NASA Astrophysics Data System (ADS)
Pratik, Kad; Parekh, Anant; Karmakar, Ananya; Chowdary, Jasti S.; Gnanaseelan, C.
2018-05-01
The present study examines changes in the low-level summer monsoon circulation over the Arabian Sea and their impact on the ocean dynamics using reanalysis data. The study confirms intensification and northward migration of low-level jet during 1979 to 2015. Further during the study period, an increase in the Arabian Sea upper ocean heat content is found in spite of a decreasing trend in the net surface heat flux, indicating the possible role of ocean dynamics in the upper ocean warming. Increase in the anti-cyclonic wind stress curl associated with the change in the monsoon circulation induces downwelling over the central Arabian Sea, favoring upper ocean warming. The decreasing trend of southward Ekman transport, a mechanism transporting heat from the land-locked north Indian Ocean to southern latitudes, also supports increasing trend of the upper ocean heat content. To reinstate and quantify the role of changing monsoon circulation in increasing the heat content over the Arabian Sea, sensitivity experiment is carried out using ocean general circulation model. In this experiment, the model is forced by inter-annual momentum forcing while rest of the forcing is climatological. Experiment reveals that the changing monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport, which strongly endorses our hypothesis that changing ocean dynamics associated with low-level monsoon circulation is causing the increasing trend in the heat content of the Arabian Sea.
The Pattern and Dynamics of the Meridional Overturning Circulation in the Upper Ocean
2008-09-01
Atlantic . Figure 4a shows that the center of meridional overturning circulation occurs at a level of about one kilometer. Circulation is weak at...maintenance of the meridional overturning circulation in the Atlantic Ocean. 5. Global Simulation The most exciting experiment would be to fully model the...mechanisms responsible for the strength and maintenance of the meridional overturning circulation in the Atlantic Ocean are not
NASA Technical Reports Server (NTRS)
Nese, Jon M.; Dutton, John A.
1993-01-01
The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.
An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications
NASA Astrophysics Data System (ADS)
Goodwin, Philip
2012-07-01
To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.
Dynamics of a Snowball Earth ocean.
Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli
2013-03-07
Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.
Interior Pathways to Dissipation of Mesoscale Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadiga, Balasubramanya T.
This talk at Goethe University asks What Powers Overturning Circulation? How does Ocean Circulation Equilibrate? There is a HUGE reservoir of energy sitting in the interior ocean. Can fluid dynamic instabilities contribute to the mixing required to drive global overturning circulation? Study designed to eliminate distinguished horizontal surfaces such as bottom BL and surface layer
Geothermal influences on the abyssal ocean
NASA Astrophysics Data System (ADS)
Emile-Geay, J.; Madec, G.
2017-12-01
Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and circulation. We conclude with a perspective on the role of conductive geothermal heat loss versus localized, advective hydrothermal heat flow on abyssal dynamics, and delineate unsolved research problems for the years ahead.
The Southern Ocean's role in ocean circulation and climate transients
NASA Astrophysics Data System (ADS)
Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.
2017-12-01
The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model were determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (>1000 km) model chlorophyll seasonal distributions were statistically positively correlated with CZCS chlorophyll in 10 of 12 major oceanographic regions, and with SeaWiFS in all 12. Notable disparities in magnitudes occurred, however, in the tropical Pacific, the spring/summer bloom in the Antarctic, autumn in the northern high latitudes, and during the southwest monsoon in the North Indian Ocean. Synoptic scale (100-1000 km) comparisons of satellite and in situ data exhibited broad agreement, although occasional departures were apparent. Model nitrate distributions agreed with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicated that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on basin and synoptic scales.
Observations and Modeling of the Transient General Circulation of the North Pacific Basin
NASA Technical Reports Server (NTRS)
McWilliams, James C.
2000-01-01
Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.
Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki
2012-01-01
We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.
The importance of planetary rotation period for ocean heat transport.
Cullum, J; Stevens, D; Joshi, M
2014-08-01
The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.
Dynamical Evaluation of Ocean Models using the Gulf Stream as an Example
2010-01-01
transport for the Atlantic meridional overturning circulation (AMOC) as the 3 nonlinear solutions discussed in Section 2. The model boundary is...Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ... overturning circulation (AMOC) streamfunction with a 5 Sv contour interval from (a) 1/12° Atlantic MICOM, (b) 1/12° Atlantic HYCOM, and (c) 1/12
Dynamical Evaluation of Ocean Models Using the Gulf Stream as an Example
2012-02-10
Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ...30 35 55N 65N Fig. 21.14 Atlantic meridional overturning circulation (AMOC) streamfunction from the same four simulations as Fig. 21.11. An AMOC...typically develops a northern or southern bias. A shallow bias in the southward abyssal flow of the Atlan- tic Meridional Overturning Circulation (AMOC
NASA Astrophysics Data System (ADS)
Chatterjee, Abhisek; Shankar, D.; McCreary, J. P.; Vinayachandran, P. N.; Mukherjee, A.
2017-04-01
Circulation in the Bay of Bengal (BoB) is driven not only by local winds, but are also strongly forced by the reflection of equatorial Kelvin waves (EKWs) from the eastern boundary of the Indian Ocean. The equatorial influence attains its peak during the monsoon-transition period when strong eastward currents force the strong EKWs along the equator. The Andaman Sea, lying between the Andaman and Nicobar island chains to its west and Indonesia, Thailand, and Myanmar to the south, east, and north, is connected to the equatorial ocean and the BoB by three primary passages, the southern (6°N), middle (10°N), and northern (15°N) channels. We use ocean circulation models, together with satellite altimeter data, to study the pathways by which equatorial signals pass through the Andaman Sea to the BoB and associated dynamical interactions in the process. The mean coastal circulation within the Andaman Sea and around the islands is primarily driven by equatorial forcing, with the local winds forcing a weak sea-level signal. On the other hand, the current forced by local winds is comparable to that forced remotely from the equator. Our results suggest that the Andaman and Nicobar Islands not only influence the circulation within the Andaman Sea, but also significantly alter the circulation in the interior bay and along the east coast of India, implying that they need to be represented accurately in numerical models of the Indian Ocean.
NASA Technical Reports Server (NTRS)
Rapp, Richard H.
1998-01-01
This paper documents the development of a degree 360 expansion of the dynamic ocean topography (DOT) of the POCM_4B ocean circulation model. The principles and software used that led to the final model are described. A key principle was the development of interpolated DOT values into land areas to avoid discontinuities at or near the land/ocean interface. The power spectrum of the POCM_4B is also presented with comparisons made between orthonormal (ON) and spherical harmonic magnitudes to degree 24. A merged file of ON and SH computed degree variances is proposed for applications where the DOT power spectrum from low to high (360) degrees is needed.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition
NASA Astrophysics Data System (ADS)
Goldner, A.; Herold, N.; Huber, M.
2014-07-01
Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.
Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.
Goldner, A; Herold, N; Huber, M
2014-07-31
Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.
NASA Astrophysics Data System (ADS)
Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter
2015-04-01
The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the final product is accomplished. In conclusion, the developed integrated approach allows for estimating the dynamic topography and its inverse covariance matrix on arbitrary grids in space and time. The inverse covariance matrix contains the appropriate weights for model-data misfits in least-squares ocean model inversions. The focus of this study is on the North Atlantic Ocean. We will present the conceptual design and dynamic topography estimates based on time variable data from seven satellite altimeter missions (Jason-1, Jason-2, Topex/Poseidon, Envisat, ERS-2, GFO, Cryosat2) in combination with the latest GOCE gravity field model and in-situ data from the Argo floats and near-surface drifting buoys.
NASA Technical Reports Server (NTRS)
Charney, J. G.; Kalnay, E.; Schneider, E.; Shukla, J.
1988-01-01
A numerical model of the circulation of a coupled axisymmetric atmosphere-ocean system was constructed to investigate the physical factors governing the location and intensity of the Intertropical Convergence Zone (ITCZ) over oceans and over land. The results of several numerical integrations are presented to illustrate the interaction of the individual atmospheric and oceanic circulations. It is shown that the ITCA cannot be located at the equator because the atmosphere-ocean system is unstable for lateral displacements of the ITCA from an equilibrium position at the equator.
Adaptation of a general circulation model to ocean dynamics
NASA Technical Reports Server (NTRS)
Turner, R. E.; Rees, T. H.; Woodbury, G. E.
1976-01-01
A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.
The Importance of Planetary Rotation Period for Ocean Heat Transport
Stevens, D.; Joshi, M.
2014-01-01
Abstract The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier—the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability. Key Words: Exoplanet—Oceans—Rotation—Climate—Habitability. Astrobiology 14, 645–650. PMID:25041658
A perspective on the future of physical oceanography.
Garabato, Alberto C Naveira
2012-12-13
The ocean flows because it is forced by winds, tides and exchanges of heat and freshwater with the overlying atmosphere and cryosphere. To achieve a state where the defining properties of the ocean (such as its energy and momentum) do not continuously increase, some form of dissipation or damping is required to balance the forcing. The ocean circulation is thought to be forced primarily at the large scales characteristic of ocean basins, yet to be damped at much smaller scales down to those of centimetre-sized turbulence. For decades, physical oceanographers have sought to comprehend the fundamentals of this fractal puzzle: how the ocean circulation is driven, how it is damped and how ocean dynamics connects the very different scales of forcing and dissipation. While in the last two decades significant advances have taken place on all these three fronts, the thrust of progress has been in understanding the driving mechanisms of ocean circulation and the ocean's ensuing dynamical response, with issues surrounding dissipation receiving comparatively little attention. This choice of research priorities stems not only from logistical and technological difficulties in observing and modelling the physical processes responsible for damping the circulation, but also from the untested assumption that the evolution of the ocean's state over time scales of concern to humankind is largely independent of dissipative processes. In this article, I illustrate some of the key advances in our understanding of ocean circulation that have been achieved in the last 20 years and, based on a range of evidence, contend that the field will soon reach a stage in which uncertainties surrounding the arrest of ocean circulation will pose the main challenge to further progress. It is argued that the role of the circulation in the coupled climate system will stand as a further focal point of major advances in understanding within the next two decades, supported by the drive of physical oceanography towards a more operational enterprise by contextual factors. The basic elements that a strategy for the future must have to foster progress in these two areas are discussed, with an overarching emphasis on the promotion of curiosity-driven fundamental research against opposing external pressures and on the importance of upholding fundamental research as the apex of education in the field.
Dynamical balance in the Indonesian Seas circulation
NASA Astrophysics Data System (ADS)
Burnett, William H.; Kamenkovich, Vladimir M.; Jaffe, David A.; Gordon, Arnold L.; Mellor, George L.
2000-09-01
A high resolution, four-open port, non-linear, barotropic ocean model (2D POM) is used to analyze the Indonesian Seas circulation. Both local and overall momentum balances are studied. It is shown that geostrophy holds over most of the area and that the Pacific-Indian Ocean pressure difference is essentially balanced by the resultant of pressure forces acting on the bottom.
Ocean Data Assimilation in Support of Climate Applications: Status and Perspectives.
Stammer, D; Balmaseda, M; Heimbach, P; Köhl, A; Weaver, A
2016-01-01
Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable. Further advances are expected from improved models and methods for estimating and representing error information in data assimilation systems. Ultimately, data assimilation into coupled climate system components is needed to support ocean and climate services. However, maintaining the infrastructure and expertise for sustained data assimilation remains challenging.
The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation
NASA Astrophysics Data System (ADS)
Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.
2016-12-01
Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.
Model projections of rapid sea-level rise on the northeast coast of the United States
NASA Astrophysics Data System (ADS)
Yin, Jianjun; Schlesinger, Michael E.; Stouffer, Ronald J.
2009-04-01
Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. Here we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea-level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.
Model Projections of Rapid Sea-Level Rise on the Northeast Coast of the United States
NASA Astrophysics Data System (ADS)
Yin, J.; Schlesinger, M.; Stouffer, R. J.
2009-12-01
Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. In the present study, we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21 cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.
van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M
2007-05-01
We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
1999-01-01
A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
3D Visualization of Global Ocean Circulation
NASA Astrophysics Data System (ADS)
Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.
2015-12-01
Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.
The global distribution and dynamics of chromophoric dissolved organic matter.
Nelson, Norman B; Siegel, David A
2013-01-01
Chromophoric dissolved organic matter (CDOM) is a ubiquitous component of the open ocean dissolved matter pool, and is important owing to its influence on the optical properties of the water column, its role in photochemistry and photobiology, and its utility as a tracer of deep ocean biogeochemical processes and circulation. In this review, we discuss the global distribution and dynamics of CDOM in the ocean, concentrating on developments in the past 10 years and restricting our discussion to open ocean and deep ocean (below the main thermocline) environments. CDOM has been demonstrated to exert primary control on ocean color by its absorption of light energy, which matches or exceeds that of phytoplankton pigments in most cases. This has important implications for assessing the ocean biosphere via ocean color-based remote sensing and the evaluation of ocean photochemical and photobiological processes. The general distribution of CDOM in the global ocean is controlled by a balance between production (primarily microbial remineralization of organic matter) and photolysis, with vertical ventilation circulation playing an important role in transporting CDOM to and from intermediate water masses. Significant decadal-scale fluctuations in the abundance of global surface ocean CDOM have been observed using remote sensing, indicating a potentially important role for CDOM in ocean-climate connections through its impact on photochemistry and photobiology.
Oceanography in the formal and informal classroom
NASA Technical Reports Server (NTRS)
Richardson, A.; Jasnow, M.; Srinivasan, M.; Rosmorduc, V.; Blanc, F.
2002-01-01
The TOPEX/Poseidon and Jason-1 ocean altimeter missions offer the educator in the middle school or informal education venue a unique opportunity for reinforcing ocean science studies. An educational poster from NASA's Jet Propulsion Laboratory and France's Centre National d'Etudes Spatiales provide teachers and students a tool to examine topics such as the dynamics of ocean circulation, ocean research, and the oceans' role in climate.
Ocean dynamics in the Nordic Seas using satellite altimetry
NASA Technical Reports Server (NTRS)
Pettersson, Lasse H.; Johannessen, O. M.; Olaussen, T. I.
1991-01-01
The main objective of this TOPEX/POSEIDON project is to integrate the accurately measured sea surface topography, as resolved by both TOPEX/POSEIDON radar altimeters, into the above-mentioned quantitative studies of the short- and long-term variations in the mesoscale ocean dynamics of the Nordic Seas south of 66 deg N. This implies: (1) comparison and validation of the capability to resolve the general basin-scale circulation and the mesoscale variability by, respectively, radar altimeters and numerical ocean circulation models; (2) calibration and validation of the altimeter-derived sea surface topography against in situ measurements from research vessels and moorings, particularly under extreme wind and wave conditions; and (3) improved monitoring and understanding of the flux variations between the North Atlantic and the Nordic Seas, both on the short and seasonal time scales.
2009-05-20
in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. dim. 21. 6599-6615. Blanke, B., Raynaud. S„ 1997. Kinematics of...Indian to the Atlantic Ocean in the warm upper-branch return flow of the thermohaline circulation (Cordon, 1985). The three numerical data sets...35. L20602. Biastoch, A., Boning. C.W.. Lutjeharms, J.RE., 2008b. Agulhas leakage dynamics affects decadal variability in Atlantic overturning
Can increased poleward oceanic heat flux explain the warm Cretaceous climate?
NASA Astrophysics Data System (ADS)
Schmidt, Gavin A.; Mysak, Lawrence A.
1996-10-01
The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric latent heat transport, where an increased hydrological cycle (especially in the tropical sinking cases) contributes up to an extra 1 PW of poleward heat transport. Better constraints on the oceanic deepwater circulation during this period are necessary before the meridional circulation can be unambiguously described.
Dyamical Systems Theory and Lagrangian Data Assimilation in 4D Geophysical Fluid Dynamics
The long-term goal of our project (known as OCEAN 3D +1) was to better understand and predict ocean circulation features that are fundamentally three...dimensional in space and that vary in time. In particular, we sought to quantify the dynamical processes that govern the formation , evolution, and...predictability of 3D +1 transport pathways in the ocean. Our approach was to develop algorithms to thoroughly analyze a hierarchy of model and
Anticipated Improvements to Net Surface Freshwater Fluxes from GPM
NASA Technical Reports Server (NTRS)
Smith, Eric A.
2005-01-01
Evaporation and precipitation over the oceans play very important roles in the global water cycle, upper-ocean heat budget, ocean dynamics, and coupled ocean-atmosphere dynamics. In the conventional representation of the terrestrial water cycle, the assumed role of the oceans is to act as near-infinite reservoirs of water with the main drivers of the water cycle being land- atmosphere interactions in which excess precipitation (P) over evaporation (E) is returned to the oceans as surface runoff and baseflow. Whereas this perspective is valid for short space and time scales -- fundamental principles, available observed estimates, and results from models indicate that the oceans play a far more important role in the large-scale water cycle at seasonal and longer timescales. Approximately 70-80% of the total global evaporation and precipitation occurs over oceans. Moreover, latent heat release into the atmosphere over the oceans is the major heat source driving global atmospheric circulations, with the moisture transported by circulations from oceans to continents being the major source of water precipitating over land. Notably, the major impediment in understanding and modeling the oceans role in the global water cycle is the lack of reliable net surface freshwater flux estimates (E - P fluxes) at the salient spatial and temporal resolutions, i.e., consistent coupled weekly to monthly E - P gridded datasets.
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir
2010-05-01
The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the scope of the CMIP-5 (Coupled Model Intercomparison Project). On the base of the complex proposed the Pacific Ocean circulation eddy-resolving model was realized. The integration domain covers the Pacific from Equator to Bering Strait. The model horizontal resolution is 0.125 degree and it has 20 non-uniform sigma-levels in depth. The model adequately reproduces circulation large-scale structure and its variability: Kuroshio meandering, ocean synoptic eddies, frontal zones, etc. Kuroshio high variability is shown. The distribution of contaminant was simulated that is admittedly wasted near Petropavlovsk-Kamchatsky. The results demonstrate contaminant distribution structure and provide us understanding of hydrological fields formation processes in the North-West Pacific.
Steering of Upper Ocean Currents and Fronts by the Topographically Constrained Abyssal Circulation
2008-07-06
a) Mean surface dynamic height relative to 1000 m from version 2.5 of the Generalized Digital Environmental Model ( GDEM ) oceanic climatology, an...NLOM simulations in comparison to the mean surface dynamic height with respect to 1000 m from the Generalized Digital Environmental Model ( GDEM ...the Kuroshio pathway east of Japan, giving much better agreement with the pathway in the GDEM climatology. Dynamics of the topographic impact on
Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model
2012-06-01
atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and precipitation at the ocean...surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by temperature and salinity, the...days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning oceanic dynamical
Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Lindstrom, Eric (Technical Monitor)
2002-01-01
This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.
Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics
NASA Astrophysics Data System (ADS)
Wang, Kun; Deser, Clara; Sun, Lantao; Tomas, Robert A.
2018-05-01
The role of ocean dynamics in the transient adjustment of the coupled climate system to an abrupt loss of Arctic sea ice is investigated using experiments with Community Climate System Model version 4 in two configurations: a thermodynamic slab mixed layer ocean and a full-depth ocean that includes both dynamics and thermodynamics. Ocean dynamics produce a distinct sea surface temperature warming maximum in the eastern equatorial Pacific, accompanied by an equatorward intensification of the Intertropical Convergence Zone and Hadley Circulation. These tropical responses are established within 25 years of ice loss and contrast markedly with the quasi-steady antisymmetric coupled response in the slab-ocean configuration. A heat budget analysis reveals the importance of anomalous vertical advection tied to a monotonic temperature increase below 200 m for the equatorial sea surface temperature warming maximum in the fully coupled model. Ocean dynamics also rapidly modify the midlatitude atmospheric response to sea ice loss.
How potentially predictable are midlatitude ocean currents?
Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi
2016-01-01
Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954
NASA Astrophysics Data System (ADS)
Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey
2018-05-01
General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.
NASA Technical Reports Server (NTRS)
Nese, Jon M.
1989-01-01
A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.
NASA Astrophysics Data System (ADS)
He, R.; Zong, H.; Xue, Z. G.; Fennel, K.; Tian, H.; Cai, W. J.; Lohrenz, S. E.
2017-12-01
An integrated terrestrial-ocean ecosystem modeling system is developed and used to investigate marine physical-biogeochemical variabilities in the Gulf of Mexico and southeastern US shelf sea. Such variabilities stem from variations in the shelf circulation, boundary current dynamics, impacts of climate variability, as well as growing population and associated land use practices on transport of carbon and nutrients within terrestrial systems and their delivery to the coastal ocean. We will report our efforts in evaluating the performance of the coupled modeling system via extensive model and data comparisons, as well as findings from a suite of case studies and scenario simulations. Long-term model simulation results are used to quantify regional ocean circulation dynamics, nitrogen budget and carbon fluxes. Their corresponding sub-regional differences are also characterized and contrasted.
An ocean dynamical thermostat—dominant in observations, absent in climate models
NASA Astrophysics Data System (ADS)
Coats, S.; Karnauskas, K. B.
2016-12-01
The pattern of sea surface temperature (SST) in the tropical Pacific Ocean is coupled to the Walker circulation, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease in the zonal SST gradient is a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While the observed increase in the zonal SST gradient is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a seasonal weakening of the Walker circulation and thus can reconcile disparate observations of changes to the atmosphere and ocean in the equatorial Pacific. CMIP5 models do not capture the magnitude of this response of the EUC to anthropogenic radiative forcing potentially because of biases in the sensitivity of the EUC to changes in zonal wind stress, like the weakening Walker circulation. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific.
Role of the North Atlantic Ocean in Low Frequency Climate Variability
NASA Astrophysics Data System (ADS)
Danabasoglu, G.; Yeager, S. G.; Kim, W. M.; Castruccio, F. S.
2017-12-01
The Atlantic Ocean is a unique basin with its extensive, North - South overturning circulation, referred to as the Atlantic meridional overturning circulation (AMOC). AMOC is thought to represent the dynamical memory of the climate system, playing an important role in decadal and longer time scale climate variability as well as prediction of the earth's future climate on these time scales via its large heat and salt transports. This oceanic memory is communicated to the atmosphere primarily through the influence of persistent sea surface temperature (SST) variations. Indeed, many modeling studies suggest that ocean circulation, i.e., AMOC, is largely responsible for the creation of coherent SST variability in the North Atlantic, referred to as Atlantic Multidecadal Variability (AMV). AMV has been linked to many (multi)decadal climate variations in, e.g., Sahel and Brazilian rainfall, Atlantic hurricane activity, and Arctic sea-ice extent. In the absence of long, continuous observations, much of the evidence for the ocean's role in (multi)decadal variability comes from model simulations. Although models tend to agree on the role of the North Atlantic Oscillation in creating the density anomalies that proceed the changes in ocean circulation, model fidelity in representing variability characteristics, mechanisms, and air-sea interactions remains a serious concern. In particular, there is increasing evidence that models significantly underestimate low frequency variability in the North Atlantic compared to available observations. Such model deficiencies can amplify the relative influence of external or stochastic atmospheric forcing in generating (multi)decadal variability, i.e., AMV, at the expense of ocean dynamics. Here, a succinct overview of the current understanding of the (North) Atlantic Ocean's role on the regional and global climate, including some outstanding questions, will be presented. In addition, a few examples of the climate impacts of the AMV via atmospheric teleconnections from a set of coupled simulations, also considering the relative roles of its tropical and extratropical components, will be highlighted.
NASA Astrophysics Data System (ADS)
Ganachaud, A. S.; Sprintall, J.; Lin, X.; Ando, K.
2016-02-01
The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR (Climate Variability and Predictability). The key objectives are to understand the Southwest Pacific Ocean circulation and Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. It was designed to measure and monitor the ocean circulation, and to validate and improve numerical models. South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. Water transit through the Coral and Solomon Seas is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the SPCZ position and intensity. The circulation is complex, with the SEC splitting into zonal jets upon encountering island archipelagos, before joining either the East Australian Current or the New Guinea Costal UnderCurrent towards the equator. SPICE included large, coordinated in situ measurement programs and high resolution numerical simulations of the area. After 8 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. We will review the recent advancements and discuss our current knowledge gaps and important emerging research directions. In particular we will discuss how SPICE, along with the Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) and Indonesian ThroughFlow (ITF) programs could evolve toward an integrative observing system under CLIVAR coordination.
NASA Astrophysics Data System (ADS)
Yu, S.; Pritchard, M. S.
2017-12-01
The role of different location of top-of-atmosphere (TOA) solar forcing to the annual-mean, zonal-mean ITCZ location is examined in a dynamic ocean coupled Community Earth System Model. We observe a damped ITCZ shift response that is now a familiar response of coupled GCMs, but a new finding is that the damping efficiency is increases monotonically as the latitudinal location of forcing is moved poleward. More Poleward forcing cases exhibit weaker shifts of the annual-mean ITCZ position consistent with a more ocean-centric cross-equatorial energy partitioning response to the forcing, which is in turn linked to changes in ocean circulation, not thermodynamic structure. The ocean's dynamic response is partly due to Ekman-driven shallow overturning circulation responses, as expected from a recent theory, but also contains a significant Atlantic meridional overturning circulation (AMOC) component--which is in some sense surprising given that it is activated even in near-tropical forcing experiments. Further analysis of the interhemispheric energy budget reveals the surface heating feedback response provides a useful framework for interpreting the cross-equatorial energy transport partitioning between atmosphere and ocean. Overall, the results of this study may help explain the mixed results of the degree of ITCZ shift response to interhemispheric asymmetric forcing documented in coupled GCMs in recent years. Furthermore, the sensitive AMOC response motivates expanding current coupled theoretical frameworks on meridional energy transport partitioning to include effects beyond Ekman transport.
NASA Technical Reports Server (NTRS)
Drinkwater, Mark R.
1999-01-01
Strong seasonal and interannual signals in Antarctic bottom-water outflow remain unexplained yet are highly correlated with anomalies in net sea-ice growth in coastal polynyas. The mechanisms responsible for driving salination and replenishment and rejuvenation of the dense shelf "source" waters likely also generate pulses of bottom water outflow. The objective of this research is to investigate time-scales of variability in the dynamics of sea-ice in the Southern Ocean in order to determine the primary sites for production of dense shelf waters. We are using a merged satellite/buoy sea-ice motion data set for the period 1978-present day to compute the dynamics of opening and closing of coastal polynyas over the continental shelf. The Ocean Circulation and Climate Advanced Model (OCCAM) ocean general circulation model with coupled sea-ice dynamics is presently forced using National Center for Environmental Prediction (NCEP) data to simulate fluxes and the salination impact of the ocean shelf regions. This work is relevant in the context of measuring the influence of polar sea-ice dynamics upon polar ocean characteristics, and thereby upon global thermohaline ocean circulation. Interannual variability in simulated net freezing rate in the Southern Weddell Sea is shown for the period 1986-1993. There is a pronounced maximum of ice production in 1988 and minimum in 1991 in response to anomalies in equatorward meridional wind velocity. This follows a similar approximate 8-year interannual cycle in Sea Surface Temperature (SST) and satellite-derived ice-edge anomalies reported elsewhere as the "Antarctic Circumpolar Wave." The amplitude of interannual fluctuations in annual net ice production are about 40% of the mean value, implying significant interannual variance in brine rejection and upper ocean heat loss. Southward anomalies in wind stress induce negative anomalies in open water production, which are observed in passive microwave satellite images. Thus, cycles of enhanced poleward wind stress reduce ice growth by compacting the ice along the coastline and closing open water in leads and polynyas. Model simulations confirm that years of low ice production, such as 1991, coincide with years of lower than normal bottom water outflow. Future plans include the assimilation of satellite ice concentrations and ice drift dynamics to more accurately constrain boundary conditions in the model.
Maintenance of Summer Monsoon Circulations: A Planetary-Scale Perspective.
NASA Astrophysics Data System (ADS)
Chen, Tsing-Chang
2003-06-01
The monsoon circulation, which is generally considered to be driven by the landmass-ocean thermal contrast, like a gigantic land-sea breeze circulation, exhibits a phase reversal in its vertical structure; a monsoon high aloft over a continental thermal low is juxtaposed with a midoceanic trough underlaid by an oceanic anticyclone. This classic monsoon circulation model is well matched by the monsoon circulation depicted with the observational data prior to the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE). However, synthesizing findings of the global circulation portrayed with the post-FGGE data, it was found that some basic features of major monsoon circulations in Asia, North America, South America, and Australia differ from those of the classic monsoon circulation model. Therefore, a revision of the classic monsoon theory is suggested. With four different wave regimes selected to fit the horizontal dimensions of these monsoon circulations, basic features common to all four major monsoons are illustrated in terms of diagnostic analyses of the velocity potential maintenance equation (which relates diabatic heating and velocity potential) and the streamfunction budget (which links velocity potential and streamfunction) in these wave regimes. It is shown that a monsoon circulation is actually driven by the east-west differential heating and maintained dynamically by a balance between a vorticity source and advection. This dynamic balance is reflected by a spatial quadrature relationship between the monsoon divergent circulation and the monsoon high (low) at upper (lower) levels.
Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean
Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...
NASA Astrophysics Data System (ADS)
Hochmuth, K.; Gohl, K.; Leitchenkov, G. L.; Sauermilch, I.; Whittaker, J. M.; De Santis, L.; Olivo, E.; Uenzelmann-Neben, G.; Davy, B. W.
2017-12-01
Although the Southern Ocean plays a fundamental role in the global climate and ocean current system, paleo-ocean circulation models of the Southern Ocean suffer from missing boundary conditions. A more accurate representation of the geometry of the seafloor and their dynamics over long time-scales are key for enabling more precise reconstructions of the development of the paleo-currents, the paleo-environment and the Antarctic ice sheets. The accurate parameterisation of these models controls the meaning and implications of regional and global paleo-climate models. The dynamics of ocean currents in proximity of the continental margins is also controlled by the development of the regional seafloor morphology of the conjugate continental shelves, slopes and rises. The reassessment of all available reflection seismic and borehole data from Antarctica as well as its conjugate margins of Australia, New Zealand, South Africa and South America, allows us to create paleobathymetric grids for various time slices during the Cenozoic. Those grids inform us about sediment distribution and volume as well a local sedimentation rates. The earliest targeted time slice of the Eocene/Oligocene Boundary marks a significant turning point towards an icehouse climate. From latest Eocene to earliest Oligocene the Southern Ocean changes fundamentally from a post greenhouse to an icehouse environment with the establishment of a vast continental ice sheet on the Antarctic continent. With the calculated sediment distribution maps, we can evaluate the dynamics of the sedimentary cover as well as the development of structural obstacles such as oceanic plateaus and ridges. The ultimate aim of this project is - as a community based effort - to create paleobathymetric grids at various time slices such as the Mid-Miocene Climatic Optimum and the Pliocene/Pleistocene, and eventually mimic the time steps used within the modelling community. The observation of sediment distribution and local sediment volumes open the door towards more sophisticated paleo-topograpy studies of the Antarctic continent and more detailed studies of the paleo-circulation. Local paleo - water depths at the oceanic gateways or the position of paleo-shelf edges highly influence the regional circulation patterns supporting more elaborated climate models.
Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field
NASA Astrophysics Data System (ADS)
Chavanne, C. P.; Klein, P.
2016-02-01
A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.
The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current.
Thompson, Andrew F
2008-12-28
Although the Antarctic Circumpolar Current (ACC) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange, it remains one of the most poorly represented components of global climate models. Accurately describing the circulation of the ACC is made difficult owing to the prominent role that mesoscale eddies and jets, oceanic equivalents of atmospheric storms and storm tracks, have in setting the density structure and transport properties of the current. The successes and limitations of different representations of eddy processes in models of the ACC are considered, with particular attention given to how the circulation responds to changes in wind forcing. The dynamics of energetic eddies and topographically steered jets may both temper and enhance the sensitivity of different aspects of the ACC's circulation to changes in climate.
NASA Astrophysics Data System (ADS)
Moore, Andrew M.; Jacox, Michael G.; Crawford, William J.; Laughlin, Bruce; Edwards, Christopher A.; Fiechter, Jérôme
2017-08-01
Data assimilation is now used routinely in oceanography on both regional and global scales for computing ocean circulation estimates and for making ocean forecasts. Regional ocean observing systems are also expanding rapidly, and observations from a wide array of different platforms and sensor types are now available. Evaluation of the impact of the observing system on ocean circulation estimates (and forecasts) is therefore of considerable interest to the oceanographic community. In this paper, we quantify the impact of different observing platforms on estimates of the California Current System (CCS) spanning a three decade period (1980-2010). Specifically, we focus attention on several dynamically related aspects of the circulation (coastal upwelling, the transport of the California Current and the California Undercurrent, thermocline depth and eddy kinetic energy) which in many ways describe defining characteristics of the CCS. The circulation estimates were computed using a 4-dimensional variational (4D-Var) data assimilation system, and our analyses also focus on the impact of the different elements of the control vector (i.e. the initial conditions, surface forcing, and open boundary conditions) on the circulation. While the influence of each component of the control vector varies between different metrics of the circulation, the impact of each observing system across metrics is very robust. In addition, the mean amplitude of the circulation increments (i.e. the difference between the analysis and background) remains relatively stable throughout the three decade period despite the addition of new observing platforms whose impact is redistributed according to the relative uncertainty of observations from each platform. We also consider the impact of each observing platform on CCS circulation variability associated with low-frequency climate variability. The low-frequency nature of the dominant climate modes in this region allows us to track through time the impact of each observation on the circulation, and illustrates how observations from some platforms can influence the circulation up to a decade into the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashgarian, M; Guilderson, T P
We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of the invasion of fossil fuel CO{sub 2} and bomb {sup 14}C into the atmosphere and surface oceans. Therefore the {Delta}{sup 14}C data that are produced in this study can be used to validate the ocean uptake of fossil fuel CO2 in coupled ocean-atmosphere models. This study takes advantage of the quasi-conservative nature of {sup 14}C as a water mass tracer by using {Delta}{sup 14}C time series in corals to identify changes in the shallow circulation of the Pacific. Although the data itself provides fundamental information on surface water mass movement the true strength is a combined approach which is greater than the individual parts; the data helps uncover deficiencies in ocean circulation models and the model results place long {Delta}{sup 14}C time series in a dynamic framework which helps to identify those locations where additional observations are most needed.« less
A reanalysis dataset of the South China Sea.
Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu
2014-01-01
Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992-2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability.
A reanalysis dataset of the South China Sea
Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu
2014-01-01
Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992–2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability. PMID:25977803
A Summary of the Naval Postgraduate School Research Program.
1979-09-30
Research (M. G. Sovereign) 116 Review of COMWTH II Model (M. G. Sovereign and J. K. Arima ) 117 Optimization of Combat Dynamics (J. G. Taylor) 118...Studies (R. L. Elsberry) 291 4 Numerical Models of Ocean Circulation and Climate Interaction--A Review (R. L. Haney) 292 Numerical Studies of the Dynamics... climatic numerical models to investigate the various mechan- isms pertinent to the large-scale interaction between tropi- cal atmosphere and oceans. Among
A Pacific Ocean general circulation model for satellite data assimilation
NASA Technical Reports Server (NTRS)
Chao, Y.; Halpern, D.; Mechoso, C. R.
1991-01-01
A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.
(abstract) TOPEX/Poseidon: Four Years of Synoptic Oceanography
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng
1996-01-01
Exceeding all expectations of measurement precision and accuracy, the US/France TOPEX/Poseidon satellite mission is now in its 5th year. Returning more than 98 percent of the altimetric data, the measured global geocentric height of the sea surface has provided unprecedented opportunities to address a host of scientific problems ranging from the dynamics of ocean circulation to the distribution of internal tidal energy. Scientific highlights of this longest-running altimetric satellite mission include improvements in our understanding of the dynamics and thermodynamics of the large-scale ocean variability, such as, the properties of planetary waves; the energetics of basin-wide gyres; the heat budget of the ocean; and the ocean's response to wind forcing. For the first time, oceanographers have quantitative descriptions of a dynamic variable of the physical state of the global oceans available in near-real-time.
Walker circulation in a transient climate
NASA Astrophysics Data System (ADS)
Plesca, Elina; Grützun, Verena; Buehler, Stefan A.
2016-04-01
The tropical overturning circulations modulate the heat exchange across the tropics and between the tropics and the poles. The anthropogenic influence on the climate system will affect these circulations, impacting the dynamics of the Earth system. In this work we focus on the Walker circulation. We investigate its temporal and spatial dynamical changes and their link to other climate features, such as surface and sea-surface temperature patterns, El-Niño Southern Oscillation (ENSO), and ocean heat-uptake, both at global and regional scale. In order to determine the impact of anthropogenic climate change on the tropical circulation, we analyze the outputs of 28 general circulation models (GCMs) from the CMIP5 project. We use the experiment with 1% year-1 increase in CO2 concentration from pre-industrial levels to quadrupling of the concentration. Consistent with previous studies (ex. Ma and Xie 2013), we find that for this experiment most GCMs associate a weakening Walker circulation to a warming transient climate. Due to the role of the Walker Pacific cell in the meridional heat and moisture transport across the tropical Pacific and also the connection to ENSO, we find that a weakened Walker circulation correlates with more extreme El-Niño events, although without a change in their frequency. The spatial analysis of the Pacific Walker cell suggests an eastward displacement of the ascending branch, which is consistent with positive SST anomalies over the tropical Pacific and the link of the Pacific Walker cell to ENSO. Recent studies (ex. England et al. 2014) have linked a strengthened Walker circulation to stronger ocean heat uptake, especially in the western Pacific. The inter-model comparison of the correlation between Walker circulation intensity and ocean heat uptake does not convey a robust response for the investigated experiment. However, there is some evidence that a stronger weakening of the Walker circulation is linked to a higher transient climate response (temperature change by the time of CO2 doubling), which in turn might be related to a decreased ocean heat uptake. This uncertainty across the models we attribute to the multitude of factors controlling ocean and atmosphere heat exchange, both at global and regional scales, as well as to the present capabilities of GCMs in simulating this exchange. References: England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A., 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change 4 (3): 222-227. Ma, J., and Xie, S. P., 2013. Regional Patterns of Sea Surface Temperature Change: A Source of Uncertainty in Future Projections of Precipitation and Atmospheric Circulation*. Journal of Climate, 26 (8): 2482-2501
Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilderson, T.P.; Kashgarian, M.; Schrag, D.P.
We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.« less
Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilderson, T P; Kashgarian, M; Schrag, D P
2001-02-23
We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.« less
Summer Study Program in Geophysical Fluid Dynamics 1989. General Circulation of the Oceans
1989-11-01
Description of the Surface Circulation 2.2 A Description of the Interior Circulation 2.3 Formation Sites and Circulation of Deepwater Masses 2.4 Mode...and atmosphere, we have to follow basic laws of physics which lead us to try to solve a series of conservation equations, Mass : Dp*+ P() Du. - , ’ O.j...r~--~)(18) where,= vorticity 0 - 1 Vertically integrated mass conservation gives which leads to T.3) (19) Using the fact that Ro, ;<<I, the lowest
How ice shelf morphology controls basal melting
NASA Astrophysics Data System (ADS)
Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael
2009-12-01
The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.
Arctic Ocean Freshwater Content and Its Decadal Memory of Sea-Level Pressure
NASA Astrophysics Data System (ADS)
Johnson, Helen L.; Cornish, Sam B.; Kostov, Yavor; Beer, Emma; Lique, Camille
2018-05-01
Arctic freshwater content (FWC) has increased significantly over the last two decades, with potential future implications for the Atlantic meridional overturning circulation downstream. We investigate the relationship between Arctic FWC and atmospheric circulation in the control run of a coupled climate model. Multiple linear lagged regression is used to extract the response of total Arctic FWC to a hypothetical step increase in the principal components of sea-level pressure. The results demonstrate that the FWC adjusts on a decadal timescale, consistent with the idea that wind-driven ocean dynamics and eddies determine the response of Arctic Ocean circulation and properties to a change in surface forcing, as suggested by idealized models and theory. Convolving the response of FWC to a change in sea-level pressure with historical sea-level pressure variations reveals that the recent observed increase in Arctic FWC is related to natural variations in sea-level pressure.
The absolute dynamic ocean topography (ADOT)
NASA Astrophysics Data System (ADS)
Bosch, Wolfgang; Savcenko, Roman
The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.
Ionita, M.; Scholz, P.; Lohmann, G.; Dima, M.; Prange, M.
2016-01-01
As a key persistent component of the atmospheric dynamics, the North Atlantic blocking activity has been linked to extreme climatic phenomena in the European sector. It has also been linked to Atlantic multidecadal ocean variability, but its potential links to rapid oceanic changes have not been investigated. Using a global ocean-sea ice model forced with atmospheric reanalysis data, here it is shown that the 1962–1966 period of enhanced blocking activity over Greenland resulted in anomalous sea ice accumulation in the Arctic and ended with a sea ice flush from the Arctic into the North Atlantic Ocean through Fram Strait. This event induced a significant decrease of Labrador Sea water surface salinity and an abrupt weakening of the Atlantic Meridional Overturning Circulation (AMOC) during the 1970s. These results have implications for the prediction of rapid AMOC changes and indicate that an important part of the atmosphere-ocean dynamics at mid- and high latitudes requires a proper representation of the Fram Strait sea ice transport and of the synoptic scale variability such as atmospheric blocking, which is a challenge for current coupled climate models. PMID:27619955
Ionita, M; Scholz, P; Lohmann, G; Dima, M; Prange, M
2016-09-13
As a key persistent component of the atmospheric dynamics, the North Atlantic blocking activity has been linked to extreme climatic phenomena in the European sector. It has also been linked to Atlantic multidecadal ocean variability, but its potential links to rapid oceanic changes have not been investigated. Using a global ocean-sea ice model forced with atmospheric reanalysis data, here it is shown that the 1962-1966 period of enhanced blocking activity over Greenland resulted in anomalous sea ice accumulation in the Arctic and ended with a sea ice flush from the Arctic into the North Atlantic Ocean through Fram Strait. This event induced a significant decrease of Labrador Sea water surface salinity and an abrupt weakening of the Atlantic Meridional Overturning Circulation (AMOC) during the 1970s. These results have implications for the prediction of rapid AMOC changes and indicate that an important part of the atmosphere-ocean dynamics at mid- and high latitudes requires a proper representation of the Fram Strait sea ice transport and of the synoptic scale variability such as atmospheric blocking, which is a challenge for current coupled climate models.
REVIEWS OF TOPICAL PROBLEMS: Free convection in geophysical processes
NASA Astrophysics Data System (ADS)
Alekseev, V. V.; Gusev, A. M.
1983-10-01
A highly significant geophysical process, free convection, is examined. Thermal convection often controls the dynamical behavior in several of the earth's envelopes: the atmosphere, ocean, and mantle. Section 2 sets forth the thermohydrodynamic equations that describe convection in a compressible or incompressible fluid, thermochemical convection, and convection in the presence of thermal diffusion. Section 3 reviews the mechanisms for the origin of the global atmospheric and oceanic circulation. Interlatitudinal convection and jet streams are discussed, as well as monsoon circulation and the mean meridional circulation of ocean waters due to the temperature and salinity gradients. Also described are the hypotheses for convective motion in the mantle and the thermal-wave (moving flame) mechanism for inducing global circulation (the atmospheres of Venus and Mars provide illustrations). Eddy formation by convection in a centrifugal force field is considered. Section 4 deals with medium- and small-scale convective processes, including hurricane systems with phase transitions, cellular cloud structure, and convection penetrating into the ocean, with its stepped vertical temperature and salinity microstructure. Self-oscillatory processes involving convection in fresh-water basins are discussed, including effects due to the anomalous (p,T) relation for water.
State estimation improves prospects for ocean research
NASA Astrophysics Data System (ADS)
Stammer, Detlef; Wunsch, C.; Fukumori, I.; Marshall, J.
Rigorous global ocean state estimation methods can now be used to produce dynamically consistent time-varying model/data syntheses, the results of which are being used to study a variety of important scientific problems. Figure 1 shows a schematic of a complete ocean observing and synthesis system that includes global observations and state-of-the-art ocean general circulation models (OGCM) run on modern computer platforms. A global observing system is described in detail in Smith and Koblinsky [2001],and the present status of ocean modeling and anticipated improvements are addressed by Griffies et al. [2001]. Here, the focus is on the third component of state estimation: the synthesis of the observations and a model into a unified, dynamically consistent estimate.
Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.
2012-01-01
Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with observations. Our analysis focuses initially on probing the inter-model differences in energy fluxes / transports and Walker Circulation response to forcing. We then attempt to identify statistically the El Nino- / La Nina-related ocean heat content variability unique to each model and regress out the associated energy flux, ocean heat transport and Walker response on these shorter time scales for comparison to that of the anthropogenic signals.
How well-connected is the surface of the global ocean?
Froyland, Gary; Stuart, Robyn M; van Sebille, Erik
2014-09-01
The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the basins of attractions of these regions and how strongly attracting they are. Understanding the shape and extent of the basins of attraction sheds light on the question of the strength of connectivity of different regions of the ocean, which helps in understanding the flow of buoyant material like plastic litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling, and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate transient dynamics modulo the attracting garbage patches.
Numerical simulation of the world ocean circulation
NASA Technical Reports Server (NTRS)
Takano, K.; Mintz, Y.; Han, Y. J.
1973-01-01
A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.
Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt
Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad
2015-01-01
In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120 dB (re 1 μPa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.
A Microscale View of Mixing and Overturning Across the Antarctic Circumpolar Current
NASA Astrophysics Data System (ADS)
Naveira Garabato, A.; Polzin, K. L.; Ferrari, R. M.; Zika, J. D.; Forryan, A.
2014-12-01
The meridional overturning circulation and stratication of the global ocean are shaped critically by processes in the Southern Ocean. The zonally unblocked nature of the Antarctic Circumpolar Current (ACC) confers the region with a set of special dynamics that ultimately results in the focussing therein of large vertical exchanges between layers spanning the global ocean pycnocline. These vertical exchanges are thought to be mediated by oceanic turbulent motions (associated with mesoscale eddies and small-scale turbulence), yet the vastness of the Southern Ocean and the sparse and intermittent nature of turbulent processes make their relative roles and large-scale impacts extremely difficult to assess.Here, we address the problem from a new angle, and use measurements of the centimetre-scale signatures of mesoscale eddies and small-scale turbulence obtained during the DIMES experiment to determine the contributions of those processes to sustaining large-scale meridional overturning across the ACC. We find that mesoscale eddies and small-scale turbulence play complementary roles in forcing a meridional circulation of O(1 mm / s) across the Southern Ocean, and that their roles are underpinned by distinct and abrupt variations in the rates at which they mix water parcels. The implications for our understanding of the Southern Ocean circulation's sensitivity to climatic change will be discussed.
On the Interactions Between Planetary and Mesoscale Dynamics in the Oceans
NASA Astrophysics Data System (ADS)
Grooms, I.; Julien, K. A.; Fox-Kemper, B.
2011-12-01
Multiple-scales asymptotic methods are used to investigate the interaction of planetary and mesoscale dynamics in the oceans. We find three regimes. In the first, the slow, large-scale planetary flow sets up a baroclinically unstable background which leads to vigorous mesoscale eddy generation, but the eddy dynamics do not affect the planetary dynamics. In the second, the planetary flow feels the effects of the eddies, but appears to be unable to generate them. The first two regimes rely on horizontally isotropic large-scale dynamics. In the third regime, large-scale anisotropy, as exists for example in the Antarctic Circumpolar Current and in western boundary currents, allows the large-scale dynamics to both generate and respond to mesoscale eddies. We also discuss how the investigation may be brought to bear on the problem of parameterization of unresolved mesoscale dynamics in ocean general circulation models.
NASA Astrophysics Data System (ADS)
Marshall, J.; Ferreira, D.; O'Gorman, P. A.; Seager, S.
2011-12-01
One method of studying earth-like exoplanets is to view earth as an exoplanet and consider how its climate might change if, for example, its obliquity were ranged from 0 to 90 degrees. High values of obliquity challenge our understanding of climate dynamics because if obliquity exceeds 54 degrees, then polar latitudes receive more energy per unit area than do equatorial latitudes. Thus the pole will become warmer than the equator and we are led to consider a world in which the meridional temperature gradients, and associated prevailing zonal wind, have the opposite sign to the present earth. The problem becomes even richer when one considers the dynamics of an ocean, should one exist below. A central question for the ocean circulation is: what is the pattern of surface winds at high obliquities?, for it is the winds that drive the ocean currents and thermohaline circulation. How do atmospheric weather systems growing in the easterly sheared middle latitude jets determine the surface wind pattern? Should one expect middle latitude easterly winds? Finally, a key aspect with regard to habitability is to understand how the atmosphere and ocean of this high obliquity planet work cooperatively together to transport energy meridionally, mediating the warmth of the poles and the coldness of the equator. How extreme are seasonal temperature fluctuations? Should one expect to find ice around the equator? Possible answers to some of these questions have been sought by experimentation with a coupled atmosphere, ocean and sea-ice General Circulation Model of an earth-like aquaplanet: i.e. a planet like our own but on which there is only an ocean but no land. The coupled climate is studied across a range of obliquities (23.5, 54 and 90). We present some of the descriptive climatology of our solutions and how they shed light on the deeper questions of coupled climate dynamics that motivate them. We also review what they tell us about habitability on such planets.
Tropical Atlantic Impacts on the Decadal Climate Variability of the Tropical Ocean and Atmosphere.
NASA Astrophysics Data System (ADS)
Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.
2015-12-01
Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean. In particular, several recent works indicate that the Atlantic sea surface temperature (SST) may contribute to the climate variability over the equatorial Pacific. Inspired by these studies, our work aims at investigating the impact of the tropical Atlantic on the entire tropical climate system, and uncovering the physical dynamics under these tropical teleconnections. We first performed a 'pacemaker' simulation by restoring the satellite era tropical Atlantic SST changes in a fully coupled model - the CESM1. Results reveal that the Atlantic warming heats the Indo-Western Pacific and cools the Eastern Pacific, enhances the Walker circulation and drives the subsurface Pacific to a La Niña mode, contributing to 60-70% of the above tropical changes in the past 30 years. The same pan-tropical teleconnections have been validated by the statistics of observations and 106 CMIP5 control simulations. We then used a hierarchy of atmospheric and oceanic models with different complexities, to single out the roles of atmospheric dynamics, atmosphere-ocean fluxes, and oceanic dynamics in these teleconnections. With these simulations we established a two-step mechanism as shown in the schematic figure: 1) Atlantic warming generates an atmospheric deep convection and induces easterly wind anomalies over the Indo-Western Pacific in the form of Kelvin waves, and westerly wind anomalies over the eastern equatorial Pacific as Rossby waves, in line with Gill's solution. This circulation changes warms the Indo-Western Pacific and cools the Eastern Pacific with the wind-evaporation-SST effect, forming a temperature gradient over the Indo-Pacific basins. 2) The temperature gradient further generates a secondary atmospheric deep convection, which reinforces the easterly wind anomalies over the equatorial Pacific and enhances the Walker circulation, triggering the Pacific to a La Niña mode with Bjerknes ocean dynamical feedback. This mechanism contributes to the understanding of the global decadal climate variability and predictability. In particular, Atlantic contributes to the Eastern Pacific cooling, which is considered as an important source of the recent global warming hiatus.
The Ocean's Role in Outlet Glacier Variability: A Case Study from Uummannaq, Greenland
NASA Astrophysics Data System (ADS)
Sutherland, D.; Catania, G. A.; Bartholomaus, T. C.; Nash, J. D.; Shroyer, E.; Walker, R. T.; Stearns, L. A.
2014-12-01
The dynamics controlling the coupling between fjord circulation and outlet glacier movement are poorly understood. Here, we use oceanographic data collected from 2013-2014 from two west Greenland fjords, Rink Isbrae and Kangerdlugssup Sermerssua, to constrain the spatial and temporal variability observed in fjord circulation. We aim to quantify the ocean's role, if any, in explaining the marked differences in glacier behavior from two systems that are in close proximity to one another. Combining time series data from a set of subsurface moorings with repeat transects in each fjord allows an unprecedented look at the temporal and spatial variability in circulation. We find significant differences in the variability in each fjord and discuss the implications for the glaciers.
Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports
Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem
2016-01-01
A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea. PMID:27410682
Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports.
Daryabor, Farshid; Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem
2016-01-01
A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.
Arctic sea-ice variability and its implication to the path of pollutants under a changing climate
NASA Astrophysics Data System (ADS)
Castro-Morales, K.; Gerdes, R.; Riemann-Campe, K.; Köberle, C.; Losch, M.
2012-04-01
The increasing concentration of pollutants from anthropogenic origin in the Arctic atmosphere, water, sediments and biota has been evident during the last decade. The sea-ice is an important vehicle for pollutants in the Arctic Ocean. Pollutants are taken up by precipitation and dry atmospheric deposition over the snow and ice cover during winter and released to the ocean during melting. Recent changes in the sea-ice cover of the Arctic Ocean affect the fresh water balance and the oceanic circulation, and with it, the fate of pollutants in the system. The Arctic Ocean is characterized by complex dynamics and strong stratification. Thus, to evaluate the current and future changes in the Arctic circulation high-resolution models are needed. As part of the EU FP7 project ArcRisk (under the scope of the IPY), we use a high resolution regional sea-ice-ocean coupled model covering the Arctic Ocean and the subpolar North Atlantic based on the Massachusetts Institute of Technology - circulation model (MITgcm). Under realistic atmospheric forcing we obtain hindcast results of circulation patterns for the period 1990 - 2010 for validation of the model. We evaluate possible consequences on the pathways and transport of contaminants by downscaling future climate scenario runs available in the coupled model intercomparison project (CMIP3) for the following fifty years. Particular interest is set in the Barents Sea. In this shallow region strong river runoff, sea-ice delivered from the interior of the Arctic Ocean and warm waters from the North Atlantic current are main sources of contaminants. Under a changing climate, a higher input of contaminants delivered to surface waters is expected, remaining in the interior of the Arctic Ocean in a strongly stratified water column remaining.
NASA Technical Reports Server (NTRS)
Chronis, Themis; Case, Jonathan L.; Papadopoulos, Anastasios; Anagnostou, Emmanouil N.; Mecikalski, John R.; Haines, Stephanie L.
2008-01-01
Forecasting atmospheric and oceanic circulations accurately over the Eastern Mediterranean has proved to be an exceptional challenge. The existence of fine-scale topographic variability (land/sea coverage) and seasonal dynamics variations can create strong spatial gradients in temperature, wind and other state variables, which numerical models may have difficulty capturing. The Hellenic Center for Marine Research (HCMR) is one of the main operational centers for wave forecasting in the eastern Mediterranean. Currently, HCMR's operational numerical weather/ocean prediction model is based on the coupled Eta/Princeton Ocean Model (POM). Since 1999, HCMR has also operated the POSEIDON floating buoys as a means of state-of-the-art, real-time observations of several oceanic and surface atmospheric variables. This study attempts a first assessment at improving both atmospheric and oceanic prediction by initializing a regional Numerical Weather Prediction (NWP) model with high-resolution sea surface temperatures (SST) from remotely sensed platforms in order to capture the small-scale characteristics.
Nutrient budgets in the subtropical ocean gyres dominated by lateral transport
NASA Astrophysics Data System (ADS)
Letscher, Robert T.; Primeau, François; Moore, J. Keith
2016-11-01
Ocean circulation replenishes surface nutrients depleted by biological production and export. Vertical processes are thought to dominate, but estimated vertical nutrient fluxes are insufficient to explain observed net productivity in the subtropical ocean gyres. Lateral inputs help balance the North Atlantic nutrient budget, but their importance for other gyres has not been demonstrated. Here we use an ocean model that couples circulation and ecosystem dynamics to show that lateral transport and biological uptake of inorganic and organic forms of nitrogen and phosphorus from the gyre margins exceeds the vertical delivery of nutrients, supplying 24-36% of the nitrogen and 44-67% of the phosphorus required to close gyre nutrient budgets. At the Bermuda and Hawaii time-series sites, nearly half of the annual lateral supply by lateral transport occurs during the summer-to-fall stratified period, helping explain seasonal patterns of inorganic carbon drawdown and nitrogen fixation. Our study confirms the importance of upper-ocean lateral nutrient transport for understanding the biological cycles of carbon and nutrients in the ocean's largest biome.
NASA Astrophysics Data System (ADS)
Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.
2018-05-01
This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.
Atlantic meridional overturning circulation during the Last Glacial Maximum.
Lynch-Stieglitz, Jean; Adkins, Jess F; Curry, William B; Dokken, Trond; Hall, Ian R; Herguera, Juan Carlos; Hirschi, Joël J-M; Ivanova, Elena V; Kissel, Catherine; Marchal, Olivier; Marchitto, Thomas M; McCave, I Nicholas; McManus, Jerry F; Mulitza, Stefan; Ninnemann, Ulysses; Peeters, Frank; Yu, Ein-Fen; Zahn, Rainer
2007-04-06
The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation.
Laboratory Simulation of the Geothermal Heating Effects on Ocean Overturning Circulation
NASA Astrophysics Data System (ADS)
Xia, K. Q.; Wang, F.; Huang, S. D.; Zhou, S. Q.
2016-12-01
A large-scale circulation subject to an additional heat flux from the bottom is investigated laboratorially, motivated by understanding the geothermal heating effects on ocean circulation. Despite its idealization, our experiment suggests that the leading order effect of geothermal heating is to significantly enhance the abyssal overturning, which is in agreement with the findings in ocean circulation models. Our results also suggest that geothermal heating could not influence the poleward heat transport due to the strong stratification in the thermocline. It is revealed that the ratio of geothermal-flux-induced turbulent dissipation to the dissipation due to other energies is the key determining the dynamical importance of geothermal heating. This quantity explains why the impact of geothermal heating is sensitive to the deep stratification and the diapycnal mixing, in addition to the amount of geothermal flux. Moreover, this dissipation ratio may be used to understand results from different studies in a consistent way. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK1430115 and by the CUHK Research Committee through a Direct Grant (Project No. 3132740).
Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates
NASA Astrophysics Data System (ADS)
Harris, R. N.; Spinelli, G. A.; Fisher, A. T.
2017-12-01
We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.
2010-05-01
circulation from December 2003 to June 2008 . The model is driven by tidal harmonics, realistic atmospheric forcing, and dynamically consistent initial and open...important element of the regional circulation (He and Wilkin 2006). We applied the method of Mellor and Yamada (1982) to compute vertical turbulent...shelfbreak ROMS hindcast ran continuously from December 2003 through January 2008 . Initial conditions were taken from the MABGOM ROMS simulation on 1
Surface changes in the North Atlantic meridional overturning circulation during the last millennium
Wanamaker, Alan D.; Butler, Paul G.; Scourse, James D.; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A.
2012-01-01
Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector. PMID:22692542
Surface changes in the North Atlantic meridional overturning circulation during the last millennium.
Wanamaker, Alan D; Butler, Paul G; Scourse, James D; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A
2012-06-12
Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector.
Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM
NASA Astrophysics Data System (ADS)
Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei
2018-02-01
To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.
NASA Astrophysics Data System (ADS)
Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio
2013-02-01
Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.
North Atlantic deep water formation and AMOC in CMIP5 models
NASA Astrophysics Data System (ADS)
Heuzé, Céline
2017-07-01
Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.
Dynamic relationship between ocean bottom pressure and bathymetry around northern part of Hikurangi
NASA Astrophysics Data System (ADS)
Muramoto, T.; Inazu, D.; Ito, Y.; Hino, R.; Suzuki, S.
2017-12-01
In recent years, observation using ocean bottom pressure recorders for the purpose of the evaluation of sea floor crustal deformation is in great vogue. The observation network set up for the observation of sea floor is densely spaced compared with the instrument network for the observation of ocean. Therefore, it has the characteristic that it can observe phenomena on a local scale. In this study, by using these in situ data, we discuss ocean phenomena on a local scale. In this study, we use a high-resolution ocean model (Inazu Ocean Model) driven by surface air pressure and surface wind vector published by the Japan Meteorological Agency. We perform a hindcast experiment for ocean bottom pressure anomaly from April 2013 to June 2017. Then, we compare these results with in situ data. In this study, we use observed pressure records which were recorded by autonomous type instrument spanning a period from April 2013 to June 2017 off the coast of North Island in New Zealand. Consequently, we found this model can simulate not only the amplitude but also phase of non-tidal oceanic variation of East Cape Current (ECC) off the coast of North Island of New Zealand. Then, we calculate cross-correlation coefficient between the data at the OBP sites. We revealed that the ocean bottom pressure shows different behavior on the west side from the east side of edge of the continental shelf. This result implies that the submarine slope induces a dynamic effect and contributes to the seasonal variation of ocean bottom pressure. In addition, we calculate the velocity of the surface current in this area using our model, and consider the relationship between it and ocean bottom pressure variation. Taken together, we can say that the barotropic flow in the direction of south-west extends to the bottom of the sea in this area. Therefore, the existence of local cross-isobath currents is suggested. Our result indicates bathymetry has dynamic effect to ocean circulation on local scale and at the same time the surface ocean circulation contributes to ocean bottom pressure considerably.
Effects of Whitecaps on Satellite-Derived Ocean Color
NASA Technical Reports Server (NTRS)
Frouin, Robert
2000-01-01
During the 3.25 years of the project, various aspects of satellite ocean-color remote sensing were investigated, including effect of whitecaps on atmospheric correction, validity of aerosol models, and evaluation of ocean-color products. Algorithms to estimate pigment concentration and photo-synthetically active radiation (PAR) were developed, and studies of geophysical phenomena, such as the 1998 Asian Dust event, were performed. The influence of solar radiation absorption by phytoplankton on mixed layer dynamics, ocean circulation, and climate was also investigated. The project's results and findings are described.
Sediment dynamics in the Adriatic Sea investigated with coupled models
Sherwood, Christopher R.; Book, Jeffrey W.; Carniel, Sandro; Cavaleri, Luigi; Chiggiato, Jacopo; Das, Himangshu; Doyle, James D.; Harris, Courtney K.; Niedoroda, Alan W.; Perkins, Henry; Poulain, Pierre-Marie; Pullen, Julie; Reed, Christopher W.; Russo, Aniello; Sclavo, Mauro; Signell, Richard P.; Traykovski, Peter A.; Warner, John C.
2004-01-01
Several large research programs focused on the Adriatic Sea in winter 2002-2003, making it an exciting place for sediment dynamics modelers (Figure 1). Investigations of atmospheric forcing and oceanic response (including wave generation and propagation, water-mass formation, stratification, and circulation), suspended material, bottom boundary layer dynamics, bottom sediment, and small-scale stratigraphy were performed by European and North American researchers participating in several projects. The goal of EuroSTRATAFORM researchers is to improve our ability to understand and simulate the physical processes that deliver sediment to the marine environment and generate stratigraphic signatures. Scientists involved in the Po and Apennine Sediment Transport and Accumulation (PASTA) experiment benefited from other major research programs including ACE (Adriatic Circulation Experiment), DOLCE VITA (Dynamics of Localized Currents and Eddy Variability in the Adriatic), EACE (the Croatian East Adriatic Circulation Experiment project), WISE (West Istria Experiment), and ADRICOSM (Italian nowcasting and forecasting) studies.
Incorporating Density Properties of MgSO4 Brines Into Icy World Ocean Simulations
NASA Astrophysics Data System (ADS)
Goodman, J. C.; Vance, S.
2011-12-01
The structure and flow of the subsurface oceans in icy worlds depends on the sources of buoyancy within these oceans. Buoyancy is determined by the equation of state, in which density is a nonlinear function of temperature, salinity, and pressure. Equations of state for terrestrial seawater (with Na and Cl as the principal dissolved species) are well-developed, but icy world oceans may contain a different balance of species, including Na, Mg, SO4, and NH4 (Kargel et al, 2000). Recent work by Vance and Brown (2011, pers. comm.) has mapped out the density and thermodynamic properties of MgSO4 brines under icy world conditions. We have developed code to incorporate this equation of state data for MgSO4 brines into two different ocean simulation models. First, we investigate a single-column convection model, which is able to find the equilibrium structure and heat transport of an icy world ocean. We explore the heat transport through the ocean subject to a variety of assumptions about ocean salinity and seafloor heat and salt flux. We resolve the paradox posed by Vance and Brown (2004): warm salty MgSO4 brine emitted by a seafloor hydrothermal system may be positively buoyant at the seafloor, but become negatively buoyant (sinking) at lower pressure. How does heat escape the ocean, if it cannot be transported by convection? Second, we add MgSO4 dynamics to a full 3-D time-dependent general circulation model (the MIT GCM), which is able to simulate both the global-scale circulation of the world's ocean and investigate the highly turbulent dynamics of buoyant hydrothermal systems. We ask, "Are buoyancy-driven flows in a MgSO4 brine ocean significantly different than similarly-driven flows in terrestrial seawater?"
Mass, heat and nutrient fluxes in the Atlantic Ocean determined by inverse methods. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rintoul, Stephen Rich
1988-01-01
Inverse methods are applied to historical hydrographic data to address two aspects of the general circulation of the Atlantic Ocean. The method allows conservation statements for mass and other properties, along with a variety of other constraints, to be combined in a dynamically consistent way to estimate the absolute velocity field and associated property transports. The method was first used to examine the exchange of mass and heat between the South Atlantic and the neighboring ocean basins. The second problem addressed concerns the circulation and property fluxes across the 24 and 36 deg N in the subtropical North Atlantic. Conservation statements are considered for the nutrients as well as mass, and the nutrients are found to contribute significant information independent of temperature and salinity.
On the dynamical basis for the Asian summer monsoon rainfall-El Nino relationship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigam, S.
The dynamical basis for the Asian summer monsoon rainfall-El Nino linkage is explored through diagnostic calculations with a linear steady-state multilayer primitive equation model. The contrasting monsoon circulation during recent El Nino (1987) and La Nina (1988) years is first simulated using orography and the residually diagnosed heating (from the thermodynamic equation and the uninitialized, but mass-balanced, ECMWF analysis) as forcings, and then analyzed to provide insight into the importance of various regional forcings, such as the El Nino-related heating anomalies over the tropical Indian and Pacific Oceans. The striking simulation of the June-August (1987-1988) near-surface and upper-air tropical circulationmore » anomalies indicates that tropical anomaly dynamics during northern summer is essentially linear even at the 150-mb level. The vertical structure of the residually diagnosed heating anomaly that contributes to this striking simulation differs significantly from the specified canonical vertical structure (used in generating 3D heating from OLR/precipitation distributions) near the tropical tropopause. The dynamical diagnostic analysis of the anomalous circulation during 1987 and 1988 March-May and June-August periods shows the orographically forced circulation anomaly (due to changes in the zonally averaged basic-state flow) to be quite dominant in modulating the low-level moisture-flux convergence and hence monsoon rainfall over Indochina. The El Nino-related persistent (spring-to-summer) heating anomalies over the tropical Pacific and Indian Ocean basins, on the other hand, mostly regulate the low-level westerly monsoon flow intensity over equatorial Africa and the northern Indian Ocean and, thereby, the large-scale moisture flux into Sahel and Indochina. 38 refs., 12 figs.« less
Simulations of coupled, Antarctic ice-ocean evolution using POP2x and BISICLES (Invited)
NASA Astrophysics Data System (ADS)
Price, S. F.; Asay-Davis, X.; Martin, D. F.; Maltrud, M. E.; Hoffman, M. J.
2013-12-01
We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and land ice evolution models. The ocean model, POP2x is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (1999), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008; Kimura et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). The land ice model, BISICLES (Cornford et al., 2012), includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (southern ocean) simulations using POP2x with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.
Schmidt, Matthew W; Chang, Ping; Parker, Andrew O; Ji, Link; He, Feng
2017-11-13
Multiple lines of evidence show that cold stadials in the North Atlantic were accompanied by both reductions in Atlantic Meridional Overturning Circulation (AMOC) and collapses of the West African Monsoon (WAM). Although records of terrestrial change identify abrupt WAM variability across the deglaciation, few studies show how ocean temperatures evolved across the deglaciation. To identify the mechanism linking AMOC to the WAM, we generated a new record of subsurface temperature variability over the last 21 kyr based on Mg/Ca ratios in a sub-thermocline dwelling planktonic foraminifera in an Eastern Equatorial Atlantic (EEA) sediment core from the Niger Delta. Our subsurface temperature record shows abrupt subsurface warming during both the Younger Dryas (YD) and Heinrich Event 1. We also conducted a new transient coupled ocean-atmosphere model simulation across the YD that better resolves the western boundary current dynamics and find a strong negative correlation between AMOC strength and EEA subsurface temperatures caused by changes in ocean circulation and rainfall responses that are consistent with the observed WAM change. Our combined proxy and modeling results provide the first evidence that an oceanic teleconnection between AMOC strength and subsurface temperature in the EEA impacted the intensity of the WAM on millennial time scales.
Ocean regional circulation model sensitizes to resolution of the lateral boundary conditions
NASA Astrophysics Data System (ADS)
Pham, Van Sy; Hwang, Jin Hwan
2017-04-01
Dynamical downscaling with nested regional oceanographic models is an effective approach for forecasting operationally coastal weather and projecting long term climate on the ocean. Nesting procedures deliver the unwanted in dynamic downscaling due to the differences of numerical grid sizes and updating steps. Therefore, such unavoidable errors restrict the application of the Ocean Regional Circulation Model (ORCMs) in both short-term forecasts and long-term projections. The current work identifies the effects of errors induced by computational limitations during nesting procedures on the downscaled results of the ORCMs. The errors are quantitatively evaluated for each error source and its characteristics by the Big-Brother Experiments (BBE). The BBE separates identified errors from each other and quantitatively assess the amount of uncertainties employing the same model to simulate for both nesting and nested model. Here, we focus on discussing errors resulting from two main matters associated with nesting procedures. They should be the spatial grids' differences and the temporal updating steps. After the diverse cases from separately running of the BBE, a Taylor diagram was adopted to analyze the results and suggest an optimization intern of grid size and updating period and domain sizes. Key words: lateral boundary condition, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.
When a Slowly Rotating Aquaplanet is Coupled to a Dynamical Ocean
NASA Astrophysics Data System (ADS)
Salameh, J.; Marotzke, J.
2017-12-01
Planets orbiting in close distance from their stars have a high probability to be detected, and are expected to be slowly rotating due to strong tidal forces. By increasing the rotation period from 1 Earth-day to 365 Earth-days, we previously found that the global-mean surface temperature of an aquaplanet with a static mixed-layer ocean decreases by up to 27 K. The cooling is attributed to an increase of the planetary albedo with the rotation period, which is associated with the different distributions of the sea ice and the deep convective clouds. However, we had there assumed a fixed mixed-layer depth and a zero oceanic heat transport in the aquaplanet configuration. The limitations of these assumptions in such exotic climates are still unclear. We therefore perform coupled atmosphere-ocean aquaplanet simulations with the general circulation model ICON for various rotation periods ranging from 1 Earth-day to 365 Earth-days. We investigate how the underlying oceanic circulation modifies the mean climate of slowly rotating aquaplanets, and whether the day-to-night oceanic heat transport reduces the surface-temperature gradients and the sea-ice extent.
The Equations of Oceanic Motions
NASA Astrophysics Data System (ADS)
Müller, Peter
2006-10-01
Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.
NASA Astrophysics Data System (ADS)
Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.
2012-06-01
Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.
NASA Astrophysics Data System (ADS)
Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey
2018-01-01
Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.
NASA Astrophysics Data System (ADS)
Mulet, Sandrine; Rio, Marie-Hélène; Etienne, Hélène
2017-04-01
Strong improvements have been made in our knowledge of the surface ocean geostrophic circulation thanks to satellite observations. For instance, the use of the latest GOCE (Gravity field and steady-state Ocean Circulation Explorer) geoid model with altimetry data gives good estimate of the mean oceanic circulation at spatial scales down to 125 km. However, surface drifters are essential to resolve smaller scales, it is thus mandatory to carefully process drifter data and then to combine these different data sources. In this framework, the global 1/4° CNES-CLS13 Mean Dynamic Topography (MDT) and associated mean geostrophic currents have been computed (Rio et al, 2014). First a satellite only MDT was computed from altimetric and gravimetric data. Then, an important work was to pre-process drifter data to extract only the geostrophic component in order to be consistent with physical content of satellite only MDT. This step include estimate and remove of Ekman current and wind slippage. Finally drifters and satellite only MDT were combined. Similar approaches are used regionally to go further toward higher resolution, for instance in the Agulhas current or along the Brazilian coast. Also, a case study in the Gulf of Mexico intends to use drifters in the same way to improve weekly geostrophic current estimate.
Impact of CO2 and continental configuration on Late Cretaceous ocean dynamics
NASA Astrophysics Data System (ADS)
Puceat, Emmanuelle; Donnadieu, Yannick; Moiroud, Mathieu; Guillocheau, François; Deconinck, Jean-François
2014-05-01
The Late Cretaceous period is characterized by a long-term climatic cooling (Huber et al., 1995; Pucéat et al., 2003; Friedrich et al., 2012) and by major changes in continental configuration with the widening of the Atlantic Ocean, the initiation of the Tethyan ocean closure, and the deepening of the Central Atlantic Gateway. The Late Cretaceous also marks the end of the occurrence of Oceanic Anoxic Events (OAEs), that are associated to enhanced organic carbon burial, to major crises of calcifying organisms, and to possible ocean acidification (Jenkyns, 2010). It has been suggested that the evolution in continental configuration and climate occurring during the Late Cretaceous could have induced a reorganization in the oceanic circulation, that may have impacted the oxygenation state of the oceanic basins and contributed to the disappearance of OAEs (Robinson et al., 2010; Robinson and Vance, 2012). Yet there is no consensus existing on the oceanic circulation modes and on their possible evolution during the Late Cretaceous, despite recent improvement of the spatial and temporal coverage of neodymium isotopic data (ɛNd), a proxy of oceanic circulation (MacLeod et al., 2008; Robinson et al., 2010; Murphy and Thomas, 2012; Robinson and Vance, 2012; Martin et al., 2012; Moiroud et al., 2012). Using the fully coupled ocean-atmosphere General Circulation Model FOAM, we explore in this work the impact on oceanic circulation of changes in continental configuration between the mid- and latest Cretaceous. Two paleogeography published by Sewall et al. (2007) were used, for the Cenomanian/Turonian boundary and for the Maastrichtian. For each paleogeography, 3 simulations have been realized, at 2x, 4x, and 8x the pre-industrial atmospheric CO2 level, in order to test the sensitivity of the modelled circulation to CO2. Our results show for both continental configurations a bipolar mode for the oceanic circulation displayed by FOAM. Using the Cenomanian/Turonian land-sea mask, two major areas of deep-water production are simulated in the model, one located in the northern and northwestern Pacific area, and the other located in the southern Pacific. An additional area is present in the southern Atlantic Ocean, near the modern Weddell Sea area, but remains very limited. Using the Maastrichtian land-sea mask, the simulations show a major change in the ocean dynamic with the disappearance of the southern Pacific convection cell. The northern Pacific area of deep-water production is reduced to the northwestern Pacific region only. By contrast, the simulations show a marked development of the southern Atlantic deep-water production, that intensifies and extends eastward along the Antarctic coast. These southern Atlantic deep-waters are conveyed northward into the North Atlantic and eastward to the Indian Ocean. Importantly, changes in atmospheric CO2 level do not impact the oceanic circulation simulated by FOAM, at least in the range of tested values. The circulation simulated by FOAM is coherent with existing ɛNd data for the two studied periods and support an intensification of southern Atlantic deep-water production along with a reversal of the deep-water fluxes through the Carribean Seaway as the main causes of the decrease in ɛNd values recorded in the Atlantic and Indian deep-waters during the Late Cretaceous. The simulations reveal a change from a sluggish circulation in the south Atlantic simulated with the Cenomanian/Turonian paleogeography to a much more active circulation in this basin using the Maastrichtian paleogeography, that may have favoured the disappearance of OAEs after the Late Cretaceous. Friedrich, O., Norris, R.D., Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans - A 55 m.y. record of Earth's temperature and carbon cycle. Geology 40 (2), 107-110. Huber, B.T., Hodell, D.A., Hamilton, C.P., 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. of Am. Bull. 107, 1164-1191. Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems 11, doi:10.1029/2009GC002788. MacLeod, K.G., Martin, E.E., Blair, S.W., 2008. Nd isotopic excursion across Cretaceous Ocean Anoxic Event 2 (Cenomanian-Turonian) in the tropical North Atlantic. Geology 36 (10), 811-814. Martin, E.E., MacLeod, K.G., Jiménez Berrocoso, Á., Bourbon, E., 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth Planet. Sci. Lett. 327-328, 111-120. Moiroud, M., Pucéat, E., Donnadieu, Y., Bayon, G., Moriya, K., Deconinck, J.F., and Boyet, M., 2012. Evolution of the neodymium isotopic signature of neritic seawater on a northwestern Pacific margin: new constrains on possible end-members for the composition of deep-water masses in the Late Cretaceous ocean. Chemical Geology 356, p. 160-170. Murphy, D.P., Thomas, D.J., 2012. Cretaceous deep-water formation in the Indian sector of the Southern Ocean. Paleoceanography 27, doi:10.1029/2011PA002198. Pucéat, E., Lécuyer, C., Sheppard, S.M.F., Dromart, G., Reboulet, S., Grandjean, P., 2003. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18 (2), doi:10.1029/2002PA000823. Robinson, A., Murphy, D.P., Vance, D., Thomas, D.J., 2010. Formation of 'Southern Component Water' in the Late Cretaceous: evidence from Nd-isotopes. Geological Society of America 38 (10), 871-874 Robinson, S.A., Vance, D., 2012. Widespread and synchronous change in deep-ocean circulation in the North and South Atlantic during the Late Cretaceous. Paleoceanography 27, PA1102, doi:10.1029/2011PA002240. Sewall, J.O., van de Wal, R.S.W., can der Zwan, K., van Oosterhout, C., Dijkstra, H.A., and Scotese, C.R., 2007. Climate model boundary conditions for four Cretaceous time slices. Clim. Past 3, p. 647-657.
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa M.; Rhines, P. B.; Worthen, D. L.
2012-01-01
Winters with frequent atmospheric blocking, in a band of latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean. This is evident in atmospheric reanalysis data, both modern and for the full 20th century. Blocking is approximately in phase with Atlantic multidecadal ocean variability (AMV). Wintertime atmospheric blocking involves a highly distorted jetstream, isolating large regions of air from the westerly circulation. It influences the ocean through windstress-curl and associated air/sea heat flux. While blocking is a relatively high-frequency phenomenon, it is strongly modulated over decadal timescales. The blocked regime (weaker ocean gyres, weaker air-sea heat flux, paradoxically increased transport of warm subtropical waters poleward) contributes to the warm phase of AMV. Atmospheric blocking better describes the early 20thC warming and 1996-2010 warm period than does the NAO index. It has roots in the hemispheric circulation and jet stream dynamics. Subpolar Atlantic variability covaries with distant AMOC fields: both these connections may express the global influence of the subpolar North Atlantic ocean on the global climate system.
Past Asian Monsoon circulation from multiple tree-ring proxies and models (Invited)
NASA Astrophysics Data System (ADS)
Anchukaitis, K. J.; Herzog, M.; Hernandez, M.; Martin-Benito, D.; Gagen, M.; LeGrande, A. N.; Ummenhofer, C.; Buckley, B.; Cook, E. R.
2013-12-01
The Asian monsoon can be characterized in terms of precipitation variability as well as features of regional atmospheric circulation across a range of spatial and temporal scales. While multicentury time series of tree-ring widths at hundreds of sites across Asia provide estimates of past rainfall, the oxygen isotope ratios of annual rings at some of these sites can reveal broader regional atmosphere-ocean dynamics. Here we present a replicated, multicentury stable isotope series from Vietnam that integrates the influence of monsoon circulation on water isotopes. Stronger (weaker) monsoon flow over Indochina is associated with lower (higher) oxygen isotope values in our long-lived tropical conifers. Ring width and isotopes show particular coherence at multidecadal time scales, and together allow past precipitation amount and circulation strength to be disentangled. Combining multiple tree-ring proxies with simulations from isotope-enabled and paleoclimate general circulation models allows us to independently assess the mechanisms responsible for proxy formation and to evaluate how monsoon rainfall is influenced by ocean-atmosphere interactions at timescales from interannual to multidecadal.
NASA Astrophysics Data System (ADS)
Ols, Clémentine; Trouet, Valerie; Girardin, Martin P.; Hofgaard, Annika; Bergeron, Yves; Drobyshev, Igor
2018-06-01
The mid-20th century changes in North Atlantic Ocean dynamics, e.g. slow-down of the Atlantic meridional overturning thermohaline circulation (AMOC), have been considered as early signs of tipping points in the Earth climate system. We hypothesized that these changes have significantly altered boreal forest growth dynamics in northeastern North America (NA) and northern Europe (NE), two areas geographically adjacent to the North Atlantic Ocean. To test our hypothesis, we investigated tree growth responses to seasonal large-scale oceanic and atmospheric indices (the AMOC, North Atlantic Oscillation (NAO), and Arctic Oscillation (AO)) and climate (temperature and precipitation) from 1950 onwards, both at the regional and local levels. We developed a network of 6876 black spruce (NA) and 14437 Norway spruce (NE) tree-ring width series, extracted from forest inventory databases. Analyses revealed post-1980 shifts from insignificant to significant tree growth responses to summer oceanic and atmospheric dynamics both in NA (negative responses to NAO and AO indices) and NE (positive response to NAO and AMOC indices). The strength and sign of these responses varied, however, through space with stronger responses in western and central boreal Quebec and in central and northern boreal Sweden, and across scales with stronger responses at the regional level than at the local level. Emerging post-1980 associations with North Atlantic Ocean dynamics synchronized with stronger tree growth responses to local seasonal climate, particularly to winter temperatures. Our results suggest that ongoing and future anomalies in oceanic and atmospheric dynamics may impact forest growth and carbon sequestration to a greater extent than previously thought. Cross-scale differences in responses to North Atlantic Ocean dynamics highlight complex interplays in the effects of local climate and ocean-atmosphere dynamics on tree growth processes and advocate for the use of different spatial scales in climate-growth research to better understand factors controlling tree growth.
Tropical cloud feedbacks and natural variability of climate
NASA Technical Reports Server (NTRS)
Miller, R. L.; Del Genio, A. D.
1994-01-01
Simulations of natural variability by two general circulation models (GCMs) are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms are found in which tropical surface temperature and sea surface temperature (SST) vary on interannual and longer timescales. Both are related to changes in cloud cover that modulate SST through the surface radiative flux. Over the equatorial ocean, SST and surface temperature vary on an interannual timescale, which is determined by the magnitude of the associated cloud cover anomalies. Over the subtropical ocean, variations in low cloud cover drive SST variations. In the sector model, the variability has no preferred timescale, but instead is characterized by a 'red' spectrum with increasing power at longer periods. In the terrestrial GCM, SST variability associated with low cloud anomalies has a decadal timescale and is the dominant form of global temperature variability. Both GCMs are coupled to a mixed layer ocean model, where dynamical heat transports are prescribed, thus filtering out El Nino-Southern Oscillation (ENSO) and thermohaline circulation variability. The occurrence of variability in the absence of dynamical ocean feedbacks suggests that climatic variability on long timescales can arise from atmospheric processes alone.
NASA Astrophysics Data System (ADS)
Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jérôme; Giordani, Hervé; Pennel, Romain; Sevault, Florence; Testor, Pierre
2017-04-01
Ocean deep convection is a major process of interaction between surface and deep ocean. The Gulf of Lions is a well-documented deep convection area in the Mediterranean Sea, and mesoscale dynamics is a known factor impacting this phenomenon. However, previous modelling studies don't allow to address the robustness of its impact with respect to the physical configuration and ocean intrinsic variability. In this study, the impact of mesoscale on ocean deep convection in the Gulf of Lions is investigated using a multi-resolution ensemble simulation of the northwestern Mediterranean sea. The eddy-permitting Mediterranean model NEMOMED12 (6km resolution) is compared to its eddy-resolving counterpart with the 2-way grid refinement AGRIF in the northwestern Mediterranean (2km resolution). We focus on the well-documented 2012-2013 period and on the multidecadal timescale (1979-2013). The impact of mesoscale on deep convection is addressed in terms of its mean and variability, its impact on deep water transformations and on associated dynamical structures. Results are interpreted by diagnosing regional mean and eddy circulation and using buoyancy budgets. We find a mean inhibition of deep convection by mesoscale with large interannual variability. It is associated with a large impact on mean and transient circulation and a large air-sea flux feedback.
Decadal variations of Pacific North Equatorial Current bifurcation from multiple ocean products
NASA Astrophysics Data System (ADS)
Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin
2014-02-01
In this study, we examine the decadal variations of the Pacific North Equatorial Current (NEC) bifurcation latitude (NBL) averaged over upper 100 m and underlying dynamics over the past six decades using 11 ocean products, including seven kinds of ocean reanalyzes based on ocean data assimilation systems, two kinds of numerical simulations without assimilating observations and two kinds of objective analyzes based on in situ observations only. During the period of 1954-2007, the multiproduct mean of decadal NBL anomalies shows maxima around 1965/1966, 1980/1981, 1995/1996, and 2003/2004, and minima around 1958, 1971/1972, 1986/1987, and 2000/2001, respectively. The NBL decadal variations are related to the first Empirical Orthogonal Function mode of decadal anomalies of sea surface height (SSH) in the northwestern tropical Pacific Ocean, which shows spatially coherent variation over the whole region and explains most of the total variance. Further regression and composite analyzes indicate that northerly/southerly NBL corresponds to negative/positive SSH anomalies and cyclonic/anticyclonic gyre anomalies in the northwestern tropical Pacific Ocean. These decadal circulation variations and thus the decadal NBL variations are governed mostly by the first two vertical modes and attribute the most to the first baroclinic mode. The NBL decadal variation is highly positively correlated with the tropical Pacific decadal variability (TPDV) around the zero time lag. With a lead of about half the decadal cycle the NBL displays closer but negative relationship to TPDV in four ocean products, possibly manifesting the dynamical role of the circulation in the northwestern tropical Pacific in the phase-shifting of TPDV.
Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing
NASA Astrophysics Data System (ADS)
Morrison, A.; Hogg, A.; Ward, M.
2011-12-01
The southern limb of the ocean's meridional overturning circulation plays a key role in the Earth's response to climate change. The rise in atmospheric CO2 during glacial-interglacial transitions has been attributed to outgassing of enhanced upwelling water masses in the Southern Ocean. However a dynamical understanding of the physical mechanisms driving the change in overturning is lacking. Previous modelling studies of the Southern Ocean have focused on the effect of wind stress forcing on the overturning, while largely neglecting the response of the upper overturning cell to changes in surface buoyancy forcing. Using a series of eddy-permitting, idealised simulations of the Southern Ocean, we show that surface buoyancy forcing in the mid-latitudes is likely to play a significant role in setting the strength of the overturning circulation. Air-sea fluxes of heat and precipitation over the Antarctic Circumpolar Current region act to convert dense upwelled water masses into lighter waters at the surface. Additional fluxes of heat or freshwater thereby facilitate the meridional overturning up to a theoretical limit derived from Ekman transport. The sensitivity of the overturning to surface buoyancy forcing is strongly dependent on the relative locations of the wind stress profile, buoyancy forcing and upwelling region. The idealised model results provide support for the hypothesis that changes in upwelling during deglaciations may have been driven by changes in heat and freshwater fluxes, instead of, or in addition to, changes in wind stress. Morrison, A. K., A. M. Hogg, and M. L. Ward (2011), Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing,
NASA Technical Reports Server (NTRS)
Barnier, Bernard; Capella, Jorge; O'Brien, James J.
1994-01-01
The aim of this study is to evaluate the impact of the bandlike sampling of spaceborne scatterometers on the ability of scatterometer winds to successfully force the mean flow and seasonal cycle of an ocean model in the context of equatorial and tropical dynamics. The equatorial ocean is simulated with a four-layer, primitive equation, reduced gravity model of the Indian Ocean. The variable wind stress used in this study is derived from one year (1988) of 6-hour analyses of the 10-m wind vector over the Indian Ocean performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). It is applied as a forcing at every grid point of the model to drive a reference circulation. Scatterometer winds are simulated from ECMWF winds, using the nominal configurations and orbital parameters of the European Remote Sensing 1 (ERS-1) and NASA Scatterometer (NSCAT) missions. The model is forced in real time under swaths with the raw scatterometer winds of ERS-1 and NSCAT, with a persistence condition (i.e., the wind is kept constsnt until the next passage of the satellite provides a new value). The circulation obtained for each of the scatterometer experiments is compared with the reference circulation. The seasonal circulation of the Indian Ocean with NSCAT winds is very similar to the reference. The perturbations introduced by the bandlike sampling and the persistance condition have an impact similar to that of a small uncorrelated noise added to the reference forcing. The persistence condition for ERS-1 does not give results which are as good as those obtained for NSCAT.
Operational seasonal and interannual predictions of ocean conditions
NASA Technical Reports Server (NTRS)
Leetmaa, Ants
1992-01-01
Dr. Leetmaa described current work at the U.S. National Meteorological Center (NMC) on coupled systems leading to a seasonal prediction system. He described the way in which ocean thermal data is quality controlled and used in a four dimensional data assimilation system. This consists of a statistical interpolation scheme, a primitive equation ocean general circulation model, and the atmospheric fluxes that are required to force this. This whole process generated dynamically consist thermohaline and velocity fields for the ocean. Currently routine weekly analyses are performed for the Atlantic and Pacific oceans. These analyses are used for ocean climate diagnostics and as initial conditions for coupled forecast models. Specific examples of output products were shown both in the Pacific and the Atlantic Ocean.
Integrated Study of the Dynamics of the Kuroshio Intrusion and Effects on Acoustic Propagation
2018-08-03
runs that could then be evaluated against synoptic surveys collected using a ship-based towed, undulating profiler. ocean circulation; ocean...Revelle. Gliders were launched from R/V Melville in May. Data from the broad-scale hydrographic survey undertaken by OR2 and OR3 in Taiwan Strait...1.0 −0.5 0.0 0.5 1.0 Salinity psu figure 1. plan views of the temperature and salinity fields from two broad-scale surveys from r/Vs Ocean Researcher 2
Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Technical Reports Server (NTRS)
Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-01-01
Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.
NASA Astrophysics Data System (ADS)
Odalen, M.; Nycander, J.; Oliver, K. I. C.; Nilsson, J.; Brodeau, L.; Ridgwell, A.
2016-02-01
During glacials, atmospheric CO2 is significantly lowered; the decrease is about 1/3 or 90 ppm during the last four glacial cycles. Since the ocean reservoir of carbon, and hence the ocean capacity for storing carbon, is substantially larger than the atmospheric and terrestrial counterparts, it is likely that this lowering was caused by ocean processes, drawing the CO2 into the deep ocean. The Southern Ocean circulation and biological efficiency are widely accepted as having played an important part in this CO2 drawdown. However, the relative effects of different processes contributing to this oceanic uptake have not yet been well constrained. In this work, we focus on better constraining two of these processes; 1) the effect of increased efficiency of the biological carbon uptake, and 2) the effect of changes in global mean ocean temperature on the abiotic ocean-atmosphere CO2 equilibrium. By performing ensemble runs using an Earth System Model of Intermediate Complexity (EMIC) we examine the changes in atmospheric pCO2 achieved by 100% nutrient utilization efficiency of biology. The simulations display different ocean circulation patterns and hence different global ocean mean temperatures. By restoring the atmospheric pCO2 to a target value during the spin-up phase, the total carbon content differs between each of the ensemble members. The difference is due to circulation having direct effects on biology, but also on global ocean mean temperature, changing the solubility of CO2. This study reveals the relative importance of of the processes 1 and 2 (mentioned above) for atmospheric pCO2 in a changed climate. The results of this study also show that a difference in carbon content after spin-up can have a significant effect on the drawdown potential of a maximised biological efficiency. Thus, the choice of spin-up characteristics in a model study of climate change CO2 dynamics may significantly affect the outcome of the study.
Influence of Continental Geometry on the Onset and Spatial Distribution of Monsoonal Precipitation
NASA Astrophysics Data System (ADS)
Hui, K. L.; Bordoni, S.
2017-12-01
Recent studies have shown that the rapid onset of the monsoon is due to a switch between a dynamical regime where the tropical circulation strength is controlled by eddy momentum fluxes, to a monsoon regime where the strength is more directly controlled by energetic constraints, which causes the monsoonal cross-equatorial cell to grow rapidly in strength and extent. While it is now widely accepted that land-sea contrast is not necessary to generate monsoons, the spatial distribution of land can still affect important features of monsoons. This study focuses on the influence of continental geometry on the monsoonal precipitation. We use an idealized aquaplanet model with a slab ocean, where land and ocean differ only by the mixed-layer depth of the slab ocean, which is two orders of magnitude smaller over land than over ocean. The model is run with different zonally symmetric configurations of Northern Hemispheric land that extends poleward from southern boundaries at various latitudes. Simulations with a continent extending to tropical latitudes are able to reproduce the monsoonal precipitation distribution and rapid onset well. For continents with more poleward southern boundaries and weaker hemispheric asymmetry, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. A local maximum in precipitation forms over the continent even when the continent does not extend into the deeper tropics, but this is primarily associated with local recycling from the saturated surface rather than moisture flux convergence by a deep and broad monsoonal circulation. Further analysis shows that a decrease in hemispheric asymmetry prevents the establishment of a reversed meridional gradient in lower-level moist static energy and, with it, a poleward displaced convergence zone. This suggests that in order to have the rapid onset of monsoonal precipitation, tropical regions of low thermal inertia may be necessary to facilitate the transition of the tropical circulation to a dynamical regime that restricts the degree to which eddy momentum fluxes influence the circulation strength and allows the cell the grow rapidly in strength and poleward extent. These results provide some useful insights for developing theories to better understand the mechanisms of rapid onset of monsoon systems worldwide.
The Errors Sources Affect to the Results of One-Way Nested Ocean Regional Circulation Model
NASA Astrophysics Data System (ADS)
Pham, S. V.
2016-02-01
Pham-Van Sy1, Jin Hwan Hwang2 and Hyeyun Ku3 Dept. of Civil & Environmental Engineering, Seoul National University, KoreaEmail: 1phamsymt@gmail.com (Corresponding author) Email: 2jinhwang@snu.ac.krEmail: 3hyeyun.ku@gmail.comAbstractThe Oceanic Regional Circulation Model (ORCM) is an essential tool in resolving highly a regional scale through downscaling dynamically the results from the roughly revolved global model. However, when dynamic downscaling from a coarse resolution of the global model or observations to the small scale, errors are generated due to the different sizes of resolution and lateral updating frequency. This research evaluated the effect of four main sources on the results of the ocean regional circulation model (ORCMs) during downscaling and nesting the output data from the ocean global circulation model (OGCMs). Representative four error sources should be the way of the LBC formulation, the spatial resolution difference between driving and driven data, the frequency for up-dating LBCs and domain size. Errors which are contributed from each error source to the results of the ORCMs are investigated separately by applying the Big-Brother Experiment (BBE). Within resolution of 3km grid point of the ORCMs imposing in the BBE framework, it clearly exposes that the simulation results of the ORCMs significantly depend on the domain size and specially the spatial and temporal resolution of lateral boundary conditions (LBCs). The ratio resolution of spatial resolution between driving data and driven model could be up to 3, the updating frequency of the LBCs can be up to every 6 hours per day. The optimal domain size of the ORCMs could be smaller than the OGCMs' domain size around 2 to 10 times. Key words: ORCMs, error source, lateral boundary conditions, domain size Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast" and "Development of Technology for CO2 Marine Geological Storage". We also thank to the administrative supports of the Integrated Research Institute of Construction and Environmental Engineering of the Seoul National University.
NASA Astrophysics Data System (ADS)
Talento, Stefanie; Barreiro, Marcelo
2018-03-01
This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño-Southern Oscillation, weakening its amplitude and low-frequency behaviour.
NASA Technical Reports Server (NTRS)
Cabanes, Cecile; Lee, Tong; Fu, Lee-Lueng
2008-01-01
The authors investigate the nature of the interannual variability of the meridional overturning circulation (MOC) of the North Atlantic Ocean using an Estimating the Circulation and Climate of the Ocean (ECCO) assimilation product for the period of 1993-2003. The time series of the first empirical orthogonal function of the MOC is found to be correlated with the North Atlantic Oscillation (NAO) index, while the associated circulation anomalies correspond to cells extending over the full ocean depth. Model sensitivity experiments suggest that the wind is responsible for most of this interannual variability, at least south of 40(deg)N. A dynamical decomposition of the meridional streamfunction allows a further look into the mechanisms. In particular, the contributions associated with 1) the Ekman flow and its depth-independent compensation, 2) the vertical shear flow, and 3) the barotropic gyre flowing over zonally varying topography are examined. Ekman processes are found to dominate the shorter time scales (1.5-3 yr), while for longer time scales (3-10 yr) the MOC variations associated with vertical shear flow are of greater importance. The latter is primarily caused by heaving of the pycnocline in the western subtropics associated with the stronger wind forcing. Finally, how these changes in the MOC affect the meridional heat transport (MHT) is examined. It is found that overall, Ekman processes explain a larger part of interannual variability (3-10 yr) for MHT (57%) than for the MOC (33%).
Oceanic response to buoyancy, wind and tidal forcing in a Greenlandic glacial fjord
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.
2013-12-01
The Greenland Ice Sheet is losing mass at an accelerating rate. This acceleration may in part be due to changes in oceanic heat transport to marine-terminating outlet glaciers. Ocean heat transport to glaciers depends upon fjord dynamics, which include buoyancy-driven estuarine exchange flow, tides, internal waves, turbulent mixing, and connections to the continental shelf. A 3D model of Rink Isbrae fjord in West Greenland is used to investigate the role of ocean forcing on heat transport to the glacier face. Initial conditions are prescribed from oceanographic field data collected in Summer 2013; wind and tidal forcing, along with meltwater flux, are varied in individual model runs. Subglacial meltwater flux values range from 25-500 m3 s-1. For low discharge values, a subsurface plume drives circulation in the fjord. Our simulations indicate that offshore wind forcing is the dominant mechanism for exchange flow between the fjord and the continental shelf. These results show that glacial fjord circulation is a complex, 3D process with multi-cell estuarine circulation and large velocity shears due to coastal winds. Our results are a first step towards a realistic 3D representation of a high-latitude glacial fjord in a numerical model, and will provide insight to future observational studies.
NASA Astrophysics Data System (ADS)
Saenko, Oleg A.; Yang, Duo; Myers, Paul G.
2017-10-01
The response of the North Atlantic dynamic sea surface height (SSH) and ocean circulation to Greenland Ice Sheet (GrIS) meltwater fluxes is investigated using a high-resolution model. The model is forced with either present-day-like or projected warmer climate conditions. In general, the impact of meltwater on the North Atlantic SSH and ocean circulation depends on the surface climate. In the two major regions of deep water formation, the Labrador Sea and the Nordic Seas, the basin-mean SSH increases with the increase of the GrIS meltwater flux. This SSH increase correlates with the decline of the Atlantic meridional overturning circulation (AMOC). However, while in the Labrador Sea the warming forcing and GrIS meltwater input lead to sea level rise, in the Nordic Seas these two forcings have an opposite influence on the convective mixing and basin-mean SSH (relative to the global mean). The warming leads to less sea-ice cover in the Nordic Seas, which favours stronger surface heat loss and deep mixing, lowering the SSH and generally increasing the transport of the East Greenland Current. In the Labrador Sea, the increased SSH and weaker deep convection are reflected in the decreased transport of the Labrador Current (LC), which closes the subpolar gyre in the west. Among the two major components of the LC transport, the thermohaline and bottom transports, the former is less sensitive to the GrIS meltwater fluxes under the warmer climate. The SSH difference across the LC, which is a component of the bottom velocity, correlates with the long-term mean AMOC rate.
NASA Astrophysics Data System (ADS)
Albrecht, F.; Pizarro, O.; Montecinos, A.
2016-12-01
The subtropical ocean gyre in the South Pacific is a large scale wind-driven ocean circulation, including the Peru-Chile Current, the westward South Equatorial Current, the East Australian Current, and the eastward South Pacific Current. Large scale ocean circulations play an essential role in the climate of the Earth over long and short term time scales.In the recent years a spin-up of this circulation has been recognized analyzing observations of sea level, temperature and salinity profiles, sea surface temperature and wind. Until now it is not clear whether this spin-up is decadal variability or whether it is a long-term trend introduced by anthropogenic forcing. This study aims to analyze whether and how anthropogenic forcing influences the position and the strength of the gyre in the 20th century. To determine that, yearly means of different variables of an ensemble of CMIP5 models are analyzed. The experiments 'historical' and 'historicalNat' are examined. The 'historical' experiment simulates the climate of the 20th century and the 'historicalNat' experiment covers the same time period, but only includes natural forcings. Comparing the outcomes of these two experiments is supposed to give information about the anthropogenic influence on the subtropical gyre of the South Pacific.The main variable we analyze is sea level change. This is directly related to the gyre circulation. The center of the gyre is characterized by a high pressure zone (high sea level) and the temporal and spatial variability of the sea level height field gives information about changes in the gyre circulation. The CMIP5 databank includes steric and dynamic sea level changes. Steric sea level, that is the contribution of temperature and salinity of the water, describes the major contribution to regional sea level change with respect to the global mean. Density changes contract or expand the water, which also changes the sea surface height. This does not only occur at the surface, but at all layers in the ocean. Sea level change thus integrates ocean variability throughout the depth of the ocean. Sea level simulations of the different experiments are compared using long-term trends, multi-year anomalies and EOF-Analysis. Changes in temperature and salinity in the deeper ocean are used to describe the development of the gyre below the surface.
2009-06-30
Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean...2009 4. TITLE AND SUBTITLE Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate... Atlantic Meridional Overturning Circulation (AMOC) in global simulations performed with the depth coordinate Parallel Ocean Program (POP) ocean
Remote forcing at the Last Glacial Maximum in the Tropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Andreasen, Dyke H.; Ravelo, A. Christina; Broccoli, Anthony J.
2001-01-01
We present results of a Last Glacial Maximum (LGM) wind stress sensitivity experiment using a high-resolution ocean general circulation model of the tropical Pacific Ocean. LGM wind stress, used to drive the ocean model, was generated using an atmospheric general circulation model simulation forced by LGM boundary conditions as part of the Paleoclimate Modeling Intercomparison Project (PMIP) [Broccoli, 2000]. LGM wind stress anomalies were large in the western half of the basin, yet there was a significant hydrographic response in the eastern half. This ocean model experiment hind casts changes that are in close agreement with paleoceanographic data from the entire region, even without the explicit modeling of the air-sea interactions. Data and model both predict that the annual average thermocline tilt across the basin was enhanced. Data and model are consistent with a stronger equatorial undercurrent which shoaled to the west of where it does today, and stronger advection of water from the Peru Current into the east equatorial Pacific and across the equator. Paleoproductivity and sea surface temperature (SST) data are interpreted in light of the modeling results, indicating that paleoproductivity changes were related to wind-forced dynamical changes resulting from LGM boundary conditions, while SST changes were related to independent, possibly radiative, forcing. Overall, our results imply that much of the dynamic response of the tropical Pacific during the LGM can be explained by wind field changes resulting from global LGM boundary conditions.
Juvenile recruitment in loggerhead sea turtles linked to decadal changes in ocean circulation.
Ascani, François; Van Houtan, Kyle S; Di Lorenzo, Emanuele; Polovina, Jeffrey J; Jones, T Todd
2016-11-01
Given the threats of climate change, understanding the relationship of climate with long-term population dynamics is critical for wildlife conservation. Previous studies have linked decadal climate oscillations to indices of juvenile recruitment in loggerhead sea turtles (Caretta caretta), but without a clear understanding of mechanisms. Here, we explore the underlying processes that may explain these relationships. Using the eddy-resolving Ocean General Circulation Model for the Earth Simulator, we generate hatch-year trajectories for loggerhead turtles emanating from Japan over six decades (1950-2010). We find that the proximity of the high-velocity Kuroshio Current to the primary nesting areas in southern Japan is remarkably stable and that hatchling dispersal to oceanic habitats itself does not vary on decadal timescales. However, we observe a shift in latitudes of trajectories, consistent with the Pacific Decadal Oscillation (PDO). In a negative PDO phase, the Kuroshio Extension Current (KEC) is strong and acts as a physical barrier to the northward transport of neonates. As a result, hatch-year trajectories remain mostly below 35°N in the warm, unproductive region south of the Transition Zone Chlorophyll Front (TZCF). During a positive PDO phase, however, the KEC weakens facilitating the neonates to swim north of the TZCF into cooler and more productive waters. As a result, annual cohorts from negative PDO years may face a lack of resources, whereas cohorts from positive PDO years may find sufficient resources during their pivotal first year. These model outputs indicate that the ocean circulation dynamics, combined with navigational swimming behavior, may be a key factor in the observed decadal variability of sea turtle populations. © 2016 John Wiley & Sons Ltd.
The dynamics of oceanic fronts. I - The Gulf Stream
NASA Technical Reports Server (NTRS)
Kao, T. W.
1980-01-01
The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.
NASA Astrophysics Data System (ADS)
Jayakumar, A.; Gnanaseelan, C.
2012-03-01
The present study explores the mechanisms responsible for the strong intraseasonal cooling events in the Thermocline Ridge region of the southwestern Indian Ocean. Air sea interface and oceanic processes associated with Madden Julian Oscillation are studied using an Ocean General Circulation Model and satellite observations. Sensitivity experiments are designed to understand the ocean response to intraseasonal forcing with a special emphasis on 2002 cooling events, which recorded the strongest intraseasonal perturbations during the last well-observed decade. This event is characterized by anomalous Walker circulation over the tropical Indian Ocean and persistent intraseasonal heat flux anomaly for a longer duration than is typical for similar events (but without any favorable preconditioning of ocean basic state at the interannual timescale). The model heat budget analysis during 1996 to 2007 revealed an in-phase relationship between atmospheric fluxes associated with Madden Julian Oscillation and the subsurface oceanic processes during the intense cooling events of 2002. The strong convection, reduced shortwave radiation and increased evaporation have contributed to the upper ocean heat loss in addition to the slower propagation of active phase of convection, which supported the integration of longer duration of forcing. The sensitivity experiments revealed that dynamic response of ocean through entrainment at the intraseasonal timescale primarily controls the biological response during the event, with oceanic interannual variability playing a secondary role. This study further speculates the role of oceanic intraseasonal variability in the 2002 droughts over Indian subcontinent.
Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets
NASA Astrophysics Data System (ADS)
Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.
2018-04-01
Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.
van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B
2017-07-01
Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.
Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling.
Rustic, Gerald T; Koutavas, Athanasios; Marchitto, Thomas M; Linsley, Braddock K
2015-12-18
Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are poorly characterized due to a lack of evidence from the eastern equatorial Pacific. We reconstructed sea surface temperature, El Niño-Southern Oscillation (ENSO) activity, and the tropical Pacific zonal gradient for the past millennium from Galápagos ocean sediments. We document a mid-millennium shift (MMS) in ocean-atmosphere circulation around 1500-1650 CE, from a state with dampened ENSO and strong zonal gradient to one with amplified ENSO and weak gradient. The MMS coincided with the deepest LIA cooling and was probably caused by a southward shift of the intertropical convergence zone. The peak of the MCA (900-1150 CE) was a warm period in the eastern Pacific, contradicting the paradigm of a persistent La Niña pattern. Copyright © 2015, American Association for the Advancement of Science.
Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...
Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa
2000-01-01
The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.
NASA Astrophysics Data System (ADS)
Coats, Sloan; Karnauskas, Kristopher
2017-04-01
The pattern of sea surface temperature (SST) in the tropical Pacific Ocean provides an important control on global climate, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease is, in part, a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), we provide evidence that a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a weakening Walker circulation and thus can help to reconcile the range of opposing theories and observations of anthropogenic climate change in the tropical Pacific Ocean. Because of a newly identified bias in their simulation of equatorial coupled atmosphere-ocean dynamics, however, CMIP5 models do not capture the magnitude of the response of the EUC to anthropogenic radiative forcing. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific Ocean.
Variation of Marine Geoid Due to Ocean Circulation and Sea Level Change
NASA Astrophysics Data System (ADS)
Chu, P. C.
2017-12-01
Sea level (S) change and ocean circulation largely affect the gravity field and in turns the marine geoid (N). Difference between the two, D = S - N, is the dynamic ocean topography (DOT), whose gradient represents the large-scale surface geostrophic circulations. Thus, temporal variability of marine geoid (δN) is caused by the sea level change (δS) and the DOT variation (δD), δN = δS - δD. Here, δS is identified from temporally varying satellite altimeter measures; δD is calculated from the change of DOT. For large-scale processes with conservation of potential vorticity, the geostrophic flows take minimum energy state. Based on that, a new elliptic equation is derived in this study to determine D. Here, H is the water depth; and (X, Y) are forcing functions calculated from the in-situ density. The well-posed elliptic equation is integrated numerically on 1o grids for the world oceans with the boundary values taken from the mean DOT (1993-2006) field at the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/, the forcing function F calculated from the three-dimensional temperature and salinity of the NOAA National Centers for Environmental Information (NCEI) World Ocean Atlas 2013 version 2, and sea-floor topography (H) from the NOAA ETOPO5. The numerical solution compares reasonably well (relative root mean square difference of 0.09) with the NASA/JPL satellite observation of the difference between the time-averaged sea surface height and the geoid. In-situ ocean measurements of temperature, salinity, and velocity have also rapidly advanced such that the global ocean is now continuously monitored by near 4,000 free-drifting profiling floats (called Argo) from the surface to 2000 m depth with all data being relayed and made publicly available within hours after collection (http://www.argo.ucsd.edu/). This provides a huge database of temperature and salinity and in turns the forcing function F for the governing elliptic equation of DOT. Along with satellite altimetry data, the marine geoid (N) can be updated in a short time period. Further application of this elliptic equation method on the high-precision altimetry measurements of SSH such as the Surface Water and Ocean Topography (SWOT) is also presented.
How does ice sheet loading affect ocean flow around Antarctica?
NASA Astrophysics Data System (ADS)
Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.
2012-12-01
Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.
NASA Astrophysics Data System (ADS)
Wallmann, K.; Schneider, B.; Sarnthein, M.
2016-02-01
We have developed and employed an Earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus (DP), reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC, and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, low-stands led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to inferred shoaling of Atlantic meridional overturning circulation and more efficient utilization of nutrients in the Southern Ocean. The diminished ventilation of deep water in the glacial Atlantic and Southern Ocean led to significant 14C depletions with respect to the atmosphere. According to our model, the deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in nutrient utilization in the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 can be explained by fast changes in ocean dynamics and nutrient utilization whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.
The reinvigoration of the Southern Ocean carbon sink.
Landschützer, Peter; Gruber, Nicolas; Haumann, F Alexander; Rödenbeck, Christian; Bakker, Dorothee C E; van Heuven, Steven; Hoppema, Mario; Metzl, Nicolas; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wanninkhof, Rik
2015-09-11
Several studies have suggested that the carbon sink in the Southern Ocean-the ocean's strongest region for the uptake of anthropogenic CO2 -has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized. Copyright © 2015, American Association for the Advancement of Science.
Meridional overturning and large-scale circulation of the Indian Ocean
NASA Astrophysics Data System (ADS)
Ganachaud, Alexandre; Wunsch, Carl; Marotzke, Jochem; Toole, John
2000-11-01
The large scale Indian Ocean circulation is estimated from a global hydrographic inverse geostrophic box model with a focus on the meridional overturning circulation (MOC). The global model is based on selected recent World Ocean Circulation Experiment (WOCE) sections which in the Indian Basin consist of zonal sections at 32°S, 20°S and 8°S, and a section between Bali and Australia from the Java-Australia Dynamic Experiment (JADE). The circulation is required to conserve mass, salinity, heat, silica and "PO" (170PO4+O2). Near-conservation is imposed within layers bounded by neutral surfaces, while permitting advective and diffusive exchanges between the layers. Conceptually, the derived circulation is an estimate of the average circulation for the period 1987-1995. A deep inflow into the Indian Basin of 11±4 Sv is found, which is in the lower range of previous estimates, but consistent with conservation requirements and the global data set. The Indonesian Throughflow (ITF) is estimated at 15±5 Sv. The flow in the Mozambique Channel is of the same magnitude, implying a weak net flow between Madagascar and Australia. A net evaporation of -0.6±0.4 Sv is found between 32°S and 8°S, consistent with independent estimates. No net heat gain is found over the Indian Basin (0.1 ± 0.2PW north of 32°S) as a consequence of the large warm water influx from the ITF. Through the use of anomaly equations, the average dianeutral upwelling and diffusion between the sections are required and resolved, with values in the range 1-3×10-5 cm s-1 for the upwelling and 2-10 cm2 s-1 for the diffusivity.
Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea
NASA Astrophysics Data System (ADS)
Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.
2018-06-01
The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.
Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Arnone, Robert; Jones, Brooke
2017-05-01
The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.
Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom.
Oka, Akira; Niwa, Yoshihiro
2013-01-01
Vertical mixing in the ocean is a key driver of the global ocean thermohaline circulation, one of the most important factors controlling past and future climate change. Prior observational and theoretical studies have focused on intense tidal mixing near the sea bottom (near-field mixing). However, ocean general circulation models that employ a parameterization of near-field mixing significantly underestimate the strength of the Pacific thermohaline circulation. Here we demonstrate that tidally induced mixing away from the sea bottom (far-field mixing) is essential in controlling the Pacific thermohaline circulation. Via the addition of far-field mixing to a widely used tidal parameterization, we successfully simulate the Pacific thermohaline circulation. We also propose that far-field mixing is indispensable for explaining the presence of the world ocean's oldest water in the eastern North Pacific Ocean. Our findings suggest that far-field mixing controls ventilation of the deep Pacific Ocean, a process important for ocean carbon and biogeochemical cycles.
Climate Dynamics and Hysteresis at Low and High Obliquity
NASA Astrophysics Data System (ADS)
Colose, C.; Del Genio, A. D.; Way, M.
2017-12-01
We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.
NASA Technical Reports Server (NTRS)
Song, Y. Tony; Colberg, Frank
2011-01-01
Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.
Numerical simulation and prediction of coastal ocean circulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P.
1992-01-01
Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account formore » non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.« less
Ocean circulation and climate during the past 120,000 years
NASA Astrophysics Data System (ADS)
Rahmstorf, Stefan
2002-09-01
Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5-10 °C and massive surges of icebergs into the North Atlantic Ocean - events that have occurred repeatedly during the last glacial cycle.
The deep meridional overturning circulation in the Indian Ocean inferred from the GECCO synthesis
NASA Astrophysics Data System (ADS)
Wang, Weiqiang; Köhl, Armin; Stammer, Detlef
2012-11-01
The deep time-varying meridional overturning circulation (MOC) in the Indian Ocean in the German “Estimating the Circulation and Climate of the Ocean” consortium efforts (GECCO) ocean synthesis is being investigated. An analysis of the integrated circulation suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200 m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500 m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ substantially from those obtained by inverse box models, which being based on individual hydrographic sections and due to the strong seasonal cycle are susceptible to aliasing. The GECCO solution shows a large seasonal variation in its deep MOC caused by the seasonal reversal of monsoon-related wind stress forcing. The associated seasonal variations of the deep MOC range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across the 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differs before and after 1980. GECCO shows a stable trend for the period 1960-1979 and substantial changes in the upper and bottom layer for the period 1980-2001. By means of an extended EOF analysis, the importance of Ekman dynamics as driving forces of the deep MOC of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contribute to the evolution of the Indian Ocean dipole (IOD) events.
Invasive plants in Arizona's forests and woodlands
Alix Rogstad; Tom DeGomez; Carol Hull Sieg
2007-01-01
Climate is critically linked to vegetation dynamics at many different spatial and temporal scales across the desert Southwest. Small-scale, short duration monsoon season thunderstorms can bring much needed precipitation to small patches of vegetation or can initiate widespread flooding. Long-term variations in climate related to ocean circulation patterns can create...
La Niña diversity and Northwest Indian Ocean Rim teleconnections
Hoell, Andrew; Funk, Christopher C.; Barlow, Mathew
2014-01-01
The differences in tropical Pacific sea surface temperature (SST) expressions of El Niño-Southern Oscillation (ENSO) events of the same phase have been linked with different global atmospheric circulation patterns. This study examines the dynamical forcing of precipitation during October–December (OND) and March–May (MAM) over East Africa and during December–March (DJFM) over Central-Southwest Asia for 1950–2010 associated with four tropical Pacific SST patterns characteristic of La Niña events, the cold phase of ENSO. The self-organizing map method along with a statistical distinguishability test was used to isolate La Niña events, and seasonal precipitation forcing was investigated in terms of the tropical overturning circulation and thermodynamic and moisture budgets. Recent La Niña events with strong opposing SST anomalies between the central and western Pacific Ocean (phases 3 and 4), force the strongest global circulation modifications and drought over the Northwest Indian Ocean Rim. Over East Africa during MAM and OND, subsidence is forced by an enhanced tropical overturning circulation and precipitation reductions are exacerbated by increases in moisture flux divergence. Over Central-Southwest Asia during DJFM, the thermodynamic forcing of subsidence is primarily responsible for precipitation reductions, with moisture flux divergence acting as a secondary mechanism to reduce precipitation. Eastern Pacific La Niña events in the absence of west Pacific SST anomalies (phases 1 and 2), are associated with weaker global teleconnections, particularly over the Indian Ocean Rim. The weak regional teleconnections result in statistically insignificant precipitation modifications over East Africa and Central-Southwest Asia.
NASA Astrophysics Data System (ADS)
Li, X.; Yu, Y.
2016-12-01
The horizontal coordinate systems commonly used in most global ocean models are the sphere latitude-longitude grid and displaced poles such as tripolar grid. The effect of the horizontal coordinate system on Atlantic Meridional Overturning Circulation (AMOC) is evaluated using an oceanic general circulation model (OGCM). Two experiments are conducted with the model using latitude-longitude grid (Lat_1) and tripolar grid (Tri). Results show that Tri simulates a stronger NADW than Lat_1, as more saline water masses enter into the GIN Seas in Tri. Two reasons can be attributed to the stronger NADW. One is the removal of zonal filter in Tri, which leads to an increasing of zonal gradient of temperature and salinity, thus strengthens the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because the realistic topography is applied in tripolar grid and the longitude-latitude grid employs an artificial island around the North Pole. In order to evaluate the effect of filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, enhanced filter can also increase the NADW, for more saline water is suppressed to go north and accumulated in the Labrador Sea, especially in the experiment with enhanced filter on salinity (Lat_2_S).
Coherent Lagrangian swirls among submesoscale motions.
Beron-Vera, F J; Hadjighasem, A; Xia, Q; Olascoaga, M J; Haller, G
2018-03-05
The emergence of coherent Lagrangian swirls (CLSs) among submesoscale motions in the ocean is illustrated. This is done by applying recent nonlinear dynamics tools for Lagrangian coherence detection on a surface flow realization produced by a data-assimilative submesoscale-permitting ocean general circulation model simulation of the Gulf of Mexico. Both mesoscale and submesoscale CLSs are extracted. These extractions prove the relevance of coherent Lagrangian eddies detected in satellite-altimetry-based geostrophic flow data for the arguably more realistic ageostrophic multiscale flow.
Climate Model Tests of the Early Anthropogenic Hypothesis
NASA Astrophysics Data System (ADS)
Vavrus, S.; Kutzbach, J.; Philippon, G.
2008-12-01
We test the hypothesis that greenhouse gas emissions produced by the combination of early and recent human activities, augmented by additional rises in greenhouse gases through ocean feedbacks, have kept the climate warmer than its natural level and offset an incipient glaciation. We use four different configurations of NCAR's Community Climate System Model to investigate the natural climate that should exist today if CO2 and CH4 concentrations had fallen to their average levels reached during previous interglaciations. The model simulations consist of three using a coupled atmosphere-slab ocean configuration---fixed land cover at moderate (T42) and high (T85) model resolution and interactive vegetation composition at T42 resolution--and one employing a coupled atmosphere-dynamical ocean configuration and fixed land cover at T42 resolution. With greenhouse gas concentrations lowered to their estimated natural levels, global mean temperature falls by 2.5-3.0 K in all four experiments. Of the total global cooling with fixed land cover and moderate model resolution, 38% (62%) is attributable to early agricultural activities (industrialization), while early agriculture accounts for approximately half of the expanded permanent snow cover area. The greenhouse cooling triggers widespread glacial inception in the Northern Hemisphere, where permanent snow cover expands by at least 80% and even more with the addition of enhanced model processes: 130% with the dynamical ocean, 150% with high (T85) model resolution, and 200% with vegetation feedbacks included. The regional pattern of incipient glaciation is strongly influenced by atmospheric and circulation changes, sea ice feedbacks, and model resolution. The simulation with a dynamical ocean produces a decrease in vertically integrated global ocean temperature of 1.25 K, a 20% weakening of the Atlantic meridional overturning cell, and an expansion of sea ice and reduced upwelling in the Southern Ocean. Viewed from the perspective of explaining the unusual late-Holocene increases of CO2 that occurred prior to the Industrial Revolution, these simulated changes in ocean temperature, sea ice cover, and circulation (with sign reversed) support the hypothesis that early agriculture played a role in initiating anomalous warming that thwarted incipient glaciation beginning several thousand years ago. Decreased ocean solubility globally and positive ocean/sea-ice feedbacks in the Southern Hemisphere probably augmented the initial CO2 increase and caused additional warming.
How robust is the atmospheric circulation response to Arctic sea-ice loss in isolation?
NASA Astrophysics Data System (ADS)
Kushner, P. J.; Hay, S. E.; Blackport, R.; McCusker, K. E.; Oudar, T.
2017-12-01
It is now apparent that active dynamical coupling between the ocean and atmosphere determines a good deal of how Arctic sea-ice loss changes the large-scale atmospheric circulation. In coupled ocean-atmosphere models, Arctic sea-ice loss indirectly induces a 'mini' global warming and circulation changes that extend into the tropics and the Southern Hemisphere. Ocean-atmosphere coupling also amplifies by about 50% Arctic free-tropospheric warming arising from sea-ice loss (Deser et al. 2015, 2016). The mechanisms at work and how to separate the response to sea-ice loss from the rest of the global warming process remain poorly understood. Different studies have used distinctive numerical approaches and coupled ocean-atmosphere models to address this problem. We put these studies on comparable footing using pattern scaling (Blackport and Kushner 2017) to separately estimate the part of the circulation response that scales with sea-ice loss in the absence of low-latitude warming from the part that scales with low-latitude warming in the absence of sea-ice loss. We consider well-sampled simulations from three different coupled ocean-atmosphere models (CESM1, CanESM2, CNRM-CM5), in which greenhouse warming and sea-ice loss are driven in different ways (sea ice albedo reduction/transient RCP8.5 forcing for CESM1, nudged sea ice/CO2 doubling for CanESM2, heat-flux forcing/constant RCP8.5-derived forcing for CNRM-CM5). Across these different simulations, surprisingly robust influences of Arctic sea-ice loss on atmospheric circulation can be diagnosed using pattern scaling. For boreal winter, the isolated sea-ice loss effect acts to increase warming in the North American Sub-Arctic, decrease warming of the Eurasian continent, enhance precipitation over the west coast of North America, and strengthen the Aleutian Low and the Siberian High. We will also discuss how Arctic free tropospheric warming might be enhanced via midlatitude ocean surface warming induced by sea-ice loss. Less robust is the part of the response that scales with low-latitude warming, which, depending on the model, can reinforce or cancel the response to sea-ice loss. The extent to which a "tug of war" exists between tropical and high-latitude influences on the general circulation might thus be model dependent.
NASA Astrophysics Data System (ADS)
Asay-Davis, Xylar; Martin, Daniel; Price, Stephen; Maltrud, Mathew
2014-05-01
We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and ice-sheet evolution models. This presentation focuses on the ocean model, POP2x, which is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). A companion presentation, 'Fully resolved whole-continent Antarctica simulations using the BISICLES AMR ice sheet model coupled with the POP2x Ocean Model', concentrates more on the ice-sheet model, BISICLES (Cornford et al., 2012), which includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (Southern Ocean) simulations using POP2x at 0.1 degree resolution with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends.
Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends
NASA Astrophysics Data System (ADS)
Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Methods of testing parameterizations: Vertical ocean mixing
NASA Technical Reports Server (NTRS)
Tziperman, Eli
1992-01-01
The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.
NASA Astrophysics Data System (ADS)
Jackson, R. H.; Nash, J. D.; Sutherland, D. A.; Amundson, J. M.; Kienholz, C.; Skyllingstad, E. D.; Motyka, R. J.
2017-12-01
The exchanges of heat and freshwater at tidewater glacier termini are modulated by small-scale turbulent processes. However, few observations have been obtained near the ocean-glacier interface, limiting our ability to quantify turbulent fluxes or test melt parameterizations in ocean-glacier models. Here, we explore the turbulent plume dynamics at LeConte Glacier, Alaska with three extensive field campaigns in May, August and September (2016-17). Two autonomous vessels collected repeat transects of velocity and water properties near the glacier, often within 20 m of the terminus. Concurrent shipboard surveying measured turbulence with a vertical microstructure profiler, along with water properties and velocity. These high-resolution surveys provide a 3D view of the circulation and allow us to quantify turbulent fluxes in the near-glacier region. We observe two regimes at the terminus: an energetic upwelling plume driven by subglacial discharge at a persistent location, and submarine melt-driven convection along other parts of the terminus. We trace the evolution of the subglacial discharge plume as it flows away from the glacier, from an initial stage of vigorous mixing to a more quiescent outflow downstream. Resolving these spatial patterns of upwelling and mixing near glaciers is a key step towards understanding submarine melt rates and glacial fjord circulation.
Sensitivity of marine protected area network connectivity to atmospheric variability
NASA Astrophysics Data System (ADS)
Fox, Alan D.; Henry, Lea-Anne; Corne, David W.; Roberts, J. Murray
2016-11-01
International efforts are underway to establish well-connected systems of marine protected areas (MPAs) covering at least 10% of the ocean by 2020. But the nature and dynamics of ocean ecosystem connectivity are poorly understood, with unresolved effects of climate variability. We used 40-year runs of a particle tracking model to examine the sensitivity of an MPA network for habitat-forming cold-water corals in the northeast Atlantic to changes in larval dispersal driven by atmospheric cycles and larval behaviour. Trajectories of Lophelia pertusa larvae were strongly correlated to the North Atlantic Oscillation (NAO), the dominant pattern of interannual atmospheric circulation variability over the northeast Atlantic. Variability in trajectories significantly altered network connectivity and source-sink dynamics, with positive phase NAO conditions producing a well-connected but asymmetrical network connected from west to east. Negative phase NAO produced reduced connectivity, but notably some larvae tracked westward-flowing currents towards coral populations on the mid-Atlantic ridge. Graph theoretical metrics demonstrate critical roles played by seamounts and offshore banks in larval supply and maintaining connectivity across the network. Larval longevity and behaviour mediated dispersal and connectivity, with shorter lived and passive larvae associated with reduced connectivity. We conclude that the existing MPA network is vulnerable to atmospheric-driven changes in ocean circulation.
Shifting Surface Currents in the Northern North Atlantic Ocean
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Rhines, Peter B.
2007-01-01
Analysis of surface drifter tracks in the North Atlantic Ocean from the time period 1990 to 2006 provides the first evidence that the Gulf Stream waters can have direct pathways to the Nordic Seas. Prior to 2000, the drifters entering the channels leading to the Nordic Seas originated in the western and central subpolar region. Since 2001 several paths from the western subtropics have been present in the drifter tracks leading to the Rockall Trough through which the most saline North Atlantic Waters pass to the Nordic Seas. Eddy kinetic energy from altimetry shows also the increased energy along the same paths as the drifters, These near surface changes have taken effect while the altimetry shows a continual weakening of the subpolar gyre. These findings highlight the changes in the vertical structure of the northern North Atlantic Ocean, its dynamics and exchanges with the higher latitudes, and show how pathways of the thermohaline circulation can open up and maintain or increase its intensity even as the basin-wide circulation spins down.
Annually resolved North Atlantic marine climate over the last millennium
NASA Astrophysics Data System (ADS)
Reynolds, D. J.; Scourse, J. D.; Halloran, P. R.; Nederbragt, A. J.; Wanamaker, A. D.; Butler, P. G.; Richardson, C. A.; Heinemeier, J.; Eiríksson, J.; Knudsen, K. L.; Hall, I. R.
2016-12-01
Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ18O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ18O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.
NASA Astrophysics Data System (ADS)
Hoffmann, S. S.; Dalsing, R.; McManus, J. F.
2016-12-01
Dynamical sedimentary proxies for deep ocean circulation, such as mean sortable silt size and 231Pa/230Th, allow the reconstruction of past changes in deep water circulation speed and ocean basin ventilation. This provides an important addition to traditional methods of deep water circulation reconstruction such as mapping water mass geometry through foraminiferal carbon isotopic records. We have produced records of mean sortable silt size from three intermediate-depth sediment core sites in the Labrador Sea, taken from the continental slope and Orphan Knoll east of Newfoundland, to reconstruct changes in intermediate depth water circulation including Glacial North Atlantic Intermediate Water and Labrador Sea Water. Radiocarbon dating indicates that the cores span the Holocene, deglaciation and LGM. Increases in mean sortable silt size appear to coincide with Heinrich Event 1, the Older Dryas, Younger Dryas, and mid-late Holocene, which could suggest increased bottom current speeds at these times. However, ice-rafted debris contributes to marine sediments in this region, and mean sortable silt size at times of major IRD input such as Heinrich Event 1 may therefore reflect multiple influences. We will use inverse modeling techniques to determine likely end members contributing to the sortable silt fraction and to correct for the effect of IRD on sortable silt size, allowing a better understanding of the influence of current speed on these samples. We combine these sortable silt measurements with the sedimentary geochemical proxy 231Pa/230Th, which has been used to reconstruct changes in North Atlantic meridional overturning circulation. New 231Pa/230Th data from cores KN158-4-27/28, which provided our best-resolved sortable silt record, will allow us to compare results from the two dynamical proxies to better understand both the behavior of these proxies in the Labrador Sea, and the history of intermediate-depth circulation and ventilation in the Labrador Sea during major abrupt climate events and transitions.
NASA Astrophysics Data System (ADS)
Sohl, L.
2014-04-01
The Neoproterozoic "Snowball Earth" glaciations ( 750-635 Ma) have been a special focus for outer habitable zone investigations, owing in large part to a captivating and controversial hypothesis suggesting that Earth may have only narrowly escaped a runaway icehouse state on multiple occasions (a.k.a. "the hard snowball"; Hoffman and Schrag 2001). A review of climate simulations exploring snowball inception (Godderis et al. 2011) reveals that a broad range of models (EBMs, EMICs and AGCMs) tend to yield hard snowball solutions, whereas models with greater 3-D dynamic response capabilities (AOGCMs) typically do not, unless some of their climate feedback responses (e.g., wind-driven ocean circulation, cloud forcings) are disabled (Poulsen and Jacobs 2004). This finding raises the likelihood that models incorporating dynamic climate feedbacks are essential to understanding how much flexibility there may be in the definition of a planet's habitable zone boundaries for a given point in its history. In the first of a series of new Snowball Earth simulations, we use the NASA/GISS ModelE2 Global Climate Model - a 3-D coupled atmosphere/ocean model with dynamic sea ice response - to explore the impacts of wind-driven ocean circulation, clouds and deep ocean circulation on the sea ice front when solar luminosity and atmospheric carbon dioxide are reduced to Neoproterozoic levels (solar = 94%, CO2 = 40 ppmv). The simulation includes a realistic Neoproterozoic land mass distribution, which is concentrated at mid- to tropical latitudes. After 300 years, the sea ice front is established near 30 degrees latitude, and after 600 years it remains stable. As with earlier coupled model simulations we conclude that runaway glacial states would have been difficult to achieve during the Neoproterozoic, and would be more likely to have occurred during earlier times in Earth history when solar luminosity was less. Inclusion of dynamic climate feedback capabilities in habitable zone modeling studies is likely to result in an expansion of our view of what a "Goldilocks" state can entail. Future simulations with a modified version of the NASA/GISS GCM, ROCKE-3D, will take advantage of newly-added model capabilities that evaluate the influence of rotation rate, solar spectral variability, CO2 surface condensation and CO2 clouds on the outer edge of Earth's habitable zone.
Greenland's glacial fjords and their role in regional biogeochemical dynamics.
NASA Astrophysics Data System (ADS)
Crosby, J.; Arndt, S.
2017-12-01
Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.
NASA Astrophysics Data System (ADS)
Gebbie, G.; Peterson, C. D.; Lisiecki, L. E.; Spero, H. J.
2014-12-01
Estimates of the whole-ocean d13C change between the Last Glacial Maximum (LGM) and the modern-day are converging to values of about 0.4 per mil, and are of great use in partitioning land versus ocean contributions to the deglacial carbon cycle. To determine which specific oceanic processes are at play, however, knowledge of the spatial pattern of LGM-to-modern d13C and d18O change is critical. Spatial maps have mostly focused on Atlantic d13C, with less progress for d18O and the Pacific and Indian sectors, due to the concentration of sediment-core observations in the Atlantic and the difficulty in making meaningful maps from sparse data. Here, we demonstrate that a state estimation (or data assimilation) method based on recently compiled data and a simple kinematic ocean model simultaneously produces reasonable results for: 1) global maps of d13C and d18O, 2) uncertainty in the estimated properties, and 3) oceanic water-mass geometry. The observations include benthic d13C and d18O data from 493 marine sediment cores that were collected from the scientific literature and NOAA, PANGEA, and Delphi databases. The kinematic model permits each data point to have influence both up- and downstream along a water-mass pathway, typically allowing a larger geographical range than a statistical interpolation method. No assumption regarding the state of the circulation is necessary, and the modern-day circulation need not be assumed to be representative of the LGM. With this method, meridional (or other) sections can be compared between ocean basins. Furthermore, the internally-consistent d18O and d13C maps are used to determine the LGM-to-modern spatial changes that are robust given the uncertainty and sparsity of data. Rather than simply focus on property maps, we suggest that the link between observations and circulation changes (as reflected by the paths that water travels), points the way toward dynamical processes that must be explained. A particular application of our result is the geographic constraint of possible unobserved reservoirs of d13C or radiocarbon and calculation of their potential impact on the global chain of events during the deglaciation.
The Atlantic Multidecadal Oscillation without a role for ocean circulation.
Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn
2015-10-16
The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO. Copyright © 2015, American Association for the Advancement of Science.
Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo
2018-01-26
Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.
Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo
2018-01-01
Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.
NASA Astrophysics Data System (ADS)
Thirumalai, K.; Quinn, T. M.; Okumura, Y.; Richey, J. N.; Partin, J. W.; Poore, R. Z.
2015-12-01
Surface circulation in the Atlantic Ocean is an important mediator of global climate and yet its variability is poorly constrained on centennial timescales. Changes in the Atlantic meridional overturning circulation (AMOC) have been implicated in late Holocene climate variability in the Western Hemisphere, although the relationship between AMOC variability and hydroclimate is uncertain due to the lack of sufficiently highly resolved proxy records. Here we present a replicated reconstruction of sea-surface temperature (SST) and salinity (SSS) from the Garrison Basin in the northern Gulf of Mexico (NGOM) spanning the last 4,400 years to better constrain past sea-surface conditions. We generated time series of paired Mg/Ca (SST proxy) and δ18O (SST and SSS proxy) variations in planktic foraminifer Globigerinoides ruber (white variety) from three multi-cores collected in 2010. Using a Monte Carlo-based technique we produce a stacked record from the three multi-cores and constrain analytical, calibration, chronological, and sampling uncertainties. We apply this technique to existing paired Mg/Ca- δ18O studies in the Gulf of Mexico and Atlantic Ocean to facilitate comparison between time-uncertain proxy reconstructions. The Garrison Basin stack exhibits large centennial-scale variability (σSST~0.6°C; δ18Osw~0.17‰) and indicates a substantially cool (0.9±0.5°C) and fresh (0.26±0.1‰) Little Ice Age (LIA; 1450-1850 A.D.), corroborating extant records from the Gulf of Mexico. Focusing on the last millennium, we analyze a suite of oceanic and terrestrial proxy records to demonstrate a centennial-scale link between salt advection in the Atlantic Ocean, a diagnostic parameter of ocean circulation, and hydroclimate in the adjacent continents. The ensuing multiproxy relationships seem to be consistent with spatial field correlations of limited salinity and rainfall instrumental/reanalysis data, which suggest that NGOM salinity varies with large-scale Atlantic Ocean circulation and continental precipitation. Our results imply significant centennial-scale variability over the late Holocene and are consistent with limited observational analysis indicating a slowdown of AMOC during the LIA.
NASA Astrophysics Data System (ADS)
Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.
2017-12-01
Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.
Ocean Circulation and Dynamics on the West Antarctic Peninsula Continental Shelf
2007-09-01
Physical Oceanography, and Wolfgang Schneider, Renato Quifiones, Silvio Pantoja, Samuel Hormaz6bal and Oscar Pizarro all helped me learn more about how to be...Rohardt, G., Krause , G., 1992. The Antarctic coastal current in the southeastern Weddell Sea. Polar Biology 12 (2), 171-182. 178 Flagg, C. N
NASA Technical Reports Server (NTRS)
Tai, Chang-Kou
1988-01-01
Direct estimation of the absolute dynamic topography from satellite altimetry has been confined to the largest scales (basically the basin-scale) owing to the fact that the signal-to-noise ratio is more unfavorable everywhere else. But even for the largest scales, the results are contaminated by the orbit error and geoid uncertainties. Recently a more accurate Earth gravity model (GEM-T1) became available, providing the opportunity to examine the whole question of direct estimation under a more critical limelight. It is found that our knowledge of the Earth's gravity field has indeed improved a great deal. However, it is not yet possible to claim definitively that our knowledge of the ocean circulation has improved through direct estimation. Yet, the improvement in the gravity model has come to the point that it is no longer possible to attribute the discrepancy at the basin scales between altimetric and hydrographic results as mostly due to geoid uncertainties. A substantial part of the difference must be due to other factors; i.e., the orbit error, or the uncertainty of the hydrographically derived dynamic topography.
Global Observations and Understanding of the General Circulation of the Oceans
NASA Technical Reports Server (NTRS)
1984-01-01
The workshop was organized to: (1) assess the ability to obtain ocean data on a global scale that could profoundly change our understanding of the circulation; (2) identify the primary and secondary elements needed to conduct a World Ocean Circulation Experiment (WOCE); (3) if the ability is achievable, to determine what the U.S. role in such an experiment should be; and (4) outline the steps necessary to assure that an appropriate program is conducted. The consensus of the workshop was that a World Ocean Circulation Experiment appears feasible, worthwhile, and timely. Participants did agree that such a program should have the overall goal of understanding the general circulation of the global ocean well enough to be able to predict ocean response and feedback to long-term changes in the atmosphere. The overall goal, specific objectives, and recommendations for next steps in planning such an experiment are included.
Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan (PREPRINT)
2009-05-18
analysis of upper-limb meridional overturning circulation interior ocean pathways in the tropical/subtropical Atlantic . In: Interhemispheric Water...diminishing returns are encountered when either resolution is increased. 3 1. Introduction Coupled ocean-atmosphere general circulation models have become...northwest Caribbean Sea 4 and GOM. Evaluation is difficult because ocean general circulation models incorporate a large suite of numerical algorithms
Anomalous circulation in the Pacific sector of the Arctic Ocean in July-December 2008
NASA Astrophysics Data System (ADS)
Panteleev, G.; Francis, O. P.; Yaremchuk, M.; Zhang, J.; Kulakov, M.; Onat, Y.
2017-12-01
Variability of the mean summer-fall ocean state in the Pacific Sector of the Arctic Ocean (PSAO) is studied using a dynamically constrained synthesis (4Dvar) of historical in situ observations collected during 1972 to 2008. Specifically, the oceanic response to the cyclonic (1989-1996) and anticyclonic (1972-1978, 1997-2006) phases o f the Arctic Ocean Oscillation (AOO) is assessed for the purpose of quantitatively comparing the 2008 circulation pattern that followed the 2007 ice cover minimum.It is shown that the PSAO circulation during July-December of 2008 was characterized by a pronounced negative Sea Surface Height (SSH) anomaly along theEurasian shelf break, which caused a significant decline of the transport in the Atlantic Water (AW) inflow region into the PSAO and increased the sea level difference betweenthe Bering and Chukchi Seas. This anomaly could be one of the reasons for the observed amplification of the Bering Strait transport carrying fresh Pacific Waters into the PSAO. Largrangian analysis of the optimized solution suggests that the freshwater (FW) accumulation in the Beaufort Gyre has a negligible contribution from the East Siberian Sea and is likely caused by the enhanced FW export from the region north of the Canadian Archipelago/Greenland.The inverse modeling results are confirmed by validation against independent altimetry observations and in situ velocity data from NABOS moorings. It is also shown that presented results are in significantly better agreement with the data than the output of the PIOMAS model run utilized as a first guess solution for the 4dVar analysis.
NASA Astrophysics Data System (ADS)
Gao, Tao; Si, Yaobing; Yu, Xiao; Wulan; Yang, Peng; Gao, Jing
2018-02-01
This study analyzed the atmospheric evolutionary characteristics of insufficient rainfall that leads to spring drought in Inner Mongolia, China. The results revealed that a weakened western Pacific subtropical high and an enlarged North Polar vortex with a western position of the East Asian trough generally result in unfavorable moisture transportation for spring precipitation in IM. It was found that an abnormal sea surface temperature in several crucial ocean areas triggers an irregular atmospheric circulation over the Eurasian continent and the Pacific region. Lower sea surface temperature (SST) during the previous autumn over tropical regions of the central-eastern Pacific and Indian oceans induce a strong Walker circulation, corresponding to a weak and southeastward-retreating subtropical high over the western Pacific during the following winter and spring. Another crucial area is the central region of the North Atlantic Ocean. Abnormally low SST of the ocean area during the preceding autumn causes the Scandinavian teleconnection pattern (the index of which is issued on the website of the Climate Prediction Center, USA) changes to a positive phase, which leads to a weak westerly over the Eurasian continent. In this case, the easterly over the North Pole becomes stronger than normal, resulting in an extended North Polar vortex during the following spring. In addition, SST differences during the previous December between the middle-eastern tropical and the northwestern regions of the Pacific Ocean reflect variations of the Pacific Decadal Oscillation, causing the East Asian trough to move to a western position during the following spring.
Salinity Remote Sensing and the Study of the Global Water Cycle
NASA Technical Reports Server (NTRS)
Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.
2007-01-01
The SMOS and AquariusISAC-D satellite missions will begin a new era to map the global sea surface salinity (SSS) field and its variability from space within the next twothree years. They will provide critical data needed to study the interactions between the ocean circulation, global water cycle and climate. Key scientific issues to address are (1) mapping large expanses of the ocean where conventional SSS data do not yet exist, (2) understanding the seasonal and interannual SSS variations and the link to precipitation, evaporation and sea-ice patterns, (3) links between SSS and variations in the oceanic overturning circulation, (4) air-sea coupling processes in the tropics that influence El Nino, and (4) closing the marine freshwater budget. There is a growing body of oceanographic evidence in the form of salinity trends that portend significant changes in the hydrologic cycle. Over the past several decades, highlatitude oceans have become fresher while the subtropical oceans have become saltier. This change is slowly spreading into the subsurface ocean layers and may be affecting the strength of the ocean's therrnohaline overturning circulation. Salinity is directly linked to the ocean dynamics through the density distribution, and provides an important signature of the global water cycle. The distribution and variation of oceanic salinity is therefore attracting increasing scientific attention due to the relationship to the global water cycle and its influence on circulation, mixing, and climate processes. The oceans dominate the water cycle by providing 86% of global surface evaporation (E) and receiving 78% of global precipitation (P). Regional differences in E-P, land runoff, and the melting or freezing of ice affect the salinity of surface water. Direct observations of E-P over the ocean have large uncertainty, with discrepancies between the various state-of-the-art precipitation analyses of a factor of two or more in many regions. Quantifying the climatic influence of the oceanic water cycle requires more accurately resolving the net air-sea water flux. Measuring global SSS trends on seasonal to interannual timescales by satellite is fundamental to this problem because the SSS trends represent detectable time-integrated signals of the variable marine hydrological cycle. Satellite measurements, coupled with an array of in situ observations, will provide global synoptic SSS fields for the first time history. These data will provide a strong constraint on climate models and data assimilation efforts, which must properly represent the freshwater budget in terms of E-P, ocean advection and surface layer mixing in order to accurately simulate the true ocean state. The SSS fields will allow us to quantify the covariability between the SSS and the strong seasonal E-P cycle in the tropics and high latitudes. Field measurement campaigns to exploit satellite and in situ measurements to close the seasonal E-P cycle over an ocean region are being considered. Lastly the satellite systems will monitor and trace the large long-lived SSS anomalies from year to year that have the potential to influence El Nino and the large scale ocean circulation.
NASA Astrophysics Data System (ADS)
Yang, Lianjiao; Sun, Liguang; Emslie, Steven D.; Xie, Zhouqing; Huang, Tao; Gao, Yuesong; Yang, Wenqing; Chu, Zhuding; Wang, Yuhong
2018-01-01
The Adélie penguin is a well-known indicator for climate and environmental changes. Exploring how large-scale climate variability affects penguin ecology in the past is essential for understanding the responses of Southern Ocean ecosystems to future global change. Using ornithogenic sediments at Cape Bird, Ross Island, Antarctica, we inferred relative population changes of Adélie penguins in the southern Ross Sea over the past 500 yr, and observed an increase in penguin populations during the Little Ice Age (LIA; 1500-1850 AD). We used cadmium content in ancient penguin guano as a proxy of ocean upwelling and identified a close linkage between penguin dynamics and atmospheric circulation and oceanic conditions. During the cold period of ∼1600-1825 AD, a deepened Amundsen Sea Low (ASL) led to stronger winds, intensified ocean upwelling, enlarged Ross Sea and McMurdo Sound polynyas, and thus higher food abundance and penguin populations. We propose a mechanism linking Antarctic marine ecology and atmospheric/oceanic dynamics which can help explain and predict responses of Antarctic high latitudes ecosystems to climate change.
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Zlotnicki, V.; Holland, W. R.; Malanotte-Rizzoli, P.
1991-01-01
The overall objectives of the proposed investigation are to study the dynamics of the large-scale recirculating cells of water in the ocean, which are loosely defined as 'gyres' in this study. A gyre is normally composed of a swift western boundary current (e.g., the Gulf Stream and the Kuroshio), a tight recirculating cell attached to the current, and a large-scale sluggish return flow. The water, of course, is not entirely recirculating within a gyre. The exchange of water among gyres is an important process in maintaining the meridional heat transport of the ocean. The gyres constitute a major mode of water movement in the ocean and play significant roles in the global climate system.
A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea
NASA Astrophysics Data System (ADS)
Hazel, J.; Stewart, A.
2016-12-01
The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.
From Rivers to Oceans and Back: Linking Models to Encompass the Full Salmon Life Cycle
NASA Astrophysics Data System (ADS)
Danner, E.; Hendrix, N.; Martin, B.; Lindley, S. T.
2016-02-01
Pacific salmon are a promising study subject for investigating the linkages between freshwater and coastal ocean ecosystems. Salmon use a wide range of habitats throughout their life cycle as they move with water from mountain streams, mainstem rivers, estuaries, bays, and coastal oceans, with adult fish swimming back through the same migration route they took as juveniles. Conditions in one habitat can have growth and survival consequences that manifest in the following habitat, so is key that full life cycle models are used to further our understanding salmon population dynamics. Given the wide range of habitats and potential stressors, this approach requires the coordination of a multidisciplinary suite of physical and biological models, including climate, hydrologic, hydraulic, food web, circulation, bioenergetic, and ecosystem models. Here we present current approaches to linking physical and biological models that capture the foundational drivers for salmon in complex and dynamic systems.
Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks
NASA Astrophysics Data System (ADS)
Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.
2017-12-01
Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.
Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.
2016-01-01
The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.
Coupled climate impacts of the Drake Passage and the Panama Seaway
NASA Astrophysics Data System (ADS)
Yang, Simon; Galbraith, Eric; Palter, Jaime
2014-07-01
Tectonically-active gateways between ocean basins have modified ocean circulation over Earth history. Today, the Atlantic and Pacific are directly connected via the Drake Passage, which forms a barrier to the time-mean geostrophic transport between the subtropics and Antarctica. In contrast, during the warm early Cenozoic era, when Antarctica was ice-free, the Drake Passage was closed. Instead, at that time, the separation of North and South America provided a tropical seaway between the Atlantic and Pacific that remained open until the Isthmus of Panama formed in the relatively recent geological past. Ocean circulation models have previously been used to explore the individual impacts of the Drake Passage and the Panama Seaway, but rarely have the two gateways been considered together, and most explorations have used very simple atmospheric models. Here we use a coupled ocean-ice-atmosphere model (GFDL's CM2Mc), to simulate the impacts of a closed Drake Passage both with and without a Panama Seaway. We find that the climate response to a closed Drake Passage is relatively small when the Panama Seaway is absent, similar to prior studies, although the coupling to a dynamical atmosphere does increase the temperature change. However, with a Panama Seaway, closing Drake Passage has a much larger effect, due to the cessation of deep water formation in the northern hemisphere. Both gateways alter the transport of salt by ocean circulation, with the Panama Seaway allowing fresh Pacific water to be imported to the North Atlantic, and the Drake Passage preventing the flow of saline subtropical water to the circum-Antarctic, a flow that is particularly strong when the Panama Seaway is open. Thus, with a Panama Seaway and a closed Drake Passage, the Southern Ocean tends to be relatively salty, while the North Atlantic tends to be relatively fresh, such that the deep ocean is ventilated from the circum-Antarctic. Ensuing changes in the ocean heat transport drive a bi-polar shift of surface ocean temperatures, and the Intertropical Convergence Zone migrates toward the warmer southern hemisphere. The response of clouds to changes in surface ocean temperatures amplifies the climate response, resulting in temperature changes of up to 9 °C over Antarctica, even in the absence of land-ice feedbacks. These results emphasize the importance of tectonic gateways to the climate history of the Cenozoic, and support a role for ocean circulation changes in the glaciation of Antarctica.
NASA Astrophysics Data System (ADS)
Rogé, Marine; Morrow, Rosemary; Ubelmann, Clément; Dibarboure, Gérald
2017-08-01
The main oceanographic objective of the future SWOT mission is to better characterize the ocean mesoscale and sub-mesoscale circulation, by observing a finer range of ocean topography dynamics down to 20 km wavelength. Despite the very high spatial resolution of the future satellite, it will not capture the time evolution of the shorter mesoscale signals, such as the formation and evolution of small eddies. SWOT will have an exact repeat cycle of 21 days, with near repeats around 5-10 days, depending on the latitude. Here, we investigate a technique to reconstruct the missing 2D SSH signal in the time between two satellite revisits. We use the dynamical interpolation (DI) technique developed by Ubelmann et al. (2015). Based on potential vorticity (hereafter PV) conservation using a one and a half layer quasi-geostrophic model, it features an active advection of the SSH field. This model has been tested in energetic open ocean regions such as the Gulf Stream and the Californian Current, and has given promising results. Here, we test this model in the Western Mediterranean Sea, a lower energy region with complex small scale physics, and compare the SSH reconstruction with the high-resolution Symphonie model. We investigate an extension of the simple dynamical model including a separated mean circulation. We find that the DI gives a 16-18% improvement in the reconstruction of the surface height and eddy kinetic energy fields, compared with a simple linear interpolation, and a 37% improvement in the Northern Current subregion. Reconstruction errors are higher during winter and autumn but statistically, the improvement from the DI is also better for these seasons.
Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation
NASA Astrophysics Data System (ADS)
Brasseur, L. H.; Banahan, S.; Cowles, T.
2009-05-01
The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.
Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed
NASA Astrophysics Data System (ADS)
Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.
2018-02-01
Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.
NASA Astrophysics Data System (ADS)
Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.
2018-02-01
The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.
Modeling South Pacific Ice-Ocean Interactions in the Global Climate System
NASA Technical Reports Server (NTRS)
Holland, David M.; Jenkins, Adrian; Jacobs, Stanley S.
2001-01-01
The objective of this project has been to improve the modeling of interactions between large Antarctic ice shelves and adjacent regions of the Southern Ocean. Our larger goal is to gain a better understanding of the extent to which the ocean controls ice shelf attrition, thereby influencing the size and dynamics of the Antarctic Ice Sheet. Melting and freezing under ice shelves also impacts seawater properties, regional upwelling and sinking and the larger-scale ocean circulation. Modifying an isopycnal coordinate general circulation model for use in sub-ice shelf cavities, we found that the abrupt change in water column thickness at an ice shelf front does not form a strong barrier to buoyancy-driven circulation across the front. Outflow along the ice shelf base, driven by melting of the thickest ice, is balanced by deep inflow. Substantial effort was focused on the Filchner-Ronne cavity, where other models have been applied and time-series records are available from instruments suspended beneath the ice. A model comparison indicated that observed changes in the production of High Salinity Shelf Water could have a major impact on circulation within the cavity. This water propagates into the cavity with an asymmetric seasonal signal that has similar phasing and shape in the model and observations, and can be related to winter production at the sea surface. Even remote parts of the sub-ice shelf cavity are impacted by external forcing on sub-annual time scales. This shows that cavity circulations and products, and therefore cavity shape, will respond to interannual variability in sea ice production and longer-term climate change. The isopycnal model gives generally lower net melt rates than have been obtained from other models and oceanographic data, perhaps due to its boundary layer formulation, or the lack of tidal forcing. Work continues on a manuscript describing the Ross cavity results.
Modeling dynamics of large tabular icebergs submerged in the ocean
NASA Astrophysics Data System (ADS)
Adcroft, A.; Stern, A. A.; Sergienko, O. V.
2017-12-01
Large tabular icebergs account for a major fraction of the ice calved from the Antarctic ice shelves, and have long lifetimes due to their size. They drift for long distances, interacting with the local ocean circulation, impacting bottom-water formation, sea-ice formation, and biological productivity in the vicinity of the icebergs. However, due to their large horizontal extent and mass, it is challenging to consistently represent large tabular icebergs in global ocean circulation models and so large tabular icebergs are not currently represented in climate models. In this study we develop a novel framework to model large tabular icebergs submerged in the ocean. In this framework, a tabular iceberg is represented by a collection of Lagrangian elements that are linked through rigid bonds. The Lagrangian elements are finite-area modifications of the point-particles used in previous studies to represent small icebergs. These elements interact with the ocean by exerting pressure on the ocean surface, and through melt water and momentum exchange. A breaking of the rigid bonds allows the model to emulate calving events (i.e. detachment of a tabular iceberg from an ice shelf), and to emulate the breaking up of tabular icebergs into smaller pieces. Idealized simulations of the calving of a tabular iceberg, subsequent drift and breakup, demonstrate the capabilities of the new framework with a promise that climate models may soon be able to represent large tabular icebergs.
Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes
NASA Astrophysics Data System (ADS)
Marinov, I.; Gnanadesikan, A.
2011-02-01
The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.
Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes
NASA Astrophysics Data System (ADS)
Marinov, I.; Gnanadesikan, A.
2010-11-01
The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.
Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation
NASA Astrophysics Data System (ADS)
Zhang, J.; Liu, Z.; Brady, E. C.; Oppo, D.; Clark, P. U.; Jahn, A.; Marcott, S. A.; Lindsay, K. T.
2017-12-01
The large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by 1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.
Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation
NASA Astrophysics Data System (ADS)
Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; Oppo, Delia W.; Clark, Peter U.; Jahn, Alexandra; Marcott, Shaun A.; Lindsay, Keith
2017-10-01
The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ˜1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.
The Southwest Pacific Ocean circulation and climate experiment (SPICE)
NASA Astrophysics Data System (ADS)
Ganachaud, A.; Cravatte, S.; Melet, A.; Schiller, A.; Holbrook, N. J.; Sloyan, B. M.; Widlansky, M. J.; Bowen, M.; Verron, J.; Wiles, P.; Ridgway, K.; Sutton, P.; Sprintall, J.; Steinberg, C.; Brassington, G.; Cai, W.; Davis, R.; Gasparin, F.; Gourdeau, L.; Hasegawa, T.; Kessler, W.; Maes, C.; Takahashi, K.; Richards, K. J.; Send, U.
2014-11-01
The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Niño-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions.
2009-02-01
the largest zonal current in the world, which links the Atlantic , Indian and Pacific Oceans. The associated Meridional Overturning Circulation (MOC...formed in polar regions (Wunsch and Ferrari, 2004). Mixing is especially important in the Southern Ocean where the Meridional Overturning Circulation ...general circulation of the ocean and an important driver of the lower cell of the Meridional Overturning Circulation . Wunsch (1998) estimated that the
NASA Astrophysics Data System (ADS)
Pillai, Prasanth A.; Sahai, A. K.
2016-08-01
Boreal summer intraseasonal oscillation (BSISO) has complex spatial structure due to the co-existence of equatorial eastward and off-equatorial northward propagation in the equatorial Indian Ocean. As a result, equatorial Indian Ocean convection has simultaneous northward and eastward (NE), northward only (N-only) and eastward only (E-only) propagations. It is well established that the convection propagates in the direction of increasing moist static energy (MSE). The moisture and MSE budget analysis reveals that the horizontal advection of anomalous MSE contributes to positive MSE tendency, which is in agreement with the horizontal advection of column integrated moisture anomaly. Northward movement of warm SST and the anomalous moisture advected by zonal wind are the major initiative for the northward propagation of convection from the equatorial Indian Ocean in both NE and N-only category. At the same time warm SST anomaly in the equatorial west Pacific along with moisture advection caused by anomalous meridional wind is important for the equatorial eastward branch of NE propagation. As these anomalies in the west Pacific moves northward, equatorial Indian Ocean convection establishes over the equatorial west Pacific. The absence of these processes confines the BSISO in northward direction for N-only category. In the case of E-only movement, warm SST anomaly and moisture advection by zonal component of wind causes the eastward propagation of convection. Boundary layer moisture convergence always remains east of convection center in E-only propagation, while it coincides with convection centre in other two categories. Thus the present study concludes that the difference in underlying SST and atmospheric circulation in tropical Indo-west Pacific oceanic regions encourage the differential propagation of BSISO convection through moisture dynamics.
Understanding the robustness of Hadley cell response to wide variations in ocean heat transport
NASA Astrophysics Data System (ADS)
Rencurrel, M. C.; Rose, B. E. J.
2017-12-01
One important aspect of our climate system is the relationship between surface climate and the poleward energy transport in the atmosphere and ocean. Previous studies have shown that increases in poleward ocean heat transport (OHT) tend to warm the midlatitudes without strongly affecting tropical SSTs, resulting in a reduction in the equator-to-pole temperature gradient. This "tropical thermostat" effect depends crucially on a slowdown of the Hadley circulation (HC), with consequent changes in surface evaporation, atmospheric water vapor, and cloudiness. Here we extend previous studies by considering a wide range of spatial patterns of OHT, which we impose in a suite of slab-ocean aquaplanet GCM simulations. The forcing patterns are idealized but sample a variety of ocean circulation features. We find that the tropical thermostat and HC slowdown effects are relatively robust across all forcing patterns. A 1 PW increase in the amplitude of the prescribed OHT spatial pattern results in a global mean warming and a roughly 5 x 1010 kg/s decrease in HC mass flux, regardless of the detailed spatial structure of the imposed OHT. While the rate of HC slowdown is relatively robust, the mechanisms driving it are less so. Smaller, equator-to-subtropical scale OHT patterns are associated with greater reduced Gross Moist Stability (GMS) than the larger-scale OHT patterns. As the imposed OHT is limited equatorward, the HC becomes less efficient at transporting energy out of the tropics, implying that GMS has a modulating effect on the dynamical response of the cell. These experiments offer some new insights on the interplay between atmospheric dynamics and the radiative and hydrological aspects of global climate.
NASA Astrophysics Data System (ADS)
Sévellec, Florian; Dijkstra, Henk A.; Drijfhout, Sybren S.; Germe, Agathe
2017-11-01
In this study, the relation between two approaches to assess the ocean predictability on interannual to decadal time scales is investigated. The first pragmatic approach consists of sampling the initial condition uncertainty and assess the predictability through the divergence of this ensemble in time. The second approach is provided by a theoretical framework to determine error growth by estimating optimal linear growing modes. In this paper, it is shown that under the assumption of linearized dynamics and normal distributions of the uncertainty, the exact quantitative spread of ensemble can be determined from the theoretical framework. This spread is at least an order of magnitude less expensive to compute than the approximate solution given by the pragmatic approach. This result is applied to a state-of-the-art Ocean General Circulation Model to assess the predictability in the North Atlantic of four typical oceanic metrics: the strength of the Atlantic Meridional Overturning Circulation (AMOC), the intensity of its heat transport, the two-dimensional spatially-averaged Sea Surface Temperature (SST) over the North Atlantic, and the three-dimensional spatially-averaged temperature in the North Atlantic. For all tested metrics, except for SST, ˜ 75% of the total uncertainty on interannual time scales can be attributed to oceanic initial condition uncertainty rather than atmospheric stochastic forcing. The theoretical method also provide the sensitivity pattern to the initial condition uncertainty, allowing for targeted measurements to improve the skill of the prediction. It is suggested that a relatively small fleet of several autonomous underwater vehicles can reduce the uncertainty in AMOC strength prediction by 70% for 1-5 years lead times.
Large Scale Eocene Ocean Circulation Transition Could Help Antarctic Glaciation.
NASA Astrophysics Data System (ADS)
Baatsen, M.
2016-12-01
The global climate underwent major changes going from the Eocene into the Oligocene, including the formation of a continental-scale Antarctic ice sheet. In addition to a gradual drawdown of CO2 since the Early Eocene, the changing background geography of the earth may also have played a crucial role in setting the background oceanic circulation pattern favorable to ice growth. On the other hand, the ocean circulation may have changed only after the ice sheet started growing, with a similar climatic imprint. It is, therefore, still under debate what the primary forcing or trigger of this transition was. Using an ocean general circulation model (POP) and two different geography reconstruc-tions for the middle-late Eocene, we find two distinctly different patterns of the oceanic circulation to be possible under the same forcing. The first one features deep-water formation and warmer SSTs in the Southern Pacific while in the second, deep water forms in the North Pacific Ocean and Southern Ocean SSTs are colder. The presence of a double equilibrium shows that the ocean circulation was highly susceptible to large scale transitions during the middle-late Eocene. Additionally, changes in benthic oxygen and Neodymium isotopes depict significant changes during the same period. We suggest that a transition in the global meridional overturing circulation can explain the observed changes and preconditions the global climate for the two-step transition into an Icehouse state at the Eocene-Oligocene boundary.
A special MJO event with a double Kelvin wave structure
NASA Astrophysics Data System (ADS)
Zhu, Lili; Li, Tim
2017-04-01
The second Madden-Julian Oscillation (MJO) event during the field campaign of the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (DYNAMO/CINDY2011) exhibi ted an unusual double rainband structure. Using a wavenumber-frequency spectral filtering method, we unveil that this double rainband structure arises primarily from the Kelvin wave component. The zonal phase speed of the double rainbands is about 7.9 degree per day in the equatorial Indian Ocean, being in the range of convectively coupled Kelvin wave phase speeds. The convection and circulation anomalies associated with the Kelvin wave component are characterized by two anomalous convective cells, with low-level westerly (easterly) and high (low) pressure anomalies to the west (east) of the convective centers, and opposite wind and pressure anomalies in the upper troposphere. Such a zonal wind-pressure phase relationship is consistent with the equatorial free-wave dynamics. While the free-atmospheric circulation was dominated by the first baroclinic mode vertical structure, moisture and vertical motion in the boundary layer led the convection. The convection and circulation structures derived based on the conventional MJO filter show a different characteristic. For example, the phase speed is slower (about 5.9 degree per day), and there were no double convective branches. This suggests that MJO generally involves multi-scales and it is incomplete to extract its signals by using the conventional filtering technique.
Early concepts and charts of ocean circulation
NASA Astrophysics Data System (ADS)
Peterson, R. G.; Stramma, L.; Kortum, G.
Charts of ocean currents from the late nineteenth century show that already by then the patterns of surface circulation in regions away from polar latitudes were well understood. This fundamental knowledge accumulated gradually through centuries of sea travel and had reached a state of near correctness by the time dedicated research cruises, full-depth measurements and the practical application of the dynamical method were being instituted. Perhaps because of the foregoing, many of the pioneering works, critical to establishing what the upper-level circulation is like, the majority of the charts accompanying them, and several of the groundbreaking theoretical treatments on the physics of currents, are only poorly known to present-day oceanographers. In this paper we trace Western developments in knowledge and understanding of ocean circulation from the earliest times to the late-1800s transition into the modern era. We also discuss certain peripheral advances that proved critical to the subject. The earliest known ideas, dating from the Bronze Age and described by Homer, necessarily reflect severe limitations to geographical knowledge, as well as basic human predilections toward conjecture and exaggeration in the face of inadequate information. People considered the earth to be flat and circular, with the ocean flowing like a river around it. They also believed in horrific whirlpools, a concept that persisted into the Renaissance and which would later provide subject material for modern literature. From the Greek Classical Age, we find hydrologic theories of Earth's interior being laced with subterranean channels (Socrates) and all motion deriving from a divine force forever propelling the heavens toward the west, the primum mobile (Aristotle). These ideas, particularly the latter, dominated opinions about ocean circulation into the late Renaissance. By late Antiquity mariners had very likely acquired intimate knowledge of coastal currents in the Mediterranean, but little about them was reported in the Classical works. Following the dark and Middle Ages, when little progress was made, the voyages of discovery brought startling observations of many of Earth's most important ocean currents, such as the North and South Equatorial currents, the Gulf Stream, the Agulhas, Kuroshio, Peru, and Guinea currents, and others. The Gulf Stream appears to have been mapped as early as 1525 (Ribeiro) on the basis of Spanish pilot charts. Some currents were found to be westward, in the direction of the primum mobile as expected by theologians and philosophers, while others were not. The fifteenth through seventeenth centuries were marked by attainments of knowledge that increasingly taxed the abilities of science writers to reconcile new information with accepted doctrine. Consequences of this were descriptions of ocean circulation that questioned doctrine, yet were limited by it (Martyr; Gilbert; Bourne; Varen), while other descriptions disdainfully violated observation (Kircher; Happel). The expectation of a continuous westward oceanic flow around Earth in the direction of the primum mobile was so pervasive that it became central to arguments about a need for a passage through or around the Canadian north, and thus weighed significantly on the exploration and mapping of North America. Religious influences and the conceptual importance of the primum mobile waned by the close of the Renaissance and wind came to be seen as the primary cause of ocean currents (Dampier). The Gulf Stream (Franklin) and other North Atlantic flow patterns (de Brahm), as well as the southern Agulhas Current (Rennell), were mapped in the mid-to-late eighteenth century. Significant advances beyond these in determining the global ocean circulation came only after the routine determination of longitude at sea was instituted. The introduction of the marine chronometer in the late eighteenth century (Harrison) made this possible. By the end of the eighteenth century it was realized that water is a poor conductor of heat and, unlike that of freshwater, the density of seawater continues to increase as it is cooled to its freezing point; the far-reaching significance of the implied vertical convection and deep circulation of the ocean on the moderation of climate was immediately clear (Rumford), though observations were available almost exclusively from the ocean's surface. Largely because of the marine chronometer, a wealth of unprecedentedly-accurate information about zonal, as well as meridional, surface currents began to accumulate in various hydrographic offices. In the early nineteenth century data from the Atlantic were collected and reduced in a systematic fashion (Rennell), to produce the first detailed description of the major circulation patterns at the surface for the entire mid- and low-latitude Atlantic, along with evidence for cross-equatorial flow. This work provided a foundation for the assemblage of a global data set (Humboldt; Berghaus) that yielded a worldwide charting of the non-polar currents by the late 1830s. Subtleties such as the North Equatorial Countercurrent in the Pacific were revealed for the first time. During the next two decades, the western intensification of subtropical gyres was recognized (Wilkes) while numerous refinements were made to other global descriptions (Wilkes; Kerhallet; Findlay). Heuristic and often incorrect theories of what causes the circulations in the atmosphere and oceans were popularized in the 1850s and 1860s which led to a precipitous decline in the quality of charts intended for the public (Maury; Gareis and Becker). Such errors in popular theories provided motivation for the adoption of analytical methods, which in turn led directly to the discovery of the full effect of Earth's rotation on relatively large-scale motion and the realization of how that effect produces flow perpendicular to horizontal pressure gradients (Ferrel). The precedents for modern dedicated research cruises came in the 1860s and 1870s (i.e. Lightning; Porcupine; Challenger; Gazelle; Vøringen), as well as mounting evidence for the existence of a deep and global thermohaline circulation (Carpenter; Prestwich). The dynamical method for calculating geostrophic flow in the atmosphere (Guldberg and Mohn) and a precursor to our present formulation for quantizing surface wind stress (Zöppritz) were introduced in the 1870s. On a regional scale for the Norwegian Sea, the dynamical method was applied to marine measurements made at depth to yield a three-dimensional view of flow patterns (Mohn). Further insight into the deep circulation came slowly, but with ever increasing numbers of observations being made at and near the surface, the upper-layer circulation in non-polar latitudes was approximately described by the late 1880s (Krümmel).
Dynamics of Extreme Floods in Southeast and South Brazil
NASA Astrophysics Data System (ADS)
Ribeiro Lima, C. H.; Lall, U.
2015-12-01
Many extreme floods result from a causal chain, where exceptional rain and floods in water basins from different sizes are related to large scale, anomalous and persistent patterns in atmospheric and oceanic circulation. Organized moisture plumes from oceanic sources are often implicated. One could use an Eulerian-Lagrangian climate model to test a causal chain hypothesis, but the parameterization and testing of such a model covering convection and transport continues to be a challenge. Consequently, empirical data based studies can be useful to establish the need to formally model such events using this approach. Here we consider two flood-prone regions in Southeast and South Brazil as case studies. A hypothesis of the causal chain of extreme floods in these regions is investigated by means of observed streamflow and reanalysis data and some machine learning tools. The signatures of the organization of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the integrated moisture flux and its divergence field and storm track data, so that a better understanding of the relations between the flood magnitude and duration, strength of moisture convergence and role of regional moisture recycling or teleconnected moisture is established. Persistent patterns and anomalies in the sea surface temperature (SST) field in the Pacific and Atlantic oceans that may be associated with disturbances in the atmospheric circulation and with the flood dynamics are investigated through composite analysis. Finally, machine learning algorithms for nonlinear dimension reduction are employed to visualize and understand some of the spatio-temporal patterns of the dominated climate variables in a reduced dimensional space. Prospects for prediction are discussed.
Dynamical significance of tides over the Bay of Bengal
NASA Astrophysics Data System (ADS)
Bhagawati, Chirantan; Pandey, Suchita; Dandapat, Sumit; Chakraborty, Arun
2018-06-01
Tides play a significant role in the ocean surface circulations and vertical mixing thereby influencing the Sea Surface Temperatures (SST) as well. This, in turn, plays an important role in the global circulation when used as a lower boundary condition in a global atmospheric general circulation model. Therefore in the present study, the dynamics of tides over the Bay of Bengal (BoB) is investigated through numerical simulations using a high resolution (1/12°) Regional Ocean Modeling System (ROMS). Based on statistical analysis it is observed that incorporation of explicit tidal forcing improves the model performance in simulating the basin averaged monthly surface circulation features by 64% compared to the simulation without tides. The model simulates also Mixed Layer Depth (MLD) and SST realistically. The energy exchange between tidal oscillations and eddies leads to redistribution of surface kinetic energy density with a net decrease of 0.012 J m-3 in the western Bay and a net increase of 0.007 J m-3 in the eastern Bay. The tidal forcing also affects the potential energy anomaly and vertical mixing thereby leading to a fall in monthly MLD over the BoB. The mixing due to tides leads to a subsequent reduction in monthly SST and a corresponding reduction in surface heat exchange. These results from the numerical simulation using ROMS reveal that tides have a significant influence over the air-sea heat exchange which is the most important parameter for prediction of Tropical Cyclone frequency and its future variability over the BoB.
NASA Astrophysics Data System (ADS)
Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.
2016-02-01
I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.
Multiple states in the late Eocene ocean circulation
NASA Astrophysics Data System (ADS)
Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.
2018-04-01
The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.
The viscous lee wave problem and its implications for ocean modelling
NASA Astrophysics Data System (ADS)
Shakespeare, Callum J.; Hogg, Andrew McC.
2017-05-01
Ocean circulation models employ 'turbulent' viscosity and diffusivity to represent unresolved sub-gridscale processes such as breaking internal waves. Computational power has now advanced sufficiently to permit regional ocean circulation models to be run at sufficiently high (100 m-1 km) horizontal resolution to resolve a significant part of the internal wave spectrum. Here we develop theory for boundary generated internal waves in such models, and in particular, where the waves dissipate their energy. We focus specifically on the steady lee wave problem where stationary waves are generated by a large-scale flow acting across ocean bottom topography. We generalise the energy flux expressions of [Bell, T., 1975. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320-327] to include the effect of arbitrary viscosity and diffusivity. Applying these results for realistic parameter choices we show that in the present generation of models with O(1) m2s-1 horizontal viscosity/diffusivity boundary-generated waves will inevitably dissipate the majority of their energy within a few hundred metres of the boundary. This dissipation is a direct consequence of the artificially high viscosity/diffusivity, which is not always physically justified in numerical models. Hence, caution is necessary in comparing model results to ocean observations. Our theory further predicts that O(10-2) m2s-1 horizontal and O(10-4) m2s-1 vertical viscosity/diffusivity is required to achieve a qualitatively inviscid representation of internal wave dynamics in ocean models.
Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content
NASA Astrophysics Data System (ADS)
Piecuch, Christopher G.; Ponte, Rui M.; Little, Christopher M.; Buckley, Martha W.; Fukumori, Ichiro
2017-09-01
The subpolar North Atlantic (SPNA) is subject to strong decadal variability, with implications for surface climate and its predictability. In 2004-2005, SPNA decadal upper ocean and sea-surface temperature trends reversed from warming during 1994-2004 to cooling over 2005-2015. This recent decadal trend reversal in SPNA ocean heat content (OHC) is studied using a physically consistent, observationally constrained global ocean state estimate covering 1992-2015. The estimate's physical consistency facilitates quantitative causal attribution of ocean variations. Closed heat budget diagnostics reveal that the SPNA OHC trend reversal is the result of heat advection by midlatitude ocean circulation. Kinematic decompositions reveal that changes in the deep and intermediate vertical overturning circulation cannot account for the trend reversal, but rather ocean heat transports by horizontal gyre circulations render the primary contributions. The shift in horizontal gyre advection reflects anomalous circulation acting on the mean temperature gradients. Maximum covariance analysis (MCA) reveals strong covariation between the anomalous horizontal gyre circulation and variations in the local wind stress curl, suggestive of a Sverdrup response. Results have implications for decadal predictability.
NASA Astrophysics Data System (ADS)
Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.
2016-12-01
Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.
Trends in continental temperature and humidity directly linked to ocean warming.
Byrne, Michael P; O'Gorman, Paul A
2018-05-08
In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.
Global mean dynamic topography based on GOCE data and Wiener filters
NASA Astrophysics Data System (ADS)
Gilardoni, Maddalena; Reguzzoni, Mirko; Albertella, Alberta
2015-04-01
A mean dynamic ocean topography (MDT) has been computed by using a GOCE-only gravity model and a given mean sea surface (MSS) obtained from satellite altimetry. Since the used gravity model, i.e. the fifth release of the time-wise solution covering the full mission lifetime, is truncated at a maximum harmonic degree of 280, the obtained MDT has to be consistently filtered. This has been done globally by using the spherical harmonic representation and following a Wiener minimization principle. This global filtering approach is convenient from the computational point of view but requires to have MDT values all over the Earth surface and therefore to fill the continents with fictitious data. The main improvements with respect to the already presented results are in the MDT filling procedure (to guarantee that the global signal has the same covariance of the one over the oceans), in the error modelling of the input MSS and in the error estimation of the filtered MDT and of the corresponding geostrophic velocities. The impact of GOCE data in the ocean circulation global modelling has been assessed by comparing the pattern of the obtained geostrophic currents with those computed by using EGM2008. Comparisons with independent circulation data based on drifters and other MDT models have been also performed with the aim of evaluating the accuracy of the obtained results.
Dynamics of a "low-enrichment high-retention" upwelling center over the southern Senegal shelf
NASA Astrophysics Data System (ADS)
Ndoye, Siny; Capet, Xavier; Estrade, Philippe; Sow, Bamol; Machu, Eric; Brochier, Timothée.; Döring, Julian; Brehmer, Patrice
2017-05-01
Senegal is the southern tip of the Canary upwelling system. Its coastal ocean hosts an upwelling center which shapes sea surface temperatures between latitudes 12° and 15°N. Near this latter latitude, the Cape Verde headland and a sudden change in shelf cross-shore profile are major sources of heterogeneity in the southern Senegal upwelling sector (SSUS). SSUS dynamics is investigated by means of Regional Ocean Modeling System simulations. Configuration realism and resolution (Δx≈ 2 km) are sufficient to reproduce the SSUS frontal system. Our main focus is on the 3-D upwelling circulation which turns out to be profoundly different from 2-D theory: cold water injection onto the shelf and upwelling are strongly concentrated within a few tens of kilometers south of Cape Verde and largely arise from flow divergence in the alongshore direction; a significant fraction of the upwelled waters are retained nearshore over long distances while travelling southward under the influence of northerly winds. Another source of complexity, regional-scale alongshore pressure gradients, also contributes to the overall retention of upwelled waters over the shelf. Varying the degree of realism of atmospheric and oceanic forcings does not appreciably change these conclusions. This study sheds light on the dynamics and circulation underlying the recurrent sea surface temperature pattern observed during the upwelling season and offers new perspectives on the connections between the SSUS physical environment and its ecosystems. It also casts doubt on the validity of upwelling intensity estimations based on simple Ekman upwelling indices at such local scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrnstein, Aaron R.
An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration,more » and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO 2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No dramatic or persistent signs of error growth in the passive tracer outgassing or the ocean circulation are observed to result from AMR.« less
The Deep Meridional Overturning Circulation in the Indian Ocean Inferred from the GECCO Synthesis
NASA Astrophysics Data System (ADS)
Wang, W.; Koehl, A.; Stammer, D.
2012-04-01
The meridional overturning circulation in the Indian Ocean and its temporal variability in the GECCO ocean synthesis are being investigated. An analysis of the integrated circulation in different layers suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ significantly from those obtained by box inverse models, which, being based on individual hydrographic sections, are susceptible to aliasing. The GECCO solution has a large seasonal variation in its meridional overturning caused by the seasonal reversal of monsoon-related wind stress forcing. Associated seasonal variations of the deep meridional overturning range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differ before and after 1980. Notably, our analysis shows a rather stable trend for the period 1960-1979 and significant changes in the upper and bottom layer for the period 1980-2001. By means of a multivariate EOF analysis, the importance of Ekman dynamics as driving forces of the deep meridional overturning of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contributes to evolution of IOD events.
NASA Technical Reports Server (NTRS)
Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.
1995-01-01
This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?
Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.
McCarthy, Gerard D; Haigh, Ivan D; Hirschi, Joël J-M; Grist, Jeremy P; Smeed, David A
2015-05-28
Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.
NASA Astrophysics Data System (ADS)
Swapna, P.; Jyoti, J.; Krishnan, R.; Sandeep, N.; Griffies, S. M.
2017-10-01
North Indian Ocean sea level has shown significant increase during last three to four decades. Analyses of long-term climate data sets and ocean model sensitivity experiments identify a mechanism for multidecadal sea level variability relative to global mean. Our results indicate that North Indian Ocean sea level rise is accompanied by a weakening summer monsoon circulation. Given that Indian Ocean meridional heat transport is primarily regulated by the annual cycle of monsoon winds, weakening of summer monsoon circulation has resulted in reduced upwelling off Arabia and Somalia and decreased southward heat transport, and corresponding increase of heat storage in the North Indian Ocean. These changes in turn lead to increased retention of heat and increased thermosteric sea level rise in the North Indian Ocean, especially in the Arabian Sea. These findings imply that rising North Indian Ocean sea level due to weakening of monsoon circulation demands adaptive strategies to enable a resilient South Asian population.
Glacial ocean circulation and stratification explained by reduced atmospheric temperature
NASA Astrophysics Data System (ADS)
Jansen, Malte F.
2017-01-01
Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.
Glacial ocean circulation and stratification explained by reduced atmospheric temperature
Jansen, Malte F.
2017-01-01
Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5–10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage. PMID:27994158
Glacial ocean circulation and stratification explained by reduced atmospheric temperature.
Jansen, Malte F
2017-01-03
Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.
NASA Astrophysics Data System (ADS)
Snow, T.; Shepherd, B.; Abdalati, W.; Scambos, T. A.
2016-12-01
Dynamic processes at marine-terminating outlet glaciers are responsible for over one-third of Greenland Ice Sheet (GIS) mass loss. Enhanced intrusion of warm ocean waters at the termini of these glaciers has contributed to elevated rates of ice thinning and terminus retreat over the last two decades. In situ oceanographic measurements and modeling studies show that basal melting of glaciers and subglacial discharge can cause buoyant plumes of water to rise to the fjord surface and influence fjord circulation characteristics. The temperature of these surface waters holds clues about ice-ocean interactions and small-scale circulation features along the glacier terminus that could contribute to outlet glacier mass loss, but the magnitude and duration of temperature variability remains uncertain. Satellite remote sensing has proven very effectiver for acquiring sea surface temperatuer (SST) data from these remote regions on a long-term, consistent basis and shows promise for identifying temperature anomalies at the ice front. However, these data sets have not been widely utilized to date. Here, we use satellite-derived sea surface temperatures to identify fjord surface outflow characteristics from 2000 to present at the Petermann Glacier, which drains 4% of the GIS and is experiencing 80% of its mass loss from basal melt. We find a general SST warming trend that coincides with early sea ice breakup and precedes two major calving events and ice speedup that began in 2010. Persistent SST anomalies along the terminus provide evidence of warm outflow that is consistent with buoyant plume model predictions. However, the anomalies are not evident early in the time series, suggesting that ocean inflow and ice-ocean interactions have experienced a regime shift since 2000. Our results provide valuable insight into fjord circulation patterns and the forcing mechanisms that contribute to terminus retreat. Comparing our results to ongoing modeling experiments, time series from other outlet glaciers, and coincident in situ measurements, will help to further explain the physical processes occurring at the ice-ocean boundary and provide useful insights into the changes taking place at other GIS marine-terminating outlet glaciers.
Inter-annual variability of the Mediterranean thermohaline circulation in Med-CORDEX simulations
NASA Astrophysics Data System (ADS)
Vittoria Struglia, Maria; Adani, Mario; Carillo, Adriana; Pisacane, Giovanna; Sannino, Gianmaria; Beuvier, Jonathan; Lovato, Tomas; Sevault, Florence; Vervatis, Vassilios
2016-04-01
Recent atmospheric reanalysis products, such as ERA40 and ERA-interim, and their regional dynamical downscaling prompted the HyMeX/Med-CORDEX community to perform hind-cast simulations of the Mediterranean Sea, giving the opportunity to evaluate the response of different ocean models to a realistic inter-annual atmospheric forcing. Ocean numerical modeling studies have been steadily improving over the last decade through hind-cast processing, and are complementary to observations in studying the relative importance of the mechanisms playing a role in ocean variability, either external forcing or internal ocean variability. This work presents a review and an inter-comparison of the most recent hind-cast simulations of the Mediterranean Sea Circulation, produced in the framework of the Med-CORDEX initiative, at resolutions spanning from 1/8° to 1/16°. The richness of the simulations available for this study is exploited to address the effects of increasing resolution, both of models and forcing, the initialization procedure, and the prescription of the atmospheric boundary conditions, which are particularly relevant in order to model a realistic THC, in the perspective of fully coupled regional ocean-atmosphere models. The mean circulation is well reproduced by all the simulations. However, it can be observed that the horizontal resolution of both atmospheric forcing and ocean model plays a fundamental role in the reproduction of some specific features of both sub-basins and important differences can be observed among low and high resolution atmosphere forcing. We analyze the mean circulation on both the long-term and decadal time scale, and the represented inter-annual variability of intermediate and deep water mass formation processes in both the Eastern and Western sub-basins, finding that models agree with observations in correspondence of specific events, such as the 1992-1993 Eastern Mediterranean Transient, and the 2005-2006 event in the Gulf of Lion. Long-term trends of the hydrological properties have been investigated at sub-basin scale and have been interpreted in terms of response to forcing and boundary conditions, detectable differences resulting mainly due either to the different initialization and spin up procedure or to the different prescription of Atlantic boundary conditions.
Climate and CO2 coupling in the early Cenozoic Greenhouse
NASA Astrophysics Data System (ADS)
Rae, J. W. B.; Greenop, R.; Kaminski, M.; Sexton, P. F.; Foster, G. L.; Greene, S. E.; Littley, E.; Kirtland Turner, S.; Ridgwell, A.
2017-12-01
The early Cenozoic is a time of climatic extremes: hyperthermals pepper the transition from extreme global warmth to the start of Cenozoic cooling, with these evolving climate regimes accompanied by major changes in ocean chemistry and biota. The exogenic carbon cycle, and ocean-atmospheric CO2 in particular, is thought to have played a key role in these climatic changes, but the carbon chemistry of the early Cenozoic ocean remains poorly constrained. Here we present new boron isotope data from benthic foraminifera, which can be used to constrain relative changes in ocean pH. These are coupled with modelling experiments performed with the cGenie Earth system model to provide new constraints on the carbon cycle and carbonate system of the early Cenozoic. While our benthic boron isotope data do not readily provide a record of surface ocean CO2 , they do place constraints on the whole ocean-atmosphere carbonate system, alongside changes in ocean circulation and biogeochemistry, and also have relatively robust calcite tests and small `vital effects'. During the late Paleocene ascent to peak greenhouse conditions and the middle Eocene descent towards the icehouse, our boron isotope data show close coupling with benthic δ18O, demonstrating a clear link between CO2 and climate. However within the early Eocene our boron isotope data reveal more dynamic changes in deep ocean pH, which may be linked to changes in ocean circulation. Overall, our data demonstrate the ability of CO2 to regulate the climate system across varying boundary conditions, and the influence of both the long-term carbon cycle and shorter-term ocean biogeochemical cycling on Earth's climate.
Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank
NASA Astrophysics Data System (ADS)
Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao
2003-03-01
The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.
Effect of Global Warming and Increased Freshwater Flux on Northern Hemispheric Cooling
NASA Astrophysics Data System (ADS)
Girihagama, L. N.; Nof, D.
2016-02-01
We wish to answer the, fairly complicated, question of whether global warming and an increased freshwater flux can cause Northern Hemispheric warming or cooling. Starting from the assumption that the ocean is the primary source of variability in the Northern hemispheric ocean-atmosphere coupled system, we employed a simple non-linear one-dimensional coupled ocean-atmosphere model. The simplicity of the model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean-atmosphere heat fluxes. The model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep-water formation region. Cooling in both the ocean and atmosphere can cause reduction of the ocean-atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.08 Sv. For a constant atmospheric zonal flow, there is minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.
Agulhas leakage as a key process in the modes of Quaternary climate changes.
Caley, Thibaut; Giraudeau, Jacques; Malaizé, Bruno; Rossignol, Linda; Pierre, Catherine
2012-05-01
Heat and salt transfer from the Indian Ocean to the Atlantic Ocean (Agulhas leakage) has an important effect on the global thermohaline circulation and climate. The lack of long transfer record prevents elucidation of its role on climate changes throughout the Quaternary. Here, we present a 1,350-ka accumulation rate record of the planktic foraminiferal species Globorotalia menardii. We demonstrate that, according to previous assumptions, the presence and reseeding of this fauna in the subtropical southeast Atlantic was driven by interocean exchange south of Africa. The Agulhas transfer strengthened at glacial ice-volume maxima for every glacial-interglacial transition, with maximum reinforcements organized according to a 400-ka periodicity. The long-term dynamics of Agulhas leakage may have played a crucial role in regulating meridional overturning circulation and global climate changes during the Mid-Brunhes event and the Mid-Pleistocene transition, and could also play an important role in the near future.
NASA Astrophysics Data System (ADS)
Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.
2017-12-01
It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.
NASA Astrophysics Data System (ADS)
Wu, Z.
2017-12-01
The climate response to the Tibetan Plateau (TP) snow cover (TPSC) has been receiving extensive concern. However, relatively few studies have devoted to revealing the potential factors that can contribute to the TPSC variability on the interannual time scale. Especially during the boreal summer, snow cover can persist over the TP at high elevations, which exerts profound influences on the local and remote climate change. The present study finds that May Southern Hemisphere (SH) annular mode (SAM), the dominating mode of atmospheric circulation variability in the SH extratropics, exhibits a significant positive relationship with the boreal summer TPSC interannual variability. Observational analysis and numerical experiments manifest that the signal of May SAM can be "prolonged" by a meridional Indian Ocean tripole (IOT) sea surface temperature anomaly (SSTA) via atmosphere-ocean interaction. The IOT SSTA pattern persists into the following summer and excites anomalous local-scale zonal vertical circulation. Subsequently, a positive (or negative) tropical dipole rainfall (TDR) mode is induced with deficient (or sufficient) precipitation in tropical western Indian Ocean and sufficient (or deficient) precipitation in eastern Indian Ocean-Maritime continent. Rossby wave source diagnosis reveals that the wave energies, generated by the latent heat release of the TDR mode, propagate northward into western TP. As a response, abnormal cyclonic circulation and upward movement are triggered and prevail over western TP, providing favorable dynamical conditions for more TPSC, and vice versa. Hence, the IOT SSTA plays an "ocean bridge" role and the TDR mode acts as an "atmosphere bridge" role in the process of May SAM impacting the following summer TPSC variability. The results of our work may provide new insight about the cross-equatorial propagation of the SAM influence. Keywords Southern Hemisphere annular mode; Tibetan Plateau snow cover; Rossby wave source
Exploring image data assimilation in the prospect of high-resolution satellite data
NASA Astrophysics Data System (ADS)
Verron, J. A.; Duran, M.; Gaultier, L.; Brankart, J. M.; Brasseur, P.
2016-02-01
Many recent works show the key importance of studying the ocean at fine scales including the meso- and submesoscales. Satellite observations such as ocean color data provide informations on a wide range of scales but do not directly provide information on ocean dynamics. Satellite altimetry provide informations on the ocean dynamic topography (SSH) but so far with a limited resolution in space and even more, in time. However, in the near future, high-resolution SSH data (e.g. SWOT) will give a vision of the dynamic topography at such fine space resolution. This raises some challenging issues for data assimilation in physical oceanography: develop reliable methodology to assimilate high resolution data, make integrated use of various data sets including biogeochemical data, and even more simply, solve the challenge of handling large amont of data and huge state vectors. In this work, we propose to consider structured information rather than pointwise data. First, we take an image data assimilation approach in studying the feasibility of inverting tracer observations from Sea Surface Temperature and/or Ocean Color datasets, to improve the description of mesoscale dynamics provided by altimetric observations. Finite Size Lyapunov Exponents are used as an image proxy. The inverse problem is formulated in a Bayesian framework and expressed in terms of a cost function measuring the misfits between the two images. Second, we explore the inversion of SWOT-like high resolution SSH data and more especially the various possible proxies of the actual SSH that could be used to control the ocean circulation at various scales. One focus is made on controlling the subsurface ocean from surface only data. A key point lies in the errors and uncertainties that are associated to SWOT data.
Extreme learning machine for reduced order modeling of turbulent geophysical flows.
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
Extreme learning machine for reduced order modeling of turbulent geophysical flows
NASA Astrophysics Data System (ADS)
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
Importance of ocean salinity for climate and habitability
Cullum, Jodie; Stevens, David P.; Joshi, Manoj M.
2016-01-01
Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies. PMID:27044090
Importance of ocean salinity for climate and habitability.
Cullum, Jodie; Stevens, David P; Joshi, Manoj M
2016-04-19
Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.
GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program
NASA Technical Reports Server (NTRS)
1991-01-01
The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.
Oceanic residual depth measurements, the plate cooling model, and global dynamic topography
NASA Astrophysics Data System (ADS)
Hoggard, Mark J.; Winterbourne, Jeff; Czarnota, Karol; White, Nicky
2017-03-01
Convective circulation of the mantle causes deflections of the Earth's surface that vary as a function of space and time. Accurate measurements of this dynamic topography are complicated by the need to isolate and remove other sources of elevation, arising from flexure and lithospheric isostasy. The complex architecture of continental lithosphere means that measurement of present-day dynamic topography is more straightforward in the oceanic realm. Here we present an updated methodology for calculating oceanic residual bathymetry, which is a proxy for dynamic topography. Corrections are applied that account for the effects of sedimentary loading and compaction, for anomalous crustal thickness variations, for subsidence of oceanic lithosphere as a function of age and for non-hydrostatic geoid height variations. Errors are formally propagated to estimate measurement uncertainties. We apply this methodology to a global database of 1936 seismic surveys located on oceanic crust and generate 2297 spot measurements of residual topography, including 1161 with crustal corrections. The resultant anomalies have amplitudes of ±1 km and wavelengths of ˜1000 km. Spectral analysis of our database using cross-validation demonstrates that spherical harmonics up to and including degree 30 (i.e., wavelengths down to 1300 km) are required to accurately represent these observations. Truncation of the expansion at a lower maximum degree erroneously increases the amplitude of inferred long-wavelength dynamic topography. There is a strong correlation between our observations and free-air gravity anomalies, magmatism, ridge seismicity, vertical motions of adjacent rifted margins, and global tomographic models. We infer that shorter wavelength components of the observed pattern of dynamic topography may be attributable to the presence of thermal anomalies within the shallow asthenospheric mantle.
Numerical Simulation of Regional Circulation in the Monterey Bay Region
NASA Technical Reports Server (NTRS)
Tseng, Y. H.; Dietrich, D. E.; Ferziger, J. H.
2003-01-01
The objective of this study is to produce a high-resolution numerical model of Mon- terey Bay area in which the dynamics are determined by the complex geometry of the coastline, steep bathymetry, and the in uence of the water masses that constitute the CCS. Our goal is to simulate the regional-scale ocean response with realistic dynamics (annual cycle), forcing, and domain. In particular, we focus on non-hydrostatic e ects (by comparing the results of hydrostatic and non-hydrostatic models) and the role of complex geometry, i.e. the bay and submarine canyon, on the nearshore circulation. To the best of our knowledge, the current study is the rst to simulate the regional circulation in the vicinity of Monterey Bay using a non-hydrostatic model. Section 2 introduces the high resolution Monterey Bay area regional model (MBARM). Section 3 provides the results and veri cation with mooring and satellite data. Section 4 compares the results of hydrostatic and non-hydrostatic models.
The Ocean-Atmosphere Hydrothermohaline Conveyor Belt
NASA Astrophysics Data System (ADS)
Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent
2015-04-01
The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each other along a "line" corresponding to the Clausius-Clapeyron relationship. A geographical description of how and where this occurs together with this new hydrothermohaline stream function will be searched for. The net heat and freshwater transport of the ocean and atmosphere can aslo be calculated from the thermohaline and hydrothermal stream functions. The heat transport across isohumes in the atmosphere and isohalines in the ocean as well as the freshwater transport across isotherms in both the atmosphere and ocean are computed. The maximum heat transport is about 16 PW in the atmosphere, while that of the ocean is just about 1 PW. The freshwater transport across isotherms in the atmosphere and ocean are shown to be tightly connected with a net maximum freshwater transport of 4 SV in the atmosphere and 2 Sv in the ocean.
NASA Astrophysics Data System (ADS)
Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio
2017-10-01
Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.
Adaptive scaling model of the main pycnocline and the associated overturning circulation
NASA Astrophysics Data System (ADS)
Fuckar, Neven-Stjepan
This thesis examines a number of crucial factors and processes that control the structure of the main pycnocline and the associated overturning circulation that maintains the ocean stratification. We construct an adaptive scaling model: a semi-empirical low-order theory based on the total transformation balance that linearly superimposes parameterized transformation rate terms of various mechanisms that participate in the water-mass conversion between the warm water sphere and the cold water sphere. The depth of the main pycnocline separates the light-water domain from the dense-water domain beneath the surface, hence we introduce a new definition in an integral form that is dynamically based on the large-scale potential vorticity (i.e., vertical density gradient is selected for the kernel function of the normalized vertical integral). We exclude the abyssal pycnocline from our consideration and limit our domain of interest to the top 2 km of water column. The goal is to understand the controlling mechanisms, and analytically predict and describe a wide spectrum of ocean steady states in terms of key large-scale indices relevant for understanding the ocean's role in climate. A devised polynomial equation uses the average depth of the main pycnocline as a single unknown (the key vertical scale of the upper ocean stratification) and gives us an estimate for the northern hemisphere deep water production and export across the equator from the parts of this equation. The adaptive scaling model aims to elucidate the roles of a limited number of dominant processes that determine some key upper ocean circulation and stratification properties. Additionally, we use a general circulation model in a series of simplified single-basin ocean configurations and surface forcing fields to confirm the usefulness of our analytical model and further clarify several aspects of the upper ocean structure. An idealized numerical setup, containing all the relevant physical and dynamical properties, is key to obtaining a clear understanding, uncomplicated by the effect of the real world geometry or intricacy of realistic surface radiative and turbulent fluxes. We show that wind-driven transformation processes can be decomposed into two terms separately driven by the mid-latitude westerlies and the low-latitude easterlies. Our analytical model smoothly connects all the classical limits describing different ocean regimes in a single-basin single-hemisphere geometry. The adjective "adaptive" refers to a simple and quantitatively successful adjustment to the description of a single-basin two-hemisphere ocean, with and without a circumpolar channel under the hemispherically symmetric surface buoyancy. For example, our water-mass conversion framework, unifying wind-driven and thermohaline processes, provides us with further insight into the "Drake Passage effect without Drake Passage". The modification of different transformation pathways in the Southern Hemisphere results in the equivalent net conversion changes. The introduction of hemispheric asymmetry in the surface density can lead to significant hemispheric differences in the main pycnocline structure. This demonstrates the limitations of our analytical model based on only one key vertical scale. Also, we show a strong influence of the northern hemisphere surface density change in high latitudes on the southern hemisphere stratification and circumpolar transport.
NASA Astrophysics Data System (ADS)
Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.
2014-05-01
During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. A long-standing hypothesis is that the formation of the Antarctic Circumpolar Current due to opening/deepening of Southern Ocean gateways led to glaciation of the Antarctic continent. However, while this hypothesis remains controversial, its assessment via coupled climate model simulations depends crucially on the spatial resolution in the ocean component. More precisely, only high-resolution modeling of the turbulent ocean circulation is capable of adequately describing reorganizations in the ocean flow field and related changes in turbulent heat transport. In this study, for the first time results of a high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed Drake Passage are presented. Changes in global ocean temperatures, heat transport, and ocean circulation (e.g., Meridional Overturning Circulation and Antarctic Coastal Current) are established by comparison with an open Drake Passage high-resolution reference simulation. Finally, corresponding low-resolution simulations are also analyzed. The results highlight the essential impact of the ocean eddy field in palaeoclimatic change.
Ocean Heat Content Reveals Secrets of Fish Migrations
Luo, Jiangang; Ault, Jerald S.; Shay, Lynn K.; Hoolihan, John P.; Prince, Eric D.; Brown, Craig A.; Rooker, Jay R.
2015-01-01
For centuries, the mechanisms surrounding spatially complex animal migrations have intrigued scientists and the public. We present a new methodology using ocean heat content (OHC), a habitat metric that is normally a fundamental part of hurricane intensity forecasting, to estimate movements and migration of satellite-tagged marine fishes. Previous satellite-tagging research of fishes using archival depth, temperature and light data for geolocations have been too coarse to resolve detailed ocean habitat utilization. We combined tag data with OHC estimated from ocean circulation and transport models in an optimization framework that substantially improved geolocation accuracy over SST-based tracks. The OHC-based movement track provided the first quantitative evidence that many of the tagged highly migratory fishes displayed affinities for ocean fronts and eddies. The OHC method provides a new quantitative tool for studying dynamic use of ocean habitats, migration processes and responses to environmental changes by fishes, and further, improves ocean animal tracking and extends satellite-based animal tracking data for other potential physical, ecological, and fisheries applications. PMID:26484541
NASA Astrophysics Data System (ADS)
Wekerle, C.; Wang, Q.; Danilov, S.; Jung, T.; Schourup-Kristensen, V.
2016-02-01
Atlantic Water (AW) passes through the Nordic Seas and enters the Arctic Ocean through the shallow Barents Sea and the deep Fram Strait. Since the 1990's, observations indicate a series of anomalously warm pulses of Atlantic Water that entered the Arctic Ocean. In fact, poleward oceanic heat transport may even increase in the future, which might have implications for the heat uptake in the Arctic Ocean as well as for the sea ice cover. The ability of models to faithfully simulate the pathway of the AW and accompanying dynamics is thus of high climate relevance. In this study, we explore the potential of a global multi-resolution sea ice-ocean model with a locally eddy-permitting resolution (around 4.5 km) in the Nordic seas region and Arctic Ocean in improving the representation of Atlantic Water inflow, and more broadly, the dynamics of the circulation in the Northern North Atlantic and Arctic. The simulation covers the time period 1969-2009. We find that locally increased resolution improves the localization and thickness of the Atlantic Water layer in the Nordic seas, compared with a 20 km resolution reference simulation. In particular, the inflow of Atlantic Waters through the Greenland Scotland Ridge and the narrow branches of the Norwegian Atlantic Current can be realistically represented. Lateral spreading due to simulated eddies essentially reduces the bias in the surface temperature. In addition, a qualitatively good agreement of the simulated eddy kinetic energy field with observations can be achieved. This study indicates that a substantial improvement in representing local ocean dynamics can be reached through the local refinement, which requires a rather moderate computational effort. The successful model assessment allows us to further investigate the variability and mechanisms behind Atlantic Water transport into the Arctic Ocean.
A conceptual model of oceanic heat transport in the Snowball Earth scenario
NASA Astrophysics Data System (ADS)
Comeau, Darin; Kurtze, Douglas A.; Restrepo, Juan M.
2016-12-01
Geologic evidence suggests that the Earth may have been completely covered in ice in the distant past, a state known as Snowball Earth. This is still the subject of controversy, and has been the focus of modeling work from low-dimensional models up to state-of-the-art general circulation models. In our present global climate, the ocean plays a large role in redistributing heat from the equatorial regions to high latitudes, and as an important part of the global heat budget, its role in the initiation a Snowball Earth, and the subsequent climate, is of great interest. To better understand the role of oceanic heat transport in the initiation of Snowball Earth, and the resulting global ice covered climate state, the goal of this inquiry is twofold: we wish to propose the least complex model that can capture the Snowball Earth scenario as well as the present-day climate with partial ice cover, and we want to determine the relative importance of oceanic heat transport. To do this, we develop a simple model, incorporating thermohaline dynamics from traditional box ocean models, a radiative balance from energy balance models, and the more contemporary "sea glacier" model to account for viscous flow effects of extremely thick sea ice. The resulting model, consisting of dynamic ocean and ice components, is able to reproduce both Snowball Earth and present-day conditions through reasonable changes in forcing parameters. We find that including or neglecting oceanic heat transport may lead to vastly different global climate states, and also that the parameterization of under-ice heat transfer in the ice-ocean coupling plays a key role in the resulting global climate state, demonstrating the regulatory effect of dynamic ocean heat transport.
NASA Astrophysics Data System (ADS)
Li, Xiaolan; Yu, Yongqiang; Liu, Hailong; Lin, Pengfei
2017-06-01
The horizontal coordinate systems commonly used in most global ocean models are the spherical latitude-longitude grid and displaced poles, such as a tripolar grid. The effect of the horizontal coordinate system on Atlantic meridional overturning circulation (AMOC) is evaluated by using an OGCM (ocean general circulation model). Two experiments are conducted with the model—one using a latitude-longitude grid (referred to as Lat_1) and the other using a tripolar grid (referred to as Tri). The results show that Tri simulates a stronger North Atlantic deep water (NADW) than Lat_1, as more saline water masses enter the Greenland-Iceland-Norwegian (GIN) seas in Tri. The stronger NADW can be attributed to two factors. One is the removal of the zonal filter in Tri, which leads to an increasing of the zonal gradient of temperature and salinity, thus strengthening the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because realistic topography is applied in the tripolar grid while the latitude-longitude grid employs an artificial island around the North Pole. In order to evaluate the effect of the filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, an enhanced filter can also augment NADW formation, since more saline water is suppressed in the GIN seas, but accumulated in the Labrador Sea, especially in experiment Lat_2_S, which is the experiment with an enhanced filter on salinity.
Fast I/O for Massively Parallel Applications
NASA Technical Reports Server (NTRS)
OKeefe, Matthew T.
1996-01-01
The two primary goals for this report were the design, contruction and modeling of parallel disk arrays for scientific visualization and animation, and a study of the IO requirements of highly parallel applications. In addition, further work in parallel display systems required to project and animate the very high-resolution frames resulting from our supercomputing simulations in ocean circulation and compressible gas dynamics.
High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography
NASA Astrophysics Data System (ADS)
Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.
2012-12-01
Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.
NASA Astrophysics Data System (ADS)
Seidov, D.; Haupt, B. J.
2003-12-01
The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.
NASA Astrophysics Data System (ADS)
Holzer, Mark; DeVries, Timothy; Bianchi, Daniele; Newton, Robert; Schlosser, Peter; Winckler, Gisela
2017-01-01
Hydrothermal vents along the ocean's tectonic ridge systems inject superheated water and large amounts of dissolved metals that impact the deep ocean circulation and the oceanic cycling of trace metals. The hydrothermal fluid contains dissolved mantle helium that is enriched in 3He relative to the atmosphere, providing an isotopic tracer of the ocean's deep circulation and a marker of hydrothermal sources. This work investigates the potential for the 3He/4He isotope ratio to constrain the ocean's mantle 3He source and to provide constraints on the ocean's deep circulation. We use an ensemble of 11 data-assimilated steady-state ocean circulation models and a mantle helium source based on geographically varying sea-floor spreading rates. The global source distribution is partitioned into 6 regions, and the vertical profile and source amplitude of each region are varied independently to determine the optimal 3He source distribution that minimizes the mismatch between modeled and observed δ3He. In this way, we are able to fit the observed δ3He distribution to within a relative error of ∼15%, with a global 3He source that ranges from 640 to 850 mol yr-1, depending on circulation. The fit captures the vertical and interbasin gradients of the δ3He distribution very well and reproduces its jet-sheared saddle point in the deep equatorial Pacific. This demonstrates that the data-assimilated models have much greater fidelity to the deep ocean circulation than other coarse-resolution ocean models. Nonetheless, the modelled δ3He distributions still display some systematic biases, especially in the deep North Pacific where δ3He is overpredicted by our models, and in the southeastern tropical Pacific, where observed westward-spreading δ3He plumes are not well captured. Sources inferred by the data-assimilated transport with and without isopycnally aligned eddy diffusivity differ widely in the Southern Ocean, in spite of the ability to match the observed distributions of CFCs and radiocarbon for either eddy parameterization.
On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals
NASA Astrophysics Data System (ADS)
Saynisch, J.; Irrgang, C.; Thomas, M.
2018-03-01
Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fitting constants could be analyzed for physical properties of the ocean, e.g., the heat budget. To test and evaluate this approach, synthetic true and proxy magnetic signals are derived from a global circulation model of the ocean. Both data sets are compared in dependence of location and time scale. We study and report when and where the proxy data describe the true signal sufficiently well. Correlations above 0.6 and explained variances of above 80% can be reported for large parts of the Antarctic ocean, thus explaining the major part of the global, subseasonal magnetic signal.
An overview of new insights from 6 years of salinity data from SMOS mission
NASA Astrophysics Data System (ADS)
Nicolas, R.
2015-12-01
Measurements of salt held in surface seawater are becoming ever-more important for oceanographers and climatologists to gain a deeper understanding of ocean circulation and Earth's water cycle. ESA's SMOS mission is proving essential for this aim. Launched in 2009, SMOS has provided the longest continuous record (now ~6 years) of sea-surface salinity measurements from space. The salinity of surface seawater is controlled largely by the balance between evaporation and precipitation, but freshwater from rivers and the freezing and melting of ice also cause changes in concentrations. Along with temperature, salinity drives ocean circulation - the thermohaline circulation - which, in turn, plays a key role in the global climate. With a wealth of salinity data from SMOS now in hand complemented by measurements from the NASA-CONAE Aquarius satellite, which uses a different measuring technique. In this talk we shall provide an overview of how the SMOS mission - now celebrating 6 years in orbit - is providing detailed global measurements of SSS. An ensemble of key ocean processes for climate and biochemistry can now be determined and monitored for the first time from space : the detailed salinity structure of tropical instability waves along the equator and the salt exchanged across major oceanic current fronts, the occurrences of large-scale salinity anomalies in the Pacific and Indian oceans related to important climate indexes are also well-evidenced in the six year-long data. In addition, the dispersal of freshwater into the ocean from the major large tropical rivers (Amazon, Orinoco and Congo), their impact on tropical cyclone (TC) intensification and the oceanic imprints of the intense rainfall in the ITCZ and under TC can now be regularly monitored to better understand the variability of the oceanic part of the global water cycle. We will present how SMOS data, along with concurrent in situ Argo ocean-profile data, other satellite observations of sea-surface temperature, sea-surface height, surface-wind stress and ocean colour, are now providing new opportunities to investigate the surface and subsurface ocean mesoscale dynamics. The talk will tentatively illustrate how this type of data synergy is the key to unlock further scientific insight and increase our knowledge of the hydrologic cycle.
Mesoscale Effects on Carbon Export: A Global Perspective
NASA Astrophysics Data System (ADS)
Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.
2018-04-01
Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (<2%) however, the impact on local export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.
Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.
The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less
Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation.
Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C; Oppo, Delia W; Clark, Peter U; Jahn, Alexandra; Marcott, Shaun A; Lindsay, Keith
2017-10-17
The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18 O of benthic foraminiferal calcite (δ 18 O c ). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18 O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18 O c likely reflects early warming of the deep northern North Atlantic by ∼1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18 O, and call for caution when inferring water mass changes from δ 18 O c records while assuming uniform changes in deep temperatures.
Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation
Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; ...
2017-10-02
The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less
Understanding variability of the Southern Ocean overturning circulation in CORE-II models
NASA Astrophysics Data System (ADS)
Downes, S. M.; Spence, P.; Hogg, A. M.
2018-03-01
The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.
U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model
2008-09-30
major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning circulation (AMOC), and (3) a...convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system. Ocean Model., 16, 141-159...a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal/estuarian applications. NCOM is
Northerly surface winds over the eastern North Pacific Ocean in spring and summer
Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.
2008-01-01
Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.
Ocean Transport Pathways to a World Heritage Fringing Coral Reef: Ningaloo Reef, Western Australia.
Xu, Jiangtao; Lowe, Ryan J; Ivey, Gregory N; Jones, Nicole L; Zhang, Zhenlin
2016-01-01
A Lagrangian particle tracking model driven by a regional ocean circulation model was used to investigate the seasonally varying connectivity patterns within the shelf circulation surrounding the 300 km long Ningaloo Reef in Western Australia (WA) during 2009-2010. Forward-in-time simulations revealed that surface water was transported equatorward and offshore in summer due to the upwelling-favorable winds. In winter, however, water was transported polewards down the WA coast due to the seasonally strong Leeuwin Current. Using backward-in-time simulations, the subsurface transport pathways revealed two main source regions of shelf water reaching Ningaloo Reef: (1) a year-round source to the northeast in the upper 100 m of water column; and (2) during the summer, an additional source offshore and to the west of Ningaloo in depths between ~30 and ~150 m. Transient wind-driven coastal upwelling, onshore geostrophic transport and stirring by offshore eddies were identified as the important mechanisms influencing the source water origins. The identification of these highly time-dependent transport pathways and source water locations is an essential step towards quantifying how key material (e.g., nutrients, larvae, contaminants, etc.) is exchanged between Ningaloo Reef and the surrounding shelf ocean, and how this is mechanistically coupled to the complex ocean dynamics in this region.
Mechanisms Controlling Global Mean Sea Surface Temperature Determined From a State Estimate
NASA Astrophysics Data System (ADS)
Ponte, R. M.; Piecuch, C. G.
2018-04-01
Global mean sea surface temperature (T¯) is a variable of primary interest in studies of climate variability and change. The temporal evolution of T¯ can be influenced by surface heat fluxes (F¯) and by diffusion (D¯) and advection (A¯) processes internal to the ocean, but quantifying the contribution of these different factors from data alone is prone to substantial uncertainties. Here we derive a closed T¯ budget for the period 1993-2015 based on a global ocean state estimate, which is an exact solution of a general circulation model constrained to most extant ocean observations through advanced optimization methods. The estimated average temperature of the top (10-m thick) level in the model, taken to represent T¯, shows relatively small variability at most time scales compared to F¯, D¯, or A¯, reflecting the tendency for largely balancing effects from all the latter terms. The seasonal cycle in T¯ is mostly determined by small imbalances between F¯ and D¯, with negligible contributions from A¯. While D¯ seems to simply damp F¯ at the annual period, a different dynamical role for D¯ at semiannual period is suggested by it being larger than F¯. At periods longer than annual, A¯ contributes importantly to T¯ variability, pointing to the direct influence of the variable ocean circulation on T¯ and mean surface climate.
Ocean Transport Pathways to a World Heritage Fringing Coral Reef: Ningaloo Reef, Western Australia
Xu, Jiangtao; Lowe, Ryan J.; Ivey, Gregory N.; Jones, Nicole L.; Zhang, Zhenlin
2016-01-01
A Lagrangian particle tracking model driven by a regional ocean circulation model was used to investigate the seasonally varying connectivity patterns within the shelf circulation surrounding the 300 km long Ningaloo Reef in Western Australia (WA) during 2009–2010. Forward-in-time simulations revealed that surface water was transported equatorward and offshore in summer due to the upwelling-favorable winds. In winter, however, water was transported polewards down the WA coast due to the seasonally strong Leeuwin Current. Using backward-in-time simulations, the subsurface transport pathways revealed two main source regions of shelf water reaching Ningaloo Reef: (1) a year-round source to the northeast in the upper 100 m of water column; and (2) during the summer, an additional source offshore and to the west of Ningaloo in depths between ~30 and ~150 m. Transient wind-driven coastal upwelling, onshore geostrophic transport and stirring by offshore eddies were identified as the important mechanisms influencing the source water origins. The identification of these highly time-dependent transport pathways and source water locations is an essential step towards quantifying how key material (e.g., nutrients, larvae, contaminants, etc.) is exchanged between Ningaloo Reef and the surrounding shelf ocean, and how this is mechanistically coupled to the complex ocean dynamics in this region. PMID:26790154
NASA Astrophysics Data System (ADS)
Huybers, Peter; Langmuir, Charles H.
2017-01-01
The coupled 100,000 year variations in ice volume, temperature, and atmospheric CO2 during the late Pleistocene are generally considered to arise from a combination of orbital forcing, ice dynamics, and ocean circulation. Also previously argued is that changes in glaciation influence atmospheric CO2 concentrations through modifying subaerial volcanic eruptions and CO2 emissions. Building on recent evidence that ocean ridge volcanism responds to changes in sea level, here it is suggested that ocean ridges may play an important role in generating late-Pleistocene 100 ky glacial cycles. If all volcanic CO2 emissions responded immediately to changes in pressure, subaerial and ocean-ridge volcanic emissions anomalies would oppose one another. At ocean ridges, however, the egress of CO2 from the mantle is likely to be delayed by tens-of-thousands of years, or longer, owing to ascent time. A simple model involving temperature, ice, and CO2 is presented that oscillates at ∼100 ky time scales when incorporating a delayed CO2 contribution from ocean ridge volcanism, even if the feedback accounts for only a small fraction of total changes in CO2. Oscillations readily become phase-locked with insolation forcing associated with changes in Earth's orbit. Under certain parameterizations, a transition from ∼40 ky to larger ∼100 ky oscillations occurs during the middle Pleistocene in response to modulations in orbital forcing. This novel description of Pleistocene glaciation should be testable through ongoing advances in understanding the circulation of carbon through the solid earth.
NASA Astrophysics Data System (ADS)
Fresnay, Simon; Ponte, Aurélien
2017-04-01
The quasi-geostrophic (QG) framework has been, is and will be still for years to come a cornerstone method linking observations with estimates of the ocean circulation and state. We have used here the QG framework to reconstruct dynamical variables of the 3-D ocean in a state-of-the-art high-resolution (1/60 deg, 300 vertical levels) numerical simulation of the North Atlantic (NATL60). The work was carried out in 3 boxes of the simulation: Gulf Stream, Azores and Reykjaness Ridge. In a first part, general diagnostics describing the eddying dynamics have been performed and show that the QG scaling verifies in general, at depths distant from mixed layer and bathymetric gradients. Correlations with surface observables variables (e.g. temperature, sea level) were computed and estimates of quasi-geostrophic potential vorticity (QGPV) were reconstructed by the means of regression laws. It is shown that that reconstruction of QGPV exhibits valuable skill for a restricted scale range, mainly using sea level as the variable of regression. Additional discussion is given, based on the flow balanced with QGPV. This work is part of the DIMUP project, aiming to improve our ability to operationnaly estimate the ocean state.
Are Surface Waters Around Greenland Getting Saltier in a Warming Climate?
NASA Astrophysics Data System (ADS)
Vinogradova, N. T.; Ponte, R. M.; Piecuch, C. G.; Little, C. M.
2016-02-01
During the past two decades, most surface waters around Greenland ice sheet and in the Nordic Seas became significantly saltier. Given the fact that these waters feed the North Atlantic thermohaline circulation, an increase in surface salinity, which can exceed 0.2 psu in places, might have an important impact on the global ocean circulation and on future projections of the climate state. Surface salinification may seem counter-intuitive to the reported long-term increase in freshwater supply to the region from river discharge and ice melting, sparking debates about whether the freshening of the subpolar gyre has ceased, and whether the recent salinification, if continued, will be able to forestall the projected slowdown of the overturning circulation. Here we assess what controls contemporary salinity changes by examining various terms of the salinity budget, including the dilution effect due to air-sea fluxes of freshwater, fluxes of salt due to sea ice formation/melting, and ocean fluxes of salinity associated with advective and diffusive processes. We use an ocean state estimate produced by the ECCO consortium to consider the budgets over the period 1992-2011. ECCO estimates produce salinity fields close to the observations and, crucial for our purposes, permit closed budget diagnostics of salinity and respective fluxes. The budgets are formulated within the entire water column in order to examine three-dimensional structure of freshwater storage and establish a link between the surface and upper-ocean change in near-Greenland waters. Over the past two decades, patterns of change are evident in all budget terms, with ocean fluxes either offsetting or enhancing surface forcing, including the effects of sea ice dynamics. Interpretation is provided within the context of a changing climate, including intensification of the hydrological cycle and weakening of ocean transports and overturning, as well as natural decadal-to-interdacadal variability present in the system.
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Chao, Yi
1996-01-01
It has been demonstrated that current-generation global ocean general circulation models (OGCM) are able to simulate large-scale sea level variations fairly well. In this study, a GFDL/MOM-based OGCM was used to investigate its sensitivity to different wind forcing. Simulations of global sea level using wind forcing from the ERS-1 Scatterometer and the NMC operational analysis were compared to the observations made by the TOPEX/Poseidon (T/P) radar altimeter for a two-year period. The result of the study has demonstrated the sensitivity of the OGCM to the quality of wind forcing, as well as the synergistic use of two spaceborne sensors in advancing the study of wind-driven ocean dynamics.
Does coupled ocean enhance ozone-hole-induced Southern Hemisphere circulation changes?
NASA Astrophysics Data System (ADS)
Son, S. W.; Han, B. R.; Kim, S. Y.; Park, R.
2017-12-01
The ozone-hole-induced Southern Hemisphere (SH) circulation changes, such as poleward shift of westerly jet and Hadley cell widening, have been typically explored with either coupled general circulation models (CGCMs) prescribing stratospheric ozone or chemistry-climate models (CCMs) prescribing surface boundary conditions. Only few studies have utilized ocean-coupled CCMs with a relatively coarse resolution. To better quantify the role of interactive chemistry and coupled ocean in the ozone-hole-induced SH circulation changes, the present study examines a set of CGCM and CCM simulations archived for the Coupled Model Intercomparison Project phase 5 (CMIP5) and CCM initiative (CCMI). Although inter-model spread of Antarctic ozone depletion is substantially large especially in the austral spring, both CGCMs with relatively simple ozone chemistry and CCMs with fully interactive comprehensive chemistry reasonably well reproduce long-term trends of Antarctic ozone and the associated polar-stratospheric temperature changes. Most models reproduce a poleward shift of SH jet and Hadley-cell widening in the austral summer in the late 20th century as identified in reanalysis datasets. These changes are quasi-linearly related with Antarctic ozone changes, confirming the critical role of Antarctic ozone depletion in the austral-summer zonal-mean circulation changes. The CGCMs with simple but still interactive ozone show slightly stronger circulation changes than those with prescribed ozone. However, the long-term circulation changes in CCMs are largely insensitive to the coupled ocean. While a few models show the enhanced circulation changes when ocean is coupled, others show essentially no changes or even weakened circulation changes. This result suggests that the ozone-hole-related stratosphere-troposphere coupling in the late 20th century may be only weakly sensitive to the coupled ocean.
Sensitivity study of a dynamic thermodynamic sea ice model
NASA Astrophysics Data System (ADS)
Holland, David M.; Mysak, Lawrence A.; Manak, Davinder K.; Oberhuber, Josef M.
1993-02-01
A numerical simulation of the seasonal sea ice cover in the Arctic Ocean and the Greenland, Iceland, and Norwegian seas is presented. The sea ice model is extracted from Oberhuber's (1990) coupled sea ice-mixed layer-isopycnal general circulation model and is written in spherical coordinates. The advantage of such a model over previous sea ice models is that it can be easily coupled to either global atmospheric or ocean general circulation models written in spherical coordinates. In this model, the thermodynamics are a modification of that of Parkinson and Washington (1979), while the dynamics use the full Hibler (1979) viscous-plastic rheology. Monthly thermodynamic and dynamic forcing fields for the atmosphere and ocean are specified. The simulations of the seasonal cycle of ice thickness, compactness, and velocity, for a control set of parameters, compare favorably with the known seasonal characteristics of these fields. A sensitivity study of the control simulation of the seasonal sea ice cover is presented. The sensitivity runs are carried out under three different themes, namely, numerical conditions, parameter values, and physical processes. This last theme refers to experiments in which physical processes are either newly added or completely removed from the model. Approximately 80 sensitivity runs have been performed in which a change from the control run environment has been implemented. Comparisons have been made between the control run and a particular sensitivity run based on time series of the seasonal cycle of the domain-averaged ice thickness, compactness, areal coverage, and kinetic energy. In addition, spatially varying fields of ice thickness, compactness, velocity, and surface temperature for each season are presented for selected experiments. A brief description and discussion of the more interesting experiments are presented. The simulation of the seasonal cycle of Arctic sea ice cover is shown to be robust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, A.W.; Ghil, M.; Kravtsov, K.
2011-04-08
This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, S.; Robertson, Andrew W.; Ghil, Michael
2011-04-08
This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less
Stärz, Michael; Jokat, Wilfried; Knorr, Gregor; Lohmann, Gerrit
2017-01-01
High latitude ocean gateway changes are thought to play a key role in Cenozoic climate evolution. However, the underlying ocean dynamics are poorly understood. Here we use a fully coupled atmosphere-ocean model to investigate the effect of ocean gateway formation that is associated with the subsidence of the Greenland–Scotland Ridge. We find a threshold in sill depth (∼50 m) that is linked to the influence of wind mixing. Sill depth changes within the wind mixed layer establish lagoonal and estuarine conditions with limited exchange across the sill resulting in brackish or even fresher Arctic conditions. Close to the threshold the ocean regime is highly sensitive to changes in atmospheric CO2 and the associated modulation in the hydrological cycle. For larger sill depths a bi-directional flow regime across the ridge develops, providing a baseline for the final step towards the establishment of a modern prototype North Atlantic-Arctic water exchange. PMID:28580952
Tropical Cyclone Footprint in the Ocean Mixed Layer Observed by Argo in the Northwest Pacific
2014-10-25
668. Hu, A., and G. A. Meehl (2009), Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport, Geo...atmospheric circulation [Hart et al., 2007]. Several studies, based on observations and modeling, suggest that TC-induced energy input and mixing may play...an important role in climate variability through regulating the oceanic general circulation and its variability [e.g., Emanuel, 2001; Sriver and Huber
NASA Astrophysics Data System (ADS)
Cares, Z.; Farr, C. L.; LeVay, L.; Tangunan, D.; Brentegani, L.
2017-12-01
International Ocean Discovery Program (IODP) Expedition 361 cored six sites along the greater Agulhas Current System to track its intensity through time and to better understand its role in global oceanic circulation and climate. One of the main scientific objectives of this expedition was to determine the dynamics of the Indian-Atlantic Ocean Gateway circulation during Pliocene-Pleistocene climate changes in association with changing wind fields and migrating ocean fronts. The Indian-Atlantic Ocean Gateway contains a pronounced oceanic frontal system, the position of which has the potential to influence global climate on millennial scales. Owing to the physical differences between the frontal zones, this region has complex biogeochemistry, changes in phytoplankton distribution, and variations in primary productivity. Site U1475 was cored on the Agulhas Plateau in the Southwestern Indian Ocean and recovered a complete sequence of calcareous ooze spanning the last 7 Ma. Previous studies at this locality have shown latitudinal migrations of the frontal zones over the past 350 kyr that resulted in prominent millennial shifts in primary production, biological pump efficiency, and microfossil assemblages that coincide with Antarctic climate variability. Here we present initial results comprised of calcareous nannoplankton assemblages in order to test if similar latitudinal frontal migrations occurred during the Pliocene-Pleistocene transition (PPT; 2.7 Ma). The calcareous nannoplankton assemblage shows an abundance increase of taxa associated with cooler water and higher primary production across the PPT interval. In addition to a change in species abudance, the Shannon diversity index drops notably across the transition, which is typical of nannoplankton communities in more productive regions. These data suggest that a long-term change in sea surface temperature and nutrient availability took place across the PPT, potentially linked to the northward migration of frontal zones.
NASA Technical Reports Server (NTRS)
Fukumori, I.; Fu, L. L.; Chao, Y.
1998-01-01
The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.
NASA Astrophysics Data System (ADS)
Wang, Huiqun; Yuan, Yaochu; Guan, Weibing; Lou, Ruyun; Wang, Kangshan
2004-07-01
On the basis of the recently obtained hydrographic data in the South China Sea, the improved Princeton Ocean Model with a generalized topography-following coordinate system is used to study the circulation in the region during summer 2000. Several sensitivity experiments are carried out to achieve reasonable model parameters for the South China Sea (SCS). It is shown from the resting stratification experiments that the generalized topography-following coordinate scheme is better than the standard sigma grid scheme for reducing the pressure gradient errors. The combination of sea surface height anomaly derived from TOPEX/Poseidon and numerical results with both diagnostic and semidiagnostic simulations provides a consistent circulation pattern for the SCS in August, and the main circulation features can be summarized as follows: (1) There is a notable anticyclonic warm eddy southeast of Vietnam with a horizontal scale of ˜300 km, and there is a cyclonic cold eddy. The simultaneous existence of these cold and warm eddies is one of the important circulation characteristics in the SCS during summer 2000. (2) A secondary cold eddy is found east of Vietnam. (3) The northwestern part of the SCS is dominated by an anticyclonic circulation system. (4) There is also a secondary warm eddy southwest off the Luzon Island. (5) A cyclonic eddy is found west off the Borneo Island. (6) A western intensification phenomenon obviously occurs in the SCS. The dynamical mechanisms of the above-mentioned circulation pattern in the SCS are the interaction between the wind stress and bottom topography and the joint effect of baroclinicity and relief.
Atlantic freshwater balance in the hysteresis of the meridional overturning circulation
NASA Astrophysics Data System (ADS)
Gregory, J. M.; Saenko, O. A.
2003-04-01
We have studied the hysteresis behaviour of the Atlantic meridional overturning circulation (AMO) in the UVic climate model, which comprises an ocean GCM coupled to an energy-moisture balance atmosphere model and a dynamic-thermodynamic sea ice model, all with a resolution of 3.6x1.8 degrees. As with some other models, we find that a slowly increasing freshwater flux applied to the north Atlantic causes the AMO to collapse rapidly when it passes a threshold, and that it returns equally quickly when the freshwater forcing falls below a negative freshwater flux threshold. During the collapse, the Atlantic becomes less saline because of the import of about 80 Sv yr of freshwater by the ocean across 30S; during the switch-on this freshwater is exported again. These abrupt import and export of freshwater at 30S of the Atlantic are associated with, respectively, the appearance and disappearance of a shallower reverse overturning circulation south of the Equator. Qualitatively similar hysteresis behaviour, with the same salinity flip-flop, can be produced by an internal transfer of water within the Atlantic from low to high latitudes, with no net freshwater forcing input north of 30S.
Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon
NASA Astrophysics Data System (ADS)
Chang, Ping; Zhang, Rong; Hazeleger, Wilco; Wen, Caihong; Wan, Xiuquan; Ji, Link; Haarsma, Reindert J.; Breugem, Wim-Paul; Seidel, Howard
2008-07-01
Abrupt changes in the African monsoon can have pronounced socioeconomic impacts on many West African countries. Evidence for both prolonged humid periods and monsoon failures have been identified throughout the late Pleistocene and early Holocene epochs. In particular, drought conditions in West Africa have occurred during periods of reduced North Atlantic thermohaline circulation, such as the Younger Dryas cold event. Here, we use an ocean-atmosphere general circulation model to examine the link between oceanographic changes in the North Atlantic Ocean and changes in the strength of the African monsoon. Our simulations show that when North Atlantic thermohaline circulation is substantially weakened, the flow of the subsurface North Brazil Current reverses. This leads to decreased upper tropical ocean stratification and warmer sea surface temperatures in the equatorial South Atlantic Ocean, and consequently reduces African summer monsoonal winds and rainfall over West Africa. This mechanism is in agreement with reconstructions of past climate. We therefore suggest that the interaction between thermohaline circulation in the North Atlantic Ocean and wind-driven currents in the tropical Atlantic Ocean contributes to the rapidity of African monsoon transitions during abrupt climate change events.
Exploring the Circulation Dynamics of Mississippi Sound and Bight Using the CONCORDE Synthesis Model
NASA Astrophysics Data System (ADS)
Pan, C.; Dinniman, M. S.; Fitzpatrick, P. J.; Lau, Y.; Cambazoglu, M. K.; Parra, S. M.; Hofmann, E. E.; Dzwonkowski, B.; Warner, S. J.; O'Brien, S. J.; Dykstra, S. L.; Wiggert, J. D.
2017-12-01
As part of the modeling effort of the GOMRI (Gulf of Mexico Research Initiative)-funded CONCORDE consortium, a high resolution ( 400 m) regional ocean model is implemented for the Mississippi (MS) Sound and Bight. The model is based on the Coupled Ocean Atmosphere Wave Sediment Transport Modeling System (COAWST), with initial and lateral boundary conditions drawn from data assimilative 3-day forecasts of the 1km-resolution Gulf of Mexico Navy Coastal Ocean Model (GOM-NCOM). The model initiates on 01/01/2014 and runs for 3 years. The model results are validated with available remote sensing data and with CONCORDE's moored and ship-based in-situ observations. Results from a three-year simulation (2014-2016) show that ocean circulation and water properties of the MS Sound and Bight are sensitive to meteorological forcing. A low resolution surface forcing, drawn from the North America Regional Reanalysis (NARR), and a high resolution forcing, called CONCORDE Meteorological Analysis (CMA) ) that resolves the diurnal sea breeze, are used to drive the model to examine the sensitivity of the circulation to surface forcing. The model responses to the low resolution NARR forcing and to the high resolution CMA are compared in detail for the CONCORDE Fall and Spring field campaigns when contemporaneous in situ data are available, with a focus on how simulated exchanges between MS Sound and MS Bight are impacted. In most cases, the model shows higher simulation skill when it is driven by CMA. Freshwater plumes of the MS River, MS Sound and Mobile Bay influence the shelf waters of the MS Bight in terms of material budget and dynamics. Drifters and dye experiments near Mobile Bay demonstrate that material exchanges between Mobile Bay and the Sound, and between the Sound and Bight, are sensitive to the wind strength and direction. A model - data comparison targeting the Mobile Bay plume suggests that under both northerly and southerly wind conditions the model is capable of simulating the variation of the plume in terms of velocity, plume extent, heat and salt budgets.
Spice: Southwest Pacific Ocean Circulation and Climate Experiment
NASA Astrophysics Data System (ADS)
Ganachaud, A. S.; Melet, A.; Maes, C.
2010-12-01
South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. The transit in the Coral Sea is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. The south branch is associated with comparable impacts in the Tasman Sea area. The Southwest Pacific is a region of complex circulation, with the SEC splitting in strong zonal jets upon encountering island archipelagos. Those jets partition on the Australian eastern boundary to feed the East Australian Current for the southern branch and the North Queensland Current and eventually the Equatorial Undercurrent for the northern branch. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the South Pacific Convergence Zone (SPCZ) position and intensity. The circulation, and its influence on remote and regional climate, is poorly understood due to the lack of appropriate measurements. Ocean and atmosphere scientists from Australia, France, New Zealand, the United States and Pacific Island countries initiated an international research project under the auspices of CLIVAR to comprehend the southwest Pacific Ocean circulation and its direct and indirect influence on the climate and environment. SPICE is a regionally-coordinated experiment to measure, study and monitor the ocean circulation and the SPCZ, to validate and improve numerical models, and to integrate with assimilating systems. This ongoing project reflects a strong sense that substantial progress can be made through collaboration among South Pacific national research groups, coordinated with broader South Pacific projects.
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2018-03-01
The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.
Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.
2015-01-01
Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536
Using Icebergs to Constrain Fjord Circulation and Link to Glacier Dynamics
NASA Astrophysics Data System (ADS)
Sutherland, D.; Straneo, F.; Hamilton, G. S.; Stearns, L. A.; Roth, G.
2014-12-01
The importance of icebergs is increasingly being recognized in the ocean-glacier interactions community. Icebergs are ubiquitous in Greenland's outlet glacial fjords and provide a physical link between the glacier and the ocean into which they melt. The iceberg shape is influenced by glacier size and calving mechanics, while the amount of melt produced depends on ambient water properties and the residence time of the iceberg in the fjord. Here, we use hourly positions of icebergs tracked with helicopter deployed GPS sensors to calculate velocities in the Sermilik Fjord/Helheim Glacier system. Data comes from three summertime deployments in 2012-2014, where icebergs were tagged in the ice mélange and moved through the fjord and onto the continental shelf. The iceberg-derived velocities provide information on ice mélange movement, fjord variability, and coastal currents on the shelf. Using simple melt rate parameterizations, we estimate the total freshwater input due to iceberg melt in Sermilik Fjord based on the observed residence times and satellite-derived iceberg distributions. These observations complement conventional oceanographic and glaciological data, and can quickly, and relatively inexpensively, characterize circulation throughout any given glacier-ocean system.
Application of Satellite Altimetry to Ocean Circulation Studies: 1987-1994
NASA Technical Reports Server (NTRS)
Fu, L. -L.; Cheney, R. E.
1994-01-01
Altimetric measurement of the height of the sea surface from space provides global observation of the world's oceans. The last eight years have witnessed a rapid growth in the use of altimetry data from the study of the ocean circulations, thanks to the multiyear data from the Geosat Mission.
Hydrothermal systems are a sink for dissolved black carbon in the deep ocean
NASA Astrophysics Data System (ADS)
Niggemann, J.; Hawkes, J. A.; Rossel, P. E.; Stubbins, A.; Dittmar, T.
2016-02-01
Exposure to heat during fires on land or geothermal processes in Earth's crust induces modifications in the molecular structure of organic matter. The products of this thermogenesis are collectively termed black carbon. Dissolved black carbon (DBC) is a significant component of the oceanic dissolved organic carbon (DOC) pool. In the deep ocean, DBC accounts for 2% of DOC and has an apparent radiocarbon age of 18,000 years. Thus, DBC is much older than the bulk DOC pool, suggesting that DBC is highly refractory. Recently, it has been shown that recalcitrant deep-ocean DOC is efficiently removed during hydrothermal circulation. Here, we hypothesize that hydrothermal circulation is also a net sink for deep ocean DBC. We analyzed DBC in samples collected at different vent sites in the Atlantic, Pacific and Southern oceans. DBC was quantified in solid-phase extracts as benzenepolycarboxylic acids (BPCAs) following nitric acid digestion. Concentrations of DBC were much lower in hydrothermal fluids than in surrounding deep ocean seawater, confirming that hydrothermal circulation acts as a net sink for oceanic DBC. The relative contribution of DBC to bulk DOC did not change during hydrothermal circulation, indicating that DBC is removed at similar rates as bulk DOC. The ratio of the oxidation products benzenehexacarboxylic acid (B6CA) to benzenepentacarboxylic acid (B5CA) was significantly higher in hydrothermally altered samples compared to ratios typically found in the deep ocean, reflecting a higher degree of condensation of DBC molecules after hydrothermal circulation. Our study identified hydrothermal circulation as a quantitatively important sink for refractory DBC in the deep ocean. In contrast to photodegradation of DBC at the sea surface, which is more efficient for more condensed DBC, i.e. decreasing the B6CA/B5CA ratio, hydrothermal processing increases the B6CA/B5CA ratio, introducing a characteristic hydrothermal DBC signature.
NASA Astrophysics Data System (ADS)
Scholz, Patrick; Lohmann, Gerrit
2017-04-01
The sub-Arctic oceans like the Sea of Okhotsk, the Bering Sea, the Labrador Sea or the Greenland- Irminger-Norwegian (GIN) Sea react particularly sensitive to global climate changes and have the potential to reversely regulate climate change by CO2 uptake in the other areas of the world. So far, the natural processes in the Arctic and Subarctic system, especially over the Pacific realm, remain poorly understood in terms of numerical modeling. As such, in this study we focus on the North Pacific and its adjacent marginal seas (e.g. the Sea of Okhotsk, the Bering Sea and the Sea of Japan), which have nowadays a significant role in the climate system of the Northwest Pacific by influencing the atmospheric and oceanic circulation as well as the hydrology of the Pacific water masses. The Sea of Okhotsk, in particular, is characterized by a highly dynamical sea-ice coverage, where, in autumn and winter, due to massive sea ice formation and brine rejection, the Sea of Okhotsk Intermediate Water (SOIW) is formed which contributes to the mid-depth (500-1000m) water layer of the North Pacific known as newly formed North Pacific Intermediate Water (NPIW). By employing a Finite-Element Sea-Ice Ocean Model (FESOM), in a global configuration, but with high resolution over the marginal seas of the Northwest Pacific Ocean ( 7 km), we tested different meshes and forcing improvements to correct the general ocean circulation in the North Pacific realm towards a more realistic pattern. By using different forcing data (e.g. CORE2, ERA-40/interim, CCMP-correction), adapting the mesh resolutions in the tropical and subtropical North Pacific and changing the bathymetry over important inflow straits (e.g. Amukta Passage, Kruzenstern Strait), we show that the better results are obtained (when compared with observational data) via a combination of CCMP corrected COREv2 forcing with increased resolution in the pathway of the Kuroshio Extension Current and Northern Equatorial Current.
Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere
NASA Astrophysics Data System (ADS)
Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.
2016-02-01
During the last three decades, tropical sea surface temperature (SST) exhibited dipole-like trends, with warming over the tropical Atlantic and Indo-Western Pacific but cooling over the Eastern Pacific. The Eastern Pacific cooling has recently been identified as a driver of the global warming hiatus. Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean, which could potentially contribute to this zonally asymmetric SST pattern. However, the mechanisms and the interactions between these teleconnections remain unclear. To investigate these questions, we performed a `pacemaker' simulation by restoring the tropical Atlantic SST changes in a state-of-the-art climate model - the CESM1. Results show that the Atlantic plays a key role in initiating the tropical-wide teleconnections, and the Atlantic-induced anomalies contribute 55%-75% of the total tropical SST and circulation changes during the satellite era. A hierarchy of oceanic and atmospheric models are then used to investigate the physical mechanisms of these teleconnections: the Atlantic warming enhances atmospheric deep convection, drives easterly wind anomalies over the Indo-Western Pacific through the Kelvin wave, and westerly anomalies over the eastern Pacific as Rossby waves, in line with Gill's solution (Fig1a). These wind changes induce an Indo-Western Pacific warming via the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the upper Pacific Ocean by enhancing the easterly trade winds and through the Bjerknes ocean-dynamical processes (Fig1b). The teleconnection finally develops into a tropical-wide SST dipole pattern with an enhanced trade wind and Walker circulation, similar as the observed changes during the satellite era. This mechanism reveals that the tropical ocean basins are more tightly connected than previously thought, and the Atlantic plays a key role in the tropical climate pattern formation and further the global warming hiatus. The tropical Atlantic warming is likely due to radiative forcing and Atlantic meridional overturning circulation (AMOC). Our study suggests that the AMOC may force the decadal variability of the tropical ocean and atmosphere, and thus contributes to the decadal predictability of the global climate.
Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts
NASA Astrophysics Data System (ADS)
McGee, David; Moreno-Chamarro, Eduardo; Green, Brian; Marshall, John; Galbraith, Eric; Bradtmiller, Louisa
2018-01-01
The atmospheric Hadley cells, which meet at the Intertropical Convergence Zone (ITCZ), play critical roles in transporting heat, driving ocean circulation and supplying precipitation to the most heavily populated regions of the globe. Paleo-reconstructions can provide concrete evidence of how these major features of the atmospheric circulation can change in response to climate perturbations. While most such reconstructions have focused on ITCZ-related rainfall, here we show that trade wind proxies can document dynamical aspects of meridional ITCZ shifts. Theoretical expectations based on angular momentum constraints and results from freshwater hosing simulations with two different climate models predict that ITCZ shifts due to anomalous cooling of one hemisphere would be accompanied by a strengthening of the Hadley cell and trade winds in the colder hemisphere, with an opposite response in the warmer hemisphere. This expectation of hemispherically asymmetric trade wind changes is confirmed by proxy data of coastal upwelling and windblown dust from the Atlantic basin during Heinrich stadials, showing trade wind strengthening in the Northern Hemisphere and weakening in the Southern Hemisphere subtropics in concert with southward ITCZ shifts. Data from other basins show broadly similar patterns, though improved constraints on past trade wind changes are needed outside the Atlantic Basin. The asymmetric trade wind changes identified here suggest that ITCZ shifts are also marked by intensification of the ocean's wind-driven subtropical cells in the cooler hemisphere and a weakening in the warmer hemisphere, which induces cross-equatorial oceanic heat transport into the colder hemisphere. This response would be expected to prevent extreme meridional ITCZ shifts in response to asymmetric heating or cooling. Understanding trade wind changes and their coupling to cross-equatorial ocean cells is key to better constraining ITCZ shifts and ocean and atmosphere dynamical changes in the past, especially for regions and time periods for which few paleodata exist, and also improves our understanding of what changes may occur in the future.
NASA Astrophysics Data System (ADS)
Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.
2015-12-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.
Arctic Ocean Circulation Patterns Revealed by GRACE
NASA Astrophysics Data System (ADS)
Peralta-Ferriz, Cecilia; Morison, James H.; Wallace, John M.; Bonin, Jennifer A.; Zhang, Jinlun
2013-04-01
EOF analysis of non-seasonal, month-to-month variations in GRACE derived Arctic Ocean bottom pressure (OBP) yield three dominant modes. The first mode is a wintertime basin wide variation in mass associated with high atmospheric pressure (SLP) over Scandinavia. The second mode is a shift of mass from the central Arctic Ocean to the Siberian shelves due to low pressure over the basins, associated with the strength of the Arctic Oscillation. The third mode is a shift in mass between the Eastern and Western Siberian shelves, related to strength of the Beaufort High mainly in summer, and to eastward alongshore winds on the Barents Sea in winter. The PIOMAS and ECCO2 modeled OBP are consistent with the form of these modes and provide context in terms of variations in sea surface height. The models are used to investigate the ocean dynamics associated with each mode of OBP variability.
Oceanic forcing of coral reefs.
Lowe, Ryan J; Falter, James L
2015-01-01
Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.
Does Southern Ocean Surface Forcing Shape the Global Ocean Overturning Circulation?
NASA Astrophysics Data System (ADS)
Sun, Shantong; Eisenman, Ian; Stewart, Andrew L.
2018-03-01
Paleoclimate proxy data suggest that the Atlantic Meridional Overturning Circulation (AMOC) was shallower at the Last Glacial Maximum (LGM) than its preindustrial (PI) depth. Previous studies have suggested that this shoaling necessarily accompanies Antarctic sea ice expansion at the LGM. Here the influence of Southern Ocean surface forcing on the AMOC depth is investigated using ocean-only simulations from a state-of-the-art climate model with surface forcing specified from the output of previous coupled PI and LGM simulations. In contrast to previous expectations, we find that applying LGM surface forcing in the Southern Ocean and PI surface forcing elsewhere causes the AMOC to shoal only about half as much as when LGM surface forcing is applied globally. We show that this occurs because diapycnal mixing renders the Southern Ocean overturning circulation more diabatic than previously assumed, which diminishes the influence of Southern Ocean surface buoyancy forcing on the depth of the AMOC.
NASA Astrophysics Data System (ADS)
Lo Bue, N.; Artale, V.; Marullo, S.; Marinaro, G.; Embriaco, D.; Favali, P.; Beranzoli, L.
2017-12-01
The past general idea that the ocean-deep circulation is in quasi-stationary motion, has conditioned the observations of deep layers for a long time, excluding them from the majority of the surveys around the ocean world and influencing studies on the deep ocean processes. After the pioneering work of Munk (1966) highlighting the importance of bottom mixing processes, an underestimation of these issue has continued to persist for decades, due also to the difficulty to make reliable observations in the abyssal layers. The real awareness about the unsteady state of the abyssal layers has only risen recently and encourages us to wonder how the deep mechanisms can induce an internal instability and, consequently, affect the ocean circulation. The NIWs are characterized by a frequency near the inertial frequency f and can be generated by a variety of mechanisms, including wind, nonlinear interactions wave-shear flow and wave-topography, and geostrophic adjustments. NIWs represent one of the main high-frequency variabilities in the ocean, and they contain around half the kinetic energy observed in the oceans (Simmons et al. 2012) appearing as a prominent peak rising well above the Garrett & Munk (1975) continuum internal wave spectrum. As such, they upset the mixing processes in the upper ocean and they can interact strongly with mesoscale and sub-mesoscale motions. Likewise, NIWs likely affect the mixing of the deep ocean in ways that are just beginning to be understood. The analysis carried out on yearly time series collected by the bottom observatory SN1, the Western Ionian node of EMSO (European Multidisciplinary Seafloor and water column Observatory) Research Infrastructure, provides new important understanding on the role of the NIWs in the abyssal ocean. Also, this analysis is very useful to shed light on the possible mechanism that can trigger deep processes such as the abyssal vortex chains found by Rubino et al. (2012) in the Ionian abyssal plain of the Eastern Mediterranean (EM) basin. Finally, spectral analysis, including the Singular Spectrum Analysis (SSA) and Wavelet, allow us to explain how the NIWs can contributes to activate and increase the mixing in the bottom layers with significant impact on overall abyssal and deep circulation at local and regional scale (Mediterranean Sea).
NASA Technical Reports Server (NTRS)
Grenfell, J. Lee; Shindell, D. T.; Koch, D.; Rind, D.; Hansen, James E. (Technical Monitor)
2002-01-01
We investigate the chemical (hydroxyl and ozone) and dynamical response to changing from present day to pre-industrial conditions in the Goddard Institute for Space Studies General Circulation Model (GISS GMC). We identify three main improvements not included by many other works. Firstly, our model includes interactive cloud calculations. Secondly we reduce sulfate aerosol which impacts NOx partitioning hence Ox distributions. Thirdly we reduce sea surface temperatures and increase ocean ice coverage which impact water vapor and ground albedo respectively. Changing the ocean data (hence water vapor and ozone) produces a potentially important feedback between the Hadley circulation and convective cloud cover. Our present day run (run 1, control run) global mean OH value was 9.8 x 10(exp 5) molecules/cc. For our best estimate of pre-industrial conditions run (run 2) which featured modified chemical emissions, sulfate aerosol and sea surface temperatures/ocean ice, this value changed to 10.2 x 10(exp 5) molecules/cc. Reducing only the chemical emissions to pre-industrial levels in run 1 (run 3) resulted in this value increasing to 10.6 x 10(exp 5) molecules/cc. Reducing the sulfate in run 3 to pre-industrial levels (run 4) resulted in a small increase in global mean OH (10.7 x 10(exp 5) molecules/cc). Changing the ocean data in run 4 to pre-industrial levels (run 5) led to a reduction in this value to 10.3 x 10(exp 5) molecules/cc. Mean tropospheric ozone burdens were 262, 181, 180, 180, and 182 Tg for runs 1-5 respectively.
NASA Astrophysics Data System (ADS)
LI, Q.; Lee, S.
2016-12-01
The relationship between Antarctic Circumpolar Current (ACC) jets and eddy fluxes in the Indo-western Pacific Southern Ocean (90°E-145°E) is investigated using an eddy-resolving model. In this region, transient eddy momentum flux convergence occurs at the latitude of the primary jet core, whereas eddy buoyancy flux is located over a broader region that encompasses the jet and the inter-jet minimum. In a small sector (120°E-144°E) where jets are especially zonal, a spatial and temporal decomposition of the eddy fluxes further reveals that fast eddies act to accelerate the jet with the maximum eddy momentum flux convergence at the jet center, while slow eddies tend to decelerate the zonal current at the inter-jet minimum. Transformed Eulerian mean (TEM) diagnostics reveals that the eddy momentum contribution accelerates the jets at all model depths, whereas the buoyancy flux contribution decelerates the jets at depths below 600 m. In ocean sectors where the jets are relatively well defined, there exist jet-scale overturning circulations (JSOC) with sinking motion on the equatorward flank, and rising motion on the poleward flank of the jets. The location and structure of these thermally indirect circulations suggest that they are driven by the eddy momentum flux convergence, much like the Ferrel cell in the atmosphere. This study also found that the JSOC plays a significant role in the oceanic heat transport and that it also contributes to the formation of a thin band of mixed layer that exists on the equatorward flank of the Indo-western Pacific ACC jets.
Fresh Water Content Variability in the Arctic Ocean
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Proshutinsky, Andrey
2003-01-01
Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation; AOO) which has a prominent decadal variability. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice. The surface forcing is based on NCEP-NCAR Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide fresh water balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated fresh water anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice meldfreeze anomalies in response to AO are less significant considering the whole Arctic fresh water balance.
Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II
2017-08-11
inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean
Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation.
Kienast, Markus; Kienast, Stephanie S; Calvert, Stephen E; Eglinton, Timothy I; Mollenhauer, Gesine; François, Roger; Mix, Alan C
2006-10-19
Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean-atmosphere feedbacks or by changes in the Atlantic thermohaline circulation. North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America, as well as the Indian and East Asian monsoon systems, but not with tropical Pacific sea surface temperatures. Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of approximately 1 degrees C, synchronous (within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of approximately 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from 230Th-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans' thermohaline circulation, although possibly amplified by tropical ocean-atmosphere interaction as suggested before.
Agulhas leakage as a key process in the modes of Quaternary climate changes
Caley, Thibaut; Giraudeau, Jacques; Malaizé, Bruno; Rossignol, Linda; Pierre, Catherine
2012-01-01
Heat and salt transfer from the Indian Ocean to the Atlantic Ocean (Agulhas leakage) has an important effect on the global thermohaline circulation and climate. The lack of long transfer record prevents elucidation of its role on climate changes throughout the Quaternary. Here, we present a 1,350-ka accumulation rate record of the planktic foraminiferal species Globorotalia menardii. We demonstrate that, according to previous assumptions, the presence and reseeding of this fauna in the subtropical southeast Atlantic was driven by interocean exchange south of Africa. The Agulhas transfer strengthened at glacial ice-volume maxima for every glacial-interglacial transition, with maximum reinforcements organized according to a 400-ka periodicity. The long-term dynamics of Agulhas leakage may have played a crucial role in regulating meridional overturning circulation and global climate changes during the Mid-Brunhes event and the Mid-Pleistocene transition, and could also play an important role in the near future. PMID:22508999
NASA Astrophysics Data System (ADS)
Nuber, S.; Thornalley, D.; Forman, M.; Barker, S.; Oppo, D.
2016-12-01
Ocean circulation has been identified as an important climate feedback mechanism in a warming world. An area of particular importance in global ocean circulation is the high latitude North Atlantic and the Nordic Seas. Here, cooling of northward flowing warm surface water produces dense deep water which sinks to the ocean floor and returns southward as part of the Atlantic Meridional Overturning Circulation (AMOC). Density structures in the Nordic Seas can change as a response to enhanced freshwater input (e.g. from the melting Greenland Ice Sheet or a stronger hydrological cycle) which in turn may perturb the AMOC. It is therefore important that we develop our understanding of the relationship between climate and the return flow of dense water formed in the high latitude North Atlantic, focusing in particular on past warm climates that can act as partial analogues for future global warming scenarios. Previous work investigating the Holocene has revealed long-term trends in the strength of the dense overflow from the Nordic Seas into the North Atlantic via Iceland Scotland Overflow Water (ISOW). These changes have been related to variations in the freshwater budget and the water densities in the Nordic Seas (Thornalley et al., 2013). Across earlier interglacials, ISOW dynamics remain poorly constrained. To gain a more complete understanding of the coupling of climate and ISOW during past warm climates, we reconstructed ISOW flow speeds across an additional five Pleistocene interglacials, using the sortable silt proxy and a newly developed calibration curve. We find that there is large variability in inferred ISOW flow speeds between interglacials, as well as different temporal evolution of flow speed through the various interglacials. Our results suggest that preceded deglacial dynamics may be an important influence on the interglacial ISOW flow structure and highlight the tight coupling between climate and the ISOW.
Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.
2014-03-01
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.
Spaceborne studies of ocean circulation
NASA Technical Reports Server (NTRS)
Patzert, W. C.
1984-01-01
The history and near-term future of ocean remote sensing to study ocean circulation are examined. Seasat provided the first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) and laid the foundation for the next generation of satellite missions planned for the late 1980s. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (TOPography EXperiment) and NROSS (Navy Remote Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans' role in climate variability. The significance of such studies to such matters as climatic changes, fisheries, commerce, waste disposal, and national defense is noted.
NASA Astrophysics Data System (ADS)
Huybers, P. J.
2016-12-01
The coupled variations in ice volume, temperature, and atmospheric CO2 during the late Pleistocene are most often represented as involving some combination of orbital forcing, ice dynamics, and ocean circulation. Also previously argued is that changes in glaciation influence atmospheric CO2 concentrations through modifying subaerial volcanic eruptions and CO2 emissions. Building on recent evidence that ocean ridge volcanism responds to changes in sea level, a conceptual model is presented wherein ocean ridges play an important role in generating late-Pleistocene 100 ky glacial cycles on account of an inherent delay in their feedback response. If all volcanic CO2 emissions responded immediately to changes in pressure, subaerial and ocean-ridge volcanic emissions anomalies would merely oppose one another. At ocean ridges, however, the egress of CO2 from the mantle is delayed by tens-of-thousands of years, or longer, owing to ascent time. The simple model involves temperature, ice, and CO2 and is shown to oscillates at 100 ky time scales when incorporating a delayed CO2 contribution from ocean ridge volcanism, even if the feedback accounts for only a small fraction of total changes in CO2. Features of the model that are consistent with observations include that it readily become phase-locked with insolation forcing associated with changes in Earth's orbit, and that temperature variations lead changes in CO2 by several centuries during deglaciation. Under certain parameterizations, a transition from 41 ky to larger 100 ky oscillations occurs during the middle Pleistocene in response to modulations in orbital forcing. This novel description of Pleistocene glaciation should be testable through ongoing advances in understanding the circulation of carbon through the solid earth.
Antarctic sea ice control on ocean circulation in present and glacial climates.
Ferrari, Raffaele; Jansen, Malte F; Adkins, Jess F; Burke, Andrea; Stewart, Andrew L; Thompson, Andrew F
2014-06-17
In the modern climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleoproxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum, resulting in an expansion of the volume occupied by Antarctic origin waters. In this study we show that this rearrangement of deep water masses is dynamically linked to the expansion of summer sea ice around Antarctica. A simple theory further suggests that these deep waters only came to the surface under sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. This unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass may help quantify the ocean's role in regulating atmospheric carbon dioxide on glacial-interglacial timescales. Previous studies pointed to many independent changes in ocean physics to account for the observed swings in atmospheric carbon dioxide. Here it is shown that many of these changes are dynamically linked and therefore must co-occur.
NASA Astrophysics Data System (ADS)
Takakura, Toshinari; Kawamura, Ryuichi; Kawano, Tetsuya; Ichiyanagi, Kimpei; Tanoue, Masahiro; Yoshimura, Kei
2018-01-01
To clarify the time evolution of water origins in the vicinity of a tropical cyclone (TC)'s center, we have simulated Typhoon Man-yi (July 2007) in our case study, using an isotopic regional spectral model. The model results confirm that the replacement of water origins occurs successively as the TC develops and migrates northward over the western North Pacific. It is confirmed that, in this case, a significant proportion of total precipitable water around the cyclone center comes from external regions rather than the underlying ocean during the mature stage of a TC. Similar features can also be seen in the proportion of each oceanic origin to total condensation. Indian Ocean, South China Sea, and Maritime Continent water vapors begin to increase gradually at the developing stage and reach their peak at the decay stage when the TC approaches southwestern Japan. These remote ocean vapors are transported to the east of the cyclone via the moisture conveyor belt, a zone characterized by distinct low-level moisture flux that stretches from the Indian Ocean to the TC, and are further supplied into the inner region of the TC by inflow within the boundary layer associated with its secondary circulation. Since it takes time to undergo these two dynamic processes, the delayed influence of remote ocean vapors on the TC appears to become evident during the mature stage.
The future of spaceborne altimetry. Oceans and climate change: A long-term strategy
NASA Technical Reports Server (NTRS)
Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)
1992-01-01
The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.
NASA Astrophysics Data System (ADS)
Zhang, Rong
2017-08-01
This study identifies key features associated with the Atlantic multidecadal variability (AMV) in both observations and a fully coupled climate model, e.g., decadal persistence of monthly mean subpolar North Atlantic (NA) sea surface temperature (SST) and salinity (SSS) anomalies, and high coherence at low frequency among subpolar NA SST/SSS, upper ocean heat/salt content, and the Atlantic Meridional Overturning Circulation (AMOC) fingerprint. These key AMV features, which can be used to distinguish the AMV mechanism, cannot be explained by the slab ocean model results or the red noise process but are consistent with the ocean dynamics mechanism. This study also shows that at low frequency, the correlation and regression between net surface heat flux and SST anomalies are key indicators of the relative roles of oceanic versus atmospheric forcing in SST anomalies. The oceanic forcing plays a dominant role in the subpolar NA SST anomalies associated with the AMV.
Climate change and ocean deoxygenation within intensified surface-driven upwelling circulations.
Bakun, Andrew
2017-09-13
Ocean deoxygenation often takes place in proximity to zones of intense upwelling. Associated concerns about amplified ocean deoxygenation arise from an arguable likelihood that coastal upwelling systems in the world's oceans may further intensify as anthropogenic climate change proceeds. Comparative examples discussed include the uniquely intense seasonal Somali Current upwelling, the massive upwelling that occurs quasi-continuously off Namibia and the recently appearing and now annually recurring 'dead zone' off the US State of Oregon. The evident 'transience' in causal dynamics off Oregon is somewhat mirrored in an interannual-scale intermittence in eruptions of anaerobically formed noxious gases off Namibia. A mechanistic scheme draws the three examples towards a common context in which, in addition to the obvious but politically problematic remedy of actually reducing 'greenhouse' gas emissions, the potentially manageable abundance of strongly swimming, finely gill raker-meshed small pelagic fish emerges as a plausible regulating factor.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Hams, J. E.
2015-12-01
This session will present educational activities developed for an introductory Oceanography lecture and laboratory class by NOAA Teacher-at-Sea Jacquelyn Hams following participation in Leg 3 of Project DYNAMO (Dynamics of the Madden-Julian Oscillation) in November-December 2011. The Madden-Julian Oscillation (MJO) is an important tropical weather phenomenon with origins in the Indian Ocean that impacts many other global climate patterns such as the El Nino Southern Oscillation (ENSO), Northern Hemisphere monsoons, tropical storm development, and pineapple express events. The educational activities presented include a series of lessons based on the observational data collected during Project DYNAMO which include atmospheric conditions, wind speeds and direction, surface energy flux, and upper ocean turbulence and mixing. The lessons can be incorporated into any introductory Oceanography class discussion on ocean properties such as conductivity, temperature, and density, ocean circulation, and layers of the atmosphere. A variety of hands-on lessons will be presented ranging from short activities used to complement a lecture to complete laboratory exercises.
Yamamoto, Ayako; Palter, Jaime B
2016-03-15
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline.
NASA Astrophysics Data System (ADS)
Heslop, E. E.; Tintore, J.; Ruiz, S.; Allen, J.; López-Jurado, J. L.
2014-12-01
A quiet revolution is taking place in ocean observations; in the last decade new multi-platform, integrated ocean observatories have been progressively implemented by forward looking countries with ocean borders of economic and strategic importance. These systems are designed to fill significant gaps in our knowledge of the ocean state and ocean variability, through long-term, science and society-led, ocean monitoring. These ocean observatories are now delivering results, not the headline results of a single issue experiment, but carefully and systematically improving our knowledge of ocean variability, and thereby, increasing model forecast skill and our ability to link physical processes to ecosystem response. Here we present the results from a 3-year quasi-continuous glider monitoring of a key circulation 'choke' point in the Western Mediterranean, undertaken by SOCIB (Balearic Islands Coastal Ocean Observing and Forecasting System). For the first time data from the high frequency glider sampling show variations in the transport volumes of water over timescales of days to weeks, as large as those previously only identifiable as seasonal or eddy driven. Although previous surveys noted high cruise-to-cruise variability, they were insufficient to show that in fact water volumes exchanged through this narrow 'choke' point fluctuate on 'weather' timescales. Using the glider data to leverage an 18-year record of ship missions, we define new seasonal cycles for the exchange of watermasses, challenging generally held assumptions. The pattern of the exchange is further simplified through the characterisation of 5 circulation modes and the defining of a new seasonal cycle for the interplay between mesoscale and basin scale dynamics. Restricted 'choke points' between our ocean basins are critical locations to monitor water transport variability, as they constrain the inter-basin exchange of heat, salt and nutrients. At the Ibiza Channel 'choke' point, the exchange of watermass is known to affect local ecosystems, including the spawning grounds of commercially important fish stocks, at a biodiversity hotspot. This new insight will be vital in improving our ocean model forecast skill and in the development of integrated ocean products for society.
Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles.
Putman, Nathan F; Verley, Philippe; Endres, Courtney S; Lohmann, Kenneth J
2015-04-01
During long-distance migrations, animals navigate using a variety of sensory cues, mechanisms and strategies. Although guidance mechanisms are usually studied under controlled laboratory conditions, such methods seldom allow for navigation behavior to be examined in an environmental context. Similarly, although realistic environmental models are often used to investigate the ecological implications of animal movement, explicit consideration of navigation mechanisms in such models is rare. Here, we used an interdisciplinary approach in which we first conducted lab-based experiments to determine how hatchling loggerhead sea turtles (Caretta caretta) respond to magnetic fields that exist at five widely separated locations along their migratory route, and then studied the consequences of the observed behavior by simulating it within an ocean circulation model. Magnetic fields associated with two geographic regions that pose risks to young turtles (due to cold wintertime temperatures or potential displacement from the migratory route) elicited oriented swimming, whereas fields from three locations where surface currents and temperature pose no such risk did not. Additionally, at locations with fields that elicited oriented swimming, simulations indicate that the observed behavior greatly increases the likelihood of turtles advancing along the migratory pathway. Our findings suggest that the magnetic navigation behavior of sea turtles is intimately tied to their oceanic ecology and is shaped by a complex interplay between ocean circulation and geomagnetic dynamics. © 2015. Published by The Company of Biologists Ltd.
Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee
The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics throughmore » atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.« less
Revisiting tropical instability wave variability in the Atlantic ocean using SODA reanalysis
NASA Astrophysics Data System (ADS)
de Decco, Hatsue Takanaca; Torres Junior, Audalio Rebelo; Pezzi, Luciano Ponzi; Landau, Luiz
2018-03-01
The spatial and temporal variability of energy exchange in Tropical Instability Waves (TIWs) in the Atlantic Ocean were investigated. A spectral analysis was used to filter the 5-day mean results from Simple Ocean Data Assimilation (SODA) reanalysis spanning from 1958 to 2008. TIWs were filtered over periods of 15 to 60 days and between wavelengths of 4 and 20 longitude degrees. The main approach of this study was the use of bidirectionally filtered TIW time series as the perturbation fields, and the difference in these time series from the SODA total results was considered to be the basic state for energetics analysis. The main result was that the annual cycle (period of 360 days) was the main source of variability of the waves, and the semi-annual cycle (period of 180 days) was a secondary variation, which indicated that TIWs occurred throughout the year but with intensity that varies seasonally. In SODA, barotropic instability acts as the mechanism that feeds and extracts energy to/from TIWs at equatorial Atlantic. Baroclinic instability is the main mechanism that extracts energy from TIWs to the equatorial circulation north of the Equator. All TIW patterns of variability were observed western of 10° W. The present study reveals new evidences regarding TIW variability and suggests that future investigations should include a detailed description of TIW dynamics as part of Atlantic Ocean equatorial circulation.
NASA Astrophysics Data System (ADS)
Ponte, Aurélien L.; Klein, Patrice; Dunphy, Michael; Le Gentil, Sylvie
2017-03-01
The performance of a tentative method that disentangles the contributions of a low-mode internal tide on sea level from that of the balanced mesoscale eddies is examined using an idealized high resolution numerical simulation. This disentanglement is essential for proper estimation from sea level of the ocean circulation related to balanced motions. The method relies on an independent observation of the sea surface water density whose variations are 1/dominated by the balanced dynamics and 2/correlate with variations of potential vorticity at depth for the chosen regime of surface-intensified turbulence. The surface density therefore leads via potential vorticity inversion to an estimate of the balanced contribution to sea level fluctuations. The difference between instantaneous sea level (presumably observed with altimetry) and the balanced estimate compares moderately well with the contribution from the low-mode tide. Application to realistic configurations remains to be tested. These results aim at motivating further developments of reconstruction methods of the ocean dynamics based on potential vorticity dynamics arguments. In that context, they are particularly relevant for the upcoming wide-swath high resolution altimetric missions (SWOT).
NASA Astrophysics Data System (ADS)
Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant
2018-03-01
In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily responsible for the strong subsurface warm bias over the EEIO. This study advocates the importance of understanding the ability of the models in representing the large scale air-sea interactions over the tropics and their impact on ocean biases for better monsoon forecast.
Water circulation and global mantle dynamics: Insight from numerical modeling
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru
2015-05-01
We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.
Meridional Transect of Atlantic Overturning Circulation across the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Pena, L. D.; Seguí, M. J.; Kim, J.; Yehudai, M.; Farmer, J. R.; Ford, H. L.; Haynes, L.; Hoenisch, B.; Raymo, M. E.; Ferretti, P.; Bickert, T.
2016-12-01
The Mid-Pleistocene Transition (MPT) marked a major transition in glacial-interglacial periodicity from dominantly 41 kyr to 100 kyr cycles between 1.3-0.7 Ma. From Nd isotope records in the South Atlantic, Pena and Goldstein (Science, 2014) concluded that the Atlantic overturning circulation circulation experienced major weakening between 950-850 ka (MIS 25-21), which generated the climatic conditions that intensified cold periods, prolonged their duration, and stabilized 100 kyr cycles. Such weakening would provide a mechanism for decreased atmospheric CO2 (Hönisch et al., Science, 2009) by allowing for additional atmospheric CO2 to be stored in the deep ocean. We present a summary of work in-progress to generate two dimensional representations of the Atlantic meridional overturning circulation, from the north Atlantic to the Southern Ocean, at different time slices over the past 2Ma, including the MPT, based on Nd isotope ratios measured on Fe-Mn-oxide encrusted foraminifera and fish debris. Thus far we are analyzing samples from DSDP/ODP Sites 607, 1063 from the North Atlantic, 926 from the Equatorial Atlantic, 1264, 1267, 1088, 1090 in the South Atlantic, and 1094 from the Southern Ocean. Our data generated thus far support important changes in the overturning circulation during the MPT, and greater glacial-interglacial variability in the 100 kyr world compared with the 40 kyr world. In addition, the data indicate a North Atlantic-sourced origin for the ocean circulation disruption during the MPT. Comparison with ɛNd records in different ocean basins and with benthic foraminiferal δ13C and B/Ca ratios will also allow us to understand the links between deep ocean circulation changes and the global carbon cycle.
NASA Astrophysics Data System (ADS)
Jacobs, Zoe; Popova, Katya; Hirschi, Joel; Coward, Andrew; Yool, Andrew; van Gennip, Simon; Anifowose, Babtunde; Harrington-Missin, Liam
2017-04-01
Although oil blowouts from deep-water drilling happen very rarely, they can cause catastrophic damage to the environment. Despite such potentially high impacts, relatively little research effort has gone into understanding subsurface oil plumes in the deep ocean. In this study, we demonstrate the significance of this problem and offer potential solutions using a novel approach based on a leading-edge, high-resolution global ocean circulation model. We present examples demonstrating: (a) the importance of ocean circulation in the propagation of oil spills; and (b) likely circulation footprints for oil spills at four key locations in the Atlantic Ocean that exist in different circulation regimes - the shelves of Brazil, the Gulf of Guinea, the Gulf of Mexico and the Faroe-Shetland Channel. In order to quantify the variability at each site on seasonal timescales, interannual timescales and at different depths, we utilize the Modified Hausdorff Distance (MHD), which is a shape-distance metric that measures the similarity between two shapes. The scale of the footprints across the four focus locations varies considerably and is determined by the main circulation features in their vicinity. For example, the hypothetical oil plume can be affected by variations in the speed and location of a particular current (e.g. Brazil Current at the Brazilian shelf site) or be influenced by different currents entirely depending on the release depth, month and year (e.g. Angola Current or Southern Equatorial Current at the Gulf of Guinea site). Overall, our results demonstrate the need to use state of the art global, or basin-scale, ocean circulation models when assessing the environmental impacts of proposed oil drilling activities.
Reconstructing Deep Ocean Circulation in the North Atlantic from Bermuda Rise, and Beyond
NASA Astrophysics Data System (ADS)
McManus, J. F.
2016-12-01
The large-scale subsurface circulation of the ocean is an important component of the Earth's climate system, and contributes to the global and regional transport of heat and mass. Assessing how this system has changed in the past is thus a priority for understanding natural climate variability. A long-coring campaign on Bermuda Rise has provided additional abundant high-quality sediments from this site of rapid accumulation in the deep western basin, situated beneath the subtropical gyre of the North Atlantic Ocean. These sediments allow the high-resolution reconstruction of deepwater chemistry and export from this key location throughout the last 150,000 years, covering the entire last glacial cycle in a continuous section of 35 meters in core KNR191-CDH19. The suite of proxy indicators analyzed includes uranium-series disequilibria, neodymium isotopes, and benthic stable isotopes. Combined with multiple previous studies of nearby cores on Bermuda Rise, the published and new proxy data from CDH19 confirm the variability of the deep circulation in the Atlantic Ocean in association with past climate changes. The multiple indicators, along with complementary data from other locations, display coherent evidence for contrasts between deep circulation during glacial and interglacial intervals, with persistent strong, deep ventilation only within the peak interglacial of marine isotope stage 5e (MIS 5e) and the Holocene. In contrast, repeated, dramatic variability in deep ocean circulation accompanied the millennial climate changes of the last glaciation and deglaciation. The largest magnitude circulation shifts occurred at the transitions into stadials associated with the Hudson strait iceberg discharges and between them and the ensuing northern interstadial warmings, significantly exceeding that of the overall glacial-interglacial difference, highlighting the potential oceanographic and climatic importance of short-term perturbations to the deep ocean circulation.
NASA Technical Reports Server (NTRS)
Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.
1995-01-01
This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.
NASA Astrophysics Data System (ADS)
Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian
2014-05-01
The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.
NASA Technical Reports Server (NTRS)
Koblinsky, C. J.
1984-01-01
Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.
Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.
Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S
2018-03-05
Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.
The influence of Seychelles Dome on the large scale Tropical Variability
NASA Astrophysics Data System (ADS)
Manola, Iris; Selten, Frank; Hazeleger, Wilco
2013-04-01
The Seychelles Dome (SD) is the thermocline ridge just South of the equator in the Western Indian Ocean basin. It is characterized by strong atmospheric convection and a shallow thermocline and is associated with large intraseasonal convection and SST variability (Harrison and Vecchi 2001). The SD is influenced by surface and subsurface processes, such as air-sea fluxes, Ekman upwelling from wind stress curl, ocean dynamics (vertical mixing) and oceanic Rossby waves from southeastern Indian Ocean. The favoring season for a strong SD is the boreal winter, where the thermocline is most shallow. Then the southeasterly trade winds converge with the northwesterly monsoonal winds over the intertropical convergence zone and cause cyclonic wind stress curl that drives Ekman divergence and a ridging of the thermocline. It is found that the subseasonal and interranual variability of the SD is influenced by large scale events, such as the Indian Ocean Dipole (IOD), the ENSO and the Madden-Julian Oscillation (MJO) (Tozuka et al., 2010, Lloyd and Vecchi, 2010). The SD is enhanced by cooling events in the Western Indian Ocean and easterly winds that raise the thermocline and increase the upwelling. This can be associated with a strong Walker circulation, like negative IOD conditions or La Nina-like conditions. So far the studies focus on the origins of the SD variability, but the influence of the SD itself on regional or large scale climate is largely unknown. In this study we focus on the influence of the SD variations on the large scale tropical circulation. We analyze the covariance of the SD variations and the tropical circulation in a 200 year control imulation of the climate model EC-EARTH and perform idealized SST forced simulations to study the character of the atmospheric response and its relation to ENSO, IOD and MJO. References -Harrison, D. E. and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28, 3717-3720. -Lloyd, I. D., and G. A. Vecchi, 2010: Submonthly Indian Ocean cooling events and their interaction with large-scale conditions. J. Climate, 23, 700-716. -Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, doi:10.1029/2009JC005547.
Climate and Ocean Circulation During "The Boring Billion" Simulated by CCSM3
NASA Astrophysics Data System (ADS)
Liu, P.; Hu, Y.; Liu, Y.
2017-12-01
The Boring Billion is referred to the era between approximately 1.8 and 0.8 billion years ago. Geological evidence suggests that no dramatic climate changes in the billions of years, at least in terms of permanent glaciation. The atmospheric oxygen maintained at a relatively low level without significant perturbations. Life had a certain degree of evolution with a quite gentle pace. Relative to the Great Oxidation Event occurred previously, and the Snowball Earth Event and Cambrian Explosion occurred afterwards, this billion years was calm in all aspects so it's often referred to as "the Boring Billion". Why were both the climate and oxygen concentration so stable, and how the anoxic condition in the deep ocean maintained are the questions that motivated our research. We use the Atmosphere Ocean General Circulation Model CCSM3 in this study. The climate of the Boring Billion is simulated for two distinct continental configurations reconstructed for 1540 Ma and 1420 Ma, with continental fragments concentrating towards the North Pole and equator, respectively. The solar constant is set to be 10% weaker than that of the present day. The results show that when the concentration of CO2 is 20 times the present atmospheric level (PAL), the global mean surface temperatures are 19 ° C and 20 ° C for the 1540 Ma and 1420 Ma continental configuration, respectively. Large scale permanent glaciers cannot develop in such a warm climate even for the continents at the polar region. The largest mixed-layer depth in the high-latitude ocean is approximately 1200 m and meridional overturning circulation can reach depth of 3000 m with strength of 40 Sv for both continental configuration. This implies that the material and energy exchange between shallow and deep ocean, as well as atmosphere and ocean, is efficient. When CO2 concentration is reduced to 10 PAL, 5 PAL or 2.5 PAL, global average temperature becomes 16 ° C, 13 ° C and 2 ° C respectively, and permanent glaciers start to form at the polar regions. Therefore, our simulations suggest that the CO2 concentration had to be close to or higher than 20 PAL in order for the simulated climate to be consistent with the observations. Moreover, the oceans were not dynamically stratified, to maintain an anoxic deep ocean biogeochemical processes which are not included in the model have to be invoked.
NASA Astrophysics Data System (ADS)
Li, Xiaoqiong; Ting, Mingfang
2017-10-01
Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.
Lagrangian ocean analysis: Fundamentals and practices
van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; ...
2017-11-24
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. A variety of tools and methods for this purpose have emerged, over several decades. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolvedmore » physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. Our overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.« less
Lagrangian ocean analysis: Fundamentals and practices
NASA Astrophysics Data System (ADS)
van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H. A. M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.
2018-01-01
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
Lagrangian ocean analysis: Fundamentals and practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. A variety of tools and methods for this purpose have emerged, over several decades. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolvedmore » physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. Our overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.« less
Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea
NASA Astrophysics Data System (ADS)
Bruneau, Nicolas; Zika, Jan; Toumi, Ralf
2017-10-01
We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.
Iceberg discharges of the last glacial period driven by oceanic circulation changes
Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa; Ritz, Catherine
2013-01-01
Proxy data reveal the existence of episodes of increased deposition of ice-rafted detritus in the North Atlantic Ocean during the last glacial period interpreted as massive iceberg discharges from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence of the crucial role that the ocean plays both for past and future behavior of the cryosphere suggests a climatic control of these ice surges. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet–ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg discharge that closely agrees with ice-rafted debris records over the past 80 ka, indicating that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age. PMID:24062437
Nathalie F. Goodkin,; Bo-Shian Wang,; Chen-Feng You,; Konrad Hughen,; Prouty, Nancy G.; Bates, Nicholas; Scott Doney,
2015-01-01
The oceans absorb anthropogenic CO2 from the atmosphere, lowering surface ocean pH, a concern for calcifying marine organisms. The impact of ocean acidification is challenging to predict as each species appears to respond differently and because our knowledge of natural changes to ocean pH is limited in both time and space. Here we reconstruct 222 years of biennial seawater pH variability in the Sargasso Sea from a brain coral, Diploria labyrinthiformis. Using hydrographic data from the Bermuda Atlantic Time-series Study and the coral-derived pH record, we are able to differentiate pH changes due to surface temperature versus those from ocean circulation and biogeochemical changes. We find that ocean pH does not simply reflect atmospheric CO2 trends but rather that circulation/biogeochemical changes account for >90% of pH variability in the Sargasso Sea and more variability in the last century than would be predicted from anthropogenic uptake of CO2 alone.
Satellite-enhanced dynamical downscaling for the analysis of extreme events
NASA Astrophysics Data System (ADS)
Nunes, Ana M. B.
2016-09-01
The use of regional models in the downscaling of general circulation models provides a strategy to generate more detailed climate information. In that case, boundary-forcing techniques can be useful to maintain the large-scale features from the coarse-resolution global models in agreement with the inner modes of the higher-resolution regional models. Although those procedures might improve dynamics, downscaling via regional modeling still aims for better representation of physical processes. With the purpose of improving dynamics and physical processes in regional downscaling of global reanalysis, the Regional Spectral Model—originally developed at the National Centers for Environmental Prediction—employs a newly reformulated scale-selective bias correction, together with the 3-hourly assimilation of the satellite-based precipitation estimates constructed from the Climate Prediction Center morphing technique. The two-scheme technique for the dynamical downscaling of global reanalysis can be applied in analyses of environmental disasters and risk assessment, with hourly outputs, and resolution of about 25 km. Here the satellite-enhanced dynamical downscaling added value is demonstrated in simulations of the first reported hurricane in the western South Atlantic Ocean basin through comparisons with global reanalyses and satellite products available in ocean areas.
Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes
NASA Astrophysics Data System (ADS)
Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin
2016-04-01
Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.
Paleoclimate: A fresh look at glacial floods
Colman, S. M.
2002-01-01
Over the last 20 years, it has become clear that ice ages are characterized by glacial as well as climatic instability on millennial time scales. In his Perspective, Colman highlights two recent papers investigating the role of glacial meltwater and continental drainage in this instability. The results suggest a fundamental instability feedback between ocean circulation and ice sheet dynamics and provides an explanation for why instability was greatest at times of intermediate ice volume.
Colman, Steven M.
2002-01-01
Over the last 20 years, it has become clear that ice ages are characterized by glacial as well as climatic instability on millennial time scales. In his Perspective, Colman highlights two recent papers investigating the role of glacial meltwater and continental drainage in this instability. The results suggest a fundamental instability feedback between ocean circulation and ice sheet dynamics and provides an explanation for why instability was greatest at times of intermediate ice volume.
Dynamic Topography of the Bering Sea
2011-01-01
ai, 2006a]. A disadvantage of this approach is its computational cost which prevents production of global 4DVar analyses [ Stammer et ai, 2002...Panteleev et al., 2007 ]. The numerical model is a modification of the C grid, z coordinate Ocean General Circulation Model (OGCM) designed by Madec...Res. Lett., 33. L09609, doi:l0.1029/2005GL024974. Pantclccv, G. G., A. Proshutinsky, M. Kulakov. D. A. Ncchacv, and W. Maslowski ( 2007
Impact of Seawater Nonlinearities on Nordic Seas Circulation
NASA Astrophysics Data System (ADS)
Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.
2017-12-01
The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.
NASA Technical Reports Server (NTRS)
Ganachaud, Alexandre; Wunsch, Carl; Kim, Myung-Chan; Tapley, Byron
1997-01-01
A global estimate of the absolute oceanic general circulation from a geostrophic inversion of in situ hydrographic data is tested against and then combined with an estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model computed using the JGM-3 gravity-field solution. Within the quantitative uncertainties of both the hydrographic inversion and the geoid estimate, the two estimates derived by very different methods are consistent. When the in situ inversion is combined with the altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully consistent with both hydrography and altimetry, is found. There is, however, little reduction in the uncertainties of the calculated ocean circulation and its mass and heat fluxes because the best available geoid estimate remains noisy relative to the purely oceanographic inferences. The conclusion drawn from this is that the comparatively large errors present in the existing geoid models now limit the ability of satellite altimeter data to improve directly the general ocean circulation models derived from in situ measurements. Because improvements in the geoid could be realized through a dedicated spaceborne gravity recovery mission, the impact of hypothetical much better, future geoid estimates on the circulation uncertainty is also quantified, showing significant hypothetical reductions in the uncertainties of oceanic transport calculations. Full ocean general circulation models could better exploit both existing oceanographic data and future gravity-mission data, but their present use is severely limited by the inability to quantify their error budgets.
Interactions Between Ocean Circulation and Topography in Icy Worlds
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2018-05-01
To what extent does topography at the water-rock interface control the general circulation patterns of icy world oceans? And contrariwise, to what extent does liquid flow control the topography at the ice-water interface (or interfaces)?
Vertical eddy diffusivity as a control parameter in the tropical Pacific
NASA Astrophysics Data System (ADS)
Martinez Avellaneda, N.; Cornuelle, B.
2011-12-01
Ocean models suffer from errors in the treatment of turbulent sub-grid-scale motions responsible for mixing and energy dissipation. Unrealistic small-scale physics in models can have large-scale consequences, such as biases in the upper ocean temperature, a symptom of poorly-simulated upwelling, currents and air-sea interactions. This is of special importance in the tropical Pacific Ocean (TP), which is home to energetic air-sea interactions that affect global climate. It has been shown in a number of studies that the simulated ENSO variability is highly dependent on the state of the ocean (e.g.: background mixing). Moreover, the magnitude of the vertical numerical diffusion is of primary importance in properly reproducing the Pacific equatorial thermocline. This work is part of a NASA-funded project to estimate the space- and time-varying ocean mixing coefficients in an eddy-permitting (1/3dgr) model of the TP to obtain an improved estimate of its time-varying circulation and its underlying dynamics. While an estimation procedure for the TP (26dgr S - 30dgr N) in underway using the MIT general circulation model, complementary adjoint-based sensitivity studies have been carried out for the starting ocean state from Forget (2010). This analysis aids the interpretation of the estimated mixing coefficients and possible error compensation. The focus of the sensitivity tests is the Equatorial Undercurrent and sub-thermocline jets (i.e., Tsuchiya Jets), which have been thought to have strong dependence on vertical diffusivity and should provide checks on the estimated mixing parameters. In order to build intuition for the vertical diffusivity adjoint results in the TP, adjoint and forward perturbed simulations were carried out for an idealized sharp thermocline in a rectangular domain.
Decadal prediction skill using a high-resolution climate model
NASA Astrophysics Data System (ADS)
Monerie, Paul-Arthur; Coquart, Laure; Maisonnave, Éric; Moine, Marie-Pierre; Terray, Laurent; Valcke, Sophie
2017-11-01
The ability of a high-resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of a quarter of a degree in the ocean and of about 0.5° in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed based on initialized hindcasts over the 1993-2009 period. Significant skill in predicting sea surface temperatures is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). The model skill is mainly due to the external forcing associated with well-mixed greenhouse gases. A decrease in the global warming rate associated with a negative phase of the Pacific Decadal Oscillation is simulated by the model over a suite of 10-year periods when initialized from starting dates between 1999 and 2003. The model ability to predict regional change is investigated by focusing on the mid-90's Atlantic Ocean subpolar gyre warming. The model simulates the North Atlantic warming associated with a meridional heat transport increase, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation: a negative sea level pressure anomaly, located south of the subpolar gyre is associated with a wind speed decrease over the subpolar gyre. This leads to a reduced oceanic heat-loss and favors a northward displacement of anomalously warm and salty subtropical water that both concur to the subpolar gyre warming. We finally conclude that the subpolar gyre warming is mainly triggered by ocean dynamics with a possible contribution of atmospheric circulation favoring its persistence.
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Brodeau, L.; Brandefelt, J.; Lundberg, P.; Döös, K.
2013-01-01
Most state-of-the-art climate models include a coarsely resolved oceanic component, which has difficulties in capturing detailed dynamics, and therefore eddy-permitting/eddy-resolving simulations have been developed to reproduce the observed World Ocean. In this study, an eddy-permitting numerical experiment is conducted to simulate the global ocean state for a period of the Last Glacial Maximum (LGM, ~ 26 500 to 19 000 yr ago) and to investigate the improvements due to taking into account these higher spatial scales. The ocean general circulation model is forced by a 49-yr sample of LGM atmospheric fields constructed from a quasi-equilibrated climate-model simulation. The initial state and the bottom boundary condition conform to the Paleoclimate Modelling Intercomparison Project (PMIP) recommendations. Before evaluating the model efficiency in representing the paleo-proxy reconstruction of the surface state, the LGM experiment is in this first part of the investigation, compared with a present-day eddy-permitting hindcast simulation as well as with the available PMIP results. It is shown that the LGM eddy-permitting simulation is consistent with the quasi-equilibrated climate-model simulation, but large discrepancies are found with the PMIP model analyses, probably due to the different equilibration states. The strongest meridional gradients of the sea-surface temperature are located near 40° N and S, this due to particularly large North-Atlantic and Southern-Ocean sea-ice covers. These also modify the locations of the convection sites (where deep-water forms) and most of the LGM Conveyor Belt circulation consequently takes place in a thinner layer than today. Despite some discrepancies with other LGM simulations, a glacial state is captured and the eddy-permitting simulation undertaken here yielded a useful set of data for comparisons with paleo-proxy reconstructions.
NASA Astrophysics Data System (ADS)
Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.
2014-10-01
Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.
2014-03-01
The change of the thermohaline circulation (THC) between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present day climate are explored using an Ocean General Circulation Model and stream functions projected in various coordinates. Compared to the present day period, the LGM circulation is reorganised in the Atlantic Ocean, in the Southern Ocean and particularly in the abyssal ocean, mainly due to the different haline stratification. Due to stronger wind stress, the LGM tropical circulation is more vigorous than under modern conditions. Consequently, the maximum tropical transport of heat is slightly larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes and reorganising the freshwater transport. The LGM circulation is represented as a large intrusion of saline Antarctic Bottom Water into the Northern Hemisphere basins. As a result, the North Atlantic Deep Water is shallower in the LGM simulation. The stream functions in latitude-salinity coordinates and thermohaline coordinates point out the different haline regimes between the glacial and interglacial period, as well as a LGM Conveyor Belt circulation largely driven by enhanced salinity contrast between the Atlantic and the Pacific basin. The thermohaline structure in the LGM simulation is the result of an abyssal circulation that lifts and deviates the Conveyor Belt cell from the area of maximum volumetric distribution, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimation of the turnover times reveal a deep circulation almost sluggish during the LGM, and a Conveyor Belt cell more vigorous due to the combination of stronger wind stress and shortened circulation route.
2008-07-06
bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The...small values below the sill depth in all of the simulations. e The upper ocean northward flow of the meridional overturning circulation (MOC) is...plus the northward upper ocean flow (14 Sv) of the meridional overturning circulation (MOC). The mean Gulf Stream IR northwall pathway ±lrr from
Causes of strong ocean heating during glacial periods
NASA Astrophysics Data System (ADS)
Zimov, N.; Zimov, S. A.
2013-12-01
During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface are taken as constant. Energy income to the interior box from the geothermal heat flux is also taken as constant. Even though energy inputs are taken as constants, the model manages to recreate the glacial-interglacial cycles. In the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior box accumulates heat, while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal convection take place, and the ocean quickly (within 14,600 years) releases the heat. The magnitude and duration of such cycles correspond with magnitudes and durations reconstructed for actual glacial-interglacial cycles. From the proposed mechanism it follows that during the glaciations it is likely that the Arctic Ocean was a big reservoir of isotopically light fresh ice. If in a glacial period, the World Ocean were half filled with warm water from the Red Sea and bioproductivity of the ocean declined because of the slow circulation, then carbon storage within the ocean reservoir would decline by ~2000 Pg (10^15 g) of carbon.
Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Astrophysics Data System (ADS)
Trossman, D.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-12-01
We argue that a substantial fraction of the uncertainty in the cloud radiative feedback during transient climate change may be due to uncertainty in the ocean circulation perturbation. A suite of climate model simulations in which the ocean circulation, the cloud radiative feedback, or a combination of both are held fixed while CO2 doubles, shows that changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback. Specifically, a slowdown in the Atlantic Meridional Overturning Circulation (AMOC) helps to maintain low cloud cover in the Northern Hemisphere extratropics. We propose that the AMOC decline increases the meridional SST gradient, strengthening the storm track, its attendant clouds and the amount of shortwave radiation they reflect back to space. If the results of our model were to scale proportionately in the CMIP5 models, whose AMOC decline ranges from 15 to 60% under RCP8.5, then as much as 70% of the intermodel spread in the cloud radiative feedback and 35% of the spread in the transient climate response could possibly stem from the model representations of AMOC decline.
Depth of origin of ocean-circulation-induced magnetic signals
NASA Astrophysics Data System (ADS)
Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik
2018-01-01
As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.
Equatorial dynamics in a 2 {1}/{2}- layer model
NASA Astrophysics Data System (ADS)
McCreary, Julian P.; Yu, Zuojun
A nonlinear, 2 {1}/{2}- layer model is used to study the dynamics of wind-driven equatorial ocean circulation, including the generation of mean flows and instabilities. The model allows water to entrain into, and detrain from, the upper layer, and as a consequence the temperatures of the two active layers can vary. The model ocean basin is rectangular, extends 100° zonally, and for most solutions has open boundaries at 15°S and 15°N. All solutions are forced by a switched-on wind field that is an idealized version of the Pacific trades: the wind is westward, uniform in the meridional direction (so it has no curl), located primarily in the central and eastern oceans, and in most cases it has an amplitude of 0.5 dyn cm -2. For reasonable choices of parameters, solutions adjust to have a realistic equatorial circulation with a westward surface jet, an eastward undercurrent, and with upwelling and cool sea surface temperature in the eastern ocean. Most of the meridional circulation (81% of the transport) is part of a closed tropical circulation cell, in which water upwells in the eastern, equatorial ocean and downwells elsewhere in the basin; the rest participates in a mid-latitude circulation cell with lower-layer water entering the basin and upper-layer water leaving it through the open boundaries. Three basic types of unstable disturbances are generated in the eastern ocean: two of them are antisymmetric about the equator, one being surface-trapped with a period of about 21 days (f 1), and the other predominantly a lower-layer oscillation with periods ranging from 35 to 53 days (f 2) that causes the undercurrent to meander; the third is symmetric with a period of about 28 days (f 0) and a structure like that of a first-meridional-mode Rossby wave. The amplitudes of the disturbances are sensitive to model parameters, and as parameter values are varied systematically solutions appear to follow variations of the quasi-periodic route to turbulence, one of the common transitions to chaotic behavior. Realistic mean flows develop only when detrainment and lower-layer cooling are present in the model physics, processes that are necessary for the generation of a tropical circulation cell: without detrainment, water accumulutes in the upper layer until entrainment ceases and the model adjusts to Sverdrup balance, which is a state of rest for a wind without curl; without cooling, the temperature of the lower layer slowly rises until it approaches that of the upper layer. The mean-momentum budget for the upper layer shows that the model's Reynolds-stress terms are not a significant part of the momentum balance, having a maximum amplitude only about 19% of the wind stress. In contrast, the mean-heat budget demonstrates that eddy heating warms the cold tongue significantly, with an amplitude as large as the heating through the surface. Interestingly, the time-averaged continuity equations indicate that the instabilities tend to increase the upward tilt of the upper-layer interface toward the equator. When layer temperatures are kept fixed only a weak version of disturbance f 1 develops, indicating that the equatorial temperature front is an important aspect of instability dynamics. In fact, a frontal instability does exist in the model; it involves the conversion of mean to eddy potential energy, but it is the mean energy associated with the variable upper-layer temperature field, rather than with tilted layer interfaces, as is the case for traditional baroclinic instability. Perturbation-energy budgets suggest that frontal, barotropic and Kelvin-Helmholtz instabilities are energy sources for the disturbances, whereas traditional baroclinic instability is an energy sink. The two, fastest growing, antisymmetric, unstable-wave solutions to a linearized version of the model correspond closely to disturbances f 1 and f 2 from the nonlinear model, and perturbation-energy budgets for these waves indicate that their energy sources are primarily frontal instability and lower-layer barotropic instability, respectively.
The climate response of the Indo-Pacific warm pool to glacial sea level
NASA Astrophysics Data System (ADS)
Di Nezio, Pedro N.; Timmermann, Axel; Tierney, Jessica E.; Jin, Fei-Fei; Otto-Bliesner, Bette; Rosenbloom, Nan; Mapes, Brian; Neale, Rich; Ivanovic, Ruza F.; Montenegro, Alvaro
2016-06-01
Growing climate proxy evidence suggests that changes in sea level are important drivers of tropical climate change on glacial-interglacial timescales. These paleodata suggest that rainfall patterns over the Indo-Pacific warm pool (IPWP) are highly sensitive to the landmass configuration of the Maritime Continent and that lowered sea level contributed to large-scale drying during the Last Glacial Maximum (LGM, approximately 21,000 years B.P.). Using the Community Earth System Model Version 1.2 (CESM1), we investigate the mechanisms by which lowered sea level influenced the climate of the IPWP during the LGM. The CESM1 simulations show that, in agreement with previous hypotheses, changes in atmospheric circulation are initiated by the exposure of the Sunda and Sahul shelves. Ocean dynamical processes amplify the changes in atmospheric circulation by increasing the east-west sea surface temperature (SST) gradient along the equatorial Indian Ocean. The coupled mechanism driving this response is akin to the Bjerknes feedback and results in a large-scale climatic reorganization over the Indian Ocean with impacts extending from east Africa to the western tropical Pacific. Unlike exposure of the Sunda shelf, exposure of Sahul shelf and the associated changes in surface albedo play a key role because of the positive feedback. This mechanism could explain the pattern of dry (wet) eastern (western) Indian Ocean identified in climate proxies and LGM simulations. However, this response also requires a strengthened SST gradient along the equatorial Indian Ocean, a pattern that is not evident in marine paleoreconstructions. Strategies to resolve this issue are discussed.
NASA Astrophysics Data System (ADS)
Alix, Claire
2005-07-01
Driftwood that originates in the Siberian and North American boreal forest is the major source of wood to people in the treeless Arctic. It archives various kinds of data about climate, river flow, ocean and ice circulation, and other critical environmental and cultural characteristics in the north. Unlike wood in most other regions, it is often well preserved in arctic archaeological sites. The existence and renewal of driftwood are closely linked to specific climatic and ecological conditions that have changed through time (e.g., floods, river banks, storms, prevailing currents and winds, sea-ice circulation, etc.). These conditions differently affect the fall, circulation and delivery of driftwood to the coast, resulting in changes in abundance, distribution and intrinsic properties of the wood. Based on a review of existing literature supplemented by new data from Alaska, this paper details factors underlying the "dynamic of driftwood production" in terms of driftwood abundance and quality, and indigenous people's use of the resource. Oral history interviews in coastal and river communities of Alaska recorded knowledge on driftwood use and ecology. Driftwood samples were collected from accumulations along the northwest coast of Alaska and the south of the Chukotka Peninsula. Results show that the timing of treefall and river transport are crucial to the subsequent ocean circulation and may determine the size and quality of the wood. Ultimately, it conditions what coastal people could build or manufacture.
NASA Astrophysics Data System (ADS)
Kwiatkowski, L.; Yool, A.; Allen, J. I.; Anderson, T. R.; Barciela, R.; Buitenhuis, E. T.; Butenschön, M.; Enright, C.; Halloran, P. R.; Le Quéré, C.; de Mora, L.; Racault, M.-F.; Sinha, B.; Totterdell, I. J.; Cox, P. M.
2014-07-01
Ocean biogeochemistry (OBGC) models span a wide range of complexities from highly simplified, nutrient-restoring schemes, through nutrient-phytoplankton-zooplankton-detritus (NPZD) models that crudely represent the marine biota, through to models that represent a broader trophic structure by grouping organisms as plankton functional types (PFT) based on their biogeochemical role (Dynamic Green Ocean Models; DGOM) and ecosystem models which group organisms by ecological function and trait. OBGC models are now integral components of Earth System Models (ESMs), but they compete for computing resources with higher resolution dynamical setups and with other components such as atmospheric chemistry and terrestrial vegetation schemes. As such, the choice of OBGC in ESMs needs to balance model complexity and realism alongside relative computing cost. Here, we present an inter-comparison of six OBGC models that were candidates for implementation within the next UK Earth System Model (UKESM1). The models cover a large range of biological complexity (from 7 to 57 tracers) but all include representations of at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to the Nucleus for the European Modelling of the Ocean (NEMO) ocean general circulation model (GCM), and results from physically identical hindcast simulations were compared. Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using conventional statistical techniques. The computing cost of each model was also measured in standardised tests run at two resource levels. No model is shown to consistently outperform or underperform all other models across all metrics. Nonetheless, the simpler models that are easier to tune are broadly closer to observations across a number of fields, and thus offer a high-efficiency option for ESMs that prioritise high resolution climate dynamics. However, simpler models provide limited insight into more complex marine biogeochemical processes and ecosystem pathways, and a parallel approach of low resolution climate dynamics and high complexity biogeochemistry is desirable in order to provide additional insights into biogeochemistry-climate interactions.
NASA Astrophysics Data System (ADS)
Kwiatkowski, L.; Yool, A.; Allen, J. I.; Anderson, T. R.; Barciela, R.; Buitenhuis, E. T.; Butenschön, M.; Enright, C.; Halloran, P. R.; Le Quéré, C.; de Mora, L.; Racault, M.-F.; Sinha, B.; Totterdell, I. J.; Cox, P. M.
2014-12-01
Ocean biogeochemistry (OBGC) models span a wide variety of complexities, including highly simplified nutrient-restoring schemes, nutrient-phytoplankton-zooplankton-detritus (NPZD) models that crudely represent the marine biota, models that represent a broader trophic structure by grouping organisms as plankton functional types (PFTs) based on their biogeochemical role (dynamic green ocean models) and ecosystem models that group organisms by ecological function and trait. OBGC models are now integral components of Earth system models (ESMs), but they compete for computing resources with higher resolution dynamical setups and with other components such as atmospheric chemistry and terrestrial vegetation schemes. As such, the choice of OBGC in ESMs needs to balance model complexity and realism alongside relative computing cost. Here we present an intercomparison of six OBGC models that were candidates for implementation within the next UK Earth system model (UKESM1). The models cover a large range of biological complexity (from 7 to 57 tracers) but all include representations of at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to the ocean general circulation model Nucleus for European Modelling of the Ocean (NEMO) and results from physically identical hindcast simulations were compared. Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using conventional statistical techniques. The computing cost of each model was also measured in standardised tests run at two resource levels. No model is shown to consistently outperform all other models across all metrics. Nonetheless, the simpler models are broadly closer to observations across a number of fields and thus offer a high-efficiency option for ESMs that prioritise high-resolution climate dynamics. However, simpler models provide limited insight into more complex marine biogeochemical processes and ecosystem pathways, and a parallel approach of low-resolution climate dynamics and high-complexity biogeochemistry is desirable in order to provide additional insights into biogeochemistry-climate interactions.
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Wunsch, Carl
1996-01-01
A Green's function method for obtaining an estimate of the ocean circulation using both a general circulation model and altimetric data is demonstrated. The fundamental assumption is that the model is so accurate that the differences between the observations and the model-estimated fields obey a linear dynamics. In the present case, the calculations are demonstrated for model/data differences occurring on very a large scale, where the linearization hypothesis appears to be a good one. A semi-automatic linearization of the Bryan/Cox general circulation model is effected by calculating the model response to a series of isolated (in both space and time) geostrophically balanced vortices. These resulting impulse responses or 'Green's functions' then provide the kernels for a linear inverse problem. The method is first demonstrated with a set of 'twin experiments' and then with real data spanning the entire model domain and a year of TOPEX/POSEIDON observations. Our present focus is on the estimate of the time-mean and annual cycle of the model. Residuals of the inversion/assimilation are largest in the western tropical Pacific, and are believed to reflect primarily geoid error. Vertical resolution diminishes with depth with 1 year of data. The model mean is modified such that the subtropical gyre is weakened by about 1 cm/s and the center of the gyre shifted southward by about 10 deg. Corrections to the flow field at the annual cycle suggest that the dynamical response is weak except in the tropics, where the estimated seasonal cycle of the low-latitude current system is of the order of 2 cm/s. The underestimation of observed fluctuations can be related to the inversion on the coarse spatial grid, which does not permit full resolution of the tropical physics. The methodology is easily extended to higher resolution, to use of spatially correlated errors, and to other data types.
NASA Astrophysics Data System (ADS)
Bull, Christopher Y. S.; Kiss, Andrew E.; van Sebille, Erik; Jourdain, Nicolas C.; England, Matthew H.
2018-02-01
The East Australian Current (EAC) plays a major role in regional climate, circulation, and ecosystems, but predicting future changes is hampered by limited understanding of the factors controlling EAC separation. While there has been speculation that the presence of New Zealand may be important for the EAC separation, the prevailing view is that the time-mean partial separation is set by the ocean's response to gradients in the wind stress curl. This study focuses on the role of New Zealand, and the associated adjacent bathymetry, in the partial separation of the EAC and ocean circulation in the Tasman Sea. Here utilizing an eddy-permitting ocean model (NEMO), we find that the complete removal of the New Zealand plateau leads to a smaller fraction of EAC transport heading east and more heading south, with the mean separation latitude shifting >100 km southward. To examine the underlying dynamics, we remove New Zealand with two linear models: the Sverdrup/Godfrey Island Rule and NEMO in linear mode. We find that linear processes and deep bathymetry play a major role in the mean Tasman Front position, whereas nonlinear processes are crucial for the extent of the EAC retroflection. Contrary to past work, we find that meridional gradients in the basin-wide wind stress curl are not the sole factor determining the latitude of EAC separation. We suggest that the Tasman Front location is set by either the maximum meridional gradient in the wind stress curl or the northern tip of New Zealand, whichever is furthest north.
NASA Astrophysics Data System (ADS)
Poirier, Clément; Tessier, Bernadette; Chaumillon, Éric; Bertin, Xavier; Fruergaard, Mikkel; Mouazé, Dominique; Noël, Suzanne; Weill, Pierre; Wöppelmann, Guy
2017-03-01
Present-day coastal barriers represent around 15% of the world's oceanic shorelines, and play an important role as early warning indicators of environmental change. Among them, wave-dominated barriers are dynamic landforms that tend to migrate landward in response to storms and sea-level change. High rates of sediment supply can locally offset the global retrogradation trend, providing valuable records of past environmental change occurring on transgressive coasts. However, geochronological control limits the temporal resolution of such records to millennial or centennial timescales, and the decadal or even faster response of wave-built barriers to historical climate changes is therefore poorly understood. In this study, we show that shoreline dynamics of sand spits reconstructed from old cartographic documents has been synchronous on both margins of the North Atlantic Ocean since about 1800 CE. Spit growth accelerated drastically during three periods lasting about 15 years, characterised by positive North Atlantic Oscillation (NAO) and negative East Atlantic-West Russia (EA-WR) atmospheric circulation patterns. These changes are in phase with periods of increased volcanic activity. We use a high-resolution wave hindcast (1948-2014 CE) in a reference area to confirm the association between NAO and EA-WR as a proxy for offshore and nearshore wave height and for associated longshore sediment transport (LST) involved in spit growth. A 24-month lagged correlation between sediment transport and volcanic aerosol optical thickness (concentration of ashes in the atmosphere) is observed, suggesting that spit shoreline dynamics at the decadal timescale is partially forced by external climate drivers via cascading effects on atmospheric circulation patterns and wave climate. Our results imply that NAO variability alone is not sufficient to understand the evolution of wave-built coastal environments. The associated sediment record can be used to reconstruct multi-decadal variability of other climate patterns.
Internal tides and vertical mixing over the Kerguelen Plateau
NASA Astrophysics Data System (ADS)
Park, Young-Hyang; Fuda, Jean-Luc; Durand, Isabelle; Naveira Garabato, Alberto C.
2008-03-01
Within the context of the natural iron-fertilization study KEOPS, time series measurements of CTD and LADCP profiles at a site (50.6°S, 72°E; 528 m) coinciding with an annual phytoplankton bloom over the Kerguelen Plateau were made during the January-February 2005 KEOPS cruise. An important activity of highly nonlinear semidiurnal internal tides having peak-to-peak isopycnal displacements of up to 80 m is identified. These internal tides appear to be a principal agent for promoting elevated vertical mixing indispensable for upward transfer of iron within the seasonal thermocline. We estimate local vertical eddy diffusivities of the order of 4×10 -4 m 2 s -1 using a Thorpe scale analysis. Although this estimate is higher by an order of magnitude than the canonical value O (0.1×10 -4 m 2 s -1) in the open ocean away from boundaries, it is consistent with nonlinear internal wave/wave interaction theories, as verified by independent diffusivity estimates using the vertical wavenumber spectral methods for shear and strain. It is also suggested that the general ocean circulation may play an important role in preconditioning the bloom in that the relatively sluggish circulation over the shallow plateau (compared to the much more dynamic neighbouring deep ocean) may foster the bloom's observed annual recurrence over the plateau.
The impacts of the atmospheric annular mode on the AMOC and its feedback in an idealized experiment
NASA Astrophysics Data System (ADS)
Santis, Wlademir; Aimola, Luis; Campos, Edmo J. D.; Castellanos, Paola
2018-03-01
The interdecadal variability of the atmospheric and oceanic meridional overturning circulation is studied, using a coupled model with two narrow meridional barriers representing the land and a flat bottomed Aquaplanet. Empirical orthogonal function (EOF) analysis are used in the atmospheric and oceanic meridional overturning cells, revealing the atmospheric interdecadal variability is dominated by an annular mode, in both hemispheres, which introduces in the ocean a set of patterns of variability. The most energetic EOFs in the ocean are the barotropic responses from the annular mode. The interaction between the heat anomalies, due to the barotropic response, and the thermohaline circulation of each basin leads to a resonance mechanism that feeds back to the atmospheric forcing, modulating the annular mode spectrum. Besides the barotropic response, the annular mode introduces anomalies of salinity and temperature in the subtropical Atlantic that affects its upper buoyancy. These anomalies are incorporated within the ocean circulation and advected until the areas of deep sinking in the northern Atlantic, impacting on its overturning circulation as well.
Arctic climate response to geoengineering with stratospheric sulfate aerosols
NASA Astrophysics Data System (ADS)
McCusker, K. E.; Battisti, D. S.; Bitz, C. M.
2010-12-01
Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.
NASA Astrophysics Data System (ADS)
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-12-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-01-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065
Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M
2014-12-08
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Spin-Down of the North Atlantic Subpolar Circulation
NASA Technical Reports Server (NTRS)
Hakkinen, S.; Rhines, P. B.
2004-01-01
Dramatic changes have occurred in the mid-to-high-latitude North Atlantic Ocean as evidenced by TOPEX/Poseidon observations of sea surface height (SSH) in the subpolar gyre and the Gulf Stream. Analysis of altimeter data shows that subpolar SSH has increased during the 1990s and the geostrophic velocity derived from altimeter data shows a decline in the gyre circulation. Direct current-meter observations in the boundary current of the Labrador Sea support the trend in the 199Os, and, together with hydrographic data show that in the mid-late 1990s the trend extends deep in the water column. We find that buoyancy forcing over the northern North Atlantic has a dynamic effect consistent with the altimeter data and hydrographic observations: a weak thermohaline forcing and the subsequent decay of the domed structure of the subpolar isopycnals would give rise to the observed anticyclonic circulation trend.
NASA Technical Reports Server (NTRS)
Lee, T.; Fukumori, I.; Fu, L. L.
2002-01-01
In this study, we address issues using sea level measurements obtained by the TOPEX/Poseidon satellite altimter and circulation estimated by the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO).
Energy-optimal path planning in the coastal ocean
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Haley, Patrick J.; Lermusiaux, Pierre F. J.
2017-05-01
We integrate data-driven ocean modeling with the stochastic Dynamically Orthogonal (DO) level-set optimization methodology to compute and study energy-optimal paths, speeds, and headings for ocean vehicles in the Middle-Atlantic Bight (MAB) region. We hindcast the energy-optimal paths from among exact time-optimal paths for the period 28 August 2006 to 9 September 2006. To do so, we first obtain a data-assimilative multiscale reanalysis, combining ocean observations with implicit two-way nested multiresolution primitive-equation simulations of the tidal-to-mesoscale dynamics in the region. Second, we solve the reduced-order stochastic DO level-set partial differential equations (PDEs) to compute the joint probability of minimum arrival time, vehicle-speed time series, and total energy utilized. Third, for each arrival time, we select the vehicle-speed time series that minimize the total energy utilization from the marginal probability of vehicle-speed and total energy. The corresponding energy-optimal path and headings are obtained through the exact particle-backtracking equation. Theoretically, the present methodology is PDE-based and provides fundamental energy-optimal predictions without heuristics. Computationally, it is 3-4 orders of magnitude faster than direct Monte Carlo methods. For the missions considered, we analyze the effects of the regional tidal currents, strong wind events, coastal jets, shelfbreak front, and other local circulations on the energy-optimal paths. Results showcase the opportunities for vehicles that intelligently utilize the ocean environment to minimize energy usage, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Parameterized and resolved Southern Ocean eddy compensation
NASA Astrophysics Data System (ADS)
Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman
2018-04-01
The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.
NASA Astrophysics Data System (ADS)
Liu, Wenbin; Wang, Lei; Chen, Deliang; Tu, Kai; Ruan, Chengqing; Hu, Zengyun
2016-06-01
The relationship between the large-scale circulation dynamics and regional precipitation regime in the Tibetan Plateau (TP) has so far not been well understood. In this study, we classify the circulation types using the self-organizing maps based on the daily field of 500 hPa geopotential height and link them to the precipitation climatology in the eastern and central TP. By virtue of an objective determining method, 18 circulation types are quantified. The results show that the large amount of precipitation in summer is closely related to the circulation types in which the enhanced and northward shifted subtropical high (SH) over the northwest Pacific and the obvious cyclconic circulation anomaly over the Bay of Bengal are helpful for the Indian summer monsoon and East Asian summer monsoon to take abundant low-latitude moisture to the eastern and southern TP. On the contrary, the dry winter in the central and eastern Tibet corresponds to the circulation types with divergence over the central and eastern TP and the water vapor transportations of East Asian winter monsoon and mid-latitude westerly are very weak. Some circulation types are associated with some well-known circulation patterns/monsoons influencing the TP (e.g. East Atlantic Pattern, El Niño Southern Oscillation, Indian Summer Monsoon and the mid-latitude westerly), and exhibit an overall good potential for explaining the variability of regional seasonal precipitation. Moreover, the climate shift signals in the late 1970s over the eastern Pacific/North Pacific Oceans could also be reflected by both the variability of some circulation types and their correspondingly composite precipitations. This study extends our understandings for the large-scale atmospheric dynamics and their linkages with regional precipitation and is beneficial for the climate change projection and related adaptation activities in the highest and largest plateau in the world.
NASA Astrophysics Data System (ADS)
Jullion, L.; Jacquet, S. H. M.; Tanhua, T.
2017-08-01
Based on an unprecedented dissolved barium (D_Ba) data set collected in the Mediterranean Sea during a zonal transect between the Lebanon coast and Gibraltar (M84/3 cruise, April 2011), we decompose the D_Ba distribution to isolate the contribution of biogeochemical processes from the impact of the oceanic circulation. We have built a simple parametric water mass analysis (Parametric Optimum Multiparameter analysis) to reconstruct the contribution of the different Mediterranean water masses to the thermohaline structure. These water mass fractions have then been used to successfully reconstruct the background vertical gradient of D_Ba reflecting the balance between the large-scale oceanic circulation and the biological activity over long time scales. Superimposed on the background field, several D_Ba anomalies have been identified. Positive anomalies are associated with topographic obstacles and may be explained by the dissolution of particulate biogenic barium (P_Ba barite) of material resuspended by the local currents. The derived dissolution rates range from 0.06 to 0.21 μmol m-2 d-1. Negative anomalies are present in the mesopelagic region of the western and eastern basins (except in the easternmost Levantine basin) as well as in the abyssal western basin. This represents the first quantification of the nonconservative component of the D_Ba signal. These mesopelagic anomalies could reflect the subtraction of D_Ba during P_Ba barite formation occurring during organic carbon remineralization. The deep anomalies may potentially reflect the transport of material toward the deep sea during winter deep convection and the subsequent remineralization. The D_Ba subtraction fluxes range from -0.07 to -1.28 μmol m-2 d-1. D_Ba-derived fluxes of P_Ba barite (up to 0.21 μmol m-2 d-1) and organic carbon (13 to 29 mmol C m-2 d-1) are in good agreement with other independent measurements suggesting that D_Ba can help constrain remineralization horizons. This study highlights the importance of quantifying the impact of the large-scale oceanic circulation in order to better understand the biogeochemical cycling of elements and to build reliable geochemical proxies.
Impact of Preferred Eddy Tracks on Transport and Mixing in the Eastern South Pacific
NASA Astrophysics Data System (ADS)
Belmadani, A.; Donoso, D.; Auger, P. A.; Chaigneau, A.
2017-12-01
Mesoscale eddies, which play a fundamental role in the transport of mass, heat, nutrients, and biota across the oceans, have been suggested to propagate preferently along specific tracks. These preferred pathways, also called eddy trains, are near-zonal due to westward drift of individual vortices, and tend to be polarized (ie alternatively dominated by anticyclonic/cyclonic eddies), coinciding with the recently discovered latent striations (quasi-zonal mesoscale jet-like features). While significant effort has been made to understand the dynamics of striations and their interplay with mesoscale eddies, the impact of repeated eddy tracks on physical (temperature, salinity), biogeochemical (oxygen, carbon, nutrients) and other tracers (e.g. chlorophyll, marine debris) has received little attention. Here we report on the results of numerical modeling experiments that simulate the impact of preferred eddy tracks on the transport and mixing of water particles in the Eastern South Pacific off Chile. A 30-year interannual simulation of the oceanic circulation in this region has been performed over 1984-2013 with the ROMS (Regional Oceanic Modeling System) at an eddy-resolving resolution (10 km). Objective tracking of mesoscale coherent vortices is obtained using automated methods, allowing to compute the contribution of eddies to the ocean circulation. Preferred eddy tracks are further isolated from the more random eddies, by comparing the distances between individual tracks and the striated pattern in long-term mean eddy polarity with a least-squares approach. The remaining non-eddying flow may also be decomposed into time-mean and anomalous circulation, and/or small- and large-scale circulation. Neutrally-buoyant Lagrangian floats are then released uniformly into the various flow components as well as the total flow, and tracked forward in time with the ARIANE software. The dispersion patterns of water particles are used to estimate the respective contributions of organized and random eddies, mean flow, large-scale perturbations etc. to mixing properties and transport pathways. Float release into the full flow inside selected vortices is also used to document the impact of eddy trains on the transformation of water masses inferred from changes in temperature/salinity along float trajectories.
NASA Astrophysics Data System (ADS)
Liste, M.; Grifoll, M.; Keupers, I.; Monbaliu, J.
2012-04-01
Introduction The coastal oceans are the recipient of freshwater and land/drained materials that are primarily brought in through river and urban discharge [Kourafalou et al., 1996]. Freshwater discharge from rivers and urban outflows to the ocean water has profound effects on the physical, chemical, and biological processes in coastal waters. It induces circulation patterns and modifies mixing processes [Milliman and Farnsworth, 2011]. Due to their ecological and dynamical importance, a good understanding of the mixing and transport processes in river plumes is required for the maintenance of coastal ecosystems and their resources. In this paper will discuss the results of the land boundary fluxes implementation into the coastal circulation model. As a demonstration part of the Catalan coast has been chosen. The combination of local topography with torrential rainfall can produce considerable local runoff on a short time with a large impact on the receiving coastal waters. Methodology and aim For the coastal circulation model, version 3.0 of the Regional Ocean Modeling System [ROMS, Shchepetkin and McWilliams, 2005] has been implemented for small portion of the Catalan coast. ROMS uses sigma coordinates and solves the 3-D Reynolds-Averaged Navier-Stokes equations. The code design is modular, so that different choices for advection and mixing, for example, may be applied by simply modifying preprocessor flags. Nested increasing-resolution models have been implemented in order to reproduce with enough resolution the coastal circulation and the river plume evolution. The boundary conditions are obtained from the MyOcean products. River and urban run-off are estimated based on rainfall (predictions) form the contributing catchments areas. Conceptual models based on a reservoir-type schematization of the river and sewer network have been set up to allow the fast prediction of the different point source boundary conditions [Keupers et al., 2011]. Model output for selected events will be compared to data from dedicated campaigns during the Field_AC Project and to data from operational buoys in the Catalan coastal area.
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Lerch, F.; Koblinsky, C. J.; Klosko, S. M.; Robbins, J. W.; Williamson, R. G.; Patel, G. B.
1989-01-01
A method for the simultaneous solution of dynamic ocean topography, gravity and orbits using satellite altimeter data is described. A GEM-T1 based gravitational model called PGS-3337 that incorporates Seasat altimetry, surface gravimetry and satellite tracking data has been determined complete to degree and order 50. The altimeter data is utilized as a dynamic observation of the satellite's height above the sea surface with a degree 10 model of dynamic topography being recovered simultaneously with the orbit parameters, gravity and tidal terms in this model. PGS-3337 has a geoid uncertainty of 60 cm root-mean-square (RMS) globally, with the uncertainty over the altimeter tracked ocean being in the 25 cm range. Doppler determined orbits for Seasat, show large improvements, with the sub-30 cm radial accuracies being achieved. When altimeter data is used in orbit determination, radial orbital accuracies of 20 cm are achieved. The RMS of fit to the altimeter data directly gives 30 cm fits for Seasat when using PGS-3337 and its geoid and dynamic topography model. This performance level is two to three times better than that achieved with earlier Goddard earth models (GEM) using the dynamic topography from long-term oceanographic averages. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 1500 km. The power in the dynamic topography recovery is now found to be closer to that of oceanographic studies than for previous satellite solutions. This is attributed primarily to the improved modeling of the geoid which has occurred. Study of the altimeter residuals reveals regions where tidal models are poor and sea state effects are major limitations.
NASA Astrophysics Data System (ADS)
Feng, Juan; Li, Jianping; Li, Yun
2010-05-01
Using the NCEP/NCAR, ERA-40 reanalysis, and precipitation data from CMAP and Australian Bureau of Meteorology, the variability and circulation features influencing the southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is termed as the southwest Australian circulation (SWAC) for its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land-sea thermal contrast. The seasonal march of the SWAC in extended winter (May to October) is demonstrated by pentad data. An index based on the dynamics normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May to July) and late (August to October) winter. In weaker winter SWAC years there is an anti-cyclonic anomaly over southern Indian Ocean resulting in weaker westerlies and northerlies which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter, but also the long term drying trend over SWWA in early winter. The well-coupled SWAC-SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the Southern Hemisphere Annular Mode (SAM), El Niño/Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA.
Ocean-driven heating of Europa's icy shell at low latitudes
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Schmidt, B. E.; Wicht, J.; Blankenship, D. D.
2014-01-01
The ice shell of Jupiter's moon Europa is marked by regions of disrupted ice known as chaos terrains that cover up to 40% of the satellite's surface, most commonly occurring within 40° of the equator. Concurrence with salt deposits implies a coupling between the geologically active ice shell and the underlying liquid water ocean at lower latitudes. Europa's ocean dynamics have been assumed to adopt a two-dimensional pattern, which channels the moon's internal heat to higher latitudes. Here we present a numerical model of thermal convection in a thin, rotating spherical shell where small-scale convection instead adopts a three-dimensional structure and is more vigorous at lower latitudes. Global-scale currents are organized into three zonal jets and two equatorial Hadley-like circulation cells. We find that these convective motions transmit Europa's internal heat towards the surface most effectively in equatorial regions, where they can directly influence the thermo-compositional state and structure of the ice shell. We suggest that such heterogeneous heating promotes the formation of chaos features through increased melting of the ice shell and subsequent deposition of marine ice at low latitudes. We conclude that Europa's ocean dynamics can modulate the exchange of heat and materials between the surface and interior and explain the observed distribution of chaos terrains.
Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves
NASA Astrophysics Data System (ADS)
Wells, A.
2015-12-01
When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.
Dynamic Topography and Sea Level Anomalies of the Southern Ocean: Variability and Teleconnections
NASA Astrophysics Data System (ADS)
Armitage, Thomas W. K.; Kwok, Ron; Thompson, Andrew F.; Cunningham, Glenn
2018-01-01
This study combines sea surface height (SSH) estimates of the ice-covered Southern Ocean with conventional open-ocean SSH estimates from CryoSat-2 to produce monthly composites of dynamic ocean topography (DOT) and sea level anomaly (SLA) on a 50 km grid spanning 2011-2016. This data set reveals the full Southern Ocean SSH seasonal cycle for the first time; there is an antiphase relationship between sea level on the Antarctic continental shelf and the deeper basins, with coastal SSH highest in autumn and lowest in spring. As a result of this pattern of seasonal SSH variability, the barotropic component of the Antarctic Slope Current (ASC) has speeds that are regionally up to twice as fast in the autumn. Month-to-month circulation variability of the Ross and Weddell Gyres is strongly influenced by the local wind field, and is correlated with the local wind curl (Ross: -0.58; Weddell: -0.67). SSH variability is linked to both the Southern Oscillation and the Southern Annular Mode, dominant modes of southern hemisphere climate variability. In particular, during the strong 2015-2016 El Niño, a sustained negative coastal SLA of up to -6 cm, implying a weakening of the ASC, was observed in the Pacific sector of the Southern Ocean. The ability to examine sea level variability in the seasonally ice-covered regions of the Southern Ocean—climatically important regions with an acute sparsity of data—makes this new merged sea level record of particular interest to the Southern Ocean oceanography and glaciology communities.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
NASA Astrophysics Data System (ADS)
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2
NASA Astrophysics Data System (ADS)
Skinner, L. C.; Primeau, F.; Freeman, E.; de La Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.
2017-07-01
While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ~689+/-53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO2 change.
World Ocean Circulation Experiment
NASA Technical Reports Server (NTRS)
Clarke, R. Allyn
1992-01-01
The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.
A new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene
NASA Astrophysics Data System (ADS)
Riesselman, C. R.; Dowsett, H. J.; Scher, H. D.; Robinson, M. M.
2011-12-01
The mid-Pliocene (3.264 - 3.025 Ma) is the most recent interval in Earth's history with sustained global temperatures in the range of warming predicted for the 21st century, providing an appealing analog with which to examine the Earth system changes we might encounter in the coming century. Ongoing sea surface and deep ocean temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm anomaly coupled with increased evaporation in the mid-Pliocene, possibly driving enhanced meridional overturning circulation and North Atlantic Deep Water production. However deep ocean temperature is not a conclusive proxy for water mass, and most coupled model simulations predict transient decreases in North Atlantic Deep Water production in 21st century, presenting a contrasting picture of future warmer worlds. Here, we present early results from a new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic imprint on fossil fish teeth as a proxy for water mass source region along a three-site depth transect from the Walvis Ridge (subtropical South Atlantic). The deep ocean circulation reconstructions resulting from this project will add a new dimension to the PRISM effort and will be useful for both initialization and evaluation of future model simulations.
Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission
NASA Technical Reports Server (NTRS)
Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.
2011-01-01
Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.
A subtropical fate awaited freshwater discharged from glacial Lake Agassiz
Condron, Alan; Winsor, Peter
2011-02-10
The 8.2 kyr event is the largest abrupt climatic change recorded in the last 10,000 years, and is widely hypothesized to have been triggered by the release of thousands of kilometers cubed of freshwater into the North Atlantic Ocean. Using a high-resolution (1/6°) global, ocean-ice circulation model we present an alternative view that freshwater discharged from glacial Lake Agassiz would have remained on the continental shelf as a narrow, buoyant, coastal current, and would have been transported south into the subtropical North Atlantic. The pathway we describe is in contrast to the conceptual idea that freshwater from this lake outburstmore » spread over most of the sub-polar North Atlantic, and covered the deep, open-ocean, convection regions. This coastally confined freshwater pathway is consistent with the present-day routing of freshwater from Hudson Bay, as well as paleoceanographic evidence of this event. In this study, using a coarse-resolution (2.6°) version of the same model, we demonstrate that the previously reported spreading of freshwater across the sub-polar North Atlantic results from the inability of numerical models of this resolution to accurately resolve narrow coastal flows, producing instead a diffuse circulation that advects freshwater away from the boundaries. To understand the climatic impact of freshwater released in the past or future (e.g. Greenland and Antarctica), the ocean needs to be modeled at a resolution sufficient to resolve the dynamics of narrow, coastal buoyant flows.« less
NASA Astrophysics Data System (ADS)
Flood, Roger D.; Violante, Roberto A.; Gorgas, Thomas; Schwarz, Ernesto; Grützner, Jens; Uenzelmann-Neben, Gabriele; Hernández-Molina, F. Javier; Biddle, Jennifer; St-Onge, Guillaume; Workshop Participants, Apvcm
2017-05-01
The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic-Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8-11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.
NASA Technical Reports Server (NTRS)
Boulanger, J. P.; Delecluse, F.; Maes, C.; Levy, C.
1995-01-01
A high resolution oceanic general circulation model of the three topical oceans is used to investigate long equatorial wave activity in the Pacific Ocean during the 1985-1994 TOGA period. Zonal wind stress forcing and simulated dynamic height are interpreted using techniques previously applied to data. Kelvin and first Rossby waves are observed propagating during all the period. A seasonal cycle and interannual anomalies are computed for each long equatorial wave. The east Pacific basin is mainly dominated by seasonal cycle variations while strong interannual anomalies are observed west of the dateline. Long wave interannual anomalies are then compared to wave coefficients simulated by a simple wind-forced model. Our results outline the major role played by wind forcing on interannual time scales in generating long equatorial waves. However, near both eastern and western boundaries, some differences can be attributed to long wave reflections. A comparison to wave coefficients calculated from GEOSAT sea-level data gives some insight of the model behavior.
Eddy Resolving Global Ocean Prediction including Tides
2013-09-30
atlantic meridional overturning circulation in the subpolar North Atlantic . Journal of Geophysical Research vol 118, doi:10.1002/jgrc,20065. [published, refereed] ...global ocean circulation model was examined using results from years 2005-2009 of a seven and a half year 1/12.5° global simulation that resolves...internal tides, along with barotropic tides and the eddying general circulation . We examined tidal amplitudes computed using 18 183-day windows that
Did the Mid-Pliocene warmth bring the Northern Hemisphere Chill?
NASA Astrophysics Data System (ADS)
Rosenthal, Y.; Woodard, S. C.; Evans, D. A.; Haynes, L.; Sosdian, S. M.; Lear, C. H.; Hoenisch, B.; Erez, J.
2015-12-01
The relatively fast transition from the warm Pliocene to the Northern Hemisphere Glaciation (NHG) is puzzling. We have previously suggested that expansion of Antarctic glaciation following the mid-Pliocene warm period altered the oceanic circulation and inter-hemispheric transfer of heat and salt thereby providing a dynamic trigger for the intensification of the NHG at ~2.75 Ma and the ensuing glacial cycles (Woodard et al., 2014). Here we explore the hypothesis that enhanced chemical weathering under the warm Pliocene conditions contributed to the gradual cooling leading to the dynamic shift in ocean circulation. Using foraminiferal core-top and culture calibrations we have developed a new multi-elemental proxy approach for reconstructing changes in ocean calcium ([Ca]) and other major ion concentrations throughout the past ~3 Myr. Foraminiferal records from several drill sites in the Atlantic and Pacific Oceans suggest that seawater [Ca] was ~20±5% higher during the mid-Pliocene period (~2.7-3.2 Ma) than at present, and gradually reaching modern seawater concentration by the early Pleistocene. Other seawater ion concentrations (e.g., Sr, Li, B) were also significantly higher at that time than at present. Correction for the estimated change in seawater Mg/Ca yields mid-Pliocene sea surface temperatures in the western equatorial Pacific ~1-2° warmer than today. We suggest that the higher seawater major-ion concentrations, reconstructed here, reflect enhanced chemical weathering, likely due to more intense tropical hydrologic cycle at that time. The implied increase in seawater alkalinity under the mid-Pliocene warm conditions could have acted to sequester atmospheric CO2 thus providing a negative feedback that possibly contributed to global cooling. References: Woodard, S.C., Rosenthal, Y., Miller, K.G., Wright, J.V., Chiu, B.K. and K.T. Lawrence. (2014). Antarctic role in Northern Hemisphere Glaciation. Science, 346:847-850.
Spectral characteristics of background error covariance and multiscale data assimilation
Li, Zhijin; Cheng, Xiaoping; Gustafson, Jr., William I.; ...
2016-05-17
The steady increase of the spatial resolutions of numerical atmospheric and oceanic circulation models has occurred over the past decades. Horizontal grid spacing down to the order of 1 km is now often used to resolve cloud systems in the atmosphere and sub-mesoscale circulation systems in the ocean. These fine resolution models encompass a wide range of temporal and spatial scales, across which dynamical and statistical properties vary. In particular, dynamic flow systems at small scales can be spatially localized and temporarily intermittent. Difficulties of current data assimilation algorithms for such fine resolution models are numerically and theoretically examined. Ourmore » analysis shows that the background error correlation length scale is larger than 75 km for streamfunctions and is larger than 25 km for water vapor mixing ratios, even for a 2-km resolution model. A theoretical analysis suggests that such correlation length scales prevent the currently used data assimilation schemes from constraining spatial scales smaller than 150 km for streamfunctions and 50 km for water vapor mixing ratios. Moreover, our results highlight the need to fundamentally modify currently used data assimilation algorithms for assimilating high-resolution observations into the aforementioned fine resolution models. Lastly, within the framework of four-dimensional variational data assimilation, a multiscale methodology based on scale decomposition is suggested and challenges are discussed.« less
Late Holocene sea level variability and Atlantic Meridional Overturning Circulation
Cronin, Thomas M.; Farmer, Jesse R.; Marzen, R. E.; Thomas, E.; Varekamp, J.C.
2014-01-01
Pre-twentieth century sea level (SL) variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). We examined SL and AMOC variability along the eastern United States over the last 2000 years, using a SL curve constructed from proxy sea surface temperature (SST) records from Chesapeake Bay, and twentieth century SL-sea surface temperature (SST) relations derived from tide gauges and instrumental SST. The SL curve shows multidecadal-scale variability (20–30 years) during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), as well as the twentieth century. During these SL oscillations, short-term rates ranged from 2 to 4 mm yr−1, roughly similar to those of the last few decades. These oscillations likely represent internal modes of climate variability related to AMOC variability and originating at high latitudes, although the exact mechanisms remain unclear. Results imply that dynamic ocean changes, in addition to thermosteric, glacio-eustatic, or glacio-isostatic processes are an inherent part of SL variability in coastal regions, even during millennial-scale climate oscillations such as the MCA and LIA and should be factored into efforts that use tide gauges and tidal marsh sediments to understand global sea level rise.
Low helium flux from the mantle inferred from simulations of oceanic helium isotope data
NASA Astrophysics Data System (ADS)
Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert
2010-09-01
The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.
Local sensitivities of the gulf stream separation
Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas; ...
2016-12-05
Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas
Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less
Srokosz, M A; Bryden, H L
2015-06-19
The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport for climate is well acknowledged. Climate models predict that the AMOC will slow down under global warming, with substantial impacts, but measurements of ocean circulation have been inadequate to evaluate these predictions. Observations over the past decade have changed that situation, providing a detailed picture of variations in the AMOC. These observations reveal a surprising degree of AMOC variability in terms of the intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes in strength affecting the ocean heat content, and the decline of the AMOC over the decade, both of the latter two exceeding the variations seen in climate models. Copyright © 2015, American Association for the Advancement of Science.
Studies of the intermediate and deep circulation in the western equatorial Atlantic
NASA Technical Reports Server (NTRS)
Desaubies, Yves; Frankignoul, C.; Merle, Jacques
1991-01-01
This proposal concerns the preparation and design of an experiment, the objective of which is to improve our knowledge of the intermediate and deep circulation in the western equatorial Atlantic Ocean. We shall focus on the description of the western boundary currents, of their crossing with the equator, on the estimation of their mass and heat fluxes, and their seasonal and interannual variations. We will use satellite altimetric data, tomographic measurements, and in situ observations (current measurements, hydrology, and floaters). We propose a feasibility study and the definition of a strategy based on a high-resolution Geophysical Fluid Dynamics Laboratory (GFDL) numerical model to define which in situ measurements are necessary to optimally complete the altimetric observations.
Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing
2018-04-16
The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.
Discontinuous Galerkin modeling of the Columbia River's coupled estuary-plume dynamics
NASA Astrophysics Data System (ADS)
Vallaeys, Valentin; Kärnä, Tuomas; Delandmeter, Philippe; Lambrechts, Jonathan; Baptista, António M.; Deleersnijder, Eric; Hanert, Emmanuel
2018-04-01
The Columbia River (CR) estuary is characterized by high river discharge and strong tides that generate high velocity flows and sharp density gradients. Its dynamics strongly affects the coastal ocean circulation. Tidal straining in turn modulates the stratification in the estuary. Simulating the hydrodynamics of the CR estuary and plume therefore requires a multi-scale model as both shelf and estuarine circulations are coupled. Such a model has to keep numerical dissipation as low as possible in order to correctly represent the plume propagation and the salinity intrusion in the estuary. Here, we show that the 3D baroclinic discontinuous Galerkin finite element model SLIM 3D is able to reproduce the main features of the CR estuary-to-ocean continuum. We introduce new vertical discretization and mode splitting that allow us to model a region characterized by complex bathymetry and sharp density and velocity gradients. Our model takes into account the major forcings, i.e. tides, surface wind stress and river discharge, on a single multi-scale grid. The simulation period covers the end of spring-early summer of 2006, a period of high river flow and strong changes in the wind regime. SLIM 3D is validated with in-situ data on the shelf and at multiple locations in the estuary and compared with an operational implementation of SELFE. The model skill in the estuary and on the shelf indicate that SLIM 3D is able to reproduce the key processes driving the river plume dynamics, such as the occurrence of bidirectional plumes or reversals of the inner shelf coastal currents.
Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models
NASA Astrophysics Data System (ADS)
De Cruz, Lesley; Schubert, Sebastian; Demaeyer, Jonathan; Lucarini, Valerio; Vannitsem, Stéphane
2018-05-01
The stability properties of intermediate-order climate models are investigated by computing their Lyapunov exponents (LEs). The two models considered are PUMA (Portable University Model of the Atmosphere), a primitive-equation simple general circulation model, and MAOOAM (Modular Arbitrary-Order Ocean-Atmosphere Model), a quasi-geostrophic coupled ocean-atmosphere model on a β-plane. We wish to investigate the effect of the different levels of filtering on the instabilities and dynamics of the atmospheric flows. Moreover, we assess the impact of the oceanic coupling, the dissipation scheme, and the resolution on the spectra of LEs. The PUMA Lyapunov spectrum is computed for two different values of the meridional temperature gradient defining the Newtonian forcing to the temperature field. The increase in the gradient gives rise to a higher baroclinicity and stronger instabilities, corresponding to a larger dimension of the unstable manifold and a larger first LE. The Kaplan-Yorke dimension of the attractor increases as well. The convergence rate of the rate function for the large deviation law of the finite-time Lyapunov exponents (FTLEs) is fast for all exponents, which can be interpreted as resulting from the absence of a clear-cut atmospheric timescale separation in such a model. The MAOOAM spectra show that the dominant atmospheric instability is correctly represented even at low resolutions. However, the dynamics of the central manifold, which is mostly associated with the ocean dynamics, is not fully resolved because of its associated long timescales, even at intermediate orders. As expected, increasing the mechanical atmosphere-ocean coupling coefficient or introducing a turbulent diffusion parametrisation reduces the Kaplan-Yorke dimension and Kolmogorov-Sinai entropy. In all considered configurations, we are not yet in the regime in which one can robustly define large deviation laws describing the statistics of the FTLEs. This paper highlights the need to investigate the natural variability of the atmosphere-ocean coupled dynamics by associating rate of growth and decay of perturbations with the physical modes described using the formalism of the covariant Lyapunov vectors and considering long integrations in order to disentangle the dynamical processes occurring at all timescales.
A Possible Cause for Recent Decadal Atlantic Meridional Overturning Circulation Decline
NASA Astrophysics Data System (ADS)
Latif, Mojib; Park, Taewook; Park, Wonsun
2017-04-01
The Atlantic Meridional Overturning Circulation (AMOC) is a major oceanic current system with widespread climate impacts. AMOC influences have been discussed among others with regard to Atlantic hurricane activity, regional sea level variability, and surface air temperature and precipitation changes on land areas adjacent to the North Atlantic Ocean. Most climate models project significant AMOC slowing during the 21st century, if atmospheric greenhouse gas concentrations continue to rise unabatedly. Recently, a marked decadal decline in AMOC strength has been observed, which was followed by strongly reduced oceanic poleward heat transport and record low sea surface temperature in parts of the North Atlantic. Here, we provide evidence from observations, re-analyses and climate models that the AMOC decline was due to the combined action of the North Atlantic Oscillation and East Atlantic Pattern, the two leading modes of North Atlantic atmospheric surface pressure variability, which prior to the decline both transitioned into their negative phases. This change in atmospheric circulation diminished oceanic heat loss over the Labrador Sea and forced ocean circulation changes lowering upper ocean salinity transport into that region. As a consequence, Labrador Sea deep convection weakened, which eventually slowed the AMOC. This study suggests a new mechanism for decadal AMOC variability, which is important to multiyear climate predictability and climate change detection in the North Atlantic sector.
The Intense Arctic Cyclone of Early August 2012: A Dynamically Driven Cyclogenesis Event
NASA Astrophysics Data System (ADS)
Bosart, L. F.; Turchioe, A.; Adamchcik, E.
2013-12-01
A series of surface cyclones formed along an anomalously strong northeast-southwest oriented baroclinic zone over north-central Russia on 1-3 August 2012. These cyclones moved northeastward, intensified slowly, and crossed the coast of Russia by 4 August. The last cyclone in the series strengthened rapidly as it moved poleward over the Arctic Ocean on 5-6 August, achieved a minimum sea level pressure of < 965 hPa by 6 August, and was arguably the most intense storm system to impact the Arctic Ocean in the modern data record going back to the International Geophysical Year in 1957-1958. The purpose of this presentation is to illustrate the structure and life cycle of this Arctic Ocean cyclone from a multiscale perspective. Anticyclonic wave breaking in the upper troposphere across Russia in late July and very early August 2012 created an anomalously strong baroclinic zone across northern Asia between 60-80°N. During 1-5 August, negative 850 hPa temperature anomalies between -2° and -4°C were found poleward of 70-75°N between 90°E and the Dateline over the Arctic Ocean while positive 850 hPa temperature anomalies of 8-9°C were found over eastern Russia near 60°N. The associated anomalously strong 850 hPa meridional temperature gradient of ~10°C (2000 km)-1 helped to sustain an anomalously strong (20-30 m s-1) 250 hPa jet along the coast of northeastern Russia. A local wind speed maximum (~50 m s-1 ) embedded in this 250 hPa jet corridor contributed to the extreme intensity of the trailing (last) surface cyclone in the series. Although the dominant surface cyclone in the series of surface cyclones intensified most rapidly over the relatively ice free Arctic Ocean, the impact of surface heat and moisture fluxes appeared to be secondary to jet-driven dynamical processes in the deepening process. Anomalously high observed 1000-500 hPa thickness values between 564-570 dam, precipitable water values between 30-40 mm, and CAPE values between 500-1000 J kg-1 in the warm sector of the developing cyclone over north-central Russia were indicative of the enhanced baroclinicity and instability in the cyclone warm sector and the ability of lower tropospheric warm-air advection to sustain deep ascent in the intensifying cyclone. The relative importance of dynamical versus thermodynamical forcing to the cyclogenesis process as well as the bulk upscale effects of the intense cyclone on the larger scale higher-latitude circulation and the distribution of sea ice will be discussed. A noteworthy aspect of the post-storm polar environment was the upscale growth of a midlevel cyclonic circulation to include most of the Arctic Ocean. The off-pole displacement of this midlevel cyclonic circulation toward northern Canada by mid-August may have contributed to the termination of the 2012 summer-long intensive heat wave over most of the continental United States.
NASA Astrophysics Data System (ADS)
Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy
2018-03-01
During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate the capacity for increased carbon storage by artificially maximising the efficiency of the biological pump in our ensemble members. We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon pumps in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable. The drawdown experiment highlights the importance of the strength of the biological pump in the control state for model studies of increased biological efficiency.
A Preliminary Study on the Circulation of an ocean covering a Synchronously Rotating Planet
NASA Astrophysics Data System (ADS)
Matsuo, H.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.; Nakajima, K.
2012-12-01
Recently, nearly 800 extrasolar planets have been detected. It seems that some of them present into habitable zone, in which planets can have ocean, and such planets rotate synchronously with their central stars. Ocean is necessary for life, and the circulation makes climate mild by heat transport on the earth. The earth is the only planet that has ocean in the solar system so that it has not been understood what oceanic circulation is like in another planets. The purpose of this study is prediction of oceanic circulation on extrasolar planets by using numerical simulation. As a first step, elementary consideration is made. The planet is almost entirely covered with ocean and whose rotation period corresponds with its orbital period. On synchronously rotating planets, the thermal contrast between day-hemisphere and night-hemisphere would be extreme. However, it may be lessend if there is significant zonal heat transport. The circulation in such conditions has not been known well. We performed a numerical experiment based on the linear shallow water equation, assuming that both the evaporation and the precipitation occur only on day-hemisphere (Noda et al., 2011). With these distributions of the evaporation and the precipitation, one may anticipate the circulation occurs in only day-hemisphere. However, the resulting calculation is characterized with zonally uniform zonal flow, which also covers night hemisphere. In addition, the intensity of the flow increases with time. That behavior can be understood by constructing asymptotic solution which is first degree in time. The importance of Coriolis force, which bends meridional flow to zonal flow, is identified. It is implied that, even when only day-hemisphere has the evaporation and precipitation, there may be significant amount of heat can be transported from the day-hemisphere to the night-hemisphere by the strong zonal flow. The growth of zonal flow would be stopped when the evaporation and the precipitation are balanced with mass transport in the bottom Ekman layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël
Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computationalmore » experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.« less
NASA Astrophysics Data System (ADS)
Kopp, R. E.; Mitrovica, J. X.; Griffies, S. M.; Yin, J.; Hay, C. C.; Stouffer, R. J.
2010-12-01
Regional sea level can deviate from mean global sea level because of both dynamic sea level (DSL) effects, resulting from oceanic and atmospheric circulation and temperature and salinity distributions, and changes in the static equilibrium (SE) sea level configuration, produced by the gravitational, elastic, and rotational effects of mass redistribution. Both effects will contribute to future sea level change, but because they are studied by two different subdisciplines -- climate modeling and glacial rebound modeling -- projections that attempt to combine both have to date been scarce. To compare their magnitude, we simulated the effects of Greenland Ice Sheet (GIS) melt by conducting idealized North Atlantic "water-hosing" experiments in a climate model unidirectionally coupled to a SE sea level model. At current rates of GIS melt, freshwater hosing experiments in fully coupled atmosphere-ocean general circulation models (AOGCMs) do not yield clear DSL trends but do generate DSL variability; comparing that variability to expected static equilibrium "fingerprints" suggests that at least about 40 years of observations are needed to detect the "fingerprints" of ice sheet melt at current Greenland melt rates of about 0.3 mm equivalent sea level (esl)/year. Accelerated melt rates of about 2--6 mm esl/y, as may occur later in the century, should be detectable above background DSL variability within less than a decade of their onset. At these higher melt rates, AOGCMs do yield clear DSL trends. In the GFDL CM 2.1 model, DSL trends are strongest in the western North Atlantic, while SE effects come to dominate in most of the ocean when melt exceeds about 20 cm esl.
Three-Dimensional Ageostrophic Motion and Water Mass Subduction in the Southern Ocean
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Mulet, S.; Iudicone, D.
2018-02-01
Vertical velocities at the ocean mesoscale are several orders of magnitude smaller than corresponding horizontal flows, making their direct monitoring a still unsolved challenge. Vertical motion is generally retrieved indirectly by applying diagnostic equations to observation-based fields. The most common approach relies on the solution of an adiabatic version of the Omega equation, neglecting the ageostrophic secondary circulation driven by frictional effects and turbulent mixing in the boundary layers. Here we apply a diabatic semigeostrophic diagnostic model to two different 3-D reconstructions covering the Southern Ocean during the period 2010-2012. We incorporate the effect of vertical mixing through a modified K-profile parameterization and using ERA-interim data, and perform an indirect validation of the ageostrophic circulation with independent drifter observations. Even if horizontal gradients and associated vertical flow are likely underestimated at 1/4° × 1/4° resolution, the exercise provides an unprecedented relative quantification of the contribution of vertical mixing and adiabatic internal dynamics on the vertical exchanges along the Antarctic Circumpolar Current. Kinematic estimates of subduction rates show the destruction of poleward flowing waters lighter than 26.6 kg/m3 (14 ÷ 15 Sv) and two main positive bands associated with the Antarctic Intermediate Water (7 ÷ 11 Sv) and Sub-Antarctic Mode Waters (4 ÷ 7 Sv) formation, while Circumpolar Deep Water upwelling attains around 3 ÷ 6 Sv. Diabatic and adiabatic terms force distinct spatial responses and vertical velocity magnitudes along the water column and the restratifying effect of adiabatic internal dynamics due to mesoscale eddies is shown to at least partly compensate the contribution of wind-driven vertical exchanges to net subduction.
Drift dynamics in a coupled model initialized for decadal forecasts
NASA Astrophysics Data System (ADS)
Sanchez-Gomez, Emilia; Cassou, Christophe; Ruprich-Robert, Yohan; Fernandez, Elodie; Terray, Laurent
2016-03-01
Drifts are always present in models when initialized from observed conditions because of intrinsic model errors; those potentially affect any type of climate predictions based on numerical experiments. Model drifts are usually removed through more or less sophisticated techniques for skill assessment, but they are rarely analysed. In this study, we provide a detailed physical and dynamical description of the drifts in the CNRM-CM5 coupled model using a set of decadal retrospective forecasts produced within CMIP5. The scope of the paper is to give some physical insights and lines of approach to, on one hand, implement more appropriate techniques of initialisation that minimize the drift in forecast mode, and on the other hand, eventually reduce the systematic biases of the models. We first document a novel protocol for ocean initialization adopted by the CNRM-CERFACS group for forecasting purpose in CMIP5. Initial states for starting dates of the predictions are obtained from a preliminary integration of the coupled model where full-field ocean surface temperature and salinity are restored everywhere to observations through flux derivative terms and full-field subsurface fields (below the prognostic ocean mixed layer) are nudged towards NEMOVAR reanalyses. Nudging is applied only outside the 15°S-15°N band allowing for dynamical balance between the depth and tilt of the tropical thermocline and the model intrinsic biased wind. A sensitivity experiment to the latitudinal extension of no-nudging zone (1°S-1°N instead of 15°, hereafter referred to as NOEQ) has been carried out. In this paper, we concentrate our analyses on two specific regions: the tropical Pacific and the North Atlantic basins. In the Pacific, we show that the first year of the forecasts is characterized by a quasi-systematic excitation of El Niño-Southern Oscillation (ENSO) warm events whatever the starting dates. This, through ocean-to-atmosphere heat transfer materialized by diabatic heating, can be viewed for the coupled model as an efficient way to rapidly adjust to its own biased climate mean state. Weak cold ENSO events tend to occur the second year of the forecast due to the so-called discharge-recharge mechanism while the spurious oscillatory behavior is progressively damped. The latter mechanism is much more pronounced in retrospective forecasts initialized from the NOEQ configuration for which the ENSO flip-flop is still detectable at leadtime 4 year. Associated atmospheric teleconnections interfere worldwide with regional drifts, especially in the North Pacific and more remotely in the North Atlantic. In the latter basin, the drift can be interpreted as the model response to intrinsic atmospheric circulation biases found in the stand-alone atmosphere component of the model, which project onto the negative phase of the North Atlantic Oscillation. A fast adjustment (up to ~5-year leadtime) occurs leading to a rapid slackening of both the vertical (Atlantic meridional overturning circulation) and horizontal circulations, especially in the subpolar gyre. Slower adjustment of the entire water masses distribution in the North Atlantic then takes over involving several mechanisms. We show that a weak feedback is locally present between the atmospheric circulation and the ocean drift that controls the timescale of the setting of the coupled model biases.
Gent, Peter R
2016-01-01
Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.
Climate Process Team "Representing calving and iceberg dynamics in global climate models"
NASA Astrophysics Data System (ADS)
Sergienko, O. V.; Adcroft, A.; Amundson, J. M.; Bassis, J. N.; Hallberg, R.; Pollard, D.; Stearns, L. A.; Stern, A. A.
2016-12-01
Iceberg calving accounts for approximately 50% of the ice mass loss from the Greenland and Antarctic ice sheets. By changing a glacier's geometry, calving can also significantly perturb the glacier's stress-regime far upstream of the grounding line. This process can enhance discharge of ice across the grounding line. Once calved, icebergs drift into the open ocean where they melt, injecting freshwater to the ocean and affecting the large-scale ocean circulation. The spatial redistribution of the freshwater flux have strong impact on sea-ice formation and its spatial variability. A Climate Process Team "Representing calving and iceberg dynamics in global climate models" was established in the fall 2014. The major objectives of the CPT are: (1) develop parameterizations of calving processes that are suitable for continental-scale ice-sheet models that simulate the evolution of the Antarctic and Greenland ice sheets; (2) compile the data sets of the glaciological and oceanographic observations that are necessary to test, validate and constrain the developed parameterizations and models; (3) develop a physically based iceberg component for inclusion in the large-scale ocean circulation model. Several calving parameterizations based suitable for various glaciological settings have been developed and implemented in a continental-scale ice sheet model. Simulations of the present-day Antarctic and Greenland ice sheets show that the ice-sheet geometric configurations (thickness and extent) are sensitive to the calving process. In order to guide the development as well as to test calving parameterizations, available observations (of various kinds) have been compiled and organized into a database. Monthly estimates of iceberg distribution around the coast of Greenland have been produced with a goal of constructing iceberg size distribution and probability functions for iceberg occurrence in particular regions. A physically based iceberg model component was used in a GFDL global climate model. The simulation results show that the Antarctic iceberg calving-size distribution affects iceberg trajectories, determines where iceberg meltwater enters the ocean and the increased ice-berg freshwater transport leads to increased sea-ice growth around much of the East Antarctic coastline.
Loss of sea ice in the Arctic.
Perovich, Donald K; Richter-Menge, Jacqueline A
2009-01-01
The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.
Topographic Beta Spiral and Onshore Intrusion of the Kuroshio Current
NASA Astrophysics Data System (ADS)
Yang, De-Zhou; Huang, Rui Xin; Yin, Bao-shu; Feng, Xing-Ru; Chen, Hai-ying; Qi, Ji-Feng; Xu, Ling-jing; Shi, Yun-long; Cui, Xuan; Gao, Guan-Dong; Benthuysen, Jessica A.
2018-01-01
The Kuroshio intrusion plays a vitally important role in carrying nutrients to marginal seas. However, the key mechanism leading to the Kuroshio intrusion remains unclear. In this study we postulate a mechanism: when the Kuroshio runs onto steep topography northeast of Taiwan, the strong inertia gives rise to upwelling over topography, leading to a left-hand spiral in the stratified ocean. This is called the topographic beta spiral, which is a major player regulating the Kuroshio intrusion; this spiral can be inferred from hydrographic surveys. In the world oceans, the topographic beta spirals can be induced by upwelling generated by strong currents running onto steep topography. This is a vital mechanism regulating onshore intruding flow and the cross-shelf transport of energy and nutrients from the Kuroshio Current to the East China Sea. This topographic beta spiral reveals a long-term missing link between the oceanic general circulation theory and shelf dynamic theory.
Atlantic Ocean Circulation and Climate: The Current View From the Geological Record
NASA Astrophysics Data System (ADS)
Curry, W.
2006-12-01
Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.
NASA Astrophysics Data System (ADS)
Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman
2018-03-01
The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.
NASA Supercomputer Improves Prospects for Ocean Climate Research
NASA Technical Reports Server (NTRS)
Menemenlis, D.; Hill, C.; Adcroft, A.; Campin, J. -M.; Cheng, B.; Ciotti, B.; Fukumori, I.; Heimbach, P.; Henze, C.; Kohl, A.;
2005-01-01
Estimates of ocean circulation constrained by in situ and remotely sensed observations have become routinely available during the past five years, and they are being applied to myriad scientific and operational problems [Stammer et al.,2002]. Under the Global Ocean Data Assimilation Experiment (GODAE), several regional and global estimates have evolved for applications in climate research, seasonal forecasting, naval operations, marine safety, fisheries,the offshore oil industry, coastal management, and other areas. This article reports on recent progress by one effort, the consortium for Estimating the Circulation and Climate of the Ocean (ECCO), toward a next-generation synthesis of ocean and sea-ice data that is global, that covers the full ocean depth, and that permits eddies.
The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene
Ganopolski; Kubatzki; Claussen; Brovkin; Petoukhov
1998-06-19
Simulations with a synchronously coupled atmosphere-ocean-vegetation model show that changes in vegetation cover during the mid-Holocene, some 6000 years ago, modify and amplify the climate system response to an enhanced seasonal cycle of solar insolation in the Northern Hemisphere both directly (primarily through the changes in surface albedo) and indirectly (through changes in oceanic temperature, sea-ice cover, and oceanic circulation). The model results indicate strong synergistic effects of changes in vegetation cover, ocean temperature, and sea ice at boreal latitudes, but in the subtropics, the atmosphere-vegetation feedback is most important. Moreover, a reduction of the thermohaline circulation in the Atlantic Ocean leads to a warming of the Southern Hemisphere.
The impact of oceanic heat transport on the atmospheric circulation
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Lunkeit, Frank
2017-04-01
A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.
Three-dimensional circulation dynamics of along-channel flow in stratified estuaries
NASA Astrophysics Data System (ADS)
Musiak, Jeffery Daniel
Estuaries are vital because they are the major interface between humans and the oceans and provide valuable habitat for a wide range of organisms. Therefore it is important to model estuarine circulation to gain a better comprehension of the mechanics involved and how people effect estuaries. To this end, this dissertation combines analysis of data collected in the Columbia River estuary (CRE) with novel data processing and modeling techniques to further the understanding of estuaries that are strongly forced by riverflow and tides. The primary hypothesis tested in this work is that the three- dimensional (3-D) variability in along-channel currents in a strongly forced estuary can be largely accounted for by including the lateral variations in density and bathymetry but neglecting the secondary, or lateral, flow. Of course, the forcing must also include riverflow and oceanic tides. Incorporating this simplification and the modeling ideas put forth by others with new modeling techniques and new ideas on estuarine circulation will allow me to create a semi-analytical quasi 3-D profile model. This approach was chosen because it is of intermediate complexity to purely analytical models, that, if tractable, are too simple to be useful, and 3-D numerical models which can have excellent resolution but require large amounts of time, computer memory and computing power. Validation of the model will be accomplished using velocity and density data collected in the Columbia River Estuary and by comparison to analytical solutions. Components of the modeling developed here include: (1) development of a 1-D barotropic model for tidal wave propagation in frictionally dominated systems with strong topography. This model can have multiple tidal constituents and multiply connected channels. (2) Development and verification of a new quasi 3-D semi-analytical velocity profile model applicable to estuarine systems which are strongly forced by both oceanic tides and riverflow. This model includes diurnal and semi-diurnal tidal and non- linearly generated overtide circulation and residual circulation driven by riverflow, baroclinic forcing, surface wind stress and non-linear tidal forcing. (3) Demonstration that much of the lateral variation in along-channel currents is caused by variations in along- channel density forcing and bathymetry.
Miocene deepwater oceanography
NASA Astrophysics Data System (ADS)
Woodruff, Fay; Savin, Samuel M.
1989-02-01
A global synthesis of Miocene benthic foraminiferal carbon and oxygen isotopic and faunal abundance data indicates that Miocene thermohaline circulation evolved through three regimes corresponding approximately to early, middle, and late Miocene times. There is evidence for major qualitative differences between the circulation of the modern ocean and the Miocene ocean prior to 11 Ma. The 13C/12C ratios of the benthic foraminifera Cibicidoides are interpreted in terms of water mass aging, i.e., the progressive depletion of dissolved O2 and lowering of δ13C values as the result of oxidation of organic matter as water flows further from its sources at the surface of the oceans. Both isotopic and faunal data indicate that the early Miocene regime, from 22 to 15 Ma, was the most different from today's. During that interval intermediate and deep waters of both the Atlantic and the Pacific oceans aged in a northward direction, and the intermediate waters of the Indian, the South Atlantic and the South Pacific oceans were consistently the youngest in the global ocean. We speculate that early Miocene global thermohaline circulation may have been strongly influenced by the influx of warm saline water, Tethyan Indian Saline Water, from the Tethys into the northern Indian Ocean. The isotopic and faunal data suggest that flow from the Tethyan region into the Indian Ocean diminished or terminated at about 14 Ma. Isotopic and faunal data give no evidence for North Atlantic Deep Water (NADW) formation prior to about 14.5 Ma (with the exception of a brief episode in the early Miocene). From 14.5 to 11 Ma NADW formation was weak, and circumpolar and Antarctic water flooded the deep South Atlantic and South Pacific as the Antarctic ice cap grew. From about 10 Ma to the end of the Miocene, thermohaline circulation resembled the modern circulation in many ways. In latest Miocene time (6 to 5 Ma) circulation patterns were very similar to today's except that NADW formation was greatly diminished. The distribution pattern of siliceous oozes in Miocene sediments is consistent with our proposed reconstruction of thermohaline circulation. Major changes which occurred in circulation during the middle Miocene were probably related to the closing of the Tethys and may have contributed to rapid middle Miocene growth of the Antarctic ice cap. Appendices 1, 4, 6, and 7 are available withentire article on microfiche. Order fromAmerican Geophysical Union, 2000 FloridaAvenue, N.W., Washington, DC 20009.Document 88P-002; $5.00. Payment mustaccompany order.
NASA Astrophysics Data System (ADS)
Wang, Zeliang; Lu, Youyu; Dupont, Frederic; W. Loder, John; Hannah, Charles; G. Wright, Daniel
2015-03-01
Simulations with a coarse-resolution global ocean model during 1958-2004 are analyzed to understand the inter-annual and decadal variability of the North Atlantic. Analyses of Empirical Orthogonal Functions (EOFs) suggest relationships among basin-scale variations of sea surface height (SSH) and depth-integrated circulation, and the winter North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) indices. The linkages between the atmospheric indices and ocean variables are shown to be related to the different roles played by surface momentum and heat fluxes in driving ocean variability. In the subpolar region, variations of the gyre strength, SSH in the central Labrador Sea and the NAO index are highly correlated. Surface heat flux is important in driving variations of SSH and circulation in the upper ocean and decadal variations of the Atlantic Meridional Overturning Circulation (AMOC). Surface momentum flux drives a significant barotropic component of flow and makes a noticeable contribution to the AMOC. In the subtropical region, momentum flux plays a dominant role in driving variations of the gyre circulation and AMOC; there is a strong correlation between gyre strength and SSH at Bermuda.
Global energetics and local physics as drivers of past, present and future monsoons
NASA Astrophysics Data System (ADS)
Biasutti, Michela; Voigt, Aiko; Boos, William R.; Braconnot, Pascale; Hargreaves, Julia C.; Harrison, Sandy P.; Kang, Sarah M.; Mapes, Brian E.; Scheff, Jacob; Schumacher, Courtney; Sobel, Adam H.; Xie, Shang-Ping
2018-06-01
Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentum- and energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Alexey
2013-11-23
The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.
NASA Astrophysics Data System (ADS)
Giddings, S. N.; MacCready, P.
2017-12-01
Estuarine exchange flow governs the interaction between oceans and estuaries and thus plays a large role in their biogeochemical processes. This study investigates the variability in estuarine exchange flow due to offshore oceanic conditions including upwelling/downwelling, and the presence of a river plume offshore (from a neighboring estuary). We address these processes via numerical simulations at the mouth of the Salish Sea, a large estuarine system in the Northeast Pacific. An analysis of the Total Exchange Flow indicates that during the upwelling season, the exchange flow is fairly consistent in magnitude and oriented in a positive (into the estuary at depth and out at the surface) direction. However, during periods of downwelling favorable winds, the exchange flow shows significantly more variability including multiple reversals, consistent with observations, and surface intrusions of the Columbia River plume which originates 250 km to the south. Numerical along-strait momentum budgets show that the exchange flow is forced dominantly by the pressure gradients, particularly the baroclinic. The pressure gradient is modified by Coriolis and sometimes advection, highlighting the importance of geostrophy and local adjustments. In experiments conducted without the offshore river plume, reversals still occur but are weaker, and the baroclinic pressure gradient plays a reduced role. These results suggest that estuaries along strong upwelling coastlines should experience significant modulation in the exchange flow during upwelling versus downwelling conditions. Additionally, they highlight the importance of nearby estuaries impacting one-another, not only in terms of connectivity, but also altering the exchange flow.
Yamamoto, Ayako; Palter, Jaime B.
2016-01-01
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air–sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline. PMID:26975331
Using an atmospheric boundary layer model to force global ocean models
NASA Astrophysics Data System (ADS)
Abel, Rafael; Böning, Claus
2014-05-01
Current practices in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in the conjunction with a prescribed, and unresponsive, atmospheric state (as given by reanalysis products). This can have impacts both on mesoscale processes as well as on the dynamics of the large-scale circulation. First, a possible local mismatch between the given atmospheric state and evolving sea surface temperature (SST) signatures can occur, especially for mesoscale features such as frontal areas, eddies, or near the sea ice edge. Any ocean front shift or evolution of mesoscale anomalies results in excessive, unrealistic surface fluxes due to the lack of atmospheric adaptation. Second, a subtle distortion in the sensitive balance of feedback processes being critical for the thermohaline circulation. Since the bulk formulations assume an infinite atmospheric heat capacity, resulting SST anomalies are strongly damped even on basin-scales (e.g. from trends in the Atlantic meridional overturning circulation). In consequence, an important negative feedback is eliminated, rendering the system excessively susceptible to small anomalies (or errors) in the freshwater fluxes. Previous studies (Seager et al., 1995, J. Clim.) have suggested a partial forcing issue remedy that aimed for a physically more realistic determination of air-sea fluxes by allowing some (thermodynamic) adaptation of the atmospheric boundary layer to SST changes. In this study a modernized formulation of this approach (Deremble et al., 2013, Mon. Weather Rev.; 'CheapAML') is implemented in a global ocean-ice model with moderate resolution (0.5°; ORCA05). In a set of experiments we explore the solution behaviour of this forcing approach (where only the winds are prescribed, while atmospheric temperature and humidity are computed), contrasting it with the solution obtained from the classical bulk formulation with a non-responsive atmosphere.
NASA Astrophysics Data System (ADS)
d'Orgeville, M.; England, M. H.; Sijp, W. P.
2011-12-01
Changes in the ocean circulation on millenial timescales can impact the atmospheric CO2 concentration by two distinct mechanisms: either by modifying the non-buffered ocean carbon storage (through changes in the physical and biological oceanic pumps) or by directly varying the surface mean oceanic partial pressure of pCO2 (through changes in mean surface alkalinity, temperature or salinity). The equal importance of the two mechanisms is illustrated here by introducing a diagnostic buffered carbon budget on the results of simulations performed with an Earth System Climate Model. For all the circulation changes considered in this study (due to a freshening of the North Atlantic, or a change in the Southern Hemisphere Westerly winds), the sign of the atmospheric CO2 response is opposite to the sign of the non-buffered ocean carbon storage change, indicating a transfer of carbon between ocean and atmosphere reservoirs. However the concomitant changes in the buffered ocean carbon reservoir can either greatly enhance or almost inhibit the atmospheric response depending on its sign. This study also demonstrates the utility of the buffered carbon budget approach in diagnosing the transient response of the global carbon cycle to climatic variations.
NASA Astrophysics Data System (ADS)
Grose, C. J.; Afonso, J. C.
2013-12-01
We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.
NASA Astrophysics Data System (ADS)
Priede, Imants G.
2014-06-01
The development of knowledge of global biogeography of the oceans from sixteenthcentury European voyages of exploration to present-day use of satellite remote sensing is reviewed in three parts; the pre-satellite era (1513-1977), the satellite era leading to a first global synthesis (1978-1998), and more recent studies since 1998. The Gulf Stream was first identified as a strong open-ocean feature in 1513 and by the eighteenth century, regular transatlantic voyages by sailing ships had established the general patterns of winds and circulation, enabling optimisation of passage times. Differences in water temperature, water colour and species of animals were recognised as important cues for navigation. Systematic collection of information from ships' logs enabled Maury (The Physical Geography of the Sea Harper and Bros. New York
Can We Infer Ocean Dynamics from Altimeter Wavenumber Spectra?
NASA Technical Reports Server (NTRS)
Richman, James; Shriver, Jay; Arbic, Brian
2012-01-01
The wavenumber spectra of sea surface height (SSH) and kinetic energy (KE) have been used to infer the dynamics of the ocean. When quasi-geostrophic dynamics (QG) or surface quasi-geostrophic (SQG) turbulence dominate and an inertial subrange exists, a steep SSH wavenumber spectrum is expected with k-5 for QG turbulence and a flatter k-11/3 for SQG turbulence. However, inspection of the spectral slopes in the mesoscale band of 70 to 250 km shows that the altimeter wavenumber slopes typically are much flatter than the QG or SQG predictions over most of the ocean. Comparison of the altimeter wavenumber spectra with the spectra estimated from the output of an eddy resolving global ocean circulation model (the Hybrid Coordinate Ocean Model, HYCOM, at 1/25 resolution), which is forced by high frequency winds and includes the astronomical forcing of the sun and the moon, suggests that the flatter slopes of the altimeter may arise from three possible sources, the presence of internal waves, the lack of an inertial subrange in the 70 to 250 km band and noise or submesoscales at small scales. When the wavenumber spectra of SSH and KE are estimated near the internal tide generating regions, the resulting spectra are much flatter than the expectations of QG or SQG theory. If the height and velocity variability are separated into low frequency (periods greater than 2 days) and high frequency (periods less than a day), then a different pattern emerges with a relatively flat wavenumber spectrum at high frequency and a steeper wavenumber spectrum at low frequency. The stationary internal tides can be removed from the altimeter spectrum, which steepens the spectral slopes in the energetic internal wave regions. Away from generating regions where the internal waves
Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden
NASA Astrophysics Data System (ADS)
Lucazeau, Francis; Leroy, Sylvie; Rolandone, Frédérique; d'Acremont, Elia; Watremez, Louise; Bonneville, Alain; Goutorbe, Bruno; Düsünur, Doga
2010-07-01
In order to investigate the importance of fluid circulation associated with the formation of ocean-continent transitions (OCT), we examine 162 new heat-flow (HF) measurements in the eastern Gulf of Aden, obtained at close locations along eight seismic profiles and with multi-beam bathymetry. The average HF values in the OCT and in the oceanic domain (~ 18 m.y.) are very close to the predictions of cooling models, showing that the overall importance of fluids remains small at the present time compared to oceanic ridge flanks of the same age. However, local HF anomalies are observed, although not systematically, in the vicinity of the unsedimented basement and are interpreted by the thermal effect of meteoric fluids flowing laterally. We propose a possible interpretation of hydrothermal paths based on the shape of HF anomalies and on the surface morphology: fluids can circulate either along-dip or along-strike, but are apparently focussed in narrow "pipes". In several locations in the OCT, there is no detectable HF anomaly while the seismic velocity structure suggests serpentinization and therefore past circulation. We relate the existence of the present day fluid circulation in the eastern Gulf of Aden to the presence of unsedimented basement and to the local extensional stress in the vicinity of the Socotra-Hadbeen fault zone. At the scale of rifted-margins, fluid circulation is probably not as important as in the oceanic domain because it can be inhibited rapidly with high sedimentation rates, serpentinization and stress release after the break-up.
Arctic Ocean Pathways in the 21st century
NASA Astrophysics Data System (ADS)
Aksenov, Yevgeny; van Gennip, Simon J.; Kelly, Stephen J.; Popova, Ekaterina E.; Yool, Andrew
2017-04-01
In the last three decades, changes in the Arctic environment have been occurring at an increasing rate. The opening up of large areas of previously sea ice-covered ocean affects the marine environment with potential impacts on Arctic ecosystems, including through changes in Arctic access, industries and societies. Changes to sea ice and surface winds result in large-scale shifts in ocean circulation and oceanic pathways. This study presents a high-resolution analysis of the projected ocean circulation and pathways of the Arctic water masses across the 21st century. The analysis is based on an eddy-permitting high-resolution global simulation of the ocean general circulation model NEMO (Nucleus for European Modelling of the Ocean) at the 1/4-degree horizontal resolution. The atmospheric forcing is from HadGEM2-ES model output from IPCC Assessment Report 5 (AR5) simulations performed for Coupled Model Intercomparison Project 5 (CMIP5), and follow the Representative Concentration Pathway 8.5 (RCP8.5) scenario. During the 21st century the AO experiences a significant warming, with sea surface temperature increased by in excess of 4 deg. C. Annual mean Arctic sea ice thickness drops to less than 0.5m, and the Arctic Ocean is ice-free in summer from the mid-century. We use an off-line tracer technique to investigate Arctic pathways of the Atlantic and Pacific waters (AW and PW respectively) under this future climate. The AW tracers have been released in the eastern Fram Strait and in the western Barents Sea, whereas the PW tracer has been seeded in the Bering Strait. In the second half of the century the upper 1000 m ocean circulation shows a reduction in the eastward AW flow along the continental slopes towards the Makarov and Canada basins and a deviation of the PW flow away from the Beaufort Sea towards the Siberian coast. Strengthening of Arctic boundary current and intensification of the cyclonic gyre in the Nansen basin of the Arctic Ocean is accompanied by weakening of the current and an anti-cyclonic gyre spin-up in the Makarov Basin. This presents a shift of the Arctic circulation "dipole" and of the Transpolar Drift, with the consequence that the PW flow towards Fram Strait is significantly reduced by the end of the century, weakening the Pacific-Atlantic connection via the Arctic Ocean, and reducing the Arctic freshwater outflow into the North Atlantic. Examination of the simulations suggests that these circulation changes are primarily due to the shift in the wind.
Antarctic sea ice control on ocean circulation in present and glacial climates
Ferrari, Raffaele; Jansen, Malte F.; Adkins, Jess F.; Burke, Andrea; Stewart, Andrew L.; Thompson, Andrew F.
2014-01-01
In the modern climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleoproxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum, resulting in an expansion of the volume occupied by Antarctic origin waters. In this study we show that this rearrangement of deep water masses is dynamically linked to the expansion of summer sea ice around Antarctica. A simple theory further suggests that these deep waters only came to the surface under sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. This unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass may help quantify the ocean’s role in regulating atmospheric carbon dioxide on glacial–interglacial timescales. Previous studies pointed to many independent changes in ocean physics to account for the observed swings in atmospheric carbon dioxide. Here it is shown that many of these changes are dynamically linked and therefore must co-occur. PMID:24889624
NASA Astrophysics Data System (ADS)
Thran, Amanda C.; Dutkiewicz, Adriana; Spence, Paul; Müller, R. Dietmar
2018-05-01
Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the global distribution of modern contourite drifts strongly depends on the configuration of the world's most powerful bottom currents, many of which are associated with global meridional overturning circulation. Bathymetric obstacles frequently modify flow direction and intensity, imposing additional finer-scale control on drift occurrence. Mean bottom current speed over contourite-covered areas is only slightly higher (2.2 cm/s) than the rest of the global ocean (1.1 cm/s), falling below proposed thresholds deemed necessary to re-suspend and redistribute sediments (10-15 cm/s). However, currents fluctuate more frequently and intensely over areas with drifts, highlighting the role of intermittent, high-energy bottom current events in sediment erosion, transport, and subsequent drift accumulation. We identify eddies as a major driver of these bottom current fluctuations, and we find that simulated bottom eddy kinetic energy is over three times higher in contourite-covered areas in comparison to the rest of the ocean. Our work supports previous hypotheses which suggest that contourite deposition predominantly occurs due to repeated acute events as opposed to continuous reworking under average-intensity background flow conditions. This suggests that the contourite record should be interpreted in terms of a bottom current's susceptibility to experiencing periodic, high-speed current events. Our results also highlight the potential role of upper ocean dynamics in contourite sedimentation through its direct influence on deep eddy circulation.
NASA Astrophysics Data System (ADS)
Rudels, Bert
2010-05-01
The freshwater added to the Arctic Ocean is stored as sea ice and as liquid freshwater residing primarily in the upper layers. This allows for simple zero order estimates of the liquid freshwater content and export based on rotationally controlled baroclinic flow. At present the freshwater outflow occurs on both sides of Greenland. In Fram Strait the sea ice export in the East Greenland Current is significantly larger than the liquid freshwater outflow, while the liquid freshwater export dominates in the Canadian Arctic Archipelago. Although the outflow in the upper layer and the freshwater export respond to short periodic wind events and longer periodic atmospheric circulation patterns, the long-term trend is controlled by the net freshwater supply - the freshwater input minus the ice export. As the ice formation and ice export are expected to diminish in a warmer climate the Canadian Arctic Archipelago, comprising several passages, should gradually carry more of the total Arctic Ocean freshwater outflow. However, the channels in the Canadian Arctic Archipelago discharge into the restricted Baffin, which also receives a part of the Fram Strait freshwater export via the West Greenland Current. In a situation with increased glacial melting and freshwater discharge from Greenland the density of the upper layer in Baffin Bay may decrease considerably. This would reduce the sea level difference between the Arctic Ocean and Baffin Bay and thus weaken the outflow through the Canadian Arctic Archipelago, in extreme cases perhaps even reverse the flow. This would shift the main Arctic Ocean liquid freshwater export from The Canadian Arctic Archipelago to Fram Strait. The zero order dynamics of the exchanges through the Canadian Arctic Archipelago and Baffin Bay are described and the possibility for a weakening of the outflow is examined.
NASA Astrophysics Data System (ADS)
Vélez-Belchí, Pedro; Pérez-Hernández, M. Dolores; Casanova-Masjoan, María.; Cana, Luis; Hernández-Guerra, Alonso
2017-06-01
The Atlantic Meridional Overturning Circulation (AMOC) is continually monitored along 26°N by the RAPID-MOCHA array. Measurements from this array show a 6.7 Sv seasonal cycle for the AMOC, with a 5.9 Sv contribution from the upper mid-ocean. Recent studies argue that the dynamics of the eastern Atlantic is the main driver for this seasonal cycle; specifically, Rossby waves excited south of the Canary Islands. Using inverse modeling, hydrographic, mooring, and altimetry data, we describe the seasonal cycle of the ocean mass transport around the Canary Islands and at the eastern boundary, under the influence of the African slope, where eastern component of the RAPID-MOCHA array is situated. We find a seasonal cycle of -4.1 ± 0.5 Sv for the oceanic region of the Canary Current, and +3.7 ± 0.4 Sv at the eastern boundary. This seasonal cycle along the eastern boundary is in agreement with the seasonal cycle of the AMOC that requires the lowest contribution to the transport in the upper mid-ocean to occur in fall. However, we demonstrate that the linear Rossby wave model used previously to explain the seasonal cycle of the AMOC is not robust, since it is extremely sensitive to the choice of the zonal range of the wind stress curl and produces the same results with a Rossby wave speed of zero. We demonstrate that the seasonal cycle of the eastern boundary is due to the recirculation of the Canary Current and to the seasonal cycle of the poleward flow that characterizes the eastern boundaries of the oceans.
Mesoscale Characteristics and the Role of Deformation on Ocean Dynamics
1991-06-05
34 Thilus, 41 (A), 416-435, 1989. 3. "Ring Evolution in General Circulation Models from Path Analysis ," J. Geo- phys. Res., 95(C10), 18057-18073, 1990...Loop Curren: (up to three in I year [Elliot,. by Vaukovih and Crt, ,tman (19861. Analysis of drifter data 19821). Lewi.a and Kirwan (1983. 19871...seventh drifter. the Lagrangian data sets along with an analysis and anterpre- number 3354. was entrained in the Loop Current at the tim. tation of
2006-09-30
disturbances from the lower atmosphere and ocean affect the upper atmosphere and how this variability interacts with the variability generated by solar and...represents “ general circulation model.” Both models include self-consistent ionospheric electrodynamics, that is, a calculation of the electric fields...and currents generated by the ionospheric dynamo, and consideration of their effects on the neutral dynamics. The TIE-GCM is used for studies that
NASA Astrophysics Data System (ADS)
Kaurkin, M. N.; Ibrayev, R. A.; Belyaev, K. P.
2018-01-01
A parallel realization of the Ensemble Optimal Interpolation (EnOI) data assimilation (DA) method in conjunction with the eddy-resolving global circulation model is implemented. The results of DA experiments in the North Atlantic with the assimilation of the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) data from the Jason-1 satellite are analyzed. The results of simulation are compared with the independent temperature and salinity data from the ARGO drifters.
Aspects of oceanic forcing of drought over Southwest Asia and the United States
NASA Astrophysics Data System (ADS)
Hoell, Andrew
An exceptionally severe drought affected much of the Northern Hemisphere mid-latitudes during 1998 -- 2002, with maxima over Southwest Asia and the United States. Previous research has suggested that the oceans played an important role in the hemispheric drought, with oceanic links to tropical Indo-west Pacific Ocean convection highlighted as important for Southwest Asia, and several additional ocean regions suggested as important for the United States. Here, the regional and hemispheric circulation response to tropical Indo-west Pacific Ocean convection is examined for both Southwest Asia and the United States, and the relative importance of individual sea surface temperature areas are explored for United States precipitation. For Southwest Asia, the regional thermodynamic forcing of precipitation and the Northern Hemisphere circulation are related to the leading pattern of Indian Ocean precipitation and its intraseasonal and interannual contributions. Both intraseasonal and interannual timescales are associated with baroclinic Gill-Matsuno-like circulation responses extending over southern Asia, but the interannual component also has a strong equivalent-barotropic circulation. A stationary barotropic Rossby wave extending over North America is associated with interannual tropical Indo-west Pacific Ocean convection and is supported by barotropic ray tracing. For United States regions, historical SST and precipitation links are identified for 1948 -- 1997, and the importance of these links are assessed during the 1998 -- 2002 drought using a linear regression model. The reconstructed precipitation has good correspondence for the Southwest and Southeast United States, but is not able to reproduce precipitation variability over the Northwest and Central United States, especially Texas.
North Atlantic deep water formation and AMOC in CMIP5 models
NASA Astrophysics Data System (ADS)
Heuzé, Céline; Wåhlin, Anna
2017-04-01
North Atlantic deep water formation processes and properties in climate models are indicative of their ability to simulate future ocean circulation, ventilation, carbon and heat uptake, and sea level rise. Historical time series of temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to reveal the causes and consequences of North Atlantic deep water formation in models. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. The trigger of deep convection varies among models; for one third it is intense surface cooling only, while the remaining two thirds also need upward mixing of subsurface warm salty water. The models with the most intense deep convection have the most accurate deep water properties, which are warmer and fresher than in the other models. They also have the strongest Atlantic Meridional Overturning Circulation (AMOC). For over half of the models, 40% of the variability of the AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas, with 3 and 4 years lag respectively. Understanding the dynamical drivers of the AMOC in models is key to realistically forecast a possible slow down and its consequences on the global circulation and marine life.
NASA Astrophysics Data System (ADS)
Cherkesov, L. V.; Shul'ga, T. Ya.
2018-01-01
The effect of seawater movement through the Kerch Strait for extreme deviations in the level and speed of currents in the Sea of Azov caused by the action of climate wind fields has been studied using the Princeton ocean model (POM), a general three-dimensional nonlinear model of ocean circulation. Formation of the water flow through the strait is caused by the long-term action of the same type of atmospheric processes. The features of the water dynamics under conditions of changing intensity and active wind direction have been studied. Numerical experiments were carried out for two versions of model Sea of Azov basins: closed (without the Kerch Strait) and with a fluid boundary located in the Black Sea. The simulation results have shown that allowance for the strait leads to a significant change in the velocities of steady currents and level deviations at wind speeds greater than 5 m/s. The most significant effect on the parameters of steady-state movements is exerted by the speed of the wind that generates them; allowance for water exchange through the strait is less important. Analysis of the directions of atmospheric circulation has revealed that the response generated by the movement of water through the strait is most pronounced when a southeast wind is acting.
2009-09-01
channel. More recently, they examined the role of eddies in the overturning circulation of the Southern Ocean using the hemispheric HIM with realistic... meridional velocity with intervals of 0.1 · 10−3ms−1 159 PV equation to study the bay-scale circulations : d dt ( f + ζ H0 − f0h0 H 20 ) = F, (4.30) where...2009-18 DOCTORAL DISSERTATION by Yu Zhang September 2009 Slope/shelf Circulation and Cross-slope/shelf Transport Out of a Bay Driven by Eddies from
High-latitude ocean ventilation and its role in Earth's climate transitions
MacGilchrist, Graeme A. ; Brown, Peter J.; Evans, D. Gwyn; Meijers, Andrew J. S.; Zika, Jan D.
2017-01-01
The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’. PMID:28784714
High-latitude ocean ventilation and its role in Earth's climate transitions.
Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D
2017-09-13
The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.
Climatic impact of Amazon deforestation - a mechanistic model study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning Zeng; Dickinson, R.E.; Xubin Zeng
1996-04-01
Recent general circulation model (GCM) experiments suggest a drastic change in the regional climate, especially the hydrological cycle, after hypothesized Amazon basinwide deforestation. To facilitate the theoretical understanding os such a change, we develop an intermediate-level model for tropical climatology, including atmosphere-land-ocean interaction. The model consists of linearized steady-state primitive equations with simplified thermodynamics. A simple hydrological cycle is also included. Special attention has been paid to land-surface processes. It generally better simulates tropical climatology and the ENSO anomaly than do many of the previous simple models. The climatic impact of Amazon deforestation is studied in the context of thismore » model. Model results show a much weakened Atlantic Walker-Hadley circulation as a result of the existence of a strong positive feedback loop in the atmospheric circulation system and the hydrological cycle. The regional climate is highly sensitive to albedo change and sensitive to evapotranspiration change. The pure dynamical effect of surface roughness length on convergence is small, but the surface flow anomaly displays intriguing features. Analysis of the thermodynamic equation reveals that the balance between convective heating, adiabatic cooling, and radiation largely determines the deforestation response. Studies of the consequences of hypothetical continuous deforestation suggest that the replacement of forest by desert may be able to sustain a dry climate. Scaling analysis motivated by our modeling efforts also helps to interpret the common results of many GCM simulations. When a simple mixed-layer ocean model is coupled with the atmospheric model, the results suggest a 1{degrees}C decrease in SST gradient across the equatorial Atlantic Ocean in response to Amazon deforestation. The magnitude depends on the coupling strength. 66 refs., 16 figs., 4 tabs.« less
Sustaining observations of the unsteady ocean circulation.
Frajka-Williams, E
2014-09-28
Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Hughes, Chris W.; Williams, Joanne; Blaker, Adam; Coward, Andrew; Stepanov, Vladimir
2018-02-01
We show how, by focusing on bottom pressure measurements particularly on the global continental slope, it is possible to avoid the "fog" of mesoscale variability which dominates most observables in the deep ocean. This makes it possible to monitor those aspects of the ocean circulation which are most important for global scale ocean variability and climate. We therefore argue that such measurements should be considered an important future component of the Global Ocean Observing System, to complement the present open-ocean and coastal elements. Our conclusions are founded on both theoretical arguments, and diagnostics from a fine-resolution ocean model that has realistic amplitudes and spectra of mesoscale variability. These show that boundary pressure variations are coherent over along-slope distances of tens of thousands of kilometres, for several vertical modes. We illustrate the value of this in the model Atlantic, by determining the time for boundary and equatorial waves to complete a circuit of the northern basin (115 and 205 days for the first and second vertical modes), showing how the boundary features compare with basin-scale theoretical models, and demonstrating the ability to monitor the meridional overturning circulation using these boundary measurements. Finally, we discuss applicability to the real ocean and make recommendations on how to make such measurements without contamination from instrumental drift.
NASA Technical Reports Server (NTRS)
Geiger, Cathleen A.; Ackley, Stephen F.; Hibler, William D., III
1997-01-01
Using a dynamic-thermodynamic numerical sea-ice model, external oceanic and atmospheric forcings on sea ice in the Weddell Sea are examined to identify physical processes associated with the seasonal cycle of pack ice, and to identify further the parameters that coupled models need to consider in predicting the response of the pack ice to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter ice-edge maximum extent is air temperature. Ocean heat flux has more impact on the minimum-ice-edge extent and in reducing pack-ice thickness, especially in the eastern-Weddell Sea. Low relative humidity enhances ice growth in thin ice and open-water regions, producing a more realistic ice edge along the coastal areas of the western-Weddell Sea where dry continental air has an impact. The modeled extent of the Weddell summer pack is equally sensitive to ocean heat flux and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture trans- port could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean heat-transport variability is shown to lead to overall ice thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.
NASA Technical Reports Server (NTRS)
1984-01-01
The Global Modeling and Simulation Branch (GMSB) of the Laboratory for Atmospheric Sciences (GLAS) is engaged in general circulation modeling studies related to global atmospheric and oceanographic research. The research activities discussed are organized into two disciplines: Global Weather/Observing Systems and Climate/Ocean-Air Interactions. The Global Weather activities are grouped in four areas: (1) Analysis and Forecast Studies, (2) Satellite Observing Systems, (3) Analysis and Model Development, (4) Atmospheric Dynamics and Diagnostic Studies. The GLAS Analysis/Forecast/Retrieval System was applied to both FGGE and post FGGE periods. The resulting analyses have already been used in a large number of theoretical studies of atmospheric dynamics, forecast impact studies and development of new or improved algorithms for the utilization of satellite data. Ocean studies have focused on the analysis of long-term global sea surface temperature data, for use in the study of the response of the atmosphere to sea surface temperature anomalies. Climate research has concentrated on the simulation of global cloudiness, and on the sensitivities of the climate to sea surface temperature and ground wetness anomalies.
Outstanding Questions About the Ocean a Half Century After IGY
NASA Astrophysics Data System (ADS)
Brewer, P. G.; Moore, T.
2002-12-01
Ocean science circa 1952 seems far removed from today. While the IGY initiation of modern CO2 studies heralded the global change era, and the development of conductive salinometers revolutionized the study of water masses, plate tectonics, the study of complex ecosystem dynamics, rapid climate change, and a dazzling array of technological advances were all unknown. Where do we stand today? The National Science Foundation recently commissioned a community study of the future of the ocean sciences (1), which focused on the critical issues transcending disciplinary lines. An understanding of how Earth and its fluid envelope store and transport heat, carbon and other climate tracers involves an understanding of physical, chemical, biological and geological processes that present some of the most urgent questions we face today. The decadal variability of climate is such that scientists can experience only a very few cycles in their lifetime, yet geologic evidence has emerged of periods of very rapid climate change with puzzling linkages. Add to this the approximately 35 year lag time between introducing CO2 to the atmosphere and feeling the thermal impact, and the desire for a rational greenhouse gas policy now, and it is clear that outstanding questions remain. The emergence of mankind as an agent of oceanic change is felt keenly in the complex coastal ocean, where the majority of human habitation is established. Rising sea level, changing ground water flows, and increasing unidirectional flows of sediments and biologically active material all present hard problems. New eyes from satellites and coastal radar now provide needed tools. Water circulates below the sea floor, flowing one thousand times more slowly than the wind driven ocean circulation, but carrying often potent fluids. These flows are felt in phenomena as diverse as hot vents at ocean ridges, and as massive amounts of frozen methane hydrate at the ocean margins. Evidence of liberation of enormous quantities of methane in the geologic past challenges us today. The realization that marine ecosystems are commonly in dis-equilibrium presents a huge challenge for biological studies, where populations can oscillate between different states. The transport of exotic species, and the shifts of climate are now producing new and complex interactions. The linkages with ocean turbulence are key for it is through the ill understood linkages between small and large scales that biological populations sense, feed, reproduce, and are transported. Controlled ecosystem experiments now offer powerful new tools. The ocean basins have been mapped and sampled with sophistication, but the dynamics of the oceanic lithosphere at the ridge crests, and at subduction zones, present huge challenges. Sea floor observatory tools now promise to revolutionize this field by capturing events on time scales from seconds to decades, and discovering their interactions. (1) Ocean Sciences at the New Millenium (2001). Univ. Corp. Atmos. Res., P.G. Brewer and T. Moore, Eds. pp. 152.
2009-01-01
Ocean Model 7:285-322 Halliwell GR Jr, Weisberg RH, Mayer DA (2003) A synthetic float analysis of upper-limb meridional overturning circulation ...encompasses a variety of coastal regions (the broad Southwest Florida shelf, the narrow Atlantic Keys shelf, the shallow Florida Bay, and Biscayne...products. The results indicate that the successful hindcasting of circulation patterns in a coastal area that is characterized by complex topography and
2010-01-01
Circulation in the Indonesian Seas: 1/12 degree Global HYCOM and the INSTANT Observations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...SUPPLEMENTARY NOTES 14. ABSTRACT A l/l 2 global version of the HYbrid Coordinate Ocean Model (HYCOM) using 3-hourly atmospheric forcing is analyzed and...TERMS Indonesian Throughflow, global HYCOM, INSTANT, Inter-ocean exchange, ocean modeling 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b
Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condron, Alan
The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS showmore » the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.« less
NASA Astrophysics Data System (ADS)
Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.
2016-09-01
The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.
Optimizing dynamic downscaling in one-way nesting using a regional ocean model
NASA Astrophysics Data System (ADS)
Pham, Van Sy; Hwang, Jin Hwan; Ku, Hyeyun
2016-10-01
Dynamical downscaling with nested regional oceanographic models has been demonstrated to be an effective approach for both operationally forecasted sea weather on regional scales and projections of future climate change and its impact on the ocean. However, when nesting procedures are carried out in dynamic downscaling from a larger-scale model or set of observations to a smaller scale, errors are unavoidable due to the differences in grid sizes and updating intervals. The present work assesses the impact of errors produced by nesting procedures on the downscaled results from Ocean Regional Circulation Models (ORCMs). Errors are identified and evaluated based on their sources and characteristics by employing the Big-Brother Experiment (BBE). The BBE uses the same model to produce both nesting and nested simulations; so it addresses those error sources separately (i.e., without combining the contributions of errors from different sources). Here, we focus on discussing errors resulting from the spatial grids' differences, the updating times and the domain sizes. After the BBE was separately run for diverse cases, a Taylor diagram was used to analyze the results and recommend an optimal combination of grid size, updating period and domain sizes. Finally, suggested setups for the downscaling were evaluated by examining the spatial correlations of variables and the relative magnitudes of variances between the nested model and the original data.
Wang, Bin; Xiang, Baoqiang; Lee, June-Yi
2013-02-19
Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = -0.92), the total TS days over the subtropical western North Pacific (r = -0.81), and the total number of TSs impacting East Asian coasts (r = -0.76) during 1979-2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH-ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability.
Wang, Bin; Xiang, Baoqiang; Lee, June-Yi
2013-01-01
Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = –0.92), the total TS days over the subtropical western North Pacific (r = –0.81), and the total number of TSs impacting East Asian coasts (r = –0.76) during 1979–2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH–ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability. PMID:23341624
An iceberg model implementation in ACME.
NASA Astrophysics Data System (ADS)
Comeau, D.; Turner, A. K.; Hunke, E. C.
2017-12-01
Icebergs represent approximately half of the mass flux from the Antarctic ice sheet, transporting freshwater and nutrients away from the coast to the Southern Ocean. Icebergs impact the surrounding ocean and sea ice environment, and serve as nutrient sources for biogeochemical activity, yet these processes are typically not resolved in current climate models. We have implemented a parameterization for iceberg drift and decay into the Department of Energy's Accelerated Climate Model for Energy (ACME), where the ocean, sea ice, and land ice components are based on the unstructured grid modeling framework Multiple Prediction Across Scales (MPAS), to improve the representation of Antarctic mass flux to the Southern Ocean and its impacts on ocean stratification and circulation, sea ice, and biogeochemical processes in a fully coupled global climate model. The iceberg model is implemented in two frameworks: Lagrangian and Eulerian. The Lagrangian framework embeds individual icebergs into the ocean and sea ice grids, and will be useful in modeling `giant' (>10 nautical miles) iceberg events, which may have highly localized impacts on ocean and sea ice. The Eulerian framework allows us to model a realistic population of Antarctic icebergs without the computational expense of individual particle tracking to simulate the aggregate impact on the Southern Ocean climate system. This capability, together with under ice-shelf ocean cavities and dynamic ice-shelf fronts, will allow for extremely high fidelity simulation of the southern cryosphere within ACME.
NASA Astrophysics Data System (ADS)
Hu, A.; Bates, S. C.
2017-12-01
Observations indicate that the global mean surface temperature is rising, so does the global mean sea level. Sea level rise (SLR) can impose significant impacts on island and coastal communities, especially when SLR is compounded with storm surges. Here, via analyzing results from two sets of ensemble simulations from the Community Earth System Model version 1, we investigate how the potential SLR benefits through mitigating the future emission scenarios from business as usual to a mild-mitigation over the 21st Century would be affected by internal climate variability. Results show that there is almost no SLR benefit in the near term due to the large SLR variability due to the internal ocean dynamics. However, toward the end of the 21st century, the SLR benefit can be as much as a 26±1% reduction of the global mean SLR due to seawater thermal expansion. Regionally, the benefits from this mitigation for both near and long terms are heterogeneous. They vary from just a 11±5% SLR reduction in Melbourne, Australia to a 35±6% reduction in London. The processes contributing to these regional differences are the coupling of the wind-driven ocean circulation with the decadal scale sea surface temperature mode in the Pacific and Southern Oceans, and the changes of the thermohaline circulation and the mid-latitude air-sea coupling in the Atlantic.
NASA Astrophysics Data System (ADS)
Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll
2017-08-01
The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.
NASA Astrophysics Data System (ADS)
Soloviev, A.; Dean, C.; Lukas, R.; Donelan, M. A.; Terray, E. A.
2016-12-01
Surface-wave breaking is a powerful mechanism producing significant energy flux to small scale turbulence. Most of the turbulent energy produced by breaking waves dissipates within one significant wave height, while the turbulent diffusion layer extends to approximately ten significant wave heights. Notably, the near-surface shear may practically vanish within the wave-stirred layer due to small-scale turbulent mixing. The surface ocean temperature-salinity structure, circulation, and mass exchanges (including greenhouse gases and pollutants) substantially depend on turbulent mixing and non-local transport in the near-surface layer of the ocean. Spatially coherent organized motions have been recognized as an important part of non-local transport. Langmuir circulation (LC) and ramp-like structures are believed to vertically transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., oil), and other substances in the upper layer of the ocean. Free surface significantly complicates the analysis of turbulent exchanges at the air-sea interface and the coherent structures are not yet completely understood. In particular, there is growing observational evidence that in the case of developing seas when the wind direction may not coincide with the direction of the energy containing waves, the Langmuir lines are oriented in the wind rather than the wave direction. In addition, the vortex force due to Stokes drift in traditional models is altered in the breaking-wave-stirred layer. Another complication is that the ramp-like structures in the upper ocean turbulent boundary layer have axes perpendicular to the axes of LC. The ramp-like structures are not considered in the traditional model. We have developed a new model, which treats the LC and ramp-like structures in the near-surface layer of the ocean as a coupled system. Using computational fluid dynamics tools (LES), we have been able to reproduce both LC and ramp-like structures coexisting in space though intermittent in time. In the model, helicity isosurfaces appear to be tilted and, in general, coordinated with the tilted velocity isosurfaces produced by ramp-like structures. This is an indication of coupling between the LC and ramp-like structures. Remarkably, the new model is able to explain observations of LC under developing seas.
NASA Astrophysics Data System (ADS)
Contoux, C.; Zhang, Z.; Li, C.; Nisancioglu, K. H.; Risebrobakken, B.
2014-12-01
Northern high latitudes are thought to have been especially warm during the late Pliocene (e.g. Dowsett et al., 2013). However, the mechanisms sustaining these warm high latitude conditions are debated, especially because warm high latitudes are not necessarily depending on a stronger AMOC (Zhang et al., 2013). On the global scale, several authors reported CO2 level variability during the Pliocene ranging from 280 ppm to 450 ppm (e.g. Badger et al., 2013), which could be linked with orbital variability. More regionally, an aridification of the Mediterranean region is thought to have increased the Mediterranean outflow during the same period (e.g. Khélifi et al., 2009). These different forcings must have impacted on salinity and temperature profiles in the North Atlantic/Arctic oceans, which are then recorded at the local scale in the proxies derived from sediment cores. In order to carefully interpret these proxies, it is necessary to understand the large scale dynamics of the region during that period and its potential maximum variability with CO2 and orbital changes as well as Mediterranean outflow increase. Using the NorESM-L coupled atmosphere ocean model, which has a refined oceanic grid in the Nordic Seas region, we investigate the roles of extreme CO2and orbital variability on the Atlantic and Arctic oceanic circulation. An additional test to higher salinity in the Mediterranean is carried out. This study is part of a larger project which aims at characterising the state of the Nordic Seas during the Pliocene, and includes multi-proxy reconstructions and sensitivity model studies. References Badger et al., 2013. High resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3 - 2.8 Ma), Philosophical Transactions of the Royal Society A, 371, 20130094. Dowsett et al., 2013. Sea surface temperature of the mid-Piacenzian ocean: a data-model comparison, Nature Scientific Reports, 3, 2013, doi:10.1038/srep02013. Khélifi et al., 2009. A major and long term intensification of the Mediterranean outflow water, 3.5 - 3.3 Ma ago, Geology, 2009,37;811-814, doi: 10.1130/G30058A.1 Zhang, Z.-S. et al., 2013. Mid-pliocene Atlantic meridional overturning circulation not unlike modern, Clim. Past, 9, 1495--1504, doi:10.5194/cp-9-1495-2013.
Inomata, Y; Aoyama, M; Tsumune, D; Motoi, T; Nakano, H
2012-12-01
¹³⁷Cs is one of the conservative tracers applied to the study of oceanic circulation processes on decadal time scales. To investigate the spatial distribution and the temporal variation of ¹³⁷Cs concentrations in surface seawater in the North Pacific Ocean after 1957, a technique for optimum interpolation (OI) was applied to understand the behaviour of ¹³⁷Cs that revealed the basin-scale circulation of Cs ¹³⁷Cs in surface seawater in the North Pacific Ocean: ¹³⁷Cs deposited in the western North Pacific Ocean from global fallout (late 1950s and early 1960s) and from local fallout (transported from the Bikini and Enewetak Atolls during the late 1950s) was further transported eastward with the Kuroshio and North Pacific Currents within several years of deposition and was accumulated in the eastern North Pacific Ocean until 1967. Subsequently, ¹³⁷Cs concentrations in the eastern North Pacific Ocean decreased due to southward transport. Less radioactively contaminated seawater was also transported northward, upstream of the North Equatorial Current in the western North Pacific Ocean in the 1970s, indicating seawater re-circulation in the North Pacific Gyre.
NASA Astrophysics Data System (ADS)
Le Traon, P. Y.
2012-04-01
The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. Topex/Poseidon revolutionized our vision and understanding of the ocean. It provided new views of the large scale seasonal and interannual sea level and ocean circulation variations. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. The ERS-1/2 orbit was well adapted for mesoscale circulation sampling but the orbit determination and altimeter performance were much less precise than for T/P. We demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. This was an essential first step for the merging of T/P and ERS-1/2. The second step required the development of a global optimal interpolation method. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 years. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution was essential to the development of global ocean forecasting, a second revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) (1998-2008) was phased with the T/P and ERS-1/2 successors (Jason-1 and ENVISAT) and was instrumental in the development of global operational oceanography capabilities. Europe played a leading role in GODAE. In 1998, the global in-situ observing system was inadequate for the global scope of GODAE. This led to the development of Argo, an initial joint venture between CLIVAR and GODAE. Argo has been an outstanding success. The 3000 Argo profiling floats now provide the most important global in-situ observations to monitor and understand the role of the ocean on the earth climate. This is a third revolution in oceanography. I was lucky enough to be involved with many colleagues and friends in these three revolutions or breakthroughs in oceanography. The presentation will provide some historical background on the development of the SSALTO/DUACS merged altimeter products and an overview of their utility and use for ocean research and operational oceanography. I will thengo throughthe development of operational oceanography and Argo over the past 15 years focussing on European contributions, in particular, in the framework of the GMES Marine Service, EuroGOOSand the Euro-Argo research infrastructure. Perspectives and new challenges for the integrated global ocean observing system will be finally discussed.
NASA Astrophysics Data System (ADS)
Delworth, T. L.; Zeng, F. J.; Yang, X.; Zhang, L.
2017-12-01
We use suites of simulations with coupled ocean-atmosphere models to show that multidecadal changes in the North Atlantic Oscillation (NAO) can drive multidecadal changes in the Atlantic Meridional Overturning Circulation (AMOC) and the Atlantic Multidecadal Oscillation (AMO), with associated hemispheric climatic impacts. These impacts include rapid changes in Arctic sea ice, hemispheric temperature, and modulation of Atlantic hurricane activity. We use models that incorporate either a fully dynamic ocean or a simple slab ocean to explore the role of ocean dynamics and ocean-atmosphere interactions. A positive phase of the NAO is associated with strengthened westerly winds over the North Atlantic. These winds extract more heat than normal from the subpolar ocean, thereby increasing upper ocean density, deepwater formation, and the strength of the AMOC and associated poleward ocean heat transport. This warming leads to a positive phase of the AMO. The enhanced oceanic heat transport extends to the Arctic where it causes a reduction of Arctic sea ice. Large-scale atmospheric warming reduces vertical wind shear in the tropical North Atlantic, creating an environment more favorable for tropical storms. We use models to further show that observed multidecadal variations of the NAO over the 20th and early 21st centuries may have led to multidecadal variations of simulated AMOC and the AMO. Specifically, negative NAO values from the late 1960s through the early 1980s led to a weakened AMOC/cold North Atlantic, whereas increasing NAO values from the late 1980s through the late 1990s increased the model AMOC and led to a positive (warm) phase of the AMO. The warm phase contributed to increases in tropical storm activity and decreases in Arctic sea ice after the mid 1990s. Ocean dynamics are essential for translating the observed NAO variations into ocean heat content variations for the extratropical North Atlantic, but appear less important in the tropical North Atlantic. The observed AMO has substantial SST amplitude in both the tropical and extratropical North Atlantic. These results suggest that additional factors, such as cloud feedback, dust feedback, and anthropogenic radiative forcing, may play a crucial role for the tropical expression of the AMO.
Vertical Redistribution of Ocean Salt Content
NASA Astrophysics Data System (ADS)
Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.
2017-12-01
Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.
NASA Astrophysics Data System (ADS)
Gómez-Ocampo, E.; Gaxiola-Castro, G.; Durazo, Reginaldo
2017-06-01
Threshold is defined as the point where small changes in an environmental driver produce large responses in the ecosystem. Generalized additive models (GAMs) were used to estimate the thresholds and contribution of key dynamic physical variables in terms of phytoplankton production and variations in biomass in the tropical-subtropical Pacific Ocean off Mexico. The statistical approach used here showed that thresholds were shallower for primary production than for phytoplankton biomass (pycnocline < 68 m and mixed layer < 30 m versus pycnocline < 45 m and mixed layer < 80 m) but were similar for absolute dynamic topography and Ekman pumping (ADT < 59 cm and EkP > 0 cm d-1 versus ADT < 60 cm and EkP > 4 cm d-1). The relatively high productivity on seasonal (spring) and interannual (La Niña 2008) scales was linked to low ADT (45-60 cm) and shallow pycnocline depth (9-68 m) and mixed layer (8-40 m). Statistical estimations from satellite data indicated that the contributions of ocean circulation to phytoplankton variability were 18% (for phytoplankton biomass) and 46% (for phytoplankton production). Although the statistical contribution of models constructed with in situ integrated chlorophyll a and primary production data was lower than the one obtained with satellite data (11%), the fits were better for the former, based on the residual distribution. The results reported here suggest that estimated thresholds may reliably explain the spatial-temporal variations of phytoplankton in the tropical-subtropical Pacific Ocean off the coast of Mexico.
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.
Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H
2017-09-01
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.
Extinction of a fast-growing oyster and changing ocean circulation in Pliocene tropical America
NASA Astrophysics Data System (ADS)
Kirby, Michael X.; Jackson, Jeremy B. C.
2004-12-01
Ocean circulation changed profoundly in the late Cenozoic around tropical America as a result of constriction and final closure of the Central American seaway. In response, regional planktonic productivity is thought to have decreased in the Caribbean Sea. Previous studies have shown that shallow-marine communities reflect these changes by reorganizing from a suspension-feeder dominated community to a more carbonate-rich, phototrophic-based community. Although changes in diversity, abundance, and body size of various shallow-marine invertebrates have previously been examined, no study has specifically used growth rate in suspension feeders to examine the effect that changes in ocean circulation may have had on shallow-marine communities. Here we show that a fast-growing oyster went extinct concurrently with changes in ocean circulation and planktonic productivity in the Pliocene. Faster-growing Crassostrea cahobasensis went extinct, whereas slower-growing Crassostrea virginica and columbiensis survived to the Holocene. Miocene Pliocene C. cahobasensis grew 522% faster in shell carbonate and 251% faster in biomass relative to Quaternary C. virginica and C. columbiensis. Although differences in growth are due to proximate differences in environment, the disappearance of faster-growing C. cahobasensis from shallow-marine environments and the continued survival of slower-growing C. virginica and C. columbiensis in marginal-marine environments (e.g., estuaries, lagoons) is consistent with the view that concurrent changes in ocean circulation and declining primary production resulted in the restriction of Crassostrea to marginal-marine environments.
Arctic Climate and Atmospheric Planetary Waves
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Haekkinen, S.
2000-01-01
Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.
Linking the South Atlantic Meridional Overturning Circulation and the Global Monsoons
NASA Astrophysics Data System (ADS)
Lopez, H.; Dong, S.; Goni, G. J.; Lee, S. K.
2016-02-01
This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.
Early summer southern China rainfall variability and its oceanic drivers
NASA Astrophysics Data System (ADS)
Li, Weijing; Ren, Hong-Chang; Zuo, Jinqing; Ren, Hong-Li
2018-06-01
Rainfall in southern China reaches its annual peak in early summer (May-June) with strong interannual variability. Using a combination of observational analysis and numerical modeling, the present study investigates the leading modes of this variability and its dynamic drivers. A zonal dipole pattern termed the southern China Dipole (SCD) is found to be the dominant feature in early summer during 1979-2014, and is closely related to a low-level anomalous anticyclone over the Philippine Sea (PSAC) and a Eurasian wave-train pattern over the mid-high latitudes. Linear regressions based on observations and numerical experiments using the CAM5 model suggest that the associated atmospheric circulation anomalies in early summer are linked to decaying El Niño-Southern Oscillation-like sea surface temperature (SST) anomalies in the tropical Pacific, basin-scale SST anomalies in the tropical Indian Ocean, and meridional tripole-like SST anomalies in the North Atlantic in the previous winter to early summer. The tropical Pacific and Indian Ocean SST anomalies primarily exert an impact on the SCD through changing the polarity of the PSAC, while the North Atlantic tripole-like SST anomalies mainly exert a downstream impact on the SCD by inducing a Eurasian wave-train pattern. The North Atlantic tripole-like SST anomalies also make a relatively weak contribution to the variations of the PSAC and SCD through a subtropical teleconnection. Modeling results indicate that the three-basin combined forcing has a greater impact on the SCD and associated circulation anomalies than the individual influence from any single oceanic basin.
Spectral decomposition of internal gravity wave sea surface height in global models
NASA Astrophysics Data System (ADS)
Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis
2017-10-01
Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
Spaceborne Studies Of Ocean Circulation
NASA Astrophysics Data System (ADS)
Patzert, William C.
1984-08-01
The global view of the oceans seen by Seasat during its 1978 flight demonstrated the feasibility of ocean remote sensing. These first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) laid the foundation for two satellite missions planned for the late 1980's. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (Topography Experiment) and NROSS (Navy Remote Ocean Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans role in climate variability. Sea surface winds (calculated from scatterometer measurements) are the fundamental driving force for ocean waves and currents (estimated from altimeter measurements). On a global scale, the winds and currents are approximately equal partners in redistributing the excess heat gained in the tropics from solar radiation to the cooler polar regions. Small perturbations in this system can dramatically alter global weather, such as the El Niho event of 1982-83. During an El Ni?io event, global wind patterns and ocean currents are perturbed causing unusual ocean warming in the tropical Pacfic Ocean. These ocean events are coupled to complex fluctuations in global weather. Only with satellites will we be able to collect the global data sets needed to study events such as El Ni?o. When TOPEX and NROSS fly, oceanographers will have the equivalent of meteorological high and low pressure charts of ocean topography as well as the surface winds to study ocean "weather." This ability to measure ocean circulation and its driving forces is a critical element in understanding the influence of oceans on society. Climatic changes, fisheries, commerce, waste disposal, and national defense are all involved.
Microbial decomposition of marine dissolved organic matter in cool oceanic crust
NASA Astrophysics Data System (ADS)
Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.
2018-05-01
Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.
NASA Astrophysics Data System (ADS)
Muglia, J.; Skinner, L.; Schmittner, A.
2017-12-01
Circulation changes have been suggested to play an important role in the sequestration of atmospheric CO2 in the glacial ocean. However, previous studies have resulted in contradictory results regarding the strength of the Atlantic Meridional Overturning Circulation (AMOC) and three-dimensional, quantitative reconstructions of the glacial ocean constrained by multiple proxies remain lacking. Here we simulate the modern and glacial ocean using a coupled, global, three-dimensional, physical-biogeochemical model constrained simultaneously by d13C, radiocarbon, and d15N to explore the effects of AMOC differences and Southern Ocean iron fertilization on the distributions of these isotopes and ocean carbon storage. We show that d13C and radiocarbon data sparsely sampled at the locations of existing glacial sediment cores can be used to reconstruct the modern AMOC accurately. Applying this method to the glacial ocean we find that a surprisingly weak (6-9 Sv or about half of today's) and shallow AMOC maximizes carbon storage and best reproduces the sediment data. Increasing the atmospheric soluble iron flux in the model's Southern Ocean intensifies export production, carbon storage, and improves agreement with d13C and d15N reconstructions. Our best fitting model is a significant improvement compared with previous studies. It suggests that a weak and shallow AMOC and enhanced iron fertilization conspired to maximize carbon storage in the glacial ocean.
North Atlantic forcing of tropical Indian Ocean climate.
Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas
2014-05-01
The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.
The formation of the ocean’s anthropogenic carbon reservoir
Iudicone, Daniele; Rodgers, Keith B.; Plancherel, Yves; Aumont, Olivier; Ito, Takamitsu; Key, Robert M.; Madec, Gurvan; Ishii, Masao
2016-01-01
The shallow overturning circulation of the oceans transports heat from the tropics to the mid-latitudes. This overturning also influences the uptake and storage of anthropogenic carbon (Cant). We demonstrate this by quantifying the relative importance of ocean thermodynamics, circulation and biogeochemistry in a global biochemistry and circulation model. Almost 2/3 of the Cant ocean uptake enters via gas exchange in waters that are lighter than the base of the ventilated thermocline. However, almost 2/3 of the excess Cant is stored below the thermocline. Our analysis shows that subtropical waters are a dominant component in the formation of subpolar waters and that these water masses essentially form a common Cant reservoir. This new method developed and presented here is intrinsically Lagrangian, as it by construction only considers the velocity or transport of waters across isopycnals. More generally, our approach provides an integral framework for linking ocean thermodynamics with biogeochemistry. PMID:27808101
North Atlantic ocean circulation and abrupt climate change during the last glaciation.
Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D
2016-07-29
The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change. Copyright © 2016, American Association for the Advancement of Science.
Atlantic Ocean Circulation at the Last Glacial Maximum: Inferences from Data and Models
2012-09-01
available. Uncertainties in proxies themselves, and in the dating of the proxy records, are generally lower for the LGM than for periods further back...proven useful in understanding new aspects of the modern ocean circulation. Due to the poor dating resolution of sediment cores from the LGM period, and...Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPI- LOG) project was an effort to reconstruct the state of the Earth in glacial states; a
Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa
2015-01-01
The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels") can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.
Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations
NASA Astrophysics Data System (ADS)
Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.
2018-05-01
We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.
Modeling of Antarctic Sea Ice in a General Circulation Model.
NASA Astrophysics Data System (ADS)
Wu, Xingren; Simmonds, Ian; Budd, W. F.
1997-04-01
A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distribution. The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution.
NASA Astrophysics Data System (ADS)
Martin, Daniel; Asay-Davis, Xylar; Cornford, Stephen; Price, Stephen; Ng, Esmond; Collins, William
2015-04-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010 resulting from two different choices of climate forcing: a 'normal-year' climatology and the CORE v. 2 interannual forcing data (Large and Yeager 2008). Simulations are performed at 0.1o (~5 km) ocean resolution and adaptive ice sheet resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and consequent dynamics of the grounded ice sheet. POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).
Evaluation of CMIP5 and CORDEX Derived Wind Wave Climate in Arabian Sea and Bay of Bengal
NASA Astrophysics Data System (ADS)
Chowdhury, P.; Behera, M. R.
2017-12-01
Climate change impact on surface ocean wave parameters need robust assessment for effective coastal zone management. Climate model skill to simulate dynamical General Circulation Models (GCMs) and Regional Circulation Models (RCMs) forced wind-wave climate over northern Indian Ocean is assessed in the present work. The historical dynamical wave climate is simulated using surface winds derived from four GCMs and four RCMs, participating in the Coupled Model Inter-comparison Project (CMIP5) and Coordinated Regional Climate Downscaling Experiment (CORDEX-South Asia), respectively, and their ensemble are used to force a spectral wave model. The surface winds derived from GCMs and RCMs are corrected for bias, using Quantile Mapping method, before being forced to the spectral wave model. The climatological properties of wave parameters (significant wave height (Hs), mean wave period (Tp) and direction (θm)) are evaluated relative to ERA-Interim historical wave reanalysis datasets over Arabian Sea (AS) and Bay of Bengal (BoB) regions of the northern Indian Ocean for a period of 27 years. We identify that the nearshore wave climate of AS is better predicted than the BoB by both GCMs and RCMs. Ensemble GCM simulated Hs in AS has a better correlation with ERA-Interim ( 90%) than in BoB ( 80%), whereas ensemble RCM simulated Hs has a low correlation in both regions ( 50% in AS and 45% in BoB). In AS, ensemble GCM simulated Tp has better predictability ( 80%) compared to ensemble RCM ( 65%). However, neither GCM nor RCM could satisfactorily predict Tp in nearshore BoB. Wave direction is poorly simulated by GCMs and RCMs in both AS and BoB, with correlation around 50% with GCMs and 60% with RCMs wind derived simulations. However, upon comparing individual RCMs with their parent GCMs, it is found that few of the RCMs predict wave properties better than their parent GCMs. It may be concluded that there is no consistent added value by RCMs over GCMs forced wind-wave climate over northern Indian Ocean. We also identify that there is little to no significance of choosing a finer resolution GCM ( 1.4°) over a coarse GCM ( 2.8°) in improving skill of GCM forced dynamical wave simulations.
NASA Technical Reports Server (NTRS)
Chen, Junye; DelGenio, Anthony D.; Carlson, Barbara e.; Bosilovich, Michael G.
2007-01-01
The dominant interannual El Nino-Southern Oscillation phenomenon (ENSO) and the short length of climate observation records make it difficult to study long-term climate variations in the spatiotemporal domain. Based on the fact that the ENS0 signal spreads to remote regions and induces delayed climate variation through atmospheric teleconnections, we develop an ENSO-removal method through which the ENS0 signal can be approximately removed at the grid box level from the spatiotemporal field of a climate parameter. After this signal is removed, long-term climate variations, namely, the global warming trend (GW) and the Pacific pan-decadal variability (PDV), are isolated at middle and low latitudes in the climate parameter fields from observed and reanalyses datasets. Except for known GW characteristics, the warming that occurs in the Pacific basin (approximately 0.4K in the 2oth century) is much weaker than in surrounding regions and the other two ocean basins (approximately 0.8K). The modest warming in the Pacific basin is likely due to its dynamic nature on the interannual and decadal time scales and/or the leakage of upper ocean water through the Indonesian Throughflow. Based on NCEP/NCAR and ERA-40 reanalyses, a comprehensive atmospheric structure associated with GW is given. Significant discrepancies exist between the two datasets, especially in the tightly coupled dynamic and water vapor fields. The dynamic field based on NCEP/NCAR reanalysis, which shows a change in the Walker Circulation, is consistent with the GW change in the surface temperature field. However, intensification in the Hadley Circulation is associated with GW trend in the ERA-40 reanalysis.
NASA Astrophysics Data System (ADS)
Schollaert Uz, S.; Busalacchi, A. J.; Smith, T. M.; Evans, M. N.; Brown, C.; Hackert, E. C.; Wang, X.
2016-12-01
The tropical Pacific is a region of strong forcing where physical oceanography primarily controls biological variability over the seasonal to interannual time scales observed since dedicated ocean color satellite remote sensing began in 1997. To quantify how multi-decadal, climate-scale changes impact marine biological dynamics, we used the correlation with sea-surface temperature and height to reconstruct a 50-year time series of surface chlorophyll concentrations. The reconstruction demonstrates greatest skill away from the coast and within 10o of the equator where chlorophyll variance is greatest and primarily associated with El Niño Southern Oscillation (ENSO) dynamics and secondarily associated with decadal variability. We observe significant basin-wide differences between east and central Pacific events when the El Niño events are strong: chlorophyll increases with La Niña and decreases with El Niño, with larger declines east of 180o for remotely-forced east Pacific events and west of 180o for locally-forced central Pacific events. Chlorophyll variations also reflect the physical dynamics of Pacific decadal variability with small but significant differences between cool and warm eras: consistent with advection variability west of 180o and likely driven by subsurface changes in the nutricline depth between 110-140oW. Comparisons with output from a fully-coupled biogeochemical model support the hypothesis that this anomalous region is controlled by lower frequency changes in subsurface circulation patterns that transport nutrients to the surface. Basin-wide chlorophyll distributions exhibiting spatial heterogeneity in response to multi-decadal climate forcing imply similar long-term changes in phytoplankton productivity, with implications for the marine food web and the ocean's role as a carbon sink.
Reversed flow of Atlantic deep water during the Last Glacial Maximum.
Negre, César; Zahn, Rainer; Thomas, Alexander L; Masqué, Pere; Henderson, Gideon M; Martínez-Méndez, Gema; Hall, Ian R; Mas, José L
2010-11-04
The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.
Demonstrating the Alaska Ocean Observing System in Prince William Sound
NASA Astrophysics Data System (ADS)
Schoch, G. Carl; McCammon, Molly
2013-07-01
The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.
The Southern Ocean biogeochemical divide.
Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L
2006-06-22
Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.
Dynamics of Cross-Shore Thermal Exchange Over Nonuniform Bathymetry
NASA Astrophysics Data System (ADS)
Safaie, A.; Davis, K. A.; Pawlak, G. R.
2016-02-01
The hydrodynamics of cross-shelf circulation on the inner shelf influence coastal ecosystems through the transport of heat, salt, nutrients, and planktonic organisms. While cross-shelf exchange on wide continental shelves has received a fair amount of attention in literature, the mechanisms for cross-shelf exchange on narrow shelves with steep, rough, and highly irregular bathymetry, characteristic of coral reef shorelines, is not well understood. Previous observational studies from reefs at Eilat, Israel and Oahu, Hawaii, have demonstrated the importance of surface heat flux in driving cross-shore transport. While both sites experienced offshore surface flow during daytime warming periods and offshore flow near the bed during nighttime cooling, the phase differences between the surface heat fluxes and thermal responses at the two sites indicate different dynamic flow regimes based on momentum and thermal balances. This study examines the dynamical structure of thermally driven flows using numerical modeling to investigate the hypothesis that thermally driven baroclinic exchange is important to cross-shore circulation for tropical coastlines. We use the open-source Regional Ocean Modeling System (ROMS), a free-surface, three-dimensional circulation model, considering a simple wedge case with uniform bathymetry in the alongshore direction, and heat flux applied uniformly to the surface. We examine different flow regimes using scaling of the momentum and thermal balance equations. We also explore the parameter space for the momentum balance describing cross-shore thermal exchange, and thoroughly characterize the exchange structure by investigating the dominant forcing regimes, the mechanisms responsible for modulating thermal circulation, and the effects of temporal variations in vertical mixing and heating/cooling buoyancy flux. Results are compared against existing data sets to evaluate the ability of the model to represent these flows.
Spin-up simulation behaviors in a climate model to build a basement of long-time simulation
NASA Astrophysics Data System (ADS)
Lee, J.; Xue, Y.; De Sales, F.
2015-12-01
It is essential to develop start-up information when conducting long-time climate simulation. In case that the initial condition is already available from the previous simulation of same type model this does not necessary; however, if not, model needs spin-up simulation to have adjusted and balanced initial condition with the model climatology. Otherwise, a severe spin may take several years. Some of model variables such as deep soil temperature fields and temperature in ocean deep layers in initial fields would affect model's further long-time simulation due to their long residual memories. To investigate the important factor for spin-up simulation in producing an atmospheric initial condition, we had conducted two different spin-up simulations when no atmospheric condition is available from exist datasets. One simulation employed atmospheric global circulation model (AGCM), namely Global Forecast System (GFS) of National Center for Environmental Prediction (NCEP), while the other employed atmosphere-ocean coupled global circulation model (CGCM), namely Climate Forecast System (CFS) of NCEP. Both models share the atmospheric modeling part and only difference is in applying of ocean model coupling, which is conducted by Modular Ocean Model version 4 (MOM4) of Geophysical Fluid Dynamics Laboratory (GFDL) in CFS. During a decade of spin-up simulation, prescribed sea-surface temperature (SST) fields of target year is forced to the GFS daily basis, while CFS digested only first time step ocean condition and freely iterated for the rest of the period. Both models were forced by CO2 condition and solar constant given from the target year. Our analyses of spin-up simulation results indicate that freely conducted interaction between the ocean and the atmosphere is more helpful to produce the initial condition for the target year rather than produced by fixed SST forcing. Since the GFS used prescribed forcing exactly given from the target year, this result is unexpected. The detail analysis will be discussed in this presentation.
Oceanic Circulation. A Programmed Unit of Instruction.
ERIC Educational Resources Information Center
Marine Maritime Academy, Castine.
This booklet contains a programmed lesson on oceanic circulation. It is designed to allow students to progress through the subject at their own speed. Since it is written in linear format, it is suggested that students proceed through the program from "frame" to succeeding "frame." Instructions for students on how to use the booklet are included.…
Atmosphere, ocean, and land: Critical gaps in Earth system models
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.; Hartley, Dana
1992-01-01
We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.
Seasonal Variability of Salt Transports in the Northern Indian Ocean
NASA Astrophysics Data System (ADS)
D'Addezio, J. M.; Bulusu, S.
2016-02-01
Due to limited observational data in the Indian Ocean compared to other regions of the global ocean, past work on the Northern Indian Ocean (NIO) has relied heavily upon model analysis to study the variability of regional salinity advection caused by the monsoon seasons. With the launch of the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009 and the Aquarius SAC-D mission in 2011 (ended on June 7, 2011), remotely sensed, synoptic scale sea surface salinity (SSS) data is now readily available to study this dynamic region. The new observational data has allowed us to revisit the region to analyze seasonal variability of salinity advection in the NIO using several modeled products, the Aquarius and SMOS satellites, and Argo floats data. The model simulations include the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO2), European Centre for Medium-Range Weather Forecasts - Ocean Reanalysis System 4 (ECMWF-ORSA4), Simple Ocean Data Assimilation (SODA) Reanalysis, and HYbrid Coordinate Ocean Model (HYCOM). Our analyses of salinity at the surface and at depths up to 200 m, surface salt transport in the top 5 m layer, and depth-integrated salt transports revealed different salinity processes in the NIO that are dominantly related to the semi-annual monsoons. Aquarius and SMOS prove useful tools for observing this dynamic region, and reveal some aspects of SSS that Argo cannot resolve. Meridional depth-integrated salt transports using the modeled products along 6°N revealed dominant advective processes from the surface towards near-bottom depths. Finally, a difference in subsurface salinity stratification causes many of the modeled products to incorrectly estimate the magnitude and seasonality of NIO barrier layer thickness (BLT) when compared to the Argo solution. This problem is also evident in model output from the Seychelles-Chagos Thermocline Ridge (SCTR), a region with strong air-sea teleconnections with the Arabian Sea.