offers further evidence that extensive migration of radioactive materials away from underground nuclear test sites does not occur in the absence of appreciable groundwater movement.« less

  3. Variance in State Protection from Exposure to NORM and TENORM Wastes Generated During Unconventional Oil and Gas Operations: Where We Are and Where We Need to Go.

    PubMed

    Ann Glass Geltman, Elizabeth; LeClair, Nichole

    2018-01-01

    Radioactive materials for the medical, technological, and industrial sectors have been effectively regulated in the United States since as early as 1962. The steady increase in the exploration and production of shale gas in recent years has led to concerns about exposures to Naturally Occurring Radioactive Materials (NORM) and Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) in oil and gas waste streams. This study applied policy surveillance methods to conduct a cross-sectional fifty-state survey of law and regulations of NORM and TENORM waste from oil and gas operations. Results indicated that seventeen states drafted express regulations to reduce exposure to oil and gas NORM and TENORM waste. States with active oil and gas drilling that lack regulations controlling exposure to NORM and TENORM may leave the public and workers susceptible to adverse health effects from radiation. The study concludes with recommendations in regard to regulating oil and gas NORM and TENORM waste.

  4. Simulating the venting of radioactivity from a soviet nuclear test

    NASA Astrophysics Data System (ADS)

    Rodriguez, Daniel J.; Peterson, Kendall R.

    Fresh fission products were found in several routine air samples in Europe during the second and third weeks of March 1987. Initially, it was suspected that the radionuclides, principally 133Xe and 131I, had been accidentally released from a European facility handling nuclear materials. However, the announcement of an underground nuclear test at Semipalatinsk, U.S.S.R. on 26 February 1987 suggested that the elevated amounts of radioactivity may, instead, have been caused by a venting episode. Upon learning of these events, we simulated the transport and diffusion of 133Xe with our Hemispheric MEDIC and ADPIC models, assuming Semipalatinsk to be the source of the radioactive emissions. The correspondence between the calculated concentrations and the daily average 133Xe measurements made by the Federal Office for Civil Protection in F.R.G. was excellent. While this agreement does not, in itself, prove that an atmospheric venting of radioactive material occurred at Semipalatinsk, a body of circumstantial evidence exists which, when added together, strongly supports this conclusion. Our calculations suggested a total fission yield of about 40 kt, which is within the 20-150 kt range of tests acknowledged by the U.S.S.R. Finally, dose calculations indicated that no health or environmental impact occurred outside of the U.S.S.R. due to the suspected venting of 133Xe. However, the inhalation dose resulting from 133I, an unmodeled component of the radioactive cloud, represented a greater potential risk to public health.

  5. Gamma-ray spectrometry in the field: Radioactive heat production in the Central Slovakian Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Harley, Thomas L.; Westaway, Rob; McCay, Alistair T.

    2017-05-01

    We report 62 sets of measurements from central-southern Slovakia, obtained using a modern portable gamma-ray spectrometer, which reveal the radioactive heat production in intrusive and extrusive igneous rocks of the Late Cenozoic Central Slovakian Volcanic Zone. Sites in granodiorite of the Štiavnica pluton are thus shown to have heat production in the range 2.2-4.9 μW m- 3, this variability being primarily a reflection of variations in content of the trace element uranium. Sites in dioritic parts of this pluton have a lower, but overlapping, range of values, 2.1-4.4 μW m- 3. Sites that have been interpreted in adjoining minor dioritic intrusions of similar age have heat production in the range 1.4-3.3 μW m- 3. The main Štiavnica pluton has zoned composition, with potassium and uranium content and radioactive heat production typically increasing inward from its margins, reflecting variations observed in other granodioritic plutons elsewhere. It is indeed possible that the adjoining dioritic rocks, hitherto assigned to other minor intrusions of similar age, located around the periphery of the Štiavnica pluton, in reality provide further evidence for zonation of the same pluton. The vicinity of this pluton is associated with surface heat flow 40 mW m- 2 above the regional background. On the basis of our heat production measurements, we thus infer that the pluton has a substantial vertical extent, our preferred estimate for the scale depth for its downward decrease in radioactive heat production being 8 km. Nonetheless, this pluton lacks any significant negative Bouguer gravity anomaly. We attribute this to the effect of the surrounding volcanic caldera, filled with relatively low-density lavas, 'masking' the pluton's own gravity anomaly. We envisage that emplacement occurred when the pluton was much hotter, and thus of lower density, than at present, its continued uplift, evident from the local geomorphology, being the isostatic consequence of localized erosion. The heat production in this intrusion evidently plays a significant role, hitherto unrecognized, in the regional geothermics.

  6. Characterization studies for the reuse of phosphogypsum as a raw material in the civil construction industry of Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacomino, V.M.; Canut, M.; Magalhaes Gomes, A.

    NORM stands for 'naturally occurring radioactive material', which is a material that naturally contains one or more radionuclides, mainly, uranium, thorium and potassium-40, and their radioactive decay products, such as radium and radon. An example of this material is the Phosphogypsum (PG), which results from the processing of phosphate ore into phosphoric acid for fertilizer production. In order to support regulation of the reuse of phosphogypsum as a raw material of the Brazilian civil construction industry, a characterization study was performed. The physical and chemical properties of PG and natural gypsum were determinate by evaluating the results of thermal (DTAmore » and TG), X-ray fluorescence (XRF), X-ray diffraction (XRD) and laser granulometric analyses. The radioactivity concentration of each sample was measured by gamma spectrometry analyses. The results of thermal analyses demonstrated that phosphogypsum must be treated (initially heated in an electrical oven at 60 deg. C for 24 hours, then sieved and heated again at 160 deg. C for one hour) to obtain the same mineralogical properties of the gypsum used in the civil construction industry. The X- ray fluorescence analysis showed that PG and natural gypsum are similar with both being composed mainly of S, O, Ca, P and small quantities of trace elements (Ce, Ti, La, Sr, Zr, and Pr). The main crystalline compounds found in PG samples were gypsita (CaSO{sub 4}.2H{sub 2}O) and in natural gypsum were bassanite (CaSO{sub 4}.0.5H{sub 2}O). The concentration of Ra-226, Ra-228 and Pb-210 present in PG samples was 467 Bq/kg, 224 Bq/kg and 395 Bq/kg, respectively. The levels of radioactivity in natural gypsum samples were much lower (around 3 Bq/kg). The same behavior was observed for the uranium and thorium content. The results of all the analyses showed that phosphogypsum can be a viable substitute for gypsum, after certain, beneficial processes. (authors)« less

  7. Plutonium, americium, and uranium in blow-sand mounds of safety-shot sites at the Nevada Test Site and the Tonopah Test Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essington, E.H.; Gilbert, R.O.; Wireman, D.L.

    Blow-sand mounds or miniature sand dunes and mounds created by burrowing activities of animals were investigated by the Nevada Applied Ecology Group (NAEG) to determine the influence of mounds on plutonium, americium, and uranium distributions and inventories in areas of the Nevada Test Site and Tonopah Test Range. Those radioactive elements were added to the environment as a result of safety experiments of nuclear devices. Two studies were conducted. The first was to estimate the vertical distribution of americium in the blow-sand mounds and in the desert pavement surrounding the mounds. The second was to estimate the amount or concentrationmore » of the radioactive materials accumulated in the mound relative to the desert pavement. Five mound types were identified in which plutonium, americium, and uranium concentrations were measured: grass, shrub, complex, animal, and diffuse. The mount top (that portion above the surrounding land surface datum), the mound bottom (that portion below the mound to a depth of 5 cm below the surrounding land surface datum), and soil from the immediate area surrounding the mound were compared separately to determine if the radioactive elements had concentrated in the mounds. Results of the studies indicate that the mounds exhibit higher concentrations of plutonium, americium, and uranium than the immediate surrounding soil. The type of mound does not appear to have influenced the amount of the radioactive material found in the mound except for the animal mounds where the burrowing activities appear to have obliterated distribution patterns.« less

  8. Estimation of radioactive contamination of soils from the "Balapan" and the "Experimental field" technical areas of the Semipalatinsk nuclear test site.

    PubMed

    Evseeva, T; Belykh, E; Geras'kin, S; Majstrenko, T

    2012-07-01

    In spite of the long history of the research, radioactive contamination of the Semipalatinsk nuclear test site (SNTS) in the Republic of Kazakhstan has not been adequately characterized. Our cartographic investigation has demonstrated highly variable radioactive contamination of the SNTS. The Cs-137, Sr-90, Eu-152, Eu-154, Co-60, and Am-241 activity concentrations in soil samples from the "Balapan" site were 42.6-17646, 96-18250, 1.05-11222, 0.6-4865, 0.23-4893, and 1.2-1037 Bq kg(-1), correspondingly. Cs-137 and Sr-90 activity concentrations in soil samples from the "Experimental field" site were varied from 87 up to 400 and from 94 up to 1000 Bq kg(-1), respectively. Activity concentrations of Co-60, Eu-152, and Eu-154 were lower than the minimum detectable activity of the method used. Concentrations of naturally occurring radionuclides (K-40, Ra-226, U-238, and Th-232) in the majority of soil samples from the "Balapan" and the "Experimental field" sites did not exceed typical for surrounding of the SNTS areas levels. Estimation of risks associated with radioactive contamination based on the IAEA clearance levels for a number of key radionuclides in solid materials shows that soils sampled from the "Balapan" and the "Experimental field" sites might be considered as radioactive wastes. Decrease in specific activity of soil from the sites studied up to safety levels due to Co-60, Cs-137, Sr-90, Eu-152, Eu-154 radioactive decay and Am-241 accumulation-decay will occur not earlier than 100 years. In contrast, soils from the "Experimental field" and the "Balapan" sites (except 0.5-2.5 km distance from the "Chagan" explosion point) cannot be regarded as the radioactive wastes according safety norms valid in Russia and Kazakhstan. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Elemental and radioactive analysis of commercially available seaweed.

    PubMed

    van Netten, C; Hoption Cann, S A; Morley, D R; van Netten, J P

    2000-06-08

    Edible seaweed products have been used in many countries, specifically Japan, as a food item. Recently these products have become popular in the food industry because of a number of interesting medicinal properties that have been associated with certain edible marine algae. Very little control exists over the composition of these products, which could be contaminated with a number of agents including heavy metals and certain radioactive isotopes. Fifteen seaweed samples (six local samples from the coast of British Columbia, seven from Japan, one from Norway and one undisclosed) were obtained. All samples were analyzed for multiple elements, using ICP mass spectrometry and for radioactive constituents. It was found that six of eight imported seaweed products had concentrations of mercury orders of magnitude higher than the local products. Lead was found at somewhat higher concentrations in only one local product. Laminaria japonica had the highest level of iodine content followed by Laminaria setchellii from local sources. Only traces of cesium-137 were found in a product from Norway and radium-226 was found in a product from Japan. Arsenic levels were found to be elevated. In order to estimate the effect of these levels on health, one needs to address the bioavailability and the speciation of arsenic in these samples.

  10. Chemical experiments with superheavy elements.

    PubMed

    Türler, Andreas

    2010-01-01

    Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.

  11. METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE

    DOEpatents

    Smith, R.R.; Echo, M.W.; Doe, C.B.

    1963-12-31

    A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)

  12. Comparing 2-[18F]fluoro-2-deoxy-D-glucose and [68Ga]gallium-citrate translocation in Arabidopsis thaliana.

    PubMed

    Fatangare, Amol; Gebhardt, Peter; Saluz, Hanspeter; Svatoš, Aleš

    2014-10-01

    2-[(18)F]fluoro-2-deoxy-D-glucose ((18)FDG) is a glucose surrogate commonly used in clinical or animal imaging but rarely in plant imaging to trace glucose metabolism. Recently, (18)FDG has been employed in plant imaging for studying photoassimilate translocation and glycoside biosynthesis. There is growing evidence that (18)FDG could be used as a tracer in plant imaging studies to trace sugar dynamics. However, to confirm this hypothesis, it was necessary to show that the observed (18)FDG distribution in an intact plant is an outcome of the chemical nature of the introduced radiotracer and not of the plant vascular architecture or radiotracer introduction method. In the present work, we fed (18)FDG and [(68)Ga]gallium-citrate ((68)Ga-citrate) solution through mature Arabidopsis thaliana leaf and monitored subsequent radioactivity distribution using positron autoradiography. The possible route of radioactivity translocation was elucidated through stem-girdling experiments. We also employed a bi-functional positron emission tomography/computed tomography (PET/CT) modality to capture (18)FDG radiotracer dynamics in one of the plants in order to assess applicability of PET/CT for 4-D imaging in an intact plant. Autoradiography results showed that [(18)F] radioactivity accumulated mostly in roots and young growing parts such as the shoot apex, which are known to act as sinks for photoassimilate. [(18)F] radioactivity translocation, in this case, occurred mainly via phloem. PET/CT results corroborated with autoradiography. [(68)Ga] radioactivity, on the other hand, was mainly translocated to neighboring leaves and its translocation occurred via both xylem and phloem. The radioactivity distribution pattern and translocation route observed after (18)FDG feeding is markedly different from that of (68)Ga-citrate. [(18)F] radioactivity distribution pattern in an intact plant is found similar to the typical distribution pattern of photoassimilates. Despite its limitations in quantification and resolution, PET/CT could be a useful tool to elucidate in vivo dynamics of [(18)F] radioactivity in intact plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Surface horizontal logging for uranium and its decay products at a Superfund site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadeken, L.L.; Madigan, W.P.

    1995-12-31

    The United States Department of Energy (DOE) is now responsible for the environmental restoration and management of a number of sites where nuclear activities occurred during the Cold War. The DOE sponsored an Expedited Site Characterization performed by Ames Laboratory at the St. Louis (Missouri) Airport Site (SLAPS) during August--September, 1994. Uranium processing occurred at SLAPS during the Cold War and there is now significant residual radioactive contamination. Surveys associated the highest radioactivity levels at SLAPS with the ``barium cake`` (AJ-4) waste areas. This paper reports on continuous gamma ray spectroscopy measurements to identify the emitting, isotopes and to quantifymore » the amount of radioactivity present for each. An oilfield wireline gamma ray spectrometry sonde (the Compensated Spectral Natural Gamma instrument) was adapted to perform horizontal measurements with the detector section 3 ft above the soil surface. The CSNG detector is a 2-in.-diameter by 12-in.-long sodium iodide crystal. The spectrometry data are processed by a weighted-least-squares algorithm that incorporates whole spectrum responses for the radioisotopes of interest. The radioactivities are reported in pCi/g units for each isotope, and a depth-of-emission estimate is found by Compton-downscattering spectral shape analysis.« less

  14. Radioactivity inspection of Taiwan for food products imported from Japan after the Fukushima nuclear accident.

    PubMed

    Chiu, Huang-Sheng; Huang, Ping-Ji; Wuu, Jyi-Lan; Wang, Jeng-Jong

    2013-11-01

    The 3-11 Earthquake occurred in Japan last year had greatly damaged the lives and properties and also caused the core meltdown accident in the Fukushima nuclear power plant followed by the leakage of radioactive materials into biosphere. In order to protect against the detriment of radiation from foods which were imported from Japan, the Institute of Nuclear Energy Research (INER) in Taiwan started to conduct radioactivity inspection of food products from Japan after the accident. A total of about 20,000 samples had been tested from March 24 2011 to March 31 2012. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. 10 CFR Appendix A to Part 725 - Categories of Restricted Data Available

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and radiation studies. b. Chemistry, chemical engineering and radiochemistry of all the elements and their compounds. Included are techniques and processes of chemical separations, radioactive waste..., including chemical engineering, processes and techniques. Reactor physics, engineering and criticality...

  16. Evaluation of some pollutant levels in environmental samples collected from the area of the new campus of Taif University.

    PubMed

    Sharshar, Taher; Hassan, H Ebrahim; Arida, Hassan A; Aydarous, Abdulkadir; Bazaid, Salih A; Ahmed, Mamdouh A

    2013-01-01

    The levels of radioactivity and heavy metals in soil, plant and groundwater samples collected from the area of the new campus of Taif University, Saudi Arabia, and its neighbouring areas have been determined. High-resolution gamma-ray spectroscopy was used for radioactivity measurements, and inductively coupled plasma atomic emission spectroscopy was used to determine the concentration of heavy metals. The means of (226)Ra, (228)Ra and (40)K concentrations in water samples collected from four wells were found to be 0.13 ± 0.03, 0.05 ± 0.03 and 1.3 ± 0.5 Bq l(-1), respectively. The means of (238)U, (226)Ra, (228)Ra ((232)Th for soil samples) and (40)K concentrations in wild plant and soil samples were found to be 3.7 ± 4.1, 8.8 ± 11.6, 3.8 ± 2.9 and 1025 ± 685, and 8.6 ± 3.4, 12.8 ± 3.4, 16.6 ± 7.1 and 618 ± 82 Bq kg(-1) dry weight (DW), respectively. The (137)Cs of artificial origin was also detected in soil samples with a mean concentration of 3.8 ± 2.2 Bq kg(-1) DW. Evaluating the results, it can be concluded that the concentrations of (238)U, (226)Ra, (232)Th and (40)K in soil samples fall within the world average. Furthermore, 19 trace and major elements in groundwater samples and 22 elements in soil and plant samples were determined. The sampling locations of soil can be classified into three groups (relatively high, medium and low polluted) according to their calculated metal pollution index using the contents of trace and major elements. A cluster analysis of the contents of radioactivity and trace element contents in soil samples shows the presence of two main distinct clusters of sampling locations.

  17. Cargo Container Imaging with Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Forest, Tony

    2006-10-01

    The gas electron multiplier (GEM) , developed at CERN by Fabio Sauli, represents the latest innovation in micropattern gaseous detectors and has been utilized as a preamplification stage in applications ranging from fundamental physics experiments to medical imaging. Although cargo container inspection systems are currently in place using gamma-rays or X-rays, they are predominantly designed with a resolution to detect contraband. Current imaging systems also suffer from false alarms due to naturally radioactive cargo when radiation portal monitors are used for passive detection of nuclear materials. Detection of small shielded radioactive elements is even more problematic. Idaho State University has been developing a system to image cargo containers in order to detect small shielded radioactive cargo. The possible application of an imaging system with gas electron multiplication will be shown along with preliminary images using gaseous detectors instead of the scintillators currently in use.

  18. Reconnaissance for uranium in the southeastern states, 1953

    USGS Publications Warehouse

    Johnson, Henry S.

    1953-01-01

    During the last quarter of 1952 and most of 1953 the U.S. Geological Survey carried on a program of reconnaissance for radioactive material in the southeastern states on behalf to the Atomic Energy Commission. In the course of the study 111 localities were examined and 43 samples were taken for radioactivity measurements at the Survey's Trace Elements laboratory in Denver, Colo. No economic deposits of uranium were found as a result of this work, but weak radioactivity was noted at the Tungsten Mining Coperation property near Townsville, N. C.; the Comolli granite quarry near Elberton, Ga.; in the Beech and Cranberry granite near Roan Mountain, Tenn.; and in several shales in the Valley and Ridge and Appalachian Plateau provinces. Devonian through Pennsylvanian rocks in these two provinces probably constitute the most favorable ground for new discoveries of uranium in the Southeast.

  19. Vitrification of radioactive contaminated soil by means of microwave energy

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Qing, Qi; Zhang, Shuai; Lu, Xirui

    2017-03-01

    Simulated radioactive contaminated soil was successfully vitrified by microwave sintering technology and the solidified body were systematically studied by Raman, XRD and SEM-EDX. The Raman results show that the solidified body transformed to amorphous structure better at higher temperature (1200 °C). The XRD results show that the metamictization has been significantly enhanced by the prolonged holding time at 1200 °C by microwave sintering, while by conventional sintering technology other crystal diffraction peaks, besides of silica at 2θ = 27.830°, still exist after being treated at 1200 °C for much longer time. The SEM-EDX discloses the micro-morphology of the sample and the uniform distribution of Nd element. All the results show that microwave technology performs vitrification better than the conventional sintering method in solidifying radioactive contaminated soil.

  20. Radioactive emission data from Canadian nuclear generating stations, 1988 to 1997. Report number INFO-0210/Rev.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    This edition incorporates histograms for each nuclear generating station (NGS) displaying the annual gaseous emissions containing tritium, in the form of tritium oxide, noble gases, iodine-131, and radioactive particulates, as well as the annual liquid emissions containing tritium, in the form of tritiated water, and gross beta-gamma activity. For Pickering NGS A and Gentilly 2, annual emissions of carbon-14 are depicted; and for Darlington NGS A, airborne emissions of elemental tritium since 1988 are shown. In each case, the emission data are compared to the derived emission limits.

  1. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  2. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  3. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, S. C.; Oyaizu, M.; Imai, N.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions ofmore » ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.« less

  4. Radioactivity in books printed in Japan: its source and relation to the year of issue.

    PubMed

    Kobashi, A

    1996-06-01

    The radioactivities of the naturally occurring radionuclides (226Ra, 228Ra, 228Th and 40K) and a fallout nuclide (137Cs) in books produced in Japan in the 20th century were measured by gamma-ray spectrometry to obtain information on radiation emitted from books. The respective concentration ranges of 226Ra, 228Ra, 228Th, 40K, and 137Cs were 0.2-6.4, 0.4-11.2, 0.3-11.3, 1-112, and 0-3 Bq kg-1. X-ray diffraction spectra of the papers used in book printing showed that pyrophyllite, talc, kaolinite, and calcium carbonate were contained as fillers. A comparison of the radioactivity contents of the pulp and filler indicated that most of 226Ra, 228Ra, and 228Th in the books was present in the filler whereas 137Cs was in the pulp. The pattern of the concentration of each nuclide vs. the year of issue of the book was investigated. Patterns for the naturally occurring radionuclides were similar and were explained by the kinds of filler used. The pattern for 137Cs differed from the patterns of the naturally occurring radionuclides, having a marked peak in the mid-1960s.

  5. Absorption, distribution, metabolism and excretion of peginesatide, a novel erythropoiesis-stimulating agent, in rats

    PubMed Central

    Woodburn, Kathryn W.; Holmes, Christopher P.; Wilson, Susan D.; Fong, Kei-Lai; Press, Randall J.; Moriya, Yuu; Tagawa, Yoshihiko

    2011-01-01

    The pharmacokinetics(PK) (absorption, distribution, metabolism, excretion) of peginesatide.a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent (ESA), was evaluated in rats. The PK profile was evaluated at 0.1-5 mg·kg−1 IV using unlabeled or [14C]-labeled peginesatide. Mass balance, tissue distribution and metabolism were evaluated following IV administration of 5 mg·kg−1 [14C]-peginesatide, with tissue distribution also evaluated by quantitative whole-body autoradiography (QWBA) following an IV dose of 17 mg·kg−1[14C]-peginesatide. Plasma clearance was slow and elimination was biphasic with unchanged peginesatide representing >90% of the total radioactivity of the total radioactive exposure. Slow uptake of the radiolabeled compound from the vascular compartment into the tissues was observed. Biodistribution to bone marrow and extramedullary hematopoietic sites, and to highly vascularized lymphatic and excretory tissues occurred. A predominant degradation event to occur in vivo was the loss of one PEG chain from the branched PEG moiety to generate mono-PEG. Renal excretion was the primary mechanism (41%) of elimination, with parent molecule (67%) the major moiety excreted. In conclusion, elimination of [14C]-peginesatide-derived radioactivity was extended, retention preferentially occurred at sites of erythropoiesis (bone marrow), and urinary excretion was the primary elimination route. PMID:22188389

  6. Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification.

    PubMed

    Herndon, J Marvin

    2016-01-01

    U.S. military perception of nuclear warfare led to countless unethical nuclear experiments performed on unsuspecting individuals without their informed consent. As evidenced here, subsequent perception of weather warfare has led to exposing millions of unsuspecting individuals to toxic coal fly ash with no public disclosure, no informed consent, and no health warnings. Three methods were used: (1) comparison of eight elements analyzed in rainwater samples, thought to have leached from aerosolized coal fly ash, with corresponding coal fly ash laboratory leachate; (2) comparison of 14 elements analyzed in air filter dust with corresponding elements in coal fly ash; and (3) comparison of 23 elements analyzed in fibrous mesh found after snow melted with corresponding elements in coal fly ash. The rainwater element ratios show that the aerial particulate matter has essentially the same water-leach characteristics as coal fly ash. The air filter dust element ratios occur in the same range of compositions as coal fly ash, as do element ratios in fibrous mesh found on grass after snow melted. The fibrous mesh provides an inferred direct connection with the aerosolizing jet aircraft via coal fly ash association with the jet combustion environment. Strong evidence for the correctness of the hypothesis: coal fly ash is likely the aerosolized particulate emplaced in the troposphere for geoengineering, weather modification, and/or climate alteration purposes. The documented public health associations for ≤2.5 μm particulate pollution are also applicable to aerosolized coal fly ash. The ability of coal fly ash to release aluminum in a chemically mobile form upon exposure to water or body moisture has potentially grave human and environmental consequences over a broad spectrum, including implications for neurological diseases and biota debilitation. The ability of coal fly ash to release heavy metals and radioactive elements upon exposure to body moisture has potentially grave human health implications including cancer, cardiovascular disease, diabetes, respiratory diseases, reduced male fertility, and stroke. The fibrous mesh data admit the possibility of environmentally disastrous formation of methylmercury and ozone-depleting chlorinated-fluorinated hydrocarbons in jet exhaust. Geophysical implications include atmospheric warming and rainfall retardation.

  7. Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy

    NASA Astrophysics Data System (ADS)

    Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; Rosa, Rosanna De; Scarciglia, Fabio; Buttafuoco, Gabriele

    2016-12-01

    The activity of natural radionuclides in soil has become an environmental concern for local public and national authorities because of the harmful effects of radiation exposure on human health. In this context, modelling and mapping the activity of natural radionuclides in soil is an important research topic. The study was aimed to model, in a spatial sense, the soil radioactivity in an urban and peri-urban soils area in southern Italy to analyse the seasonal influence on soil radioactivity. Measures of gamma radiation naturally emitted through the decay of radioactive isotopes (potassium, uranium and thorium) were analysed using a geostatistical approach to map the spatial distribution of soil radioactivity. The activity of three radionuclides was measured at 181 locations using a high-resolution ?-ray spectrometry. To take into account the influence of season, the measurements were carried out in summer and in winter. Activity data were analysed by using a geostatistical approach and zones of relatively high or low radioactivity were delineated. Among the main processes which influence natural radioactivity such as geology, geochemical, pedological, and ecological processes, results of this study showed a prominent control of radio-emission measurements by seasonal changes. Low natural radioactivity levels were measured in December associated with winter weather and moist soil conditions (due to high rainfall and low temperature), and higher activity values in July, when the soil was dry and no precipitations occurred.

  8. Natural Radiation from Soil using Gamma-Ray Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silveira, M. A. G.; Moreira, R. H.; Paula, A. L. C. de

    2009-06-03

    We have studied the distribution of natural radioactivity in the soil of Interlagos, in Sao Paulo city and Billings Reservoir, in Sao Bernardo do Campo, Sao Paulo, Brazil. The main contribution of the effective radiation dose is due to the elements of the {sup 238}Th decay series, with smaller contributions from {sup 40}K and the elements of the series of {sup 238}U. The results indicate the dose in all of the studied areas is around the average international dose due to external exposure to gamma rays (0.48 mSv/yr) proceeding from natural terrestrial elements.

  9. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    USGS Publications Warehouse

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes) were collected at ten percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 0.03 percent of the analyses of ground-water samples. This study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) (Maximum Contaminant Levels [MCLs], notification levels [NLs], or lifetime health advisories [HA-Ls]) and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels [SMCLs]). All wells were sampled for organic constituents and selected general water quality parameters; subsets of wells were sampled for inorganic constituents, nutrients, and radioactive constituents. Volatile organic compounds were detected in 49 out of 83 wells sampled and pesticides were detected in 35 out of 82 wells; all detections were below health-based thresholds, with the exception of 1 detection of 1,2,3-trichloropropane above a NL. Of the 43 wells sampled for trace elements, 27 had no detections of a trace element above a health-based threshold and 16 had at least one detection above. Of the 18 trace elements with health-based thresholds, 3 (arsenic, barium, and boron) were detected at concentrations higher an MCL. Of the 43 wells sampled for nitrate, only 1 well had a detection above the MCL. Twenty wells were sampled for radioactive constituents; only 1 (radon-222) was measured at activiti

  10. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecastedmore » is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.« less

  11. Reconnaissance for uranium and thorium in Alaska, 1954

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1957-01-01

    During 1954 reconnaissance investigations to locate minable deposits of uranium and thorium in Alaska were unsuccessful. Areas examined, from which prospectors had submitted radioactive samples, include Cap Yakataga, Kodiak Island, and Shirley Lake. Unconcentrated gravels from the beach at Cape Yakataga average about 0.001 percent equivalent uranium. Uranothorianite has been identified by X-ray diffraction data and is the principal source of radioactivity in the Cape Yakataga beach sands studied; but the zircon, monazite, and uranothorite are also radioactive. The black, opaque uranothorianite generally occurs as minute euhedral cubs, the majority of which will pass through a 100-mesh screen. The bedrock source of the radioactive samples from Kodiak Island was not found; the maximum radioactivity of samples from the Shirley Lake area was equivalent to about 0.02 percent uranium. Radiometric traverses of the 460-foot level of the Garnet shaft of the Nixon Fork mine in the Nixon Fork mining district indicated a maximum of 0.15 mr/hr. In the Hot Springs district, drill hole concentrates of gravels examined contained a maximum of 0.03 percent equivalent uranium. A radioactivity anomaly noted during the Survey's airborne reconnaissance of portions of the Territory during 1954 is located in the Fairhaven district. A ground check disclosed that the radioactivity was due to accessory minerals in the granitic rock.

  12. [Volatile ashes and their biological effect. 2. Fibrogenic effect of volatile ashes].

    PubMed

    Woźniak, H; Wiecek, E; Lao, I; Wojtczak, J

    1989-01-01

    In experiments on white Wistar rats fibrogenic effects of 6 samples of fly-ashes collected from electric precipitators in power engineering plants have been evaluated. The coal came from different national deposits. All the ashes have been found to contain: quartz and mullite, 3 ashes contained additionally orthoclase, whereas 1, apart from quartz and mullite, contained kaolinite; naturally radioactive elements (Ra226, K40, Th228) and trace elements (As, Ba, Be, Cd, Ce, Cu, Fe, Pa, Mo, Ni, Pb, Se, U Zu). Experimental pneumoconiosis was induced through intratracheal administration of single doses of 50 mg of dust; the experiment was carried out at 3 time intervals of 3, 6 and 9 months. The fibrogenic activity was evaluated both qualitatively (histopathological methods) and quantitatively (lung weight, hydroxyproline content in lungs, dust elimination from lungs); control groups consisted of animals which obtained NaCl solution and quartz sands. Fly-ashes were found to exhibit different fibrogenic effects, yet, their fibrogenic activity was weaker, compared to quartz sands. No clear correlation was found between fibrogenic effects of ashes and test physico-chemical properties, such as the content of SiO2, trace elements or naturally radioactive elements. Analysis of occupational diseases (for the period section): (1979-1983) demonstrated occupational diseases of dust-related aetiology among power engineering workers, pneumoconioses, constituting 7.8% of 127 cases of occupational diseases.

  13. Radiometric surveys in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected a set of rock samples along the mine shaft to compare in situ results with high resolution gamma-ray analysis in the laboratory. The comparison points to a systematic overestimation (on the average, by a factor of two) of the uranium, thorium and potassium concentrations obtained with the portable apparatus. The bias between laboratory and field is slightly smaller for potassium and could be due only to deviation from standard geometric conditions. The largest differences occur in uranium concentrations, probably due also to the influence of the activity deriving from radon stagnation. The calculated radon flux depends on the radium specific activity, which, under the assumption of secular radioactive equilibrium, can be easily inferred from the uranium concentration, and the specific exhalation coefficient. Measurements of specific exhalation coefficient are difficult and only few studies have examined unaltered rocks in details. We estimated the values of this parameter by considering the degree of fracturing, width of fissures and evidence of percolating groundwater. In general, the coefficient increases from the entrance, where rocks are more massive, towards the shaft bottom, where closely spaced open fissures, often filled with percolating groundwater, might boost exhalation. As a whole, both potential radon flux and radiation dose values are relevant to radio protection rules.

  14. RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from amore » beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.« less

  15. Use of Carboxymethyl-beta-cyclodextrin (CMCD) as Flushing Agent for Remediation of Metal Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Skold, M. E.; Thyne, G. D.; McCray, J. E.; Drexler, J. W.

    2005-12-01

    One of the major challenges in remediating soil and ground water is the presence of mixed organic and inorganic contaminants. Due to their very different behavior, research has to a large extent focused on remediation of either organic or inorganic contaminants rather than mixed waste. Cyclodextrins (CDs) are a group of non-toxic sugar based molecules that do not sorb to soil particles and do not experience pore size exclusion. Thus, they have good hydraulic properties. CDs enhance the solubility of organic compounds by forming inclusion complexes between organic contaminants and the non-polar cavity at the center of the CD. By substituting functional groups to the cyclodextrin molecule it can form complexes with heavy metals. Previous studies have shown that carboxymethyl-beta-cyclodextrin (CMCD) can simultaneously complex organic and inorganic contaminants. The aim of this study is to compare how strongly CMCD complexes several common heavy metals, radioactive elements and a common divalent cation. Results from batch experiments show that CMCD has the ability to complex a wide array of heavy metals and radioactive elements. The solubility of metal oxalates and metal oxides clearly increased in the presence of CMCD. Logarithmic conditional formation constants ranged from 3.5 to 6 for heavy metals and from 3 to 6 for radioactive elements. Calcium, which may compete for binding sites, has a logarithmic conditional formation constant of 3.1. Batch experiments performed at 10 and 25 degrees C showed little temperature effect on conditional formation constants. Results from batch experiments were compared to results from column experiments where Pb was sorbed onto hydrous ferric oxide coated sand and subsequently removed by a CMCD solution. The results indicate that CMCD is a potential flushing agent for remediation of mixed waste sites.

  16. A kilonova as the electromagnetic counterpart to a gravitational-wave source.

    PubMed

    Smartt, S J; Chen, T-W; Jerkstrand, A; Coughlin, M; Kankare, E; Sim, S A; Fraser, M; Inserra, C; Maguire, K; Chambers, K C; Huber, M E; Krühler, T; Leloudas, G; Magee, M; Shingles, L J; Smith, K W; Young, D R; Tonry, J; Kotak, R; Gal-Yam, A; Lyman, J D; Homan, D S; Agliozzo, C; Anderson, J P; Angus, C R; Ashall, C; Barbarino, C; Bauer, F E; Berton, M; Botticella, M T; Bulla, M; Bulger, J; Cannizzaro, G; Cano, Z; Cartier, R; Cikota, A; Clark, P; De Cia, A; Della Valle, M; Denneau, L; Dennefeld, M; Dessart, L; Dimitriadis, G; Elias-Rosa, N; Firth, R E; Flewelling, H; Flörs, A; Franckowiak, A; Frohmaier, C; Galbany, L; González-Gaitán, S; Greiner, J; Gromadzki, M; Guelbenzu, A Nicuesa; Gutiérrez, C P; Hamanowicz, A; Hanlon, L; Harmanen, J; Heintz, K E; Heinze, A; Hernandez, M-S; Hodgkin, S T; Hook, I M; Izzo, L; James, P A; Jonker, P G; Kerzendorf, W E; Klose, S; Kostrzewa-Rutkowska, Z; Kowalski, M; Kromer, M; Kuncarayakti, H; Lawrence, A; Lowe, T B; Magnier, E A; Manulis, I; Martin-Carrillo, A; Mattila, S; McBrien, O; Müller, A; Nordin, J; O'Neill, D; Onori, F; Palmerio, J T; Pastorello, A; Patat, F; Pignata, G; Podsiadlowski, Ph; Pumo, M L; Prentice, S J; Rau, A; Razza, A; Rest, A; Reynolds, T; Roy, R; Ruiter, A J; Rybicki, K A; Salmon, L; Schady, P; Schultz, A S B; Schweyer, T; Seitenzahl, I R; Smith, M; Sollerman, J; Stalder, B; Stubbs, C W; Sullivan, M; Szegedi, H; Taddia, F; Taubenberger, S; Terreran, G; van Soelen, B; Vos, J; Wainscoat, R J; Walton, N A; Waters, C; Weiland, H; Willman, M; Wiseman, P; Wright, D E; Wyrzykowski, Ł; Yaron, O

    2017-11-02

    Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

  17. A kilonova as the electromagnetic counterpart to a gravitational-wave source

    NASA Astrophysics Data System (ADS)

    Smartt, S. J.; Chen, T.-W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K. C.; Huber, M. E.; Krühler, T.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Tonry, J.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Bulger, J.; Cannizzaro, G.; Cano, Z.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Denneau, L.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flewelling, H.; Flörs, A.; Franckowiak, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Greiner, J.; Gromadzki, M.; Guelbenzu, A. Nicuesa; Gutiérrez, C. P.; Hamanowicz, A.; Hanlon, L.; Harmanen, J.; Heintz, K. E.; Heinze, A.; Hernandez, M.-S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Klose, S.; Kostrzewa-Rutkowska, Z.; Kowalski, M.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Lowe, T. B.; Magnier, E. A.; Manulis, I.; Martin-Carrillo, A.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, Ph.; Pumo, M. L.; Prentice, S. J.; Rau, A.; Razza, A.; Rest, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Schady, P.; Schultz, A. S. B.; Schweyer, T.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Stalder, B.; Stubbs, C. W.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; van Soelen, B.; Vos, J.; Wainscoat, R. J.; Walton, N. A.; Waters, C.; Weiland, H.; Willman, M.; Wiseman, P.; Wright, D. E.; Wyrzykowski, Ł.; Yaron, O.

    2017-11-01

    Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

  18. Borehole Disposal and the Cradle-To-Grave Management Program for Radioactive Sealed Sources in Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, J.R.; Carson, S.D.; El-Adham, K.

    2006-07-01

    The Integrated Management Program for Radioactive Sealed Sources (IMPRSS) is greatly improving the management of radioactive sealed sources (RSSs) in Egypt. When completed, IMPRSS will protect the people and the environment from another radioactive incident. The Government of Egypt and Sandia National Laboratories are collaboratively implementing IMPRSS. The integrated activities are divided into three broad areas: the safe management of RSSs in-use, the safe management of unwanted RSSs, and crosscutting infrastructure. Taken together, these work elements comprise a cradle-to-grave program. To ensure sustainability, the IMPRSS emphasizes such activities as human capacity development through technology transfer and training, and development ofmore » a disposal facility. As a key step in the development of a disposal facility, IMPRSS is conducting a safety assessment for intermediate-depth borehole disposal in thick arid alluvium in Egypt based on experience with the U.S.'s Greater Confinement Disposal boreholes. This safety assessment of borehole disposal is being supported by the International Atomic Energy Agency (IAEA) through an IAEA Technical Cooperation Project. (authors)« less

  19. Charge breeding simulations for radioactive ion beam production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Variale, V.; Raino, A. C.; Clauser, T.

    2012-02-15

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+more » ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.« less

  20. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.

    2014-05-01

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline,more » sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.« less

  1. Approximating the r-Process on Earth with Thermonuclear Explosions. Lessons Learned and Unanswered Questions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Stephen Allan

    2016-01-28

    During the astrophysical r-process, multiple neutron captures occur so rapidly on target nuclei that their daughter nuclei generally do not have time to undergo radioactive decay before another neutron is captured. The r-process can be approximately simulated on Earth in certain types of thermonuclear explosions through an analogous process of rapid neutron captures known as the "prompt capture" process. Between 1952 and 1969, 23 nuclear tests were fielded by the US which were involved (at least partially) with the "prompt capture" process. Of these tests, 15 were at least partially successful. Some of these tests were conducted under the Plowsharemore » Peaceful Nuclear Explosion Program as scientific research experiments. It is now known that the USSR conducted similar nuclear tests during 1966 to 1979. The elements einsteinium and fermium were first discovered by this process. The most successful tests achieved 19 successive neutron captures on the initial target nuclei. A review of the US program, target nuclei used, heavy element yields, scientific achievements of the program, and how some of the results have been used by the astrophysical community is given. Finally, some unanswered questions concerning very neutron-rich nuclei that could potentially have been answered with additional nuclear experiments is presented.« less

  2. Analysis of Ignition Testing on K-West Basin Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Abrefah; F.H. Huang; W.M. Gerry

    Approximately 2100 metric tons of spent nuclear fuel (SNF) discharged from the N-Reactor have been stored underwater at the K-Basins in the 100 Area of the Hanford Site. The spent fuel has been stored in the K-East Basin since 1975 and in the K-West Basin since 1981. Some of the SNF elements in these basins have corroded because of various breaches in the Zircaloy cladding that occurred during fuel discharge operations and/or subsequent handling and storage in the basins. Consequently, radioactive material in the fuel has been released into the basin water, and water has leaked from the K-East Basinmore » into the soil below. To protect the Columbia River, which is only 380 m from the basins, the SNF is scheduled to be removed and transported for interim dry storage in the 200 East Area, in the central portion of the Site. However, before being shipped, the corroded fuel elements will be loaded into Multi-Canister OverPacks and conditioned. The conditioning process will be selected based on the Integrated Process Strategy (IPS) (WHC 1995), which was prepared on the basis of the dry storage concept developed by the Independent Technical Assessment (ITA) team (ITA 1994).« less

  3. Application of gamma spectrometry in the Kola peninsula (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovin, I.V.; Kolesnik, N.I.; Antipov, V.S.

    1973-01-01

    The methodology used and results obtained in gamma spectrometric studies of pre-Cambrian formations of some nickel-bearing regions of the Kola Penlnsula are described. The radioactive element contents of typical metamorphic and magmatic complexes and sulfide ores are presented. (au-trans)

  4. Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel and Transuranic Radioactive Wastes (40 CFR Part 191)

    EPA Pesticide Factsheets

    This regulation sets environmental standards for public protection from the management and disposal of spent nuclear fuel, high-level wastes and wastes that contain elements with atomic numbers higher than uranium (transuranic wastes).

  5. Survey of toxicity and carcinogenity of mineral deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furst, A.; Harding-Barlow, I.

    1981-11-03

    The toxicities and biogeochemical cycles of arsenic, cadmium, chromium, lead and nickel are reviewed in some detail, and other trace elements briefly mentioned. These heavy metals are used as a framework within which the problem of low-level radioactive waste disposal can be compared. (ACR)

  6. Confused about Fusion? Weed Your Science Collection with a Pro.

    ERIC Educational Resources Information Center

    O'Dell, Charli

    1998-01-01

    Provides guidelines on weeding science collections in junior high/high school libraries. Highlights include checking copyright dates, online sources, 13 science subject areas that deserve special consideration (plate tectonics, fission, fusion, radioactive dating, weather/climate, astronomy/space science, elements, integrated science,…

  7. Separation science and technology. Semiannual progress report, October 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandegrift, G.F.; Aase, S.B.; Buchholz, B.

    1997-12-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generatedmore » by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.« less

  8. Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swafford, A.M.; Keller, J.M.

    1993-03-17

    Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences ismore » necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.« less

  9. Characteristics and Classification of Solid Radioactive Waste From the Front-End of the Uranium Fuel Cycle.

    PubMed

    Liu, Xinhua; Wei, Fangxin; Xu, Chunyan; Liao, Yunxuan; Jiang, Jing

    2015-09-01

    The proper classification of radioactive waste is the basis upon which to define its disposal method. In view of differences between waste containing artificial radionuclides and waste with naturally occurring radionuclides, the scientific definition of the properties of waste arising from the front end of the uranium fuel cycle (UF Waste) is the key to dispose of such waste. This paper is intended to introduce briefly the policy and practice to dispose of such waste in China and some foreign countries, explore how to solve the dilemma facing such waste, analyze in detail the compositions and properties of such waste, and finally put forward a new concept of classifying such waste as waste with naturally occurring radionuclides.

  10. A DECISION-MAKING PROCESS IN RADWASTE MANAGEMENT FOR CONFIDENCE BUILDING: THE FRENCH APPROACH AND THE INTERNATIONAL CONTEXT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Bars, Y.

    2002-02-25

    The search for concrete radioactive waste management generates bitter debates, and mobilizes not only in the restricted circles of convinced supporters and opponents, but also in relatively large circles of the civil society. How would it be possible to go forward in such a situation and ensure in both the short and long terms a valid and socially acceptable management of radioactive waste? In this presentation, a few elements of reflection are proposed: on French experience as I understand it after three years as Chairman of Andra; on the results of the Forum for Stakeholders Confidence created by the OECD/NEA;more » and on the comments of EDRAM, an association of managers from major waste-management organizations; to those, I should add the observation of a European Project called COWAM (Communities Waste Management), consisting of a group of local communities confronted with radioactive-waste management.« less

  11. Nuclear astrophysics with radioactive ions at FAIR

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  12. Automatic measurements and computations for radiochemical analyses

    USGS Publications Warehouse

    Rosholt, J.N.; Dooley, J.R.

    1960-01-01

    In natural radioactive sources the most important radioactive daughter products useful for geochemical studies are protactinium-231, the alpha-emitting thorium isotopes, and the radium isotopes. To resolve the abundances of these thorium and radium isotopes by their characteristic decay and growth patterns, a large number of repeated alpha activity measurements on the two chemically separated elements were made over extended periods of time. Alpha scintillation counting with automatic measurements and sample changing is used to obtain the basic count data. Generation of the required theoretical decay and growth functions, varying with time, and the least squares solution of the overdetermined simultaneous count rate equations are done with a digital computer. Examples of the complex count rate equations which may be solved and results of a natural sample containing four ??-emitting isotopes of thorium are illustrated. These methods facilitate the determination of the radioactive sources on the large scale required for many geochemical investigations.

  13. Current significant challenges in the decommissioning and environmental remediation of radioactive facilities: A perspective from outside the nuclear industry.

    PubMed

    Gil-Cerezo, V; Domínguez-Vilches, E; González-Barrios, A J

    2017-05-01

    This paper presents the results of implementing an extrajudicial environmental mediation procedure in the socioenvironmental conflict associated with routine operation of the El Cabril Disposal Facility for low- and medium- activity radioactive waste (Spain). We analyse the socio-ethical perspective of this facility's operation with regard to its nearby residents, detailing the structure and development of the environmental mediation procedure through the participation of society and interested parties who are or may become involved in such a conflict. The research, action, and participation method was used to apply the environmental mediation procedure. This experience provides lessons that could help improve decision-making processes in nuclear or radioactive facility decommissioning projects or in environmental remediation projects dealing with ageing facilities or with those in which nuclear or radioactive accidents/incidents may have occurred. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. STUDY OF RADON, THORON EXHALATION AND NATURAL RADIOACTIVITY IN COAL AND FLY ASH SAMPLES OF KOTA SUPER THERMAL POWER PLANT, RAJASTHAN, INDIA.

    PubMed

    Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B K; Sapra, B K; Kumar, Rajesh

    2016-10-01

    Electricity generation in India is largely dependent on coal-based thermal power plants, and increasing demand of energy raised the coal consumption in the power plants. In recent years, study of natural radioactivity content and radon/thoron exhalation from combustion of coal and its by-products has given considerable attention as they have been recognised as one of the important technically enhanced naturally occurring radioactive materials. In the present study, radon, thoron exhalation rate and the radioactivity concentration of radionuclides in coal and fly ash samples collected from Kota Super Thermal Power Plant, Rajasthan, India have been measured and compared with data of natural soil samples. The results have been analysed and discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Thermal Neutron Die-Way-Time Studies for P and DGNAA of Radioactive Waste Drums at the MEDINA Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mildenberger, Frank; Mauerhofer, Eric

    2015-07-01

    In Germany, radioactive waste with negligible heat production has to pass through a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Additionally to its radioactive components, the waste may contain non-radioactive chemically toxic substances that can adversely affect human health and pollute the environment, especially the ground water. After an adequate decay time, the waste radioactivity will become harmless but the non-radioactive substances will persist over time. In principle, these hazardous substances may be quantified from traceability and quality controls performed during the production of themore » waste packages. As a consequence, a research and development program was initiated in 2007 with the aim to develop a nondestructive analytical technique for radioactive waste packages based on prompt and delayed gamma neutron activation analysis (P and DGNAA) employing a DT-neutron generator in pulsed mode. In a preliminary study it was experimentally demonstrated that P and DGNAA is suitable to determine the chemical composition of large samples. In 2010 a facility called MEDINA (Multi Element Detection based on Instrumental Neutron Activation) was developed for the qualitative and quantitative determination of nonradioactive, toxic elements and substances in 200-l steel drums. The determination of hazardous substances and elements is generally achieved measuring the prompt gamma-rays induced by thermal neutrons. Additional information about the composition of the waste matrix could be derived measuring the delayed gamma-rays from short life activation products. However a sensitive detection of these delayed gamma-rays requires that thermal neutrons have almost vanished. Therefore, the thermal neutron die-away-time has to be known in order to achieve an optimal discrimination between prompt and delayed gamma-ray spectra acquisition. Measurements Thermal neutron die-away times have been determined for the following cases: a) the empty chamber, b ) an empty 200-l steel drum, for a 200-l steel drum filled c) with concrete d) with polyethylene and e) with a mixture of polyethylene and concrete by measuring the prompt-gamma ray count rate of relevant isotopes like of {sup 1}H, {sup 10}B, {sup 12}C, {sup 28}Si, {sup 35}Cl, {sup 40}Ca and {sup 56}Fe which are emitted from different parts of the facility and the sample. Additionally, the average die-away-time was determined from the total detector count rate. The neutron generator was operated with a neutron emission of 8x10{sup 7} n.s{sup -1}, a neutron pulse with a length of 250 μs and a repetition time of 5 ms. The spectra were acquired between the neutron pulses over t{sub c}=500 μs after a pre-defined waiting time t{sub D} (multiple of 500 μs). The thermal neutron die-away time was ranging between 0.9 ms and 5 ms according to the sample composition. As an example the measured thermal neutron die-away-time Λ [μs] of a drum filled with concrete is presented. Detailed results of this study will be presented and discussed. (authors)« less

  16. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  17. Flood and Fire Monitoring and Forecasting Within the Chornobyl Exclusion Zone

    NASA Astrophysics Data System (ADS)

    Los, Victor

    2001-03-01

    Taking into consideration that radioactivity from the contaminating elements of the Chernobyl Exclusion Zone (CEZ) amounts to a huge number, one of the most urgent tasks, at present, is the resolution of problems related to secondary radioactive contamination caused by floods and fires. These factors may lead to critical consequences. For instance, if radioactive contaminants migrate into the water system, namely into the Dnipro River, a threat arises to more than 20 million inhabitants of Ukraine. Additionally, fires in the CEZ potentially could cause contaminants to be dispersed into the air and to migrate in the atmosphere for long distances. The elements of information support system for administrative decision-making to respond to the appearances and consequences of forest fires and floods in contaminated areas of the CEZ have been developed. The system proposes: using Earth Remote Sensing (R/S) data for timely detection of forest fires; integration by Geographic Information System (GIS) of mathematical models for radionuclide migration by air in order to forecast radiological consequences of forest fires; forecasting and assessing flood consequences by means of spatial analysis of GIS and R/S; and development of a system for dissemination of information. This project was performed within the framework of USAID Cooperative Agreement #121-A-00-98-00615-00, dedicated to the establishment of the Ukrainian Land and Resource Management Center.

  18. Individual Reactions of Permanganate and Various Reductants - Student Report to the DOE ERULF Program for Work Conducted May to July 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauger, Amber M.; Hallen, Richard T.

    2012-09-15

    Tank waste on the Hanford Site contains radioactive elements that need to be removed from solution prior to disposal. One effective way to do this is to precipitate the radioactive elements with manganese solids, produced by permanganate oxidation. When added to tank waste, the permanganate reacts quickly producing manganese (IV) dioxide precipitate. Because of the speed of the reaction it is difficult to tell what exactly is happening. Individual reactions using non-radioactive reductants found in the tanks were done to determine reaction kinetics, what permanganate was reduced to, and what oxidation products were formed. In this project sodium formate, sodiummore » nitrite, glycolic acid, glycine, and sodium oxalate were studied using various concentrations of reductant in alkaline sodium hydroxide solutions. It was determined that formate reacted the quickest, followed by glycine and glycolic acid. Oxalate and nitrite did not appear to react with the permanganate solutions. The products of the oxidation reaction were examined. Formate was oxidized to carbonate and water. Glycolic acid was oxidized slower producing oxalate and water. Glycine reactions formed some ammonia in solution, oxalate, and water. The research reported by Amber Gauger in this report was part of a DOE ERULF student intern program at Pacific Northwest National Laboratory under the direction of Richard Hallen in the summer of 2000.« less

  19. TENORM: Fertilizer and Fertilizer Production Wastes

    EPA Pesticide Factsheets

    Phosphate rock is used in the production of phosphate fertilizers. Due to its chemical properties, phosphate rock may contain significant quantities of naturally occurring radioactive materials (NORM).

  20. Systemic mastocytosis in a patient with polycythemia vera treated with radioactive phosphorus. [X radiation, /sup 32/P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eagan, J.W. Jr.; Baughman, K.L.; Miller, S.

    1977-04-01

    Systemic mastocytosis occurred as a fatal event in a patient with long-standing polycythemia vera. The patient had been treated over the course of 21 yr with radioactive phosphorus. Possible relationships between mastocytosis and polycythemia vera, and also between mastocytosis and treatment with ionizing radiation, are discussed. Histopathologic and electron microscopic findings are illustrated. Difficulties in establishing the diagnosis of mast cell disease in this setting are also described.

  1. DISCHARGE DEVICE FOR RADIOACTIVE MATERIAL

    DOEpatents

    Ohlinger, L.A.

    1958-09-23

    A device is described fur unloading bodies of fissionable material from a neutronic reactor. It is comprised essentially of a wheeled flat car having a receptacle therein containing a liquid coolant fur receiving and cooling the fuel elements as they are discharged from the reactor, and a reciprocating plunger fur supporting the fuel element during discharge thereof prior to its being dropped into the coolant. The flat car is adapted to travel along the face of the reactor adjacent the discharge ends of the coolant tubes.

  2. Prospective study of the changes in thyrotropin binding inhibitory immunoglobulins in Graves' disease treated by subtotal thyroidectomy or radioactive iodine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, C.S.; Yeung, R.T.T.; Khoo, R.K.K.

    1980-06-01

    The effects of subtotal thyroidectomy and radioactive iodine on thyroid-stimulating immunoglobulins, as measured by a receptor assay, more appropriately termed TSH binding inhibitory immunoglobulins (TBII), were studied in 74 patients with Graves' disease. Fourty-four patients received radioactive iodine therapy, while 30 were subjected to subtotal thyroidectomy. After radioactive iodine, more patients were TBII-positive (90.5% vs 81.8%) than before treatment, and the mean TBII index decreased dramatically, the maximum decrease being 3 months. The mean TBI index subsequently returned gradually to the pretreatment level. Subtotal thyroidectomy had a different effect on TBII activity. TBII indices were positive in 89.3% of thesemore » patients before any treatment but were positive in only 40% (12 patients) after antithyroid drugs had been given before surgery. After surgery, TBII indices remained positive in 7 patients, while the remaining 5 patients became TBII negative. Seventeen patients (56.7%) were TBII negative before operation and remained so after surgery. One patient who was TBII negative before operation became TBII positive 2 months after operation. Interestingly, postoperative relapse of hyperthyroidism occurred in 3 patients who were TIBII positive, while hypothyroidism occurred in patients who were TBII negative. Thus, the TBII activity after subtotal thyroidectomy might be an important factor in determining the outcome of surgery.« less

  3. NORM in the East Midlands' oil and gas producing region of the UK.

    PubMed

    Garner, Joel; Cairns, James; Read, David

    2015-12-01

    Naturally occurring radioactive material (NORM) is a common feature in North Sea oil and gas production offshore but, to date, has been reported from only one production site onshore in the United Kingdom. The latter, Wytch Farm on the Dorset coast, revealed high activity concentrations of (210)Pb in metallic form but little evidence of radium accumulation. NORM has now been discovered at two further onshore sites in the East Midlands region of the UK. The material has been characterized in terms of its mineralogy, bulk composition and disequilibrium in the natural uranium and thorium series decay chains. In contrast to Wytch Farm, scale and sludge samples from the East Midlands were found to contain elevated levels of radium and radioactive progeny associated with crystalline strontiobarite. The highest (226)Ra and (228)Ra activity concentrations found in scale samples were 132 and 60 Bq/g, with mean values of 86 and 40 Bq/g respectively; somewhat higher than the mean for the North Sea and well above national exemption levels for landfill disposal. The two East Midlands sites exhibited similar levels of radioactivity. Scanning electron microscope imaging shows the presence of tabular, idiomorphic and acicular strontiobarite crystals with elemental mapping confirming that barium and strontium are co-located throughout the scale. Bulk compositional data show a corresponding correlation between barium-strontium concentrations and radium activity. Scales and sludge were dated using the (226)Ra/(210)Pb method giving mean ages of 2.2 and 3.7 years, respectively. The results demonstrate clearly that these NORM deposits, with significant radium activity, can form over a very short period of time. Although the production sites studied here are involved in conventional oil recovery, the findings have direct relevance should hydraulic fracturing for shale gas be pursued in the East Midlands oilfield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Interplay between Diffusion, Accretion and Nuclear Reactions in the Atmospheres of Sirius and Przybylski's Star

    NASA Astrophysics Data System (ADS)

    Yushchenko, A.; Gopka, V.; Goriely, S.; Lambert, D.; Shavrina, A.; Kang, Y. W.; Rostopchin, S.; Valyavin, G.; Lee, B.-C.; Kim, C.

    2007-06-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that peculiar stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. The first case is one of the hottest Am stars - Sirius. We determined the abundances of more than 50 chemical elements in the atmosphere of Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is the well known Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of our investigation on the stratification of chemical elements in the atmosphere of Przybylski's star and the new identification of lines corresponding to short-lived actinides in its spectrum. Possible explanations of the abundances pattern of Przybylski's star (as well as HR465 and HD965) can be the natural radioactive decays of thorium and uranium, the explosion of a companion as a supernova or the spallation reactions. These three hypotheses and (or) diffusion can possibly explain the abundance pattern of Przybylski's star and several similar objects such as HR465 and HD965.

  5. Radioisotopes: Today's Applications.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radioisotopes are useful because of their three unique characteristics: (1) radiation emission; (2) predictable radioactive lives; and (3) the same chemical properties as the nonradioactive atoms of that element. Researchers are able to "order" a radioisotope with the right radiation, half-life, and chemical property to perform a given task with…

  6. High Spin Isomers and Super Heavy Elements (SHE) Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Domitian G.

    2010-04-30

    To get closer to the SHE-Island the new radioactive beams are proposed for future fusion reaction. We suggest something different: to use the advantage of High Spin Isomer States, by tacking into account the importance of the G (spin-isospin cupling) suggested by Ripka 1.

  7. Radioactive nondestructive test method

    NASA Technical Reports Server (NTRS)

    Obrien, J. R.; Pullen, K. E.

    1971-01-01

    Various radioisotope techniques were used as diagnostic tools for determining the performance of spacecraft propulsion feed system elements. Applications were studied in four tasks. The first two required experimental testing involving the propellant liquid oxygen difluoride (OF2): the neutron activation analysis of dissolved or suspended metals, and the use of radioactive tracers to evaluate the probability of constrictions in passive components (orifices and filters) becoming clogged by matter dissolved or suspended in the OF2. The other tasks were an appraisal of the applicability of radioisotope techniques to problems arising from the exposure of components to liquid/gas combinations, and an assessment of the applicability of the techniques to other propellants.

  8. An alternate approach to the production of radioisotopes for nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    D'Auria, John M.; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E.; Ruth, Thomas J.; Schmor, Paul

    2013-03-01

    There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity/gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.

  9. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  10. Double β-decay nuclear matrix elements for the A=48 and A=58 systems

    NASA Astrophysics Data System (ADS)

    Skouras, L. D.; Vergados, J. D.

    1983-11-01

    The nuclear matrix elements entering the double β decays of the 48Ca-48Ti and 58Ni-58Fe systems have been calculated using a realistic two nucleon interaction and realistic shell model spaces. Effective transition operators corresponding to a variety of gauge theory models have been considered. The stability of such matrix elements against variations of the nuclear parameters is examined. Appropriate lepton violating parameters are extracted from the A=48 data and predictions are made for the lifetimes of the positron decays of the A=58 system. RADIOACTIVITY Double β decay. Gauge theories. Lepton nonconservation. Neutrino mass. Shell model calculations.

  11. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  12. DECAY OF INCORPORATED RADIOACTIVE PHOSPHORUS DURING REPRODUCTION OF BACTERIOPHAGE T2

    PubMed Central

    Stent, Gunther S.

    1955-01-01

    The multiplication of vegetative T2 bacteriophage in B/r bacteria has been followed by studying the lethal effects of decay of incorporated radiophosphorus P32 at various stages of the eclipse period. Experiment I. Non-radioactive B/r bacteria were infected with highly radioactive (i.e. P32-unstable) T2 and infection allowed to proceed at 37°C. for various numbers of minutes before freezing the infected cells and storing them in liquid nitrogen. The longer development had been allowed to proceed at 37°C. before freezing, the slower the inactivation of the frozen infective centers by P32 decay. Samples which were frozen after incubation for 9 minutes were completely stable. Experiment II. Radioactive B/r bacteria in radioactive growth medium were infected with non-radioactive (i.e. stable) T2 and incubated for various lengths of time before being frozen and stored in liquid nitrogen, like those of Experiment I. In this case, the infective centers were stable to P32 decay as long as they were frozen before the end of the eclipse period. The T2 progeny phages issuing from the infected bacteria were P32-unstable. Experiment III. Radioactive B/r bacteria in radioactive medium were infected with radioactive (i.e. P32-unstable) T2 and otherwise incubated and frozen like those of the first two experiments. In this case, the same progressive stabilization, of the infective centers towards inactivation by P32 decay was observed as that found in Experiment I. The ability to yield infective progeny of infected bacteria incubated for 10 minutes at 37°C. before freezing could no longer be destroyed by P32 decay. The progeny issuing from the infected cells were as unstable as the parental phage. These results could be explained by one of three general hypotheses. As vegetative phage begins to multiply, it is possible that: (a) there is a high probability that any part of the vegetative phage already duplicated can be saved after its destruction by P32 decay through a process analogous to multiplicity reactivation or, (b) there occurs a change in state of the deoxyribonucleic acid (DNA) preliminary to or in the course of its replication that renders it refractory to destruction by P32 decay, or, finally (c) there occurs a transfer of the genetic factors from the DNA of the infecting phage to another substance not sensitive to destruction by P32 decay. PMID:13242767

  13. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    USGS Publications Warehouse

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among laboratories comparable. The minimum and maximum concentrations of a selected isotope in naturally occurring terrestrial materials for selected chemical elements reviewed in this report are given below: Isotope Minimum mole fraction Maximum mole fraction -------------------------------------------------------------------------------- 2H 0 .000 0255 0 .000 1838 7Li 0 .9227 0 .9278 11B 0 .7961 0 .8107 13C 0 .009 629 0 .011 466 15N 0 .003 462 0 .004 210 18O 0 .001 875 0 .002 218 26Mg 0 .1099 0 .1103 30Si 0 .030 816 0 .031 023 34S 0 .0398 0 .0473 37Cl 0 .240 77 0 .243 56 44Ca 0 .020 82 0 .020 92 53Cr 0 .095 01 0 .095 53 56Fe 0 .917 42 0 .917 60 65Cu 0 .3066 0 .3102 205Tl 0 .704 72 0 .705 06 The numerical values above have uncertainties that depend upon the uncertainties of the determinations of the absolute isotope-abundance variations of reference materials of the elements. Because reference materials used for absolute isotope-abundance measurements have not been included in relative isotope abundance investigations of zinc, selenium, molybdenum, palladium, and tellurium, ranges in isotopic composition are not listed for these elements, although such ranges may be measurable with state-of-the-art mass spectrometry. This report is available at the url: http://pubs.water.usgs.gov/wri014222.

  14. Origin of the Early Sial Crust and U-Pb Isotope-Geochemical Heterogeneity of the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Mishkin, M. A.; Nozhkin, A. D.; Vovna, G. M.; Sakhno, V. G.; Veldemar, A. A.

    2018-02-01

    It is shown that presence of the Early Precambrian sial crust in the Indo-Atlantic segment of the Earth and its absence in the Pacific has been caused by geochemical differences in the mantle underlying these segments. These differences were examined on the basis of Nd-Hf and U-Pb isotopes in modern basalts. The U-Pb isotope system is of particular interest, since uranium is a member of a group of heat-generating radioactive elements providing heat for plumes. It is shown that in the Indo-Atlantic segment, a distribution of areas of the modern HIMU type mantle is typical, while it is almost completely absent in the Pacific segment. In the Archean, in the upper HIMU type paleo-mantle areas, plume generation and formation of the primordial basic crust occurred; this was followed by its remelting resulting in the appearance of an early sial crust forming cratons of the Indo-Atlantic segment.

  15. Further evidence supporting the concurrent influence of aflatoxin and manganese

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzen, J.S.; Llewellyn, G.C.

    Trace elements, including manganese may afford protection from deleterious effects of aflatoxin. Young male Fischer rats received ip injections of aflatoxin B1 (AFB1) in dimethyl sulfoxide (DMSO), 1 mg/kg, 2 mg/kg or 4 mg/kg. Control groups received DMSO ip or no injection. All animals were intubated with 3 microCi of (/sup 54/Mn)-MnCl/sub 2/ 12 hr post-injection. Sacrifice occurred 72 hr after gavage of the radiolabel. All tested levels of AFB1 affected the loss of total body radioactivity. This response was observed within 12 hr when toxin-treated groups excreted almost 4 times more counts than controls. From 12-36 hr following radiolabelmore » administration, AFB1 appeared to enhance excretion; by 72 hr, toxin-treated animals (especially those receiving higher doses) appeared to conserve the metal. Aflatoxicosis manifested itself through reduced body weight gain. The data provide support evidence that Mn and AFB1 biointeract.« less

  16. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1

    PubMed Central

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-01-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by 137Cesium (137Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as 132Te-132I, 131I, 134Cs and 137Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h−1 per initial 137Cs deposition of 1000 kBq m−2, whereas it was 100 μGy h−1 around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m−2 for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums (134Cs + 137Cs) around Chernobyl and Fukushima-1, respectively. PMID:26568603

  17. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    USGS Publications Warehouse

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  18. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

    USGS Publications Warehouse

    Coplen, Tyler B.; Shrestha, Yesha

    2016-01-01

    There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

  19. Uncertainty of inhalation dose coefficients for representative physical and chemical forms of iodine-131

    NASA Astrophysics Data System (ADS)

    Harvey, Richard Paul, III

    Releases of radioactive material have occurred at various Department of Energy (DOE) weapons facilities and facilities associated with the nuclear fuel cycle in the generation of electricity. Many different radionuclides have been released to the environment with resulting exposure of the population to these various sources of radioactivity. Radioiodine has been released from a number of these facilities and is a potential public health concern due to its physical and biological characteristics. Iodine exists as various isotopes, but our focus is on 131I due to its relatively long half-life, its prevalence in atmospheric releases and its contribution to offsite dose. The assumption of physical and chemical form is speculated to have a profound impact on the deposition of radioactive material within the respiratory tract. In the case of iodine, it has been shown that more than one type of physical and chemical form may be released to, or exist in, the environment; iodine can exist as a particle or as a gas. The gaseous species can be further segregated based on chemical form: elemental, inorganic, and organic iodides. Chemical compounds in each class are assumed to behave similarly with respect to biochemistry. Studies at Oak Ridge National Laboratories have demonstrated that 131I is released as a particulate, as well as in elemental, inorganic and organic chemical form. The internal dose estimate from 131I may be very different depending on the effect that chemical form has on fractional deposition, gas uptake, and clearance in the respiratory tract. There are many sources of uncertainty in the estimation of environmental dose including source term, airborne transport of radionuclides, and internal dosimetry. Knowledge of uncertainty in internal dosimetry is essential for estimating dose to members of the public and for determining total uncertainty in dose estimation. Important calculational steps in any lung model is regional estimation of deposition fractions and gas uptake of radionuclides in various regions of the lung. Variability in regional radionuclide deposition within lung compartments may significantly contribute to the overall uncertainty of the lung model. The uncertainty of lung deposition and biological clearance is dependent upon physiological and anatomical parameters of individuals as well as characteristic parameters of the particulate material. These parameters introduce uncertainty into internal dose estimates due to their inherent variability. Anatomical and physiological input parameters are age and gender dependent. This work has determined the uncertainty in internal dose estimates and the sensitive parameters involved in modeling particulate deposition and gas uptake of different physical and chemical forms of 131I with age and gender dependencies.

  20. The solid state physics programme at ISOLDE: recent developments and perspectives

    NASA Astrophysics Data System (ADS)

    Johnston, Karl; Schell, Juliana; Correia, J. G.; Deicher, M.; Gunnlaugsson, H. P.; Fenta, A. S.; David-Bosne, E.; Costa, A. R. G.; Lupascu, Doru C.

    2017-10-01

    Solid state physics (SSP) research at ISOLDE has been running since the mid-1970s and accounts for about 10%-15% of the overall physics programme. ISOLDE is the world flagship for the on-line production of exotic radioactive isotopes, with high yields, high elemental selectivity and isotopic purity. Consequently, it hosts a panoply of state-of-the-art nuclear techniques which apply nuclear methods to research on life sciences, material science and bio-chemical physics. The ease of detecting radioactivity—<1 ppm concentrations—is one of the features which distinguishes the use of radioisotopes for materials science research. The manner in which nuclear momenta of excited nuclear states interact with their local electronic and magnetic environment, or how charged emitted particles interact with the crystalline lattices allow the determination of the location, its action and the role of the selected impurity element at the nanoscopic state. ISOLDE offers an unrivalled range of available radioactive elements and this is attracting an increasing user community in the field of nuclear SSP research and brings together a community of materials scientists and specialists in nuclear solid state techniques. This article describes the current status of this programme along with recent illustrative results, predicting a bright future for these unique research methods and collaborations.

  1. Management of low-level radioactive waste in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabtai, B.; Brenner, S.; Ne`eman, E.

    1995-12-31

    Radioactive materials are used extensively in Israel in many areas and applications for medicine, industry, agriculture, research and development and others. Israel`s primary concern in waste management is population safety and environmental protection. The Ministry of The Environment (MOE), in cooperation with the Israeli Atomic Energy Commission (IAEC), supervise over the disposal system, and ensure an effective control. The MOE is responsible for the granting of permits to users of radioactive elements in about 300 plants and institutes, with about 2,200 installations. The MOE operates a computerized database management system (DBMS) on radioactive materials, with data on licensing, import andmore » distribution, waste disposal and transportation. Supervision over the disposal of LLRW has deepened recently, and periodic reports, based on the number of drums containing LLRW, which were transferred from all institutes in Israel to the NRWDS, were prepared. Draft regulations on the disposal of LLRW from institutes of research and education, hospitals, medical laboratories and other, have been recently prepared. These regulations include instructions on the disposal of solid and liquid LLRW as well as radioactive gases and vapors. As a general rule, no LLRW of any sort will be disposed of through the ordinary waste system or general sewage. However, in some extraordinary cases, residues of liquid LLRW are allowed to be disposed in this manner, if the requirements for disposal are satisfied. There are some conditions, in which solid LLRW might be treated as a conventional waste, as well as for safe emission of radioactive gases and aerosols. In light of these considerations, a new and more specific approach to radiation protection organizations and management of low-level radioactive waste problems, supervision and optimization is presented.« less

  2. POTASSIUM AS AN INDEX OF NATURALLY OCCURRING RADIOACTIVITY IN TUNA MUSCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarti, D.; Joyner, T.

    1959-06-30

    Determinations of the potassium levels of light and dark muscle tissues were made for tuns fish samples from the Central Pacific. The mean potassium content was determined to be 2.3 mg/g for these tissues and was used as an index to calculate the radioactivity to be expected from K/sup 40/ at 4.2 dis/min per gram of wet tissue. The levels of potassium in light and dark muscle samples were not significantly different. (auth)

  3. USING STABLE ISOTOPES FOR FISH DIETARY ANALYSES: COPING WITH TOO MANY SOURCES

    EPA Science Inventory

    Stable isotope analysis can provide a useful tool for determining time-integrated measures of proportional food source contributions to fish diets. Ratios of stable (non-radioactive) isotopes of common elements (e.g., C,N,S) vary among food sources, and tissues of consumers (e.g...

  4. Occupational exposure to natural radioactivity in a zircon sand milling plant.

    PubMed

    Ballesteros, Luisa; Zarza, Isidoro; Ortiz, Josefina; Serradell, Vicente

    2008-10-01

    Raw zirconium sand is one of the substances (naturally occurring radioactive material, NORM) which is widely used in the ceramic industry. This sand contains varying concentrations of natural radionuclides: mostly U-238 but also Th-232 and U-235, together with their daughters, and therefore may need to be regulated by Directive 96/29/EURATOM. This paper describes the method used to perform the radiological study on a zircon sand milling plant and presents the results obtained. Internal and external doses were evaluated using radioactivity readings from sand, airborne dust, intermediate materials and end products. The results on total effective dose show the need for this type of industry to be carefully controlled, since values near to 1 mSv were obtained.

  5. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacri, M. L. di; Nisi, S.; Balata, M.

    2013-08-08

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Levelmore » Assay) of the LNGS underground lab using HPGe detectors.« less

  6. Natural radionuclide concentrations in processed materials from Thai mineral industries.

    PubMed

    Chanyotha, S; Kranrod, C; Chankow, N; Kritsananuwat, R; Sriploy, P; Pangza, K

    2012-11-01

    The naturally occurring radioactive materials (NORMs) distributed in products, by-products and waste produced from Thai mineral industries were investigated. Samples were analysed for radioactivity concentrations of two principal NORM isotopes: (226)Ra and (228)Ra. The enrichment of NORM was found to occur during the treatment process of some minerals. The highest activity of (226)Ra (7 × 10(7) Bq kg(-1)) was in the scale from tantalum processing. The radium concentration in the discarded by-product material from metal ore dressing was also enriched by 3-10 times. Phosphogypsum, a waste produced from the production of phosphate fertilisers, contained 700 times the level of (226)Ra concentration found in phosphate ore. Hence, these residues were also sources of exposure to workers and the public, which needed to be controlled.

  7. [Skin fibrosis in hyperthyroidism treated by sotalol and radioactive iodine (author's transl)].

    PubMed

    Bonnetblanc, J M; Michel, J P; Catanzano, G; Gualde, N; Loubet, A; Leboutet, J M; Liozon, F; Roux, J

    1979-01-01

    The authors present detailed data about skin fibrosis appearing in hyperthyroidism treated by Sotalol and radioactive iodine. Cutaneous thickening is discovered quite rapidly when the patient is monitored daily (as in case 4). It is asymptomatic and no other features of scleroderma are found. Regression occurs within 4-10 months. Histologically, fibrosis is located in the entire dermis. Dermal appendages are normal and no inflammatory changes occur. No anomalies of collagen structure and fibroblasts have been observed ultrastructurally. Immunological studies (direct immunofluorescence of the skin, lymphocyte transformation and leucocyte migration tests with Sotalol) were normal. The mechanism is unknown, but an immunological or a toxic one is excluded; however a pharmacological action is possible. The role of other betablockers must be assessed by a randomised study.

  8. METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS

    DOEpatents

    Nicoll, D.

    1959-02-24

    A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.

  9. Radioactivity near the sunken submarine "Kursk" in the Southern Barents Sea.

    PubMed

    Matishov, Genady G; Matishov, Dimitry G; Namiatov, Alexey E; Smith, John Norton; Carroll, Jolynn; Dahle, Salve

    2002-05-01

    Radioactivity measurements were conducted on seawater, sediment, and biota samples collected in the vicinity of the Russian submarine "Kursk" in September, 2000, within 1 month of the vessel's sinking in the Barents Sea to determine whether leakage of radioactivity from the vessel's two nuclear reactors had occurred and to assess the impact on one of the most productive fishing areas in the world. Levels of radioactivity in surface sediments and biota are within the range of values previously measured in the Barents Sea and can be ascribed to inputs from global fallout, European nuclear fuel reprocessing facilities, and the Chernobyl accident. However, levels of 1291 in seawater in the Southern Barents Sea increased by 500% between 1992 and 2000, and the 129I/137Cs ratio increased by more than an order of magnitude during this time, owing to long-range transport of releases from reprocessing facilities at Sellafield (U.K.) and La Hague (France). Although these results indicate that, at the time of sampling, leakage from the Kursk had a negligible impact on the environment, they also show that regional background levels of artificial radioactivity are varying rapidly on annual timescales and that Europe's nuclear reprocessing facilities are the leading contributor of anthropogenic radioactivity to the region.

  10. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  11. TENORM: Bauxite and Alumina Production Wastes

    EPA Pesticide Factsheets

    Bauxite is used to produce alumina, which is then used to produce aluminum. Naturally-occurring radioactivity in bauxite ores is concentrated during the refining process, creating TENORM in bauxite refining residuals.

  12. How Irreversible Heat Transport Processes Drive Earth's Interdependent Thermal, Structural, and Chemical Evolution Providing a Strongly Heterogeneous, Layered Mantle

    NASA Astrophysics Data System (ADS)

    Hofmeister, A.; Criss, R. E.

    2013-12-01

    Because magmatism conveys radioactive isotopes plus latent heat rapidly upwards while advecting heat, this process links and controls the thermal and chemical evolution of Earth. We present evidence that the lower mantle-upper mantle boundary is a profound chemical discontinuity, leading to observed heterogeneities in the outermost layers that can be directly sampled, and construct an alternative view of Earth's internal workings. Earth's beginning involved cooling via explosive outgassing of substantial ice (mainly CO) buried with dust during accretion. High carbon content is expected from Solar abundances and ice in comets. Reaction of CO with metal provided a carbide-rich core while converting MgSiO3 to olivine via oxidizing reactions. Because thermodynamic law (and buoyancy of hot particles) indicates that primordial heat from gravitational segregation is neither large nor carried downwards, whereas differentiation forced radioactive elements upwards, formation of the core and lower mantle greatly cooled the Earth. Reference conductive geotherms, calculated using accurate and new thermal diffusivity data, require that heat-producing elements are sequestered above 670 km which limits convection to the upper mantle. These irreversible beginnings limit secular cooling to radioactive wind-down, permiting deduction of Earth's inventory of heat-producing elements from today's heat flux. Coupling our estimate for heat producing elements with meteoritic data indicates that Earth's oxide content has been underestimated. Density sorting segregated a Si-rich, peridotitic upper mantle from a refractory, oxide lower mantle with high Ca, Al and Ti contents, consistent with diamond inclusion mineralogy. Early and rapid differentiation means that internal temperatures have long been buffered by freezing of the inner core, allowing survival of crust as old as ca.4 Ga. Magmatism remains important. Melt escaping though stress-induced fractures in the rigid lithosphere imparts a lateral component and preferred direction to upper mantle circulation. Mid-ocean magma production over ca. 4 Ga has deposited a slab volume at 670 km that is equivalent to the transition zone, thereby continuing differentiation by creating a late-stage chemical discontinuity near 400 km. This ongoing process has generated the observed lateral and vertical heterogeneity above 670 km.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutter, J.D.; O`Hara, F.A.; Rodenburg, W.W.

    A calorimeter is a device to measure evolved or adsorbed heat. For our purposes, the heat measured is that associated with radioactive decay and the unit of measurement is the watt. Each time an atom decays, energy is released and absorbed by the surroundings and heat generated. For each isotope, this heat is a constant related to the energy of the decay particles and the half-life of the isotope. A point which is often overlooked is that calorimetry is one of the oldest techniques known for measuring radioactivity. In 1903, Pierre Curie and A. Laborde used a twin microcalorimeter tomore » determine that one gram of radium generates about 100 calories per hour. Several months later, Curie and Dewar used liquid oxygen and hydrogen to show that the amount of energy developed by radium and other radioactive elements did not depend on temperature. At that time, this observation was extremely important. It indicated that the nature of radioactivity is entirely different and cannot be compared with any known phenomena. In all other thermal processes known in physics and chemistry, the rate at which heat is developed changes with temperature. In 1942, Monsanto was asked by General Leslie Groves, Head of the Manhattan Project, to accept the responsibility for the chemistry and metallurgy of radioactive polonium. Late in 1943, two Monsanto scientists began a study of the half-life of polonium-210 using calorimetry.« less

  14. Radiochemistry in the twenty-first century: Strenghts, weaknesses, opportunities and threats

    NASA Astrophysics Data System (ADS)

    de Goeij, J. J. M.

    2003-01-01

    Strengths, weaknesses, opportunities and threats of radiochemistry and associated nuclear chemistry are discussed. For that purpose radiochemistry is subdivided into three categories. The first category covers fundamental aspects, e.g. nuclear reaction cross-sections, production routes with associated yields and radionuclidic impurities, decay schemes, radiochemical separations, recoil and hot-atom chemistry, isotope effects and fractionation, and interaction of radiation with matter and detection. The second category covers topics where radioactivity is inextricably involved, e.g. the nuclear fuel cycle, very heavy elements and other actinides, primordial and cosmogenic radioactivity, and radionuclide techniques for dating. The third category involves radioactivity as essential part of a technique. On one hand radioactivity is used here as source of ionising radiation for food conservation, polymerisation of plastics, sterilisation, radiotherapy and pain palliation. On the other hand it is used to get information on systems and materials, via radiotracer methods and nuclear activation techniques. In particular the latter field is experiencing strong competition with other, non-nuclear methods. In this frame it is indicated what is required to achieve a situation where nuclear analytical techniques may successfully be exploited to the full extent of their potentials, particularly in providing valuable and sometimes unique information.

  15. (238)U and total radioactivity in drinking waters in Van province, Turkey.

    PubMed

    Selçuk Zorer, Özlem; Dağ, Beşir

    2014-06-01

    As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of total radioactivity and natural uranium have been analysed in drinking water samples. A survey to study natural radioactivity in drinking waters was carried out in the Van province, East Turkey. Twenty-three samples of drinking water were collected in the Van province and analysed for total α, total β and (238)U activity. The total α and total β activities were counted by using the α/β counter of the multi-detector low background system (PIC MPC-9604), and the (238)U concentrations were determined by inductively coupled plasma-mass spectrometry (Thermo Scientific Element 2). The samples were categorised according to origin: tap, spring or mineral supply. The activity concentrations for total α were found to range from 0.002 to 0.030 Bq L(-1) and for total β from 0.023 to 1.351 Bq L(-1). Uranium concentrations ranging from 0.562 to 14.710 μg L(-1) were observed in drinking waters. Following the World Health Organisation rules, all investigated waters can be used as drinking water.

  16. Radioactively contaminated electric arc furnace dust as an addition to the immobilization mortar in low- and medium-activity repositories.

    PubMed

    Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel

    2004-05-15

    Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar.

  17. Subject Reaction to Human-Caused and Naturally-Occurring Radioactive Threat.

    ERIC Educational Resources Information Center

    Belford, Susan; Gibbs, Margaret

    While research has shown that people are adversely psychologically affected by knowledge that their communities have been toxically contaminated, it has been suggested that those who see a disaster as naturally occurring tend to be less adversely affected than those who see a disaster as caused by human acts. To examine this issue, questionnaires…

  18. Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) in the Oil and Gas Industry: A Review.

    PubMed

    Doyi, Israel; Essumang, David Kofi; Dampare, Samuel; Glover, Eric Tetteh

    Radiation is part of the natural environment: it is estimated that approximately 80 % of all human exposure comes from naturally occurring or background radiation. Certain extractive industries such as mining and oil logging have the potential to increase the risk of radiation exposure to the environment and humans by concentrating the quantities of naturally occurring radiation beyond normal background levels (Azeri-Chirag-Gunashli 2004).

  19. Constituent elements and their distribution in the radioactive Cs-bearing silicate glass microparticles released from Fukushima nuclear plant.

    PubMed

    Kogure, Toshihiro; Yamaguchi, Noriko; Segawa, Hiroyo; Mukai, Hiroki; Motai, Satoko; Akiyama-Hasegawa, Kotone; Mitome, Masanori; Hara, Toru; Yaita, Tsuyoshi

    2016-10-01

    Microparticles of radioactive cesium (Cs)-bearing silicate glass emitted from the Fukushima Daiichi nuclear power plant were investigated mainly using state-of-the-art energy-dispersive X-ray spectroscopy in scanning transmission electron microscopes. Precise elemental maps of the particles were obtained using double silicon drift detectors with a large collection angle of X-rays, and qualitative elemental analysis was performed using high-resolution X-ray spectroscopy with a microcalorimetry detector. Beside the substantial elements (O, Si, Cl, K, Fe, Zn, Rb, Sn and Cs) as previously reported, Mn and Ba were also common, though their amounts were small. The atomic ratios of the substantial elements were not the same but varied among individual particles. Fe and Zn were relatively homogeneously distributed, whereas the concentration of alkali ions varied radially. Generally, Cs was rich and K and Rb were poor outward of the particles but the degree of such radial dependence was considerably different among the particles. A concentration of Sn on the particle surface was observed. High-resolution imaging indicated the formation of SnO 2 (cassiterite) nanocrystals on the surface. Synthesis of the bulk glass with a similar composition to the microparticles was attempted by quenching the silicate melt from ∼1600°C. However, homogeneous silicate glass like that of the microparticles could not be obtained due to the segregation of nano-spherules rich in Fe and Zn, suggesting that the microparticles were formed in a very specific condition in the nuclear reactor. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  20. Glow discharge spectrometry for the characterization of nuclear and radioactively contaminated environmental samples

    NASA Astrophysics Data System (ADS)

    Betti, Maria; Aldave de las Heras, Laura

    2004-09-01

    Glow discharge (GD) spectrometry as applied to characterize nuclear samples as well as for the determination of radionuclides in environmental samples is reviewed. The use of instrumentation for direct current (d.c.) glow discharge mass spectrometry (GDMS) and radio frequency glow discharge optical emission spectrometry (rf GDOES), installed inside a glove-box for the handling of radioactive samples as well as the two installations and their analytical possibilities, is described in detail. The applications of GD techniques for the characterization of samples of nuclear concern both with respect to their major and trace elements, as well as to the matrix isotopic composition are presented. Procedures for quantitative determination of major, minor, and trace elements in conductive samples are reported. As for non-conductive samples three different approaches for their measurement can be followed. Namely, the use of rf sources, the mixing of the sample with a binder conducting host matrix, and the use of a secondary cathode. In the case of oxide-based samples, the employment of a tantalum secondary cathode, acting as an oxygen getter, reduces the availability of oxygen to form polyatomic species and to produce quenching. Considerations on the use of the relative sensitivity factors (RSFs) in different matrices are reported. The analytical capabilities of GDMS are compared with ICP-MS in terms of accuracy, precision, and detection limit for the determination of trace elements in uranium oxide specimens. As for the determination of isotopic composition, GDMS was found to be competitive with thermal ionisation mass spectrometry (TIMS) as well as for bulk determinations of major elements with titration methods. Applications of GDMS to the determination of radioisotopes in environmental samples, as well for depth profiling of trace elements in oxide layers, are discussed.

  1. Alpha-emitting nuclides in the marine environment

    NASA Astrophysics Data System (ADS)

    Pentreath, R. J.

    1984-06-01

    The occurrence of alpha-emitting nuclides and their daughter products in the marine environment continues to be a subject of study for many reasons. Those nuclides which occur naturally, in the uranium, thorium and actinium series, are of interest because of their value in determining the rates of geological and geochemical processes in the oceans. Studies of them address such problems as the determination of rates of transfer of particulate matter, deposition rates, bioturbation rates, and so on. Two of the natural alpha-series nuclides in which a different interest has been expressed are 210Po and 226Ra, because their concentrations in marine organisms are such that they contribute to a significant fraction of the background dose rates sustained both by the organisms themselves and by consumers of marine fish and shellfish. To this pool of naturally-occurring nuclides, human activities have added the transuranium nuclides, both from the atmospheric testing of nuclear devices and from the authorized discharges of radioactive wastes into coastal waters and the deep sea. Studies have therefore been made to understand the chemistry of these radionuclides in sea water, their association with sedimentary materials, and their accumulation by marine organisms, the last of these being of particular interest because the transuranics are essentially "novel" elements to the marine fauna and flora. The need to predict the long-term behaviour of these nuclides has, in turn, stimulated research on those naturally-occurring nuclides which may behave in a similar manner.

  2. ToF diagnostic of Tin resonant laser photoionization in SPES laser offline laboratory

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Fedorov, D.; Andrighetto, A.; Mariotti, E.; Nicolosi, P.; Sottili, L.; Tomaselli, A.; Cecchi, R.; Stiaccini, L.

    2016-09-01

    Tin is the principal element of interest in the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. Atomic nuclei have a shell structure in which nuclei with \\textquoteleft magic numbers\\textquoteright of protons and neutrons are analogous to the noble gasses in atomic physics. In particular, recent theoretical studies, reveal double-magic nature of radioactive 132Sn. For this reason the nuclear physics community demonstrated, in the last years, a huge interest to produce and study this radioactive neutron rich isotope. Experiments on Tin laser resonant ionization have been performed in the offline SPES laser laboratory to investigate the capability of the new home-made Time of Flight (ToF) mass spectrometer. Several three-step, two color ionization schemes have been tested by comparing fast and slow optogalvanic signals from a Tin Hollow Cathode Lamp (HCL) and Time of Flight signals from the spectrometer. By scanning the wavelength of one of the two dye lasers across the specific resonance, comparisons of ionization signals from both the ToF and the HCL have been made, finding perfect agreement. Furthermore, with the mass spectrometer, resolved peaks of all the natural Tin isotopes have been detected. The natural abundances extracted from these measurements are in agreement with the table values for Tin isotopes. This work, with comparison of OGE and ToF signals, confirm the fully functional SPES offline laser laboratory capability in order to develop scheme studies also for the other possible Radioactive Ion Beam (RIB) elements.

  3. Distribution of Major and trace elements in Koppunuru area, Guntur district, Andhra Pradesh, India.

    PubMed

    Arumugam, K; Srinivasalu, S; Purvaja, R; Ramesh, R

    2018-06-01

    From koppunuru study area totally 58 samples were collected in 7 different boreholes, minimum depth of 28 m and Maximum depth of 157.7 m. The borehole samples geochemical analysis (major and trace elements) was carried out at Atomic Minerals Directorate for Exploration & Research (AMD), Hyderabad, India. Major and trace element studies have been conducted on the Neoproterozoic Palnad sub-basin Andhra Pradesh, South India, to determine their Geochemistry, Uranium mineralization and provenance characteristics. Geochemically, this sedimentary basin has a different litho - unit like as gritty quartzite, conglomerate, and Shale. This study area mainly dominated by Uranium deposited and radioactive elements are predominately deposit. Strong positive correlation between Uranium and Lead ( r = 0.887) suggested radiogenic nature of this system.

  4. The Study of Natural Radiation Distribution in Soil of Sao Bernardo do Campo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, M. M.; Silveira, M. A. G.; Medina, N. H.

    2008-08-07

    We have studied the distribution of natural radioactivity in the soil of five sites of the city Sao Bernardo do Campo, Sao Paulo, Brazil. The main contribution of the radiation dose is due to the isotope {sup 40}K, with smaller contributions from the elements of the series of {sup 238}U and {sup 232}Th. The results indicate the dose in all of the studied areas is around the average international dose due to external exposure to gamma rays (0.48 mSv/yr) proceeding from natural terrestrial elements.

  5. Distribution of radioactivity in the chondrichthyes Squalus acanthias and the osteichthyes salmo gairdneri following intragastric administration of (9-/sup 14/C)phenanthrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solbakken, J.E.; Palmork, K.H.

    1980-12-01

    The fate of polycyclic hydrocarbons (PAH) in marine animals has received increasing attention in the last decade. The present studies dealing with spiny dogfish (Squalus acanthias) and rainbow trout (Salmo gairdneri) are part of a series of experiments with different marine organisms. All the experiments were performed under the same laboratory conditions using intragastric administration of the PAH-component, /sup 14/C-labelled phenanthrene. Thus it is possible to compare species differences of disposition of PAH in various marine organisms. The most pronounced differences in the disposition of phenanthrene between bony fish and cartilaginous fish in our studies are that the maximum valuemore » of radioactivity in the liver of cartilaginous fish occurred several days later than the corresponding value in bony fish. Furthermore, the radioactivity in cartilaginous fish was retained at a high level beyond 672 h (28 days), a time at which the radioactivity in bony fish is near the background values.« less

  6. Radioactive decay data tables: A handbook of decay data for application to radiation dosimetry and radiological assessments

    NASA Astrophysics Data System (ADS)

    Kocher, D. C.; Smith, J. S.

    Decay data are presented for approximately 500 radionuclides including those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. Physical processes involved in radioactive decay which produce the different types of radiation observed, methods used to prepare the decay data sets for each radionuclide in the format of the computerized evaluated nuclear structure data file, the tables of radioactive decay data, and the computer code MEDLIST used to produce the tables are described. Applications of the data to problems of interest in radiation dosimetry and radiological assessments are considered as well as the calculations of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain.

  7. Distribution of radioactive isotopes in rock and ore of Arkhangelskaya pipe from the Arkhangelsk diamond province

    NASA Astrophysics Data System (ADS)

    Kiselev, G. P.; Yakovlev, E. Yu.; Druzhinin, S. V.; Galkin, A. S.

    2017-09-01

    The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high γ = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.

  8. Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Fayek; M. Ren

    2007-02-14

    Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue ofmore » spent nuclear fuel.« less

  9. State of agrocoenoses in case of large scale radioactive contamination of lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipas, A.S.; Taranenko, V.V.; Ulyanenko, L.N.

    1993-12-31

    As a result of the Chernobyl accident low doses of ionizing radiation have possibly caused mutations in arthropods which infect crops. The decision was made to investigate ways to protect plants from these injurious organisms. Monitoring plants is an important element in assessing the ecological situation in the Chernobyl accident zone.

  10. Stable Isotope Mixing Models as a Tool for Tracking Sources of Water and Water Pollutants

    EPA Science Inventory

    One goal of monitoring pollutants is to be able to trace the pollutant to its source. Here we review how mixing models using stable isotope information on water and water pollutants can help accomplish this goal. A number of elements exist in multiple stable (non-radioactive) i...

  11. Exposure-Reducing Behaviors among Residents Living near a Coal Ash Storage Site

    ERIC Educational Resources Information Center

    Zierold, Kristina M.; Sears, Clara G.; Brock, Guy N.

    2016-01-01

    Coal ash, a waste product generated from burning coal for energy, is composed of highly respirable particles containing heavy metals, radioactive elements, and polycylic aromatic hydrocarbons. Coal ash is stored in landfills and surface impoundments frequently located near neighborhoods. Fugitive dust from the storage sites exposes neighborhoods,…

  12. Dictionary/handbook of nuclear medicine and clinical imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iturralde, M.P.

    This book covers the following topics: Fundamentals of English medical etymology, Abbreviations, acronyms, symbols, denotations, and signs commonly used or defined in the dictionary, Characteristics of the elements, Characteristics of practicable radioisotopes and of selected radionuclides commonly used in nuclear medicine, Properties and production of radionuclides, Radioactive decay, Radiopharmaceuticals, and Radiation dosimetry.

  13. Technetium: The First Radioelement on the Periodic Table

    ERIC Educational Resources Information Center

    Johnstone, Erik V.; Yates, Mary Anne; Poineau, Frederic; Sattelberger, Alfred P.; Czerwinski, Kenneth R.

    2017-01-01

    The radioactive nature of technetium is discussed using a combination of introductory nuclear physics concepts and empirical trends observed in the chart of the nuclides and the periodic table of the elements. Trends such as the enhanced stability of nucleon pairs, magic numbers, and Mattauch's rule are described. The concepts of nuclear binding…

  14. A reference aerosol for a radon reference chamber

    NASA Astrophysics Data System (ADS)

    Paul, Annette; Keyser, Uwe

    1996-02-01

    The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.

  15. Production and study of radionuclides at the research institute of atomic reactors (NIIAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karelin, E.A.; Gordeev, Y.N.; Filimonov, V.T.

    1995-01-01

    The main works of the Radionuclide Sources and Preparations Department (ORIP) of the Research Institute of Atomic Reactors (NIIAR) are summarized. The major activity of the Radionuclide Sources and Preparations Department (ORIP) is aimed at production of radioactive preparations of trans-plutonium elements (TPE) and also of lighter elements (from P to Ir), manufacture of ionizing radiation sources thereof, and scientific research to develop new technologies. One of the radionuclides that recently has received major attention is gadolinium-153. Photon sources based on it are used in densimeters for diagnostics of bone deseases. The procedure for separating gadolinium and europium, which ismore » currently used at the Research Institute of Atomic Reactors (NILAR), is based on europium cementation with the use of sodium amalgam. The method, though efficient, did not until recently permit an exhaustive removal of radioactive europium from {sup 153}Gd. The authors have thoroughly studied the separation process in semi-countercurrent mode, using citrate solutions. A special attention was given to the composition of europium complex species.« less

  16. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    NASA Astrophysics Data System (ADS)

    Gadelshin, V.; Cocolios, T.; Fedoseev, V.; Heinke, R.; Kieck, T.; Marsh, B.; Naubereit, P.; Rothe, S.; Stora, T.; Studer, D.; Van Duppen, P.; Wendt, K.

    2017-11-01

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  17. Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion

    NASA Astrophysics Data System (ADS)

    Bergmann, V. L.

    Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.

  18. Ultra-Sensitive Elemental Analysis Using Plasmas 4.Application of Inductively Coupled Plasma Mass Spectrometry to the Study of Environmental Radioactivity

    NASA Astrophysics Data System (ADS)

    Yoshida, Satoshi

    Applications of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of long-lived radionuclides in environmental samples were summarized. In order to predict the long-term behavior of the radionuclides, related stable elements were also determined. Compared with radioactivity measurements, the ICP-MS method has advantages in terms of its simple analytical procedures, prompt measurement time, and capability of determining the isotope ratio such as240Pu/239Pu, which can not be separated by radiation. Concentration of U and Th in Japanese surface soils were determined in order to determine the background level of the natural radionuclides. The 235U/238U ratio was successfully used to detect the release of enriched U from reconversion facilities to the environment and to understand the source term. The 240Pu/239Pu ratios in environmental samples varied widely depending on the Pu sources. Applications of ICP-MS to the measurement of I and Tc isotopes were also described. The ratio between radiocesium and stable Cs is useful for judging the equilibrium of deposited radiocesium in a forest ecosystem.

  19. Radioactive release during nuclear accidents in Chernobyl and Fukushima

    NASA Astrophysics Data System (ADS)

    Nur Ain Sulaiman, Siti; Mohamed, Faizal; Rahim, Ahmad Nabil Ab

    2018-01-01

    Nuclear accidents that occurred in Chernobyl and Fukushima have initiated many research interests to understand the cause and mechanism of radioactive release within reactor compound and to the environment. Common types of radionuclide release are the fission products from the irradiated fuel rod itself. In case of nuclear accident, the focus of monitoring will be mostly on the release of noble gases, I-131 and Cs-137. As these are the only accidents have been rated within International Nuclear Events Scale (INES) Level 7, the radioactive release to the environment was one of the critical insights to be monitored. It was estimated that the release of radioactive material to the atmosphere due to Fukushima accident was approximately 10% of the Chernobyl accident. By referring to the previous reports using computational code systems to model the release rate, the release activity of I-131 and Cs-137 in Chernobyl was significantly higher compare to Fukushima. The simulation code also showed that Chernobyl had higher release rate of both radionuclides on the day of accident. Other factors affecting the radioactive release for Fukushima and Chernobyl accidents such as the current reactor technology and safety measures are also compared for discussion.

  20. Monitoring Cs-134 and 137 released by Fukushima Dai-ichi Nuclear Power Plant accident in ground, soil, and stream waters

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Onda, Yuichi; Hada, Manami; Ishwar, Pun; Abe, Yutaka

    2013-04-01

    Due to Fukushima Dai-ichi Nuclear power plant accident occurred in March 2011, large amount of radionuclides was released into the atmosphere and was fallen onto ground by rainfall. Few researches have monitored radioactive cesium dynamics in whole hydrological cycle system such as groundwater, soil water, spring water and stream water. Thus, the purpose of this study is to monitor concentration of radioactive cesium in those waters in time series in the headwaters. We have performed an intensive monitoring at three small mountainous catchments in Yamakiya district, Kawamata town, Fukushima prefecture, locating 35 km northwest from Fukushima Dai-ichi Nuclear Power Plant since June 2011, also we consider the movement of radioactive cesium and its relation with the hydrological cycle.

  1. Determination of Dose from the Disposal of Radioactive Waste Related with TENORM using Residual Radioactivity (RESRAD) Monte Carlo Code

    NASA Astrophysics Data System (ADS)

    lwin, Maung Tin Moe; Kassim, Hassan Abu; Amin, Yusoff Mohd.

    2008-05-01

    The working procedures in the RESRAD for specific evaluations of environmental pollutants are briefly mentioned. The risk of human health associated with Naturally Occurring Radioactive Materials (NORM) who are working in the Malaysian oil and gas industry are analyzed. The sources of NORM and Technologically Enhanced NORM (TENORM) in the oil and gas industry are described. Some measurements for the external and internal effective dose equivalent on the workers will be described. These data are entered into the RESRAD software program and the output reports are taken. Long-term effects of TENORM to the industrial workers are also discussed with graphical illustrations. These results are compared with previous research work within the same field to validate and verify.

  2. Determination of Dose from the Disposal of Radioactive Waste Related with TENORM using Residual Radioactivity (RESRAD) Monte Carlo Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lwin, Maung Tin Moe; Kassim, Hassan Abu; Amin, Yusoff Mohd.

    2008-05-20

    The working procedures in the RESRAD for specific evaluations of environmental pollutants are briefly mentioned. The risk of human health associated with Naturally Occurring Radioactive Materials (NORM) who are working in the Malaysian oil and gas industry are analyzed. The sources of NORM and Technologically Enhanced NORM (TENORM) in the oil and gas industry are described. Some measurements for the external and internal effective dose equivalent on the workers will be described. These data are entered into the RESRAD software program and the output reports are taken. Long-term effects of TENORM to the industrial workers are also discussed with graphicalmore » illustrations. These results are compared with previous research work within the same field to validate and verify.« less

  3. Geochemistry of uranium and thorium and natural radioactivity levels of the western Anatolian plutons, Turkey

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Argyrios; Altunkaynak, Şafak; Koroneos, Antonios; Ünal, Alp; Kamaci, Ömer

    2017-10-01

    Seventy samples from major plutons (mainly granitic) of Western Anatolia (Turkey) have been analyzed by γ-ray spectrometry to determine the specific activities of 238U, 226Ra, 232Th and 40K (Bq/kg). Τhe natural radioactivity ranged up to 264 Bq/kg for 238U, 229.62 Bq/kg for 226Ra, up to 207.32 Bq/kg for 232Th and up to 2541.95 Bq/kg for 40K. Any possible relationship between the specific activities of 226Ra, 238U, 232Th and 40K and some characteristics of the studied samples (age, rock-type, colour, grain size, occurrence, chemical and mineralogical composition) was investigated. Age, major and trace element geochemistry, color, pluton location and mineralogical composition are likely to affect the concentrations of the measured radionuclides. The range of the Th/U ratio was large (0.003-11.374). The latter, along with 226Ra/238U radioactive secular disequilibrium, is also discussed and explained by magmatic processes during differentiation.

  4. The total amounts of radioactively contaminated materials in forests in Fukushima, Japan

    PubMed Central

    Hashimoto, Shoji; Ugawa, Shin; Nanko, Kazuki; Shichi, Koji

    2012-01-01

    There has been leakage of radioactive materials from the Fukushima Daiichi Nuclear Power Plant. A heavily contaminated area (≥ 134, 137Cs 1000 kBq m−2) has been identified in the area northwest of the plant. The majority of the land in the contaminated area is forest. Here we report the amounts of biomass, litter (small organic matter on the surface of the soil), coarse woody litter, and soil in the contaminated forest area. The estimated overall volume and weight were 33 Mm3 (branches, leaves, litter, and coarse woody litter are not included) and 21 Tg (dry matter), respectively. Our results suggest that removing litter is an efficient method of decontamination. However, litter is being continuously decomposed, and contaminated leaves will continue to fall on the soil surface for several years; hence, the litter should be removed promptly but continuously before more radioactive elements are transferred into the soil. PMID:22639724

  5. SEPARATION OF RADIOACTIVE COLUMBIUM TRACER

    DOEpatents

    Glendenin, L.E.; Gest, H.

    1958-08-26

    A process is presented for the recovery of radioactive columbium from solutions containing such columbium together with radioactive tellurium. The columbium and tellurium values are separated from such solutions by means of an inorganic oxide carrier precipitate, such as MnO/sub 2/. This oxide carrier precipitate and its associated columbium and telluriuan values are then dissolved in an aqueous acidic solution and nonradioactive tellurium, in an ionic form, is then introduced into such solution, for example in the form of H/sub 2/TeO/sub 3/. The tellurium present in the solution is then reduced to the elemental state and precipitates, and is then separated from the supernataat solution. A basic acetate precipitate is formed in the supernatant and carries the remaining columblum values therefrom. After separation, this basic ferric acetate precipitate is dissolved, and the ferric ions are removed by means of an organic solvent extraction process utilizing ether. The remaining solution contains carrier-free columbium as its only metal ion.

  6. Double differential light charged particle emission cross sections for some structural fusion materials

    NASA Astrophysics Data System (ADS)

    Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup

    2017-09-01

    In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.

  7. Radioactivity in trinitite six decades later.

    PubMed

    Parekh, Pravin P; Semkow, Thomas M; Torres, Miguel A; Haines, Douglas K; Cooper, Joseph M; Rosenberg, Peter M; Kitto, Michael E

    2006-01-01

    The first nuclear explosion test, named the Trinity test, was conducted on July 16, 1945 near Alamogordo, New Mexico. In the tremendous heat of the explosion, the radioactive debris fused with the local soil into a glassy material named Trinitite. Selected Trinitite samples from ground zero (GZ) of the test site were investigated in detail for radioactivity. The techniques used included alpha spectrometry, high-efficiency gamma-ray spectrometry, and low-background beta counting, following the radiochemistry for selected radionuclides. Specific activities were determined for fission products (90Sr, 137Cs), activation products (60Co, 133Ba, 152Eu, 154Eu, 238Pu, 241Pu), and the remnants of the nuclear fuel (239Pu, 240Pu). Additionally, specific activities of three natural radionuclides (40K, 232Th, 238U) and their progeny were measured. The determined specific activities of radionuclides and their relationships are interpreted in the context of the fission process, chemical behavior of the elements, as well as the nuclear explosion phenomenology.

  8. Method of determining whether radioactive contaminants are inside or outside a structure

    DOEpatents

    Lattin, Kenneth R.

    1977-01-01

    A measure is obtained of the relative quantities of radioactive material inside and outside a structure such as a pipe by obtaining two spectra of gamma radiation on a dummy structure of the same shape and composition. A first spectrum is obtained with a quantity of the radioactive element to be measured located inside the structure and a second spectrum is obtained with a quantity of the same contaminant located outside the structure. The two spectra are normalized to the same equivalent value in a portion of the spectrum that does not reflect the presence of gamma rays resulting from Compton scattering in the structure. Comparison of that portion of the spectra obtained where Compton scattering is a factor gives a measure of the relative amounts of contaminants inside and outside the structure on a spectrum obtained from a test structure. The invention may also be practiced by obtaining a plurality of spectra at varying known concentrations inside and outside the dummy structure.

  9. TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials)

    MedlinePlus

    ... and Titanium Mining Wastes Rare Earths Mining Wastes Uranium Mining Wastes Copper Mining and Production Wastes Bauxite and Alumina Production Wastes Energy production Oil and Gas Production Wastes Coal Combustion Residuals ​Water ...

  10. Radionuclide Basics: Thorium

    EPA Pesticide Factsheets

    Thorium is a naturally occurring radioactive metal found at trace levels in soil, rocks, plants and animals. Thorium is used very little in industry, but can be found in heat-resistant alloys and paints and optical lenses.

  11. Management of Naturally Occurring Radioactive Materials (NORM) in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baweja, Anar S.; Tracy, Bliss L.

    2008-08-07

    In Canada, nuclear and radiological regulatory responsibilities are shared between the provinces/territories and the federal government. The Canadian Nuclear Safety Commission (CNSC) regulates nuclear fuel cycle materials and man-made radionuclides under the Nuclear Safety and Control Act (2000). The provinces and territories regulate NORM arising from industrial activities, not involving the nuclear fuel cycle materials. Present guideline--Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)--was published in 2000 in order to bring uniformity to the management of NORM-related procedures to provide adequate radiation protection for workers and the general public. The basic premise of these guidelines is thatmore » the NORM-related activities should not be posing any greater hazard than those activities regulated under the Nuclear Safety and Control Act; these concepts are described in this paper.« less

  12. Microbial impacts on 99mTc migration through sandstone under highly alkaline conditions relevant to radioactive waste disposal.

    PubMed

    Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R

    2017-01-01

    Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.

  13. Fukushima Media Involvement: Lessons Learned and Challenges - 13261

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Geoffrey L.; Johnson, Wayne L.; Koller, Greg L.

    Only days after the Fukushima nuclear reactor disaster on March 11, 2011, the DOE's Pacific Northwest National Laboratory, or PNNL, found itself in a maelstrom of media attention following its announcement of the detection of minute levels of radioactive material originating from the damaged reactors 4,500 miles away. Because PNNL develops state-of-the-art ultra-sensitive radionuclide detection and monitoring systems for national security applications, and has some of the equipment operating on its Richland campus, there was little surprise when one of these sophisticated systems led PNNL to be the first to detect measurable radionuclides in the United States. On Wednesday, Marchmore » 16, 2011, that system detected minuscule levels of short-lived radioactive xenon, a telltale element derived from either weapons testing or a major reactor disruption. Immediately after the detection was announced, a flurry of inquiries nearly overwhelmed staff as governments, scientific organizations, the general public, and reporters struggled to understand and estimate what impacts this disaster might have on health and environment. Over the course of about three weeks, PNNL's News and Media Relations staff and its scientists and engineers responded to more than 100 requests for information, and engaged in dozens of personal interviews with international, national, regional, and local media. While many of the interviews and resulting stories were accurate and well done, not all communication went flawlessly. In the midst of chaos and confusion, which are part of any significant crisis, hiccoughs are sure to occur. Addressed here is 'the rest of the story'. (authors)« less

  14. Evaluating the long-term hydrology of an evapotranspiration-capillary barrier with a 1000 year design life

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Fred

    2016-06-01

    A surface barrier is a commonly used technology for isolation of subsurface contaminants. Surface barriers for isolating radioactive waste are expected to perform for centuries to millennia, yet there are very few data for field-scale surface barriers for periods approaching a decade or longer. The Prototype Hanford Barrier (PHB) with a design life of 1000 years was constructed over an existing radioactive waste site in 1994 to demonstrate its long-term performance. The primary element of the PHB is an evapotranspiration-capillary (ETC) barrier in which precipitation water is stored in a fine-textured soil layer and later released to the atmosphere via evapotranspiration. To address the barrier performance under extreme conditions, this study included an enhanced precipitation stress test from 1995 to 1997 to determine barrier response to extreme precipitation events. During this period a 1000 year 24 h return rainstorm was simulated in March every year. The loss of vegetation on barrier hydrology was tested with a controlled fire test in 2008. The 19 year monitoring record shows that the store-and-release mechanism worked as well as or better than the design criterion. Average drainage from the ETC barrier amounted to an average of 0.005 mm yr-1, which is well below the design criterion of 0.5 mm yr-1. After a simulated wildfire, the naturally reestablished vegetation and increased evaporation combined to release the stored water and summer precipitation to the atmosphere such that drainage did not occur in the 5 years subsequent to the fire.

  15. Niagara Falls Storage Site environmental report for calendar year 1992, 1397 Pletcher Road, Lewiston, New York. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Niagara Falls Storage Site (NFSS) and provides the results for 1992. From 1944 to the present, the primary use of NFSS has been storage of radioactive residues produced as a by-product of uranium production. All onsite areas of residual radioactivity above guidelines have been remediated. Materials generated during remediation are stored onsite in the 4-ha (10-acre) waste containment structure (WCS). The WCS is a clay-lined, clay-capped, and grass-covered storage pile. The environmental surveillance program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uraniummore » and radium-226 concentrations in surface water, sediments, and groundwater. Several chemical parameters, including seven metals, are also routinely measured in groundwater. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Results of environmental monitoring during 1992 indicate that levels of the parameters measured were in compliance with all but one requirement: Concentrations of iron and manganese in groundwater were above NYSDEC groundwater quality standards. However, these elements occur naturally in the soils and groundwater associated with this region. In 1992 there were no environmental occurrences or reportable quantity releases.« less

  16. Review of high-sensitivity Radon studies

    NASA Astrophysics Data System (ADS)

    Wojcik, M.; Zuzel, G.; Simgen, H.

    2017-10-01

    A challenge in many present cutting-edge particle physics experiments is the stringent requirements in terms of radioactive background. In peculiar, the prevention of Radon, a radioactive noble gas, which occurs from ambient air and it is also released by emanation from the omnipresent progenitor Radium. In this paper we review various high-sensitivity Radon detection techniques and approaches, applied in the experiments looking for rare nuclear processes happening at low energies. They allow to identify, quantitatively measure and finally suppress the numerous sources of Radon in the detectors’ components and plants.

  17. Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques

    NASA Astrophysics Data System (ADS)

    Jernström, J.; Eriksson, M.; Simon, R.; Tamborini, G.; Bildstein, O.; Marquez, R. Carlos; Kehl, S. R.; Hamilton, T. F.; Ranebo, Y.; Betti, M.

    2006-08-01

    Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low 240Pu/ 239Pu atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of 137Cs ( 239 + 240 Pu/ 137Cs activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average 241Am/ 239Pu atomic ratio in the six particles was 3.7 × 10 - 3 ± 0.2 × 10 - 3 (February 2006), which indicated that plutonium in the different particles had similar age.

  18. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravalli, Rajagopal N., E-mail: aravalli@umn.edu; Park, Chang W.; Steer, Clifford J., E-mail: steer001@umn.edu

    The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed amore » series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.« less

  19. Hemispheric dichotomy in lithosphere growth on Mars caused by differences in crustal composition

    NASA Astrophysics Data System (ADS)

    Thiriet, M.; Michaut, C.; Breuer, D.

    2016-12-01

    The surface dichotomy is the most striking feature of Mars. The Northern hemisphere is covered by extensive lava plains and is lower in altitude than the South which has higher and sharper reliefs and is more craterized and older than the North. Recent studies have suggested that this bimodal distribution of altitudes could be due to the existence of a buried felsic component similar to the terrestrial continental crust in the Southern hemisphere. The presence of a large buried component of evolved composition might imply an enrichment in incompatible radioactive elements. The thermal surface properties of the two hemispheres also seem to differ; the South shows fine-particulate materials probably resulting from explosive volcanism, while the Northern lava flows are more consolidated and characterized by a higher thermal conductivity. Using a parameterized convection model with a stagnant lid, we computed the thermal evolution and lithosphere growth of Mars accounting for potential differences in the thermal parameters characterizing the Northern and Southern crusts. We find that a stronger enrichment in radioactive elements and a lower surface conductivity in the South can cause a significant difference in elastic thickness of the lithosphere in between both hemispheres, with an elastic lithosphere thicker in the North by several tens of kilometers today. This result might explain the large and still unexplained difference in lithosphere elastic thickness estimated below the two polar caps, which is about 300 km in the North and only 140 km in the South. Assuming a crust in the Northern hemisphere with a thickness of 40 km, a density of 3000 kg/m3 and an enrichment factor in radioactive elements of 5 relative to the primitive mantle, Monte Carlo inversions show that the Southern crust requires a thickness of >60 km, a density between 2700 and 3000 kg/m3 and an enrichment factor of 13-20 to explain such a difference in lithosphere elastic thickness.

  20. Airborne and ground reconnaissance of part of the syenite complex near Wausau, Marathon county, Wisconsin

    USGS Publications Warehouse

    Vickers, R.C.

    1955-01-01

    Airborne and ground reconnaissance for radioactive minerals in part of the syenite complex near Wausau, Marathon county, Wis., found 12 radioactive mineral localities. The rocks in the area are of Precambrian age and consist of syenite and nepheline syenite, which have intruded older granite, greenstone, quartzite, and argillite. There are very few outcrops, and much of the bedrock is deeply weathered and covered by residual soil. Thorium-bearing zircon pegatite float was found within the area of syenite and nepheline syenite at four localities. Reddish-brown euhedral to subeuhedral crystals of well-zoned zircon (variety cyrtolite) comprise more than 40 percent of some of the specimens. The radioactive mineral at four localities outside the area of syneites was identified as thorogummite, which occurred in nodular masses in residual soil. Alinement of the thorogummite float and associated radioactivity suggests that the thorogummite has resulted from weathering of narrow veins or pegmatites containing thorium-bearing minerals. Unidentified thorium-bearing minerals were found at three localities, and a specimen of allanite weighing about 2 pounds was found at one locality. Shallow trenches at two of the largest radioactivity anomalies showed that the radioactive material extended down into weathered bedrock. The occurrences might warrant additional physical exploration should there be sufficient demand for thorium. Further reconnaissance in the area would probably result in the discovery of additional occurrences.

  1. Radioactive rare-earth deposit at Scrub Oaks mine, Morris County, New Jersey

    USGS Publications Warehouse

    Klemic, Harry; Heyl, A.V.; Taylor, Audrey R.; Stone, Jerome

    1959-01-01

    A deposit of rare-earth minerals in the Scrub Oaks iron mine, Morris County, N. J., was mapped and sampled in 1955. The rare-earth minerals are mainly in coarse-grained magnetite ore and in pegmatite adjacent to it. Discrete bodies of rare-earth-bearing magnetite ore apparently follow the plunge of the main magnetite ore body at the north end of the mine. Radioactivity of the ore containing rare earths is about 0.2 to 0.6 mllliroentgens per hour. The principal minerals of the deposit are quartz, magnetite, hematite, albiteoligoclase, perthite and antiperthite. Xenotime and doverite aggregates and bastnaesite with intermixed leucoxene are the most abundant rare-earth minerals, and zircon, sphene, chevkinite, apatite, and monazite are of minor abundance in the ore. The rare-earth elements are partly differentiated into cerium-rich bastnaesite, chevkinite, and monazite, and yttrium-rich xenotime and doverite. Apatite, zircon, and sphene contain both cerium and yttrium group earths. Eleven samples of radioactive ore and rock average 0.009 percent uranium, 0.062 percent thorium, 1.51 percent combined rare-earth oxides including yttrium oxide and 24.8 percent iron. Scatter diagrams of sample data show a direct correlation between equivalent uranium, uranium, thorium, and combined rare^ earth oxides. Both cerium- and yttrium-group earths are abundant in the rare-earth minerals. Radioactive magnetite ore containing rare-earth minerals probably formed as a variant of the magnetite mineralization that produced the main iron ore of the Scrub Oaks deposit. The rare-earth minerals and the iron ore were deposited contemporaneously. Zircon crystals, probably deposited at the same time, have been determined by the Larsen method to be about 550 to 600 million years old (late Precambrian age). Uranium, thorium, and rare-earth elements are potential byproducts of iron in the coarse-grained magnetite ore.

  2. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy

    NASA Astrophysics Data System (ADS)

    Spinato, Cinzia; Perez Ruiz de Garibay, Aritz; Kierkowicz, Magdalena; Pach, Elzbieta; Martincic, Markus; Klippstein, Rebecca; Bourgognon, Maxime; Wang, Julie Tzu-Wen; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Ballesteros, Belén; Tobias, Gerard; Bianco, Alberto

    2016-06-01

    In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07923c

  3. Quantitative comparison between PGNAA measurements and MCNP calculations in view of the characterization of radioactive wastes in Germany and France

    NASA Astrophysics Data System (ADS)

    Mauerhofer, E.; Havenith, A.; Carasco, C.; Payan, E.; Kettler, J.; Ma, J. L.; Perot, B.

    2013-04-01

    The Forschungszentrum Jülich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA) [1]. The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of some elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.

  4. On the use of X-ray absorption spectroscopy to elucidate the structure of lutetium adenosine mono- and triphosphate complexes.

    PubMed

    Mostapha, S; Berthon, C; Fontaine-Vive, F; Gaysinski, M; Guérin, L; Guillaumont, D; Massi, L; Monfardini, I; Solari, P L; Thomas, O P; Charbonnel, M C; Den Auwer, C

    2014-02-01

    Although the physiological impact of the actinide elements as nuclear toxicants has been widely investigated for half a century, a description of their interactions with biological molecules remains limited. It is however of primary importance to better assess the determinants of actinide speciation in cells and more generally in living organisms to unravel the molecular processes underlying actinide transport and deposition in tissues. The biological pathways of this family of elements in case of accidental contamination or chronic natural exposure (in the case of uranium rich soils for instance) are therefore a crucial issue of public health and of societal impact. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, phosphate derivatives are considered as probable targets of these cations. Among them, nucleotides and in particular adenosine mono- (AMP) and triphosphate (ATP) nucleotides occur in more chemical reactions than any other compounds on the earth's surface, except water, and are therefore critical target molecules. In the present study, we are interested in trans-plutonium actinide elements, in particular americium and curium that are more rarely considered in environmental and bioaccumulation studies than early actinides like uranium, neptunium and plutonium. A first step in this strategy is to work with chemical analogues like lanthanides that are not radioactive and therefore allow extended physical chemical characterization to be conducted that are difficult to perform with radioactive materials. We describe herein the interaction of lutetium(III) with adenosine AMP and ATP. With AMP and ATP, insoluble amorphous compounds have been obtained with molar ratios of 1:2 and 1:1, respectively. With an excess of ATP, with 1:2 molar ratio, a soluble complex has been obtained. A combination of spectroscopic techniques (IR, NMR, ESI-MS, EXAFS) together with quantum chemical calculations has been implemented in order to assess the lutetium coordination arrangement for the two nucleotides. In all the complexes described in the article, the lutetium cation is coordinated by the phosphate groups of the nucleotide plus additional putative water molecules with various tridimensional arrangements. With AMP 1:2 and ATP 1:1 solid-state compounds, polynuclear complexes are assumed to be obtained. In contrast, with ATP 1:2 soluble compound, the Lu coordination sphere is saturated by two ATP ligands, and this favors the formation of a mononuclear complex. In order to further interpret the EXAFS data obtained at the Lu LIII edge, model structures have been calculated for the 1:1 and 1:2 ATP complexes. They are discussed and compared to the EXAFS best fit metrical parameters.

  5. Evidence of technetium and iodine release from a sodalite-bearing ceramic waste form

    DOE PAGES

    Neeway, James J.; Qafoku, Nikolla P.; Williams, Benjamin D.; ...

    2015-12-31

    We proposed sodalites as a possible host of certain radioactive species, specifically 99Tc and 129I, which may be encapsulated into the cage structure of the mineral. To demonstrate the ability of this framework silicate mineral to encapsulate and immobilize 99Tc and 129I, single-pass flow-through (SPFT) tests were conducted on a sodalite-bearing multi-phase ceramic waste form produced through a steam reforming process. We produced two samples made using a steam reformer samples using nonradioactive I and Re (as a surrogate for Tc), while a third sample was produced using actual radioactive tank waste containing Tc and added Re. One of themore » non-radioactive samples was produced with an engineering-scale steam reformer while the other non-radioactive sample and the radioactive sample were produced using a bench-scale steam reformer. For all three steam reformer products, the similar steady-state dilute-solution release rates for Re, I, and Tc at pH (25 C) 9 and 40 C were measured. However, it was found that the Re, I, and Tc releases were equal or up to 4.5x higher compared to the release rates of the network-forming elements, Na, Al, and Si. Moreover, the similar releases of Re and Tc in the SPFT test, and the similar time-dependent shapes of the release curves for samples containing I, suggest that Re, Tc, and I partition to the sodalite minerals during the steam reforming process.« less

  6. Evaluation of americium-241 toxicity influence on the microbial growth of organic wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takehiro Marumo, Julio; Padua Ferreira, Rafael Vicente de; Keiko Isiki, Vera Lucia

    2007-07-01

    Available in abstract form only. Full text of publication follows: Since the licenses for using radioactive sources in radioactive lightning rods were lifted by the Brazilian national nuclear authority, in 1989, the radioactive devices have been replaced by Franklin type and collected as radioactive waste. However, only 20 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission. This situation causes concern, due to, first, the possibility of the rods being disposed as domestic waste, and second, the americium, the most commonly employed radionuclide, is classified as a high-toxicity element. In the present study, Am-241more » migration experiments were performed by a lysimeter system, in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Besides the risk evaluation, it is important to know the mechanism of the Am-241 release or retention in waste as well as its influence in the waste decomposition processes. Many factors are involved, but microorganisms present in the waste play an important role in its degradation, which control the physical and chemical processes. The objective of this work was to evaluate the Am-241 influence on the microbial population by counting number of cells in lysimeters leachate. Preliminary results suggest that americium may influence significantly the bacteria growth in organic waste, evidenced by culture under aerobiosis and an-aerobiosis and the antimicrobial resistance test. (authors)« less

  7. Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: a new nuclear disaster about to happen?

    PubMed

    Evangeliou, Nikolaos; Balkanski, Yves; Cozic, Anne; Hao, Wei Min; Møller, Anders Pape

    2014-12-01

    Radioactive contamination in Ukraine, Belarus and Russia after the Chernobyl accident left large rural and forest areas to their own fate. Forest succession in conjunction with lack of forest management started gradually transforming the landscape. During the last 28 years dead wood and litter have dramatically accumulated in these areas, whereas climate change has increased temperature and favored drought. The present situation in these forests suggests an increased risk of wildfires, especially after the pronounced forest fires of 2010, which remobilized Chernobyl-deposited radioactive materials transporting them thousand kilometers far. For the aforementioned reasons, we study the consequences of different forest fires on the redistribution of (137)Cs. Using the time frequency of the fires that occurred in the area during 2010, we study three scenarios assuming that 10%, 50% and 100% of the area are burnt. We aim to sensitize the scientific community and the European authorities for the foreseen risks from radioactivity redistribution over Europe. The global model LMDZORINCA that reads deposition density of radionuclides and burnt area from satellites was used, whereas risks for the human and animal population were calculated using the Linear No-Threshold (LNT) model and the computerized software ERICA Tool, respectively. Depending on the scenario, whereas between 20 and 240 humans may suffer from solid cancers, of which 10-170 may be fatal. ERICA predicts insignificant changes in animal populations from the fires, whereas the already extreme radioactivity background plays a major role in their living quality. The resulting releases of (137)Cs after hypothetical wildfires in Chernobyl's forests are classified as high in the International Nuclear Events Scale (INES). The estimated cancer incidents and fatalities are expected to be comparable to those predicted for Fukushima. This is attributed to the fact that the distribution of radioactive fallout after the wildfires occurred to the intensely populated Western Europe, whereas after Fukushima it occurred towards the Pacific Ocean. The situation will be exacerbated near the forests not only due to the expected redistribution of refractory radionuclides (also trapped there), but also due to the nutritional habits of the local human and animal population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,800 square-mile Southern Sierra study unit (SOSA) was investigated in June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Southern Sierra study was designed to provide a spatially unbiased assessment of raw ground-water quality within SOSA, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from fifty wells in Kern and Tulare Counties. Thirty-five of the wells were selected using a randomized grid-based method to provide statistical representation of the study area, and fifteen were selected to evaluate changes in water chemistry along ground-water flow paths. The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected for approximately one-eighth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control information resulted in censoring of less than 0.2 percent of the data collected for ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs and pesticides were detected in less than one-third of the grid wells, and all detections in samples from SOSA wells were below health-based thresholds. All detections of trace elements and nutrients in samples from SOSA wells were below health-based thresholds, with the exception of four detections of arsenic that were above the USEPA maximum contaminant level (MCL-US) and one detection of boron that was above the CDPH notification level (NL-CA). All detections of radioactive constituents were below health-based thresholds, although four samples had activities of radon-222 above the proposed MCL-US. Most of the samples from SOSA wells had concentrations of major elements, total dissolved solids, and trace elements below the non-enforceable thresholds set for aesthetic concerns. A few samples contained iron, manganese, or total dissolved solids at concentrations above the SMCL-CA thresholds.

  9. Radioactivity Registered With a Small Number of Events

    NASA Astrophysics Data System (ADS)

    Zlokazov, Victor; Utyonkov, Vladimir

    2018-02-01

    The synthesis of superheavy elements asks for the analysis of low statistics experimental data presumably obeying an unknown exponential distribution and to take the decision whether they originate from one source or have admixtures. Here we analyze predictions following from non-parametrical methods, employing only such fundamental sample properties as the sample mean, the median and the mode.

  10. Spatial Variation and Assessment of Heavy Metal and Radioactive Risk in Farmland around a Retired Uranium Mine

    NASA Astrophysics Data System (ADS)

    Liang, Jie; Shi, Chen-hao; Zeng, Guang-ming; Zhong, Min-zhou; Yuan, Yu-jie

    2017-07-01

    In recent years, heavy metal contamination in the environment has been attracted worldwide attention due to their toxicity, persistence,extensive sources and non-biodegradable properties. We herein investigate variation trend and risk of heavy metal and radiation distribution in the former mine stope, former mineral ore stockyard, and mine road with surface soils of a retired uranium mine in the mid-south of China. The mean concentrations (mg/kg) of Pb,Cd,Cu,Zn,As,Hg,Cr,Mn,Ni,U, and 232Th were analyzed according to the corresponding background values in Hunan, China. The Geo-accumulation index (Igeo ) were used for the assessment of pollution level of heavy metals and the radioactive elements of U and 232Th. Then, Pollution load index (PLI) and GIS techniquewere integrated to assess spatial distribution of heavy metal contamination and radioactive contamination. Results confirmed that three areas in the retired uranium mine was a primary source of pollution, which showed anthropogenic origin mainly from agricultural runoff, hydrometallurgy from chemical industries, radioactive tailings, and electroplating industriesfinally drained into Zishui River and Xiangjiang River. Based on the actual situation, some suggestions were put forward for the treatment of the retired uranium mine in conclusion.

  11. Heavy Metals and Radioactivity Reduction from Acid Mine Drainage Lime Neutralized Sludge

    NASA Astrophysics Data System (ADS)

    Mashifana, T.; Sithole, N.

    2018-03-01

    The worldwide known treatment processes of acid mine drainage result into the formation of hydrous ferric oxides that is amorphous, poorly crystalline and into the generation of hazardous voluminous sludge posing threat to the environment. Applicable treatment technologies to treat hazardous solid material and produce useful products are limited and in most cases nonexistence. A chemical treatment process utilizing different reagents was developed to treat hazardous acid mine drainage (AMD) sludge with the objectives to conduct radioactivity assessment of the sludge generated from lime treatment process and determine the reagent that provides the best results. Leaching with 0.5 M citric acid, 0.4 M oxalic acid, 0.5 M sodium carbonate and 0.5 M sodium bicarbonate was investigated. The leaching time applied was 24 hours at 25 °C. The characterization of the raw AMD revealed that the AMD sludge from lime treatment process is radioactive. The sludge was laden with radioactive elements namely, 238U, 214Pb, 226Ra, 232Th, 40K and 214Bi. 0.5 M citric acid provided the best results and the hazardous contaminants were significantly reduced. The constituents in the sludge after treatment revealed that there is a great potential for the sludge to be used for other applications such as building and construction.

  12. Study of Natural Radioactivity, Radon Exhalation Rate and Radiation Doses in Coal and Flyash Samples from Thermal Power Plants, India

    NASA Astrophysics Data System (ADS)

    Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B. K.; Sapra, B. K.; Kumar, Rajesh

    Coal is one of the most important source used for electrical power generation. Its combustion part known as fly ash is used in the manufacturing of bricks, sheets, cement, land filling etc. Coal and its by-products have significant amounts of radionuclide's including uranium, thorium which is the ultimate source of the radioactive gas radon and thoron respectively. Radiation hazard from airborne emissions of coal-fired power plants have been cited as possible causes of health in environmental. Assessment of the radiation exposure from coal burning is critically dependent on the concentration of radioactive elements in coal and in the fly ash. In the present study, samples of coal and flyash were collected from Rajghat Power Plant and Badarpur Thermal Power Plant, New Delhi, India. Radon exhalation is important parameter for the estimation of radiation risk from various materials. Solis State Nuclear Track Detector based sealed Can Technique (using LR-115 type II) has been used for measurement radon exhalation rate. Also accumulation chamber based Continuous Radon Monitor and Continuous Thoron Monitor have been used for radon masss exhalation and thoron surface exhalation rate respectively. Natural radioactivity has been measured using a low level NaI(Tl) detector based on gamma ray spectrometry.

  13. Nuclear sensor signal processing circuit

    DOEpatents

    Kallenbach, Gene A [Bosque Farms, NM; Noda, Frank T [Albuquerque, NM; Mitchell, Dean J [Tijeras, NM; Etzkin, Joshua L [Albuquerque, NM

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  14. Geophysical Investigations of a Proterozoic Carbonatite Terrane, southeast Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Miller, D. M.; Peacock, J.; Miller, J. S.

    2015-12-01

    One of the world's largest rare-earth element-rich carbonatite deposits is located in the eastern Mojave Desert at Mountain Pass, California. The eastern Mojave Desert carbonatite terrane consists of a ~1.7 Ga gneiss and schist rocks that are host to a ~1.417 Ga (Premo, 2013) ultrapotassic intrusive suite (shonkinite, syenite, and granite) and a ~1.375 Ga (DeWitt, 1983) carbonatite deposit . Regional geophysical data indicate that this carbonatite terrane occurs within a north-northwest trending ~1-km wide bench in a gravity high and along the eastern edge of a prominent magnetic high in the eastern Clark Mountain Range. To improve our understanding of the geophysical and structural framework of the eastern Mojave carbonatite terrane, we collected over 2,300 gravity stations and over 640 physical rock property samples. Carbonatite rocks typically have distinct gravity, magnetic, and radioactive signatures because they are relatively dense, often contain magnetite, and are commonly enriched in thorium and/or uranium. Contrary to this trend, our results show that the carbonatite deposit is essentially nonmagnetic with an average susceptibility of 0.18 x 10-3 SI (n=31), and the ultrapotassic intrusive suite is very weakly magnetic with an average susceptibility of 2.0 x 10-3 SI (n=36). However, these rocks are found along a steep gradient of a prominent aeromagnetic anomaly. The lack of magnetic signature from the rocks of the eastern Mojave carbonatite terrane suggests alteration of magnetic minerals. This is corroborated by its location within a broader alteration zone and observed magnetic low. If so, such an alteration event occurred after emplacement of the carbonatite deposit, which likely remobilized rare earth elements in the surrounding rocks. Further, an alteration event is consistent with geology, high rare-earth element concentration, and unusual geochemistry of the carbonatite deposit. Temporal constraints (DeWitt, 1987; Premo, 2013) also suggest alteration of the carbonatite, as the apparent age of the carbonatite deposit is ~40 Ma younger than the associated, and likely contemporaneous ultrapotassic intrusive suite.

  15. Chemical purification of lanthanides for low-background experiments

    NASA Astrophysics Data System (ADS)

    Boiko, R. S.

    2017-10-01

    There are many potentially active isotopes among the lanthanide elements which are possible to use for low-background experiments to search for double β decay, dark matter, to investigate rare α and β decays. These kind of experiments require very low level of radioactive contamination, but commercially available compounds of lanthanides are always contamined by uranium, thorium, radium, potassium, etc. A simple chemical method based on liquid-liquid extraction has been applied for the purification of CeO2, Nd2O3 and Gd˙2O˙3 from radioactive traces. Detailed schemes of purification procedure are described. Measurements by using HPGe spectrometry demonstrate high efficiency in K, Ra, Th, U contaminations reduction on at least one order of magnitude.

  16. FISSION PRODUCT METABOLISM AND RESPONSE IN LABORATORY AND DOMESTIC ANIMALS AND PLANNING STUDY FOR EVALUATION OF RADIOACTIVE CONTAMINATION OF THE FOOD CHAIN. Progress Report April 1, 1961-January 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comar, C.L.; Wasserman, R.H.; Lengemann, F.W.

    Studies are reported of the absorption, transport, and movement of Ca and Sr across membranes and intestinal tissue, and of the skeletal uptake and urinary excretion of these two elements. The behavior of lactose-1-C/sup 14/ within the mucosal epithelium of the ileum is described. Radioiodine metabolism is studied. The distribution of Cs and Sr in milk products is investigated. Factors sffecting the retention and metabolism of Cs/sup 137/ are analyzed. The construction and description of a whole-body counting facility is given. Examinations of radioactive contamination of the food chain are outlined. (T.F.H.)

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, V.N.

    This book is the first of its kind to be published in the Soviet Union. It consists of two parts. The first part contains three chaptersi The first chapter discusses the causes of radioactive elements contained in water. The second chapter deals with the problem of various types of natural radioactive water. The third chapter is devoted to hydrogeological conditions which lead to the formation of uranium deposits. The second part consists of six chapters dealing with radiohydrogeological methods of investigation. The book contains both theoretical and a large aumber of experimental data which were selected by the authors onmore » the strength of their many years of experience. It is a drawback of this book that the text was not sufficiently well revised and corrected. (TCO)« less

  18. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essentialmore » elements of a feed delivery strategy that drives the Hanford clean-up mission.« less

  19. Radioactive waste management in France: safety demonstration fundamentals.

    PubMed

    Ouzounian, G; Voinis, S; Boissier, F

    2012-01-01

    The main challenge in development of the safety case for deep geological disposal is associated with the long periods of time over which high- and intermediate-level long-lived wastes remain hazardous. A wide range of events and processes may occur over hundreds of thousands of years. These events and processes are characterised by specific timescales. For example, the timescale for heat generation is much shorter than any geological timescale. Therefore, to reach a high level of reliability in the safety case, it is essential to have a thorough understanding of the sequence of events and processes likely to occur over the lifetime of the repository. It then becomes possible to assess the capability of the repository to fulfil its safety functions. However, due to the long periods of time and the complexity of the events and processes likely to occur, uncertainties related to all processes, data, and models need to be understood and addressed. Assessment is required over the lifetime of the radionuclides contained in the radioactive waste. Copyright © 2012. Published by Elsevier Ltd.

  20. Regulation of naturally occurring radioactive materials in Australia.

    PubMed

    Jeffries, Cameron; Akber, Riaz; Johnston, Andrew; Cassels, Brad

    2011-07-01

    In order to promote uniformity between jurisdictions, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) has developed the National Directory for Radiation Protection, which is a regulatory framework that all Australian governments have agreed to adopt. There is a large and diverse range of industries involved in mining or mineral processing, and the production of fossil fuels in Australia. Enhanced levels of naturally occurring radionuclides can be associated with mineral extraction and processing, other industries (e.g. metal recycling) and some products (e.g. plasterboard). ARPANSA, in conjunction with industry and State regulators, has undertaken a review and assessment of naturally occurring radioactive material (NORM) management in Australian industries. This review has resulted in guidance on the management of NORM that will be included in the National Directory for Radiation Protection. The first NORM safety guide provides the framework for NORM management and addresses specific NORM issues in oil and gas production, bauxite, aluminium and phosphate industries. Over time further guidance material for other NORM-related industries will be developed. This presentation will provide an overview of the regulatory approach to managing NORM industries in Australia.

  1. The ISPM experiment for spectral, composition and anistropy measurements of charged particles at low energie

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1983-01-01

    The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.

  2. Environmental hazards and distribution of radioactive black sand along the Rosetta coastal zone in Egypt using airborne spectrometric and remote sensing data.

    PubMed

    Kaiser, M F; Aziz, A M; Ghieth, B M

    2014-11-01

    High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan.

    PubMed

    Lind, O C; Stegnar, P; Tolongutov, B; Rosseland, B O; Strømman, G; Uralbekov, B; Usubalieva, A; Solomatina, A; Gwynn, J P; Lespukh, E; Salbu, B

    2013-09-01

    During 1949-1967, a U mine, a coal-fired thermal power plant and a processing plant for the extraction of U from the produced ash were operated at the Kadji Sai U mining site in Tonsk district, Issyk-Kul County, Kyrgyzstan. The Kadji Sai U legacy site represents a source of contamination of the local environment by naturally occurring radionuclides and associated trace elements. To assess the environmental impact of radionuclides and trace metals at the site, field expeditions were performed in 2007 and 2008 by the Joint collaboration between Norway, Kazakhstan, Kyrgyzstan, Tajikistan (JNKKT) project and the NATO SfP RESCA project. In addition to in situ gamma and Rn dose rate measurements, sampling included at site fractionation of water and sampling of water, fish, sediment, soils and vegetation. The concentrations of radionuclides and trace metals in water from Issyk-Kul Lake were in general low, but surprisingly high for As. Uptake of U and As was also observed in fish from the lake with maximum bioconcentration factors for liver of 1.6 and 75, respectively. The concentrations of U in water within the Kadji Sai area varied from 0.01 to 0.05 mg/L, except for downstream from the mining area where U reached a factor of 10 higher, 0.2 mg/L. Uranium concentrations in the drinking water of Kadji Sai village were about the level recommended by the WHO for drinking water. The (234)U/(238)U activity ratio reflected equilibrium conditions in the mining pond, but far from equilibrium outside this area (reaching 2.3 for an artesian well). Uranium, As and Ni were mainly present as low molecular mass (LMM, less than 10 kDa) species in all samples, indicating that these elemental species are mobile and potentially bioavailable. The soils from the mining sites were enriched in U, As and trace metals. Hot spots with elevated radioactivity levels were easily detected in Kadji Sai and radioactive particles were observed. The presence of particles carrying significant amount of radioactivity and toxic trace elements may represent a hazard during strong wind events (wind erosion). Based on sequential extractions, most of the elements were strongly associated with mineral matter, except for U and As having a relatively high remobilization potential. Low Kd was obtained for U (3.5 × 10(2) L/kg d.w.), intermediate Kds (~3 × 10(3) L/kg d.w.) were obtained for (226)Ra, As and Ni, while a high Kd (2.2 × 10(5) L/kg d.w.) were obtained for Pb. The accumulation of metals in fish gills reflected the LMM species in the Issyk-Kul water, and did not show any bioaccumulation. The muscle Hg concentrations in all fish species were low and did not represent any health risk even for groups at risk. Total gamma and Rn dose rate to man amounted to about 12 mSv/y, while the highest calculated dose rate for non-human species based on the ERICA Assessment Tool were obtained in terrestrial plants (164 μGy/h) due to the Ra exposure. The results obtained showed that radiation doses to resident public at all of the investigated sites in the Kadji Sai area were in general relatively low. Low radiological risk and no detrimental health impact on resident public can be expected at these sites. However, exposure to Rn and Tn in the living environment can be further reduced by implementing simple countermeasures such as ventilation of dwelling cellars. More focus in the Kadji Sai area should probably be put on trace elements, especially the As uptake in fish in Lake Issyk-Kul. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1.

    PubMed

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-12-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by (137)Cesium ((137)Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as (132)Te-(132)I, (131)I, (134)Cs and (137)Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h(-1) per initial (137)Cs deposition of 1000 kBq m(-2), whereas it was 100 μGy h(-1) around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m(-2) for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums ((134)Cs + (137)Cs) around Chernobyl and Fukushima-1, respectively. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. Ground-Water Quality Data in the Central Eastside San Joaquin Basin 2006: Results from the California GAMA Program

    USGS Publications Warehouse

    Landon, Matthew K.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 1,695-square-mile Central Eastside study unit (CESJO) was investigated from March through June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The study was designed to provide a spatially unbiased assessment of raw ground-water quality within CESJO, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 78 wells in Merced and Stanislaus Counties. Fifty-eight of the 78 wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells). Twenty of the wells were selected to evaluate changes in water chemistry along selected lateral or vertical ground-water flow paths in the aquifer (flow-path wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, carbon-14, and uranium isotopes and stable isotopes of hydrogen, oxygen, nitrogen, sulfur, and carbon], and dissolved noble and other gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected for approximately one-sixth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the environmental data were of good quality, with low bias and low variability, and resulted in censoring of less than 0.3 percent of the detections found in ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CADPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CADPH. VOCs and pesticides were detected in approximately half of the grid wells, and all detections in samples from CESJO wells were below health-based thresholds. All detections of nutrients and major elements in grid wells also were below health-based thresholds. Most detections of constituents of special interest, trace elements, and radioactive constituents in samples from grid wells were below health-based thresholds. Exceptions included two detections of arsenic that were above the USEPA maximum contaminant level (MCL-US), one detection of lead above the USEPA action level (AL-US), and one detection of vanadium and three detections of 1,2,3-TCP that were above the CADPH notification levels (NL-CA). All detections of radioactive constituents were below health-based thresholds, although fourteen samples had activities of radon-222 above the lower proposed MCL-US. Most of th

  6. The excretion and metabolism of oral 14C-pyridostigmine in the rat

    PubMed Central

    Husain, M. A.; Roberts, J. B.; Thomas, B. H.; Wilson, A.

    1968-01-01

    1. Pyridostigmine labelled with carbon-14 in the methyl group of the quaternary nitrogen has been used to investigate the excretion and metabolism of the drug after administration of single doses (500 μg) to the rat by stomach tube. 2. Pyridostigmine is slowly excreted in the urine; the maximum excretion occurs between 1-3 hr after administration. In 24 hr 42% of the dose is excreted in urine and 38.4% is present in faeces and intestinal contents. 3. The peak concentration of radioactivity in liver and blood occurs about 2 hr after administration. 4. About 75% of the radioactivity in urine is present as unchanged pyridostigmine, the remainder as metabolite. 5. The results are compared with those previously obtained after oral administration of neostigmine. 6. It is concluded that after oral administration the absorption of pyridostigmine is greater and the metabolism substantially less than that of neostigmine. PMID:5687596

  7. Separation of mixtures of chemical elements in plasma

    NASA Astrophysics Data System (ADS)

    Dolgolenko, D. A.; Muromkin, Yu A.

    2017-10-01

    This paper reviews proposals on the plasma processing of radioactive waste (RW) and spent nuclear fuel (SNF). The chemical processing of SNF based on the extraction of its components from water solutions is rather expensive and produces new waste. The paper considers experimental research on plasma separation of mixtures of chemical elements and isotopes, whose results can help evaluate the plasma methods of RW and SNF reprocessing. The analysis identifies the difference between ionization levels of RW and SNF components at their transition to the plasma phase as a reason why all plasma methods are difficult to apply.

  8. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.

  9. Natural radioactivity of the tar-sand deposits of Ondo State, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Fasasi, M. K.; Oyawale, A. A.; Mokobia, C. E.; Tchokossa, P.; Ajayi, T. R.; Balogun, F. A.

    2003-06-01

    A combination of gamma spectrometry and energy dispersive X-ray fluorescence was used to determine the presence and level of radioactivity of radionuclides in bituminous sand and overburden obtained from bituminous sand deposits in Ondo State Nigeria for the purpose of providing baseline data and assessing its impact on the environment. The radionuclides identified with reliable regularity belong to the decay series of naturally occurring radionuclides headed by 238U and 232Th. The non-decay series of naturally occurring 40K was found to be below the limit of detection. The average specific activity concentration values obtained for 214 Bi, 208Tl, and 226Ra in the overburden are 165.64±2.91, 150.25±2.91 and 60.97±2.27 Bq kg -1, respectively. The measured activity in the bituminous sand layer is so low that it can be said to be non-radioactive. The result of the EDXRF supports the presence of radioelements in the overburden, which are likely to be embedded in accessory minerals like zircon and tourmaline. Thus, surface exploration technique using soil-gas radon measurement will not yield the desired result. Furthermore, the level of radioelements and associated decay daughter 222Rn is not expected to cause any health hazard.

  10. Incorporation of [14C]shikimate into phenazines and their further metabolism by Pseudomonas phenazinium

    PubMed Central

    Byng, Graham S.; Turner, John M.

    1977-01-01

    1. During growth of Pseudomonas phenazinium on l-threonine medium, phenazine pigment formation commenced early and 1,6-dihydroxyphenazine 5,10-dioxide (iodinin) was the major component. Growth on l-[U-14C]threonine showed that when growth was complete about 25% of the label had been incorporated into phenazines and 30% into cell substance. 2. The addition of d-[2,3,4,5(n)-14C]shikimate to cultures at different phases of growth showed that the greatest efficiency of incorporation (about 70%) occurred in the mid- to late-exponential phase. Phenazines accounting for most of the 14C supplied were iodinin and 9-hydroxyphenazine-1-carboxylate plus 2,9-dihydroxyphenazine-1-carboxylate. Radioactivity incorporated into cell substance was about one-third of the amount found in phenazines. 3. Kinetic studies showed that radioactivity from a pulse of [14C]-shikimate was incorporated into phenazines immediately, without a discernible lag, and into all detectable phenazines simultaneously rather than sequentially. 4. Radioactive phenazines isolated from culture media were fed to growing cultures and their metabolism was studied. The results supported a scheme for the biosynthesis of iodinin and 1,8-dihydroxyphenazine 10-monoxide by a branched pathway. 5. It is proposed that phenazine-1,6-dicarboxylate is the common precursor of all naturally occurring phenazines. PMID:880226

  11. Physiological disposition and metabolism of enalapril maleate in laboratory animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocco, D.J.; deLuna, F.A.; Duncan, A.E.

    N-(1-(S)-carboxy-3-phenylpropyl)-L-alanyl-L-proline (MK-422), is a potent angiotensin I-converting enzyme (ACE) inhibitor, but as a diacid is poorly absorbed in laboratory animals. Enalapril maleate, the monoethyl ester of MK-422, proved to be significantly better absorbed in both rats and dogs. Peak levels of radioactivity in plasma occurred in 30 min in rats and 2 hr in dogs after a single dose of /sup 14/C-enalapril maleate (1 mg/kg, po). Rats excreted 26% of the dose in the urine and 72% in the feces in 72 hr; dogs excreted 40% of the dose in the urine and 36% in the feces. After the intravenousmore » dose, the presence of radioactivity in the feces of both species suggested that some biliary excretion had occurred. Absorption was estimated to be 34% in the rat and 61% in the dog. The major metabolite of enalapril maleate in dogs, accounting for 86% of the urine radioactivity, was identified as MK-422 by GC/MS. A procedure was developed for the quantitation of MK-422 and enalapril in plasma and urine by their inhibition of purified ACE. The assays showed that enalapril was absorbed intact in dogs and converted to MK-422 after absorption.« less

  12. ENHANCED RADIOACTIVE CONTENT OF 'BALANCE' BRACELETS.

    PubMed

    Tsroya, S; Pelled, O; Abraham, A; Kravchik, T; German, U

    2016-09-01

    During a routine whole body counting measurement of a worker at the Nuclear Research Center Negev, abnormal activities of (232)Th and (238)U were measured. After a thorough investigation, it was found that the radioactivity was due to a rubber bracelet ('balance bracelet') worn by the worker during the measurement. The bracelet was counted directly by an high pure germanium gamma spectrometry system, and the specific activities determined were 10.80 ± 1.37 Bq g(-1) for (232)Th and 5.68 ± 0.88 Bq g(-1) for natural uranium. These values are obviously high compared with normally occurring radioactive material (NORM) average values. The dose rate to the wrist surface was estimated to be ∼3.9 µGy h(-1) and ∼34 mGy for a whole year. The dose rate at the centre of the wrist was estimated to be ∼2.4 µGy h(-1) and ∼21 mGy for a whole year. The present findings stresses a more general issue, as synthetic rubber and silicone products are common and widely used, but their radioactivity content is mostly uncontrolled, thus causing unjustified exposure due to enhanced NORM radioactivity levels. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident.

    PubMed

    Geras'kin, Stanislav; Oudalova, Alla; Dikareva, Nina; Spiridonov, Sergey; Hinton, Thomas; Chernonog, Elena; Garnier-Laplace, Jacqueline

    2011-08-01

    A 6 year study of Scots pine populations inhabiting sites in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident is presented. In six study sites, (137)Cs activity concentrations and heavy metal content in soils, as well as (137)Cs, (90)Sr and heavy metal concentrations in cones were measured. Doses absorbed in reproduction organs of pine trees were calculated using a dosimetric model. The maximum annual dose absorbed at the most contaminated site was about 130 mGy. Occurrence of aberrant cells scored in the root meristem of germinated seeds collected from pine trees growing on radioactively contaminated territories for over 20 years significantly exceeded the reference levels during all 6 years of the study. The data suggest that cytogenetic effects occur in Scots pine populations due to the radioactive contamination. However, no consistent differences in reproductive ability were detected between the impacted and reference populations as measured by the frequency of abortive seeds. Even though the Scots pine populations have occupied radioactively contaminated territories for two decades, there were no clear indications of adaptation to the radiation, when measured by the number of aberrant cells in root meristems of seeds exposed to an additional acute dose of radiation.

  14. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  15. Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surroundingmore » the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.« less

  16. Sources of Radioactive Isotopes for Dirty Bombs

    NASA Astrophysics Data System (ADS)

    Lubenau, Joel

    2004-05-01

    From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.

  17. Reconnaissance for radioactive deposits in Alaska, 1953

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1955-01-01

    During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.

  18. Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

    2007-11-01

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, ormore » hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.« less

  19. PIXE analysis of sand and soil from Ulaanbaatar and Karakurum, Mongolia

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Barry, B.; Shagjjamba, D.

    2008-09-01

    Twenty-one sand and soil samples were collected at the surface from 22 to 25 June 2007 at sampling sites from Ulaanbaatar to Karakurum, Mongolia. The sand samples were collected from constantly changing sand dunes which may still contain salt from prehistoric oceans. The dry sand and soil samples were processed for PIXE and PIGE analyses. A clear division between soils and sand become apparent in the silicon results. Concentrations of all bulk elements in human habitation samples and of Si, Al, K and Fe in dry lake/flood plain samples are similar to those in the soils and sands. Among elements which could be regarded as being at trace concentrations the average S concentration in the soils is 0.9 g kg-1 whereas it is not detected in the sand samples. Zinc and Cu concentrations are both higher in the soils than the sands and are strongly correlated. A surprising presence of uranium at a concentration of 350 mg kg-1 was detected in the PIXE measurement on one of the dry lake samples. Gamma spectrometry confirmed the presence of U in this sample and also at a lower level in a sample from the lake shore, but in none of the other samples. Further, the gamma spectrometry showed that 238U decay products were present only at a level corresponding to about 3 mg kg-1 U for a system in radioactive equilibrium, a figure which is typical for U in the earth's crust. Disequilibria between 238U and its decay products occur naturally but such a high degree of separation at high concentration would be unique if confirmed. PIXE and PIGE measurements of these samples highlight the difficulty in correlating trace element measurements with occurrence of indicators of sea salt in air particulate samples.

  20. Using Next Generation Science Standards (NGSS) Practices to Address Scientific Misunderstandings Around Complex Environmental Issues

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Kenna, T. C.

    2014-12-01

    The new NGSS provide an important opportunity for scientists to develop curriculum that links the practice of science to research-based data in order to improve understanding in areas of science that are both complex and confusing. Our curriculum focuses in particular on the fate and transport of anthropogenic radionuclides. Radioactivity, both naturally occurring and anthropogenic, is highly debated and largely misunderstood, and for large sections of the population is a source of scientific misunderstanding. Developed as part of the international GEOTRACES project which focuses on identifying ocean processes and quantifying fluxes that control the distributions of selected trace elements and isotopes in the ocean, and on establishing the sensitivity of these distributions to changing environmental conditions, the curriculum topic fits nicely into the applied focus of NGSS with both environmental and topical relevance. Our curriculum design focuses on small group discussion driven by questions, yet unlike more traditional curriculum pieces these are not questions posed to the students, rather they are questions posed by the students to facilitate their deeper understanding. Our curriculum design challenges the traditional question/answer memorization approach to instruction as we strive to develop an educational approach that supports the practice of science as well as the NGSS Cross Cutting Concepts and the Science & Engineering Practices. Our goal is for students to develop a methodology they can employ when faced with a complex scientific issue. Through background readings and team discussions they identify what type of information is important for them to know and where to find a reliable source for that information. Framing their discovery around key questions such as "What type of radioactive decay are we dealing with?", "What is the potential half-life of the isotope?", and "What are the pathways of transport of radioactivity?" allows students to evaluate a given condition, to predict an outcome and to better judge the seriousness of an overall situation. While the problem solving skills students are taught are built around a specific case study, they can be broadly applied to a much wider range of topics, areas of study, and other aspects of their lives as new challenges arise, fitting the goals of NGSS.

  1. Astrophysics experiments with radioactive beams at ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Back, B. B.; Clark, J. A.; Pardo, R. C.

    Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

  2. Natural radioactivity in lignite samples from open pit mines "Kolubara", Serbia--risk assessment.

    PubMed

    Ðurašević, M; Kandić, A; Stefanović, P; Vukanac, I; Sešlak, B; Milošević, Z; Marković, T

    2014-05-01

    Coal as fossil fuel mainly contains naturally occurring radionuclides from the uranium and thorium series and (40)K. Use of coal, primarily in industry, as a result has dispersion of radioactive material from coal in and through air and water. The aim of this study was to determine the activity concentrations of natural radionuclides in coal samples from open pit mines "Kolubara" and to evaluate its effect on population health. The results showed that all measured and calculated values were below the limits recommended in international legislation. © 2013 Published by Elsevier Ltd.

  3. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms.

    PubMed

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-04-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Strontium (Sr) separation from seawater using titanate adsorbents: Effects of seawater matrix ions on Sr sorption behavior

    NASA Astrophysics Data System (ADS)

    Ryu, Jungho; Hong, Hye-jin; Ryu, Taegong; Park, In-Su

    2017-04-01

    Strontium (Sr) which has many industrial applications such as ferrite magnet, ceramic, and fire works exists in seawater with the concentration of approximately 7 mg/L. In previous report estimating economic potential on recovery of various elements from seawater in terms of their commercial values and concentrations in seawater, Sr locates upper than approximate break-even line, which implies Sr recovery from seawater can be potentially profitable. Recently, Sr separation from seawater has received great attention in the environmental aspect after Fukushima Nuclear Power Plant (NPP) accident which released much amount of radioactive Sr and Cs. Accordingly, the efficient separation of radioactive elements released to seawater has become critical as an important technological need as well as their removal from radioactive wastes. So far, it has been introduced to separate Sr from aqueous media by various methods including solvent extraction, adsorption by solid materials, and ion exchange. Among them, the adsorption technique using solid adsorbents is of great interest for selectively separating Sr from seawater with respect to low concentration level of Sr. In this study, we synthesized titanate nanotube (TiNT) by simple hydrothermal reaction, characterized its physicochemical properties, and systematically evaluated Sr sorption behavior under various reaction conditions corresponding to seawater environment. The synthesized TiNT exhibited the fibril-type nanotube structure with high specific surface area of 260 m2/g. The adsorption of Sr on TiNT rapidly occurred following pseudo-second-order kinetic model, and was in good agreement with Langmuir isotherm model, indicating maximum adsorption capacity of 97 mg/g. Based on Sr uptake and Na release with stoichiometric balance, sorption mechanism of Sr on TiNT was found to be ion-exchange between Na in TiNT lattice and Sr in solution phase, which was also confirmed by XRD and Raman analysis. Among competitive ions, Ca significantly hindered Sr sorption on TiNT, whereas Na had little effect on Sr sorption despite the sorption mechanism of Na-exchange. The effect of Ca on Sr sorption was evaluated in detail by introducing distribution coefficient (Kd) that is critical factor to determine the selectivity, revealing slightly higher selectivity for Sr. The adsorption-desoption test of Sr in real seawater medium enabled to determine Kd and concentration factor (CF) for co-existing matrix ions in seawater, and these values were assessed in both aspects of removal and recovery of Sr from seawater. The TiNT could be easily regenerated by acid treatment and reused for repeated cycle, supporting its long term use for the practical application of removing and recovering Sr from seawater.

  5. Reconnaissance for radioactive materials in northeastern United States during 1952

    USGS Publications Warehouse

    McKeown, Francis A.; Klemic, Harry

    1953-01-01

    Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.

  6. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  7. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  8. Geochemistry of radioactive elements in bituminous sands and sandstones of Permian bitumen deposits of Tatarstan (east of the Russian plate)

    NASA Astrophysics Data System (ADS)

    Mullakaev, A. I.; Khasanov, R. R.; Badrutdinov, O. R.; Kamaletdinov, I. R.

    2018-05-01

    The article investigates geochemical features of Permian (Cisuralian, Ufimian Stage and Biarmian, Kazanian Stage of the General Stratigraphic Scale of Russia) bituminous sands and sandstones located on the territory of the Volga-Ural oil and gas province (Republic of Tatarstan). Natural bitumens are extracted using thermal methods as deposits of high-viscosity oils. In the samples studied, the specific activity of natural radionuclides from the 238U (226Ra), 232Th, and 40K series was measured using gamma spectrometry. As a result of the precipitation of uranium and thorium and their subsequent decay, the accumulation of radium (226Ra and 228Ra) has been shown to occur in the bituminous substance. In the process of exploitation of bitumen-bearing rock deposits (as an oil fields) radium in the composition of a water-oil mixture can be extracted to the surface or deposited on sulfate barriers, while being concentrated on the walls of pipes and other equipment. This process requires increased attention to monitoring and inspection the environmental safety of the exploitation procedure.

  9. Multiple parent bodies of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Yomogida, K.; Matsui, T.

    1984-01-01

    Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional 'onion-shell' model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a 'multiple-parent bodies' model, according to which each petrologic type of chondrite comes from a different parent body.

  10. Concurrent determination of 237Np and Pu isotopes using ICP-MS: analysis of NIST environmental matrix standard reference materials 4357, 1646a, and 2702.

    PubMed

    Matteson, Brent S; Hanson, Susan K; Miller, Jeffrey L; Oldham, Warren J

    2015-04-01

    An optimized method was developed to analyze environmental soil and sediment samples for (237)Np, (239)Pu, and (240)Pu by ICP-MS using a (242)Pu isotope dilution standard. The high yield, short time frame required for analysis, and the commercial availability of the (242)Pu tracer are significant advantages of the method. Control experiments designed to assess method uncertainty, including variation in inter-element fractionation that occurs during the purification protocol, suggest that the overall precision for measurements of (237)Np is typically on the order of ± 5%. Measurements of the (237)Np concentration in a Peruvian Soil blank (NIST SRM 4355) spiked with a known concentration of (237)Np tracer confirmed the accuracy of the method, agreeing well with the expected value. The method has been used to determine neptunium and plutonium concentrations in several environmental matrix standard reference materials available from NIST: SRM 4357 (Radioactivity Standard), SRM 1646a (Estuarine Sediment) and SRM 2702 (Inorganics in Marine Sediment). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. First-principles calculations of the thermodynamic properties of transuranium elements in a molten salt medium

    NASA Astrophysics Data System (ADS)

    Noh, Seunghyo; Kwak, Dohyun; Lee, Juseung; Kang, Joonhee; Han, Byungchan

    2014-03-01

    We utilized first-principles density-functional-theory (DFT) calculations to evaluate the thermodynamic feasibility of a pyroprocessing methodology for reducing the volume of high-level radioactive materials and recycling spent nuclear fuels. The thermodynamic properties of transuranium elements (Pu, Np and Cm) were obtained in electrochemical equilibrium with a LiCl-KCl molten salt as ionic phases and as adsorbates on a W(110) surface. To accomplish the goal, we rigorously calculated the double layer interface structures on an atomic resolution, on the thermodynamically most stable configurations on W(110) surfaces and the chemical activities of the transuranium elements for various coverages of those elements. Our results indicated that the electrodeposition process was very sensitive to the atomic level structures of Cl ions at the double-layer interface. Our studies are easily expandable to general electrochemical applications involving strong redox reactions of transition metals in non-aqueous solutions.

  12. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.

    PubMed

    Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z

    2000-12-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.

  13. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  14. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul; Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintainingmore » the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.« less

  15. Quantitative comparison between PGNAA measurements and MCNP calculations in view of the characterization of radioactive wastes in Germany and France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhofer, E.; Havenith, A.; Kettler, J.

    The Forschungszentrum Juelich GmbH (FZJ), together with the Aachen University Rheinisch-Westfaelische Technische Hochschule (RWTH) and the French Alternative Energies and Atomic Energy Commission (CEA Cadarache) are involved in a cooperation aiming at characterizing toxic and reactive elements in radioactive waste packages by means of Prompt Gamma Neutron Activation Analysis (PGNAA). The French and German waste management agencies have indeed defined acceptability limits concerning these elements in view of their projected geological repositories. A first measurement campaign was performed in the new Prompt Gamma Neutron Activation Analysis (PGNAA) facility called MEDINA, at FZJ, to assess the capture gamma-ray signatures of somemore » elements of interest in large samples up to waste drums with a volume of 200 liter. MEDINA is the acronym for Multi Element Detection based on Instrumental Neutron Activation. This paper presents MCNP calculations of the MEDINA facility and quantitative comparison between measurement and simulation. Passive gamma-ray spectra acquired with a high purity germanium detector and calibration sources are used to qualify the numerical model of the crystal. Active PGNAA spectra of a sodium chloride sample measured with MEDINA then allow for qualifying the global numerical model of the measurement cell. Chlorine indeed constitutes a usual reference with reliable capture gamma-ray production data. The goal is to characterize the entire simulation protocol (geometrical model, nuclear data, and postprocessing tools) which will be used for current measurement interpretation, extrapolation of the performances to other types of waste packages or other applications, as well as for the study of future PGNAA facilities.« less

  16. Uranium mineralization in the Wilson Creek and Cranberry Gneisses and the Grandfather Mountain Formation, North Carolina and Tennessee. National Uranium Resource Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagener, H.D.; McHone, J.G.

    1982-10-01

    Detailed petrologic investigations were conducted at 74 anomalies that have surface radioactivities of 5 to 300 times background in the Grandfather Mountain region of North Carolina and Tennessee. One or more specimens of radioactive rock and one specimen of nonanomalous (barren) rock were taken for chemical analysis from each of the 74 sites. The specimens were analyzed fluorometrically for uranium (U/sub 3/O/sub 8/) and for 29 other elements by emission spectroscopy. Of the radioactive specimens, 23 contained less than 100 ppM U/sub 3/O/sub 8/ and were either depleted in uranium because of leaching or were rich in thorium; 25 containedmore » more than 500 ppM U/sub 3/O/sub 8/, with a maximum of 33,000 ppM. Specimens collected as barren contained up to 65 ppM U/sub 3/O/sub 8/. The more uraniferous rocks of the region tend to contain the larger concentrations of trace amounts of base metals.« less

  17. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  18. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  19. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  20. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  1. Disposition and metabolism of a novel prostanoid antiglaucoma medication, tafluprost, following ocular administration to rats.

    PubMed

    Fukano, Y; Kawazu, K

    2009-08-01

    The disposition and metabolism of tafluprost, an ester prodrug of the 15,15-difluoro-prostaglandin F(2alpha) antiglaucoma agent, have been studied in rats after ocular administration. Radioactivity was absorbed very rapidly into the eye and systemic circulation after a single ocular dose of 0.005% [(3)H]tafluprost ophthalmic solution, with maximum levels in plasma and most eye tissues occurring within 15 min. The absorption ratio of radioactivity was approximately 75%, suggesting the high availability of ocular administration of tafluprost. Approximately 10% of the dose was present in cornea at this time, and radioactivity concentrations in this tissue exceeded those in aqueous humor and iris/ciliary body throughout the 24-h study period. After repeated daily ocular doses, radioactivity levels remained greatest in cornea, followed by iris/ciliary body that replaced aqueous humor as the eye tissue containing the second highest radioactivity concentration. In female rats, radioactivity was excreted equally between urine and feces after a single ocular dose, whereas in male rats more was excreted in feces, reflecting the greater biliary excretion in males rats (50% dose) compared with females rats (33% dose). Tafluprost was extensively metabolized in the rat, such that intact prodrug was not detected in plasma, tissues, or excreta by radio-high-performance liquid chromatography. On the other hand, the active moiety, tafluprost acid, was the only noteworthy radioactive component in cornea, aqueous humor, and iris/ciliary body for at least 8 h after the ocular dose, and it was also a major plasma metabolite in early time points. The gender differences in conjugation reactions resulted in the differences in the excretion.

  2. An update on radioactive release and exposures after the Fukushima Dai-ichi nuclear disaster

    PubMed Central

    Mclaughlin, P D; Jones, B; Maher, M M

    2012-01-01

    On 11 March 2011, the Richter scale 0.9-magnitude Tokohu earthquake and tsunami struck the northeast coast of Japan, resulting in widespread injury and loss of life. Compounding this tragic loss of life, a series of equipment and structural failures at the Fukushima Dai-ichi nuclear power plant (FDNP) resulted in the release of many volatile radioisotopes into the atmosphere. In this update, we detail currently available evidence about the nature of immediate radioactive exposure to FDNP workers and the general population. We contrast the nature of the radioactive exposure at FDNP with that which occurred at the Chernobyl power plant 25 years previously. Prediction of the exact health effects related to the FDNP release is difficult at present and this disaster provides the scientific community with a challenge to help those involved and to continue research that will improve our understanding of the potential complications of radionuclide fallout. PMID:22919005

  3. An update on radioactive release and exposures after the Fukushima Dai-ichi nuclear disaster.

    PubMed

    McLaughlin, P D; Jones, B; Maher, M M

    2012-09-01

    On 11 March 2011, the Richter scale 0.9-magnitude Tokohu earthquake and tsunami struck the northeast coast of Japan, resulting in widespread injury and loss of life. Compounding this tragic loss of life, a series of equipment and structural failures at the Fukushima Dai-ichi nuclear power plant (FDNP) resulted in the release of many volatile radioisotopes into the atmosphere. In this update, we detail currently available evidence about the nature of immediate radioactive exposure to FDNP workers and the general population. We contrast the nature of the radioactive exposure at FDNP with that which occurred at the Chernobyl power plant 25 years previously. Prediction of the exact health effects related to the FDNP release is difficult at present and this disaster provides the scientific community with a challenge to help those involved and to continue research that will improve our understanding of the potential complications of radionuclide fallout.

  4. β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N=82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process.

    PubMed

    Lorusso, G; Nishimura, S; Xu, Z Y; Jungclaus, A; Shimizu, Y; Simpson, G S; Söderström, P-A; Watanabe, H; Browne, F; Doornenbal, P; Gey, G; Jung, H S; Meyer, B; Sumikama, T; Taprogge, J; Vajta, Zs; Wu, J; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Kajino, T; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Schury, P; Shibagaki, S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yagi, A; Yoshinaga, K

    2015-05-15

    The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes withmore » medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.« less

  6. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  7. Uncertainty quantification applied to the radiological characterization of radioactive waste.

    PubMed

    Zaffora, B; Magistris, M; Saporta, G; Chevalier, J-P

    2017-09-01

    This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. SU-G-201-16: Thermal Imaging in Source Visualization and Radioactivity Measurement for High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X; Lei, Y; Zheng, D

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy poses a special challenge to radiation safety and quality assurance (QA) due to its high radioactivity, and it is thus critical to verify the HDR source location and its radioactive strength. This study demonstrates a new method for measuring HDR source location and radioactivity utilizing thermal imaging. A potential application would relate to HDR QA and safety improvement. Methods: Heating effects by an HDR source were studied using Finite Element Analysis (FEA). Thermal cameras were used to visualize an HDR source inside a plastic applicator made of polyvinylidene difluoride (PVDF). Using different source dwellmore » times, correlations between the HDR source strength and heating effects were studied, thus establishing potential daily QA criteria using thermal imaging Results: For an Ir1?2 source with a radioactivity of 10 Ci, the decay-induced heating power inside the source is ∼13.3 mW. After the HDR source was extended into the PVDF applicator and reached thermal equilibrium, thermal imaging visualized the temperature gradient of 10 K/cm along the PVDF applicator surface, which agreed with FEA modeling. For Ir{sup 192} source activities ranging from 4.20–10.20 Ci, thermal imaging could verify source activity with an accuracy of 6.3% with a dwell time of 10 sec, and an accuracy of 2.5 % with 100 sec. Conclusion: Thermal imaging is a feasible tool to visualize HDR source dwell positions and verify source integrity. Patient safety and treatment quality will be improved by integrating thermal measurements into HDR QA procedures.« less

  9. ICP-MS for isotope ratio measurement

    USDA-ARS?s Scientific Manuscript database

    The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...

  10. Radiation Emergencies | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-05-01

    Radiation emergencies can be intentional acts designed to hurt others, like a terrorist attack, or they can be accidents that occur when using radioactive material. During a radiation emergency, the goal is to keep your exposure to radiation as low as possible.

  11. Standardized Analytical Methods for Environmental Restoration Following Homeland Security Events

    USDA-ARS?s Scientific Manuscript database

    Methodology was formulated for use in the event of a terrorist attack using a variety of chemical, radioactive, biological, and toxic agents. Standardized analysis procedures were determined for use should these events occur. This publication is annually updated....

  12. MANUAL: ALTERNATIVE WASTEWATER COLLECTION SYSTEMS

    EPA Science Inventory

    Indoor radon, a naturally occurring radioactive gas, is found in varying amounts in nearly all houses. The U.S. Environmental Protection Agency (EPA) has developed and demonstrated methods that have been used to reduce radon levels in existing houses. Many of these methods could ...

  13. Paleohydrology of the southern Great Basin, with special reference to water table fluctuations beneath the Nevada Test Site during the late(?) Pleistocene

    USGS Publications Warehouse

    Winograd, Isaac Judah; Doty, Gene C.

    1980-01-01

    Knowledge of the magnitude of water-table rise during Pleistocene pluvial climates, and of the resultant shortening of groundwater flow path and reduction in unsaturated zone thickness, is mandatory for a technical evaluation of the Nevada Test Site (NTS) or other arid zone sites as repositories for high-level or transuranic radioactive wastes. The distribution of calcitic veins filling fractures in alluvium, and of tufa deposits between the Ash Meadows spring discharge area and the Nevada Test Site indicates that discharge from the regional Paleozoic carbonate aquifer during the Late( ) Pleistocene pluvial periods may have occurred at an altitude about 50 meters higher than at present and 14 kilometers northeast of Ash Meadows. Use of the underflow equation (relating discharge to transmissivity, aquifer width, and hydraulic gradient), and various assumptions regarding pluvial recharge, transmissivity, and altitude of groundwater base level, suggest possible rises in potentiometric level in the carbonate aquifer of about -90 meters beneath central Frenchman Flat. During Wisconsin time the rise probably did not exceed 30 meters. Water-level rises beneath Frenchman Flat during future pluvials are unlikely to exceed 30 meters and might even be 10 meters lower than modern levels. Neither the cited rise in potentiometric level in the regional carbonate aquifer, nor the shortened flow path during the Late( ) Pleistocene preclude utilization of the NTS as a repository for high-level or transuranic-element radioactive wastes provided other requisite conditions are met as this site. Deep water tables, attendant thick (up to several hundred meter) unsaturated zones, and long groundwater flow paths characterized the region during the Wisconsin Stage and probably throughout the Pleistocene Epoch and are likely to so characterize it during future glacial periods. (USGS)

  14. Trace elements reconnaissance investigations in New Mexico and adjoining states in 1951

    USGS Publications Warehouse

    Bachman, George O.; Read, Charles B.

    1952-01-01

    In the summer and fall of 1951, a reconnaissance search was made in New Mexico and adjacent states for uranium in coal and carbonaceous shale, chiefly of Mesozoic age, and black marine shale of Paleozoic age. Tertiary volcanic rocks, considered to be a possible source for uranium in the coal and associated rocks, were examined where the volcanic rocks were near coal-bearing strata. Uranium in possibly commercial amounts was found at La Ventana Mesa, Sandoval County, New Mexico. Slightly uranifeous coal and carbonaceous shale were found near San Ysidro, Sandoval County, and on Beautiful Mountain, San Juan County, all in New Mexico, and at Keams Canyon, Navajo County, and near Tuba City, Coconino County, in Arizona. Except for La Ventana deposit, none appeared to be of economic importance at the time this report was written, but additional reconnaissance investigations have been underway this field season, in the area where the deposits occur. Marine black shale of Sevonian age was examined in Otero and Socorro Counties, New Mexico and Gila County, Arizona. Mississippian black shale in Socorro County and Pennsylvanian black shale in Taos County, New Mexico were also tested. Equivalent uranium content of samples of these shales did not exceed 0.004 percent. Rhyolitic tuff from the Mount Taylor region is slightly radioactive as is the Bandelier tuff in the Nacimiento region and in the Jemez Plateau. Volcanic rocks in plugs and dikes in the northern Chuska Mountains and to the north in New Mexico as well as in northeastern Arizona and southeastern Utah are slightly radioactive. Coal and carbonaceous rocks in the vicinity of these and similar intrusions are being examined.

  15. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Daniel I.

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less

  16. Education activities of the US Department of Energy's Office of Civilian Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.P.

    1991-01-01

    This paper reports that science education has long been a critical element in the U.S. Department of Energy's (DOE) Civilian Radioactive Waste Management Program. OCRWM has developed educational programs aimed at improving the science literacy of students from kindergarten through college and post-graduate levels, enhancing the skills of teachers, encouraging careers in science and engineering, and developing a keener awareness of science issues among the general population. Activities include interaction with educators in the development of curricula material; workshops for elementary and secondary students; cooperative agreements and projects with universities; OCRWM exhibit showings at technical and non-technical meetings and atmore » national and regional teacher/educator conferences; the OCRWM Fellowship Program; and support for Historically Black Colleges and Universities.« less

  17. NUCLEAR CHEMISTRY RESEARCH AT CARNEGIE INSTITUTE OF TECHNOLOGY 1962-1963. Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-06-01

    Progress is reported on: nuclear reaction studies of cross sections of iron and stone meteoritic elements for 130- to 400-Mev protons, simulated cosmic- ray irradiations of thick iron and stone targets with 100-Mev to 3-Bev protons, and induced alpha-activity in short half-life ranges; nuclear geochemistry and cosmochemistry studies of nuclide dating of sediments, pseudo-diffusion in ocean and Maria sediments, cosmogenic radionuclides in iron and stone meteorites, cosmogenic radionuclides in Bondoc Achondrite and Bogou iron, half life of Mn/sup 53/, cosmogenic radioactivity in fragments of Sputnik N, Be/sup 10/ occurrence in tektites, and conversion of sealed anticoincidence shield counters to flow,more » counters; and the search for natural radioactivity in Ca/sup 48/. (B.O.G.)« less

  18. Correlation of radon and thoron concentrations with natural radioactivity of soil in Zonguldak, Turkey

    NASA Astrophysics Data System (ADS)

    Koray, Abdullah; Akkaya, Gizem; Kahraman, Ayşegül

    2017-02-01

    Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil. In this study, the correlations between soil radon and thoron concentration with their parent nuclide (226Ra and 232Th) concentrations in collected soil samples from the same locations were evaluated. The result of the measurement shows that the distribution of radon and thoron in soil showed the same tendency as 226Ra and 232Th distribution. It was found a weak correlation between the radon and the 226Ra concentration (R =0.57), and between the thoron and the 232Th concentration (R=0.64). No strong correlation was observed between soil-gas radon and thoron concentration (R = 0.29).

  19. Controlling the leakage of liquid bismuth cathode elements in ceramic crucibles used for the electrowinning process in pyroprocessing

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Young; Hwang, Il-Soon; Lee, Jong-Hyeon

    2016-09-01

    Pyroprocessing has shown promise as an alternative to wet processing for the recycling of transuranics with a high proliferation resistance. However, a critical issue for pyroprocessing is the ceramic crucibles used in the electrowinning process. These ceramic crucibles are frequently damaged by thermal stress, which results in significant volumes of crucible waste that must be properly disposed. Transuranic waste (TRU) elements intrude throughout the pores of a damaged crucible. The volume of generated radioactive waste is a concern when dealing with nuclear power plants and decontamination issues. In this study, laser treatment and sintering were performed on the crucibles to minimize the TRU elements trapped within. Secondary ion mass spectroscopy was used to measure the intrusion depth of Li in the surface-treated ceramics.

  20. Welding of unique and advanced alloys for space and high-temperature applications: welding and weldability of iridium and platinum alloys

    DOE PAGES

    David, Stan A.; Miller, Roger G.; Feng, Zhili

    2016-08-31

    Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less

  1. Welding of unique and advanced alloys for space and high-temperature applications: welding and weldability of iridium and platinum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Stan A.; Miller, Roger G.; Feng, Zhili

    Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less

  2. A kinematic model to estimate effective dose of radioactive substances in a human body

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with ingestion duration

  3. Irradiation with x-rays of the energy 18 MV induces radioactivity in transfusion blood: Proposal of a safe method using 6 MV.

    PubMed

    Frentzel, Katharina; Badakhshi, Harun

    2016-12-01

    To prevent a fatal transfusion-associated graft-versus-host disease, it is recommended to irradiate transfusion blood and blood components with ionizing radiation. Using x-rays from a linear accelerator of the radiotherapy department is an accepted alternative to gamma irradiation devices of the blood bank and to the orthovoltage units that are replacing the gamma irradiators today. However, the use of high energy x-rays may carry a potential risk of induced radioactivity. The objective of this study was to investigate the effect of two different energy levels, 6 and 18 MV, which are executed in routine clinical settings. The research question was if induced radioactivity occurs at one of these standard energy levels. The authors aimed to give a proposal for a blood irradiation procedure that certainly avoids induced radioactivity. For this study, the authors developed a blood bag phantom, irradiated it with x-ray energies of 6 and 18 MV, and measured the induced radioactivity in a well counter. Thereafter, the same irradiation and measuring procedure was performed with a unit of packed red blood cells. A feasible clinical procedure was developed using 6 MV and an acrylic box. With the irradiation planning system XiO, the authors generated an irradiation protocol for the linear accelerator Siemens ONCOR Anvant-Garde. Both measurement setups showed that there was induced radioactivity for 18 MV but not for 6 MV. The induced radioactivity for 18 MV was up to 190 times the background. This is significant and of clinical relevance especially since there are newborn and fetal blood recipients for whom every radiation exposure has to be strictly avoided. The irradiation of blood with x-rays from a linear accelerator of the radiotherapy department is safe and feasible, but by the current state of scientific knowledge, the authors recommend to use an x-ray energy of 6 MV or less to avoid induced radioactivity in transfusion blood.

  4. Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Yamasaki, Shinya; Imoto, Junpei; Furuki, Genki; Ochiai, Asumi; Ohnuki, Toshihiko; Sueki, Keisuke; Nanba, Kenji; Ewing, Rodney C; Utsunomiya, Satoshi

    2016-05-01

    The migration and dispersion of radioactive Cs (mainly (134)Cs and (137)Cs) are of critical concern in the area surrounding the Fukushima Daiichi Nuclear Power Plant (FDNPP). Considerable uncertainty remains in understanding the properties and dynamics of radioactive Cs transport by surface water, particularly during rainfall-induced flood events to the ocean. Physical and chemical properties of unique estuary sediments, collected from the Kuma River, 4.0km south of the FDNPP, were quantified in this study. These were deposited after storm events and now occur as dried platy sediments on beach sand. The platy sediments exhibit median particle sizes ranging from 28 to 32μm. There is increasing radioactivity towards the bottom of the layers deposited; approximately 28 and 38Bqg(-1) in the upper and lower layers, respectively. The difference in the radioactivity is attributed to a larger number of particles associated with radioactive Cs in the lower part of the section, suggesting that radioactive Cs in the suspended soils transported by surface water has decreased over time. Sequential chemical extractions showed that ~90% of (137)Cs was strongly bound to the residual fraction in the estuary samples, whereas 60~80% of (137)Cs was bound to clays in the six paddy soils. This high concentration in the residual fraction facilitates ease of transport of clay and silt size particles through the river system. Estuary sediments consist of particles <100μm. Radioactive Cs desorption experiments using the estuary samples in artificial seawater revealed that 3.4±0.6% of (137)Cs was desorbed within 8h. More than 96% of (137)Cs remained strongly bound to clays. Hence, particle size is a key factor that determines the travel time and distance during the dispersion of (137)Cs in the ocean. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. What can we Learn from the Rising Light Curves of Radioactively Powered Supernovae?

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Nakar, Ehud

    2013-05-01

    The light curve of the explosion of a star with a radius <~ 10-100 R ⊙ is powered mostly by radioactive decay. Observationally, such events are dominated by hydrogen-deficient progenitors and classified as Type I supernovae (SNe I), i.e., white dwarf thermonuclear explosions (Type Ia), and core collapses of hydrogen-stripped massive stars (Type Ib/c). Current transient surveys are finding SNe I in increasing numbers and at earlier times, allowing their early emission to be studied in unprecedented detail. Motivated by these developments, we summarize the physics that produces their rising light curves and discuss ways in which observations can be utilized to study these exploding stars. The early radioactive-powered light curves probe the shallowest deposits of 56Ni. If the amount of 56Ni mixing in the outermost layers of the star can be deduced, then it places important constraints on the progenitor and properties of the explosive burning. In practice, we find that it is difficult to determine the level of mixing because it is hard to disentangle whether the explosion occurred recently and one is seeing radioactive heating near the surface or whether the explosion began in the past and the radioactive heating is deeper in the ejecta. In the latter case, there is a "dark phase" between the moment of explosion and the first observed light emitted once the shallowest layers of 56Ni are exposed. Because of this, simply extrapolating a light curve from radioactive heating back in time is not a reliable method for estimating the explosion time. The best solution is to directly identify the moment of explosion, either through observing shock breakout (in X-ray/UV) or the cooling of the shock-heated surface (in UV/optical), so that the depth being probed by the rising light curve is known. However, since this is typically not available, we identify and discuss a number of other diagnostics that are helpful for deciphering how recently an explosion occurred. As an example, we apply these arguments to the recent SN Ic PTF 10vgv. We demonstrate that just a single measurement of the photospheric velocity and temperature during the rise places interesting constraints on its explosion time, radius, and level of 56Ni mixing.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.

    Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less

  7. Tracing nuclear elements released by Fukushima Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Tsujimura, M.; Onda, Y.; Abe, Y.; Hada, M.; Pun, I.

    2011-12-01

    Radioactive contamination has been detected in Fukushima and the neighboring regions due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami occurred on 11th March 2011. The small experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima Prefecture, located approximately 35 km west from the Fukushima NPP. The tritium (3H) concentration and stable isotopic compositions of deuterium and oxygen-18 have been determined on the water samples of precipitation, soil water at the depths of 10 to 30 cm, groundwater at the depths of 5 m to 50 m, spring water and stream water taken at the watersheds in the recharge and discharge zones from the view point of the groundwater flow system. The tritium concentration of the rain water fell just a few days after the earthquake showed a value of approximately 17 Tritium Unit (T.U.), whereas the average concentration of the tritium in the precipitation was less than 5 T.U. before the Fukushima accident. The spring water in the recharge zone showed a relatively high tritium concentration of approximately 12 T.U., whereas that of the discharge zone showed less than 5 T.U. Thus, the artificial tritium was apparently injected in the groundwater flow system due to the Fukushima NPP accident, whereas that has not reached at the discharge zone yet. The monitoring of the nuclear elements is now on going from the view points of the hydrological cycles and the drinking water security.

  8. Rapid analysis method for the determination of 14C specific activity in irradiated graphite

    PubMed Central

    Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras

    2018-01-01

    14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1–100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample. PMID:29370233

  9. Rapid analysis method for the determination of 14C specific activity in irradiated graphite.

    PubMed

    Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Plukienė, Rita; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras

    2018-01-01

    14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1-100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample.

  10. Multi-channel probes to understand fission dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosby, Shea Morgan

    2016-04-15

    Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fissionmore » output channels.« less

  11. Comment on ''the relative concentrations of radon daughter products in surface air and the significance of their ratios'' by C. Rangarajan, S. Gopalakrishnan, V. R. Chandrasekaran, and C. D. Eapen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marenco, A.; Fontan, J.

    1975-12-20

    Measurement of the ratio beweeen the short-lived radon daughters and $sup 210$Pb in order to determine the aerosol residence time in the troposphere is discussed. It is concluded that the various residence time values obtained experimentally with radioactive elements make it possible to determine parameters representing the processes of vertical exchanges and of scavenging which prevail on a large scale in the troposphere, thus making it possible to use numerical models of simulation for calculating the tropospheric residence time of any other element. (HLW)

  12. Polonium-210 analyses of vegetables, cured and uncured tobacco, and associated soils.

    PubMed

    Berger, K C; Erhardt, W H; Francis, C W

    1965-12-24

    Analysis of the edible portion of vegetables and samples of green leaf tobacco failed to show polonium-210. The cured samples of leaf tobacco and the soils that were analyzed all contained small quantities of the element. Muck soils contained three times as much Po(210) as did mineral soils. Solutions used commonly to extract "available" forms of many mineral elements failed to extract a detectable amount of Po(2l0). Indications are that Po(210) or its radioactive precursors are not taken up from the soil directly by plant roots but rather by sorption in dead, moist plant materials at the atmosphere-plant interface.

  13. Radionuclide Basics: Technetium-99

    EPA Pesticide Factsheets

    Technetium-99 (chemical symbol Tc-99) is a silver-gray, radioactive metal. It occurs naturally in very small amounts in the earth's crust, but is primarily man-made. Technetium-99m is a short-lived form of Tc-99 that is used as a medical diagnostic tool.

  14. 323 N. Michigan Ave, March 2016, Lindsay Light Radiological Survey

    EPA Pesticide Factsheets

    The count rates in the excavation ranged from 2,100 cpm to3,300 cpm. There was a layer of granite pavers immediately below the surfacecontaining Naturally Occurring Radioactive Material (NORM) that ranged from 5,500cpm to 8,400 cpm.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moya, Nicholas; Whiteside, Tad

    From 1961 to 1964, radioactive elements were released from the Savannah River Site into local bodies of water via cooling water charges from the reactors on site. In 1983, the extent of the radioactive contamination was first studied, and elements such as 137Cs, 90Sr, 238Pu, 241Am, 244Cm, and tritium were found to have seeped from local bodies of water into sediment and the surrounding flora and fauna. The current method of tracking and monitoring radioactive contamination at the SRS is to gather samples and conduct measurements in a laboratory. A cheaper, and safer, method to conduct such measurements would bemore » to automate the process by using an autonomous boat that can travel to locations, conduct measurements, and return home all without human intervention. To introduce this idea, the construction of an autonomous boat prototype was completed to demonstrate the practicality and feasibility of such an idea. The prototype travels to a set of waypoints, stops at each waypoint, and returns when all waypoints have been reached. It does this by employing a simple battery-powered boat with an Arduino controller that steers the boat using a steering algorithm incorporated into a Proportional Integral Derivative (PID) function. A total of three tests were conducted at two different bodies of water; and after working out some hardware problems, the boat drone was able to successfully steer and reach all programmed waypoints. With the prototype complete, the next steps to realizing the final product of the boat drone will include adopting a processing unit with higher-bit architecture, using a bigger boat with a more powerful trolling motor, and incorporating a solar panel for continuous power and round-the-clock performance.« less

  16. Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers

    NASA Astrophysics Data System (ADS)

    Wollaeger, Ryan T.; Korobkin, Oleg; Fontes, Christopher J.; Rosswog, Stephan K.; Even, Wesley P.; Fryer, Christopher L.; Sollerman, Jesper; Hungerford, Aimee L.; van Rossum, Daniel R.; Wollaber, Allan B.

    2018-04-01

    The electromagnetic transients accompanying compact binary mergers (γ-ray bursts, afterglows and 'macronovae') are crucial to pinpoint the sky location of gravitational wave sources. Macronovae are caused by the radioactivity from freshly synthesised heavy elements, e.g. from dynamic ejecta and various types of winds. We study macronova signatures by using multi-dimensional radiative transfer calculations. We employ the radiative transfer code SuperNu and state-of-the art LTE opacities for a few representative elements from the wind and dynamical ejecta (Cr, Pd, Se, Te, Br, Zr, Sm, Ce, Nd, U) to calculate synthetic light curves and spectra for a range of ejecta morphologies. The radioactive power of the resulting macronova is calculated with the detailed input of decay products. We assess the detection prospects for our most complex models, based on the portion of viewing angles that are sufficiently bright, at different cosmological redshifts (z). The brighter emission from the wind is unobscured by the lanthanides (or actinides) in some of the models, permitting non-zero detection probabilities for redshifts up to z = 0.07. We also find the nuclear mass model and the resulting radioactive heating rate are crucial for the detectability. While for the most pessimistic heating rate (from the FRDM model) no reasonable increase in the ejecta mass or velocity, or wind mass or velocity, can possibly make the light curves agree with the observed nIR excess after GRB130603B, a more optimistic heating rate (from the Duflo-Zuker model) leads to good agreement. We conclude that future reliable macronova observations would constrain nuclear heating rates, and consequently help constrain nuclear mass models.

  17. Global risk of radioactive fallout after nuclear reactor accidents

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Kunkel, D.; Lawrence, M. G.

    2011-11-01

    Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a core melt of any nuclear power plant worldwide, more than 90% of emitted 137Cs would be transported beyond 50km and about 50% beyond 1000 km distance. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human deposition exposure are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in southern Asia where a core melt can subject 55 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  18. Global risk of radioactive fallout after nuclear reactor accidents

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Lelieveld, J.; Lawrence, M. G.

    2012-04-01

    Reactor core meltdowns of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by "rare"? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents, using particulate 137Cs and gaseous 131I as proxies for the fallout. It appears that previously the occurrence of major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a core melt of any nuclear power plant worldwide, more than 90 % of emitted 137Cs would be transported beyond 50 km and about 50 % beyond 1000 km distance. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of 137Cs and 131I are quite different, the radioactive contamination patterns over land and the human deposition exposure are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in southern Asia where a core melt can subject 55 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  19. Considerations regarding the unintended radiation exposure of the embryo, fetus or nursing child

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In Commentary No. 7, Misadministration of Radioactive Material in Medicine - Scientific Background (NCRP, 1991), the National Council on Radiation Protection and Measurements (NCRP) reviewed the misadministration of radioactive material in medicine. In that commentary, the number and variety of nuclear medicine procedures performed in the United States, administered activities and the resulting radiation doses were reviewed. Information on the reported frequency and nature of misadministrations was also summarized, as were the possible deterministic and stochastic effects that might occur as a result of the use in medicine of pharmaceuticals containing radioactive material. In addition, the basis for developing reportingmore » requirements for the unintended administration of radioactive material to patients was also provided. The purpose of this Commentary is: (1) to draw special attention to problems in the protection of the embryo, fetus and nursing child that might result from the use, both externally and internally, of radioactive material in the medical diagnosis and treatment of the mother, and (2) to assist the Nuclear Regulatory Commission (NRC) in developing requirements appropriate to dealing with the unintended exposure of the embryo, fetus or nursing child as a result of such procedures. The sensitivity of humans during these stages of life justify separate consideration beyond that already given for adults in NCRP Commentary No. 7 (NCRP, 1991).« less

  20. Recent Research with the Detector for Advanced Neutron Capture Experiments (dance) at the LOS Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.

    2014-09-01

    The DANCE detector at Los Alamos is a 160 element, nearly 4π BaF2 detector array designed to make measurements of neutron capture on rare or radioactive nuclides. It has also been used to make measurements of gamma-ray multiplicity following capture and gamma-ray output from fission. Several examples of measurements are briefly discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.E.D. Morgan; R.M. Housley; J.B. Davis

    A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

  2. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    NASA Astrophysics Data System (ADS)

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-08-01

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides 40K, 235U, 238U, 226Ra, 228Ra and 232Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for 232Th, 228Ra and 40K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

  3. Radiometric reconnaissance in the Garfield and Taylor park quadrangles, Chaffee and Gunnison counties, Colorado

    USGS Publications Warehouse

    Dings, M.G.; Schafer, Max

    1953-01-01

    During the summer of 1952 most of the mines and prospects in the Garfield and Taylor Park quadrangles of west-central Colorado were examined radiometrically by the U. S. Geological Survey to determine the extent, grade, and mode of occurrence of radioactive substances. The region contains a relatively large number of rock types, chiefly pre-Cambrian schists, gneisses, and granites; large and small isolated areas of sedimentary rocks of Paleozoic and Mesozoic ages; and a great succession of intrusive rocks of Tertiary age that range from andesite to granite and occur as stocks, chonoliths, sills, dikes, and one batholith. The prevailing structures are northwest-trending folds and faults. Ores valued at about $30,000,000 have been produced from this region. Silver, lead, zinc, and gold have accounted for most of this value, but small tonnages of copper, tungsten, and molybdenum have also been produced. The principal ore minerals are sphalerite, silver-bearing galena, cerussite, smithsonite, and gold-bearing pyrite and limonite; they occur chiefly as replacement bodies in limestone and as shoots in pyritic quartz veins. Anomalous radioactivity is uncommon and the four localities at which it is known are widely separated in space. The uranium content of samples from these localities is low. Brannerite, the only uranium-bearing mineral positively identified in the region, occurs sparingly in a few pegmatites and in one quartz-beryl-pyrite vein. Elsewhere radioactivity is associated with (l) black shale seams in the Manitou dolomite, (2) a quartz-pyrite-molybdenite vein, (3) a narrow border zone of oxidized material surrounding a small lead zinc ore body in the Manitou dolomite along a strong fault zone.

  4. Preliminary hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky

    USGS Publications Warehouse

    Zehner, Harold H.

    1979-01-01

    Burial trenches at the Maxey Flats radioactive waste burial site , Fleming County, Ky., cover an area of about 0.03 square mile, and are located on a plateau, about 300 to 400 feet above surrounding valleys. Although surface-water characteristics are known, little information is available regarding the ground-water hydrology of the Maxey Flats area. If transport of radionuclides from the burial site were to occur, water would probably be the principal mechanism of transport by natural means. Most base flow in streams around the burial site is from valley alluvium, and from the mantle of regolith, colluvium, and soil partially covering adjacent hills. Very little base flow is due to ground-water flow from bedrock. Most water in springs is from the mantle, rather than from bedrock. Rock units underlying the Maxey Flats area are, in descending order, the Nancy and Farmers Members of the Borden Formation, Sunbury, Bedford, and Ohio Shales, and upper part of the Crab Orchard Formation. These units are mostly shales, except for the Farmers Member, which is mostly sandstone. Total thickness of the rocks is about 320 feet. All radioactive wastes are buried in the Nancy Member. Most ground-water movement in bedrock probably occurs in fractures. The ground-water system at Maxey Flats is probably unconfined, and recharge occurs by (a) infiltration of rainfall into the mantle, and (b) vertical, unsaturated flow from the saturated regolith on hilltops to saturated zones in the Farmers Member and Ohio Shale. Data are insufficient to determine if saturated zones exist in other rock units. The upper part of the Crab Orchard Formation is probably a hydrologic boundary, with little ground-water flow through the formation. (USGS)

  5. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    USGS Publications Warehouse

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by naturally occurring radioactive materials (NORM)at oilfield sites.

  6. Production of 35S for a Liquid Semiconductor Betavoltaic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, David E.; Garnov, A. Y.; Robertson, J. D.

    2009-10-01

    The specific energy density from radioactive decay is five to six orders of magnitude greater than the specific energy density in conventional chemical battery and fuel cell technologies. We are currently investigating the use of liquid semiconductor based betavoltaics as a way to directly convert the energy of radioactive decay into electrical power and potentially avoid the radiation damage that occurs in solid state semiconductor devices due to non-ionizing energy loss. Sulfur-35 was selected as the isotope for the liquid semiconductor demonstrations because it can be produced in high specific activity and it is chemically compatible with known liquid semiconductormore » media.« less

  7. Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments

    USGS Publications Warehouse

    Landa, E.R.

    2003-01-01

    Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.

  8. Toxoplasma antibodies and retinochoroiditis in the Marshall Islands and their association with exposure to radioactive fallout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, W.H.; Kindermann, W.R.; Walls, K.W.

    1987-03-01

    Nearly universal serologic evidence of Toxoplasma gondii infection was found to have occurred by adulthood in 517 Marshallese tested in 1981-1982. The prevalence and incidence of retinal lesions compatible with toxoplasmosis were 3.9% and 273 cases/year/100,000 seropositive persons, respectively, thus indicating a significant public health problem. Seronegativity was significantly more common in a subgroup of Marshallese that had received 110-190 rads of total-body gamma radiation as a consequence of accidental exposure to radioactive fallout in 1954. Despite this finding there was no evidence of an increase in clinically significant lesions in exposed persons.

  9. Static and dynamic (18) FDG-PET in normal hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Souza, Marcy J; Wall, Jonathan S; Stuckey, Alan; Daniel, Gregory B

    2011-01-01

    Positron emission tomography (PET) is often used to stage and monitor human cancer and has recently been used in a similar fashion in veterinary medicine. The most commonly used radiopharmaceutical is 2-Deoxy-2-[(18) F]-Fluoro-d-glucose ((18) F-FDG), which is concentrated and trapped within cells that use glucose as their energy substrate. We characterized the normal distribution of (18) F-FDG in 10 healthy Hispaniolan Amazon parrots (Amazona ventralis) by performing whole body PET scans at steady state, 60min after injection. Significant variability was found in the intestinal activity. Avian species are known to reflux fluid and electrolytes from their cloaca into their colon. To evaluate reflux as the cause of variability in intestinal distribution of (18) F-FDG, dynamic PET scans were performed on the coelomic cavity of six Hispaniolan Amazon parrots from time 0 to 60min postinjection of radiotracer. Reflux of radioactive material from the cloaca into the colon occurred in all birds to varying degrees and occurred before 60min. To evaluate the intestinal tract of clinical avian patients, dynamic scans must be performed starting immediately after injection so that increased radioactivity due to metabolism or hypermetabolic lesions such as cancer can be differentiated from increased radioactivity due to reflux of fluid from the cloaca. © 2010 Veterinary Radiology & Ultrasound.

  10. Radiation Protection. Measurement of radioactivity in the environment - Air- radon 222. A proposed ISO standard.

    NASA Astrophysics Data System (ADS)

    Gillmore, G.; Woods, M.

    2009-04-01

    Radon isotopes (222, 220, 219) are radioactive gases produced by the disintegration of radium isotopes 226, 224 and 223, which are decay products of uranium238, thorium232 and uranium235 respectively. All are found in the earth's crust. Solid elements, also radioactive, are produced by radon disintegration. Radon is classed as a rare gas in the periodic table of elements, along with helium, argon, neon, krypton and xenon. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead etc.). The potential danger of radon lies in its solid decay products rather than the gas itself. Whether or not they are attached aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size. Radon today is considered to be the main source of human exposure to natural radiation. At the international level, radon accounts for 52% of global average exposure to natural radiation. Isotope 222 (48%) is far more significant than isotope 220 (4%), whilst isotope 219 is considered as negligible. Exposure to radon varies considerably from one region to another, depending on factors such as weather conditions, and underlying geology. Activity concentration can therefore vary by a factor of 10 or even a 100 from one period of time to the next and from one area to another. There are many ways of measuring the radon 222 activity concentration and the potential alpha energy concentration of its short-lived decay products. Measuring techniques fall into three categories: - spot measurement methods; continuous measurement; integrated measurement. The proposed ISO (International Organisation for Standardisation) document suggests guidelines for measuring radon222 activity concentration and the potential alpha energy concentration of its short-lived decay products in a free (environment) and confined (buildings) atmosphere. The target date for availability of this work item is 2011. The ISO document here highlighted is a working draft. ISO is a worldwide federation of national standards bodies. Keywords: radon; international standards; measurement techniques.

  11. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)« less

  12. Biological Uptake of Phosphorus by Activated Sludge 1

    PubMed Central

    Yall, Irving; Boughton, William H.; Knudsen, Richard C.; Sinclair, Norval A.

    1970-01-01

    The ability of activated sludge to remove phosphates was studied by adding carrier-free 32P to raw sewage and measuring incorporation of the radioactivity into the cells over a period of time. Radioisotope determinations indicated that 48% of the 32P radioactivity was removed by 12 hr. However, chemical methods indicated that only 30% of the orthophosphate apparently disappeared from the sewage during this period. Experiments with sludge prelabeled with 32P indicated that considerable phosphate turnover occurred. The cells released large amounts of radioactivity as they were incorporating fresh phosphates. Starvation in isotonic saline for 18 hr caused the sludge to dump phosphate. When introduced into fresh sewage containing 32P, the starved sludge removed about 60% of the radioactivity in 6 hr with little phosphate turnover. The ability of sludge to remove 32P was inhibited approximately 83% by 10−3m 2,4-dinitrophenol. This inhibition was at the expense of the cell fraction that contained ribonucleic acid and deoxyribonucleic acid. The sludge cells released orthophosphate when exposed to the chemical agent. Experiments using 45Ca indicated that calcium phosphate precipitation plays a minor role in phosphate removal under our experimental conditions. PMID:5456935

  13. Biological uptake of phosphorus by activated sludge.

    PubMed

    Yall, I; Boughton, W H; Knudsen, R C; Sinclair, N A

    1970-07-01

    The ability of activated sludge to remove phosphates was studied by adding carrier-free (32)P to raw sewage and measuring incorporation of the radioactivity into the cells over a period of time. Radioisotope determinations indicated that 48% of the (32)P radioactivity was removed by 12 hr. However, chemical methods indicated that only 30% of the orthophosphate apparently disappeared from the sewage during this period. Experiments with sludge prelabeled with (32)P indicated that considerable phosphate turnover occurred. The cells released large amounts of radioactivity as they were incorporating fresh phosphates. Starvation in isotonic saline for 18 hr caused the sludge to dump phosphate. When introduced into fresh sewage containing (32)P, the starved sludge removed about 60% of the radioactivity in 6 hr with little phosphate turnover. The ability of sludge to remove (32)P was inhibited approximately 83% by 10(-3)m 2,4-dinitrophenol. This inhibition was at the expense of the cell fraction that contained ribonucleic acid and deoxyribonucleic acid. The sludge cells released orthophosphate when exposed to the chemical agent. Experiments using (45)Ca indicated that calcium phosphate precipitation plays a minor role in phosphate removal under our experimental conditions.

  14. Studies on the Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Waldron-Edward, Deirdre; Paul, T. M.; Skoryna, Stanley C.

    1964-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting calcium to be available to the body. Studies were carried out by measuring bone uptake of Sr89 and Ca45 when various amounts of sodium alginate were fed with the diet. Long-term studies were made in which two different levels of radioactivity were used, to determine the pattern of Sr89 deposition with continuous intake of binding agent. It was found that administration of sodium alginate as a jelly overcomes the problem of constipation and effectively reduces Sr89 uptake, up to 83%. This fact represents a significant finding with respect to the use of the compound in human subjects. Addition of sodium alginate to drinking water is effective with low levels of Sr89 intake. This naturally occurring water-soluble macromolecular substance possesses several advantages in use for the suppression of absorption of radioactive strontium when compared with synthetic ion exchange resins: there is no disturbance of electrolyte balance; efficiency is not reduced by treatment over a prolonged period of time; and finally, the product is palatable. PMID:14222668

  15. Radiation-induced microcrystal shape change as a mechanism of wasteform degradation

    NASA Astrophysics Data System (ADS)

    Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.

    2018-04-01

    Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.

  16. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Marguccio, S.; Durante, G.; Trozzo, R.; Fullone, F.; Belvedere, A.; D'Agostino, M.; Belmusto, G.

    2017-01-01

    In this article natural radioactivity measurements and dosimetric evaluations in soil samples contaminated by Naturally Occurring Radioactive Materials (NORM) are made, in order to assess any possible radiological hazard for the population and for workers professionally exposed to ionizing radiations. Investigated samples came from the district of Crotone, Calabria region, South of Italy. The natural radioactivity investigation was performed by high-resolution gamma-ray spectrometry. From the measured gamma spectra, activity concentrations were determined for 226Ra , 234-mPa , 224Ra , 228Ac and 40K and compared with their clearance levels for NORM. The total effective dose was calculated for each sample as due to the committed effective dose for inhalation and to the effective dose from external irradiation. The sum of the total effective doses estimated for all investigated samples was compared to the action levels provided by the Italian legislation (D.Lgs.230/95 and subsequent modifications) for the population members (0.3mSv/y) and for professionally exposed workers (1mSv/y). It was found to be less than the limit of no radiological significance (10μSv/y).

  17. Occurrence of natural radium-226 radioactivity in ground water of Sarasota County, Florida

    USGS Publications Warehouse

    Miller, R.L.; Sutcliffe, Horace

    1985-01-01

    Water that contains radium-226 radioactivity in excess of the 5.0-picocurie-per-liter limit set in the National Interim Primary Drinking Water Regulations was found in the majority of wells sampled throughout Sarasota County. Highest levels were found areally near the coast or near rivers and vertically in the Tamiami-upper Hawthorn aquifer where semiconsolidated phosphate pebbles occur. Analysis of data suggests that part of the radium-226 in ground water of Sarasota County is dissolved by alpha particle recoil. In slightly mineralized water, radium-226 concentrations are decreased by ion exchange or sorption. In more mineralized water, other ions compete with radium-226 for ion exchange or sorption sites. Dissolution of minerals containing radium-226 by mineralized water probably contributes a significant fraction of the dissolved radium-226. Two types of mineralized water were present in Sarasota County. One type is a marine-like water, presumably associated with saltwater encroachment in coastal areas; the other is a calcium magnesium strontium surfate bicarbonate type. In general, water that contains high radium-226 radioactivities also contains too much water hardness or dissolved solids to be used for public supply without treatment that would also reduce radium-226 radioactivities. (USGS)

  18. 41 CFR 109-42.1102-51 - Suspect personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... radioactive or chemical contamination may occur shall be considered suspect and shall be monitored using... the level of contamination of excess or surplus personal property to the lowest practicable level. Contaminated personal property that exceeds applicable contamination standards shall not be utilized or...

  19. 10 CFR 171.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... manufactured in accordance with the unique specifications of, and for use by, a single applicant. Research..., on, or after August 8, 2005, for use for a commercial, medical, or research activity; or (ii) Any..., medical, or research activity; and (3) Any discrete source of naturally occurring radioactive material...

  20. 10 CFR 171.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... manufactured in accordance with the unique specifications of, and for use by, a single applicant. Research..., on, or after August 8, 2005, for use for a commercial, medical, or research activity; or (ii) Any..., medical, or research activity; and (3) Any discrete source of naturally occurring radioactive material...

Top