Science.gov

Sample records for ocean circulation models

  1. Ocean General Circulation Models

    SciTech Connect

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  2. LLNL Ocean General Circulation Model

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  3. Warm World Ocean Thermohaline Circulation Model

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2014-12-01

    Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic, filling the ocean interior with cold and heavy water. However, ocean circulation diminished during the last glaciation and consequently the downwelling of the cold. Therefore interior ocean water temperatures must have been affected by other mechanisms which are negligible in the current state. We propose that the submergence of highly saline water from warm seas with high rates of evaporation (like the Red or Mediterranean Sea) was a major factor controlling ocean circulation during the last glaciation. Even today, waters in these poorly connected seas are the heaviest waters in the World ocean (1.029 g/cm3). The second mechanism affecting ocean temperature is the geothermal heat flux. With no heat exchange between the atmosphere and the ocean, geothermal heat flux through the ocean floor is capable of increasing ocean temperature by tens of degrees C over a 100 thousand year glacial cycle. To support these hypotheses we present an ocean box model that describes thermohaline circulation in the World Ocean. According to the model parameters, all water circulation is driven by the water density gradient. Boxes include high-latitude seas, high salinity seas, surface ocean, glaciers, and rift and lateral zones of the ocean interior. External heat sources are radiative forcing, affected by Milankovich cycles, and geothermal heat flux. Additionally this model accounts for the heat produced by organic rain decay. Taking all input parameters close to currently observed values, the model manages to recreate the glacial-interglacial cycles. During the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior ocean accumulates heat while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal

  4. Adaptation of a general circulation model to ocean dynamics

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  5. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  6. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  7. Strong coupling among Antarctic ice shelves, ocean circulation and sea ice in a global sea-ice - ocean circulation model

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2016-04-01

    The thermodynamic effects of Antarctic ice shelf interaction with ocean circulation are investigated using a global, high-resolution, isopycnal ocean-circulation model coupled to a sea-ice model. The model uses NASA MERRA Reanalysis from 1992 to 2011 as atmospheric forcing. The simulated long-period variability of ice-shelf melting/freezing rates differ across geographic locations. The ice shelves in Antarctic Peninsula, Amundsen and Bellingshausen sea embayments and the Amery Ice Shelf experience an increase in melting starting from 2005. This increase in melting is due to an increase in the subsurface (100-500 m) ocean heat content in the embayments of these ice shelves, which is caused by an increase in sea-ice concentration after 2005, and consequent reduction of the heat loss to the atmosphere. Our simulations provide a strong evidence for a coupling between ocean circulation, sea ice and ice shelves.

  8. Evaluating the deep-ocean circulation of a global ocean model using carbon isotopic ratios

    NASA Astrophysics Data System (ADS)

    Paul, André; Dutkiewicz, Stephanie; Gebbie, Jake; Losch, Martin; Marchal, Olivier

    2016-04-01

    We study the sensitivity of a global three-dimensional biotic ocean carbon-cycle model to the parameterizations of gas exchange and biological productivity as well as to deep-ocean circulation strength, and we employ the carbon isotopic ratios δ13C and Δ14C of dissolved inorganic carbon for a systematic evaluation against observations. Radiocarbon (Δ14C) in particular offers the means to assess the model skill on a time scale of 100 to 1000 years relevant to the deep-ocean circulation. The carbon isotope ratios are included as tracers in the MIT general circulation model (MITgcm). The implementation involves the fractionation processes during photosynthesis and air-sea gas exchange. We present the results of sixteen simulations combining two different parameterizations of the piston velocity, two different parameterizations of biological productivity (including the effect of iron fertilization) and four different overturning rates. These simulations were first spun up to equilibrium (more than 10,000 years of model simulation) and then continued from AD 1765 to AD 2002. For the model evaluation, we followed the OCMIP-2 (Ocean Carbon-Cycle Model Intercomparision Project phase two) protocol, comparing the results to GEOSECS (Geochemical Ocean Sections Survey) and WOCE (World Ocean Circulation Experiment) δ13C and natural Δ14C data in the world ocean. The range of deep natural Δ14C (below 1000 m) for our single model (MITgcm) was smaller than for the group of different OCMIP-2 models. Furthermore, differences between different model parameterizations were smaller than for different overturning rates. We conclude that carbon isotope ratios are a useful tool to evaluate the deep-ocean circulation. Since they are also available from deep-sea sediment records, we postulate that the simulation of carbon isotope ratios in a global ocean model will aid in estimating the deep-ocean circulation and climate during present and past.

  9. (CO sub 2 uptake in an Ocean Circulation Model)

    SciTech Connect

    Siegenthaler, U.C.

    1990-11-06

    The traveler collaborated with Drs. J. L. Sarmiento and J. C. Orr of the Program in Atmospheric Sciences at Princeton University to finish the article A Perturbation Simulation of CO{sub 2} Uptake in an Ocean Circulation Model,'' which has been submitted to the Journal of Geophysical Research for publication. With F. Joos, a graduate student from the University of Bern, the traveler started writing a journal article describing a box model of the global carbon cycle that is an extension of the one-dimensional box-diffusion model. The traveler further collaborated with F. Joos and Dr. J. L. Sarmiento on modeling the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. A letter describing the results is currently being written for the journal Nature.

  10. Testing Components of New Community Isopycnal Ocean Circulation Model

    SciTech Connect

    Bryan, Kirk

    2008-05-09

    The ocean and atmosphere are both governed by the same physical laws and models of the two media have many similarities. However, there are critical differences that call for special methods to provide the best simulation. One of the most important difference is that the ocean is nearly opaque to radiation in the visible and infra-red part of the spectrum. For this reason water mass properties in the ocean are conserved along trajectories for long distances and for long periods of time. For this reason isopycnal coordinate models would seem to have a distinct advantage in simulating ocean circulation. In such a model the coordinate surfaces are aligned with the natural paths of near adiabatic, density conserving flow in the main thermocline. The difficulty with this approach is at the upper and lower boundaries of the ocean, which in general do not coincide with density surfaces. For this reason hybrid coordinate models were proposed by Bleck and Boudra (1981) in which Cartesian coordinates were used near the ocean surface and isopycnal coordinates were used in the main thermocline. This feature is now part of the HICOM model (Bleck, 2002).

  11. A parallel coupled oceanic-atmospheric general circulation model

    SciTech Connect

    Wehner, M.F.; Bourgeois, A.J.; Eltgroth, P.G.; Duffy, P.B.; Dannevik, W.P.

    1994-12-01

    The Climate Systems Modeling group at LLNL has developed a portable coupled oceanic-atmospheric general circulation model suitable for use on a variety of massively parallel (MPP) computers of the multiple instruction, multiple data (MIMD) class. The model is composed of parallel versions of the UCLA atmospheric general circulation model, the GFDL modular ocean model (MOM) and a dynamic sea ice model based on the Hiber formulation extracted from the OPYC ocean model. The strategy to achieve parallelism is twofold. One level of parallelism is accomplished by applying two dimensional domain decomposition techniques to each of the three constituent submodels. A second level of parallelism is attained by a concurrent execution of AGCM and OGCM/sea ice components on separate sets of processors. For this functional decomposition scheme, a flux coupling module has been written to calculate the heat, moisture and momentum fluxes independent of either the AGCM or the OGCM modules. The flux coupler`s other roles are to facilitate the transfer of data between subsystem components and processors via message passing techniques and to interpolate and aggregate between the possibly incommensurate meshes.

  12. A Pacific Ocean general circulation model for satellite data assimilation

    NASA Technical Reports Server (NTRS)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  13. World Ocean Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Clarke, R. Allyn

    1992-01-01

    The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.

  14. Ocean General Circulation From a Global Eddy-Resolving Model

    NASA Astrophysics Data System (ADS)

    Semtner, Albert J.; Chervin, Robert M.

    1992-04-01

    A concerted effort has been made to simulate the global ocean circulation with resolved eddies, using a highly optimized model on the best available supercomputer. An earlier 20-year spin-up has been extended for 12.5 additional years: the first 2.5 with continued annual mean forcing and the final 10.0 with climatological monthly forcing. Model output archived at 3-day intervals has been analyzed into mean fields, standard deviations, products, and covariances on monthly, annual, and multiyear time scales. The multiyear results are examined here in order to give insight into the general circulation of the world ocean. The three-dimensional flow fields of the model are quite realistic, even though resolution of eddies in high latitudes is marginal with a 0.5°, 20-level grid. The use of seasonal forcing improves the simulation, especially in the tropics and high northern latitudes. Mid-latitude gyre circulations, western boundary currents, zonal equatorial flows, and the Antarctic Circumpolar Current (ACC) all show mean and eddy characteristics similar to those observed. There is also some indication of eddy intensification of the mean flow of the ACC and of separated boundary jets. A global thermohaline circulation of North Atlantic Deep Water is identified in deep western boundary currents connected by the ACC. This deep circulation rises mainly in the equatorial Pacific. Several zonal jets are an integral part of this circulation near the equator. The deep flow rises toward the surface in a series of switchbacks. Much of the thermohaline return flow then follows an eddy-rich warm-water route through the Indonesian archipelago and around the southern tip of Africa. However, some intermediate level portions of the thermohaline circulation return south into the ACC and follow a cold water route through the Drake Passage. The representation of a global "conveyor belt" circulation with narrow and relatively high-speed currents along most of its path may be the most

  15. Barotropic-Baroclinic Time Splitting for Ocean Circulation Modeling

    NASA Astrophysics Data System (ADS)

    Higdon, Robert L.; de Szoeke, Roland A.

    1997-07-01

    Numerical models of ocean circulation admit motions varying on a wide range of time scales. These motions include fast external gravity waves, which are approximately independent of depth, and slower internal motions which are fully three-dimensional. Explicit time discretizations are impractical for these systems, due to the short timesteps dictated by the fast waves. A commonly used alternative is to confine the fast waves to a two-dimensional system, via vertical averaging, and then to compute the remaining motions explicitly with a long time step. However, this procedure can lead to numerical instability if the latter system admits sufficiently large residual fast motions due to an inexact splitting. In this paper we modify a method developed by R. Bleck and L. T. Smith ( J. Geophys. Res. C95,3273, 1990) in order to obtain a more precise splitting into fast and slow subsystems. In the vertically averaged momentum equation, we use the exact vertical average of the horizontal pressure gradient in place of the approximation used in op cit.We then apply natural time discretizations and show that the modified splitting produces considerable improvements in stability.

  16. A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.

  17. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large

  18. Relaxation oscillations in an idealized ocean circulation model

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew; Saha, Raj

    2016-06-01

    This work is motivated by a desire to understand transitions between stable equilibria observed in Stommel's 1961 thermohaline circulation model. We adapt the model, including a forcing parameter as a dynamic slow variable. The resulting model is a piecewise-smooth, three time-scale system. The model is analyzed using geometric singular perturbation theory to demonstrate the existence of attracting periodic orbits. The system is capable of producing classical relaxation oscillations as expected, but there is also a parameter regime in which the model exhibits small amplitude oscillations known as canard cycles. Forcing the model with obliquity variations from the last 100,000 years produces oscillations that are modulated in amplitude and frequency. The output shows similarities with important features of the climate proxy data of the same period.

  19. Improvement in Geoid Models for Ocean Circulation Studies

    NASA Technical Reports Server (NTRS)

    Tapley, Byron D.; Chambers, Don P.; Poole, Steve; Ries, John c.

    2003-01-01

    At wavelengths of 500 km and longer, the GRACE GGM01 Model produces a significantly better marine geoid than any previous model. This conclusion follows from evaluating the geostrophic currents determined by combining the model with a mean sea surface from altimetry. The agreement with currents computed from a traditional hydrographic map is very close, which suggests that one of the primary missions of the TOPEX/POSEIDON mission, to determine the absolute dynamic ocean topography, may soon be met. This solution has been made available to the public at http://www.csr.utexs.edu/grace/gravity. The results reported in this paper have been presented at the 2003 EGS-AGU-EUG Joint Assembly. Two articles are currently being prepared for Geophysical Research Letters to summarize these results.

  20. The response of an ocean general circulation model to surface wind stress produced by an atmospheric general circulation model

    SciTech Connect

    Huang, B.; Schneider, E.K.

    1995-10-01

    Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in the eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.

  1. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records

    NASA Astrophysics Data System (ADS)

    Butzin, Martin; Lohmann, Gerrit; Bickert, Torsten

    2011-02-01

    In a modeling sensitivity study we investigate the evolution of the ocean circulation and of marine carbon isotope (δ13C) records during the Miocene (about 23-5 million years ago). For this purpose we ran an ocean-circulation carbon cycle model of intermediate complexity (Large Scale Geostrophic- Hamburg Ocean Carbon Cycle Model, version 2s) exploring various seaway configurations. Our investigations confirm that the Central American Seaway played a decisive role in the history of the Miocene ocean circulation. In simulations with a deep Central American Seaway (depth range 1-3 km), typical for the early to middle Miocene, deep water production in the North Atlantic is absent or weak, while the meridional overturning circulation is dominated by water mass formation in the Southern Ocean. Deep water formation in the North Atlantic begins when the Central American Seaway shoals to a few hundreds of meters, which is typical for the late Miocene. Our results do not support ideas that the mid-Miocene closing of the Eastern Tethys contributed to Antarctic glaciation. On the other hand, we find some water exchange between the Indian Ocean and the Atlantic via the Eastern Tethys during the early Miocene. Our model results for the Atlantic meridional overturning circulation and for Atlantic δ13C during the late Miocene are largely independent from depth variations of the Greenland-Scotland Ridge. To a large extent, the evolution of Miocene deep-sea δ13C records can be explained with large-scale ocean circulation changes. Our model-data comparison for the middle and early Miocene suggests that during the early Neogene the seaway effect on benthic δ13C may have been superimposed by further factors such as climate regime shifts and/or terrestrial carbon cycle changes.

  2. Ocean circulation studies

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.

    1984-01-01

    Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.

  3. Characterizing the circulation off the Kenyan-Tanzanian coast using an ocean model

    NASA Astrophysics Data System (ADS)

    Gabriela Mayorga-Adame, C.; Ted Strub, P.; Batchelder, Harold P.; Spitz, Yvette H.

    2016-02-01

    The Kenyan-Tanzanian coastal region in the western Indian Ocean faces several environmental challenges including coral reef conservation, fisheries management, coastal erosion, and nearshore pollution. The region lacks hydrodynamic records and oceanographic studies at adequate spatial and temporal scales to provide information relevant to the local environmental issues. We have developed a 4 km horizontal resolution ocean circulation model of the region: the Kenyan-Tanzanian Coastal Model (KTCM) that provides coastal circulation and hydrography with higher resolution than previous models and observational studies of this region. Comparisons to temperature profiles, satellite-derived sea surface temperature and sea surface height anomaly fields, indicate that the model reproduces the main features of the regional circulation, while greatly increasing the details of the nearshore circulation. We describe the seasonal ocean circulation and hydrography of the Kenyan-Tanzanian coastal region based on a climatology of 8 years (2000-2007) of the KTCM simulations. The regional monsoon seasonality produces two distinct coastal circulation regimes: (1) during December-March, there are relatively sluggish shelf flows and (2) during April-November, there are strong northward transports. Simulations from the model will be useful for examining dispersal of pollutants and spatial connectivity of coral reef species.

  4. Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models

    SciTech Connect

    Gleckler, P.J.; Randall, D.A.; Boer, G.

    1994-03-01

    This paper reports on energy fluxes across the surface of the ocean as simulated by fifteen atmospheric general circulation models in which ocean surface temperatures and sea-ice boundaries are prescribed. The oceanic meridional energy transport that would be required to balance these surface fluxes is computed, and is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean energy transport can be affected by the errors in simulated cloud-radiation interactions.

  5. Intermediate Models of Planetary Circulations in the Atmosphere and Ocean.

    NASA Astrophysics Data System (ADS)

    McWilliams, James C.; Gent, Peter R.

    1980-08-01

    Large-scale extratropical motions (with dimensions comparable to, or somewhat smaller than, the planetary radius) in the atmosphere and ocean exhibit a more restricted range of phenomena than are admissible in the primitive equations for fluid motions, and there have been many previous proposals for simpler, more phenomenologically limited models of these motions. The oldest and most successful of these is the quasi-geostrophic model. An extensive discussion is made of models intermediate between the quasi-geostrophic and primitive ones, some of which have been previously proposed [e.g., the balance equations (BE), where tendencies in the equation for the divergent component of velocity are neglected, or the geostrophic momentum approximation (GM), where ageostrophic accelerations are neglected relative to geostrophic ones] and some of which are derived here. Virtues of these models are assessed in the dual measure of nearly geostrophic momentum balance (i.e., small Rossby number) and approximate frontal structure (i.e., larger along-axis velocities and length scales than their cross-axis counterparts), since one or both of these circumstances is usually characteristic of planetary motions. Consideration is also given to various coordinate transformations, since they can yield simpler expressions for the governing differential equations of the intermediate models. In particular, a new set of coordinates is proposed, isentropic geostrophic coordinates,(IGC), which has the advantage of making implicit the advections due to ageostrophic horizontal and vertical velocities under various approximations. A generalization of quasi-geostrophy is made. named hypo-geostrophy (HG), which is an asymptotic approximation of one higher order accuracy in Rossby number. The governing equations are simplest in IGC for both HG and GM; we name the latter in these coordinates isentropic semi-geostrophy (ISG), in analogy to Hoskins' (1975) semi-geostrophy (SG). HG, GM and BE are, in our

  6. Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models

    SciTech Connect

    Gleckler, P.J.; Randall, D.A.; Boer, G.

    1995-04-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects to clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmospheric-ocean general circulation models. 16 refs., 3 figs.

  7. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  8. Idealised modelling of ocean circulation driven by geothermal and hydrothermal fluxes at the seabed

    NASA Astrophysics Data System (ADS)

    Barnes, Jowan; Morales Maqueda, Miguel; Polton, Jeff

    2016-04-01

    There are two distinct processes by which heat is transferred from the solid Earth into the abyssal ocean. The first is conductive geothermal heating and the second is hydrothermal heating, involving advection of heated water from within the Earth's crust. Here, the noticeably different impacts of these two physical systems on ocean circulation are investigated. Previous modelling studies have applied geothermal heat fluxes at the seabed and shown discrepancies in circulation compared to cases which neglected heat from the Earth in their boundary conditions. The true heat flux in the ocean, however, is not entirely geothermal. From areas where the crust is younger a significant proportion of the heat input from the Earth could be in the form of fluid flow from hydrothermal vents, introducing forcing to the circulation which has previously been unaccounted for. In this study a set of idealised modelling experiments are run in order to investigate the effects of changing the balance of the total heat flux from purely geothermal to purely hydrothermal, via intermediate states in which the two boundary conditions are combined in different ratios. By performing such experiments it will be shown which of the two processes is dominant in its effects on circulation driven by heating at the seabed, and whether neglecting the hydrothermal advection in favour of a fully conductive geothermal boundary condition is justifiable. The results will inform the construction of boundary conditions for future circulation models involving ocean floor heat fluxes, specifically a regional study of geothermal and hydrothermal contributions within the Panama Basin.

  9. Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.

    PubMed

    Gent, Peter R

    2016-01-01

    Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.

  10. Ocean circulation and climate change

    NASA Astrophysics Data System (ADS)

    Hasselmann, Klaus

    1991-09-01

    Recent numerical simulations using global ocean circulation models are reviewed together with model experiments involving further important climate sub-systems with which the ocean interacts: the atmosphere, the air-sea interface and the global carbon cycle. A common feature of all ocean circulation experiments considered is the strong sensitivity of the circulation to relatively minor changes in surface forcing, particularly to the buoyancy fluxes in regions of deep water formation in high latitudes. This may explain some of the well-known deficiencies of past global ocean circulation simulations. The strong sensitivity may also have been the cause of rapid climate changes observed in paleoclimatic records and can lead further to significant natural climate variability on the time scales of a few hundred years through the stochastic forcing of the ocean by atmospheric weather variability. Gobal warming computations using two different coupled ocean-atmosphere models for the "business-as-usual" scenario of the Intergovernmental Panel on Climate Change yield a significantly stronger warming delay due to the heat uptake by the oceans in the Southern Ocean than estimated on the basis of box-diffusion models. Recent advances in surface wave modelling, illustrated by a comparison of wave height fields derived from the WAM model and the GEOSAT altimeter, hold promise for the development of an improved representation of ocean-atmosphere coupling based on an explicit description of the dynamical processes at the air-sea interface. Global carbon cycle simulations with a three dimensional carbon cycle model tuned to reproduce past variations of carbon cycle indices show a significant impact of variations in the ocean circulation on the CO2 concentration in the atmosphere and thereby on climate. The series of experiments suggest that for the study of climate in the time scale range from 10-Ocean circulation and climate change

    NASA Astrophysics Data System (ADS)

    Hasselmann, Klaus

    1991-08-01

    Recent numerical simulations using global ocean circulation models are reviewed together with model experiments involving further important climate sub-systems with which the ocean interacts: the atmosphere, the air-sea interface and the global carbon cycle. A common feature of all ocean circulation experiments considered is the strong sensitivity of the circulation to relatively minor changes in surface forcing, particularly to the buoyancy fluxes in regions of deep water formation in high latitudes. This may explain some of the well-known deficiencies of past global ocean circulation simulations. The strong sensitivity may also have been the cause of rapid climate changes observed in paleoclimatic records and can lead further to significant natural climate variability on the time scales of a few hundred years through the stochastic forcing of the ocean by atmospheric weather variability. Gobal warming computations using two different coupled ocean-atmosphere models for the "business-as-usual" scenario of the Intergovernmental Panel on Climate Change yield a significantly stronger warming delay due to the heat uptake by the oceans in the Southern Ocean than estimated on the basis of box-diffusion models. Recent advances in surface wave modelling, illustrated by a comparison of wave height fields derived from the WAM model and the GEOSAT altimeter, hold promise for the development of an improved representation of ocean-atmosphere coupling based on an explicit description of the dynamical processes at the air-sea interface. Global carbon cycle simulations with a three dimensional carbon cycle model tuned to reproduce past variations of carbon cycle indices show a significant impact of variations in the ocean circulation on the CO2 concentration in the atmosphere and thereby on climate. The series of experiments suggest that for the study of climate in the time scale range from 10-A Nd Isotopic Composition Modeling Approach of the Oceanic Thermohaline Circulation Change During LGM

    NASA Astrophysics Data System (ADS)

    Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.; Alkama, R.; Kageyama, M.; Piotrowski, A.

    2006-12-01

    The role of thermohaline circulation in climate change has been a matter of debate for a long time. Proxies of past ocean circulation such as δ13C or 231Pa/230Th suggest a relationship between North Atlantic Deep Water (NADW) strength and rapid climate change. Neodymium isotopic composition (Nd IC) is a quasi conservative geochemical tracer of water masses in the ocean interior and thus can be used as a proxy for NADW. Seawater Nd IC being recorded in marine sediments, this proxy is used to infer paleo-circulations on various time scales. Recent studies of Nd IC records, in the ferromanganese oxide components of a South Atlantic core, confirm the close relation between thermohaline circulation and North Atlantic climate changes through the last deglaciation (Piotrowski et al., 2004). Our purpose here is to model the Nd IC during the LGM and the Holocene with the Ocean Global Circulation Model NEMO, in the ORCA2 (2°) configuration. The explicit simulation of this proxy in the model allows to investigate and quantify the circulation change that corresponds to the Nd isotopic composition variation recorded in the sediments. We consider that the main source of Nd into the ocean is the interaction between water masses and continental margins (Boundary Exchange process; (Lacan and Jeandel, 2005). Boundary exchange is parameterized using a relaxing term (Arsouze et al., 2006). Simulated Nd IC distributions are evaluated by comparison with available records for the LGM and Holocene. References: Arsouze, T., Dutay, J.-C., Lacan, F. and Jeandel, C., 2006. Modeling the neodymium isotopic composition with a global ocean circulation model Chemical Geology, in press. Lacan, F. and Jeandel, C., 2005. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent - ocean interface. Earth and Planetary Science Letters, 232(3-4): 245-257. Piotrowski, A.M., Goldstein, S.L., Hemming, S.R. and Fairbanks, R.G., 2004. Intensification and variability of ocean

  11. Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model

    NASA Astrophysics Data System (ADS)

    Maier-Reimer, E.; Hasselmann, K.

    1987-08-01

    Inorganic carbon in the ocean is modelled as a passive tracer advected by a three-dimensional current field computed from a dynamical global ocean circulation model. The carbon exchange between the ocean and atmosphere is determined directly from the (temperature-dependent) chemical interaction rates in the mixed layer, using a standard CO2 flux relation at the air-sea interface. The carbon cycle is closed by coupling the ocean to a one-layer, horizontally diffusive atmosphere. Biological sources and sinks are not included. In this form the ocean carbon model contains essentially no free tuning parameters. The model may be regarded as a reference for interpreting numerical experiments with extended versions of the model including biological processes in the ocean (Bacastow R and Maier-Reimer E in prep.) and on land (Esser G et al in prep.). Qualitatively, the model reproduces the principal features of the observed CO2 distribution bution in the surface ocean. However, the amplitudes of surface pCO2 are underestimated in upwelling regions by a factor of the order of 1.5 due to the missing biological pump. The model without biota may, nevertheless, be applied to compute the storage capacity of the ocean to first order for anthropogenic CO2 emissions. In the linear regime, the response of the model may be represented by an impulse response function which can be approximated by a superposition of exponentials with different amplitudes and time constants. This provides a simple reference for comparison with box models. The largest-amplitude (˜0.35) exponential has a time constant of 300 years. The effective storage capacity of the oceans is strongly dependent on the time history of the anthropogenic input, as found also in earlier box model studies.

  12. An implementation of a barotropic quasigeostrophic model of ocean circulation on the MPP

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Fatoohi, R.

    1987-01-01

    The implementation on the Massively Parallel Processor (MPP) of a barotropic quasigeostrophic model of ocean circulation is discussed. The mathematical model, including scalings and boundary conditions is discussed. The numerical scheme, which uses compact differencing is also discussed. The implementation of this model on the MPP is then presented. Finally, some performance results are given and compared to results obtained using the VPS-32 and one processor of a CRAY-2.

  13. Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Irrgang, C.; Saynisch, J.; Thomas, M.

    2016-01-01

    Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.

  14. Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake.

    PubMed

    Brischoux, François; Cotté, Cédric; Lillywhite, Harvey B; Bailleul, Frédéric; Lalire, Maxime; Gaspar, Philippe

    2016-08-01

    It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large. PMID:27555651

  15. Global warming and changes in ocean circulation

    SciTech Connect

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  16. Ross ice shelf cavity circulation, residence time, and melting: Results from a model of oceanic chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Reddy, Tasha E.; Holland, David M.; Arrigo, Kevin R.

    2010-04-01

    Despite their harmful effects in the upper atmosphere, anthropogenic chlorofluorocarbons dissolved in seawater are extremely useful for studying ocean circulation and ventilation, particularly in remote locations. Because they behave as a passive tracer in seawater, and their atmospheric concentrations are well-mixed, well-known, and have changed over time, they are ideal for gaining insight into the oceanographic characteristics of the isolated cavities found under Antarctic ice shelves, where direct observations are difficult to obtain. Here we present results from a modeling study of air-sea chlorofluorocarbon exchange and ocean circulation in the Ross Sea, Antarctica. We compare our model estimates of oceanic CFC-12 concentrations along an ice shelf edge transect to field data collected during three cruises spanning 16 yr. Our model produces chlorofluorocarbon concentrations that are quite similar to those measured in the field, both in magnitude and distribution, showing high values near the surface, decreasing with depth, and increasing over time. After validating modeled circulation and air-sea gas exchange through comparison of modeled temperature, salinity, and chlorofluorocarbons with field data, we estimate that the residence time of water in the Ross Ice Shelf cavity is approximately 2.2 yr and that basal melt rates for the ice shelf average 10 cm yr -1. The model predicts a seasonal signature to basal melting, with highest melt rates in the spring and also the fall.

  17. Two regimes of the Arctic's circulation from ocean models with ice and contaminants.

    PubMed

    Proshutinsky, A Y; Johnson, M

    2001-01-01

    A two-dimensional barotropic, coupled, ocean-ice model with a space resolution of 55.5 km and driven by atmospheric forces, river run-off, and sea-level slope between the Pacific and the Arctic Oceans, has been used to simulate the vertically averaged currents and ice drift in the Arctic Ocean. Results from 43 years of numerical simulations of water and ice motions demonstrate that two wind-driven circulation regimes are possible in the Arctic, a cyclonic and an anti-cyclonic circulation. These two regimes appear to alternate at 5-7 year intervals with the 10-15 year period. It is important to pollution studies to understand which circulation regime prevails at any time. It is anticipated that 1995 is a year with a cyclonic regime, and during this cyclonic phase and possibly during past cyclonic regimes as well, pollutants may reach the Alaskan shelf. The regime shifts demonstrated in this paper are fundamentally important to understanding the Arctic's general circulation and particularly important for estimating pollution transport. PMID:11601534

  18. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model

    SciTech Connect

    Delworth, T.; Manabe, S.; Stouffer, R.J. )

    1993-11-01

    A fully coupled ocean-atmosphere model is shown to have irregular oscillations of the thermohaline circulation in the NOrth Atlantic Ocean with a time scale of approximately 50 years. The irregular oscillation appears to be driven by density anomalies in the sinking region of the thermohaline circulation (approximately 52[degrees]N to 72[degrees]N) combined with much smaller density anomalies of opposite sign in the broad, rising region. The spatial pattern of sea surface temperature anomalies associated with this irregular oscillation bears an encouraging resemblance to a pattern of observed interdecadal variability in the North Atlantic. The anomalies of sea surface temperature induce model surface air temperature anomalies over the northern North Atlantic, Arctic, and northwestern Europe. 21 refs., 28 figs.

  1. Geochemical constraints on ocean general circulation models. Final report, May 1, 1995--April 30, 1997

    SciTech Connect

    Broecker, W.S.

    1998-05-17

    A better understanding of the manner in which the ocean operates is essential to the preparation for the consequences of the generation of CO{sub 2} by fossil fuel burning. Examples are as follows: (1) the ocean will ultimately take up a major fraction of the CO{sub 2} produced, but this uptake is retarded by the slow mixing rates, in order to predict the uptake, researchers must develop and validate general circulation models for the ocean; (2) during glacial time large global climate changes occurred. The changes were abrupt happening in a few decades. The trigger for these changes appears to have been reorganizations of the large-scale thermohaline circulation of the ocean. Models suggest that if the CO{sub 2} content of the atmosphere rises to more than 700 ppm, then a possibility exists that another such reorganization might occur. Hence, researchers must learn more about the factors influencing deep-water formation both in the northern Atlantic and in the Souther Ocean. The thrust of this research was to develop constraints based on the distributions of chemicals and tracers in the sea. The accomplishments are outlined in this report.

  2. Century-scale variability in a randomly forced, two-dimensional thermohaline ocean circulation model

    SciTech Connect

    Mysak, L.A.; Stocker, T.F.; Huang, F.

    1993-01-01

    The response of a two-dimensional thermohaline ocean circulation model to a random freshwater flux superimposed on the usual mixed boundary conditions for temperature and salinity is considered. It is shown that for a wide range of vertical and horizontal diffusivities and a box geometry that approximates the Atlantic Ocean, 200-300 yr period oscillations exist in the basic-state, interhemispheric meridional overturning circulation with deep convection in the north. These fluctuations can also be described in terms of propagating salinity anomalies which travel in the direction of the thermohaline flow. For large horizontal (K{sub h} = 15 x 10{sup 3} m{sup 2}/s) and small vertical (K{sub v}=0.5 x 10{sup -4}m{sup 2}/s) diffusivities, the random forcing also excites deca-millennial oscillations in the basic structure of the thermohaline circulation. In this case, the meridional circulation pattern slowly oscillates between three different stages: a large positive cell, with deep convection in the North Atlantic and upwelling in the south; a symmetric two-cell circulation, with deep convection in both polar regions and upwelling near the equator; and a large negative cell, with deep convection in the South Atlantic and upwelling in the north. Each state can persist for 0 (10 kyr).

  3. Use of Ocean Remote Sensing Data to Enhance Predictions with a Coupled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.

    1999-01-01

    Surface height, sea surface temperature and surface wind observations from satellites have given a detailed time sequence of the initiation and evolution of the 1997/98 El Nino. The data have beet complementary to the subsurface TAO moored data in their spatial resolution and extent. The impact of satellite observations on seasonal prediction in the tropical Pacific using a coupled ocean-atmosphere general circulation model will be presented.

  4. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Furue, Ryo; Schloesser, Fabian; Burkhardt, Theodore W.; Nonaka, Masami

    2016-04-01

    A steady-state, variable-density, 2-layer, ocean model (VLOM) is used to investigate basic dynamics of the Atlantic meridional overturning circulation and Southern Ocean. The domain consists of idealized (rectangular) representations of the Atlantic, Southern, and Pacific Oceans. The model equations represent the depth-averaged, layer-1 response (except for one solution in which they represent the depth-integrated flow over both layers). To allow for overturning, water can cross the bottom of layer 1 at the velocity we =wd +wm +wn , the three parts representing: interior diffusion wd that increases the layer-1 thickness h throughout the basin, mixed-layer entrainment wm that ensures h is never less than a minimum value hm , and diapycnal (cooling) processes external to the basin wn that adjust h to hn . For most solutions, horizontal mixing has the form of Rayleigh damping with coefficient ν , which we interpret to result from baroclinic instability through the closure, V∗ = - (ν /f2) ∇P , where ∇P = ∇(1/2 g‧h2) is the depth-integrated pressure gradient, g‧ is the reduced-gravity coefficient, and ν is a mixing coefficient; with this interpretation, the layer-1 flow corresponds to the sum of the Eulerian-mean and eddy-mean (V∗) transport/widths, that is, the "residual" circulation. Finally, layer-1 temperature cools polewards in response to a surface heat flux Q, and the cooling can be strong enough in the Southern Ocean for g‧ = 0 south of a latitude y0 , in which case layer 1 vanishes and the model reduces to a single layer 2. Solutions are obtained both numerically and analytically. The analytic approach splits fields into interior and boundary-layer parts, from which a coupled set of integral constraints can be derived. The set allows properties of the circulation (upwelling-driven transport out of the Southern Ocean M , downwelling transport in the North Atlantic, transport of the Antarctic Circumpolar Current) and stratification (Atlantic

  5. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    NASA Astrophysics Data System (ADS)

    Chen, K.; He, R.

    2015-07-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, in situ temperature and salinity measurements in the GOM, and observed mean depth-averaged velocities. Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv over the Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  6. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    NASA Astrophysics Data System (ADS)

    Chen, K.; He, R.

    2014-12-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, temperature and salinity time series in the GOM, glider transects in the MAB, and observed mean depth-averaged velocities by Lentz (2008a). Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv at Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  7. Vertical heat flux in the ocean: Estimates from observations and from a coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.

    2016-06-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.

  8. Seasonal Distributions of Global Ocean Chlorophyll and Nutrients: Analysis with a Coupled Ocean General Circulation Biogeochemical, and Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    1999-01-01

    A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological

  9. A three-dimensional coupled ice-ocean model of coastal circulation

    NASA Astrophysics Data System (ADS)

    Ikeda, Motoyoshi

    1988-09-01

    A coupled ice-ocean model is employed to examine roles of ocean circulation on sea ice formation and distribution along the east coasts of North America and Greenland. The model has a flat bottom and a rectangular domain with a coastal boundary to the west, an artificial solid boundary to the north, and open eastern and southern boundaries. The model is driven by idealized alongshore wind stress and atmospheric cooling; the wind stress decays northward and southward with a maximum amplitude at the middle. The open water heat flux is locally specified with both seaward and southward decay, and the heat flux through ice is taken to be inversely proportional to the ice thickness. Ice internal stresses are simplified under the assumption that the major strain is cross-shore shear deformation. The ocean model has three levels: the surface mixed layer and two levels in the lower ocean. Linear momentum equations are used, and a geostrophic cross-shore momentum balance is assumed. Vertical viscosity is represented only by the surface and bottom Ekman flow. Equations for temperature and salinity retain advection and diffusion terms in both vertical and horizontal directions. The model reveals the following important roles of the ocean: northerly wind induces shoreward Ekman flow and southward barotropic flow, which develops only to the southern (downstream in the sense of long coastal-trapped wave propagation) side of wind forcing region and merges westward owing to the β-effect. Coastal downwelling produces additional baroclinic alongshore flow, intensifying (weakening) the southward flow in the upper (lower) ocean. Cyclonic circulation is generated by differences in Ekman flow between the ice-covered onshore area and open-water offshore area. Ice, which occupies the coastal area, is narrowed dynamically by the shoreward Ekman flow and thermodynamically by the warm offshore water in the Ekman flow. Ice is also advected southward by the alongshore current, associated with

  10. Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.

    2012-01-01

    Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with

  11. Modeling ocean circulation and biogeochemical variability in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Xue, Z.; He, R.; Fennel, K.; Cai, W.-J.; Lohrenz, S.; Hopkinson, C.

    2013-05-01

    A three-dimensional coupled physical-biogeochemical model is applied to simulate and examine temporal and spatial variability of circulation and biogeochemical cycling in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient input from major rivers. A 7 yr model hindcast (2004-2010) was performed, and validated against satellite observed sea surface height, surface chlorophyll, and in-situ observations including coastal sea-level, ocean temperature, salinity, and nutrient concentration. The model hindcast revealed clear seasonality in nutrient, phytoplankton and zooplankton distributions in the GoM. An Empirical Orthogonal Function analysis indicated a phase-locked pattern among nutrient, phytoplankton and zooplankton concentrations. The GoM shelf nutrient budget was also quantified, revealing that on an annual basis ~80% of nutrient input was denitrified on the shelf and ~17% was exported to the deep ocean.

  12. Modeling ocean circulation and biogeochemical variability in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Xue, Z.; He, R.; Fennel, K.; Cai, W.-J.; Lohrenz, S.; Hopkinson, C.

    2013-11-01

    A three-dimensional coupled physical-biogeochemical model is applied to simulate and examine temporal and spatial variability of circulation and biogeochemical cycling in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data assimilative global ocean circulation model, and observed freshwater and terrestrial nitrogen input from major rivers. A 7 yr model hindcast (2004-2010) was performed, and validated against satellite observed sea surface height, surface chlorophyll, and in situ observations including coastal sea level, ocean temperature, salinity, and dissolved inorganic nitrogen (DIN) concentration. The model hindcast revealed clear seasonality in DIN, phytoplankton and zooplankton distributions in the GoM. An empirical orthogonal function analysis indicated a phase-locked pattern among DIN, phytoplankton and zooplankton concentrations. The GoM shelf nitrogen budget was also quantified, revealing that on an annual basis the DIN input is largely balanced by the removal through denitrification (an equivalent of ~ 80% of DIN input) and offshore exports to the deep ocean (an equivalent of ~ 17% of DIN input).

  13. Modeling tidal circulation and stratification in Skagit River estuary using an unstructured grid ocean model

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoqing; Khangaonkar, Tarang

    Tidal circulation and river plume dynamics in shallow-water estuarine systems with large intertidal zones are complex. Strong asymmetries in tidal currents and stratification often occur in the intertidal zones and subtidal channels over a tidal cycle. The Skagit River is the largest estuary with respect to the discharge of a significant amount of freshwater and sediment into Puget Sound, Washington. It consists of a large intertidal zone with multiple tidal channels near the mouth of the estuary. To simulate the tidal circulation and salinity stratification accurately in the intertidal region, an unstructured grid numerical model with wetting-drying capability and the capability to accurately represent the bathymetry of tidal flats and the geometry of shallow distributary channels is necessary. In this paper, a modeling study for the Skagit River estuary using a three-dimensional unstructured grid, finite-volume coastal ocean model (FVCOM) supported by high-resolution LIDAR data is presented. The hydrodynamic model was validated with observed water surface elevation, velocity, and salinity data over spring and neap tidal cycles under low-river-flow and high-river-flow conditions. Wetting and drying processes in the intertidal zone and strong stratification in the estuary were simulated successfully by the model. Model results indicate that the Skagit River estuary is a highly stratified estuary, but destratification can occur during flood tide. Tides and baroclinic motion are the dominant forcing in the Skagit River estuary, but strong wind events can affect the currents in the intertidal zone significantly. Preliminary analysis also indicated that the salinity intrusion length scale is proportional to the river flow to the -¼ power.

  14. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  15. Carbon dioxide induced ocean climatic change and tracer experiment with an atmosphere-ocean general circulation model

    SciTech Connect

    Jiang, Xingjian.

    1991-01-01

    The principal objective of this study is to determine whether or not the penetration of a passive tracer is analogous to the penetration of a greenhouse-gas-induced heating. The Atmosphere Ocean General Circulation Model (A-O GCM) has been used to study CO2-induced climate change and the penetration of passive tracers into the world ocean. The present climate and a 2 x CO2 climate have been simulated. The passive tracers tritium, CFC-11, CFC-12 and a 'passive CO2- induced heating' are simulated. The CO2-induced active and passive warmings are larger in the subtropics and high latitudes than in the tropics. The largest difference between the active and passive CO2-induced heatings occur in the North Atlantic deep ocean, with maximum cooling about -1.5C for the active case in layer four of the ocean (1150m). There is no hemispherically asymmetric warming as that found by Manabe et al. (1990) and Stouffer et al. (1990). The convective overturning and large-scale sinking motion are responsible for the large penetration of CO2-induced warming in high latitudes. The CO2-induced circulation changes show that the North Atlantic thermohaline circulation is significantly weakened due to the penetration of CO2-induced heating. Associated with this change, the strength of North Atlantic conveyor belt is reduced, which results in a large warming in the upper ocean and cooling in the deep layers. The characteristic response time ranges from 40-50 years for the active CO2-induced climate change, and 70-160 years for passive CO2-induced climate change. The physical processes controlling the geochemical tracer penetration are very similar to those for the CO2-induced heating. There is not a single tracer which penetrates into the ocean exactly like the active CO2-induced heating in terms of distribution, transport or physical process. CFC's may be the best candidate as a surrogate for the CO2-induced oceanic climate study.

  16. Ocean circulation model predicts high genetic structure observed in a long-lived pelagic developer.

    PubMed

    Sunday, J M; Popovic, I; Palen, W J; Foreman, M G G; Hart, M W

    2014-10-01

    Understanding the movement of genes and individuals across marine seascapes is a long-standing challenge in marine ecology and can inform our understanding of local adaptation, the persistence and movement of populations, and the spatial scale of effective management. Patterns of gene flow in the ocean are often inferred based on population genetic analyses coupled with knowledge of species' dispersive life histories. However, genetic structure is the result of time-integrated processes and may not capture present-day connectivity between populations. Here, we use a high-resolution oceanographic circulation model to predict larval dispersal along the complex coastline of western Canada that includes the transition between two well-studied zoogeographic provinces. We simulate dispersal in a benthic sea star with a 6-10 week pelagic larval phase and test predictions of this model against previously observed genetic structure including a strong phylogeographic break within the zoogeographical transition zone. We also test predictions with new genetic sampling in a site within the phylogeographic break. We find that the coupled genetic and circulation model predicts the high degree of genetic structure observed in this species, despite its long pelagic duration. High genetic structure on this complex coastline can thus be explained through ocean circulation patterns, which tend to retain passive larvae within 20-50 km of their parents, suggesting a necessity for close-knit design of Marine Protected Area networks.

  17. Ocean circulation model predicts high genetic structure observed in a long-lived pelagic developer.

    PubMed

    Sunday, J M; Popovic, I; Palen, W J; Foreman, M G G; Hart, M W

    2014-10-01

    Understanding the movement of genes and individuals across marine seascapes is a long-standing challenge in marine ecology and can inform our understanding of local adaptation, the persistence and movement of populations, and the spatial scale of effective management. Patterns of gene flow in the ocean are often inferred based on population genetic analyses coupled with knowledge of species' dispersive life histories. However, genetic structure is the result of time-integrated processes and may not capture present-day connectivity between populations. Here, we use a high-resolution oceanographic circulation model to predict larval dispersal along the complex coastline of western Canada that includes the transition between two well-studied zoogeographic provinces. We simulate dispersal in a benthic sea star with a 6-10 week pelagic larval phase and test predictions of this model against previously observed genetic structure including a strong phylogeographic break within the zoogeographical transition zone. We also test predictions with new genetic sampling in a site within the phylogeographic break. We find that the coupled genetic and circulation model predicts the high degree of genetic structure observed in this species, despite its long pelagic duration. High genetic structure on this complex coastline can thus be explained through ocean circulation patterns, which tend to retain passive larvae within 20-50 km of their parents, suggesting a necessity for close-knit design of Marine Protected Area networks. PMID:25231198

  18. Modeled ocean circulation in Nares Strait and its dependence on landfast-ice cover

    NASA Astrophysics Data System (ADS)

    Shroyer, Emily L.; Samelson, Roger M.; Padman, Laurie; Münchow, Andreas

    2015-12-01

    Two simplified ocean simulations are used to study circulation and transport within Nares Strait. The simulations are similar, except that one included a coupled sea ice model that effectively established a landfast ice cover throughout the simulation year. Comparison between the ocean-only and ocean-ice simulations reveals a systematic change in the current structure, reminiscent of the seasonal shift under mobile and landfast ice previously observed in Nares Strait. A surface-intensified jet, which carries low-salinity water along the strait's centerline, develops within the ocean-only simulation. The current structure under landfast ice is characterized by a subsurface jet located along the western side with low-salinity surface water distributed along the eastern side of the strait. Intermediate salinity water is offset to the west in the ice-ocean simulation relative to the ocean-only simulation, while high-salinity water (>34.8) is constrained to recirculations that are located north and south of a sill in Kane Basin. The simulations, combined with an idealized, semianalytical model, suggest that the structural shift is caused by the surface Ekman layer beneath the landfast ice and the associated eastward advection of near-surface low-salinity water and westward movement of the jet. Temporal variability in the ocean-ice simulation is dominated by the remote response to the time-dependent northern boundary conditions. In contrast, the ocean-only simulation favors an instability and additionally responds to local surface wind forcing, which enhances the variability within the strait above that imposed at the boundaries.

  19. El Nino-southern oscillation simulated in an MRI atmosphere-ocean coupled general circulation model

    SciTech Connect

    Nagai, T.; Tokioka, T.; Endoh, M.; Kitamura, Y. )

    1992-11-01

    A coupled atmosphere-ocean general circulation model (GCM) was time integrated for 30 years to study interannual variability in the tropics. The atmospheric component is a global GCM with 5 levels in the vertical and 4[degrees]latitude X 5[degrees] longitude grids in the horizontal including standard physical processes (e.g., interactive clouds). The oceanic component is a GCM for the Pacific with 19 levels in the vertical and 1[degrees]x 2.5[degrees] grids in the horizontal including seasonal varying solar radiation as forcing. The model succeeded in reproducing interannual variations that resemble the El Nino-Southern Oscillation (ENSO) with realistic seasonal variations in the atmospheric and oceanic fields. The model ENSO cycle has a time scale of approximately 5 years and the model El Nino (warm) events are locked roughly in phase to the seasonal cycle. The cold events, however, are less evident in comparison with the El Nino events. The time scale of the model ENSO cycle is determined by propagation time of signals from the central-eastern Pacific to the western Pacific and back to the eastern Pacific. Seasonal timing is also important in the ENSO time scale: wind anomalies in the central-eastern Pacific occur in summer and the atmosphere ocean coupling in the western Pacific operates efficiently in the first half of the year.

  20. An eddy-permitting oceanic general circulation model and its preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Hailong; Zhang, Xuehong; Li, Wei; Yu, Yongqiang; Yu, Rucong

    2004-10-01

    An eddy-permitting, quasi-global oceanic general circulation model, LICOM (LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics) Climate System Ocean Model), with a uniform grid of 0.5° × 0.5° is established. Forced by wind stresses from Hellerman and Rosenstain (1983), a 40-yr integration is conducted with sea surface temperature and salinity being restored to the Levitus 94 datasets. The evaluation of the annual mean climatology of the LICOM control run shows that the large-scale circulation can be well reproduced. A comparison between the LICOM control run and a parallel integration of L30T63, which has the same framework but a coarse resolution, is also made to confirm the impact of resolution on the model performance. On account of the reduction of horizontal viscosity with the enhancement of the horizontal resolution, LICOM improves the simulation with respect to not only the intensity of the large scale circulations, but also the magnitude and structure of the Equatorial Undercurrent and South Equatorial Current. Taking advantage of the fine grid size, the pathway of the Indonesian Throughflow (ITF) is better represented in LICOM than in L30T63. The transport of ITF in LICOM is more convergent in the upper layer. As a consequence, the Indian Ocean tends to get warmer in LICOM. The poleward heat transports for both the global and individual basins are also significantly improved in LICOM. A decomposed analysis indicates that the transport due to the barotropic gyre, which primarily stands for the barotropic effect of the western boundary currents, plays a crucial role in making the difference.

  1. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  2. Ocean Circulation Modeling for Aquatic Dispersion of Liquid Radioactive Effluents from Nuclear Power Plants

    SciTech Connect

    Chung, Y.G.; Lee, G.B.; Bang, S.Y.; Choi, S.B.; Lee, S.U.; Yoon, J.H.; Nam, S.Y.; Lee, H.R.

    2006-07-01

    Recently, three-dimensional models have been used for aquatic dispersion of radioactive effluents in relation to nuclear power plant siting based on the Notice No. 2003-12 'Guideline for investigating and assessing hydrological and aquatic characteristics of nuclear facility site' of the Ministry of Science and Technology (MOST) in Korea. Several nuclear power plants have been under construction or planed, which are Shin-Kori Unit 1 and 2, Shin-Wolsong Unit 1 and 2, and Shin-Ulchin Unit 1 and 2. For assessing the aquatic dispersion of radionuclides released from the above nuclear power plants, it is necessary to know the coastal currents around sites which are affected by circulation of East Sea. In this study, a three dimensional hydrodynamic model for the circulation of the East Sea of Korea has been developed as the first phase, which is based on the RIAMOM (Research Institute of Applied Mechanics' Ocean Model, Kyushu University, Japan). The model uses the primitive equation with hydrostatic approximation, and uses Arakawa-B grid system horizontally and Z coordinate vertically. Model domain is 126.5 deg. E to 142.5 deg. E of east longitude and 33 deg. N and 52 deg. N of the north latitude. The space of the horizontal grid was 1/12 deg. to longitude and latitude direction and vertical level was divided to 20. This model uses Generalized Arakawa Scheme, Slant Advection, and Mode-Splitting Method. The input data were from JODC (Japan Oceanographic Data Center), KNFRDI (Korea National Fisheries Research and Development Institute), and ECMWF (European Center for Medium-Range Weather Forecasts). The modeling results are in fairly good agreement with schematic patterns of the surface circulation in the East Sea/Japan Sea. The local current model and aquatic dispersion model of the coastal region will be developed as the second phase. The oceanic dispersion experiments will be also carried out by using ARGO Drifter around a nuclear power plant site. (authors)

  3. A zonally averaged, three-basin ocean circulation model for climate studies

    SciTech Connect

    Hovine, S.; Fichefet, T.

    1994-09-01

    A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70{degree}N at a rate of about 17 Sv (1 Sv=10{sup 6} m{sup 3}S{sup {minus}1}) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions i.e., a restoring condition no sea-surface temperature and flux condition on sea-surface salinity are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.

  4. Variational data assimilation system with nesting model for high resolution ocean circulation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yoichi; In, Teiji; Nakada, Satoshi; Nishina, Kei; Igarashi, Hiromichi; Hiyoshi, Yoshimasa; Sasaki, Yuji; Wakamatsu, Tsuyoshi; Awaji, Toshiyuki

    2015-10-01

    To obtain the high-resolution analysis fields for ocean circulation, a new incremental approach is developed using a four-dimensional variational data assimilation system with nesting models. The results show that there are substantial biases when using a classical method combined with data assimilation and downscaling, caused by different dynamics resulting from the different resolutions of the models used within the nesting models. However, a remarkable reduction in biases of the low-resolution model relative to the high-resolution model was observed using our new approach in narrow strait regions, such as the Tsushima and Tsugaru straits, where the difference in the dynamics represented by the high- and low-resolution models is substantial. In addition, error reductions are demonstrated in the downstream region of these narrow channels associated with the propagation of information through the model dynamics.

  5. A Tailored Computation of the Mean Dynamic Topography for a Consistent Integration into Ocean Circulation Models

    NASA Astrophysics Data System (ADS)

    Becker, S.; Losch, M.; Brockmann, J. M.; Freiwald, G.; Schuh, W.-D.

    2014-11-01

    Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography—the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie 2012). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the

  6. Detecting thermohaline circulation changes from ocean properties in a coupled model

    NASA Astrophysics Data System (ADS)

    Hu, Aixue; Meehl, Gerald A.; Han, Weiqing

    2004-07-01

    Significant changes of the thermohaline circulation (THC) are likely to cause abrupt climate change. Here we intend to find a simple measure to detect changes in THC through examining several factors proposed to control the THC variations using a coupled climate model. These factors are equatorial-South Atlantic upper ocean temperature, Southern Ocean freshening, inter-basin sea surface salinity contrast, and meridional steric height gradient. Three experiments are analyzed - a present-day control run, a freshwater hosing run and a 1% CO2 run. Results show that if freshwater flux is the primary cause, all examined factors can predict the THC changes. If both thermal and haline forcings are involved, only the Atlantic meridional steric height gradient gives a consistent measure of the THC variations. A new result presented here is that the inter-basin sea surface temperature contrast between North Atlantic and North Pacific is found to be an indicator of THC changes.

  7. Local and Global Views of Systematic Errors of Atmosphere-Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Mechoso, C. Roberto; Wang, Chunzai; Lee, Sang-Ki; Zhang, Liping; Wu, Lixin

    2014-05-01

    Coupled Atmosphere-Ocean General Circulation Models (CGCMs) have serious systematic errors that challenge the reliability of climate predictions. One major reason for such biases is the misrepresentations of physical processes, which can be amplified by feedbacks among climate components especially in the tropics. Much effort, therefore, is dedicated to the better representation of physical processes in coordination with intense process studies. The present paper starts with a presentation of these systematic CGCM errors with an emphasis on the sea surface temperature (SST) in simulations by 22 participants in the Coupled Model Intercomparison Project phase 5 (CMIP5). Different regions are considered for discussion of model errors, including the one around the equator, the one covered by the stratocumulus decks off Peru and Namibia, and the confluence between the Angola and Benguela currents. Hypotheses on the reasons for the errors are reviewed, with particular attention on the parameterization of low-level marine clouds, model difficulties in the simulation of the ocean heat budget under the stratocumulus decks, and location of strong SST gradients. Next the presentation turns to a global perspective of the errors and their causes. It is shown that a simulated weak Atlantic Meridional Overturning Circulation (AMOC) tends to be associated with cold biases in the entire Northern Hemisphere with an atmospheric pattern that resembles the Northern Hemisphere annular mode. The AMOC weakening is also associated with a strengthening of Antarctic bottom water formation and warm SST biases in the Southern Ocean. It is also shown that cold biases in the tropical North Atlantic and West African/Indian monsoon regions during the warm season in the Northern Hemisphere have interhemispheric links with warm SST biases in the tropical southeastern Pacific and Atlantic, respectively. The results suggest that improving the simulation of regional processes may not suffice for a more

  8. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model. Final report

    SciTech Connect

    Menawat, A.S.

    1992-09-21

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO{sub 2}. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO{sub 2}. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach.

  9. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    SciTech Connect

    Menawat, A.S.

    1992-09-21

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO[sub 2]. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO[sub 2]. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach.

  10. Successive bifurcations in a shallow-water model applied to the wind-driven ocean circulation

    NASA Astrophysics Data System (ADS)

    Speich, S.; Dijkstra, H.; Ghil, M.

    Climate - the "coarse-gridded" state of the coupled ocean - atmosphere system - varies on many time and space scales. The challenge is to relate such variation to specific mechanisms and to produce verifiable quantitative explanations. In this paper, we study the oceanic component of the climate system and, in particular, the different circulation regimes of the mid-latitude win driven ocean on the interannual time scale. These circulations are dominated by two counterrotating, basis scale gyres: subtropical and subpolar. Numerical techniques of bifurcation theory are used to stud the multiplicity and stability of the steady-state solution of a wind-driven, double-gyre, reduced-gravity, shallow water model. Branches of stationary solutions and their linear stability are calculated systematically as parameter are varied. This is one of the first geophysical studies i which such techniques are applied to a dynamical system with tens of thousands of degrees of freedom. Multiple stationary solutions obtain as a result of nonlinear interactions between the two main recirculating cell (cyclonic and anticyclonic) of the large- scale double-gyre flow. These equilibria appear for realistic values of the forcing and dissipation parameters. They undergo Hop bifurcation and transition to aperiodic solutions eventually occurs. The periodic and chaotic behaviour is probably related to an increased number of vorticity cells interaction with each other. A preliminary comparison with observations of the Gulf Stream and Kuroshio Extensions suggests that the intern variability of our simulated mid-latitude ocean is a important factor in the observed interannual variability o these two current systems.

  11. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.

    2015-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae

  12. Deep Ocean Circulation and Climate During the Miocene: Data vs. Modelling

    NASA Astrophysics Data System (ADS)

    Bickert, T.; Butzin, M.; Lohmann, G.

    2005-12-01

    A series of configurations for Neogene ocean circulation sensitivity experiments, i.e. different stages in the shoaling of the Central American Isthmus and of the eastern Tethys as well as different sea-ice coverage scenarios were used as input for a marine carbon cycle model (HAMOCC2s). Using d13C and sedimentary carbonate as model output variables, the geochemical experiments provided a new framework to interpret Neogene paleoenvironmental data. Assuming the Isthmus of Panama to be open and no sea-ice coverage in the southern hemisphere, deep water is formed in the North Atlantic as well as in the sub-Antarctic realm, in agreement with Neogene carbon isotope pattern. However, the formation rate of NADW is reduced by about 75o/o compared to the control experiment, consistent with very low d13C gradients between the North Atlantic and Southern Ocean. The sill depth greater than 1000 m allows for the passage of NADW into the Pacific ocean, forming a deep boundary current along the western Pacific margin. The export of NADW is compensated by an influx of low-salinity Pacific Intermediate water, which enters the Caribbean with a maximum strength of 3 Sv at a depth of about 500 m. Forming of sea-ice related to the Middle Miocene build-up of a permanent Antarctic ice sheet intensifies the sub-Antarctic deep water production while NADW formation is suppressed. This scenario is corroborated by the convergence of Atlantic and Pacific benthic d13C values between 15 and 11 Ma. Finally, the re-establishment of the formation of NADW in the late Miocene and the evolution of the modern ocean conveyor is predicted in the model experiments assuming further shoaling of the Central American Isthmus and evolution of sea-ice in the Artic Ocean.

  13. An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models

    NASA Technical Reports Server (NTRS)

    Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.

    2001-01-01

    This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.

  14. Finding the 'lost years' in green turtles: insights from ocean circulation models and genetic analysis.

    PubMed

    Putman, Nathan F; Naro-Maciel, Eugenia

    2013-10-01

    Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as 'the lost years'. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their 'lost years'. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many 'lost years hotspots' are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period. PMID:23945687

  15. Secular Trends and Climate Drift in Coupled Ocean-Atmosphere General Circulation Models

    SciTech Connect

    Covey, C C; Gleckler, P J; Phillips, T J; Bader, D C

    2004-11-23

    Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observations unless constrained by ad hoc adjustments to interface fluxes. However, eleven modern coupled GCMs--including three that do not employ flux adjustments--behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, are inconsistent among the models and may be problematic.

  16. How stationary are the internal tides in a high-resolution global ocean circulation model?

    NASA Astrophysics Data System (ADS)

    Shriver, Jay F.; Richman, James G.; Arbic, Brian K.

    2014-05-01

    The stationarity of the internal tides generated in a global eddy-resolving ocean circulation model forced by realistic atmospheric fluxes and the luni-solar gravitational potential is explored. The root mean square (RMS) variability in the M2 internal tidal amplitude is approximately 2 mm or less over most of the ocean and exceeds 2 mm in regions with larger internal tidal amplitude. The M2 RMS variability approaches the mean amplitude in weaker tidal areas such as the tropical Pacific and eastern Indian Ocean, but is smaller than the mean amplitude near generation regions. Approximately 60% of the variance in the complex M2 tidal amplitude is due to amplitude-weighted phase variations. Using the RMS tidal amplitude variations normalized by the mean tidal amplitude (normalized RMS variability (NRMS)) as a metric for stationarity, low-mode M2 internal tides with NRMS < 0.5 are stationary over 25% of the deep ocean, particularly near the generation regions. The M2 RMS variability tends to increase with increasing mean amplitude. However, the M2 NRMS variability tends to decrease with increasing mean amplitude, and regions with strong low-mode internal tides are more stationary. The internal tide beams radiating away from generation regions become less stationary with distance. Similar results are obtained for other tidal constituents with the overall stationarity of the constituent decreasing as the energy in the constituent decreases. Seasonal variations dominate the RMS variability in the Arabian Sea and near-equatorial oceans. Regions of high eddy kinetic energy are regions of higher internal tide nonstationarity.

  17. Interaction between surface wind and ocean circulation in the Carolina Capes in a coupled low-order model

    SciTech Connect

    Xie, L.; Pietrafesa, L.J.; Raman, S.

    1997-03-18

    Interactions between surface winds and ocean currents over an east-coast continental shelf are studied using a simple mathematical model. The model physics include cross-shelf advection of sea surface temperature (SST) by Ekman drift, upwelling due to Ekman transport divergence, differential heating of the low-level atmosphere by a cross-shelf SST gradient, and the Coriolis effect. Additionally, the effects of diabatic cooling of surface waters due to air-sea heat exchange and of the vertical density stratification on the thickness of the upper ocean Ekman layer are considered. The model results are qualitatively consistent with observed wind-driven coastal ocean circulation and surface wind signatures induced by SST. This simple model also demonstrates that two-way air-sea interaction plays a significant role in the subtidal frequency variability of coastal ocean circulation and mesoscale variability of surface wind fields over coastal waters.

  18. Prediction of Ocean Circulation Associated with the MJO during CINDY/DYNAMO by a Global Coupled Model

    NASA Astrophysics Data System (ADS)

    Shinoda, T.; Ridout, J. A.; Flatau, M. K.; Reynolds, C. A.

    2015-12-01

    A global coupled prediction system is used to predict the ocean circulation associated with the MJO during the CINDY/DYNAMO field campaign. The ocean component of the system is HYCOM (Hybrid Coordinate Ocean Model) that uses exceptionally high horizontal resolution (1/12°) to accurately simulate the ocean circulation. The atmospheric component is NAVGEM (NAVy Global Environmental Model) with the resolution of T359L50, in which a new convection scheme is recently implemented. During the field campaign, three active episodes of large-scale convection and anomalous surface zonal winds associated with the MJO propagated eastward across the tropical Indian Ocean. Our model prediction primarily focuses on the second MJO event in November, which was particularly well monitored by the DYNAMO observational network. The model was initialized on November 1st, and integrated for 40 days, which includes the period of the initiation of MJO convection in the central Indian Ocean in late November. The model is able to predict the initiation of MJO convection, which is associated with the large-scale strong westerly winds generated near the equator. These westerlies drove strong oceanic equatorial jets in the entire tropical Indian Ocean. The timing and strength of the equatorial jet predicted by the model is consistent with those observed by the CINDY/DYNAMO moorings. Also, the spatial pattern of equatorial and off-equatorial ocean circulations in late November agrees with satellite-derived surface currents reasonably well. The impact of air-sea coupling on the prediction of equatorial westerly wind events is further discussed based on the comparison of coupled and uncoupled model simulations.

  19. An improved ocean model of aluminium: the effects of circulation, sediment resuspension and biological incorporation

    NASA Astrophysics Data System (ADS)

    van Hulten, M. M. P.; Sterl, A.; Middag, R.; de Baar, H. J. W.; Gehlen, M.; Dutay, J.-C.; Tagliabue, A.

    2013-09-01

    The distribution of dissolved aluminium (Al) in the ocean is of interest because of its potential impact on diatom remineralisation and the use of surface ocean Al as a tracer for dust. Previously, the ocean Al concentration has been simulated reasonably well with only a dust source and scavenging as the removal process. In this study the simulation has been significantly improved by a more refined circulation and the addition of a sediment resuspension source. The latter confirms that the most significant sources of Al to the ocean are dust deposition and sediment resuspension. Simulations with biological incorporation have been performed as well. These show that this can be an important removal process. However, this study does not provide a definitive answer to the question what the relative amount of incorporation is compared to scavenging.

  20. High resolution modelling of the oceanic circulation and winter vertical mixing in the northwestern Mediterranean

    NASA Astrophysics Data System (ADS)

    Damien, Pierre; Estournel, Claude; Marsaleix, Patrick

    2013-04-01

    The North Western Mediterranean Sea is one of the few regions in the world where open-ocean deep convection occurs. The local cyclonic circulation brings weakly stratified waters close to the surface. In winter, atmospheric conditions (strong cold winds and high heat losses) trigger the deep convection. When the strong forcing stops, restratification of the mixed patch occurs by lateral advection of surrounding lighter water. Mesoscale and submesoscale structures play an important role during these events both in the sinking and spreading of the new dense water formed and in the advection of light surrounding water. The objective is first to check the capabilities of a high resolution model to reproduce the oceanic response to strong wind and, second, to identify processes involved in the water column restratification in terms of spacial and temporal scales. The SYMPHONIE model was implemented at 1 km resolution over the north-western Mediterranean. Simulations were initialized and forced at the open boundaries by the recent MERCATOR release PSY2V4R3. Two atmospheric forcings were use at the surface, ECMWF through bulk formulae and ARPERA. The recent years were simulated and comparisons were performed with the available data set particularly Argo and glider floats and the data of the CASCADE experiment in March 2011. A special attention was paid to the representation of the vertical stratification, of the mixed layer depth and of the properties of the water masses. The characteristics of the deep convection event and of its restratification are examined in terms of water mass formation and budgets. The role played by small scale structures is quantified.

  1. Bottom Topogrpaphy As A Control Parameter In An Ocean Circulation Model

    NASA Astrophysics Data System (ADS)

    Losch, M.

    Bottom topography is a major factor in determining the general circulation of the ocean. It is, however, inaccurately known in many regions, and even where accurately known, the best way to represent it in models is obscure. To begin to understand the influence of errors in bottom topography and of misrepresentations of both resolved and sub-grid scale structures, a linear barotropic shallow water model and its adjoint are developed in which depth is used as a control variable. Simple basin geometries are employed to explore the extent to which topographic structure determines the sea- surface elevation in a steady flow and, more directly, the information content about the bottom contained in elevation measurements. Experiments show that even perfect measurements of sea-surface elevation in a steady state cannot, by itself, uniquely determine the full structure of the bottom topography, but that as in most control prob- lems, a priori knowledge of its structure is necessary. The resolution of the bottom topography as a function of position is greatest where the flow velocities are greatest. The spatial correlation between the resolution of the bottom topography and the flow field is weaker when noise with realistically large variance is introduced into the data. Ultimately, bottom topography will likely be included generally as a control variable in GCMs of arbitrary complexity.

  2. Assessment of atmosphere-ocean general circulation model simulations of winter northern hemisphere atmospheric blocking

    NASA Astrophysics Data System (ADS)

    Vial, Jessica; Osborn, Tim J.

    2012-07-01

    An assessment of six coupled Atmosphere-Ocean General Circulation Models (AOGCMs) is undertaken in order to evaluate their ability in simulating winter atmospheric blocking highs in the northern hemisphere. The poor representation of atmospheric blocking in climate models is a long-standing problem (e.g. D'Andrea et al. in Clim Dyn 4:385-407, 1998), and despite considerable effort in model development, there is only a moderate improvement in blocking simulation. A modified version of the Tibaldi and Molteni (in Tellus A 42:343-365, 1990) blocking index is applied to daily averaged 500 hPa geopotential fields, from the ERA-40 reanalysis and as simulated by the climate models, during the winter periods from 1957 to 1999. The two preferred regions of blocking development, in the Euro-Atlantic and North Pacific, are relatively well captured by most of the models. However, the prominent error in blocking simulations consists of an underestimation of the total frequency of blocking episodes over both regions. A more detailed analysis revealed that this error was due to an insufficient number of medium spells and long-lasting episodes, and a shift in blocking lifetime distributions towards shorter blocks in the Euro-Atlantic sector. In the Pacific, results are more diverse; the models are equally likely to overestimate or underestimate the frequency at different spell lengths. Blocking spatial signatures are relatively well simulated in the Euro-Atlantic sector, while errors in the intensity and geographical location of the blocks emerge in the Pacific. The impact of models' systematic errors on blocking simulation has also been analysed. The time-mean atmospheric circulation biases affect the frequency of blocking episodes, and the maximum event duration in the Euro-Atlantic region, while they sometimes cause geographical mislocations in the Pacific sector. The analysis of the systematic error in time-variability has revealed a negative relationship between the high

  3. Tropical Atlantic climate response to different freshwater input in high latitudes with an ocean-only general circulation model

    NASA Astrophysics Data System (ADS)

    Men, Guang; Wan, Xiuquan; Liu, Zedong

    2016-10-01

    Tropical Atlantic climate change is relevant to the variation of Atlantic meridional overturning circulation (AMOC) through different physical processes. Previous coupled climate model simulation suggested a dipole-like SST structure cooling over the North Atlantic and warming over the South Tropical Atlantic in response to the slowdown of the AMOC. Using an ocean-only global ocean model here, an attempt was made to separate the total influence of various AMOC change scenarios into an oceanic-induced component and an atmospheric-induced component. In contrast with previous freshwater-hosing experiments with coupled climate models, the ocean-only modeling presented here shows a surface warming in the whole tropical Atlantic region and the oceanic-induced processes may play an important role in the SST change in the equatorial south Atlantic. Our result shows that the warming is partly governed by oceanic process through the mechanism of oceanic gateway change, which operates in the regime where freshwater forcing is strong, exceeding 0.3 Sv. Strong AMOC change is required for the gateway mechanism to work in our model because only when the AMOC is sufficiently weak, the North Brazil Undercurrent can flow equatorward, carrying warm and salty north Atlantic subtropical gyre water into the equatorial zone. This threshold is likely to be model-dependent. An improved understanding of these issues may have help with abrupt climate change prediction later.

  4. Atmospheric Torques on the Solid Earth and Oceans Based on the GEOS-1 General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Au, Andrew Y.

    1998-01-01

    The GEOS-1 general circulation model has been used to compute atmospheric torques on the oceans and solid Earth for the period 1980-1995. The time series for the various torque components have been analyzed by means of Fourier transform techniques. It was determined that the wind stress torque over land is more powerful than the wind stress torque over water by 55%, 42%, and 80% for the x, y, and z components respectively. This is mainly the result of power in the high frequency range. The pressure torques due to polar flattening, equatorial ellipticity, marine geoid, and continental orography were computed. The orographic or "mountain torque" components are more powerful than their wind stress counterparts (land plus ocean) by 231% (x), 191% (y), and 77% (z). The marine pressure torques due to geoidal undulations are much smaller than the orographic ones, as expected. They are only 3% (x), 4% (y), and 5% (z) of the corresponding mountain torques. The geoidal pressure torques are approximately equal in magnitude to those produced by the equatorial ellipticity of the Earth. The pressure torque due to polar flattening makes the largest contributions to the atmospheric torque budget. It has no zonal component, only equatorial ones. Most of the power of the latter, between 68% and 69%, is found in modes with periods under 15 days. The single most powerful mode has a period of 361 days. The gravitational torque ranks second in power only to the polar flattening pressure torque. Unlike the former, it does produce a zonal component, albeit much smaller (1%) than the equatorial ones. The gravitational and pressure torques have opposite signs, therefore, the gravitational torque nullifies 42% of the total pressure torque. Zonally, however, the gravitational torque amounts to only 6% of the total pressure torque. The power budget for the total atmospheric torque yields 7595 and 7120 Hadleys for the equatorial components and 966 Hadleys for the zonal. The x-component exhibits

  5. Effect of improved subgrid scale transport of tracers on uptake of bomb radiocarbon in the GFDL Ocean General Circulation Model

    NASA Astrophysics Data System (ADS)

    Duffy, P. B.; Eltgroth, P.; Bourgeois, A. J.; Caldeira, K.

    1995-05-01

    We show that the Gent-McWilliams tracer transport parameterization greatly improves the ability of the GFDL ocean general circulation model to simulate vertical profiles of both temperature and bomb radiocarbon with a single set of model parameter values. This parameterization, which includes new advection terms as well as isopycnal mixing, has previously been shown to greatly improve simulated temperature fields. Here, we show that it does not markedly affect the already good simulation of oceanic absorption of bomb radiocarbon, and discuss the reasons for this result.

  6. Climate change and the stability of ocean circulation - a review

    NASA Astrophysics Data System (ADS)

    Rahmstorf, S.

    2009-04-01

    The IPCC 4th assessment report has noted a probability of 5% to 10% for a "large abrupt transition" of the meridional overturning circulation of the ocean during the course of the 21st Century, in response to global warming. Such ocean circulation changes therefore pose a non-negligible risk for humanity. Over the past decade a growing scientific effort has gone into observation and modeling of ocean circulation as well as the collection of paleo-climatic data on past ocean changes in Earth's history. This lecture will present a personal review of the current state of knowledge about the risk posed by instabilities in the ocean circulation.

  7. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in a Coupled Atmosphere-Ocean General Circulation Model

    NASA Astrophysics Data System (ADS)

    Li, F.; Newman, P. A.; Pawson, S.; Waugh, D. W.

    2014-12-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and surface winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface trend differences on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60ºS. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone

  8. Satellite Altimetry, Ocean Circulation, and Data Assimilation

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    1999-01-01

    Ocean circulation is a critical factor in determining the Earth's climate. Satellite altimetry has been proven a powerful technique for measuring the height of the sea surface for the study of global ocean circulation dynamics. A major objective of my research is to investigate the utility of altimeter data for ocean circulation studies. The 6 years' data record of TOPEX/POSEIDON have been analyzed to study the spatial and temporal characteristics of large-scale ocean variability. A major result obtained in 1998 is the discovery of large-scale oscillations in sea level with a period of 25 days in the Argentine Basin of the South Atlantic Ocean (see diagram). They exhibit a dipole pattern with counterclockwise rotational propagation around the Zapiola Rise (centered at 45S and 317E), a small seamount in the abyssal plain of the basin. The peak-to-trough amplitude is about 10 cm over a distance of 500-1000 km. The amplitude of these oscillations has large seasonal-to-interannual variations. The period and rotational characteristics of these oscillations are remarkably similar to the observations made by two current meters deployed near the ocean bottom in the region. What TOPEX/POSEIDON has detected apparently are manifestations of the movement of the entire water column (barotropic motion). The resultant transport variation is estimated to be about 50 x 10(exp 6) cubic M/S, which is about 50% of the total water transport in the region. Preliminary calculations suggest that these oscillations are topographically trapped waves. A numerical model of the South Atlantic is used to investigate the nature of and causes for these waves. A very important property of sea surface height is that it is directly related to the surface geostrophic velocity, which is related to deep ocean circulation through the density field. Therefore altimetry observations are not only useful for determining the surface circulation but also for revealing information about the deep ocean. Another

  9. ENSO Bred Vectors in Coupled Ocean-Atmosphere General Circulation Models

    NASA Technical Reports Server (NTRS)

    Yang, S. C.; Cai, Ming; Kalnay, E.; Rienecker, M.; Yuan, G.; Toth, ZA.

    2004-01-01

    The breeding method has been implemented in the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Coupled General Circulation Model (CGCM) with the goal of improving operational seasonal to interannual climate predictions through ensemble forecasting and data assimilation. The coupled instability as cap'tured by the breeding method is the first attempt to isolate the evolving ENSO instability and its corresponding global atmospheric response in a fully coupled ocean-atmosphere GCM. Our results show that the growth rate of the coupled bred vectors (BV) peaks at about 3 months before a background ENSO event. The dominant growing BV modes are reminiscent of the background ENSO anomalies and show a strong tropical response with wind/SST/thermocline interrelated in a manner similar to the background ENSO mode. They exhibit larger amplitudes in the eastern tropical Pacific, reflecting the natural dynamical sensitivity associated with the presence of the shallow thermocline. Moreover, the extratropical perturbations associated with these coupled BV modes reveal the variations related to the atmospheric teleconnection patterns associated with background ENSO variability, e.g. over the North Pacific and North America. A similar experiment was carried out with the NCEP/CFS03 CGCM. Comparisons between bred vectors from the NSIPP CGCM and NCEP/CFS03 CGCM demonstrate the robustness of the results. Our results strongly suggest that the breeding method can serve as a natural filter to identify the slowly varying, coupled instabilities in a coupled GCM, which can be used to construct ensemble perturbations for ensemble forecasts and to estimate the coupled background error covariance for coupled data assimilation.

  10. Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight

    NASA Astrophysics Data System (ADS)

    Staneva, J.; Wahle, K.; Günther, H.; Stanev, E.

    2015-12-01

    This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This is exemplified for the German Bight and its coastal area known as the Wadden Sea. The latter is the area between the barrier islands and the coast. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales, which in many cases are due to unresolved nonlinear feedback between strong tidal currents and wind-waves. In this study we present analysis of wave and hydrographic observations, as well as results of numerical simulations. A nested-grid modelling system is used to producing reliable nowcasts and short-term forecasts of ocean state variables, including wind waves and hydrodynamics. The data base includes ADCP observations and continuous measurements from data stations. The individual and collective role of wind, waves and tidal forcing are quantified. The performance of the forecast system is illustrated for the cases of several extreme events. Effects of ocean waves on coastal circulation and sea level are investigated by considering the wave-dependent stress and wave breaking parameterization. Also the effects which the circulation exerts on the wind waves are tested for the coastal areas using different parameterizations. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.

  11. Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Wahle, Kathrin; Günther, Heinz; Stanev, Emil

    2016-06-01

    This study addresses the impact of coupling between wave and circulation models on the quality of coastal ocean predicting systems. This is exemplified for the German Bight and its coastal area known as the Wadden Sea. The latter is the area between the barrier islands and the coast. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales, which in many cases are due to unresolved non-linear feedback between strong currents and wind waves. In this study we present analysis of wave and hydrographic observations, as well as results of numerical simulations. A nested-grid modelling system is used to produce reliable nowcasts and short-term forecasts of ocean state variables, including waves and hydrodynamics. The database includes ADCP observations and continuous measurements from data stations. The individual and combined effects of wind, waves and tidal forcing are quantified. The performance of the forecast system is illustrated for the cases of several extreme events. The combined role of wave effects on coastal circulation and sea level are investigated by considering the wave-dependent stress and wave breaking parameterization. Also the response, which the circulation exerts on the waves, is tested for the coastal areas. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wave effects in circulation models.

  12. Impact of tidal mixing with different scales of bottom roughness on the general circulation in the ocean model MPIOM

    NASA Astrophysics Data System (ADS)

    Exarchou, E.; Von Storch, J.-S.; Jungclaus, J.

    2012-04-01

    We implement a tidal mixing scheme that parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography in the ocean general circulation model MPIOM. The tidal mixing scheme requires a bottom roughness map that can be calculated depending on the scales of topographic features one wants to focus on. Here, we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different spatial scales, ranging from 15 to 200 km. We find that with decreasing spatial scales at which roughness is calculated, the roughness values increase in the deep ocean and decrease in coastal or shallow regions. The diffusivities produced by the three experiments, therefore, have not only different spatial structures but different vertical structures as well, with stronger bottom diffusivities for smaller scales of roughness. The lower limb of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger bottom diffusivities, suggesting a 1/2 power law scaling between overturning strength and diffusivity. Such a relation does not hold for the upper limb of the Atlantic. All tidal simulations significantly increase the Indo-Pacific bottom water transport, improving the model solution in the Indo-Pacific Ocean.

  13. On improving the accuracy of the M2 barotropic tides embedded in a high-resolution global ocean circulation model

    NASA Astrophysics Data System (ADS)

    Ngodock, Hans E.; Souopgui, Innocent; Wallcraft, Alan J.; Richman, James G.; Shriver, Jay F.; Arbic, Brian K.

    2016-01-01

    The ocean tidal velocity and elevation can be estimated concurrently with the ocean circulation by adding the astronomical tidal forcing, parameterized topographic internal wave drag, and self-attraction and loading to the general circulation physics. However, the accuracy of these tidal estimates does not yet match accuracies in the best data-assimilative barotropic tidal models. This paper investigates the application of an augmented state ensemble Kalman Filter (ASEnKF) to improve the accuracy of M2 barotropic tides embedded in a 1/12.5° three-dimensional ocean general circulation model. The ASEnKF is an alternative to the techniques typically used with linearized tide-only models; such techniques cannot be applied to the embedded tides in a nonlinear eddying circulation. An extra term, meant to correct for errors in the tide model due to imperfectly known topography and damping terms, is introduced into the tidal forcing. Ensembles of the model are created with stochastically generated forcing correction terms. The discrepancies for each ensemble member with TPXO, an existing data-assimilative tide model, are computed. The ASEnKF method yields an optimal estimate of the model forcing correction terms, that minimizes resultant root mean square (RMS) tidal sea surface elevation error with respect to TPXO, as well as an estimate of the tidal elevation. The deep-water, global area-averaged RMS sea surface elevation error of the principal lunar semidiurnal tide M2 is reduced from 4.4 cm in a best-case non-assimilative solution to 2.6 cm. The largest elevation errors in both the non-assimilative and ASEnKF solutions are in the North Atlantic, a highly resonant basin. Possible pathways for achieving further reductions in the RMS error are discussed.

  14. On improving the accuracy of the M2 barotropic tides embedded in a high-resolution global ocean circulation model

    NASA Astrophysics Data System (ADS)

    Ngodock, Hans; Wallcraft, Alan; Souopgui, Innocent; Richman, James; Shriver, Jay; Arbic, Brian

    2016-04-01

    The ocean tidal velocity and elevation can be estimated concurrently with the ocean circulation by adding the astronomical tidal forcing, parameterized topographic internal wave drag, and self-attraction and loading to the general circulation physics. However, the accuracy of these tidal estimates does not yet match accuracies in the best data-assimilative barotropic tidal models. This paper investigates the application of an Augmented State Ensemble Kalman Filter (ASEnKF) to improve the accuracy of M2 barotropic tides embedded in a 1/12.5° three-dimensional ocean general circulation model. The ASEnKF is an alternative to the techniques typically used with linearized tide-only models; such techniques cannot be applied to the embedded tides in a nonlinear eddying circulation. An extra term, meant to correct for errors in the tide model due to imperfectly known topography and damping terms, is introduced into the tidal forcing. Ensembles of the model are created with stochastically generated forcing correction terms. The discrepancies for each ensemble member with TPXO, an existing data-assimilative tide model, are computed. The ASEnKF method yields an optimal estimate of the model forcing correction terms, that minimizes resultant root mean square (RMS) tidal sea surface elevation error with respect to TPXO, as well as an estimate of the tidal elevation. The deep-water, global area-averaged RMS sea surface elevation error of the principal lunar semidiurnal tide M2 is reduced from 4.4 cm in a best-case non-assimilative solution to 2.6 cm. The largest elevation errors in both the non-assimilative and ASEnKF solutions are in the North Atlantic, a highly resonant basin. Possible pathways for achieving further reductions in the RMS error are discussed.

  15. Variability in deep ocean circulation from GRACE

    NASA Astrophysics Data System (ADS)

    Boening, C.; Watkins, M. M.

    2015-12-01

    Although nearly impossible to observe on a global scale, total water mass transport and inter-basin exchange are central to understanding long-term changes in ocean circulation. Of particular interest are changes in the Meridional Overturning Circulation (MOC) as they pose potential impacts in continental climtae. However, in-situ observations are limited in space and time preventing a holistic view of current variability. The representation of long-term transports in ocean models is highly dependent on the atmospheric forcing fields, which may misrepresent real interannual variability. The bottom pressure observations from the Gravity Recovery And Climate Experiment (GRACE) provide for the first time the ability to observe this global water mass transport. Here, we present the first near-global maps of variability in the depth-independent ocean circulation derived from advanced analysis of GRACE data. We find that significant variability on annual to decadal time scales exists in the deep large-scale circulation, some of which are related to the Southern Annular Mode forcing dominating Southern Ocean variability.

  16. Impacts of Sea Surface Salinity Bias Correction on North Atlantic Ocean Circulation and Climate Variability in the Kiel Climate Model

    NASA Astrophysics Data System (ADS)

    Park, Taewook; Park, Wonsun; Latif, Mojib

    2016-04-01

    We investigated impacts of correcting North Atlantic sea surface salinity (SSS) biases on the ocean circulation of the North Atlantic and on North Atlantic sector mean climate and climate variability in the Kiel Climate Model (KCM). Bias reduction was achieved by applying a freshwater flux correction over the North Atlantic to the model. The quality of simulating the mean circulation of the North Atlantic Ocean, North Atlantic sector mean climate and decadal variability is greatly enhanced in the freshwater flux-corrected integration which, by definition, depicts relatively small North Atlantic SSS biases. In particular, a large reduction in the North Atlantic cold sea surface temperature (SST) bias is observed and a more realistic Atlantic Multidecadal Variability (AMV) simulated. Improvements relative to the non-flux corrected integration also comprise a more realistic representation of deep convection sites, sea ice, gyre circulation and Atlantic Meridional Overturning Circulation (AMOC). The results suggest that simulations of North Atlantic sector mean climate and decadal variability could strongly benefit from alleviating sea surface salinity biases in the North Atlantic, which may enhance the skill of decadal predictions in that region.

  17. Dense water formation and BiOS-induced variability in the Adriatic Sea simulated using an ocean regional circulation model

    NASA Astrophysics Data System (ADS)

    Dunić, Natalija; Vilibić, Ivica; Šepić, Jadranka; Somot, Samuel; Sevault, Florence

    2016-08-01

    A performance analysis of the NEMOMED8 ocean regional circulation model was undertaken for the Adriatic Sea during the period of 1961-2012, focusing on two mechanisms, dense water formation (DWF) and the Adriatic-Ionian Bimodal Oscillating System (BiOS), which drive interannual and decadal variability in the basin. The model was verified based on sea surface temperature and sea surface height satellite measurements and long-term in situ observations from several key areas. The model qualitatively reproduces basin-scale processes: thermohaline-driven cyclonic circulation and freshwater surface outflow along the western Adriatic coast, dense water dynamics, and the inflow of Ionian and Levantine waters to the Adriatic. Positive temperature and salinity biases are reported; the latter are particularly large along the eastern part of the basin, presumably because of the inappropriate introduction of eastern Adriatic rivers into the model. The highest warm temperature biases in the vertical direction were found in dense-water-collecting depressions in the Adriatic, indicating either an inappropriate quantification of DWF processes or temperature overestimation of modelled dense water. The decadal variability in the thermohaline properties is reproduced better than interannual variability, which is considerably underestimated. The DWF rates are qualitatively well reproduced by the model, being larger when preconditioned by higher basin-wide salinities. Anticyclonic circulation in the northern Ionian Sea was modelled only during the Eastern Mediterranean Transient. No other reversals of circulation that could be linked to BiOS-driven changes were modelled.

  18. Global Ocean Circulation Modeling with an Isopycnic Coordinate Model. Final Report for May 1, 1998 - April 30, 2002

    SciTech Connect

    Bleck, R.

    2004-05-19

    The overall aim of this project was to continue development of a global version of the Miami Isopycnic Coordinate Ocean Model (MICOM) with the intent of turning it into a full-fledged oceanic component of an earth system model.

  19. Significant Findings: Seasonal Distributions of Global Ocean Chlorophyll and Nutrients With a Coupled Ocean General Circulation, Biogeochemical, and Radiative Model. 2; Comparisons With Satellite and In Situ Data

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model were determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (>1000 km) model chlorophyll seasonal distributions were statistically positively correlated with CZCS chlorophyll in 10 of 12 major oceanographic regions, and with SeaWiFS in all 12. Notable disparities in magnitudes occurred, however, in the tropical Pacific, the spring/summer bloom in the Antarctic, autumn in the northern high latitudes, and during the southwest monsoon in the North Indian Ocean. Synoptic scale (100-1000 km) comparisons of satellite and in situ data exhibited broad agreement, although occasional departures were apparent. Model nitrate distributions agreed with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicated that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on basin and synoptic scales.

  20. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  1. Structure and predictability of the El Nino/Southern Oscillation phenomenon in a coupled ocean-atmosphere general circulation model

    SciTech Connect

    Latif, M.; Sterl, A.; Maier-Reimer, E.; Junge, M.M. )

    1993-04-01

    The space-time structure and predictability of the El Nino/Southern Oscillation (ENSO) phenomenon was investigated. Two comprehensive datasets were analyzed by means of an advanced statistical method, one based on observational data and other on data derived from an extended-range integration performed with a coupled ocean atmosphere general circulation model. It is shown that a considerable portion of the ENSO related low-frequency climate variability in both datasets is associated with a cycle implies the possibility of climate predictions in the tropics up to lead times of about one year. This is shown by conducting an ensemble of predictions with our coupled general circulation model. For the first time a coupled model of this type was successfully applied to ENSO predictions. 34 refs., 6 figs.

  2. Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model`s conveyor belt

    SciTech Connect

    Mikolajewicz, U.; Maier-reimer, E.

    1994-11-01

    When driven under `mixed boundary conditions` coarse resolution ocean general circulation models (OGCMs) generally show a high sensitivity of the present-day thermohaline circulation against perturbations. We will show that an alternative formulation of the boundary condition for temperature, a mixture of prescribed heat fluxes and additional restoring of the sea surface temperature to a climatological boundary temperature with a longer time constant, drastically alters the stability of the modes of the thermohaline circulation. The results from simulations with the Hamburg large-scale geostrophic OGCM indicate that the stability of the mode of the thermohaline circulation with formation of North Atlantic deepwater increases, if the damping of sea surface temperature anomalies is reduced, whereas the opposite is true for the mode without North Atlantic deep water formation. It turns out that the formulation of the temperature boundary condition also affects the variability of the model.

  3. Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations

    NASA Technical Reports Server (NTRS)

    Chertock, Beth; Sud, Y. C.

    1993-01-01

    A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54 deg N and 54 deg S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W/sq m and more. The discrepancies are particularly large in the July case off the western coast of North America. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.

  4. Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations

    SciTech Connect

    Chertock, B. ); Sud, Y.C. )

    1993-03-01

    A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54[degrees]N and 54[degrees]S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W m[sup [minus]2] and more. The discrepancies are particularly large in the July case off the western coast of North America. In this region of persistent marine stratus, the GCM climatological values exceed the satellite climatological values by as much as 131 W m[sup [minus]2]. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.

  5. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    DOE PAGESBeta

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  6. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    SciTech Connect

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWA framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.

  7. Natural variability of the climate as predicted by a simple ocean model with parameterized thermohaline circulation

    SciTech Connect

    Watts, R.G.; Li, S.

    1995-12-31

    Variability of the Earth`s climate can take place on many time scales as a result of internal features. This natural variability is important to humans since it affects such important human enterprises as agriculture, floods, droughts, etc. The authors investigate natural variability within a simple ocean model.

  8. Simple ocean carbon cycle models

    SciTech Connect

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  9. The role of the hydrological cycle and the ocean`s thermohaline circulation in climate change: A multicomponent climate model study. Ph.D. Thesis

    SciTech Connect

    Wang, Huaxiao

    1993-12-31

    Global ocean-atmosphere and ocean-atmosphere-continental ice sheet models are developed to address the question of feedbacks between the hydrological cycle and the global thermohaline circulation capable of explaining the climate changes seen in paleoclimate records of the late Pleistocene and the last deglaciation. The ocean-atmosphere model climate system displays two distinct stable equilibria controlled by latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation; maximum difference between the modes occurs in the North Atlantic. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations, with maximum changes occurring in the North Pacific. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. In the regime with vapor flux from the Atlantic to the Pacific, one mode has strong production of deep water in the North Atlantic and a large flux of heat to the atmosphere from the high latitude North Atlantic. The other has strong deep water production in the Southern Ocean and weak production in the North Pacific and small heat transport to high-latitude North Atlantic. The ocean-atmosphere-ice sheet system displays feedbacks which produce century/millennium time scale oscillations. The thermohaline circulation plays a central role in these feedbacks because of its transport of both heat and salt. The feedbacks could potentially play a causal role in the century/milliennium climate change seen in the paleoclimate record.

  10. Data Assimilation on HBM Circulation Model within MyOcean2 project

    NASA Astrophysics Data System (ADS)

    Siiriä, Simo-Matti; Axell, Lars

    2014-05-01

    To ensure good quality of the operational marine forecasts, it is very important to keep the state of the operational ocean model as close to the real physical state of the ocean as possible. However, applying observations into a model is far from trivial. In the MyOcean project, the Baltic Monitoring and Forecasting Centre (BALMFC) aims to combine the modelling efforts around Baltic Sea. As a part of this, a data assimilation system, based on optimal interpolation, originally developed in SMHI for HIROMB model has been added in hydrodynamic HIROMB-BOOS Model (HBM). BALMFC aims to create a common framework for operational data assimilation around Baltic Sea. This is done by combining and further developing the existing implementations. As a collaborative work between FMI (Finnish Meteorological Institute), SMHI (Swedish Meteorological and Hydrological Institute), DMI (Danish Meteorological Institute) and BSH (Bundesamt für Seeschifffahrt und Hydrographie), the long term aim is to have one unified data assimilation platform for the Baltic Sea models. As initial phase, the satellite Sea Surface Temperature (SST) has been assimilated. Improvements on the forecast quality will be discussed. To further develop the assimilation system, salinity and temperature measurements from ferryboxes are discussed, as well as the possibilities of assimilating ice observations in the model. We also discuss the possibilities to use ARGO floats as a data source for data assimilation schemes.

  11. Derivation of revised formulae for eddy viscous forces used in the ocean general circulation model

    NASA Technical Reports Server (NTRS)

    Chou, Ru Ling

    1988-01-01

    Presented is a re-derivation of the eddy viscous dissipation tensor commonly used in present oceanographic general circulation models. When isotropy is imposed, the currently-used form of the tensor fails to return to the laplacian operator. In this paper, the source of this error is identified in a consistent derivation of the tensor in both rectangular and earth spherical coordinates, and the correct form of the eddy viscous tensor is presented.

  12. How relevant are Tidal Effects on Past Ocean Circulation?

    NASA Astrophysics Data System (ADS)

    Weber, T.; Thomas, M.

    2014-12-01

    Global ocean models can generally be divided into Ocean General Circulation and tidal models. Paleoclimate simulations consider dynamics due to the ocean's general, i.e., thermohaline, wind and pressure driven circulation, while tidal dynamics most commonly are neglected due to their strict periodicity and high frequencies. Nevertheless, residual tidal currents have the potential to alter the ocean's mean circulation and therefore climate relevant dynamics. Using the coupled atmosphere-ocean general circulation model ECHAM5/MPIOM with an integrated tidal module based on luni-solar ephemerides, we simultaneously model circulation and tidal dynamics for the Early Eocene (50Ma). The additional tidal forcing changes the ocean's mean circulation, in particular below 1000m depth compared to an Early Eocene control run without tides. Maximum velocities of the order of 1cm/s are obtained in the control run in the intermediate and deep ocean, while by a factor of 2 stronger mean currents are obtained when tidal dynamics are considered. A stronger ocean circulation leads to modified temperature transports and thus altered energy exchange at the atmosphere-ocean boundary. This affects winds and thereby energy transports in the atmosphere. As a result, near surface temperatures are locally altered by more than 1°C.

  13. Study the impacts of Coriolis-Stokes forcing on upper ocean circulation in a fully coupled wave-current model

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Han, G.; Zhang, X.

    2010-12-01

    The Stokes drift-induced ocean currents and wind energy input into the upper ocean have been investigated using a fully coupled wave-current model consisting of the Princeton Ocean Model (POMgcs), Simulating WAves Nearshore (SWAN) wave model and the Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing (CSF), which is computed using the wave parameters from SWAN, has been incorporated into the momentum equation of POMgcs as the core coupling process in the coupled model. Experimental results in an idealized setting show that under the steady state, the scale of the speed of CSF-induced current is 0.001 m/s and the maximum reaches 0.02 m/s. The Stokes drift-induced energy rate input into the model ocean is estimated to be 2.85E10 W, which is about 14% of the direct wind energy rate input. Taking the Stokes drift effects into consideration, the total mechanical energy rate input is increased by approximately 14%. Therefore, the importance of CSF in modulating the upper ocean circulation is obviously demonstrated. The actual run conducted in Taiwan Adjacent Sea (TAS) region shows that: 1) CSF-based wave-current coupling influences the ocean surface currents month by month depending on the activities of monsoon winds; 2) wave-current coupling plays a more significant role at regions of strong eddies present and tends to intensify the eddy’s vorticity; 3) wave-current coupling affects the Taiwan Strait throughflow volume transport in a nontrivial degree, 3.75% on average.

  14. Data Organization and I/O in a Parallel Ocean Circulation Model

    SciTech Connect

    Ding, Chris H.Q.; He, Yun

    1999-05-01

    We describe an efficient and scalable parallel I/0 strategy for writing out gigabytes of data generated hourly in the ocean model simulations on massively parallel distributed-memory architectures. Working with Modular Ocean Model, using net CIF file system? and implemented on Cray T3E, the strategy speedup I/0 by a factor of 50 in the sequential case. In parallel case, on 8 PEs up to 256 PEs, our implementation writes out most model dynamic fields of about 1GB to a single netCDF file in 65 seconds, independent of the number of processors. The remap-and-write parallel strategy resolves the memory limitation problem and requires minimal collective I/0 capability of the file system. Several critical optimization on memory management and file access are carried out which ensure this scalability and also speedup the numerical simulation due to improved memory management.

  15. Application of the EOF reduction method to idealized models for the wind-driven ocean and the thermohaline circulation

    NASA Astrophysics Data System (ADS)

    Segura, Jairo; Frisius, Thomas; Badin, Gualtiero

    2015-04-01

    To get an acceptable solution from an ocean model, a considerable amount of computational resources is required. Alternatively, it is possible to expand almost every field in terms of EOFs because they form a complete orthogonal basis. This has the consequence that application of an EOF reduction method to the ocean model possibly facilitates a relatively accurate solution with less computational resources due to its necessity of a small and finite number of EOFs. In this work the formulation and testing of the EOF reduction method to spectral models for the wind-driven ocean and the thermohaline circulation are discussed. The comparison to the solution of the reference model is conducted by solving numerically the model equations at a high spectral resolution. In the first case it is the barotropic vorticity equation with free-slip conditions at the boundaries in an idealized rectangular ocean, which is forced by steady zonal winds and damped by lateral friction. In the second case the spectral model comprises vorticity, temperature and salinity equations describing the meridional overturning forced by heat and fresh-water fluxes. For this study in particular, an EOF model solution was calculated by using different numbers of EOFs, (from 5 to 100). The differences between these and the reference solution are calculated showing in a certain setup the sufficiency of 40 EOFs for reproducing the dynamics for a model with 1724 spectral coefficients relatively well. These results indicate that EOF reduction is suitable for simplification of idealized ocean models in some cases. This is beside the reduced computational effort also of benefit for a better understanding of the system dynamics.

  16. Correcting North Atlantic sea surface salinity biases in the Kiel Climate Model: influences on ocean circulation and Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    Park, T.; Park, W.; Latif, M.

    2016-10-01

    A long-standing problem in climate models is the large sea surface salinity (SSS) biases in the North Atlantic. In this study, we describe the influences of correcting these SSS biases on the circulation of the North Atlantic as well as on North Atlantic sector mean climate and decadal to multidecadal variability. We performed integrations of the Kiel Climate Model (KCM) with and without applying a freshwater flux correction over the North Atlantic. The quality of simulating the mean circulation of the North Atlantic Ocean, North Atlantic sector mean climate and decadal variability is greatly enhanced in the freshwater flux-corrected integration which, by definition, depicts relatively small North Atlantic SSS biases. In particular, a large reduction in the North Atlantic cold sea surface temperature bias is observed and a more realistic Atlantic Multidecadal Variability simulated. Improvements relative to the non-flux corrected integration also comprise a more realistic representation of deep convection sites, sea ice, gyre circulation and Atlantic Meridional Overturning Circulation. The results suggest that simulations of North Atlantic sector mean climate and decadal variability could strongly benefit from alleviating sea surface salinity biases in the North Atlantic, which may enhance the skill of decadal predictions in that region.

  17. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event

    NASA Astrophysics Data System (ADS)

    Dera, Guillaume; Donnadieu, Yannick

    2012-06-01

    The paleoecological disturbances recorded during the Early Toarcian warming event (183 Myr ago), including marine anoxia, sea level rise, seawater acidification, carbonate production crisis, and species extinctions, are often regarded as past examples of Earth's possible responses to the rapid emergence of super greenhouse conditions. However, physical mechanisms explaining both the global and local expressions of paleoenvironmental events are still highly debated. Here we analyze the paleoclimatic and paleoceanographic consequences of increases in atmospheric pCO2 levels at a multiscale resolution using a fully coupled ocean-atmosphere model (FOAM). We show that, in association with stronger high-latitude precipitation rates and enhanced continental runoff, the demise of polar sea ice due to the global warming event involved a regional freshening of Arctic surface seawaters. These disturbances lead to progressive slowdowns of the global oceanic circulation accountable for widespread ocean stratification and bottom anoxia processes in deep oceanic settings and epicontinental basins. In agreement with very negative oxygen isotope values measured on fossil shells from the NW Tethys, our simulations also show that recurrent discharges of brackish and nutrient-rich Arctic surface waters through the Viking Corridor could have led to both vertical and geographical gradients in salinity and seawater δ18O in the NW Tethyan seas. Locally contrasted conditions in water mass density and rises in productivity rates due to strong nutrient supplies could partly explain the regional severity of the anoxic event in the restricted Euro-boreal domains, as it has been previously suggested and modeled regionally.

  18. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    SciTech Connect

    Thornton, Peter E; Doney, Scott C.; Lindsay, Keith; Moore, Jefferson Keith; Mahowald, Natalie; Randerson, James T; Fung, Inez; Lamarque, Jean-Francois H; Feddema, Johan J.

    2009-01-01

    Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO{sub 2} fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO{sub 2} predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage under radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink fraction. Our results show a significant growth in the airborne fraction of anthropogenic CO{sub 2} emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO{sub 2} concentration and

  19. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  20. Influence of the Central American Seaway and Drake Passage on ocean circulation and neodymium isotopes: A model study

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik L.; Stocker, Thomas F.; Rempfer, Johannes; Ritz, Stefan P.

    2014-12-01

    The sensitivity of the neodymium isotopic composition (ɛNd) to tectonic rearrangements of seaways is investigated using an Earth System Model of Intermediate Complexity. The shoaling and closure of the Central American Seaway (CAS) is simulated, as well as the opening and deepening of Drake Passage (DP). Multiple series of equilibrium simulations with various intermediate depths are performed for both seaways, providing insight into ɛNd and circulation responses to progressive throughflow evolutions. Furthermore, the sensitivity of these responses to the Atlantic Meridional Overturning Circulation (AMOC) and the neodymium boundary source is examined. Modeled ɛNd changes are compared to sediment core and ferromanganese (Fe-Mn) crust data. The model results indicate that the North Atlantic ɛNd response to the CAS shoaling is highly dependent on the AMOC state, i.e., on the AMOC strength before the shoaling to shallow depths (preclosure). Three scenarios based on different AMOC forcings are discussed, of which the model-data agreement favors a shallow preclosure (Miocene) AMOC (˜6 Sv). The DP opening causes a rather complex circulation response, resulting in an initial South Atlantic ɛNd decrease preceding a larger increase. This feature may be specific to our model setup, which induces a vigorous CAS throughflow that is strongly anticorrelated to the DP throughflow. In freshwater experiments following the DP deepening, ODP Site 1090 is mainly influenced by AMOC and DP throughflow changes, while ODP Site 689 is more strongly influenced by Southern Ocean Meridional Overturning Circulation and CAS throughflow changes. The boundary source uncertainty is largest for shallow seaways and at shallow sites.

  1. Ensemble climate simulations using a fully coupled ocean-troposphere-stratosphere general circulation model.

    PubMed

    Huebener, H; Cubasch, U; Langematz, U; Spangehl, T; Niehörster, F; Fast, I; Kunze, M

    2007-08-15

    Long-term transient simulations are carried out in an initial condition ensemble mode using a global coupled climate model which includes comprehensive ocean and stratosphere components. This model, which is run for the years 1860-2100, allows the investigation of the troposphere-stratosphere interactions and the importance of representing the middle atmosphere in climate-change simulations. The model simulates the present-day climate (1961-2000) realistically in the troposphere, stratosphere and ocean. The enhanced stratospheric resolution leads to the simulation of sudden stratospheric warmings; however, their frequency is underestimated by a factor of 2 with respect to observations.In projections of the future climate using the Intergovernmental Panel on Climate Change special report on emissions scenarios A2, an increased tropospheric wave forcing counteracts the radiative cooling in the middle atmosphere caused by the enhanced greenhouse gas concentration. This leads to a more dynamically active, warmer stratosphere compared with present-day simulations, and to the doubling of the number of stratospheric warmings. The associated changes in the mean zonal wind patterns lead to a southward displacement of the Northern Hemisphere storm track in the climate-change signal. PMID:17569652

  2. Pathways of marine debris in statistical and diagnostic ocean circulation models

    NASA Astrophysics Data System (ADS)

    Maximenko, N.; Hafner, J.; Lumpkin, R.

    2012-04-01

    Statistical and diagnostic models are used in this study to describe long-term dynamics of objects floating at the sea surface. The statistical model is based of the particle displacement probability density function, derived from trajectories of drifting buoys, and is supplemented by the probability of running aground. This model reveals five main areas of debris accumulation in the subtropical ocean, all confirmed with direct observations. It also reveals the global pattern of shores impacted by marine debris, correlated with dominant winds. The diagnostic model (SCUD - Surface CUrrents from Diagnostic) utilizes satellite data of altimetry and QuikSCAT/ASCAT winds to assess near-real time surface velocities and its parameters are optimized using drifter trajectories. Numerical experiments with various sources and life times of the model debris help to understand main pathways of the tracer and distributions of its properties within and across individual oceans. Applications of statistical and diagnostic models help to assess probable motion of the debris, generated in Japan by tsunami of March 11, 2011. The timeline, derived from the statistical model, and maps, computed with SCUD, are used to coordinate operational at-sea and on-coast observations and preparations for the debris impact. Most of debris is drifting from Japan towards east, while dispersing over increasing area. After passing Hawaii in the north it is expected to recirculate into the so-called North Pacific Garbage Patch - the area, located between Hawaii and California, where convergent surface currents collect all floating waste. Only a small fraction of tsunami debris, on the edge of the debris field, will "touch" Hawaii and US/Canada west coast. Yet the amount and composition may be anomalous. Mixed with the older waste, tsunami debris will slowly leak from the patch, polluting Hawaiian Islands.

  3. The Atlantic Multidecadal Oscillation without a role for ocean circulation.

    PubMed

    Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn

    2015-10-16

    The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO.

  4. The Determination of the Large-Scale Circulation of the Pacific Ocean from Satellite Altimetry using Model Green's Functions

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Wunsch, Carl

    1996-01-01

    A Green's function method for obtaining an estimate of the ocean circulation using both a general circulation model and altimetric data is demonstrated. The fundamental assumption is that the model is so accurate that the differences between the observations and the model-estimated fields obey a linear dynamics. In the present case, the calculations are demonstrated for model/data differences occurring on very a large scale, where the linearization hypothesis appears to be a good one. A semi-automatic linearization of the Bryan/Cox general circulation model is effected by calculating the model response to a series of isolated (in both space and time) geostrophically balanced vortices. These resulting impulse responses or 'Green's functions' then provide the kernels for a linear inverse problem. The method is first demonstrated with a set of 'twin experiments' and then with real data spanning the entire model domain and a year of TOPEX/POSEIDON observations. Our present focus is on the estimate of the time-mean and annual cycle of the model. Residuals of the inversion/assimilation are largest in the western tropical Pacific, and are believed to reflect primarily geoid error. Vertical resolution diminishes with depth with 1 year of data. The model mean is modified such that the subtropical gyre is weakened by about 1 cm/s and the center of the gyre shifted southward by about 10 deg. Corrections to the flow field at the annual cycle suggest that the dynamical response is weak except in the tropics, where the estimated seasonal cycle of the low-latitude current system is of the order of 2 cm/s. The underestimation of observed fluctuations can be related to the inversion on the coarse spatial grid, which does not permit full resolution of the tropical physics. The methodology is easily extended to higher resolution, to use of spatially correlated errors, and to other data types.

  5. 3D Visualization of Global Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  6. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    PubMed

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  7. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS)

    PubMed Central

    Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September–May) and mixing (June–August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore—offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  8. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    PubMed

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  9. On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Döscher, Ralf; Koenigk, Torben

    2016-06-01

    Impacts of spectral nudging on simulations of Arctic climate in coupled simulations have been investigated in a set of simulations with a regional climate model (RCM). The dominantly circumpolar circulation in the Arctic lead to weak constraints on the lateral boundary conditions (LBCs) for the RCM, which causes large internal variability with strong deviations from the driving model. When coupled to an ocean and sea ice model, this results in sea ice concentrations that deviate from the observed spatial distribution. Here, a method of spectral nudging is applied to the atmospheric model RCA4 in order to assess the potentials for improving results for the sea ice concentrations when coupled to the RCO ocean-sea ice model. The spectral nudging applied to reanalysis driven simulations significantly improves the generated sea ice regarding its temporal evolution, extent and inter-annual trends, compared to simulations with standard LBC nesting. The method is furthermore evaluated with driving data from two CMIP5 GCM simulations for current and future conditions. The GCM biases are similar to the RCA4 biases with ERA-Interim, however, the spectral nudging still improves the surface winds enough to show improvements in the simulated sea ice. For both GCM downscalings, the spectrally nudged version retains a larger sea ice extent in September further into the future. Depending on the sea ice formulation in the GCM, the temporal evolution of the regional sea ice model can deviate strongly.

  10. A Reduced Grid Method for a Parallel Global Ocean General Circulation Model

    SciTech Connect

    Wickett, M.E.

    1999-12-01

    A limitation of many explicit finite-difference global climate models is the timestep restriction caused by the decrease in cell size associated with the convergence of meridians near the poles. A computational grid in which the number of cells in the longitudinal direction is reduced toward high-latitudes, keeping the longitudinal width of the resulting cells as uniform as possible and increasing the allowable timestep, is applied to a three-dimensional primitive equation ocean-climate model. This ''reduced'' grid consists of subgrids which interact at interfaces along their northern and southern boundaries, where the resolution changes by a factor of three. Algorithms are developed to extend the finite difference techniques to this interface, focusing on the conservation required to perform long time integrations, while preserving the staggered spatial arrangement of variables and the numerics used on subgrids. The reduced grid eliminates the common alternative of filtering high-frequency modes from the solution at high-latitudes to allow a larger timestep and reduces execution time per model step by roughly 20 percent. The reduced grid model is implemented for parallel computer architectures with two-dimensional domain decomposition and message passing, with speedup results comparable to those of the original model. Both idealized and realistic model runs are presented to show the effect of the interface numerics on the model solution. First, a rectangular, mid-latitude, at-bottomed basin with vertical walls at the boundaries is driven only by surface wind stress to compare three resolutions of the standard grid to reduced grid cases which use various interface conditions. Next, a similar basin with wind stress, heat, and fresh water forcing is used to compare the results of a reduced grid with those of a standard grid result while exercising the full set of model equations. Finally, global model runs, with topography, forcing, and physical parameters similar to

  11. A reduced-grid method for a parallel global ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Wickett, Michael Everett

    A limitation of many explicit finite-difference global climate models is the timestep restriction caused by the decrease in cell size associated with the convergence of meridians near the poles. A computational grid in which the number of cells in the longitudinal direction is reduced toward high- latitudes, keeping the longitudinal width of the resulting cells as uniform as possible and increasing the allowable timestep, is applied to a three- dimensional primitive equation ocean-climate model. This ``reduced'' grid consists of subgrids which interact at interfaces along their northern and southern boundaries, where the resolution changes by a factor of three. Algorithms are developed to extend the finite difference techniques to this interface, focusing on the conservation required to perform long time integrations, while preserving the staggered spatial arrangement of variables and the numerics used on subgrids. The reduced grid eliminates the common alternative of filtering high- frequency modes from the solution at high-latitudes to allow a larger timestep and reduces execution time per model step by roughly 20 percent. The reduced grid model is implemented for parallel computer architectures with two-dimensional domain decomposition and message passing, with speedup results comparable to those of the original model. Both idealized and realistic model runs are presented to show the effect of the interface numerics on the model solution. First, a rectangular, mid-latitude, flat-bottomed basin with vertical walls at the boundaries is driven only by surface wind stress to compare three resolutions of the standard grid to reduced grid cases which use various interface conditions. Next, a similar basin with wind stress, heat, and fresh water forcing is used to compare the results of a reduced grid with those of a standard grid result while exercising the full set of model equations. Finally, global model runs, with topography, forcing, and physical parameters

  12. An overlooked problem in model simulations of the thermohaline circulation and heat transport in the Atlantic Ocean

    SciTech Connect

    Boening, C.W.; Holland, W.R.; Bryan, F.O.; Danabasoglu, G.; Mcwilliams, J.C. |

    1995-03-01

    Many models of the large-scale thermohaline circulation in the ocean exhibit strong zonally integrated upwelling in the midlatitude North Atlantic that significantly decreases the amount of deep water that is carried from the formation regions in the subpolar North Atlantic toward low latitudes and across the equator. In an analysis of results from the Community Modeling Effort using a suite of models with different horizontal resolution, wind and thermohaline forcing, and mixing parameters, it is shown that the upwelling is always concentrated in the western boundary layer between roughly 30 deg and 40 deg N. The vertical transport across 1000 m appears to be controlled by local dynamics and strongly depends on the horizontal resolution and mixing parameters of the model. It is suggested that in models with a realistic deep-water formation rate in the subpolar North Atlantic, the excessive upwelling can be considered as the prime reason for the typically too low meridional overturning rates and northward heat transports in the subtropical North Atlantic. A new isopycnal advection and mixing parameterization of tracer transports by mesoscale eddies yield substantial improvements in these integral measures of the circulation.

  13. Assessment of the numerical efficiency of ocean circulation model : Hycom contribution to the COMODO project

    NASA Astrophysics Data System (ADS)

    Lathuilière, Cyril; Baraille, Rémy; Le Boyer, Arnaud

    2015-04-01

    The French navy hydrographic service uses a modified version of the Hybrid coordinate ocean model (HYCOM) for operational oceanographic applications. In the framework of the COMODO project, a series of test cases has been carried out to measure the numerical efficiency of the model. It addresses a wide panel of oceanic processes (baroclinic eddy, baroclinic jet, coastal upwelling, internal tides) and is useful to examine most of numerical schemes (advection schemes, time stepping, pressure gradient, …). The objectives of this study are first to assess the numerical performance of the present model to guide the modelers to make the suitable choices, and second to examine how the performances may be improved in the next years. We examine the sensitivity of the main choices for Hycom (2th or 4th order advection schemes, and viscosity values) in baroclinic eddy and baroclinic jet test cases. Both test cases are run using increasing resolution. The highest resolution provides a reference for studying the coarser resolutions. In the baroclinic vortex test case, the second order vector form scheme is well performing whereas the 4th order scheme appears to be more accurate in the baroclinic jet test case. This is probably due to the lack of fine scale energy in the baroclinic vortex test case allowing simulations with very tiny dissipation rates. We focus then on the sensitivity of the performance to vertical coordinate choices. The ability of Hycom to switch between isopycnal coordinate and quasi geopotential coordinate provides useful insights for example on the sensitivity of numerical diapycnal mixing to remapping scheme. This is particularly visible on the internal tide test case. The type of vertical coordinate is also important for potential vorticity structures. The shape of the baroclinic vortex is found to be different in geopotential and isopycnal coordinates. At coarse resolution, the potential vorticity structures seem to be better resolved in isopycnal

  14. Reactive transport modeling of hydrothermal circulation in oceanic crust: effect of anhydrite precipitation on the dynamics of submarine hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Yang, J.

    2009-12-01

    Hydrothermal fluid circulation represents an extremely efficient mechanism for the exchange of heat and matter between seawater and oceanic crust. Precipitation and dissolution of minerals associated with hydrothermal flow at ridge axes can alter the crustal porosity and permeability and hence influence the dynamics of hydrothermal systems. In this study, a fully coupled fluid flow, heat transfer and reactive mass transport model was developed using TOUGHREACT to evaluate the role of mineral precipitation and dissolution on the evolution of hydrothermal flow systems, with a particular attention focused on anhydrite precipitation upon heating of seawater in recharge zones and the resultant change in the crustal porosity and permeability. A series of numerical case studies were carried out to assess the effect of temperature and aqueous phase inflow concentrations on the reactive geochemical system. The impact of chemically induced porosity and permeability changes on the dynamics of hydrothermal systems was also addressed.

  15. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  16. Experiences modeling ocean circulation problems on a 30 node commodity cluster with 3840 GPU processor cores.

    NASA Astrophysics Data System (ADS)

    Hill, C.

    2008-12-01

    for which this technology is currently most useful. However, many interesting problems fit within this envelope. Looking forward, we extrapolate our experience to estimate full-scale ocean model performance and applicability. Finally we describe preliminary hybrid mixed 32-bit and 64-bit experiments with graphics cards that support 64-bit arithmetic, albeit at a lower performance.

  17. Fritz Schott's Contributions to the Understanding of the Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Visbeck, M.

    2009-04-01

    The ocean circulation and its central significance for global climate lay at the heart of Fritz's research. In the context of hard-won data from his more than 30 research cruises to key regions of the Atlantic and Indian oceans, he made fundamental contributions to our understanding of the wind-driven and thermohaline ocean circulation. His insights and explorations of circulation and dynamics of the tropical Indian and Atlantic Oceans have led the field and provided a large part of the basis for planning large, international experiments. Fritz's work is also distinguished by his making exceptional use of modeling results, increasingly as the models have improved. His research has provided a much clearer correspondence between the observed ocean-structure and dynamical theory-noting both theoretical successes and limitations. Besides his general interest in the physical oceanography of the World Oceans, most of his research was devoted to the dynamics of tropical oceans with its intense and highly variable current systems. Concerning the Indian Ocean, Fritz's investigated the response of the Somali Current system to the variable monsoon winds in the early 1980's, obtaining high-quality, hydrographic surveys and the first long term direct measurement of ocean currents from moored arrays. His analyses and interpretations provided a synthesis of the complex circulations there. In the tropical Atlantic Ocean Fritz research focused on the western boundary circulation with important contributions to the understanding of the North Brazil Current retroflection, and the variability of the shallow and deep western boundary currents. Trying to solve the fundamental question ‘what is the role of the tropical ocean for climate variability', Fritz initiated large multinational research programs under the umbrella of the World Climate Research Projects WOCE (World Ocean Circulation Experiment) and CLIVAR (Climate Variability and Predictability). Fritz was the initiator and

  18. Sustaining observations of the unsteady ocean circulation.

    PubMed

    Frajka-Williams, E

    2014-09-28

    Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change.

  19. A Spectral Element Ocean Model on the Cray T3D: the interannual variability of the Mediterranean Sea general circulation

    NASA Astrophysics Data System (ADS)

    Molcard, A. J.; Pinardi, N.; Ansaloni, R.

    A new numerical model, SEOM (Spectral Element Ocean Model, (Iskandarani et al, 1994)), has been implemented in the Mediterranean Sea. Spectral element methods combine the geometric flexibility of finite element techniques with the rapid convergence rate of spectral schemes. The current version solves the shallow water equations with a fifth (or sixth) order accuracy spectral scheme and about 50.000 nodes. The domain decomposition philosophy makes it possible to exploit the power of parallel machines. The original MIMD master/slave version of SEOM, written in F90 and PVM, has been ported to the Cray T3D. When critical for performance, Cray specific high-performance one-sided communication routines (SHMEM) have been adopted to fully exploit the Cray T3D interprocessor network. Tests performed with highly unstructured and irregular grid, on up to 128 processors, show an almost linear scalability even with unoptimized domain decomposition techniques. Results from various case studies on the Mediterranean Sea are shown, involving realistic coastline geometry, and monthly mean 1000mb winds from the ECMWF's atmospheric model operational analysis from the period January 1987 to December 1994. The simulation results show that variability in the wind forcing considerably affect the circulation dynamics of the Mediterranean Sea.

  20. Design and Implementation of a Parallel Multivariate Ensemble Kalman Filter for the Poseidon Ocean General Circulation Model

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele M.; Koblinsky, Chester (Technical Monitor)

    2001-01-01

    A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel computer architecture has been implemented for the Poseidon ocean circulation model and tested with a Pacific Basin model configuration. There are about two million prognostic state-vector variables. Parallelism for the data assimilation step is achieved by regionalization of the background-error covariances that are calculated from the phase-space distribution of the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the background-error covariances are given compact support by means of a Hadamard (element by element) product with a three-dimensional canonical correlation function. The methodology and the MvEnKF configuration are discussed. It is shown that the regionalization of the background covariances; has a negligible impact on the quality of the analyses. The parallel algorithm is very efficient for large numbers of observations but does not scale well beyond 100 PEs at the current model resolution. On a platform with distributed memory, memory rather than speed is the limiting factor.

  1. Modelled Circulation In Storfjorden

    NASA Astrophysics Data System (ADS)

    Skogseth, R.; Asplin, L.

    The model area Storfjorden is situated between the islands Spitsbergen, Barentsöya and Edgeöya at the Svalbard Archipelago. The entrance of Storfjorden is defined by a shallow bank Storfjordbanken and some small islands Tusenöyane in southeast, and by an 115m deep sill at about 76 45' N in the south. Maximum depth in Storfjorden is 190m, which is surrounded by gradually shallower shelves in the north, the east and southeast. A steep bottom slope is present on the western side of Storfjorden. He- leysundet and Freemansundet, two sounds between respectively Spitsbergen and Bar- entsöya, and Barentsöya and Edgeöya, define two narrow and shallow entrances in the north and northeast connecting Storfjorden with the northwestern Barents Sea. Strong tidal currents exist in Heleysundet (4-5ms-1) and Freemansundet (2-3ms-1), but the general circulation in Storfjorden is not well known. The coastal current in Storfjor- den is cyclonic directed into Storfjorden south of Edgeöya from the East Spitsbergen Current and out of Storfjorden south of Spitsbergen where it is called Sørkappstrøm- men. A three-dimensional sigma layered numerical ocean model called Bergen Ocean Model (BOM) was used to simulate the circulation in Storfjorden with Freemansundet opened. Two simulations were carried out, one with heat flux (100 Wm-2) and one without heat flux from the ocean to the atmosphere. The heat flux was applied only in the proper fjord area north of the sill and not outside as a crude approximation of the effects of a polynya in the sea ice cover during winter. Both simulations had a 4km horizontal resolution and 21 sigma layers. The model is forced by winds (from the NCEP reanalyzed fields) and tides. Initial fields are from the DNMI/IMR climatol- ogy. The model simulation without heat flux gave a circulation heavily dependent on tidal forcing, showing strong tidal currents up to 2ms-1 in Freemansundet, between Tusenöyane and on Storfjordbanken southwest of Edgeöya. Earlier

  2. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    NASA Astrophysics Data System (ADS)

    Wang, S.; Moore, J. K.; Primeau, F. W.; Khatiwala, S.

    2011-11-01

    The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant) inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the ΔC* method, and two are based on reconstructions of the Green function for the surface-to-interior transport, the TTD method and the maximum entropy inversion method (KPH). The KPH method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1) to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the KPH method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the KPH method are generally valid on the global scale, but may introduce significant errors in Cant estimates on regional scales. The KPH method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  3. Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model.

    PubMed

    Putman, Nathan F; Verley, Philippe; Shay, Thomas J; Lohmann, Kenneth J

    2012-06-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, USA, undertake a transoceanic migration in which they gradually circle the Sargasso Sea before returning to the North American coast. Loggerheads possess a 'magnetic map' in which regional magnetic fields elicit changes in swimming direction along the migratory pathway. In some geographic areas, however, ocean currents move more rapidly than young turtles can swim. Thus, the degree to which turtles can control their migratory movements has remained unclear. In this study, the movements of young turtles were simulated within a high-resolution ocean circulation model using several different behavioral scenarios, including one in which turtles drifted passively and others in which turtles swam briefly in accordance with experimentally derived data on magnetic navigation. Results revealed that small amounts of oriented swimming in response to regional magnetic fields profoundly affected migratory routes and endpoints. Turtles that engaged in directed swimming for as little as 1-3 h per day were 43-187% more likely than passive drifters to reach the Azores, a productive foraging area frequented by Florida loggerheads. They were also more likely to remain within warm-water currents favorable for growth and survival, avoid areas on the perimeter of the migratory route where predation risk and thermal conditions pose threats, and successfully return to the open-sea migratory route if carried into coastal areas. These findings imply that even weakly swimming marine animals may be able to exert strong effects on their migratory trajectories and open-sea distributions through simple navigation responses and minimal swimming.

  4. Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model.

    PubMed

    Putman, Nathan F; Verley, Philippe; Shay, Thomas J; Lohmann, Kenneth J

    2012-06-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, USA, undertake a transoceanic migration in which they gradually circle the Sargasso Sea before returning to the North American coast. Loggerheads possess a 'magnetic map' in which regional magnetic fields elicit changes in swimming direction along the migratory pathway. In some geographic areas, however, ocean currents move more rapidly than young turtles can swim. Thus, the degree to which turtles can control their migratory movements has remained unclear. In this study, the movements of young turtles were simulated within a high-resolution ocean circulation model using several different behavioral scenarios, including one in which turtles drifted passively and others in which turtles swam briefly in accordance with experimentally derived data on magnetic navigation. Results revealed that small amounts of oriented swimming in response to regional magnetic fields profoundly affected migratory routes and endpoints. Turtles that engaged in directed swimming for as little as 1-3 h per day were 43-187% more likely than passive drifters to reach the Azores, a productive foraging area frequented by Florida loggerheads. They were also more likely to remain within warm-water currents favorable for growth and survival, avoid areas on the perimeter of the migratory route where predation risk and thermal conditions pose threats, and successfully return to the open-sea migratory route if carried into coastal areas. These findings imply that even weakly swimming marine animals may be able to exert strong effects on their migratory trajectories and open-sea distributions through simple navigation responses and minimal swimming. PMID:22573765

  5. Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution

    NASA Astrophysics Data System (ADS)

    Agoshkov, V. I.; Ipatova, V. M.; Zalesnyi, V. B.; Parmuzin, E. I.; Shutyaev, V. P.

    2010-12-01

    Problems of the variational assimilation of satellite observational data on the temperature and level of the ocean surface, as well as data on the temperature and salinity of the ocean from the ARGO system of buoys, are formulated with the use of the global three-dimensional model of ocean thermodynamics developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS). Algorithms for numerical solutions of the problems are developed and substantiated, and data assimilation blocks are developed and incorporated into the global three-dimensional model. Numerical experiments are performed with the use of the Indian Ocean or the entire World Ocean as examples. These numerical experiments support the theoretical conclusions and demonstrate that the use of a model with an assimilation block of operational observational data is expedient.

  6. Analyzing the Effect of Tropical Cyclones on the Upper Ocean Using an Ocean General Circulation Model with Varying Horizontal Grid Resolution

    NASA Astrophysics Data System (ADS)

    Li, H.; Sriver, R. L.

    2015-12-01

    Tropical cyclones (TCs) have the potential to influence regional and global climate through their interactions with the upper ocean. Here we present results from a suite of ocean-only model experiments featuring the Community Earth System Model (CESM), in which we analyze the effect of tropical cyclone wind forcing on the global ocean using three different horizontal ocean grid resolutions (3˚, 1˚, and 0.1˚). The ocean simulations are forced with identical atmospheric inputs from the Coordinated Ocean-Ice Reference Experiments version 2 (COREv2) normal year forcing conditions, featuring global blended TC winds from a fully-coupled CESM simulation with a 25 km atmosphere [Small et al., 2014]. The simulated TC climatology shows good agreement with observational estimates of annual TC statistics, including annual frequency, intensity distributions, and geographic distributions. Each simulation is 10 years, which includes a 5-year spin up and 5 years of TC-wind forcing. In addition, we conduct corresponding control simulations for each grid resolution configuration without applied TC forcing. We will discuss the TC-induced ocean responses across a variety of spatial and temporal scales. A key highlight of this work is analyzing the effect of ocean horizontal grid resolution on TC-induced ocean responses, particularly at resolutions capable of simulating mesoscale ocean eddies.

  7. Ocean circulation on the North Australian Shelf

    NASA Astrophysics Data System (ADS)

    Schiller, Andreas

    2011-07-01

    The ocean circulation on Australia's Northern Shelf is dominated by the Monsoon and influenced by large-scale interannual variability. These driving forces exert an ocean circulation that influences the deep Timor Sea Passage of the Indonesian Throughflow, the circulation on the Timor and Arafura Shelves and, further downstream, the Leeuwin Current. Seasonal maxima of northeastward (southwestward) volume transports on the shelf are almost symmetric and exceed 10 6 m 3/s in February (June). The associated seasonal cycle of vertical upwelling from June to August south of 8.5°S and between 124°E and 137.5°E exceeds 1.5×10 6 m 3/s across 40 m depth. During El Niño events, combined anomalies from the seasonal means of high regional wind stresses and low inter-ocean pressure gradients double the northeastward volume transport on the North Australian Shelf to 1.5×10 6 m 3/s which accounts for 20% of the total depth-integrated transport across 124°E and reduce the total transport of the Indonesian Throughflow. Variability of heat content on the shelf is largely determined by Pacific and Indian Ocean equatorial wind stress anomalies with some contribution from local wind stress forcing.

  8. Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerrit

    2003-10-01

    Oceanic and atmospheric freshwater transports are analyzed in a numerical experiment where induced freshwater in the North Atlantic slowed the thermohaline circulation (THC). During times of weak Atlantic overturning circulation, it is found that the Intertropical Convergence Zone moves southward and trade winds at tropical latitudes increase, resulting in enhanced water vapor export out of the Atlantic catchment area. The experiment reveals furthermore that the oceanic freshwater transport amounts to a stabilizing effect of similar magnitude to the atmospheric effect. It is argued that the modeled response can be used as a fingerprint for the detection of THC changes documented in the paleoclimatic record or related recent climate change.

  9. Persistent Cold States of the Tropical Pacific Ocean in an Intermediate Coupled Model and a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Ramesh, N.; Cane, M. A.; Seager, R.

    2014-12-01

    The tropical Pacific Ocean has persistently cool sea surface temperature (SST) anomalies that last several years to a decade, with either no El Niño events or very few weak El Niño events. These have been shown to cause large-scale droughts in the extratropics[i], including the major North American droughts such as the 1930s Dust Bowl, and may also be responsible for modulating the global mean surface temperature[ii]. Here we show that two models with different levels of complexity - the Zebiak-Cane model and the Geophysical Fluid Dynamics Laboratory Coupled Model version 2.1 - are able to produce such periods in a realistic manner. We then test the predictability of these periods in the Zebiak-Cane model using an ensemble of experiments with perturbed initial states. Our results show that the cool mean state is modestly predictable, while the lack of El Niño events during these cool periods is not. These results have implications for our understanding of the origins of such persistent cool states and the possibility of improving predictions of large-scale droughts. Further, we apply this method of using an ensemble of model simulations with perturbed initial states to make retrospective forecasts and to forecast the mean state of the tropical Pacific Ocean for the upcoming decade. Our results suggest, albeit with low confidence, that the current cool mean state will persist. This could imply the continuation of the drier than normal conditions that have, in general, afflicted southwest North America since the 1997/98 El Niño, as well as the current pause in global warming. [i] C. Herweijer and R. Seager, "The global footprint of persistent extra-tropical drought in the instrumental era," International Journal of Climatology, vol. 28, pp. 1761-1774, 2008. [ii] G. A. Meehl, J. M. Arblaster, J. T. Fasullo, A. Hu and K. E. Trenberth, "Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods," Nature Climate Change, vol. 1, pp. 360

  10. Sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Delworth, Thomas L.; Rosati, Anthony; Anderson, Whit G.; Dixon, Keith W.; Lee, Hyun-Chul; Zeng, Fanrong

    2011-12-01

    The sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow is investigated for the first time using a high resolution eddy-permitting global coupled ocean-atmosphere model (GFDL CM2.5). The Nordic Sea overflow is perturbed through the change of the bathymetry in GFDL CM2.5. We analyze the Atlantic Meridional Overturning Circulation (AMOC) adjustment process and the downstream oceanic response to the perturbation. The results suggest that north of 34°N, AMOC changes induced by changes in the Nordic Sea overflow propagate on the slow tracer advection timescale, instead of the fast Kelvin wave timescale, resulting in a time lead of several years between subpolar and subtropical AMOC changes. The results also show that a stronger and deeper-penetrating Nordic Sea overflow leads to stronger and deeper AMOC, stronger northward ocean heat transport, reduced Labrador Sea deep convection, stronger cyclonic Northern Recirculation Gyre (NRG), westward shift of the North Atlantic Current (NAC) and southward shift of the Gulf Stream, warmer sea surface temperature (SST) east of Newfoundland and colder SST south of the Grand Banks, stronger and deeper NAC and Gulf Stream, and stronger oceanic eddy activities along the NAC and the Gulf Stream paths. A stronger/weaker Nordic Sea overflow also leads to a contracted/expanded subpolar gyre (SPG). This sensitivity study points to the important role of the Nordic Sea overflow in the large scale North Atlantic ocean circulation, and it is crucial for climate models to have a correct representation of the Nordic Sea overflow.

  11. Large-scale ocean-atmosphere interactions in a simplified coupled model of the midlatitude wintertime circulation

    NASA Technical Reports Server (NTRS)

    Miller, Arthur J.

    1992-01-01

    Midlatitude ocean-atmosphere interactions are studied in simulations from a simplified coupled model that includes synoptic-scale atmospheric variability, ocean current advection of SST, and air-sea heat exchange. Although theoretical dynamical ('identical twin') predictions using this model have shown that the SST anomalies in this model indeed influence the atmosphere, it is found here that standard cross correlation and empirical orthogonal function analyses of monthly mean model output yield the standard result, familiar from observational studies, that the atmosphere forces the ocean with little or no feedback. Therefore, these analyses are inconclusive and leave open the question of whether anomalous SST is influencing the atmosphere. In contrast, it is found that compositing strong warm events of model SST is a useful indicator of ocean forcing the atmosphere. Additional evidence is presented for oceanic influence on the atmosphere, namely, that ocean current advection appears to enhance the persistence of model SST anomalies through a feedback effect that is absent when only heat flux is allowed to influence SST anomaly evolution.

  12. Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change

    NASA Astrophysics Data System (ADS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-04-01

    Changes to the large-scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  13. Early concepts and charts of ocean circulation

    NASA Astrophysics Data System (ADS)

    Peterson, R. G.; Stramma, L.; Kortum, G.

    Charts of ocean currents from the late nineteenth century show that already by then the patterns of surface circulation in regions away from polar latitudes were well understood. This fundamental knowledge accumulated gradually through centuries of sea travel and had reached a state of near correctness by the time dedicated research cruises, full-depth measurements and the practical application of the dynamical method were being instituted. Perhaps because of the foregoing, many of the pioneering works, critical to establishing what the upper-level circulation is like, the majority of the charts accompanying them, and several of the groundbreaking theoretical treatments on the physics of currents, are only poorly known to present-day oceanographers. In this paper we trace Western developments in knowledge and understanding of ocean circulation from the earliest times to the late-1800s transition into the modern era. We also discuss certain peripheral advances that proved critical to the subject. The earliest known ideas, dating from the Bronze Age and described by Homer, necessarily reflect severe limitations to geographical knowledge, as well as basic human predilections toward conjecture and exaggeration in the face of inadequate information. People considered the earth to be flat and circular, with the ocean flowing like a river around it. They also believed in horrific whirlpools, a concept that persisted into the Renaissance and which would later provide subject material for modern literature. From the Greek Classical Age, we find hydrologic theories of Earth's interior being laced with subterranean channels (Socrates) and all motion deriving from a divine force forever propelling the heavens toward the west, the primum mobile (Aristotle). These ideas, particularly the latter, dominated opinions about ocean circulation into the late Renaissance. By late Antiquity mariners had very likely acquired intimate knowledge of coastal currents in the Mediterranean, but

  14. Effect of different surface forcings on the circulation and stratification in a global model with focus on the Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Scholz, Patrick; Lohmann, Gerrit

    2016-04-01

    The subarctic oceans like the Sea of Okhotsk, the Bering Sea, the Labrador Sea or the Greenland-Irminger-Norwegian (GIN) Sea react particularly sensitive to global climate changes and have the potential to reversely regulate climate change by CO2 uptake in the other areas of the world. So far, the natural processes in the Arctic and Subarctic system, especially of the Pacific realm, remains barely studied in terms of sedimentary records, but especially in terms of numerical modeling. In this study we focus on the marginal seas of the Northwest Pacific (e.g. the Sea of Okhotsk, the Bering Sea and the Sea of Japan), which have nowadays a significant role in the climate system of the Northwest Pacific by influencing the atmospheric and oceanic circulation as well as the hydrology of the Pacific water masses. Especially the Sea of Okhotsk is characterized by a highly dynamical sea-ice coverage, where in autumn and winter due to massive sea ice formation and brine rejection, the Sea of Okhotsk Intermediate Water (SOIW) is formed contributing to the mid-depth (500-1000m) water layer of the North Pacific known as newly formed North Pacific Intermediate Water (NPIW). We use the Finite-Element Sea-Ice Ocean Model (FESOM) in a global configuration with a regional focus on the marginal sea of the Northwest Pacific Ocean with a resolution of up to 8 km. As a preliminary study we compare the influence of the Comprehensive Ocean Ice Reference Experiment version 2 (COREv2) and ECMWF Era 40/interim forcing data set on the general circulation and stratification of the Northwest Pacific Ocean. We evaluate the reliability of both forcing data sets based on a comparison with observational derived data from the World Ocean Atlas 2013.

  15. On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium*

    NASA Astrophysics Data System (ADS)

    van Hulten, M. M. P.; Sterl, A.; Middag, R.; de Baar, H. J. W.; Gehlen, M.; Dutay, J.-C.; Tagliabue, A.

    2014-07-01

    The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of 40degree N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and using a different velocity field shows the importance of advection on the simulated Al distribution. Biological incorporation appears to be a potentially important removal process. However, conclusive independent data to constrain the Al / Si incorporation ratio by growing diatoms are missing. Therefore, this study does not provide a definitive answer to the question of the relative importance of Al removal by incorporation compared to removal by adsorptive scavenging.

  16. Early concepts and charts of ocean circulation

    NASA Astrophysics Data System (ADS)

    Peterson, R. G.; Stramma, L.; Kortum, G.

    Charts of ocean currents from the late nineteenth century show that already by then the patterns of surface circulation in regions away from polar latitudes were well understood. This fundamental knowledge accumulated gradually through centuries of sea travel and had reached a state of near correctness by the time dedicated research cruises, full-depth measurements and the practical application of the dynamical method were being instituted. Perhaps because of the foregoing, many of the pioneering works, critical to establishing what the upper-level circulation is like, the majority of the charts accompanying them, and several of the groundbreaking theoretical treatments on the physics of currents, are only poorly known to present-day oceanographers. In this paper we trace Western developments in knowledge and understanding of ocean circulation from the earliest times to the late-1800s transition into the modern era. We also discuss certain peripheral advances that proved critical to the subject. The earliest known ideas, dating from the Bronze Age and described by Homer, necessarily reflect severe limitations to geographical knowledge, as well as basic human predilections toward conjecture and exaggeration in the face of inadequate information. People considered the earth to be flat and circular, with the ocean flowing like a river around it. They also believed in horrific whirlpools, a concept that persisted into the Renaissance and which would later provide subject material for modern literature. From the Greek Classical Age, we find hydrologic theories of Earth's interior being laced with subterranean channels (Socrates) and all motion deriving from a divine force forever propelling the heavens toward the west, the primum mobile (Aristotle). These ideas, particularly the latter, dominated opinions about ocean circulation into the late Renaissance. By late Antiquity mariners had very likely acquired intimate knowledge of coastal currents in the Mediterranean, but

  17. Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation

    SciTech Connect

    Guilderson, T P; Kashgarian, M; Schrag, D P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.

  18. Responses of the Tropical Pacific to Wind Forcing as Observed by Spaceborne Sensors and Simulated by an Ocean General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Tang, Qenqing; Atlas, Robert

    1996-01-01

    In this study, satellite observations, in situ measurements, and model simulations are combined to assess the oceanic response to surface wind forcing in the equatorial Pacific. The surface wind fields derived from observations by the spaceborne special sensor microwave imager (SSM/I) and from the operational products of the European Centre for Medium-Range Weather Forecasts (ECMWF) are compared. When SSM/I winds are used to force a primitive-equation ocean general circulation model (OGCM), they produce 3 C more surface cooling than ECMWF winds for the eastern equatorial Pacific during the cool phase of an El Nino-Southern Oscillation event. The stronger cooling by SSM/I winds is in good agreement with measurements at the moored buoys and observations by the advanced very high resolution radiometer, indicating that SSM/I winds are superior to ECMWF winds in forcing the tropical ocean. In comparison with measurements from buoys, tide gauges, and the Geosat altimeter, the OGCM simulates the temporal variations of temperature, steric, and sea level changes with reasonable realism when forced with the satellite winds. There are discrepancies between model simulations and observations that are common to both wind forcing fields, one of which is the simulation of zonal currents; they could be attributed to model deficiencies. By examining model simulations under two winds, vertical heat advection and uplifting of the thermocline are found to be the dominant factors in the anomalous cooling of the ocean mixed layer.

  19. Corrigendum to ``Sensitivity of near-inertial internal waves to spatial interpolations of wind stress in ocean generation circulation models'' [Ocean Modelling 99 (2016) 15-21

    NASA Astrophysics Data System (ADS)

    Jing, Zhao; Wu, Lixin; Ma, Xiaohui

    2016-08-01

    The authors regret that the Acknowledgements section in Jing et al. (2016) neglected to give proper credit to the model development team and to the intellectual work behind the model simulation and wish to add the following acknowledgements: We are very grateful to the developers of the coupled regional climate model (CRCM) used in this study. The CRCM was developed at Texas A&M University by Dr. Raffaele Montuoro under the direction of Dr. Ping Chang, with support from National Science Foundation Grants AGS-1067937 and AGS-1347808, Department of Energy Grant DE-SC0006824, as well as National Oceanic and Atmospheric Administration Grant NA11OAR4310154. The design of the reported CRCM simulations was led by Dr. Ping Chang and carried out by Dr. Xiaohui Ma as a part of her dissertation research under the supervision of Dr. Ping Chang, supported by National Science Foundation Grants AGS-1067937 and AGS-1347808. The authors would like to apologise for any inconvenience caused.

  20. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model

    NASA Astrophysics Data System (ADS)

    Deng, Zeng'an; Xie, Li'an; Han, Guijun; Zhang, Xuefeng; Wu, Kejian

    2012-03-01

    We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs), Simulating WAves Nearshore (SWAN) wave model, and the Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process. Experimental results in an idealized setting show that under the steady state, the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 m/s. The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW, taking 14% of the direct wind energy rate input. Considering the Stokes drift effects, the total mechanical energy rate input was increased by approximately 14%, which highlights the importance of CSF in modulating the upper ocean circulation. The actual run conducted in Taiwan Adjacent Sea (TAS) shows that: 1) CSF-based wave-current coupling has an impact on ocean surface currents, which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree, 3.75% on average.

  1. How much do carbon isotope measurements constrain glacial ocean circulation?

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Mix, A. C.

    2010-12-01

    Reconstructions of the isotopic composition of dissolved inorganic carbon in seawater (d13DIC) are often interpreted as a ventilation or circulation proxy in paleoceanography. The modern deep-sea distribution of d13C in dissolved inorganic carbon (d13DIC) is highly anti-correlated to macronutrient (PO4, NO3) and apparent oxygen utilization (AOU) patterns due to fractionation during photosynthetic carbon uptake by phytoplankton. Nutrient and AOU concentrations in freshly ventilated North Atlantic Deep Water, for example, are low (d13DIC is high), whereas older water masses contain more respired nutrients and (isotopically light) carbon and have high AOU. However, d13DIC is also influenced by fractionation during air sea gas exchange - a process that decouples d13DIC from changes in nutrients and AOU. Moreover, biological fractionation is not constant but spatially and temporally variable. Here we are using a new global three-dimensional model of stable carbon isotope cycling that includes variable biological and air-sea gas exchange fractionation effects in conjunction with modern and glacial d13C observations to reconstruct ocean circulation patterns. Model versions with different rates and patterns of ocean circulation are produced and the resulting d13C patterns are compared to a compilation of measurements from ocean sediment cores in a probabilistic approach. The method allows us to quantify the uncertainty of deep ocean mass fluxes given available d13C observations/reconstructions and provide a quantitative test of the assumption of d13C as a ventilation proxy.

  2. Numerical simulation and prediction of coastal ocean circulation

    SciTech Connect

    Chen, P.

    1992-01-01

    Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account for non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.

  3. Global environmental cycling of gamma-HCH and DDT in the 1980s--a study using a coupled atmosphere and ocean general circulation model.

    PubMed

    Guglielmo, Francesca; Lammel, Gerhard; Maier-Reimer, Ernst

    2009-09-01

    A coupled atmosphere-ocean general circulation model, ECHAM5-MPIOM, was used to study the multicompartmental cycling and long-range transport of persistent and semivolatile organics. Multiphase systems in air and ocean are covered by submodels for atmospheric aerosols, HAM, and marine biogeochemistry, HAMOCC5, respectively. The model, furthermore, encompasses 2D surface compartments, i.e. top soil, vegetation surfaces and sea-ice. The total environmental fate of gamma-hexachlorocyclohexane (gamma-HCH, lindane) and dichlorophenyltrichloroethane (DDT) in agriculture were studied. DDT is mostly present in the soils, the water-soluble gamma-HCH in soils and ocean. DDT has the longest residence time in almost all compartments. Quasi-steady state with regard to substance accumulation is reached within a few years in air and vegetation surfaces. In seawater the partitioning to suspended and sinking particles contributes to the vertical transport of substances. On the global scale deep water formation is, however, found to be more efficient. Up to 30% of DDT but only less than 0.2% of gamma-HCH in seawater are stored in particulate matter. On the time scale studied (1 decade) and on global scale substance transport in the environment is determined by the fast atmospheric circulation. The meridional transport mechanism, for both compounds, is significantly enhanced by multi-hopping. Net meridional transport in the ocean is effective only regionally, mostly by currents along the western boundaries of Africa and the Americas. The total environmental burdens of the substances experience a net northward migration from their source regions, which is more pronounced for DDT than for gamma-HCH. Due to the application distribution, however, after 10 years of simulation 21% of the global environmental burden of gamma-HCH and 12% of DDT have accumulated in the Arctic. PMID:19576616

  4. Detecting Thermohaline Circulation Changes from Ocean properties

    NASA Astrophysics Data System (ADS)

    Hu, A.; Meehl, G. A.; Han, W.

    2003-12-01

    Significant changes of the thermohaline circulation (THC) are likely to cause abrupt earth climate change. Here we examined several mechanisms controlling the THC variation using a coupled climate system model (NCAR's CCSM2.0). Three experiments are analyzed, a control run (present; CON), and two forced runs: a fresh water hosing run with 0.1 Sv additional fresh water uniformly distributed in northern North Atlantic (NA) between 50 and 70oN (past; HOS), and a transient climate run with 1% CO2 increase per year (future; TRC). In HOS, THC is weakened to 11.4 Sv from 15.7 Sv in CON by the end of the 100-year hosing, then recovers to its full strength 80 years after the hosing was turned off. The tropical and subtropical Atlantic ocean average over the upper 1000 meter (Tat1000) warms by 0.3oC by the end of the hosing, implying a change of 14 Sv in THC for a 1oC variation of Tat1000. In TRC, the THC weakens to 14.1 Sv at 2XCO2 and to 12.6 Sv at 4XCO2. Tat1000 increases by 1.1oC at 4XCO2, where most of the Tat1000 changes can be attributed to the CO2 effect. Therefore, the same regression relationship between THC and Tat1000 do not hold in this experiment as in HOS. EOF analysis of the meridional streamfunction (MSF) in the Atlantic reveals a seesawing pattern of the rate of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) formation in the first EOF for HOS. When the NADW increases (stronger THC), the AABW decreases. The same is true for CON. Changes in AABW is related to sea ice volume changes in southern ocean. This seesawing pattern of THC agrees with proposed THC oscillation in the past 1500 years. In TRC, as CO2 increases, the northern NA and the periphery of the Antarctic become warmer and fresher, reducing the surface water density, and resulting in a decrease in both NADW and AABW formation. Other mechanisms examined here are the mean sea surface salinity (SSS) and temperature (SST) contrast between NA and North Pacific (NP), and the steric

  5. Ocean Surface Circulation with Implication for Marine Debris Distribution

    NASA Astrophysics Data System (ADS)

    Hafner, Jan; Maximenko, Nikolai; Niiler, Peter

    2010-05-01

    Modern, multi-instrumental Global Ocean Observing System (GOOS) includes satellites and in situ observations, monitoring the ocean state at the highest accuracy and resolution ever. By combining data of satellite altimetry, surface drifters, wind and gravity, ocean currents can be assessed globally and at research quality. The map of the mean surface currents shows a complex pattern of oceanic fronts and gyres. Distinct are the convergences of Ekman currents in subtropical gyres that, through the Sverdrup mechanism, are feeding anticyclonic circulation in the gyres. Drifter trajectories can also be utilized to simulate the evolution of the marine debris. Main problem is the inhomogeneous drifter data density, both due to convergence/divergence of the ocean currents and due to the drifter deployment scheme. A model constructed from statistics of the drifters exchange between small bins corrects this bias and was run from the uniform initial condition to study the fate of debris in the ocean. In addition to such actively studied debris accumulation areas as the Great Garbage Patch in the North Pacific, a new so far unrecognized, the world-strongest convergence is discovered in the South Pacific from the model solution. The same model reveals a complex pattern of convergence/divergence on the cold/warm flanks of major oceanic fronts. This pattern is studied in the framework of nonlinear interaction between Ekman drift and geostrophic baroclinic fronts outcropping at the sea surface. Results are generalized to assess the dynamics of internal Ekman layer distributed along the thermocline and controlling the secondary circulation at the fronts.

  6. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series

    SciTech Connect

    Kashgarian, M; Guilderson, T P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of

  7. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover

    NASA Astrophysics Data System (ADS)

    Nummelin, Aleksi; Ilicak, Mehmet; Li, Camille; Smedsrud, Lars H.

    2016-01-01

    The Arctic Ocean has important freshwater sources including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high-latitude precipitation, and river runoff. Previous modeling studies show some robust responses to high-latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation; some idealized modeling studies also document a stronger cyclonic circulation within the Arctic Ocean itself. With the broad range of scales and processes involved, the overall effect of increasing runoff requires an understanding of both the local processes and the broader linkages between the Arctic and surrounding oceans. Here we adopt a more comprehensive modeling approach by increasing river runoff to the Arctic Ocean in a coupled ice-ocean general circulation model, and show contrasting responses in the polar and subpolar regions. Within the Arctic, the stratification strengthens, the halocline and Atlantic Water layer warm, and the cyclonic circulation spins up, in agreement with previous work. In the subpolar North Atlantic, the model simulates a colder and fresher water column with weaker barotropic circulation. In contrast to the estuarine circulation theory, the volume exchange between the Arctic Ocean and the surrounding oceans does not increase with increasing runoff. While these results are robust in our model, we require experiments with other model systems and more complete observational syntheses to better constrain the sensitivity of the climate system to high-latitude freshwater perturbations.

  8. Effects of Penetrative Radiation on the Upper Tropical Ocean Circulation.

    NASA Astrophysics Data System (ADS)

    Murtugudde, Raghu; Beauchamp, James; McClain, Charles R.; Lewis, Marlon; Busalacchi, Antonio J.

    2002-03-01

    The effects of penetrative radiation on the upper tropical ocean circulation have been investigated with an ocean general circulation model (OGCM) with attenuation depths derived from remotely sensed ocean color data. The OGCM is a reduced gravity, primitive equation, sigma coordinate model coupled to an advective atmospheric mixed layer model. These simulations use a single exponential profile for radiation attenuation in the water column, which is quite accurate for OGCMs with fairly coarse vertical resolution. The control runs use an attenuation depth of 17 m while the simulations use spatially variable attenuation depths. When a variable depth oceanic mixed layer is explicitly represented with interactive surface heat fluxes, the results can be counterintuitive. In the eastern equatorial Pacific, a tropical ocean region with one of the strongest biological activity, the realistic attenuation depths result in increased loss of radiation to the subsurface, but result in increased sea surface temperatures (SSTs) compared to the control run. Enhanced subsurface heating leads to weaker stratification, deeper mixed layers, reduced surface divergence, and hence less upwelling and entrainment. Thus, some of the systematic deficiencies in the present-day climate models, such as the colder than observed cold tongue in the equatorial Pacific may simply be related to inaccurate representation of the penetrative radiation and can be improved by the formulation presented here. The differences in ecosystems in each of the tropical oceans are clearly manifested in the manner in which biological heat trapping affects the upper ocean. While the tropical Atlantic has many similarities to the Pacific, the Amazon, Congo, and Niger Rivers' discharges dominate the attenuation of radiation. In the Indian Ocean, elevated biological activity and heat trapping are away from the equator in the Arabian Sea and the southern Tropics. For climate models, in view of their sensitivity to the

  9. Temporal variations and trends of CFC11 and CFC12 surface-water saturations in Antarctic marginal seas: Results of a regional ocean circulation model

    NASA Astrophysics Data System (ADS)

    Rodehacke, Christian B.; Roether, Wolfgang; Hellmer, Hartmut H.; Hall, Timothy

    2010-02-01

    The knowledge of chlorofluorocarbon (CFC11, CFC12) concentrations in ocean surface waters is a prerequisite for deriving formation rates of, and water mass ages in, deep and bottom waters on the basis of CFC data. In the Antarctic coastal region, surface-layer data are sparse in time and space, primarily due to the limited accessibility of the region. To help filling this gap, we carried out CFC simulations using a regional ocean general circulation model (OGCM) for the Southern Ocean, which includes the ocean-ice shelf interaction. The simulated surface layer saturations, i.e. the actual surface concentrations relative to solubility-equilibrium values, are verified against available observations. The CFC surface saturations driven by concentration gradients between atmosphere and ocean are controlled mainly by the sea ice cover, sea surface temperature, and salinity. However, no uniform explanation exists for the controlling mechanisms. Here, we present simulated long-term trends and seasonal variations of surface-layer saturation at Southern Ocean deep and bottom water formation sites and other key regions, and we discuss differences between these regions. The amplitudes of the seasonal saturation cycle vary from 22% to 66% and their long-term trends range from 0.1%/year to 0.9%/year. The seasonal surface saturation maximum lags the ice cover minimum by two months. By utilizing observed bottle data the full seasonal CFC saturation cycle can be determined offering the possibility to predict long-term trends in the future. We show that ignoring the trends and using instead the saturations actually observed can lead to systematic errors in deduced inventory-based formation rates by up to 10% and suggest an erroneous decline with time.

  10. Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets

    NASA Astrophysics Data System (ADS)

    He, Yan-Chun; Drange, Helge; Gao, Yongqi; Bentsen, Mats

    2016-04-01

    Global ocean hindcast simulations for the period 1871-2009 have been run with the ocean-sea ice component of the Norwegian Earth System Model (NorESM-O), forced by an adjusted version of the Twentieth Century Reanalysis version 2 data set (20CRv2 data set), as well as by the commonly used second version of atmospheric forcing data set for the Coordinated Ocean-ice Reference Experiments phase-II (CORE-II) for the period 1948-2007 (hereafter CORE.v2 data set). The simulated Atlantic Meridional Overturning Circulation (AMOC) in the 20CR and the CORE simulations have comparable variability as well as mean strength during the last three decades of the integration. The simulated AMOC undergoes, however, distinctly different evolutions during the period 1948-1970, with a sharply declining strength in CORE but a gradual increase in 20CR. Sensitivity experiments suggest that differences in the wind forcing between CORE and 20CR have major impact on the simulated AMOCs during this period. It is furthermore found that differences in the air temperature between the two data sets do contribute to the differences in AMOC, but to a much lesser degree than the wind. An additional factor for the diverging AMOC in the two decades following 1948 is the inevitable switching of atmospheric forcing fields in 1948 in the CORE.v2-based runs due to the cyclic spin-up procedure of the ocean model. The latter is a fundamental issue for any ocean hindcast simulation. The ocean initial state mainly influence the actual value but to a lesser degree also the temporal evolution (variability) of AMOC. It may take about two decades for the AMOC to adjust to a new atmospheric state during the spin-up, although a dynamically balanced ocean initial state tends to reduce the adjustment time and the magnitude of the deviation, implying that an ocean model run with atmospheric forcing fields extending back in time, like 20CRv2, can be used to extend the reliable duration of CORE-type of simulations.

  11. Interannual variability in the stratospheric-tropospheric circulation in a coupled ocean-atmosphere GCM

    SciTech Connect

    Kitoh, Akio; Koide, Hiroshi; Kodera, Kunihiko

    1996-03-01

    The authors look for interannual variations in circulation patterns in the stratosphere/troposphere circulation and sea surface temperatures within the Meteorological Research Institute coupled ocean-atmosphere general circulation model. They are able to identify two modes in this model which exhibit this type of variability. One involves the stratospheric polar vortex, coupled via tropospheric circulation to SST variations. The second mode involves El Nino type phenomena coupled into the tropospheric subtropical jet.

  12. Pathways of the North Pacific Intermediate Water identified through the tangent linear and adjoint models of an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Nakano, T.; Usui, N.; Matsumoto, S.; Tsujino, H.; Kamachi, M.

    2014-12-01

    This study develops a strategy for tracing a target water mass, and applies it to analyzing the pathway of the North Pacific Intermediate Water (NPIW) from the subarctic gyre to the northwestern part of the subtropical gyre south of Japan in a simulation of an ocean general circulation model. This strategy estimates the pathway of the water mass that travels from an origin to a destination area during a specific period using a conservation property concerning tangent linear and adjoint models. In our analysis, a large fraction of the low salinity origin water mass of NPIW initially comes from the Okhotsk or Bering Sea, flows through the southeastern side of the Kuril Islands, and is advected to the Mixed Water Region (MWR) by the Oyashio current. It then enters the Kuroshio Extension (KE) at the first KE ridge, and is advected eastward by the KE current. However, it deviates southward from the KE axis around 158°E over the Shatsky Rise, or around 170ºE on the western side of the Emperor Seamount Chain, and enters the subtropical gyre. It is finally transported westward by the recirculation flow. This pathway corresponds well to the shortcut route of NPIW from MWR to the region south of Japan inferred from analysis of the long-term freshening trend of NPIW observation.

  13. World Ocean Circulation Experiment (WOCE) Young Investigator Workshops

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2004-01-01

    The World Ocean Circulation Experiment (WOCE) Young Investigator Workshops goals and objectives are: a) to familiarize Young Investigators with WOCE models, datasets and estimation procedures; b) to offer intensive hands-on exposure to these models ard methods; c) to build collaborations among junior scientists and more senior WOCE investigators; and finally, d) to generate ideas and projects leading to fundable WOCE synthesis projects. To achieve these goals and objectives, the Workshop will offer a mixture of tutorial lectures on numerical models and estimation procedures, advanced seminars on current WOCE synthesis activities and related projects, and the opportunity to conduct small projects which put into practice the techniques advanced in the lectures.

  14. Consequences of Future Increased Arctic Runoff on Arctic Ocean Stratification, Circulation, and Sea Ice Cover

    NASA Astrophysics Data System (ADS)

    Li, C.; Nummelin, A.; Ilicak, M.; Smedsrud, L. H.

    2015-12-01

    The Arctic sea ice cover depends strongly on the stratification of the underlying ocean, which itself depends on processes over a range of spatial scales, from circulation to shelf processes and vertical mixing. Also important for the stratification are the freshwater sources to the Arctic Ocean, including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high latitude precipitation and river runoff. Previous modelling studies show some robust responses to high latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation; some idealized modelling studies also document a stronger cyclonic circulation within the Arctic Ocean itself. Here, we adopt a more comprehensive modelling approach to better understand both the local processes and the broader linkages between the Arctic and surrounding oceans. We increase river runoff to the Arctic Ocean in a coupled ice--ocean general circulation model, and show contrasting responses in the polar and subpolar regions. Within the Arctic, the stratification strengthens, the halocline and Atlantic Water layer warm, and the cyclonic circulation spins up, in agreement with previous work. In the subpolar gyre region of the North Atlantic, the model simulates a colder and fresher water column with weaker barotropic circulation. In contrast to the estuarine circulation theory, the volume exchange between the Arctic Ocean and the surrounding oceans does not increase with increasing runoff. Changes in atmosphere-ocean heat exchange outside the sea ice-covered regions of the Arctic can influence the ocean-ice heat exchange within the Arctic. While these results are robust in our model, we require experiments with other model systems and more complete observational syntheses to better constrain the sensitivity of the climate system to

  15. The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian through flow (ITF): An ocean model study

    NASA Astrophysics Data System (ADS)

    Xu, Danya; Malanotte-Rizzoli, Paola

    2013-09-01

    The upper layer, wind-driven circulation of the South China Sea (SCS), its through-flow (SCSTF) and the Indonesian through flow (ITF) are simulated using a high resolution model, FVCOM (finite volume coastal ocean model) in a regional domain comprising the Maritime Continent. The regional model is embedded in the MIT global ocean general circulation model (ogcm) which provides surface forcing and boundary conditions of all the oceanographic variables at the lateral open boundaries in the Pacific and Indian oceans. A five decade long simulation is available from the MITgcm and we choose to investigate and compare the climatologies of two decades, 1960-1969 and 1990-1999. The seasonal variability of the wind-driven circulation produced by the monsoon system is realistically simulated. In the SCS the dominant driving force is the monsoon wind and the surface circulation reverses accordingly, with a net cyclonic tendency in winter and anticyclonic in summer. The SCS circulation in the 90s is weaker than in the 60s because of the weaker monsoon system in the 90s. In the upper 50 m the interaction between the SCSTF and ITF is very important. The southward ITF can be blocked by the SCSTF at the Makassar Strait during winter. In summer, part of the ITF feeds the SCSTF flowing into the SCS through the Karimata Strait. Differently from the SCS, the ITF is primarily controlled by the sea level difference between the western Pacific and eastern Indian Ocean. The ITF flow, consistently southwestward below the surface layer, is stronger in the 90s. The volume transports for winter, summer and yearly are estimated from the simulation through all the interocean straits. On the annual average, there is a ∼5.6 Sv of western Pacific water entering the SCS through the Luzon Strait and ∼1.4 Sv exiting through the Karimata Strait into the Java Sea. Also, ∼2 Sv of SCS water enters the Sulu Sea through the Mindoro Strait, while ∼2.9 Sv flow southwards through the Sibutu Strait

  16. The wind-driven circulation of the South Atlantic-Indian ocean — II. Experiments using a multi-layer numerical model

    NASA Astrophysics Data System (ADS)

    Boudra, Douglas B.; De Ruijter, Wilhelmus P. M.

    1986-04-01

    A numerical modeling study of the circulation of the South Atlantic-Indian Ocean in a geometrically simplified domain is extended to include baroclinicity using the quasi-isopycnic coordinate model of BLECK and BOUDRA (1981, Journal of Physical Oceanography, 11, 755-770). Within this framework a number of model parameters are varied in an attempt to understand processes related to exchange of fluid between the two ocean basins. The importance of nonlinearity of the boundary currents is determined by varying mean upper layer depth among three experiments. Sensitivities of the model Agulhas retroflection to upper ocean stratification, lateral friction, presence of eastward drift and bottom drag are examined. The role of friction in the Indian Ocean western boundary layer is investigated and found to be important in separation from the boundary. Finally, horizontal resolution is doubled to resolve better the boundary layer and release of baroclinic instability. In advancing from the barotropic ( DE RUIJTER and BOUDRA, 1985, Dee-Sea Research, 32, 557-574), to the baroclinic model, an important new feature is development of an intense recirculation eddy just beyond the point where the Agulhas Current overshoots the tip of South Africa. The center of this recirculation becomes the pivoting axis of the model retroflection, and its intensity increases with increasing Rossby number. At the same time, less top layer water is exchanged between the basins. The retroflection region acts as a source-sink of available potential and kinetic energy for the Atlantic-Indian Ocean in the low Rossby number case. This source-sink is essentially shut off in the high Rossby number case. Energy is pumped into the bottom layer underneath the recirculation, however, and radiates westward in weak anticyclonic eddies. Similar to the one-layer case, the mechanism of the modeled retroflection is adjustment to a change in the vorticity balance as the Agulhas leaves the coast of Africa. Along that

  17. A simulation of the global ocean circulation with resolved eddies

    NASA Astrophysics Data System (ADS)

    Semtner, Albert J.; Chervin, Robert M.

    1988-12-01

    A multilevel primitive-equation model has been constructed for the purpose of simulating ocean circulation on modern supercomputing architectures. The model is designed to take advantage of faster clock speeds, increased numbers of processors, and enlarged memories of machines expected to be available over the next decade. The model allows global eddy-resolving simulations to be conducted in support of the World Ocean Circulation Experiment. Furthermore, global ocean modeling is essential for proper representation of the full range of oceanic and climatic phenomena. The first such global eddy-resolving ocean calculation is reported here. A 20-year integration of a global ocean model with ½° grid spacing and 20 vertical levels has been carried out with realistic geometry and annual mean wind forcing. The temperature and salinity are constrained to Levitus gridded data above 25-m depth and below 710-m depth (on time scales of 1 month and 3 years, respectively), but the values in the main thermocline are unconstrained for the last decade of the calculation. The final years of the simulation allow the spontaneous formation of waves and eddies through the use of scale-selective viscosity and diffusion. A quasi-equilibrium state shows many realistic features of ocean circulation, including unstable separating western boundary currents, the known anomalous northward heat transport in the South Atlantic, and a global compensation for the abyssal spread of North Atlantic Deep Water via a long chain of thermocline mass transport from the tropical Pacific, through the Indonesian archipelago, across the Indian Ocean, and around the southern tip of Africa. This chain of thermocline transport is perhaps the most striking result from the model, and eddies and waves are evident along the entire 20,000-km path of the flow. The modeled Gulf Stream separates somewhat north of Cape Hatteras, produces warm- and cold-core rings, and maintains its integrity as a meadering thermal front

  18. Comparison of tropical pacific temperature and current simulations with two vertical mixing schemes embedded in an ocean general circulation model and reference to observations

    NASA Technical Reports Server (NTRS)

    Halpern, David; Chao, YI; Ma, Chung-Chun; Mechoso, Carlos R.

    1995-01-01

    The Pacanowski-Philander (PP) and Mellor-Yamada (MY) parameterization models of vertical mixing by turbulent processes were embedded in the Geophysical Fluid Dynamics Laboratory high-resolution ocean general circulation model of the tropical Pacific Ocean. All other facets of the numerical simulations were the same. Simulations were made for the 1987-1988 period. At the equator the MY simulation produced near-surface temperatures more uniform with depth, a deeper thermocline, a deeper core speed of the Equatorial Undercurrent, and a South Equatorial Current with greater vertical thickness compared with that computed with the PP method. Along 140 deg W, between 5 deg N and 10 deg N, both simulations were the same. Moored buoy current and temperature observations had been recorded by the Pacific Marine Environmental Laboratory at three sites (165 deg E, 140 deg W, 110 deg W) along the equator and at three sites (5 deg N, 7 deg N, 9 deg N) along 140 deg W. Simulated temperatures were lower than those observed in the near-surface layer and higher than those observed in the thermocline. Temperature simulations were in better agreement with observations compared to current simulations. At the equator, PP current and temperature simulations were more representative of the observations than MY simulations.

  19. The Southwest Pacific Ocean circulation and climate experiment (SPICE)

    NASA Astrophysics Data System (ADS)

    Ganachaud, A.; Cravatte, S.; Melet, A.; Schiller, A.; Holbrook, N. J.; Sloyan, B. M.; Widlansky, M. J.; Bowen, M.; Verron, J.; Wiles, P.; Ridgway, K.; Sutton, P.; Sprintall, J.; Steinberg, C.; Brassington, G.; Cai, W.; Davis, R.; Gasparin, F.; Gourdeau, L.; Hasegawa, T.; Kessler, W.; Maes, C.; Takahashi, K.; Richards, K. J.; Send, U.

    2014-11-01

    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Niño-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions.

  20. A paleoceanographic circulation and chemistry model

    SciTech Connect

    Southam, J.R. )

    1990-01-09

    We have developed a 3-D circulation and tracer field model for paleoceanographic applications. The development of the model was motivated by the desire to explore Cretaceous Oceanic Anoxic Events and ocean chemistry during glacial and interglacial modes of circulation. The bulk of paleoceanographic data is the consequences of biological processes operating in ancient oceans. This type of data represents the response to environmental conditions and can be used to reconstruct water mass properties. To infer both wind driven and thermohaline components of circulation in ancient oceans requires a model which relates circulation and water mass properties. With this motivation in mind we have formulated a model which satisfies the following criteria: (1) geostrophically balanced interior, (2) multiple sites for deep water production, (3) deep water production described by entraining plumes, (4) high vertical resolution in both velocity and property fields, (5) meridional varibility in wind stress and evaporation-precipitation rate, (6) applicable to basin scale where exchange with adjacent oceans described by flux conditions, and (7) the chemistry is coupled through the flux of particulate carbon sinking through the interior.

  1. The seasonal and inter-annual variability of sea-ice, ocean circulation and marine ecosystems in the Barents Sea: model results against satellite data

    NASA Astrophysics Data System (ADS)

    Dvornikov, Anton; Sein, Dmitry; Ryabchenko, Vladimir; Gorchakov, Victor; Pugalova, Svetlana

    2015-04-01

    This study is aimed at modelling the seasonal and inter-annual variability of sea-ice, ocean circulation and marine ecosystems in the Barents Sea in the modern period. Adequate description of marine ecosystems in the ice-covered seas crucially depends on the accuracy in determining of thicknesses of ice and snow on the sea surface which control penetrating photosynthetically active radiation under the ice. One of the few models of ice able to adequately reproduce the dynamics of sea ice is the sea ice model HELMI [1], containing 7 different categories of ice. This model has been imbedded into the Princeton Ocean Model. With this coupled model 2 runs for the period 1998-2007 were performed under different atmospheric forcing prescribed from NCEP/NCAR and ERA-40 archives. For prescribing conditions at the open boundary, all the necessary information about the horizontal velocity, level, temperature and salinity of the water, ice thickness and compactness was taken from the results of the global ocean general circulation model of the Max Planck Institute for Meteorology (Hamburg, Germany) MPIOM [2]. The resulting solution with NCEP forcing with a high accuracy simulates the seasonal and inter-annual variability of sea surface temperature (SST) estimated from MODIS data. The maximum difference between the calculated and satellite-derived SSTs (averaged over 4 selected areas of the Barents Sea) during the period 2000-2007 does not exceed 1.5 °C. Seasonal and inter-annual variations in the area of ice cover are also in good agreement with satellite-derived estimates. Pelagic ecosystem model developed in [3] has been coupled into the above hydrodynamic model and used to calculate the changes in the characteristics of marine ecosystems under NCEP forcing. Preliminarily the ecosystem model has been improved by introducing a parameterization of detritus deposition on the bottom and through the selection of optimal parameters for photosynthesis and zooplankton grazing

  2. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation.

    PubMed

    Knorr, Gregor; Lohmann, Gerrit

    2003-07-31

    During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records.

  3. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Goldner, A.; Herold, N.; Huber, M.

    2014-07-01

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

  4. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    PubMed

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

  5. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    PubMed

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future. PMID:25079555

  6. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation.

    PubMed

    Knorr, Gregor; Lohmann, Gerrit

    2003-07-31

    During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records. PMID:12891352

  7. Massively Parallel Assimilation of TOGA/TAO and Topex/Poseidon Measurements into a Quasi Isopycnal Ocean General Circulation Model Using an Ensemble Kalman Filter

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max

    1999-01-01

    A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.

  8. Constraints on the Lost City Hydrothermal System from borehole thermal data; 3-D models of heat flow and hydrothermal circulation in an oceanic core complex.

    NASA Astrophysics Data System (ADS)

    Titarenko, S.; McCaig, A. M.

    2014-12-01

    A perennial problem in near-ridge hydrothermal circulation is that the only directly measurable data to test models is often vent fluid temperature. Surface heat flow measurements may be available but without the underlying thermal structure it is not known if they are transient and affected by local hydrothermal flow, or conductive. The Atlantis Massif oceanic core complex at 30 °N on the mid-Atlantic Ridge, offers a unique opportunity to better constrain hydrothermal circulation models. The temperature profile in gabbroic rocks of IODP Hole 1309D was measured in IODPExpedition 340T, and found to be near-conductive, but with a slight inflexion at ~750 mbsf indicating downward advection of fluid above that level. The lack of deep convection is especially remarkable given that the long-lived Lost City Hydrothermal Field (LCHF) is located only 5km to the south. We have modelled hydrothermal circulation in the Massif using Comsol Multiphysics, comparing 2-D and 3-D topographic models and using temperature-dependent conductivity to give the best estimate of heatflow into the Massif. We can constrain maximum permeability in gabbro below 750 mbsf to 5e-17 m2. The thermal gradient in the upper part of the borehole can be matched with a permeability of 3e-14 m2 in a 750 m thick layer parallel to the surface of the massif, with upflow occurring in areas of high topography and downflow at the location of the borehole. However in 3-D the precise flow pattern is quite model dependent, and the thermal structure can be matched either by downflow centred on the borehole at lower permeability or centred a few hundred metres from the borehole at higher permeability. The borehole gradient is compatible with the longevity (>120 kyr) and outflow temperature (40-90 °C) of the LCHF either with a deep more permeable (1e-14 m2 to 1e-15 m2) domain beneath the vent site in 2-D or a permeable fault slot 500 to 1000m wide and parallel to the transform fault in 3-D. In both cases topography

  9. Linkages between Southern Ocean Cloud-Radiative Processes and the Large-Scale Southern Hemisphere Circulation, and Their Implications for Climate Model Projections

    NASA Astrophysics Data System (ADS)

    Grise, K. M.; Polvani, L. M.

    2014-12-01

    Southern Ocean cloud cover is strongly linked to extratropical weather systems, and thus to the position of the Southern Hemisphere (SH) storm track and the mid-latitude eddy-driven jet stream. Consequently, if the jet moves poleward (either as a result of natural variability or anthropogenic forcing), a notable change in cloud-radiative processes might be expected. In this study, we examine the cloud-radiative anomalies associated with interannual variability in the latitude of the SH mid-latitude eddy-driven jet, using two satellite data sets (ISCCP-FD and CERES) and 20 global climate models from Phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two distinct model types are found. In the first class of models ("type I models"), the total cloud fraction is reduced at SH mid-latitudes as the jet moves poleward, contributing to enhanced shortwave radiative warming. In the second class of models ("type II models"), this dynamically-induced cloud-radiative warming effect is largely absent. Type I and type II models have distinct deficiencies in their representation of observed Southern Ocean clouds, but comparison with the two satellite data sets indicates that the cloud-dynamics behavior of type II models is more realistic. Because the SH mid-latitude jet shifts poleward in response to CO2 forcing, the cloud-dynamics biases uncovered from interannual variability are directly relevant for climate change projections. In CMIP5 model experiments with abruptly quadrupled atmospheric CO2 concentrations, the global-mean surface temperature initially warms more in type I models, even though their equilibrium climate sensitivity is not significantly larger. In type I models, this larger initial warming is linked to the rapid adjustment of the circulation and clouds to CO2 forcing in the SH, where a nearly instantaneous poleward shift of the mid-latitude jet is accompanied by a reduction in the reflection of solar radiation by clouds. In type II models, the SH jet

  10. Ocean water cycle: its recent amplification and impact on ocean circulation

    NASA Astrophysics Data System (ADS)

    Vinogradova, Nadya

    2016-04-01

    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  11. Decadal-timescale changes of the Atlantic overturning circulation and climate in a coupled climate model with a hybrid-coordinate ocean component

    NASA Astrophysics Data System (ADS)

    Persechino, A.; Marsh, R.; Sinha, B.; Megann, A. P.; Blaker, A. T.; New, A. L.

    2012-08-01

    A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15-30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.

  12. Studies of Ocean Predictability at Decade to Century Time Scales Using a Global Ocean General Circulation Model in a Parallel Computing Environment

    SciTech Connect

    Barnett, T.P.

    1998-11-30

    The objectives of this report are to determine the structure of oceanic natural variability at time scales of decades to centuries, characterize the physical mechanisms responsible for the variability; determine the relative importance of heat, fresh water, and moment fluxes on the variability; determine the predictability of the variability on these times scales. (B204)

  13. On the Effect of Offshore Wind Parks on Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Ludewig, E.; Pohlmann, T.

    2012-04-01

    The interest of renewable energy sources grew during the last years and especially the increasing interest in wind energy induced a strong demounting of wind parks. Due to a less reduced wind speed over ocean which leads to a higher energy production than over land companies started to invest in offshore wind parks (OWPs). For example it is planned to built for Germany's energy supply around 8700 MW in North Sea and Baltic Sea (source:IWR) which is in accordance with more than 20 OWPs composed of 80 turbines. As known in literature such wind parks excite the so-called wake-effect which impacts the atmospheric turbulence; disturbed wind fields again affects the ocean circulation. To analyze the influence of OWPs on the ocean circulation we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). The simulations are driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines (courtesy of the Meteorological Institute of the University Hamburg, department Technical Meteorology, Numeric Modelling). In a sensitivity study we defined a virtual ocean of 60m depth with a flat bottom and a warmer and fresher surface layer according to North Sea's conditions. Main results show that already a small OWP of 12 turbines with a rotor diameter of 80 m, arrangement of turbines is based on wind park Alpha Ventus, lead to a complex change in the ocean circulation. Due to the wake-effect zones of upwelling and downwelling are formed already shortly after turning-on rotators. The dimension of these cells sizes around 30x30 kilometers with a vertical velocity in the order of 1μm/sec influencing the dynamic of an area being 160 times bigger than the wind park itself. The emerged vertical structure results in a change of sea level of some millimeters. This disturbance of the upper layer show a dipole structure across the main wind direction. Additional the upwelling and downwelling patterns

  14. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    PubMed

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  15. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950-2010 studied using a global atmosphere-ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Lammel, G.; Stemmler, I.

    2012-05-01

    PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3-7 chlorine atoms. The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces) are on the long term increasingly gaining importance over primary emissions. They are most important for congeners of medium hydrophobicity (5-6 chlorine atoms). Their levels are predicted to decrease slowest. Congeners' fractionation is characterized both geographically and temporally. It causes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in high latitudes in response to decreasing emissions. Delivery of contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances: trends of decline in abiotic environmental media do not only vary with latitude (slow in high latitudes), but do also show longitudinal gradients

  16. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950-2010 studied using a global atmosphere-ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Lammel, G.; Stemmler, I.

    2012-08-01

    PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3-7 chlorine atoms. The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces) are on the long term increasingly gaining importance over primary emissions. Secondary emissions are most important for the congeners with 5-6 chlorine atoms. Correspondingly, the levels of these congeners are predicted to decrease slowest. Changes in congener mixture composition (fractionation) are characterized both geographically and temporally. In high latitudes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in response to decreasing emissions are found. The delivery of the contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances. The trends of decline of organic contaminant levels in the abiotic environmental media do not only vary with latitude (slow in high latitudes), but do also show longitudinal gradients.

  17. Iceberg discharges of the last glacial period driven by oceanic circulation changes.

    PubMed

    Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa; Ritz, Catherine

    2013-10-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted detritus in the North Atlantic Ocean during the last glacial period interpreted as massive iceberg discharges from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence of the crucial role that the ocean plays both for past and future behavior of the cryosphere suggests a climatic control of these ice surges. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet-ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg discharge that closely agrees with ice-rafted debris records over the past 80 ka, indicating that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age.

  18. Assessment of Gravity Field and Steady State Ocean Circulation Explorer (GOCE) geoid model using GPS levelling over Sabah and Sarawak

    NASA Astrophysics Data System (ADS)

    Othman, A. H.; Omar, K. M.; Din, A. H. M.; Som, Z. A. M.; Yahaya, N. A. Z.; Pa'suya, M. F.

    2016-06-01

    The GOCE satellite mission has significantly contributed to various applications such as solid earth physics, oceanography and geodesy. Some substantial applications of geodesy are to improve the gravity field knowledge and the precise geoid modelling towards realising global height unification. This paper aims to evaluate GOCE geoid model based on the recent GOCE Global Geopotential Model (GGM), as well as EGM2008, using GPS levelling data over East Malaysia, i.e. Sabah and Sarawak. The satellite GGMs selected in this study are the GOCE GGM models which include GOCE04S, TIM_R5 and SPW_R4, and the EGM2008 model. To assess these models, the geoid heights from these GGMs are compared to the local geometric geoid height. The GGM geoid heights was derived using EGMLAB1 software and the geometric geoid height was computed by available GPS levelling information obtained from the Department Survey and Mapping Malaysia. Generally, the GOCE models performed better than EGM2008 over East Malaysia and the best fit GOCE model for this region is the TIM_R5 model. The TIM_R5 GOCE model demonstrated the lowest R.M.S. of ± 16.5 cm over Sarawak, comparatively. For further improvement, this model should be combined with the local gravity data for optimum geoid modelling over East Malaysia.

  19. Dynamical response of the oceanic circulation and temperature to interdecadal variability in the surface winds over the Indian Ocean

    SciTech Connect

    Reason, C.J.C.; Allan, R.J.; Lindesay, J.A.

    1996-01-01

    A global ocean general circulation model (OGCM) is used to investigate the sensitivity of the circulation and temperature fields to observed interdecadal variability in Indian Ocean winds for the austral summer. Focus is placed on the dynamical response of the model to the imposed winds. These comprise the observed winds from COADS for the region 46{degrees}S-30{degrees}N, 17{degrees}-152{degrees}E organized into four 21-yr epochs. During the first two epochs, the southern Indian anticyclone, African monsoonal flow, and associated trades were anomalously weak, whereas during the 1963-1983 period the reverse was true. The 1942-1962 epoch appears to be a transition. The model indicates an overall decrease (increase) in the transports of the southern Indian and tropical Indian gyres for the 1900-1920, 1921-1941 cases in dynamical response to the variability in the surface winds over the Indian Ocean. Sea surface temperature (SST) perturbations in the southern Indian Ocean have the same sign as the observed anomalies but are smaller in magnitude. The model SST patterns are restricted to the southern Indian Ocean midlatitudes, whereas observations indicate anomalies throughout the Indian Ocean basin. Analysis of the streamfunction anomalies induced by the epoch winds in the model indicates that the JEBAR term is important in modulating Indian gyre transports. While it is noted that thermodynamic effects not explicitly included in the model may contribute toward the observed SST variability in certain regions and that previous model studies have shown that SST in the southern Indian Ocean is sensitive to variations in the Indonesian throughflow and the Pacific trade winds, the results lend support to the hypothesis that changes in the basin-scale ocean circulation driven by the Indian Ocean epoch winds may contribute significantly toward the observed interdecadal variability in SST in the southern regions of this ocean. 29 refs., 17 figs.

  20. Simulation of optimal arctic routes using a numerical sea ice model based on an ice-coupled ocean circulation method

    NASA Astrophysics Data System (ADS)

    Nam, Jong-Ho; Park, Inha; Lee, Ho Jin; Kwon, Mi Ok; Choi, Kyungsik; Seo, Young-Kyo

    2013-06-01

    Ever since the Arctic region has opened its mysterious passage to mankind, continuous attempts to take advantage of its fastest route across the region has been made. The Arctic region is still covered by thick ice and thus finding a feasible navigating route is essential for an economical voyage. To find the optimal route, it is necessary to establish an efficient transit model that enables us to simulate every possible route in advance. In this work, an enhanced algorithm to determine the optimal route in the Arctic region is introduced. A transit model based on the simulated sea ice and environmental data numerically modeled in the Arctic is developed. By integrating the simulated data into a transit model, further applications such as route simulation, cost estimation or hindcast can be easily performed. An interactive simulation system that determines the optimal Arctic route using the transit model is developed. The simulation of optimal routes is carried out and the validity of the results is discussed.

  1. Circulation of tritium in the Pacific Ocean

    SciTech Connect

    Fine, R.A.; Reid, J.L.; Goete Ostlund, H.

    1981-01-01

    The input of bomb tritium into the high-latitude Northern Hemisphere waters has demonstrated the spread of a tracer in three dimensions in the North Pacific Ocean. Subsurface tritium maxima in middle and low latitudes clearly show the importance of lateral mixing (along isopycnals) in the upper waters. The tritium pattern as mapped on isopycnal surfaces puts definite time bounds on the exchange between the subtropical anticyclonic gyre of the North Pacific and both the subarctic cyclonic gyre and the system of zonal flows in the equatorial region. The penetration of bomb tritium to depths below 1000 m in the western North Pacific Ocean shows that these waters have been ventilated at least partially in the past 17 years of the post-bomb era. From the tritium pattern the upper waters of the North Pacific can be divided into three regions: a mixed layer that exchanges rapidly with the atmosphere, a laterally ventilated intermediate region (between the mixed layer and at most the winter-outcrop isopycnal) that exchanges on decadal time scales with the atmosphere, and a deeper layer penetrated by vertical diffusion alone, with a longer atmospheric exchange time scale. The greatest percentage of the tritium inventory of the North Pacific is in the intermediate region. This indicates that such lateral ventilations, which take place from all high-latitude regions, are a major source of penetration for atmospheric constituents into the oceans on decadal time scales.

  2. Greenland Ice Sheet influence on Last Interglacial climate: global sensitivity studies performed with an atmosphere-ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Madlene; Lohmann, Gerrit

    2016-06-01

    During the Last Interglacial (LIG, ˜130-115 kiloyears (kyr) before present (BP)), the northern high latitudes were characterized by higher temperatures than those of the late Holocene and a lower Greenland Ice Sheet (GIS). However, the impact of a reduced GIS on the global climate has not yet been well constrained. In this study, we quantify the contribution of the GIS to LIG warmth by performing various sensitivity studies based on equilibrium simulations, employing the Community Earth System Models (COSMOS), with a focus on height and extent of the GIS. We present the first study on the effects of a reduction in the GIS on the surface temperature (TS) on a global scale and separate the contribution of astronomical forcing and changes in GIS to LIG warmth. The strong Northern Hemisphere summer warming of approximately 2 °C (with respect to pre-industrial) is mainly caused by increased summer insolation. Reducing the height by ˜ 1300 m and the extent of the GIS does not have a strong influence during summer, leading to an additional global warming of only +0.24 °C compared to the purely insolation-driven LIG. The effect of a reduction in the GIS is, however, strongest during local winter, with up to +5 °C regional warming and with an increase in global average temperature of +0.48 °C. In order to evaluate the performance of our LIG simulations, we additionally compare the simulated TS anomalies with marine and terrestrial proxy-based LIG temperature anomalies derived from three different proxy data compilations. Our model results are in good agreement with proxy records with respect to the warming pattern but underestimate the magnitude of temperature change when compared to reconstructions, suggesting a potential misinterpretation of the proxy records or deficits in our model. However, we are able to partly reduce the mismatch between model and data by additionally taking into account the potential seasonal bias of the proxy record and/or the uncertainties

  3. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model - article no. D24211

    SciTech Connect

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-15

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India, southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Meteorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest of the world) into the INDOEX domain.

  4. Long-term trends of continental-scale PCB patterns studied using a global atmosphere-ocean general circulation model.

    PubMed

    Stemmler, Irene; Lammel, Gerhard

    2012-07-01

    Continental-scale distribution and inter-continental transport of four polychlorinated biphenyl (PCB) congeners (28, 101, 153, 180) from 1950 to 2010 were studied using the global multicompartment chemistry transport model MPI-MCTM. Following identical primary emissions for all PCB congeners into air, most of the burden is stored in terrestrial (soil and vegetation) compartments. Thereby, PCB-28, PCB-101 and PCB-153 show a shift of the soil burden maxima from source to remote regions. This shift is downwind with regard to the westerlies for Eurasia and upwind for North America and more prominent for the lighter PCBs than for PCB-153 or PCB-180. In meridional direction, all congeners' distributions underwent a northward migration in Eurasia and North America since the 1950s. Inter-continental transport from Eurasian sources accounts largely for contamination of Alaska and British Columbia and determines the migration of the PCB distribution in soil in North America. Trans-Pacific transport occurs mainly in the gas phase in boreal winter (December-January-February) at 3-4 km altitude and is on a multi-year time scale strongly linked to the atmospheric pressure systems over the Pacific. Inter-continental transport of the lighter, more volatile PCBs is more efficient than for the heavier PCBs.

  5. Correlated signals and causal transport in ocean circulation

    NASA Astrophysics Data System (ADS)

    Jeffress, Stephen

    2014-05-01

    This paper presents a framework for interpreting the time-lagged correlation of oceanographic data in terms of physical transport mechanisms. Previous studies have inferred aspects of ocean circulation by correlating fluctuations in temperature and salinity measurements at distant stations. Typically, the time-lag of greatest correlation is interpreted as an advective transit time and hence the advective speed of the current. In this paper we relate correlation functions directly to the underlying equations of fluid transport. This is accomplished by expressing the correlation functions in terms of the Green's function of the transport equation. Two types of correlation functions are distinguished: field-forcing correlation and field-field correlation. Their unique relationships to the Green's function are illustrated in two idealized models of geophysical transport: a leaky pipe model and an advective-diffusive model. Both models show that the field-forcing correlation function converges to the Green's function as the characteristic (time or length) scale of forcing autocorrelation decreases. The leaky pipe model provides an explanation for why advective speeds inferred from time-lagged correlations are often less than the speed of the main current. The advective-diffusive model reveals a structural bias in the field-field correlation function when used to estimate transit times.

  6. Determination of the ocean circulation using Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Tapley, B. D.; Shum, C. K.

    1990-01-01

    A spherical harmonic model of the sea surface topography complete to degree and order 10 and a model of the earth's geopotential field complete to degree and order 50 have been obtained in a simultaneous solution using Geosat altimeter data and tracking data from 14 different satellites. The sea surface topography model compares well with oceanographic models computed using hydrographic data and ship drift data. Currently, errors in the estimated gravity field model limit the determination of the spherical harmonic coefficients of the general ocean circulation to degrees 10 and lower, corresponding to a minimum wavelength of 4000 km. Error analysis indicates that the correlation between the geoid and the sea surface topography model is less than 0.2, indicating good separation of the geoid and the sea surface topography at wavelengths of 4000 km or longer. Estimates of the scale factor for the significant wave height (H1/3), which is used to compute the electromagnetic bias correction and the bias for the Geosat altimeter, are obtained. The estimate of the H1/3 correction is 3.6 + or - 1.5 percent, and the height bias estimate is zero.

  7. Tracer transport in cold-core rings pinched off from the Kuroshio Extension in an eddy-resolving ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Tsujino, H.; Sakamoto, K.

    2013-10-01

    Using an eddy-resolving ocean general circulation model, we examine the cold-core rings pinched off from the Kuroshio Extension (KE), focusing on their tracer transport. The origin of the tracers in the rings and how they are trapped are directly investigated by releasing two passive tracers, corresponding to the KE water and the water in the Mixed-Water Region (MWR) to the north of the KE. The cold-core rings carry the tracer in the MWR wrapped by the KE water from the surface to the bottom at the pinch-off. In and above the upper thermocline (σθ < 26.4), these tracers are trapped in the ring and move along the ring until the rings rejoin the Kuroshio. Even in the lower thermocline (σθ ˜ 26.4-27.2), a substantial part of the tracers moves along the ring, while gradual leakage occurs. Vorticity balance in the rings is consistent with the passive tracer experiment, indicating that water in the upper thermocline moves along the rings, while the synchronous movement in and below the lower thermocline is severely contaminated by baroclinic Rossby waves. These direct estimations are compared with the indirect diagnoses using PV, the ratio of drift velocity of ring to its tangential velocity (nonlinear parameter), and the largest closed contour of stream function in the comoving frame of the ring. These indirect diagnoses are consistent with the direct estimation in the upper thermocline, but are not good indicators below the lower thermocline. The cause of their insufficient performance is discussed.

  8. Protactinium-thorium ratio as a proxy for ocean circulation

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-12-01

    The Atlantic meridional overturning circulation (AMOC) transports water and heat over long distances in the Atlantic Ocean and is believed to have an important effect on Earth's climate. Knowing how strong the AMOC was in the past is essential to understanding past climate. One proxy researchers have used to assess the past strength of the AMOC is the sedimentary protactinium- thorium ratio (231Pa/230Th). Both 231Pa and 230Th are produced through decay of uranium at a constant rate in the ocean water column, but 230Th does not last long enough in the water to be transported away from the location where it was produced, while 231Pa has a longer residence time in the water. Therefore, sedimentary 231Pa/230Th ratios could provide information about the strength of past ocean circulation.

  9. Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission

    NASA Technical Reports Server (NTRS)

    Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.

    2011-01-01

    Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.

  10. The effect of low ancient greenhouse climate temperature gradients on the ocean's overturning circulation

    NASA Astrophysics Data System (ADS)

    Sijp, Willem P.; England, Matthew H.

    2016-02-01

    We examine whether the reduced meridional temperature gradients of past greenhouse climates might have reduced oceanic overturning, leading to a more quiescent subsurface ocean. A substantial reduction of the pole-to-Equator temperature difference is achieved in a coupled climate model via an altered radiative balance in the atmosphere. Contrary to expectations, we find that the meridional overturning circulation and deep ocean kinetic energy remain relatively unaffected. Reducing the wind strength also has remarkably little effect on the overturning. Instead, overturning strength depends on deep ocean density gradients, which remain relatively unaffected by the surface changes, despite an overall decrease in ocean density. Ocean poleward heat transport is significantly reduced only in the Northern Hemisphere, as now the circulation operates across a reduced temperature gradient, suggesting a sensitivity of Northern Hemisphere heat transport in greenhouse climates to the overturning circulation. These results indicate that climate models of the greenhouse climate during the Cretaceous and early Paleogene may yield a reasonable overturning circulation, despite failing to fully reproduce the extremely reduced temperature gradients of those time periods.

  11. Circulation in Vilkitsky Canyon in the eastern Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Janout, Markus; Hölemann, Jens

    2016-04-01

    The eastern Arctic Ocean is characterized by steep continental slopes and vast shallow shelf seas that receive a large amount of riverine freshwater from some of the largest rivers on earth. The northwestern Laptev Sea is of particular interest, as it is a freshwater transport pathway for a swift surface-intensified current from the Kara Sea toward the Arctic Basin, as was recently highlighted by high-resolution model studies. The region features complex bathymetry including a narrow strait and a large submarine canyon, strong tides, polynyas and severe sea ice conditions throughout much of the year. A year-long mooring record as well as detailed hydrographic shipboard measurements resulted from summer expeditions to the area in 2013 and 2014, and now provide a detailed picture of the region's water properties and circulation. The hydrography is characterized by riverine Kara Sea freshwater near the surface in the southern part of the canyon, while warmer (~0°C) saline Atlantic-derived waters dominate throughout the canyon at depths >150m. Cold shelf-modified waters near the freezing point are found along the canyon edges. The mean flow at the 300 m-deep mooring location near the southern edge of the canyon is swift (30 cm/s) and oriented eastward near the surface as suggested by numerical models, while the deeper flow follows the canyon topography towards the north-east. Wind-driven deviations from the mean flow coincide with sudden changes in temperature and salinity. This study characterizes the general circulation in Vilkitsky Canyon and investigates its potential as a conduit for upwelling of Atlantic-derived waters from the Arctic Basin to the Laptev Sea shelf.

  12. Uncertainty quantification for large-scale ocean circulation predictions.

    SciTech Connect

    Safta, Cosmin; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik

    2010-09-01

    Uncertainty quantificatio in climate models is challenged by the sparsity of the available climate data due to the high computational cost of the model runs. Another feature that prevents classical uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data with respect to certain parameters. A typical example is the Meridional Overturning Circulation in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO{sub 2} forcing. We develop a methodology that performs uncertainty quantificatio in the presence of limited data that have discontinuous character. Our approach is two-fold. First we detect the discontinuity location with a Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve location in presence of arbitrarily distributed input parameter values. Furthermore, we developed a spectral approach that relies on Polynomial Chaos (PC) expansions on each sides of the discontinuity curve leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification and propagation. The methodology is tested on synthetic examples of discontinuous data with adjustable sharpness and structure.

  13. An Atmospheric General Circulation Model with Chemistry for the CRAY T3E: Design, Performance Optimization and Coupling to an Ocean Model

    NASA Technical Reports Server (NTRS)

    Farrara, John D.; Drummond, Leroy A.; Mechoso, Carlos R.; Spahr, Joseph A.

    1998-01-01

    The design, implementation and performance optimization on the CRAY T3E of an atmospheric general circulation model (AGCM) which includes the transport of, and chemical reactions among, an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among processors through load redistribution schemes. Recent optimization efforts have centered on single-node optimization. Strategies employed include loop unrolling, both manually and through the compiler, the use of an optimized assembler-code library for special function calls, and restructuring of parts of the code to improve data locality. Data exchanges and synchronizations involved in coupling different data-distributed models can account for a significant fraction of the running time. Therefore, the required scattering and gathering of data must be optimized. In systems such as the T3E, there is much more aggregate bandwidth in the total system than in any particular processor. This suggests a distributed design. The design and implementation of a such distributed 'Data Broker' as a means to efficiently couple the components of our climate system model is described.

  14. The application of Jacobian-free Newton-Krylov methods to reduce the spin-up time of ocean general circulation models

    SciTech Connect

    Bernsen, Erik; Dijkstra, Henk A.; Thies, Jonas; Wubs, Fred W.

    2010-10-20

    In present-day forward time stepping ocean-climate models, capturing both the wind-driven and thermohaline components, a substantial amount of CPU time is needed in a so-called spin-up simulation to determine an equilibrium solution. In this paper, we present methodology based on Jacobian-Free Newton-Krylov methods to reduce the computational time for such a spin-up problem. We apply the method to an idealized configuration of a state-of-the-art ocean model, the Modular Ocean Model version 4 (MOM4). It is shown that a typical speed-up of a factor 10-25 with respect to the original MOM4 code can be achieved and that this speed-up increases with increasing horizontal resolution.

  15. Assimilation impacts on Arctic Ocean circulation, heat and freshwater budgets

    NASA Astrophysics Data System (ADS)

    Zuo, Hao; Mugford, Ruth I.; Haines, Keith; Smith, Gregory C.

    We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice-ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987-1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997-2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.

  16. Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Xidong; Wang, Chunzai; Han, Guijun; Li, Wei; Wu, Xinrong

    2014-12-01

    In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000-2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.

  17. Numerics-Characteristics-Asymptotics: A Case Study from Large Scale Ocean Circulation

    ERIC Educational Resources Information Center

    Hodnett, P. F.; Courtney, C.

    2007-01-01

    This paper uses a partial differential equation which occurs in a reduced model of large scale circulation in an ocean basin as an educational vehicle through which to demonstrate the usefulness of a set of mathematical techniques in analysing the equation. A parameter occurring in the equation does in reality vary from very small through…

  18. The Role of Paleogeography and CO2 in Late Cretaceous Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Tabor, C. R.; Poulsen, C. J.

    2015-12-01

    Through the Late Cretaceous (100-66 Ma), proxy reconstructions suggest a global cooling trend in concert with changes in ocean circulation. Uncertainty remains about the cause, scale, and importance of these changes in ocean circulation. Here, we explore the role of paleogeography and CO2 in Late Cretaceous ocean circulation changes using NCAR's CESM model, which comprises CAM4, POP2, CICE4, and CLM4 with dynamic vegetation. Our simulations use detailed paleogeographic reconstructions of the Campanian (83-72 Ma) and Maastrichtian (72-66 Ma) with appropriately lowered solar constants and either 560 or 1120 ppm CO2. Preliminary model results do not show large differences in global-scale ocean circulation due to changes in paleogeography; both Campanian and Maastrichtian paleogeographies only form deep water in the Southern Ocean under 1120 ppm CO2. However, these relatively small changes in paleogeography do produce regional differences in ocean temperature of several degrees Celsius, which highlight the need for good sample spatial coverage when making claims about global climate change through the Late Cretaceous. In contrast, simulating a reduction in CO2 from 1120 to 560 ppm with Maastrichtian paleogeography triggers the formation of deep water in the North Pacific and increases northward ocean heat transport. As a result, the North Pacific warms by ~2°C despite lower CO2 while the Southern Ocean cools by ~3°C. Globally, neither changes in geography nor a halving of CO2 can fully explain the more than 4°C cooling proposed by proxy reconstructions across the Late Cretaceous.

  19. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin

    2016-04-01

    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.

  20. Bipolar Atlantic deepwater circulation in the middle-late Eocene: Effects of Southern Ocean gateway openings

    NASA Astrophysics Data System (ADS)

    Borrelli, Chiara; Cramer, Benjamin S.; Katz, Miriam E.

    2014-04-01

    We present evidence for Antarctic Circumpolar Current (ACC)-like effects on Atlantic deepwater circulation beginning in the late-middle Eocene. Modern ocean circulation is characterized by a thermal differentiation between Southern Ocean and North Atlantic deepwater formation regions. In order to better constrain the timing and nature of the initial thermal differentiation between Northern Component Water (NCW) and Southern Component Water (SCW), we analyze benthic foraminiferal stable isotope (δ18Obf and δ13Cbf) records from Ocean Drilling Program Site 1053 (upper deep water, western North Atlantic). Our data, compared with published records and interpreted in the context of ocean circulation models, indicate that progressive opening of Southern Ocean gateways and initiation of a circum-Antarctic current caused a transition to a modern-like deep ocean circulation characterized by thermal differentiation between SCW and NCW beginning ~38.5 Ma, in the initial stages of Drake Passage opening. In addition, the relatively low δ18Obf values recorded at Site 1053 show that the cooling trend of the middle-late Eocene was not global, because it was not recorded in the North Atlantic. The timing of thermal differentiation shows that NCW contributed to ocean circulation by the late-middle Eocene, ~1-4 Myr earlier than previously thought. We propose that early NCW originated in the Labrador Sea, based on tectonic reconstructions and changes in foraminiferal assemblages in this basin. Finally, we link further development of meridional isotopic gradients in the Atlantic and Pacific in the late Eocene with the Tasman Gateway deepening (~34 Ma) and the consequent development of a circumpolar proto-ACC.

  1. Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input

    NASA Astrophysics Data System (ADS)

    Ruvalcaba Baroni, I.; Topper, R. P. M.; van Helmond, N. A. G. M.; Brinkhuis, H.; Slomp, C. P.

    2014-02-01

    The geological record provides evidence for the periodic occurrence of water column anoxia and formation of organic-rich deposits in the North Atlantic Ocean during the mid-Cretaceous (hereafter called the proto-North Atlantic). Both changes in primary productivity and oceanic circulation likely played a role in the development of the low-oxygen conditions. Several studies suggest that an increased input of phosphorus from land initiated oceanic anoxic events (OAEs). Other proposed mechanisms invoke a vigorous upwelling system and an ocean circulation pattern that acted as a trap for nutrients from the Pacific Ocean. Here, we use a detailed biogeochemical box model for the proto-North Atlantic to analyse under what conditions anoxia could have developed during OAE2 (94 Ma). The model explicitly describes the coupled water, carbon, oxygen and phosphorus cycles for the deep basin and continental shelves. In our simulations, we assume the vigorous water circulation from a recent regional ocean model study. Our model results for pre-OAE2 and OAE2 conditions are compared to sediment records of organic carbon and proxies for photic zone euxinia and bottom water redox conditions (e.g. isorenieratane, carbon/phosphorus ratios). Our results show that a strongly elevated input of phosphorus from rivers and the Pacific Ocean relative to pre-OAE2 conditions is a requirement for the widespread development of low oxygen in the proto-North Atlantic during OAE2. Moreover, anoxia in the proto-North Atlantic is shown to be greatly influenced by the oxygen concentration of Pacific bottom waters. In our model, primary productivity increased significantly upon the transition from pre-OAE2 to OAE2 conditions. Our model captures the regional trends in anoxia as deduced from observations, with euxinia spreading to the northern and eastern shelves but with the most intense euxinia occurring along the southern coast. However, anoxia in the central deep basin is difficult to achieve in the

  2. Changes in North Atlantic nitrogen fixation controlled by ocean circulation.

    PubMed

    Straub, Marietta; Sigman, Daniel M; Ren, Haojia; Martínez-García, Alfredo; Meckler, A Nele; Hain, Mathis P; Haug, Gerald H

    2013-09-12

    In the ocean, the chemical forms of nitrogen that are readily available for biological use (known collectively as 'fixed' nitrogen) fuel the global phytoplankton productivity that exports carbon to the deep ocean. Accordingly, variation in the oceanic fixed nitrogen reservoir has been proposed as a cause of glacial-interglacial changes in atmospheric carbon dioxide concentration. Marine nitrogen fixation, which produces most of the ocean's fixed nitrogen, is thought to be affected by multiple factors, including ocean temperature and the availability of iron and phosphorus. Here we reconstruct changes in North Atlantic nitrogen fixation over the past 160,000 years from the shell-bound nitrogen isotope ratio ((15)N/(14)N) of planktonic foraminifera in Caribbean Sea sediments. The observed changes cannot be explained by reconstructed changes in temperature, the supply of (iron-bearing) dust or water column denitrification. We identify a strong, roughly 23,000-year cycle in nitrogen fixation and suggest that it is a response to orbitally driven changes in equatorial Atlantic upwelling, which imports 'excess' phosphorus (phosphorus in stoichiometric excess of fixed nitrogen) into the tropical North Atlantic surface. In addition, we find that nitrogen fixation was reduced during glacial stages 6 and 4, when North Atlantic Deep Water had shoaled to become glacial North Atlantic intermediate water, which isolated the Atlantic thermocline from excess phosphorus-rich mid-depth waters that today enter from the Southern Ocean. Although modern studies have yielded diverse views of the controls on nitrogen fixation, our palaeobiogeochemical data suggest that excess phosphorus is the master variable in the North Atlantic Ocean and indicate that the variations in its supply over the most recent glacial cycle were dominated by the response of regional ocean circulation to the orbital cycles.

  3. Impact of atmospheric feedbacks on the stability of the thermohaline circulation in the Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Cimatoribus, Andrea; Drijfhout, Sybren; Dijkstra, Henk

    2010-05-01

    How do atmospheric feedbacks affect the stability of thermohaline circulation in the Atlantic ocean? This question has been asked several times in literature during the last decade, but no final answer is widely accepted. Idealised and simpler general circulation models apparently contradict the results of state of the art computations. While the former ones hint at the existence of a stable collapsed state and multiple equilibria, the latter do not show such behaviour. Understanding the relative importance of the salt advection feedback in the ocean and of the response of the atmosphere to a thermohaline circulation depression is a crucial point in this work. A combined approach is developed to start answering these questions, focusing on the physical mechanisms that may change the stability properties of density driven circulation. An atmosphere/ocean/sea-ice coupled general circulation model (Speedo/CLIO) is used in two different setups. First, the statistical steady state of the model is recorded. In a second experiment, a collapse of thermohaline circulation is induced with a freshwater pulse in the north Atlantic. Thermohaline circulation does not recover even after the release of the pulse, and a second steady state with no thermohaline circulation is attained. Using these two runs, the anomalies can be computed as linear regressions on the local value of sea surface temperature and on northern hemisphere average sea surface temperature separately. With this approach, both natural variability of atmospheric forcing due to local temperature anomalies and large scale changes due to the collapse of thermohaline circulation can be represented. Changes in freshwater and heat fluxes are the most significant. The northern-southern Atlantic temperature dipole and the southward shift of intertropical convergence zone, believed to be the main atmospheric signals in response to a collapse of thermohaline circulation, are evident in the second experiment and well

  4. Impact of the Atlantic Meridional Overturning Circulation on Ocean Heat Uptake and Transient Climate Change

    NASA Astrophysics Data System (ADS)

    Kostov, Y. K.; Armour, K.; Marshall, J.

    2013-12-01

    The transient adjustment of the forced climate system towards equilibrium is characterized by two fundamental timescales: a 'fast' response of the atmosphere and the near-surface component of the climate system (the ocean's mixed layer and the land domain), and a 'slow' response of the deeper ocean. Two-layer energy balance models (EBMs) represent these inherent timescales very well and can be successfully calibrated to reproduce the output of coupled atmosphere-ocean general circulation models (AOGCMs). Using an idealized EBM framework, we analyze ocean heat uptake in AOGCMs forced with an abrupt greenhouse perturbation. We consider a set of models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). By fitting a two-layer EBM, we estimate the effective heat capacity of the ocean and the rate at which temperature anomalies propagate downward to intermediate depths, for each AOGCM. We further show that these EBM parameters can be related to physical properties of the CMIP5 transient simulations, such as the globally averaged depth scale of heat penetration below the mixed layer. Various dynamical processes represented in complex AOGCMs contribute to ocean heat uptake. Here we focus on the role of the Atlantic Meridional Overturning Circulation (AMOC) and its global imprint on the rate of surface warming. We show that the upper AMOC cell plays an essential role in setting both the effective thermal capacity of the world ocean and the rate of vertical heat transport. The strength and the downward extent of the AMOC differ vastly across the CMIP5 ensemble, and this provides a major source of intermodel variability in ocean heat uptake. In turn, ocean heat storage affects the spread of transient sea surface temperature (SST) responses. Models with a deeper and stronger AMOC take up more heat below the mixed layer and reach a smaller fraction of the equilibrium SST response on multi-decadal timescales.

  5. Stratification and Circulation of the Glacial Ocean: Reconstructing Watermass Geometry and Circulation with Nd Isotopes

    NASA Astrophysics Data System (ADS)

    Piotrowski, A. M.; Goldstein, S. L.; Hemming, S. R.

    2004-12-01

    One of the most important debates in paleoclimate research is the link between ocean circulation and climate change. On glacial-interglacial timescales, global climate is driven by Milankovich orbital cycles, though the resulting insolation variations are small and require amplifying mechanisms. Changes in the strength of global "conveyor-belt" ocean circulation is one possible amplifying mechanism, and abrupt switches between circulation modes may have triggered rapid climate changes. Understanding the ocean-climate link has been difficult because nutrient-based proxies of ocean circulation disagree with each other. During the last glacial period, benthic foraminiferal carbon isotopes suggest substantially weaker North Atlantic Deep Water (NADW) formation and export, while benthic Cd/Ca indicate a strong flow of North Atlantic -sourced water at intermediate depths. Non-circulatory effects (including fractionation during calcite dissolution, changes in global carbon budget, air-sea gas equilibration, and porewater effects) are known to overprint these proxies, likely causing this discrepancy. Neodymium isotopes can resolve this disagreement because it does not share the same sources of error as nutrient-based proxies. We report Nd isotopes measured on Fe-Mn leaches from sites located throughout the South Atlantic. These sites range in depth from 2000 - 5000 mbsl, allowing a three-dimensional perspective of South Atlantic watermass geometry. The leachates have marine Sr isotopic composition. Coretop samples have Nd isotopic compositions which match overlying bottom waters. This coretop calibration is consistent with known vertical and horizontal geometry of NADW and Antarctic Bottom Water. Samples from the last glacial maximum show a coherent glacial-interglacial pattern of circulation change which is most simply interpreted as indicating a reduction in the amount of NADW reaching the South Atlantic. The relative contribution of NADW to the glacial South Atlantic

  6. Iceberg discharges and oceanic circulation changes during glacial abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Alvarez-Solas, Jorge; Robinson, Alexander; Banderas, Rubén; Montoya, Marisa

    2015-04-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted debris in the North Atlantic Ocean during the last glacial period. These are interpreted as massive iceberg discharges mainly from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence points to an active role of the oceanic circulation. Here we will present simulations of the last glacial period carried out with a hybrid ice sheet-ice shelf model. Two mechanisms producing iceberg discharges are compared. First, we reproduce the classic binge-purge by which the iceberg surges are produced thanks to the existence of an internal thermo-mechanical feedback that allows the ice sheet to behave under an oscillatory regime. Second, our ice-sheet model is forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. In this case, the model generates a time series of iceberg calving that agrees with ice-rafted debris records over the past 80 ka. We compare the two theories and discuss their advantages and weaknesses in terms of both the robustness of the physics on which they are based and their comparison with proxies. This comparison highlights the importance of considering past oceanic circulation changes in order to understand the ice-sheet dynamics. However, the ultimate processes determining abrupt changes in the Atlantic Meridional Overturning Circulation (AMOC) remain elusive. Therefore we will also analyze several proposed mechanisms that aims to explain such AMOC reorganizations, focusing on those that do not require freshwater flux forcing.

  7. Studies of Current Circulation at Ocean Waste Disposal Sites

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Henry, R.

    1976-01-01

    The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.

  8. Studies of Current Circulation at Ocean Waste Disposal Sites. [Delaware

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Henry, R.

    1975-01-01

    The author has identified the following significant results. Circulation processes at the acid waste disposal site are highly event-dominated, with the majority of the water transport occurring during strong northeasters. There is a mean flow to the south alongshore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months, the ocean stratifies with warm water over cold water. A distinct thermocline was observed with expendable bathythermographs during all summer cruises at depths ranging from 10 to 21 meters. During stratified conditions, the near-bottom drogues showed very little movements. The duPont waste plume was observed in LANDSAT satellite imagery during dump up to 54 hours after dump.

  9. Mesoscale ocean dynamics modeling

    SciTech Connect

    mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P.; Levermore, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.

  10. Anomalous Walker circulations associated with two flavors of the Indian Ocean Dipole

    NASA Astrophysics Data System (ADS)

    Tozuka, Tomoki; Endo, Satoru; Yamagata, Toshio

    2016-05-01

    The Walker circulation is the key component of the atmospheric zonal circulation in the tropics. In this study, it is shown that anomalous Walker circulations associated with two types of the Indian Ocean Dipole (IOD) are remarkably different. During a positive canonical IOD with negative (positive) sea surface temperature (SST) anomalies in the eastern (central to western) tropical Indian Ocean, a single-cell anomalous Walker circulation forms over the Indian Ocean. On the other hand, a double-cell anomalous Walker circulation with a rising branch in the central Indian Ocean is formed during a positive IOD Modoki, which is associated with positive (negative) SST anomalies over the central (eastern and western) tropical Indian Ocean. The above anomalous Walker circulations are found to develop as part of positive ocean-atmosphere feedback. Furthermore, the above difference in the anomalous Walker circulation may affect the biennial tendency of the IOD.

  11. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning

    NASA Astrophysics Data System (ADS)

    Schmittner, Andreas; Chiang, John C. H.; Hemming, Sidney R.

    The ocean's meridional overturning circulation (MOC) is a key factor in climate change. The Atlantic MOC, in particular, is believed to play an active role in the regional and global climate variability. It is associated with the recent debate on rapid climate change, the Atlantic Multi-Decadal Oscillation (AMO), global warming, and Atlantic hurricanes. This is the first book to deal with all aspects of the ocean's large-scale meridional overturning circulation, and is a coherent presentation, from a mechanistic point of view, of our current understanding of paleo, present-day, and future variability and change. It presents the current state of the science by bringing together the world's leading experts in physical, chemical, and biological oceanography, marine geology, geochemistry, paleoceanography, and climate modeling. A mix of overview and research papers makes this volume suitable not only for experts in the field, but also for students and anyone interested in climate change and the oceans.

  12. Bering Sea Porewaters and Late Glacial Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Mix, A. C.; McKay, J. L.; Ross, A.; Okazaki, Y.; Scientific Team of IODP Expedition 323

    2011-12-01

    The combination of high-resolution porewater d18O and chlorinity, benthic and planktonic foraminiferal d18O in IODP Sites U1339 (1870 m depth) and U1344 (3172 m depth) constrain late glacial circulation in the Bering Sea. During the Last Glacial Interval, the water column below 1800 m approached the freezing point, and upper ocean stratification was lower than today. Both scenarios point to likely local ventilation, associated with brine formation, during glacial time. An additional deep ventilation event may have occurred during late Holocene (Neoglacial?) time, evidenced by relatively low d18O and high chlorinity porewaters. Intervals of high biological productivity appear to be associated with relatively high upper-ocean stratification, perhaps implying a role for nutrients or micronutrients sourced from the continents.

  13. circulation of the upper layer of the south Indian Ocean

    NASA Astrophysics Data System (ADS)

    de Ruijter, Will; Lambert, Erwin; Aguiar Gonzalez, Borja

    2016-04-01

    The south IO is characterized by high variability and mesoscale eddies. After separation the East Madagascar Current forms dipoles that continue to the south-west and connect remote (eco)systems. The Mozambique Current breaks up in eddies that move southward. They connect upstream to the Indonesian Through Flow and downstream to the Agulhas system. East of Madagascar the 'South Indian Ocean Counter Current' (SICC) flows to the east into the Leeuwin Current system while submerged eddies form a return flow to the west. Hypotheses on the coherence of these flows range from local scale frontal systems to large scale connection via the subtropical super gyre. We aim to present a coherent large-scale picture of the upper south Indian Ocean circulation, the role of the eddies as connectors and drivers of vertical exchanges that may control observed large-scale phenomena like the plankton blooms east of Madagascar.

  14. The shallow meridional overturning circulation in the northern Indian Ocean and its interannual variability

    NASA Astrophysics Data System (ADS)

    Hu, Ruijin; Liu, Qinyu; Wang, Qi; Godfrey, J. Stuart; Meng, Xiangfeng

    2005-03-01

    The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987 1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately related to that of the surface wind stress. Several indices are proposed to describe the anomaly of this circulation associated with the cross-equatorial part.

  15. On the mechanisms in a tropical ocean-global atmosphere coupled general circulation model. Part I: mean state and the seasonal cycle

    NASA Astrophysics Data System (ADS)

    Vintzileos, A.; Delecluse, P.; Sadourny, R.

    The mechanisms responsible for the mean state and the seasonal and interannual variations of the coupled tropical Pacific-global atmosphere system are investigated by analyzing a thirty year simulation, where the LMD global atmospheric model and the LODYC tropical Pacific model are coupled using the delocalized physics method. No flux correction is needed over the tropical region. The coupled model reaches its regime state roughly after one year of integration in spite of the fact that the ocean is initialized from rest. Departures from the mean state are characterized by oscillations with dominant periodicites at annual, biennial and quadriennial time scales. In our model, equatorial sea surface temperature and wind stress fluctuations evolved in phase. In the Central Pacific during boreal autumn, the sea surface temperature is cold, the wind stress is strong, and the Inter Tropical Convergence Zone (ITCZ) is shifted northwards. The northward shift of the ITCZ enhances atmospheric and oceanic subsidence between the equator and the latitude of organized convention. In turn, the stronger oceanic subsidence reinforces equatorward convergence of water masses at the thermocline depth which, being not balanced by equatorial upwelling, deepens the equatorial thermocline. An equivalent view is that the deepening of the thermocline proceeds from the weakening of the meridional draining of near-surface equatorial waters. The inverse picture prevails during spring, when the equatorial sea surface temperatures are warm. Thus temperature anomalies tend to appear at the thermocline level, in phase opposition to the surface conditions. These subsurface temperature fluctuations propagate from the Central Pacific eastwards along the thermocline; when reaching the surface in the Eastern Pacific, they trigger the reversal of sea surface temperature anomalies. The whole oscillation is synchronized by the apparent meridional motion of the sun, through the seasonal oscillation of the

  16. Seasonal Characteristics of Circulation in the Southeastern Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Qu, T.; Meyers, G.

    2004-12-01

    The circulation in the southeastern tropical Indian Ocean is studied using historical temperature and salinity data. A southward shift of the subtropical gyre at increasing depth dominates the structure of the annual mean circulation. Near the southern Indonesian coast, the westward South Equatorial Current (SEC) is at the sea surface and strongest near 10°-11°S, reflecting strong influence of the Indonesian Throughflow (ITF). In latitudes 13°-25°S the SEC is a subsurface flow and its velocity core deepens toward the south, falling below 500 m at 25°S. The Eastern Gyral Current (EGC) is a surface flow overlying the SEC, associated with the meridional gradients of near-surface temperature and salinity. The ITF supplies water to the SEC mainly in the upper 400 m, and below that depth the flow is reversed along the coast of Sumatra and Java. Monsoon-winds strongly force the annual variation in circulation. Dynamic height at the sea surface has a maximum amplitude at 10°-13°S, and the maximum at deeper levels is located further south. Annual variation is also strong in the coastal wave guides, but is mainly confined to the near-surface layer. Although the South Java Current at the sea surface is not well resolved in the present dataset, semiannual variation is markedly evident at depth and tends to extend much deeper than annual variation along the coast of Sumatra and Java.

  17. Impact of oceanic circulation changes on the CO2 concentration during past interglacials

    NASA Astrophysics Data System (ADS)

    Bouttes, Nathaelle; Swingedouw, Didier; Crosta, Xavier; Fernanda Sanchez Goñi, Maria; Roche, Didier

    2016-04-01

    Interglacials before the Mid-Bruhnes Event (around 430 kyrs BP) were characterized by colder temperature in Antarctica, lower sea level and lower atmospheric CO2 compared to the more recent interglacials. Recent climate simulations have shown that the climate of the interglacials before and after the MBE can only be reproduced when taking into account changes in orbital parameters and atmospheric CO2 concentrations (Yin and Berger, 2010; Yin and Berger, 2012). Indeed, interglacial atmospheric CO2 concentrations were ~250 ppm and ~280 ppm prior and after the MBE, respectively. Yet, the cause for this change in atmospheric CO2 remains mainly unknown. climate simulations suggest that oceanic circulation was different during the interglacials due to the different climate states (Yin, 2013). The changes of oceanic circulation could have modified the carbon cycle: a more sluggish circulation would lead to greater carbon sequestration in the deep ocean and, subsequently, a decrease of atmospheric CO2. However, the impact of oceanic circulation changes on the carbon cycle during the interglacials of the last 800 kyrs has never been tested in coupled carbon-climate models. Here, we evaluate the role of ocean circulation changes on the carbon cycle during interglacials by using the intermediate complexity model iLOVECLIM (Goosse et al., 2010 ; Bouttes et al., 2015). This model includes a carbon cycle module on land and in the ocean and simulates carbon isotopes. The interglacial simulations are forced with orbital parameters, ice sheets and CO2 concentrations from data reconstructions. The model computes carbon fluxes between the reservoirs and an atmospheric CO2 that is distinct from the one used as a forcing. We will present simulations from this climate model for different interglacial periods of the last 800 000 years and use model-data comparison to analyse and evaluate the changes in the carbon cycle, including CO2. References Bouttes, N. et al. (2015), Geosci. Model

  18. Impact of oceanic circulation changes on atmospheric δ13CO2

    NASA Astrophysics Data System (ADS)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-12-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale and glacial/interglacial changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using two Earth system models of intermediate complexity we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW) and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW and AAIW are negatively correlated with changes in δ13CO2: namely strong oceanic ventilation decreases atmospheric δ13CO2. However, since large scale ocean circulation reorganizations also impact nutrient utilization and the Earth's climate the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the upwelling of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent.

  19. Thermohaline circulation and its box models simulation

    NASA Astrophysics Data System (ADS)

    Bazyura, Kateryna; Polonsky, Alexander; Sannikov, Viktor

    2014-05-01

    Ocean Thermochaline circulation (THC) is the part of large-scale World Ocean circulation and one of the main climate system components. It is generated by global meridional density gradients, which are controlled by surface heat and freshwater fluxes. THC regulates climate variability on different timescales (from decades to thousands years) [Stocker (2000), Clark (2002)]. Study of paleoclimatic evidences of abrupt and dramatic changes in ocean-atmosphere system in the past (such as, Dansgaard-Oeschger and Heinrich events or Younger Dryas, see e.g., [Rahmstorf (2002), Alley & Clark(1999)]) shows that these events are connected with THC regimes. At different times during last 120,000 years, three THC modes have prevailed in the Atlantic. They can be labeled as stadial, interstadial and Heinrich modes or as cold, warm and off mode. THC collapse (or thermohaline catastrophe) can be one of the consequences of global warming (including modern anthropogenic climate changes occurring at the moment). The ideas underlying different box-model studies, possibility of thermochaline catastrophe in present and past are discussed in this presentation. Response of generalized four box model of North Atlantic thermohaline circulation [developing the model of Griffies & Tzippermann (1995)] on periodic, stochastic and linear forcing is studied in details. To estimate climatic parameters of the box model we used monthly salinity and temperature data of ECMWF operational Ocean Reanalysis System 3 (ORA-S3) and data from atmospheric NCEP/NCAR reanalysis on precipitation, and heat fluxes for 1959-2011. Mean values, amplitude of seasonal cycle, amplitudes and periods of typical interdecadal oscillations, white noise level, linear trend coefficients and their significance level were estimated for every hydrophysical parameter. In response to intense freshwater or heat forcing, THC regime can change resulting in thermohaline catastrophe. We analyze relevant thresholds of external forcing in

  20. The influence of Indian Ocean atmospheric circulation on Warm Pool hydroclimate during the Holocene epoch

    NASA Astrophysics Data System (ADS)

    Tierney, J. E.; Oppo, D. W.; Legrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-10-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preëminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  1. The Influence of Indian Ocean Atmospheric Circulation on Warm Pool Hydroclimate During the Holocene Epoch

    NASA Technical Reports Server (NTRS)

    Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-01-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  2. Seasonal dynamics of circulation in Hooghly Estuary and its adjacent coastal oceans

    NASA Astrophysics Data System (ADS)

    Mishra, Shashank Kr.; Nayak, Gourav; Nayak, R. K.; Dadhwal, V. K.

    2016-05-01

    Hooghly is one of the major estuaries in Ganges, the largest and longest river in the Indian subcontinent. The Hooghly estuary is a coastal plain estuary lying approximately between 21°-23° N and 87°-89° E. We used a terrain following ocean model to study tide driven residual circulations, seasonal mean flow patterns and its energetics in the Hooghly estuary and adjacent coastal oceans on the north eastern continental shelf of India. The model is driven by tidal levels at open ocean end and winds at the air-sea interface. The sources of forcing fields for tides were from FES2012, winds from ECMWF. Harmonic analysis is carried out to compute the tidal and non-tidal components of currents and sea level from the model solutions. The de-tidal components were averaged for the entire period of simulation to describe residual and mean-seasonal circulations in the regions. We used tide-gauge, SARAL-ALTIKA along track sea level measurements to evaluate model solutions. Satellite measure Chla were used along with simulated currents to describe important features of the circulations in the region.

  3. Interpreting 231Pa/230Th observations and changes in ocean circulation

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-05-01

    Understanding past changes in ocean circulation is important, because the ocean transports heat and changes in ocean circulation can affect climate. To better understand past ocean circulation changes, some researchers have used the ratio of two isotopes, protactinium-231 (231Pa) and thorium-230 (230Th), in sediments as a proxy to infer changes in the Atlantic meridional overturning circulation (AMOC). Some studies have suggested that AMOC during the climate fluctuations of the Last Glacial Maximum (LGM; ˜21,000-18,000 years ago) and Heinrich Event 1 (H1; ˜17,000-15,000 years ago) was different from modern AMOC.

  4. Use of variational methods in the determination of wind-driven ocean circulation

    NASA Technical Reports Server (NTRS)

    Gelos, R.; Laura, P. A. A.

    1976-01-01

    Simple polynomial approximations and a variational approach were used to predict wind-induced circulation in rectangular ocean basins. Stommel's and Munk's models were solved in a unified fashion by means of the proposed method. Very good agreement with exact solutions available in the literature was shown to exist. The method was then applied to more complex situations where an exact solution seems out of the question.

  5. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  6. Changes in ocean circulation in the South-east Atlantic Ocean during the Pliocene

    NASA Astrophysics Data System (ADS)

    Petrick, B. F.; McClymont, E.; Felder, S.; Leng, M. J.

    2013-12-01

    The Southeast Atlantic Ocean is an important ocean gateway because major oceanic systems interact with each other in a relatively small geographic area. These include the Benguela Current, Antarctic Circumpolar Current, and the input of warm and saline waters from the Indian Ocean via the Agulhas leakage. However, there remain questions about circulation change in this region during the Pliocene, including whether there was more or less Agulhas Leakage, which may have implications for the strength of the global thermohaline circulation. ODP Site 1087 (31°28'S, 15°19'E, 1374m water depth) is located outside the Benguela upwelling region and is affected by Agulhas leakage in the modern ocean. Sea-surface temperatures (SSTs) are thus sensitive to the influence of Agulhas Leakage at this site. Our approach is to apply several organic geochemistry proxies and foraminiferal analyses to reconstruct the Pliocene history of ODP 1087, including the UK37' index (SSTs), pigments (primary productivity) and planktonic foraminifera (water mass changes). SSTs during the Pliocene range from 17 to 22.5 °C (mean SSTs at 21 °C), and show variability on orbital and suborbital time scales. Our results indicate that the Benguela upwelling system had intensified and/or shifted south during the Pliocene. We find no evidence of Agulhas leakage, meaning that either Agulhas Leakage was severely reduced or displaced during the mid-Pliocene. Potential causes of the observed signals include changes to the local wind field and/or changes in the temperature of intermediate waters which upwell in the Benguela system. Pronounced cooling is observed during cold stages in the Pliocene, aligned with the M2 and KM2 events. These results may indicate that changes to the extent of the Antarctic ice sheet had impact on circulation in the south east Atlantic during the Pliocene via displacement of the Antarctic Circumpolar Currents.

  7. Geochemistry of corals: proxies of past ocean chemistry, ocean circulation, and climate.

    PubMed

    Druffel, E R

    1997-08-01

    This paper presents a discussion of the status of the field of coral geochemistry as it relates to the recovery of past records of ocean chemistry, ocean circulation, and climate. The first part is a brief review of coral biology, density banding, and other important factors involved in understanding corals as proxies of environmental variables. The second part is a synthesis of the information available to date on extracting records of the carbon cycle and climate change. It is clear from these proxy records that decade time-scale variability of mixing processes in the oceans is a dominant signal. That Western and Eastern tropical Pacific El Niño-Southern Oscillation (ENSO) records differ is an important piece of the puzzle for understanding regional and global climate change. Input of anthropogenic CO2 to the oceans as observed by 13C and 14C isotopes in corals is partially obscured by natural variability. Nonetheless, the general trend over time toward lower delta18O values at numerous sites in the world's tropical oceans suggests a gradual warming and/or freshening of the surface ocean over the past century. PMID:11607745

  8. Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate

    PubMed Central

    Druffel, Ellen R. M.

    1997-01-01

    This paper presents a discussion of the status of the field of coral geochemistry as it relates to the recovery of past records of ocean chemistry, ocean circulation, and climate. The first part is a brief review of coral biology, density banding, and other important factors involved in understanding corals as proxies of environmental variables. The second part is a synthesis of the information available to date on extracting records of the carbon cycle and climate change. It is clear from these proxy records that decade time-scale variability of mixing processes in the oceans is a dominant signal. That Western and Eastern tropical Pacific El Niño-Southern Oscillation (ENSO) records differ is an important piece of the puzzle for understanding regional and global climate change. Input of anthropogenic CO2 to the oceans as observed by 13C and 14C isotopes in corals is partially obscured by natural variability. Nonetheless, the general trend over time toward lower δ18O values at numerous sites in the world’s tropical oceans suggests a gradual warming and/or freshening of the surface ocean over the past century. PMID:11607745

  9. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation.

    PubMed

    Knutti, R; Flückiger, J; Stocker, T F; Timmermann, A

    2004-08-19

    The climate of the last glacial period was extremely variable, characterized by abrupt warming events in the Northern Hemisphere, accompanied by slower temperature changes in Antarctica and variations of global sea level. It is generally accepted that this millennial-scale climate variability was caused by abrupt changes in the ocean thermohaline circulation. Here we use a coupled ocean-atmosphere-sea ice model to show that freshwater discharge into the North Atlantic Ocean, in addition to a reduction of the thermohaline circulation, has a direct effect on Southern Ocean temperature. The related anomalous oceanic southward heat transport arises from a zonal density gradient in the subtropical North Atlantic caused by a fast wave-adjustment process. We present an extended and quantitative bipolar seesaw concept that explains the timing and amplitude of Greenland and Antarctic temperature changes, the slow changes in Antarctic temperature and its similarity to sea level, as well as a possible time lag of sea level with respect to Antarctic temperature during Marine Isotope Stage 3.

  10. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation.

    PubMed

    Knutti, R; Flückiger, J; Stocker, T F; Timmermann, A

    2004-08-19

    The climate of the last glacial period was extremely variable, characterized by abrupt warming events in the Northern Hemisphere, accompanied by slower temperature changes in Antarctica and variations of global sea level. It is generally accepted that this millennial-scale climate variability was caused by abrupt changes in the ocean thermohaline circulation. Here we use a coupled ocean-atmosphere-sea ice model to show that freshwater discharge into the North Atlantic Ocean, in addition to a reduction of the thermohaline circulation, has a direct effect on Southern Ocean temperature. The related anomalous oceanic southward heat transport arises from a zonal density gradient in the subtropical North Atlantic caused by a fast wave-adjustment process. We present an extended and quantitative bipolar seesaw concept that explains the timing and amplitude of Greenland and Antarctic temperature changes, the slow changes in Antarctic temperature and its similarity to sea level, as well as a possible time lag of sea level with respect to Antarctic temperature during Marine Isotope Stage 3. PMID:15318212

  11. Assessing reconstruction techniques of the Atlantic Ocean circulation variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Moreno-Chamarro, Eduardo; Ortega, Pablo; González-Rouco, Fidel; Montoya, Marisa

    2016-04-01

    We assess the use of the meridional thermal-wind transport estimated from zonal density gradients to reconstruct the oceanic circulation variability during the last millennium in a forced simulation with the ECHO-G coupled climate model. Following a perfect-model approach, model-based pseudo-reconstructions of the Atlantic meridional overturning circulation (AMOC) and the Florida Current volume transport (FCT) are evaluated against their true simulated variability. The pseudo-FCT is additionally verified as proxy for AMOC strength and compared with the available proxy-based reconstruction. The thermal-wind component reproduces most of the simulated AMOC variability, which is mostly driven by internal climate dynamics during the preindustrial period and by increasing greenhouse gases afterwards. The pseudo-reconstructed FCT reproduces well the simulated FCT and reasonably well the variability of the AMOC strength, including the response to external forcing. The pseudo-reconstructed FCT, however, underestimates/overestimates the simulated variability at deep/shallow levels. Density changes responsible for the pseudo-reconstructed FCT are mainly driven by zonal temperature differences; salinity differences oppose but play a minor role. These results thus support the use of the thermal-wind relationship to reconstruct the oceanic circulation past variability, in particular at multidecadal timescales. Yet model-data comparison highlights important differences between the simulated and the proxy-based FCT variability. ECHO-G simulates a prominent weakening in the North Atlantic circulation that contrasts with the reconstructed enhancement. Our model results thus do not support the reconstructed FC minimum during the Little Ice Age. This points to a failure in the reconstruction, misrepresented processes in the model, or an important role of internal ocean dynamics.

  12. Modeling ocean deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.

    The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they

  13. Mixing parameterizations in ocean climate modeling

    NASA Astrophysics Data System (ADS)

    Moshonkin, S. N.; Gusev, A. V.; Zalesny, V. B.; Byshev, V. I.

    2016-03-01

    Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin-Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.

  14. Open ocean tide modelling

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1978-01-01

    Two trends evident in global tidal modelling since the first GEOP conference in 1972 are described. The first centers on the incorporation of terms for ocean loading and gravitational self attraction into Laplace's tidal equations. The second centers on a better understanding of the problem of near resonant modelling and the need for realistic maps of tidal elevation for use by geodesists and geophysicists. Although new models still show significant differences, especially in the South Atlantic, there are significant similarities in many of the world's oceans. This allows suggestions to be made for future locations for bottom pressure gauge measurements. Where available, estimates of M2 tidal dissipation from the new models are significantly lower than estimates from previous models.

  15. Ocean circulation during the Middle Jurassic in the presence/absence of a circumglobal current system

    NASA Astrophysics Data System (ADS)

    Brunetti, Maura; Baumgartner, Peter O.; Vérard, Christian; Hochard, Cyril

    2013-04-01

    Pangea breakup started in the Early Jurassic by the formation of the Central Atlantic and its connection with the Neotethys. By the Middle Jurassic, rifting between North and South America may have opened a first marine proto-Caribbean passage. However, the oldest known proto-Caribbean ocean crust is only of early Late Jurassic age. Based on earlier plate tectonic reconstructions featuring a wide open proto-Caribbean seaway, the existence of a circumglobal equatorial current system has been suggested by many authors as a possible physical mechanism for increasing the poleward ocean heat transport, and hence, producing the reduced meridional temperature gradient documented for the Middle Jurassic. Models with increased atmospheric pCO2, estimated to be between 1 and 7 times pre-industrial values in the Jurassic, generate elevated temperatures both in the tropics and in polar regions, but do not reduce the meridional gradient. A different mechanism needs to be considered in order to reproduce such reduced meridional temperature gradient. A possibility is enhanced poleward heat transport through the ocean. However, this hypothesis has been questioned by Late Jurassic simulations with a specified, reduced meridional gradient, which showed that the required ocean heat transport is much smaller than in present-day simulations. We investigate the critical role of a Tethyan-Atlantic-proto-Caribbean passage with respect to the Middle Jurassic ocean circulation by means of coupled ocean/sea-ice numerical models based on detailed plate reconstructions of the oceanic realms. We perform numerical experiments with an open/closed western boundary of the proto-Caribbean basin and we discuss the water properties, the gyre transport and the overturning meridional circulation for these different bathymetric configurations. For an open western boundary, we find a trans-Pangean circumglobal current of the order of 1 Sv, that flows in the upper 300 m along the northern margin of the

  16. Linkages between ocean circulation, heat uptake and transient warming: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik; Stocker, Thomas

    2016-04-01

    Transient global warming due to greenhouse gas radiative forcing is substantially reduced by ocean heat uptake (OHU). However, the fraction of equilibrium warming that is realized in transient climate model simulations differs strongly between models (Frölicher and Paynter 2015). It has been shown that this difference is not only related to the magnitude of OHU, but also to the radiative response the OHU causes, measured by the OHU efficacy (Winton et al., 2010). This efficacy is strongly influenced by the spatial pattern of the OHU and its changes (Rose et al. 2014, Winton et al. 2013), predominantly caused by changes in the Atlantic meridional overturning circulation (AMOC). Even in absence of external greenhouse gas forcing, an AMOC weakening causes a radiative imbalance at the top of the atmosphere (Peltier and Vettoretti, 2014), inducing in a net warming of the Earth System. We investigate linkages between those findings by performing both freshwater and greenhouse gas experiments in an Earth System Model of Intermediate Complexity. To assess the sensitivity of the results to ocean and atmospheric transport as well as climate sensitivity, we use an ensemble of model versions, systematically varying key parameters. We analyze circulation changes and radiative adjustments in conjunction with traditional warming metrics such as the transient climate response and the equilibrium climate sensitivity. This aims to improve the understanding of the influence of ocean circulation and OHU on transient climate change, and of the relevance of different metrics for describing this influence. References: Frölicher, T. L. and D.J. Paynter (2015), Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales, Environ. Res. Lett., 10, 075022 Peltier, W. R., and G. Vettoretti (2014), Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res

  17. Changing currents: a strategy for understanding and predicting the changing ocean circulation.

    PubMed

    Bryden, Harry L; Robinson, Carol; Griffiths, Gwyn

    2012-12-13

    Within the context of UK marine science, we project a strategy for ocean circulation research over the next 20 years. We recommend a focus on three types of research: (i) sustained observations of the varying and evolving ocean circulation, (ii) careful analysis and interpretation of the observed climate changes for comparison with climate model projections, and (iii) the design and execution of focused field experiments to understand ocean processes that are not resolved in coupled climate models so as to be able to embed these processes realistically in the models. Within UK-sustained observations, we emphasize smart, cost-effective design of the observational network to extract maximum information from limited field resources. We encourage the incorporation of new sensors and new energy sources within the operational environment of UK-sustained observational programmes to bridge the gap that normally separates laboratory prototype from operational instrument. For interpreting the climate-change records obtained through a variety of national and international sustained observational programmes, creative and dedicated UK scientists should lead efforts to extract the meaningful signals and patterns of climate change and to interpret them so as to project future changes. For the process studies, individual scientists will need to work together in team environments to combine observational and process modelling results into effective improvements in the coupled climate models that will lead to more accurate climate predictions. PMID:23129709

  18. Towards Improved Forecasts of Atmospheric and Oceanic Circulations over the Complex Terrain of the Eastern Mediterranean

    NASA Technical Reports Server (NTRS)

    Chronis, Themis; Case, Jonathan L.; Papadopoulos, Anastasios; Anagnostou, Emmanouil N.; Mecikalski, John R.; Haines, Stephanie L.

    2008-01-01

    Forecasting atmospheric and oceanic circulations accurately over the Eastern Mediterranean has proved to be an exceptional challenge. The existence of fine-scale topographic variability (land/sea coverage) and seasonal dynamics variations can create strong spatial gradients in temperature, wind and other state variables, which numerical models may have difficulty capturing. The Hellenic Center for Marine Research (HCMR) is one of the main operational centers for wave forecasting in the eastern Mediterranean. Currently, HCMR's operational numerical weather/ocean prediction model is based on the coupled Eta/Princeton Ocean Model (POM). Since 1999, HCMR has also operated the POSEIDON floating buoys as a means of state-of-the-art, real-time observations of several oceanic and surface atmospheric variables. This study attempts a first assessment at improving both atmospheric and oceanic prediction by initializing a regional Numerical Weather Prediction (NWP) model with high-resolution sea surface temperatures (SST) from remotely sensed platforms in order to capture the small-scale characteristics.

  19. Investigation of tropical eel spawning area in the South-Western Indian Ocean: Influence of the oceanic circulation

    NASA Astrophysics Data System (ADS)

    Pous, S.; Feunteun, E.; Ellien, C.

    2010-09-01

    In the South-Western Indian Ocean (SWIO), four eel species of the genus Anguilla (i.e. Anguilla bicolor bicolor, Anguilla nebulosa labiata, Anguilla marmorata and Anguilla mossambica) were identified, while their respective oceanic spawning area remained unknown. Based on collected larvae, glass eel captures and hydrodynamical conditions, previous studies raised the hypothesis that the eel spawning area might be common to all of those freshwater eel species, and located East of Madagascar. An original modeling approach, based on backward simulations, is developed to assess how the ocean circulation in the SWIO determines the location of the spawning areas and whether a common spawning area for each recruitment site where glass eels were found is possible. We use a hydrodynamical model, which reproduces realistically the 3D open ocean circulation in the region, associated with a Lagrangian model that calculates the possible migration pathways of larvae, represented by passive particles. Some biological parameters, provided by previous otolith microstructures analysis, are taken into account to constrain our simulations. Results suggest the existence of a common spawning area located between 13°S and 19°S and westwards of 60.5°E, although these boundaries vary on the interannual timescale. Salinity fronts were reported beside the boundaries, reinforcing this assumption. We explore the impact of hydrodynamic conditions on recruitment and migration durations from three specific regions within the common spawning area. They all allow migration to each recruitment sites consistent with duration estimated from otolith microstructure analyses. Nevertheless, there is substantial variability on intra-seasonal to interannual timescale in simulated migration durations and arrival success, with specific amplitude to each recruitment site and spawning location.

  20. Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall

    NASA Astrophysics Data System (ADS)

    Chowdary, Jasti S.; Parekh, Anant; Kakatkar, Rashmi; Gnanaseelan, C.; Srinivas, G.; Singh, Prem; Roxy, M. K.

    2016-08-01

    This study investigates the response of tropical Indian Ocean (TIO) sea surface temperature (SST) to El Niño decay phase and its impacts on South and East Asian summer monsoon in the National Centers for Environmental Prediction Climate Forecast System version 2 free run. The TIO basin-wide warming induced by El Niño at its peak phase (winter; DJF) and next spring (MAM + 1) are reasonably well captured by the model but with weak magnitude. This TIO basin-wide SST warming persists until summer (JJA + 1) and exert strong impact on summer monsoon rainfall and circulation as revealed in the observations. However, TIO SST anomalies are very weak in the model during the El Niño decaying summers. Though El Niño decay is delayed by 2 months in the model, decay of TIO SST warming is faster than the observations. Anomalous latent heat loss from ocean and a feeble southern TIO Rossby waves associated with weak wind response to El Niño are mainly accountable for rapid decay of TIO SST warming by mid-summer in the model. This suggests that JJA + 1 TIO SST response to El Niño decay phase in the model is poorly represented. The model is able to capture the SST anomalies associated with the northwest Pacific anticyclone at the peak phase of El Niño but fail to maintain that during the decay phase in MAM + 1 and JJA + 1. It is found that precipitation and circulation anomalies associated with TIO SST warming over the South and East Asian regions are disorganized in the model during the decay phase of El Niño. Rainfall anomalies over the southwest TIO, west coast of India, northern flank of northwest Pacific anticyclone and over Japan in JJA + 1 are poorly represented by the model. Analysis of lower troposphere stream function and rotational wind component reveals that northwest Pacific anticyclone shifted far eastward to the date line in the model during JJA + 1 unlike in the observations. Anomalous divergence observed over the western TIO and convergence in the northwest

  1. Peruvian Stratus Clouds and the Tropical Pacific Circulation: A Coupled Ocean-Atmosphere GCM Study.

    NASA Astrophysics Data System (ADS)

    Ma, Chung-Chun; Mechoso, Carlos R.; Robertson, Andrew W.; Arakawa, Akio

    1996-07-01

    Extensive and persistent stratus cloud decks are prominent climatic features off the Peruvian coast. They are believed to play a key role in the coupled atmosphere-ocean processes that determine the sea surface temperature (SST) throughout the eastern tropical Pacific. This notion is examined and further developed using a coupled ocean-atmosphere general circulation model (GCM): a control simulation, in which the simulated amount of Peruvian stratus clouds is unrealistically low, is compared with an experiment in which a stratus cloud deck is prescribed to persistently cover the ocean off the Peruvian coast.Beneath the prescribed cloud deck SSTs are reduced by up to 5 K, as expected from decreased solar radiation reaching the surface. In addition, there is significant cooling over much of the eastern tropical Pacific south of the equator, and even along the equator well into the central Pacific. The prescribed stratus deck largely alleviates the coupled GCM's warm bias in SST in the southeastern Pacific, which is common to most contemporary coupled GCMS, and produces a distribution of SST with more realistic interhemispheric asymmetries.Examination of differences between SST evolutions in the enhanced stratus experiment and the control circulation reveals that the remote ocean cooling is not due to a single mechanism. The cooling immediately to the west and north of the region with the prescribed stratus deck is primarily associated with increased evaporation as the southeast trades strengthen. The cooling along the equator in the central Pacific is mainly due to increased oceanic cold advection.The results of this study suggest that the Peruvian stratus clouds are important in modulating the circulation of the tropical Pacific. The `double ITCZ' syndrome of the coupled GCM, however, does not appear to be solely due to underpredicted stratus cloud cover and requires consideration of other processes in the coupled GCM.

  2. On the Effects of Parameterized Mediterranean Overflow on North Atlantic Ocean Circulation and Climate

    NASA Astrophysics Data System (ADS)

    Wu, W.; Danabasoglu, G.; Large, W.

    2006-12-01

    A Mediterranean overflow parameterization has been implemented in the ocean component of the NCAR Community Climate System Model (CCSM3) to represent the sub-grid scale exchanges through the Strait of Gibraltar and associated entrainment. It is evaluated by comparing solutions from the coarse resolution (nominally 3 degree) global ocean model to observations and high resolution process model results. The properties (temperature, salinity and volume) and depths of the inflow, outflow, entrainment and product waters are all close to observed estimates and stable after 300 years of integration. The seasonal cycle of the exchange has a reasonable amplitude, but its phase is advanced by three months from summer to spring. The improvement relative to either blocking the strait, or excavating a too wide channel is demonstrated. The effects on the circulation and properties of the North Atlantic are most prominent at about 1100 m. They include the formation of a realistic salt tongue across the basin and modified currents and younger water in the eastern basin offshore of the overflow. Climate impacts were assessed by comparing fully coupled climate models with and without the overflow parameterization after 300 years. The effects on North Atlantic sea surface temperature and heat flux do not match, suggesting an atmospheric response. Only minor differences were evident in the meridional overturning circulation and the ocean heat transport.

  3. Predictive Understanding of the Oceans' Wind-Driven Circulation on Interdecadal Time Scales

    SciTech Connect

    Michael Ghil; Temam, Roger; Y. Feliks; Simonnet, E.; Tachim-Medjo, T.

    2008-09-30

    The goal of this project was to obtain a predictive understanding of a major component of the climate system's interdecadal variability: the oceans' wind-driven circulation. To do so, we developed and applied advanced computational and statistical methods to the problem of climate variability and climate change. The methodology was developed first for models of intermediate complexity, such as the quasi-geostrophic and the primitive equations, which describe the wind-driven, near-surface flow in mid-latitude ocean basins. Our computational work consisted in developing efficient multi-level methods to simulate this flow and study its dependence on physically relevant parameters. Our oceanographic and climate work consisted in applying these methods to study the bifurcations in the wind-driven circulation and their relevance to the flows observed at present and those that might occur in a warmer climate. Both aspects of the work are crucial for the efficient treatment of large-scale, eddy-resolving numerical simulations of the oceans and an increased understanding and better prediction of climate change. Considerable progress has been achieved in understanding ocean-atmosphere interaction in the mid-latitudes. An important by-product of this research is a novel approach to explaining the North Atlantic Oscillation.

  4. Impact of remote oceanic forcing on Gulf of Alaska sea levels and mesoscale circulation

    NASA Astrophysics Data System (ADS)

    Melsom, Arne; Metzger, E. Joseph; Hurlburt, Harley E.

    2003-11-01

    We examine the relative importance of regional wind forcing and teleconnections by an oceanic pathway for impact on interannual ocean circulation variability in the Gulf of Alaska. Any additional factors that contribute to this variability, such as freshwater forcing from river runoff, are disregarded. The study is based on results from numerical simulations, sea level data from tide gauge stations, and sea surface height anomalies from satellite altimeter data. At the heart of this investigation is a comparison of ocean simulations that include and exclude interannual oceanic teleconnections of an equatorial origin. Using lagged correlations, the model results imply that 70-90% of the interannual coastal sea level variance in the Gulf of Alaska can be related to interannual sea levels at La Libertad, Equador. These values are higher than the corresponding range from sea level data, which is 25-55%. When oceanic teleconnections from the equatorial Pacific are excluded in the model, the explained variance becomes about 20% or less. During poleward propagation the coastally trapped sea level signal in the model is less attenuated than the observed signal. In the Gulf of Alaska we find well-defined sea level peaks in the aftermath of El Niño events. The interannual intensity of eddies in the Gulf of Alaska also peaks after El Niño events; however, these maxima are less clear after weak and moderate El Niño events. The interannual variations in eddy activity intensity are predominantly governed by the regional atmospheric forcing.

  5. Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation".

    PubMed

    Zhang, Rong; Sutton, Rowan; Danabasoglu, Gokhan; Delworth, Thomas L; Kim, Who M; Robson, Jon; Yeager, Stephen G

    2016-06-24

    Clement et al (Reports, 16 October 2015, p. 320) claim that the Atlantic Multidecadal Oscillation (AMO) is a thermodynamic response of the ocean mixed layer to stochastic atmospheric forcing and that ocean circulation changes have no role in causing the AMO. These claims are not justified. We show that ocean dynamics play a central role in the AMO. PMID:27339976

  6. Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation".

    PubMed

    Zhang, Rong; Sutton, Rowan; Danabasoglu, Gokhan; Delworth, Thomas L; Kim, Who M; Robson, Jon; Yeager, Stephen G

    2016-06-24

    Clement et al (Reports, 16 October 2015, p. 320) claim that the Atlantic Multidecadal Oscillation (AMO) is a thermodynamic response of the ocean mixed layer to stochastic atmospheric forcing and that ocean circulation changes have no role in causing the AMO. These claims are not justified. We show that ocean dynamics play a central role in the AMO.

  7. The residual circulation of the Southern Ocean: Which spatio-temporal scales are needed?

    NASA Astrophysics Data System (ADS)

    Ballarotta, Maxime; Drijfhout, Sybren; Kuhlbrodt, Till; Döös, Kristofer

    2013-04-01

    The Southern Ocean circulation consists of a complicated mixture of processes and phenomena that arise at different time and spatial scales which need to be parametrized in the state-of-the-art climate models. The temporal and spatial scales that give rise to the present-day residual mean circulation are here investigated by calculating the Meridional Overturning Circulation (MOC) in density coordinates from an eddy-permitting global model. The region sensitive to the temporal decomposition is located between 38°S and 63°S, associated with the eddy-induced transport. The "Bolus" component of the residual circulation corresponds to the eddy-induced transport. It is dominated by timescales between 1 month and 1 year. The temporal behavior of the transient eddies is examined in splitting the "Bolus" component into a "Seasonal", an "Eddy" and an "Inter-monthly" component, respectively representing the correlation between density and velocity fluctuations due to the average seasonal cycle, due to mesoscale eddies and due to large-scale motion on timescales longer than one month that is not due to the seasonal cycle. The "Seasonal" bolus cell is important at all latitudes near the surface. The "Eddy" bolus cell is dominant in the thermocline between 50°S and 35°S and over the whole ocean depth at the latitude of the Drake Passage. The "Inter-monthly" bolus cell is important in all density classes and is maximal in the Brazil-Malvinas Confluence and the Agulhas Return Current. The spatial decomposition indicates that a large part of the Eulerian mean circulation is recovered for spatial scales larger than 11.25°, implying that small-scale meanders in the Antarctic Circumpolar Current (ACC), near the Subantarctic and Polar Fronts, and near the Subtropical Front are important in the compensation of the Eulerian mean flow.

  8. Impact of oceanic circulation changes on atmospheric δ13CO2

    NASA Astrophysics Data System (ADS)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-11-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models, we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW), and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW, and AAIW are negatively correlated with changes in δ13CO2: namely, strong oceanic ventilation decreases atmospheric δ13CO2. However, since large-scale oceanic circulation reorganizations also impact nutrient utilization and the Earth's climate, the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the transport of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent. This results from complex interplay between global climate, carbon cycle, and the formation rate of NADW, a water body characterized by relatively high δ13C.

  9. Asian Summer Monsoon Intraseasonal Variability in General Circulation Models

    SciTech Connect

    Sperber, K R; Annamalai, H

    2004-02-24

    The goals of this report are: (1) Analyze boreal summer Asian monsoon intraseasonal variability general circulation models--How well do the models represent the eastward and northward propagating components of the convection and how well do the models represent the interactive control that the western tropical Pacific rainfall exerts on the rainfall over India and vice-versa? (2) Role of air-sea interactions--prescribed vs. interactive ocean; and (3) Mean monsoon vs. variability.

  10. Modelling Ocean Surface Waves in Polar Regions

    NASA Astrophysics Data System (ADS)

    Hosekova, Lucia; Aksenov, Yevgeny; Coward, Andrew; Bertino, Laurent; Williams, Timothy; Nurser, George A. J.

    2015-04-01

    In the Polar Oceans, the surface ocean waves break up sea ice cover and create the Marginal Ice Zone (MIZ), an area between the sea-ice free ocean and pack ice characterized by highly fragmented ice. This band of sea ice cover is undergoing dramatic changes due to sea ice retreat, with up to a 39% widening in the Arctic Ocean reported over the last three decades and projections predicting a continuing increase. The surface waves, sea ice and ocean interact in the MIZ through multiple complex feedbacks and processes which are not accounted for in any of the present-day climate models. To address this issue, we present a model development which implements surface ocean wave effects in the global Ocean General Circulation Model NEMO, coupled to the CICE sea ice model. Our implementation takes into account a number of physical processes specific to the MIZ dynamics. Incoming surface waves are attenuated due to reflection and energy dissipation induced by the presence of ice cover, which is in turn fragmented in response to external stresses. This process generates a distribution of floe sizes and impacts the dynamics of sea ice by the means of combined rheology that takes into account floe collisions and allows for a more realistic representation of the MIZ. We present results from the NEMO OGCM at 1 degree resolution with a wave-ice interaction module described above. The module introduces two new diagnostics previously unavailable in GCM's: surface wave spectra in sea ice covered areas, and floe size distribution due to wave-induced fragmentation. We discuss the impact of these processes on the ocean and sea ice state, including ocean circulation, mixing, stratification and the role of the MIZ in the ocean variability. The model predictions for the floe sizes in the summer Arctic Ocean range from 60 m in the inner MIZ to a few tens of meters near the open ocean, which agrees with estimates from the satellites. The extent of the MIZ throughout the year is also in

  11. Directional dispersal between mid-ocean ridges: deep-ocean circulation and gene flow in Ridgeia piscesae.

    PubMed

    Young, C R; Fujio, S; Vrijenhoek, R C

    2008-04-01

    This study examined relationships between bathymetrically induced deep-ocean currents and the dispersal of the hydrothermal vent tubeworm Ridgeia piscesae along the northeast Pacific ridge system. A robust diagnostic model of deep-ocean circulation in this region predicted strong southeasterly currents following contours of the Blanco Transform Fault, a 450-km lateral offset that separates the Gorda and Juan de Fuca ridge systems. Such currents should facilitate the southward dispersal of R. piscesae larvae. Immigration rates for populations north and south of the Blanco Transform Fault were estimated from molecular population genetic data. Mitochondrial DNA evidence revealed population subdivision across the Blanco Transform Fault, and a strong directional bias in gene flow that was consistent with predictions of the circulation model. The distribution of mitochondrial diversity between the northern and southern populations of R. piscesae suggests that the Gorda Ridge tubeworms have maintained larger effective population sizes than the northern populations, a pattern that also exists in co-occurring limpets. Together, these data suggest that the northern vent fields may experience a higher frequency of habitat turnover and consequently more rapid losses of genetic diversity.

  12. A blood circulation model for reference man

    SciTech Connect

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  13. Comparison of TOPEX/Poseidon Sea Level Observations to Simulations by the Los Alamos Ocean General Circulation Mode

    NASA Technical Reports Server (NTRS)

    Fu, L.; Smith, R.

    1995-01-01

    The sea level observations from the TOPEX/Poseidon radar altimeter from October, 1992 to October, 1994 were used to study the circulation of the global oceans and their temporal changes. To provide a framework for interpreting the observations, the Parallel Ocean Program model of the Los Alamos National Laboratory was run for the same period of time for comparison. A report of that data is given.

  14. Global Observations and Understanding of the General Circulation of the Oceans

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The workshop was organized to: (1) assess the ability to obtain ocean data on a global scale that could profoundly change our understanding of the circulation; (2) identify the primary and secondary elements needed to conduct a World Ocean Circulation Experiment (WOCE); (3) if the ability is achievable, to determine what the U.S. role in such an experiment should be; and (4) outline the steps necessary to assure that an appropriate program is conducted. The consensus of the workshop was that a World Ocean Circulation Experiment appears feasible, worthwhile, and timely. Participants did agree that such a program should have the overall goal of understanding the general circulation of the global ocean well enough to be able to predict ocean response and feedback to long-term changes in the atmosphere. The overall goal, specific objectives, and recommendations for next steps in planning such an experiment are included.

  15. Mixing parametrizations for ocean climate modelling

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir

    2016-04-01

    The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model

  16. Changes in the strength of Atlantic Ocean overturning circulation across repeated Eocene warming events

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, S.; Sexton, P. F.; Norris, R. D.; Wilson, P. A.; Charles, C. D.; Ridgwell, A.

    2015-12-01

    The Paleogene Period (~65 to 34 Ma) was a time of acute climatic warmth, with deep ocean temperatures exceeding 12°C at the height of the Early Eocene Climatic Optimum (~53 to 50 Ma). Multiple rapid warming events, associated with transient deep sea temperature increases of 2 to 4°C (termed 'hyperthermals'), potentially related to orbital forcing of the carbon cycle and climate, occurred from the late Paleocene through at least the early middle Eocene and onset of long-term Cenozoic cooling (~47 Ma). While deep ocean circulation patterns associated with the great glaciations of the Plio-Pleistocene have been studied extensively, the behavior of the ocean's overturning circulation on orbital-timescales in the extreme warmth of the early Cenozoic is largely unknown. Here we present new evidence for changing patterns of ocean overturning in the southern hemisphere associated with four orbitally paced hyperthermal events in the early-middle Eocene (~50 to 48 Ma) based on a combination of multi-site bulk carbonate and benthic foraminiferal stable isotope measurements and Earth system modeling. Our results suggest that southern-sourced overturning weakens and shoals in response to modest atmospheric carbon injections and consequent warming, and is replaced by invasion of nutrient-rich North Atlantic-sourced deep water, leading to predictable spatial patterns in deep-sea carbon isotope records. The changes in abyssal carbon isotope 'aging' gradients associated with these hyperthermals are, in fact, two to three times larger than the change in aging gradient associated with the switch in Atlantic overturning between the Last Glacial Maximum and today. Our results suggest that the Atlantic overturning circulation was sensitive to orbital-scale climate variability during Eocene extreme warmth, not just to interglacial-glacial climatic variability of the Plio-Pleistocene.

  17. Climate modelling: Northern Hemisphere circulation.

    PubMed

    Gillett, Nathan P

    2005-09-22

    Air pressure at sea level during winter has decreased over the Arctic and increased in the Northern Hemisphere subtropics in recent decades, a change that has been associated with 50% of the Eurasian winter warming observed over the past 30 years, with 60% of the rainfall increase in Scotland and with 60% of the rainfall decrease in Spain. This trend is inconsistent with the simulated response to greenhouse-gas and sulphate-aerosol changes, but it has been proposed that other climate influences--such as ozone depletion--could account for the discrepancy. Here I compare observed Northern Hemisphere sea-level pressure trends with those simulated in response to all the major human and natural climate influences in nine state-of-the-art coupled climate models over the past 50 years. I find that these models all underestimate the circulation trend. This inconsistency suggests that we cannot yet simulate changes in this important property of the climate system or accurately predict regional climate changes.

  18. Temporal relationships of carbon cycling and ocean circulation at glacial boundaries.

    PubMed

    Piotrowski, Alexander M; Goldstein, Steven L; Hemming, Sidney R; Fairbanks, Richard G

    2005-03-25

    Evidence from high-sedimentation-rate South Atlantic deep-sea cores indicates that global and Southern Ocean carbon budget shifts preceded thermohaline circulation changes during the last ice age initiation and termination and that these were preceded by ice-sheet growth and retreat, respectively. No consistent lead-lag relationships are observed during abrupt millennial warming events during the last ice age, allowing for the possibility that ocean circulation triggered some millenial climate changes. At the major glacial-interglacial transitions, the global carbon budget and thermohaline ocean circulation responded sequentially to the climate changes that forced the growth and decline of continental ice sheets.

  19. Temporal relationships of carbon cycling and ocean circulation at glacial boundaries.

    PubMed

    Piotrowski, Alexander M; Goldstein, Steven L; Hemming, Sidney R; Fairbanks, Richard G

    2005-03-25

    Evidence from high-sedimentation-rate South Atlantic deep-sea cores indicates that global and Southern Ocean carbon budget shifts preceded thermohaline circulation changes during the last ice age initiation and termination and that these were preceded by ice-sheet growth and retreat, respectively. No consistent lead-lag relationships are observed during abrupt millennial warming events during the last ice age, allowing for the possibility that ocean circulation triggered some millenial climate changes. At the major glacial-interglacial transitions, the global carbon budget and thermohaline ocean circulation responded sequentially to the climate changes that forced the growth and decline of continental ice sheets. PMID:15790848

  20. On determining the large-scale ocean circulation from satellite altimetry

    NASA Technical Reports Server (NTRS)

    Tai, C.-K.

    1983-01-01

    It is contended that a spherical harmonic expansion of the difference between the altimeter-derived mean sea surface and the geoid estimate should reveal the large-scale circulation of the ocean surface layer when the low-degree terms are examined. Methods based on this principle are proposed and partially demonstrated over the Pacific Ocean with the aid of the mean sea surface derived from the Seasat altimeter and the Goddard Earth Model 9 earth gravity model. The preliminary results reveal a well-defined clockwise gyre in the North Pacific and a much less well defined counterclockwise gyre in the South Pacific. When the dynamic topography thus obtained is compared with Wyrtki's (1975) dynamic topography derived from hydrographic data, the agreement is found to be within the limit of geoid uncertainties and satellite orbital errors.

  1. Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years

    SciTech Connect

    Mayewski, P.A.; Meeker, L.D.; Whitlow, S.; Twickler, M.S.; Morrison, M.C. ); Bloomfield, P. ); Alley, R.B. ); Gow, A.J.; Meese, D.A. ); Grootes, P.M. )

    1994-03-25

    High-resolution, continuous multivariate chemical records from a central Greenland ice core provide a sensitive measure of climate change and chemical composition of the atmosphere over the last 41,000 years. These chemical series reveal a record of change in the relative size and intensity of the circulation system that transported air masses to Greenland [defined here as the polar circulation index (PC)] and in the extent of ocean ice cover. Massive iceberg discharge events previously defined from the marine record are correlated with notable expansion of ocean ice cover and increases in PCI. During stadials without discharge events, ocean ice cover appears to reach some common maximum level. The massive aerosol loadings and dramatic variations in ocean ice cover documented in ice cores should be included in climate modeling.

  2. Numerical analysis of ocean circulation in the Northern Gulf of Guinea

    NASA Astrophysics Data System (ADS)

    Djakouré, Sandrine; Penven, Pierrick; Koné, Vamara; Bourlès, Bernard

    2014-05-01

    The ocean circulation and its variability in the Northern Gulf of Guinea has been found to modulate the amplitude of the African monsoon. Changes in Sea Surface Temperature due to coastal upwelling may also influence the regional climate. This upwelling is found along a zonal coast and its causes are still not clearly identified: local forcing (winds effect, Guinea Current, cape effect) or remote forcing (Kelvin waves generated at the equator). To document and study this particular coastal upwelling is thus relevant for climate dynamics and for local fisheries. A modeling approach is used for a better understanding of the processes that lead to this coastal upwelling. A realistic configuration with the Regional Ocean Modeling System (ROMS) is built. It is based on AGRIF (Adaptative Grid Refinement In Fortran) two-way nesting over the Tropical Atlantic (1/5°) with a zoom in the Gulf of Guinea (1/15°). Two different surface winds forcing are tested: COADS (Comprehensive Ocean Atmosphere Data Set) and the QuikSCAT scatterometer winds. The model is able to reproduce the mean circulation, the typical ocean patterns and their variability. According to observations from satellite and in situ data the QuikSCAT wind's are found to produce better results. Mesoscale cyclonic eddies seem to play a role on the regional dynamics. An idealistic configuration where the Cape Palmas and Cape of Three Points are removed is made to reveal their effects of the coastal upwelling. The model will also be used to investigate biogeochemical processes of the first trophic level in the Gulf of Guinea ecosystem.

  3. A blood circulation model for reference man

    SciTech Connect

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1999-01-01

    This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As a compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.

  4. Enceladus' Interior: A Liquid Circulation Model

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.; Johnson, Torrence; Lunine, Jonathan; Castillo-Rogez, Julie

    We are studying a model for Enceladus' interior in which the water, gas, dust and heat are supplied to the plumes by a relatively deeply circulating brine solution. Data indicates such a source for the erupting material. On the basis of ammonia in the plume gas Waite et al. [1] suggested that the jets might originate from a liquid water region under Enceladus' icy surface. Postberg et al. [2] noted that the presence of ". . . grains that are rich in sodium salts (0.5-2 percent by mass). . . can arise only if the plumes originate from liquid water." Waite et al. [1] also regard the some of the plume chemicals as evidence for interactions with an ice layer presumably overlying the liquid water reservoir. They suggest that this could be in the form of dissociation of clathrate hydrates [3]. Additionally, there is a large heat flow of more than 15 GW [4, 5] coming out of Enceladus' south polar region. We consider a model that brings heat and chemical species up to the surface from a reservoir or "ocean" located below the ice crust that may be many tens of kilometers thick. Water transits to the surface via vertical conduits. The Cassini INMS data suggest that the water has a relatively large gas content of order a few percent. As the water travels upward and the pressure is released, exolving gases form bubbles. Since the bubbly liquid is less dense than the ice, it moves upward. (This part of the model is a variant of the "Perrier Ocean" Europa model of Crawford and Stevenson [6]. A similar model was studied for Ganymede by Murchie and Head [7].) Postberg et al. [2] model the plume eruptions that result from the water, gases, salts, and other chemicals that our circulation model provides. In the near-surface reservoir feeding the plumes, bubbles reaching the surface of the water pop and throw a very fine spray. Some of these very small droplets of brine exit with the plume gas and provide the observed salt-rich dust particles [2]. Much of the water-borne heat is

  5. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation

    NASA Astrophysics Data System (ADS)

    Deininger, Michael; McDermott, Frank; Mudelsee, Manfred; Werner, Martin; Frank, Norbert; Mangini, Augusto

    2016-09-01

    Speleothem δ18O records provide valuable information about past continental environmental and climatic conditions, although their interpretation is often not straightforward. Here we evaluate a compilation of late Holocene speleothem δ18O records using a Monte Carlo based Principal Component Analysis (MC-PCA) method that accounts for uncertainties in individual speleothem age models and for the variable temporal resolution of each δ18O record. The MC-PCA approach permits not only the identification of temporally coherent changes in speleothem δ18O; it also facilitates their graphical depiction and evaluation of their spatial coherency. The MC-PCA method was applied to 11 Holocene speleothem δ18O records that span most of the European continent (apart from the circum-Mediterranean region). We observe a common (shared) mode of speleothem δ18O variability that suggests millennial-scale coherency and cyclicity during the last 4.5 ka. These changes are likely caused by variability in atmospheric circulation akin to that associated with the North Atlantic Oscillation, reflecting meridionally shifted westerlies. We argue that these common large-scale variations in European speleothem δ18O records are in phase with changes in the North Atlantic Ocean circulation indicated by the vigour of the Iceland Scotland Overflow Water (ISOW), the strength of the subpolar gyre (SPG) and an ocean stacked North Atlantic ice rafted debris (IRD) index. Based on a recent modelling study, we conclude that these changes in the North Atlantic circulation history may be caused by wind stress on the ocean surface driven by shifted westerlies. However, the mechanisms that ultimately force the westerlies remain unclear.

  6. Gulf of Mexico circulation within a high-resolution numerical simulation of the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Romanou, Anastasia; Chassignet, Eric P.; Sturges, Wilton

    2004-01-01

    The Gulf of Mexico circulation is examined from the results of a high-resolution (1/12°) North Atlantic simulation using the Miami Isopycnic Coordinate Ocean Model. The motivation for this paper is twofold: first, we validate the model's performance in the Gulf of Mexico by comparing the model fields to past and recent observations, and second, given the good agreement with the observed Gulf of Mexico surface circulation and Loop Current variability, we expand the discussion and analysis of the model circulation to areas that have not been extensively observed/analyzed, such as the vertical structure of the Loop Current and associated eddies, especially the deep circulation below 1500 m. The interval between successive model eddy sheddings is 3 to 15 months, the eddy diameters range between 140 and 500 km, the life span is about 1 year, and the translational speeds are 2-3 km d-1, in good agreement with observations. Areas of high cyclonic eddy occurrence in the model are southwest of Florida, the Loop Current boundary, and the western Campeche Bay area. The cyclonic eddy diameters range between 50 and 375 km, the orbital speeds range between 1 and 55 cm s-1, the translational speeds range between 0.5 and 14 km d-1, and the eddy life spans range between 1 and 3 months. The vertical structure of the temperature and salinity of each modeled eddy, from the moment it is shed until it disintegrates in the western Gulf of Mexico, is in agreement with the few available observations. Below 1500 m, deep cyclonic eddies are associated with the surface Loop Current anticyclones. The eddy variability is consistent with Rossby waves propagating westward, and there is bottom intensification of the flow close to steep topography. Overall, we show that this very high horizontal resolution isopycnic coordinate ocean model, which is able to produce a quite realistic surface circulation for the North and equatorial Atlantic, is also able to reproduce well the smaller-scale, basin

  7. On the role of the Agulhas system in ocean circulation and climate.

    PubMed

    Beal, Lisa M; De Ruijter, Wilhelmus P M; Biastoch, Arne; Zahn, Rainer

    2011-04-28

    The Atlantic Ocean receives warm, saline water from the Indo-Pacific Ocean through Agulhas leakage around the southern tip of Africa. Recent findings suggest that Agulhas leakage is a crucial component of the climate system and that ongoing increases in leakage under anthropogenic warming could strengthen the Atlantic overturning circulation at a time when warming and accelerated meltwater input in the North Atlantic is predicted to weaken it. Yet in comparison with processes in the North Atlantic, the overall Agulhas system is largely overlooked as a potential climate trigger or feedback mechanism. Detailed modelling experiments--backed by palaeoceanographic and sustained modern observations--are required to establish firmly the role of the Agulhas system in a warming climate.

  8. The influence of ocean surface temperature gradient and continentality on the Walker circulation. I - Prescribed tropical changes

    NASA Technical Reports Server (NTRS)

    Chervin, R. M.; Druyan, L. M.

    1984-01-01

    A coarse mesh global climate model has been developed to assess ocean surface temperature (OST) gradient and continentality influences on the Walker circulation, which is characterized in the zonal plane by three pairs of clockwise and counterclockwise cells in the troposphere. The model response exhibits statistically significant changes in the intensity of the various cells and branches with small shifts in the east-west extent. The overall structure in the zonal plane for experiments with the coldest and with mean temperatures, however, remained unchanged. In an experiment involving the replacement of the South American continent by an ocean with OSTs linearly interpolated from the eastern Pacific to the western Atlantic, a dramatic change took place in the structure of the Walker circulation. It is concluded that both continentality and OST gradient are important Walker circulation forcing mechanisms.

  9. Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Miyama, Toru; Furue, Ryo; Jensen, Tommy; Kang, Hyoun-Woo; Bang, Bohyun; Qu, Tangdong

    2007-10-01

    Circulations associated with the Indonesian Throughflow (IT), particularly concerning subsurface currents in the Pacific Ocean, are studied using three types of models: a linear, continuously stratified (LCS) model and a nonlinear, 4{1}/{2}-layer model (LOM), both confined to the Indo-Pacific basin; and a global, ocean general circulation model (COCO). Solutions are wind forced, and obtained with both open and closed Indonesian passages. Layers 1-4 of LOM correspond to near-surface, thermocline, subthermocline (thermostad), and upper-intermediate (AAIW) water, respectively, and analogous layers are defined for COCO. The three models share a common dynamics. When the Indonesian passages are abruptly opened, barotropic and baroclinic waves radiate into the interiors of both oceans. The steady-state, barotropic flow field from the difference (open - closed) solution is an anticlockwise circulation around the perimeter of the southern Indian Ocean, with its meridional branches confined to the western boundaries of both oceans. In contrast, steady-state, baroclinic flows extend into the interiors of both basins, a consequence of damping of baroclinic waves by diapycnal processes (internal diffusion, upwelling and subduction, and convective overturning). Deep IT-associated currents are the subsurface parts of these baroclinic flows. In the Pacific, they tend to be directed eastward and poleward, extend throughout the basin, and are closed by upwelling in the eastern ocean and Subpolar Gyre. Smaller-scale aspects of their structure vary significantly among the models, depending on the nature of their diapycnal mixing. At the exit to the Indonesian Seas, the IT is highly surface trapped in all the models, with a prominent, deep core in the LCS model and in LOM. The separation into two cores is due to near-equatorial, eastward-flowing, subsurface currents in the Pacific Ocean, which drain layer 2 and layer 3 waters from the western ocean to supply water for the upwelling

  10. Forcing of the deep ocean circulation in simulations of the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Meissner, K. J.; Eby, M.; Weaver, A. J.

    2002-05-01

    From the interpretation of different proxy data it is widely believed that the North Atlantic thermohaline circulation during the maximum of the last ice age ~21,000 years ago was considerably weaker than today. Recent equilibrium simulations with a coupled ocean-atmosphere-sea ice model successfully simulated a reduction in North Atlantic Deep Water (NADW) formation consistent with reconstructions. Here we examine the influence of different air-sea fluxes on simulated changes in the deep ocean circulation between the Last Glacial Maximum and present day. We find that changes in the oceanic surface freshwater fluxes are the dominant forcing mechanism for the reduced Atlantic overturning. Diminished export of freshwater out of the Atlantic drainage basin through the atmosphere decreases surface salinities in the North Atlantic, leading to less NADW formation in the colder climate. Changes in heat fluxes, which lead to increased sea surface densities in the North Atlantic and therefore to an enhanced overturning, are of secondary importance. Wind stress variations seem to play a negligible role. The degree to which the Atlantic freshwater export and hence the NADW formation are reduced depends on the formulation of the atmospheric hydrological cycle and on the strength of the overturning in the present-day simulation. Simulated changes in sea surface properties for a large variety of overturning strengths are compared with different reconstruction data sets. The results depend strongly on the data set used. Sea surface temperature reconstructions from Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) and earlier salinity reconstructions based on planktonic foraminifera are most consistent with a significant reduction of the circulation, while recent reconstructions using dinocyst assemblages allow no unequivocal conclusion.

  11. Thermal Models of the Costa Rica - Nicaragua Subduction Zone: the Effect of a Three-Dimensional Oceanic Plate Structure and Hydrothermal Circulation in the Temperature Distribution and Mantle Wedge Dynamics

    NASA Astrophysics Data System (ADS)

    Rosas, J. C.; Currie, C. A.; He, J.

    2014-12-01

    Over the last years several 2D thermo-mechanical models of the Costa Rica - Nicaragua Subduction Zone (CNSZ) have studied the thermal distribution of sections of the fault. Such investigations allow us to understand temperature-related aspects of subduction zones, like volcanism and megathrust earthquake locations. However, certain features of the CNSZ limit the range of applicability of 2D models. In the CNSZ, geochemical trends and seismic anisotropy studies reveal a 3D mantle wedge flow that departs from the 2D corner flow. The origin of this flow are dip variations (20o to 25o between Nicaragua and Costa Rica) and the presence of a slab window in Panama that allows material to flow into the mantle wedge. Also, the Central America trench has abrupt variations in surface heat flux that contrasts with steady changes in plate age and convergence rate. These variations have been attributed to hydrothermal circulation (HC), which effectively removes heat from the oceanic crust.In this project we analyze the thermal structure of the CNSZ. The objective is to study dehydration and metamorphic reactions, as well as the length of the megathrust seismogenic zone. We created 3D finite-element models that employ a dislocation creep rheology for the mantle wedge. Two aspects make our models different from previous studies: an up-to-date 3D slab geometry, and an implementation of HC by introducing a conductive proxy in the subducting aquifer, allowing us to model convective heat transport without the complex, high-Rayleigh number calculations. A 3D oceanic boundary condition that resembles the along-strike changes in surface heat flux is also employed. Results show a maximum mantle wedge flow rate of 4.69 cm/yr in the along-strike direction, representing more than 50% of the slab convergence rate. With respect to 2D models, analysis shows this flow changes temperatures by ~100 C in the mantle wedge near areas of strong slab curvature. Along the subducting interface, there is

  12. Development of ocean model LSOMG

    NASA Astrophysics Data System (ADS)

    Sachl, Libor; Martinec, Zdenek

    2015-04-01

    The purpose of this contribution is to present the ocean general circulation model LSOMG. It originates from the LSG (Maier-Reimer and Mikolajewicz, 1992) ocean model, however, significant number of changes has been made. LSOMG is a z-coordinate baroclinic ocean model which solves the primitive equations under the Boussinesq approximation. We intend to use the model for a various geophysical applications with the focus on paleoclimate studies. Hence, the model is not as complex as the current state-of-art climate models, such as the Modular Ocean Model or NEMO models. On the other hand, it is less computationally demanding. The changes and improvements in the code will be reported. One of the obvious changes is that the governing equations are no more discretized on the Arakawa E grid. The whole model has been rewritten on the Arakawa C grid. The main motivation is to avoid a coexistence of two solutions on the grid that evolve independently of each other. A more natural treatment of boundary conditions and simpler structure of the grid are additional advantages. Another significant change is the treatment of time tendencies. The system of equations is split to barotropic and baroclinic subsystems. Both subsystems may either be discretized at the same time points (as in the original LSG model), or their discretizations may be staggered in time as described in Griffies (2004). The original fully implicit barotropic time stepping scheme was found to significantly dissipate energy. Three different time stepping schemes are available instead. Namely, the predictor-corrector scheme of Griffies (2004), the generalized forward-backward scheme of Shchepetkin and McWilliams (2008) and the implicit free surface scheme of Campin et al. (2004). The first two schemes are intended to be used with the split-explicit model configuration for short-term studies whereas the third scheme is suitable for long-term studies, e.g. paleoclimate studies. The short-term studies may also

  13. Intermittent Displacement of the Kuroshio Extension Front from the Current Axis Revealed from Simultaneous Observations By Three Research Vessels and an Eddy-Resolving Ocean General Circulation Model

    NASA Astrophysics Data System (ADS)

    Kobashi, F.; Onikata, Y.; Iwasaka, N.; Kawai, Y.; Oka, E.; Uehara, K.; Ito, S. I.; Odamaki, M.; Sasaki, H.

    2014-12-01

    Intensive observations of the ocean and atmosphere were conducted in the Kuroshio Extension (KE) region during 2-6 July in 2012, as parts of the research project "Hot Spot in Climate System" in Japan. Three research vessels were placed along 143E across the KE and carried out simultaneous observations. For the ocean, they conducted XCTD observations across the KE at about 9 locations every 0.25 degee in latitude once a day for 6 days in a row. The present study analyzes the XCTD observations and also the North Pacific hindcast simulation by OFES (OGCM for the Earth Simulator), to explore how the KE and its accompanying front vary on day-to-day timescales and what relationships there are between the changes in the KE and front. The observations show that the mean axis of the density front deviates to the north from the mean current axis above the main pycnocline by about 20-30 km, due to the KE-carrying warm water, indicating that the surface KE current is basically anchored by the fronts below the main pycnocline. The changes in the current and front axes are characterized by a vertically uniform displacement; they both moved northward from 2nd to 5th by about 35km, and then slightly turned back southward afterwards. The front considerably deviated to the north of the current axis in the upper 200m depth from 5th to 6th when the KE started turning to the south, with warm Kuroshio water spread to the north across the current axis. The OFES shows the similar northward displacements of the front, which occur at the time when the KE veers away to the south. The meridional displacement of the KE is associated with the passing of mesoscale frontal waves propagated from the upstream and has a periodicity of about 7-15 days. The OFES suggests that the KE-carrying warm water overshoots to the north and departs from the current axis at the crest of frontal waves, causing the front to move northward above the main pycnocline.

  14. Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Schleussner, C.-F.; Divine, D. V.; Donges, J. F.; Miettinen, A.; Donner, R. V.

    2015-12-01

    A prominent characteristic of the reconstructed Northern Hemisphere temperature signal over the last millennium is the transition from the Medieval Climate Anomaly to the Little Ice Age (LIA). Here we report indications for a non-linear regime shift in the North Atlantic ocean circulation at the onset of the LIA. Specifically, we apply a novel statistical test based on horizontal visibility graphs to two ocean sediment August sea-surface temperature records from the Norwegian Sea and the central subpolar basin and find robust indications of time-irreversibility in both records during the LIA onset. Despite a basin-wide cooling trend, we report an anomalous warming in the central subpolar basin during the LIA that is reproduced in ensemble simulations with the climate model of intermediate complexity CLIMBER-3α as a result of a non-linear regime shift in the subpolar North Atlantic ocean circulation. The identified volcanically triggered non-linear transition in the model simulations provides a plausible explanation for the signatures of time-irreversibility found in the ocean sediment records. Our findings indicate a potential multi-stability of the North Atlantic ocean circulation and its importance for regional climate change on centennial time scales.

  15. Transport of very short-lived halocarbons from the Indian Ocean to the stratosphere through the Asian monsoon circulation

    NASA Astrophysics Data System (ADS)

    Fiehn, Alina; Hepach, Helmke; Atlas, Elliot; Quack, Birgit; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated organic compounds are naturally produced in the ocean and emitted to the atmosphere. The halogenated very short-lived substances (VSLS), such as bromoform, have atmospheric lifetimes of less than half a year. When VSLS reach the stratosphere, they enhance ozone depletion and thus impact the climate. During boreal summer, the Asian monsoon circulation transfers air masses from the Asian troposphere to the global stratosphere. Still, the extent to which VSLS from the Indian Ocean contribute to the stratospheric halogen burden and their exact origin is unclear. Here we show that the monsoon circulation transports VSLS from the Indian Ocean to the stratosphere. During the research cruises SO234-2 and SO235 in July-August 2014 onboard RV SONNE, we measured oceanic and atmospheric concentrations of bromoform (tropical lifetime at 10 km = 17 days), dibromomethane (150 days) and methyl iodide (3.5 days) in the subtropical and tropical West Indian Ocean and calculated their emission strengths. We use the Langrangian transport model FLEXPART driven by ERA-Interim meteorological fields to investigate the transport of oceanic emissions in the atmosphere. We analyze the direct contribution of observed bromoform emissions to the stratospheric halogen budget with forward trajectories. Furthermore, we investigate the connection between the Asian monsoon anticyclone and the oceanic source regions using backward trajectories. The West Indian Ocean is a strong source region of VSLS to the atmosphere and the monsoon transport is fast enough for bromoform to reach the stratosphere. However, the main source regions for the entrainment of oceanic air masses through the Asian monsoon anticyclone are the West Pacific and Bay of Bengal as well as the Arabian Sea. Our findings indicate that changes in emission or circulation in this area due to climate change can directly affect the stratospheric halogen burden and thus the ozone layer.

  16. The significance of the centripetal acceleration due to the earth's rotation on the generation of oceanic circulation

    SciTech Connect

    Wichner, R.P.

    1991-11-01

    This report proposes that the tangential component of the centrifugal body force due to the earth's rotation plays a significant role as a motive force for the major oceanic circulations. A comparison of its magnitude relative to the Coriolis force and wind shear, on which current circulation models are based, indicates its potential effect is significant if an appropriate mechanism can be constructed that generates a circulation force. Such a mechanism is proposed, based on the coupled effect of water-density variations with the tangential component of the centrifugal force. An order-of-magnitude model, which equates the generated circulation force with a rough estimate of the flow resistance, indicates a favorable comparison between predicted and observed current velocity. 13 refs., 4 figs.

  17. Seasonal circulations in the Malay Peninsula Eastern continental shelf from a wave-tide-circulation coupled model

    NASA Astrophysics Data System (ADS)

    Tangang, Fredolin T.; Xia, Changsui; Qiao, Fangli; Juneng, Liew; Shan, Feng

    2011-09-01

    A wave-tide-circulation coupled model based on Princeton Ocean Model is established to study the seasonal circulation in the Malay Peninsula Eastern Continental Shelf region. The model successfully reconstructs the observed seasonal variation of the circulation in the region, as well as the main currents. The simulated tidal harmonic constants, sea surface temperature, and sea surface height anomaly agree with the observations well. The model results show that the upper-layer circulation in the region is mainly controlled by the monsoon winds, while there are two transitions in spring and fall. An anti-cyclonic eddy is present off the Peninsular Malaysia's east coast in summer, centered at 5°N and 105.5°E, both in the TOPEX/Poseidon data and in the model. Numerical experiments show that the wind stress curl and bathymetry steering are responsible for its formation.

  18. Final Report: Studies of Ocean Predictability at Decade to Century Time Scales Using a Global Ocean General Circulation Model in a Parallel Computing Environment (August 7, 1991-November 30, 1998)

    SciTech Connect

    Barnett, Tim P.

    1998-11-30

    Determine the structure of oceanic natural variability at time scales of decades to centuries; characterize the physical mechanisms responsible for the variability; determine the relative importance of heat, fresh water, and moment fluxes on the variability; determine the predictability of the variability on these times scales.

  19. Influence of Sea Ice on the Thermohaline Circulation in the Arctic-North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Mauritzen, Cecilie; Haekkinen, Sirpa

    1997-01-01

    A fully prognostic coupled ocean-ice model is used to study the sensitivity of the overturning cell of the Arctic-North-Atlantic system to sea ice forcing. The strength of the thermohaline cell will be shown to depend on the amount of sea ice transported from the Arctic to the Greenland Sea and further to the subpolar gyre. The model produces a 2-3 Sv increase of the meridional circulation cell at 25N (at the simulation year 15) corresponding to a decrease of 800 cu km in the sea ice export from the Arctic. Previous modeling studies suggest that interannual and decadal variability in sea ice export of this magnitude is realistic, implying that sea ice induced variability in the overturning cell can reach 5-6 Sv from peak to peak.

  20. Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway

    NASA Astrophysics Data System (ADS)

    Coulson, Alan B.; Kohn, Matthew J.; Barrick, Reese E.

    2011-12-01

    During the mid- and Late Cretaceous period, North America was split by the north-south oriented Western Interior Seaway. Its role in creating and maintaining Late Cretaceous global greenhouse conditions remains unclear. Different palaeoceanographic reconstructions portray diverse circulation patterns. The southward extent of relatively cool, low-salinity, low-δ18O surface waters critically distinguishes among these models, but past studies of invertebrates could not independently assess water temperature and isotopic compositions. Here we present oxygen isotopes in biophosphate from coeval marine turtle and fish fossils from western Kansas, representing the east central seaway, and from the Mississippi embayment, representing the marginal Tethys Ocean. Our analyses yield precise seawater isotopic values and geographic temperature differences during the main transition from the Coniacian to the early Campanian age (87-82 Myr), and indicate that the seaway oxygen isotope value and salinity were 2‰ and 3‰ lower, respectively, than in the marginal Tethys Ocean. We infer that the influence of northern freshwater probably reached as far south as Kansas. Our revised values imply relatively large temperature differences between the Mississippi embayment and central seaway, explain the documented regional latitudinal palaeobiogeographic zonation and support models with relatively little inflow of surface waters from the Tethys Ocean to the Western Interior Seaway.

  1. Assimilation of altimeter topography into oceanic models

    NASA Technical Reports Server (NTRS)

    Demey, Pierre; Menard, Yves; Pinardi, Nadia; Schroeter, J.; Verron, J.

    1991-01-01

    The primary goals of the authors are to build an intuition for assimilation techniques and to investigate the impact of variable altimeter topography on simple or complex oceanic models. In particular, applying various techniques and sensitivity studies to model and data constraints plays a key role. We are starting to use quasi-geostrophic, semigeostrophic, and primitive-equation (PE) models and to test the schemes in regions of interest to the World Ocean Circulation Experiment (WOCE), as well as in the northeast Atlantic and the Mediterranean. The impact of scatterometer wind forcing on the results is also investigated. The use of Geosat, European Remote Sensing satellite (ERS-1), and TOPEX/POSEIDON altimetry data is crucial in fine tuning the models and schemes to the selected areas of interest.

  2. An online educational atmospheric global circulation model

    NASA Astrophysics Data System (ADS)

    Navarro, T.; Schott, C.; Forget, F.

    2015-10-01

    As part of online courses on exoplanets of Observatoire de Paris, an online tool designed to vizualise outputs of the Laboratoire de Métérologie Dynamique (LMD) Global Circulation Model (GCM) for various atmospheric circulation regimes has been developed. It includes the possibility for students to visualize 1D and 2D plots along with animations of atmospheric quantities such as temperature, winds, surface pressure, mass flux, etc... from a state-of-the-art model.

  3. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean

    NASA Astrophysics Data System (ADS)

    Bice, Karen L.; Marotzke, Jochem

    2001-06-01

    The question of whether deep water formation might have occurred in subtropical latitudes in the early Cenozoic is examined through use of a global ocean model forced by mixed boundary conditions. Zonal mean surface temperatures and wind stresses are derived from an atmospheric general circulation model (AGCM) simulation of the warm Paleocene/Eocene boundary interval (˜55 Ma) and are held constant for a series of sensitivity tests. The control case for moisture flux (evaporation minus precipitation, E-P), also derived from the AGCM, is perturbed so that the subtropical evaporation increases and high-latitude precipitation increases. A dramatic response is seen in the temperature and salinity structure of the model ocean, but the perturbation does not result in deep convection in subtropical latitudes. In all cases, bottom water is formed in the southern high latitudes, and the global meridional overturning is characterized by a strongly asymmetric circulation. No multiple equilibria have been found for any particular E-P configuration. In the most extreme case (5 times the control E-P) the model oscillates between meridional overturning circulation "on" and "off". Shorter-lived thermohaline slowing and reinvigoration are observed as a transient response under less extreme E-P perturbations. Despite the high evaporation implied in the perturbation experiments, mean mixed layer salinities in the subtropics do not rise much above the control case because of efficient removal of salt (and heat) through deepened subduction beneath the subtropical gyres. The sensitivity of the results to the parameterization of continental runoff and the specified diapycnal mixing coefficient (Kν) are also examined. Distributing runoff purely zonally, rather than globally, has approximately the same effect as a 50% increase in the strength of the hydrologic cycle. Decreasing Kν to 0.3 cm2 s-1 from the standard value of 1.0 cm2 s-1 increases the sensitivity to an increased hydrologic

  4. Numerical study of sea ice and ocean circulation in the Arctic

    SciTech Connect

    Semtner, A.J. Jr.

    1987-08-01

    A sea-ice model based on bulk-viscous plastic dynamics and 3-layer thermodynamics is coupled to a multilevel primitive equation model of the Arctic Ocean and Greenland Sea. The combined model is forced by inflow through the Faeroe--Shetland Channel and Bering Strait and by observed monthly atmospheric forcing and river runoff. A long-term integration produces a realistic seasonal cycle of ice cover, whose extent is strongly influenced by ocean heat transport. The wintertime maximum is controlled by northward heat transport of 0.4 petawatts in the Greenland Sea and by southward transport of ice and water through the Fram Strait. The summertime minimum extent of sea ice is influenced by subsurface flow through the Fram Strait of warm Atlantic water, which rises in winter and thins the ice lying over the Eurasian continental shelf and along the Alaskan and Siberian coasts. The oceanic circulation in the Canadian Basin is anticyclonic at all depths, but changes to cyclonic in the Eurasian Basin below 200 meters. Offshore ice transport in the Barents Sea promotes oceanic convection on the continental shelf through enhanced brine rejection, whereas surface heat loss in the ice-free Greenland Sea produces intermediate water sources similar in T--S characteristics to observed water masses of the region. Two short additional integrations of the coupled model show that the Arctic sea ice is vulnerable to the environmental effects of atmospheric CO/sub 2/ increase, but relatively insensitive to the maximum proposed amount of Soviet river diversions.

  5. Global ocean circulation and equator-pole heat transport as a function of ocean GCM resolution

    SciTech Connect

    Covey, C.

    1994-06-01

    To determine whether resolution of smaller scales is necessary to simulate large-scale ocean climate correctly, I examine results from a global ocean GCM run with horizontal grid spacings spanning a range from coarse resolutions traditionally used in climate modeling to nearly the highest resolution attained with today`s computers. The experiments include four cases employing 4{degrees}, 2{degrees}, 1{degrees} and 1/2{degrees} spacing in latitude and longitude, which were run with minimal differences among them, i.e., in a controlled experiment. Two additional cases-1/2{degrees} spacing with a more scale-selective sub-gridscale mixing of heat and momentum, and approximate 1/4{degrees} spacing-are also included. The 1/4{degrees} run resolves most of the observed mesoscale eddy energy in the ocean. Several artificial constraints on the model tend to minimize differences among the different resolution cases. Nevertheless, for quantities of interest to global climate studies,the simulations show significant changes as resolution increases.

  6. Drastic changes in the Nordic Seas oceanic circulation and deepwater formation in a Pliocene context

    NASA Astrophysics Data System (ADS)

    Contoux, Camille; Zhang, Zhongshi; De Schepper, Stijn; Li, Camille; Nisancioglu, Kerim; Risebrobakken, Bjorg

    2016-04-01

    The Nordic Seas are a major area of deepwater formation, thus playing a crucial role in the global oceanic circulation. In the recent years a cooling and freshening of the Norwegian Sea has been observed (Blindheim et al., 2000), highlighting potential changes in this area linked to climate change. Here, we use climate simulations of the mid-Pliocene warm period with the NorESM-L model. This period is considered to be the last interval when Earth experienced temperatures higher than today for a sustained period of time, in equilibrium with CO2 concentrations similar to present-day and a reduced Greenland Ice Sheet. We find that oceanic circulation in the Nordic Seas is drastically modified. The strength of the East Greenland Current is reduced, which implies less Arctic water going to the North Atlantic from the west of the Fram strait, which creates a compensating outflow current from the east of the Fram Strait to the North Atlantic along the Voring plateau (coast of Norway). The Norwegian Atlantic current is shifted westward, meaning that there is increased Atlantic water influence in the Greenland Sea, which becomes much warmer, and increased Arctic influence along Norway, which becomes colder than present. Circulation becomes anticyclonic instead of cyclonic. Circulation in the subpolar gyre is strongly reduced, together with deepwater formation on average both in the Irminger Sea and the Nordic Seas. Convection sites in the Nordic Seas shift from the eastern part to the western part. Sensitivity experiments show that these changes are not reproduced in other Pliocene contexts, such as when CO2 is low (280 ppm) or when Barents Sea is turned to land, suggesting that the ultimate driver of these changes is higher CO2. When Barents Sea is land, which was the reality of the Pliocene, circulation and sea-surface temperature show a good agreement with reconstructions from marine proxies (De Schepper et al., 2015). This means that NorESM-L is able to properly

  7. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Delworth, T. L.; Zeng, F. J.

    2015-12-01

    The impact of multidecadal variations of the Atlantic meridional overturning circulation (AMOC) on the Southern Ocean (SO) is investigated using a coupled ocean-atmosphere model. We find that the AMOC can influence the SO via fast atmosphere teleconnections and subsequent ocean adjustments. A stronger than normal AMOC induces an anomalous warm SST over the North Atlantic, which favors an increased equator-to-pole temperature gradient in the Southern Hemisphere (SH) upper troposphere and lower stratosphere due to an amplified tropical upper tropospheric warming as a result of increased latent heat release. This eventually strengthens and pushes the Southern Hemisphere westerly jet poleward. The wind change over the SO then cools the SST by anomalous northward Ekman transports. The wind change also weakens the Antarctic bottom water (AABW) cell through changes in surface heat flux heating forcing. The poleward shifted westerly wind decreases the long term mean easterly winds over the Weddell Sea, thereby reducing the turbulent heat flux loss, decreasing surface density and therefore leading to a weakening of the AABW cell. The weakened AABW cell produces a temperature dipole in the SO, with a warm anomaly in the subsurface and a cold anomaly in the surface that corresponds to an increase of Antarctic sea ice. Opposite conditions occur for a weaker than normal AMOC. Our study here suggests that efforts to attribute the recent observed SO variability to various factors should take into consideration not only local process but also remote AMOC forcing.

  8. Interactions Between the Thermohaline Circulation and Tropical Atlantic SST in a Coupled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)

    2001-01-01

    Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.

  9. Modelling ocean carbon cycle with a nonlinear convolution model

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; White, Benjamin S.

    1996-02-01

    A nonlinear convolution integral is developed to model the response of the ocean carbon sink to changes in the atmospheric concentration of CO2. This model can accurately represent the atmospheric response of complex ocean carbon cycle models in which the nonlinear behavior stems from the nonlinear dependence of CO2 solubility in seawater on CO2 partial pressure, which is often represented by the buffer factor. The kernel of the nonlinear convolution model can be constructed from a response of such a complex model to an arbitrary change in CO2 emissions, along with the functional dependence of the buffer factor. Once the convolution kernel has been constructed, either analytically or from a model experiment, the convolution representation can be used to estimate responses of the ocean carbon sink to other changes in the atmospheric concentration of CO2. Thus the method can be used, e.g., to explore alternative emissions scenarios for assessments of climate change. A derivation for the nonlinear convolution integral model is given, and the model is used to reproduce the response of two carbon cycle models: a one-dimensional diffusive ocean model, and a three-dimensional ocean-general-circulation tracer model.

  10. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean.

    PubMed

    Jakobsson, Martin; Backman, Jan; Rudels, Bert; Nycander, Jonas; Frank, Martin; Mayer, Larry; Jokat, Wilfried; Sangiorgi, Francesca; O'Regan, Matthew; Brinkhuis, Henk; King, John; Moran, Kathryn

    2007-06-21

    Deep-water formation in the northern North Atlantic Ocean and the Arctic Ocean is a key driver of the global thermohaline circulation and hence also of global climate. Deciphering the history of the circulation regime in the Arctic Ocean has long been prevented by the lack of data from cores of Cenozoic sediments from the Arctic's deep-sea floor. Similarly, the timing of the opening of a connection between the northern North Atlantic and the Arctic Ocean, permitting deep-water exchange, has been poorly constrained. This situation changed when the first drill cores were recovered from the central Arctic Ocean. Here we use these cores to show that the transition from poorly oxygenated to fully oxygenated ('ventilated') conditions in the Arctic Ocean occurred during the later part of early Miocene times. We attribute this pronounced change in ventilation regime to the opening of the Fram Strait. A palaeo-geographic and palaeo-bathymetric reconstruction of the Arctic Ocean, together with a physical oceanographic analysis of the evolving strait and sill conditions in the Fram Strait, suggests that the Arctic Ocean went from an oxygen-poor 'lake stage', to a transitional 'estuarine sea' phase with variable ventilation, and finally to the fully ventilated 'ocean' phase 17.5 Myr ago. The timing of this palaeo-oceanographic change coincides with the onset of the middle Miocene climatic optimum, although it remains unclear if there is a causal relationship between these two events.

  11. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean.

    PubMed

    Jakobsson, Martin; Backman, Jan; Rudels, Bert; Nycander, Jonas; Frank, Martin; Mayer, Larry; Jokat, Wilfried; Sangiorgi, Francesca; O'Regan, Matthew; Brinkhuis, Henk; King, John; Moran, Kathryn

    2007-06-21

    Deep-water formation in the northern North Atlantic Ocean and the Arctic Ocean is a key driver of the global thermohaline circulation and hence also of global climate. Deciphering the history of the circulation regime in the Arctic Ocean has long been prevented by the lack of data from cores of Cenozoic sediments from the Arctic's deep-sea floor. Similarly, the timing of the opening of a connection between the northern North Atlantic and the Arctic Ocean, permitting deep-water exchange, has been poorly constrained. This situation changed when the first drill cores were recovered from the central Arctic Ocean. Here we use these cores to show that the transition from poorly oxygenated to fully oxygenated ('ventilated') conditions in the Arctic Ocean occurred during the later part of early Miocene times. We attribute this pronounced change in ventilation regime to the opening of the Fram Strait. A palaeo-geographic and palaeo-bathymetric reconstruction of the Arctic Ocean, together with a physical oceanographic analysis of the evolving strait and sill conditions in the Fram Strait, suggests that the Arctic Ocean went from an oxygen-poor 'lake stage', to a transitional 'estuarine sea' phase with variable ventilation, and finally to the fully ventilated 'ocean' phase 17.5 Myr ago. The timing of this palaeo-oceanographic change coincides with the onset of the middle Miocene climatic optimum, although it remains unclear if there is a causal relationship between these two events. PMID:17581581

  12. Sea-level fluctuations show Ocean Circulation controls Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    McCarthy, Gerard; Haigh, Ivan; Hirschi, Joel; Grist, Jeremy; Smeed, David

    2015-04-01

    We present observational evidence that ocean circulation controls the decadal evolution of heat content and consequently sea-surface temperatures (SST) in the North Atlantic. One of the most prominent modes of Atlantic variability is the Atlantic multidecadal oscillation (AMO) observed in SSTs. Positive (negative) phases of the AMO are associated with warmer (cooler) SSTs. Positive phases of the AMO have been linked with decadal climate fluctuations including increased summer precipitation in Europe; increased northern hemisphere land temperatures, fewer droughts in the Sahel region of Africa and increased Atlantic hurricane activity. It is widely believed that the Atlantic circulation controls the phases of the AMO by controlling the decadal changes in heat content in the North Atlantic. However, due to the lack of ocean circulation observations, this link has not been previously proven. We present a new interpretation of the sea-level gradient along to the east coast of the United States to derive a measure of ocean circulation spanning decadal timescales. We use this to estimate heat content changes that we validate against direct estimates of heat content. We use the longevity of the tide gauge record to show that circulation, as interpreted in sea-level gradient changes, drives the major transitions in the AMO since the 1920's. We show that the North Atlantic Oscillation is highly correlated with this sea-level gradient, indicating that the atmosphere drives the circulation changes. The circulation changes are essentially integrated by the ocean in the form of ocean heat content and returned to the atmosphere as the AMO. An additional consequence of our interpretation is that recently reported accelerations in sea-level rise along the US east coast are consistent with a declining AMO that has been predicted by a number of authors.

  13. Monitoring estuarine circulation and ocean waste dispersion using an integrated satellite-aircraft-drogue approach. [Continental Shelf and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G. R.; Wang, H.

    1975-01-01

    The author has identified the following significant results. An integrated satellite-aircraft-drogue approach was developed which employs remotely tracked expendable drogues together with satellite and aircraft observations of oil slicks, waste plumes, and natural tracers, such as suspended sediment. Tests conducted on the Continental Shelf and in Delaware Bay indicate that the system provides a cost effective means of monitoring current circulation and verifying oil slick and ocean waste dispersion models even under severe environmental conditions.

  14. Ocean Response to Possible Southern Meltwater Pulses During Eocene-Oligocene Cooling Climate Trend: A Sensitivity Ocean Modeling Study

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2003-12-01

    Understanding ocean circulation and sea level change in the past (and foreseeable future) is one of the focal points of paleoceanography. Sea level may change due to several primary causes, including the meltdown of the major ice sheets, sea ice melting, and changes in the thermohaline structure of the oceans. The sensitivity of the past ocean circulation to meltwater impacts may have been different from the present-day. We still have only a vague understanding of how ocean basin geography may influence the freshwater impacts in different oceans; the role of geography is important for reconstructing variability of past climates with substantially different land-sea distributions. As freshwater impacts in past geologic eras having different basins configurations may have been different from the present-day pattern, the sensitivity of the ocean circulation to sea surface density impacts and climate change could have been different as well. We use the Eocene-Oligocene geometry and climate to address the past ocean and sea level long-term internal variability because this time slice provides a substantially different geometry and for a strong sea ice impact that can be seen in the geologic record. The Eocene epoch is crucial as a transition from the warm Cretaceous ocean to cooler oceans that may have been subject to bi-polar millennial-scale oscillations of the deep ocean circulation caused by freshwater pulses of the developing southern cryosphere. In a series of numerical experiments, sea ice melting and sea water freezing around Antarctica were simulated by superimposing freshwater layers over zonally-averaged sea surface salinity. Eocene sea surface temperature and sea surface salinity are specified based on the paleoclimatic record and modeling. In our simulations, the Eocene ocean circulation is indeed sensitive to freshwater impacts in the Southern Hemisphere. There are noticeable sea level changes caused by the restructuring of the deep ocean thermal and

  15. Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden

    NASA Astrophysics Data System (ADS)

    Lucazeau, Francis; Leroy, Sylvie; Rolandone, Frédérique; d'Acremont, Elia; Watremez, Louise; Bonneville, Alain; Goutorbe, Bruno; Düsünur, Doga

    2010-07-01

    In order to investigate the importance of fluid circulation associated with the formation of ocean-continent transitions (OCT), we examine 162 new heat-flow (HF) measurements in the eastern Gulf of Aden, obtained at close locations along eight seismic profiles and with multi-beam bathymetry. The average HF values in the OCT and in the oceanic domain (~ 18 m.y.) are very close to the predictions of cooling models, showing that the overall importance of fluids remains small at the present time compared to oceanic ridge flanks of the same age. However, local HF anomalies are observed, although not systematically, in the vicinity of the unsedimented basement and are interpreted by the thermal effect of meteoric fluids flowing laterally. We propose a possible interpretation of hydrothermal paths based on the shape of HF anomalies and on the surface morphology: fluids can circulate either along-dip or along-strike, but are apparently focussed in narrow "pipes". In several locations in the OCT, there is no detectable HF anomaly while the seismic velocity structure suggests serpentinization and therefore past circulation. We relate the existence of the present day fluid circulation in the eastern Gulf of Aden to the presence of unsedimented basement and to the local extensional stress in the vicinity of the Socotra-Hadbeen fault zone. At the scale of rifted-margins, fluid circulation is probably not as important as in the oceanic domain because it can be inhibited rapidly with high sedimentation rates, serpentinization and stress release after the break-up.

  16. The Effect of Changes in the Hadley Circulation on Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    De La Cruz Tello, G.; Ummenhofer, C.; Karnauskas, K. B.

    2014-12-01

    Recent research argued that the Hadley circulation (HC) is composed of three regional cells located at the eastern edges of the ocean basins, rather than a single, globe-encircling cell as the classic textbook view suggests. The HC is expected to expand in concert with global warming, which means that the dry regions beneath the descending branches of the HC are projected to become even drier. Changes in the HC are thus likely to impact freshwater resources on land, as well as the underlying ocean in the subtropics. The eastern edges of ocean basins are characterized by oxygen minimum zones (OMZs), which are regions of very low oxygen concentrations. They affect marine life, as many animals cannot handle the stress caused by such conditions. OMZs have expanded and shoaled in the last 50 years, and they are expected to continue to do so as global climate changes. The purpose of this research is to find links between the projected changes in OMZs and the HC. The National Center for Atmospheric Research (NCAR) Community Earth System Model 1.0 (CESM), Representative Concentration Pathways 8.5 (RCP8.5) experiment with a resolution of 0.9 by 1.25 degrees, which formed part of the Coupled Model Intercomparison Project phase 5 (CMIP5), was used for this analysis. Meridional winds and oceanic oxygen concentrations were the primarily analyzed variables. Latitudinal ocean oxygen slices demonstrate the OMZs' location along the eastern edges of ocean basins. Meridional winds overlayed with oxygen concentration are consistent with the idea that surface meridional 'Hadleywise flow' (i.e., towards the equator at the surface and towards the poles aloft) and OMZs are linked through changes in upwelling. Area-averaged time series spanning the historical period through to the end of the 21st century with RCP8.5 confirm that future changes in OMZs and the HC may be connected. Further research could lead to improved understanding of the factors that drive changes in both, which could

  17. "Going with the flow" or not: evidence of positive rheotaxis in oceanic juvenile loggerhead turtles (Caretta caretta) in the South Pacific Ocean Using Satellite Tags and Ocean Circulation Data.

    PubMed

    Kobayashi, Donald R; Farman, Richard; Polovina, Jeffrey J; Parker, Denise M; Rice, Marc; Balazs, George H

    2014-01-01

    The movement of juvenile loggerhead turtles (n = 42) out-fitted with satellite tags and released in oceanic waters off New Caledonia was examined and compared with ocean circulation data. Merging of the daily turtle movement data with drifter buoy movements, OSCAR (Ocean Surface Current Analyses--Real time) circulation data, and three different vertical strata (0-5 m, 0-40 m, 0-100 m) of HYCOM (HYbrid Coordinate Ocean Model) circulation data indicated the turtles were swimming against the prevailing current in a statistically significant pattern. This was not an artifact of prevailing directions of current and swimming, nor was it an artifact of frictional slippage. Generalized additive modeling was used to decompose the pattern of swimming into spatial and temporal components. The findings are indicative of a positive rheotaxis whereby an organism is able to detect the current flow and orient itself to swim into the current flow direction or otherwise slow down its movement. Potential mechanisms for the means and adaptive significance of rheotaxis in oceanic juvenile loggerhead turtles are discussed.

  18. “Going with the Flow” or Not: Evidence of Positive Rheotaxis in Oceanic Juvenile Loggerhead Turtles (Caretta caretta) in the South Pacific Ocean Using Satellite Tags and Ocean Circulation Data

    PubMed Central

    Kobayashi, Donald R.; Farman, Richard; Polovina, Jeffrey J.; Parker, Denise M.; Rice, Marc; Balazs, George H.

    2014-01-01

    The movement of juvenile loggerhead turtles (n = 42) out-fitted with satellite tags and released in oceanic waters off New Caledonia was examined and compared with ocean circulation data. Merging of the daily turtle movement data with drifter buoy movements, OSCAR (Ocean Surface Current Analyses - Real time) circulation data, and three different vertical strata (0–5 m, 0–40 m, 0–100 m) of HYCOM (HYbrid Coordinate Ocean Model) circulation data indicated the turtles were swimming against the prevailing current in a statistically significant pattern. This was not an artifact of prevailing directions of current and swimming, nor was it an artifact of frictional slippage. Generalized additive modeling was used to decompose the pattern of swimming into spatial and temporal components. The findings are indicative of a positive rheotaxis whereby an organism is able to detect the current flow and orient itself to swim into the current flow direction or otherwise slow down its movement. Potential mechanisms for the means and adaptive significance of rheotaxis in oceanic juvenile loggerhead turtles are discussed. PMID:25098694

  19. NEMO Oceanic Model Optimization

    NASA Astrophysics Data System (ADS)

    Epicoco, I.; Mocavero, S.; Murli, A.; Aloisio, G.

    2012-04-01

    NEMO is an oceanic model used by the climate community for stand-alone or coupled experiments. Its parallel implementation, based on MPI, limits the exploitation of the emerging computational infrastructures at peta and exascale, due to the weight of communications. As case study we considered the MFS configuration developed at INGV with a resolution of 1/16° tailored on the Mediterranenan Basin. The work is focused on the analysis of the code on the MareNostrum cluster and on the optimization of critical routines. The first performance analysis of the model aimed at establishing how much the computational performance are influenced by the GPFS file system or the local disks and wich is the best domain decomposition. The results highlight that the exploitation of local disks can reduce the wall clock time up to 40% and that the best performance is achieved with a 2D decomposition when the local domain has a square shape. A deeper performance analysis highlights the obc_rad, dyn_spg and tra_adv routines are the most time consuming routines. The obc_rad implements the evaluation of the open boundaries and it has been the first routine to be optimized. The communication pattern implemented in obc_rad routine has been redesigned. Before the introduction of the optimizations all processes were involved in the communication, but only the processes on the boundaries have the actual data to be exchanged and only the data on the boundaries must be exchanged. Moreover the data along the vertical levels are "packed" and sent with only one MPI_send invocation. The overall efficiency increases compared with the original version, as well as the parallel speed-up. The execution time was reduced of about 33.81%. The second phase of optimization involved the SOR solver routine, implementing the Red-Black Successive-Over-Relaxation method. The high frequency of exchanging data among processes represent the most part of the overall communication time. The number of communication is

  20. (Modeling the upper ocean and its interaction with the atmosphere)

    SciTech Connect

    Peng, Tsung-Hung.

    1990-03-28

    The traveler attended the International Meeting on Modeling the Physics, Biology and Chemistry of the Upper Ocean and Its Interaction with the Atmosphere in London, England, and presented a lecture entitled Modeling the Seasonality of CO{sub 2} in the North Atlantic.'' This international meeting was jointly sponsored by the International Geosphere Biosphere Programme and the Joint Global Ocean Flux Study. Most lectures focused on the modeling of the upper ocean, with a particular emphasis in the area of marine biology and marine ecosystems. Models ranged from simple box ocean models to general circulation models. A total of 16 papers were presented in this two-day conference. At the end of the conference, it became clear that a better understanding of global change in climate atmospheric CO{sub 2} variations requires a closer link between the studies of marine biology and ocean physics and chemistry.

  1. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters.

    PubMed

    Yamashita, Nobuyoshi; Taniyasu, Sachi; Petrick, Gert; Wei, Si; Gamo, Toshitaka; Lam, Paul K S; Kannan, Kurunthachalam

    2008-01-01

    Perfluorinated acids (PFAs) such as perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are global environmental contaminants. The physicochemical properties of PFAs are unique in that they have high water solubilities despite the low reactivity of carbon-fluorine bond, which also imparts high stability in the environment. Because of the high water solubilities, the open-ocean water column is suggested to be the final sink for PFOS and PFOA. However, little is known on the distribution of PFAs in the oceans around the world. Here we describe the horizontal (spatial) and vertical distribution of PFAs in ocean waters worldwide. PFOS and PFOA concentrations in the North Atlantic Ocean ranged from 8.6 to 36pg l(-1) and from 52 to 338pg l(-1), respectively, whereas the corresponding concentrations in the Mid Atlantic Ocean were 13-73pg l(-1) and 67-439pg l(-1). These were completely different from the surface waters of the South Pacific Ocean and the Indian Ocean (overall range of <5-11pg l(-1) for PFOS and PFOA). Vertical profiles of PFAs in the marine water column were associated with the global ocean circulation theory. Vertical profiles of PFAs in water columns from the Labrador Sea reflected the influx of the North Atlantic Current in surface waters, the Labrador Current in subsurface waters, and the Denmark Strait Overflow Water in deep layers below 2000m. Striking differences in the vertical and spatial distribution of PFAs, depending on the oceans, suggest that these persistent acids can serve as useful chemical tracers to allow us to study oceanic transportation by major water currents. The results provide evidence that PFA concentrations and profiles in the oceans adhere to a pattern consistent with the global "Broecker's Conveyor Belt" theory of open ocean water circulation.

  2. Combination of TOPEX/POSEIDON Data with a Hydrographic Inversion for Determination of the Oceanic General Circulation and its Relation to Geoid Accuracy

    NASA Technical Reports Server (NTRS)

    Ganachaud, Alexandre; Wunsch, Carl; Kim, Myung-Chan; Tapley, Byron

    1997-01-01

    A global estimate of the absolute oceanic general circulation from a geostrophic inversion of in situ hydrographic data is tested against and then combined with an estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model computed using the JGM-3 gravity-field solution. Within the quantitative uncertainties of both the hydrographic inversion and the geoid estimate, the two estimates derived by very different methods are consistent. When the in situ inversion is combined with the altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully consistent with both hydrography and altimetry, is found. There is, however, little reduction in the uncertainties of the calculated ocean circulation and its mass and heat fluxes because the best available geoid estimate remains noisy relative to the purely oceanographic inferences. The conclusion drawn from this is that the comparatively large errors present in the existing geoid models now limit the ability of satellite altimeter data to improve directly the general ocean circulation models derived from in situ measurements. Because improvements in the geoid could be realized through a dedicated spaceborne gravity recovery mission, the impact of hypothetical much better, future geoid estimates on the circulation uncertainty is also quantified, showing significant hypothetical reductions in the uncertainties of oceanic transport calculations. Full ocean general circulation models could better exploit both existing oceanographic data and future gravity-mission data, but their present use is severely limited by the inability to quantify their error budgets.

  3. A Parallel Ocean Model With Adaptive Mesh Refinement Capability For Global Ocean Prediction

    SciTech Connect

    Herrnstein, Aaron R.

    2005-12-01

    An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration, and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No

  4. The influence of ocean surface temperature gradient and continentality on the Walker circulation. II - Prescribed global changes

    NASA Technical Reports Server (NTRS)

    Stone, P. H.; Chervin, R. M.

    1984-01-01

    The series of experiments presently used to investigate the mechanisms responsible for forcing the global Walker circulation features worldwide changes in ocean surface temperatures (OSTs), topography, and/or continents. The primary factor affecting circulation is noted to be the global distribution of continents and oceans; while OST gradients are also important, topography emerges as comparatively unimportant. Continentality and OST gradients force the model atmosphere through the introduction of zonal variations in surface heating. The vertical motions to which they give rise yield moisture convergence and condensation variations which reinforce vertical motions. The forcing by OST gradients is partly nonlocal, and the atmospheric response is effected by continentality. In all cases, vertical motion zonal variations correlate with precipitation.

  5. Fueling primary productivity: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, D.

    2010-06-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  6. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, R. D.

    2010-11-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  7. Research Spotlight: Using satellite data to estimate the North Atlantic Ocean circulation

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-03-01

    By redistributing heat and freshwater around the planet, ocean currents play a crucial role in regulating Earth's climate. Accurate knowledge of the subtle regional variations in Earth's gravity field is fundamental to the measurement of ocean currents, but the challenge of mapping Earth's gravity in sufficient detail has previously limited scientists' ability to reliably determine the ocean's time-mean circulation. To address this problem, in October 2009 the European Space Agency launched the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite with the aim of mapping Earth's gravity field with unprecedented spatial resolution. Bingham et al. present an initial assessment of the performance of GOCE by using the first data from the satellite to estimate the time-mean circulation of the North Atlantic Ocean. This basin is particularly interesting because it contains the Gulf Stream, the world's strongest current and a key component of the global overturning circulation, which carries heat from the equator to high northerly latitudes. The scientists show that with just 2 months of observations, the GOCE estimate of the North Atlantic circulation is superior to that obtained from 8 years of data from the Gravity Recovery and Climate Experiment (GRACE) satellite. In many places, the current speeds estimated from the GOCE data compare well with those obtained from in situ observations, providing strong validation of the GOCE mission design. Accumulation of data as the mission progresses could lead to a more accurate and detailed map of the ocean's currents. (Geophysical Research Letters, doi:10.1029/2010GL045633, 2011)

  8. On the relationship between Nd isotopic composition and ocean overturning circulation in idealized freshwater discharge events

    NASA Astrophysics Data System (ADS)

    Rempfer, Johannes; Stocker, Thomas F.; Joos, Fortunat; Dutay, Jean-Claude

    2012-09-01

    Using a cost-efficient climate model, the effect of changes in overturning circulation on neodymium isotopic composition,ɛNd, is systematically examined for the first time. Idealized sequences of abrupt climate changes are induced by the application of periodic freshwater fluxes to the North Atlantic (NA) and the Southern Ocean (SO), thus mainly affecting either the formation of North Atlantic Deep Water (NADW) or Antarctic Bottom Water (AABW). Variations in ɛNd reflect weakening and strengthening of the formation of NADW and AABW, changes in ɛNdof end-members are relatively small. Relationships betweenɛNd and the strength of NADW or AABW are more pronounced for AABW than for NADW. Atlantic patterns of variations in ɛNd systematically differ between NA and SO experiments. Additionally, the signature of changes in ɛNd in the Atlantic and the Pacific is alike in NA but opposite in SO experiments. Discrimination between NA and SO experiments is therefore possible based on the Atlantic pattern of variations in ɛNd and the contrariwise behavior of ɛNd in the Atlantic and the Pacific. In further experiments we examined the effect of variations in magnitudes of particle export fluxes. Within the examined range, and although settling particles represent the only sink of Nd, their effects on ɛNd are relatively small. Our results confirm the large potential of ɛNd as a paleocirculation tracer but also indicate its limitations of quantitative reconstructions of changes in the Atlantic Meridional Ocean Circulation.

  9. Can large scale surface circulation changes modulate the sea surface warming pattern in the Tropical Indian Ocean?

    NASA Astrophysics Data System (ADS)

    Rahul, S.; Gnanaseelan, C.

    2016-06-01

    The increased rate of Tropical Indian Ocean (TIO) surface warming has gained a lot of attention in the recent years mainly due to its regional climatic impacts. The processes associated with this increased surface warming is highly complex and none of the mechanisms in the past studies could comprehend the important features associated with this warming such as the negative trends in surface net heat fluxes and the decreasing temperature trends at thermocline level. In this work we studied a previously unexplored aspect, the changes in large scale surface circulation pattern modulating the surface warming pattern over TIO. We use ocean reanalysis datasets and a suit of Ocean General Circulation Model (OGCM) experiments to address this problem. Both reanalysis and OGCM reveal strengthening large scale surface circulation pattern in the recent years. The most striking feature is the intensification of cyclonic gyre circulation around the thermocline ridge in the southwestern TIO. The surface circulation change in TIO is mainly associated with the surface wind changes and the geostrophic response to sea surface height decrease in the western/southwestern TIO. The surface wind trends closely correspond to SST warming pattern. The strengthening mean westerlies over the equatorial region are conducive to convergence in the central and divergence in the western equatorial Indian Ocean (IO) resulting central warming and western cooling. The resulting east west SST gradient further enhances the equatorial westerlies. This positive feedback mechanism supports strengthening of the observed SST trends in the equatorial Indian Ocean. The cooling induced by the enhanced upwelling in the west is compensated to a large extent by warming due to reduction in mixed layer depth, thereby keeping the surface temperature trends in the west to weak positive values. The OGCM experiments showed that the wind induced circulation changes redistribute the excess heat received in the western

  10. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation.

    PubMed

    Rubino, Angelo; Bensi, Manuel; Hainbucher, Dagmar; Zanchettin, Davide; Mapelli, Francesca; Ogrinc, Nives; Marchetto, Davide; Borin, Sara; Cardin, Vanessa; Fajon, Vesna; Horvat, Milena; Taricco, Carla; Baldi, Franco

    2016-01-01

    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements.

  11. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation

    PubMed Central

    Rubino, Angelo; Bensi, Manuel; Hainbucher, Dagmar; Zanchettin, Davide; Mapelli, Francesca; Ogrinc, Nives; Marchetto, Davide; Borin, Sara; Cardin, Vanessa; Fajon, Vesna; Horvat, Milena; Taricco, Carla; Baldi, Franco

    2016-01-01

    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements. PMID:26761666

  12. Simple Model of the Circulation.

    ERIC Educational Resources Information Center

    Greenway, Clive A.

    1980-01-01

    Describes a program in BASIC-11 that explores the relationships between various variables in the circulatory system and permits manipulation of several semiindependent variables to model the effects of hemorrhage, drug infusions, etc. A flow chart and accompanying sample printout are provided; the program is listed in the appendix. (CS)

  13. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean

    PubMed Central

    Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa

    2015-01-01

    The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines–Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels (“v-eels”) can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years. PMID:26642318

  14. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean.

    PubMed

    Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa

    2015-01-01

    The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels") can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.

  15. The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Solomon, A.; Polvani, L. M.; Smith, K. L.; Abernathey, R. P.

    2015-07-01

    Observations show robust changes in the circulation, temperature, and salinity of the Southern Ocean in recent decades. To what extent these changes are related to the formation of the ozone hole in the late twentieth century is an open question. Using a comprehensive chemistry-climate Earth system model, we contrast model runs with varying and with fixed surface concentrations of ozone depleting substances (ODS) from 1955 to 2005. In our model, ODS cause the majority of the summertime changes in surface wind stress which, in turn, induce a clear poleward shift of the ocean's meridional overturning circulation. In addition, more than 30% of the model changes in the temperature and salinity of the Southern Ocean are caused by ODS. These findings offer unambiguous evidence that increased concentrations of ODS in the late twentieth century are likely to have been been an important driver of changes in the Southern Ocean.

  16. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Piotrowski, Alexander M.; Galy, Albert; Banakar, Virupaxa K.

    2015-06-01

    Changes in ocean circulation structure, together with biological cycling, have been proposed for trapping carbon in the deep ocean during glacial periods of the Late Pleistocene, but uncertainty remains in the nature and timing of deep ocean circulation changes through glacial cycles. In this study, we use neodymium (Nd) and carbon isotopes from a deep Indian Ocean sediment core to reconstruct water mass mixing and carbon cycling in Circumpolar Deep Water over the past 250 thousand years, a period encompassing two full glacial cycles and including a range of orbital forcing. Building on recent studies, we use reductive sediment leaching supported by measurements on isolated phases (foraminifera and fish teeth) in order to obtain a robust seawater Nd isotope reconstruction. Neodymium isotopes record a changing North Atlantic Deep Water (NADW) component in the deep Indian Ocean that bears a striking resemblance to Northern Hemisphere climate records. In particular, we identify both an approximately in-phase link to Northern Hemisphere summer insolation in the precession band and a longer-term reduction of NADW contributions over the course of glacial cycles. The orbital timescale changes may record the influence of insolation forcing, for example via NADW temperature and/or Antarctic sea ice extent, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support an active role for changing deep ocean circulation in carbon storage during glacial inceptions. However, mid-depth water mass mixing and deep ocean carbon storage were largely decoupled within glacial periods, and a return to an interglacial-like circulation state during marine isotope stage (MIS) 6.5 was accompanied by only minor changes in atmospheric CO2. Although a gradual reduction of NADW export through glacial periods may have produced slow climate feedbacks

  17. North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    PubMed

    Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D

    2016-07-29

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change.

  18. North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    PubMed

    Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D

    2016-07-29

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change. PMID:27365315

  19. Drivers of the projected changes to the Pacific Ocean equatorial circulation

    NASA Astrophysics Data System (ADS)

    Sen Gupta, A.; Ganachaud, A.; McGregor, S.; Brown, J. N.; Muir, L.

    2012-05-01

    Climate models participating in the third Coupled Model Inter Comparison Project (CMIP3) suggest a significant increase in the transport of the New Guinea Coastal Undercurrent (NGCU) and the Equatorial Undercurrent (EUC, in the central and western Pacific) and a decrease in the Mindanao current and the Indonesian Throughflow. Most models also project a reduction in the strength of the equatorial Trade winds. Typically, on ENSO time scales, a weakening of the equatorial easterlies would lead to a reduction in EUC strength in the central Pacific. The strengthening of the EUC projected for longer timescales, can be explained by a robust projected intensification of the south-easterly trade winds and an associated off-equatorial wind-stress curl change in the Southern Hemisphere. This drives the intensification of the NGCU and greater water input to the EUC in the west. A 1½-layer shallow water model, driven by projected wind stress trends from the CMIP3 models demonstrates that the projected circulation changes are consistent with a purely wind driven response. While the equatorial winds weaken for both El Niño events and in the projections, the ocean response and the mechanisms driving the projected wind changes are distinct from those operating on interannual timescales.

  20. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Delworth, Thomas L.; Zeng, Fanrong

    2016-05-01

    The impact of multidecadal variations of the Atlantic meridional overturning circulation (AMOC) on the Southern Ocean (SO) is investigated in the current paper using a coupled ocean-atmosphere model. We find that the AMOC can influence the SO via fast atmosphere teleconnections and subsequent ocean adjustments. A stronger than normal AMOC induces an anomalous warm SST over the North Atlantic, which leads to a warming of the Northern Hemisphere troposphere extending into the tropics. This induces an increased equator-to-pole temperature gradient in the Southern Hemisphere (SH) upper troposphere and lower stratosphere due to an amplified tropical upper tropospheric warming as a result of increased latent heat release. This altered gradients leads to a poleward displacement of the SH westerly jet. The wind change over the SO then cools the SST at high latitudes by anomalous northward Ekman transports. The wind change also weakens the Antarctic bottom water (AABW) cell through changes in surface heat flux forcing. The poleward shifted westerly wind decreases the long term mean easterly winds over the Weddell Sea, thereby reducing the turbulent heat flux loss, decreasing surface density and therefore leading to a weakening of the AABW cell. The weakened AABW cell produces a temperature dipole in the SO, with a warm anomaly in the subsurface and a cold anomaly in the surface that corresponds to an increase of Antarctic sea ice. Opposite conditions occur for a weaker than normal AMOC. Our study here suggests that efforts to attribute the recent observed SO variability to various factors should take into consideration not only local process but also remote forcing from the North Atlantic.

  1. Modeling of Antarctic sea ice in a general circulation model

    SciTech Connect

    Wu, Xingren; Budd, W.F.; Simmonds, I.

    1997-04-01

    A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distributions The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution. 64 refs., 15 figs., 2 tabs.

  2. Modeling mesoscale circulation of the Black Sea

    NASA Astrophysics Data System (ADS)

    Korotenko, K. A.

    2015-11-01

    An eddy-resolving (1/30)° version of the DieCAST low-dissipative model, adapted to the Black Sea circulation, is presented. Under mean climatological forcing, the model realistically reproduces major dominant large-scale and mesoscale structures of seasonal sea circulation, including the Rim Current, coastal anticyclonic eddies, mushroom currents, etc. Due to its extremely low dissipation and high resolution, the model makes it possible to trace the development of the baroclinic instability along the Turkish and Caucasian coasts, reproduce mesoscale structures generated by this mechanism, and assess the scales of these structures. The model also realistically reproduces short-term effects of bora winds on the evolution of subsurface layer structures.

  3. Four simple ocean carbon models

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III

    1992-01-01

    This paper briefly reviews the key processes that determine oceanic CO2 uptake and sets this description within the context of four simple ocean carbon models. These models capture, in varying degrees, these key processes and establish a clear foundation for more realistic models that incorporate more directly the underlying physics and biology of the ocean rather than relying on simple parametric schemes. The purpose of this paper is more pedagogical than purely scientific. The problems encountered by current attempts to understand the global carbon cycle not only require our efforts but set a demand for a new generation of scientist, and it is hoped that this paper and the text in which it appears will help in this development.

  4. Detecting a potential collapse of the North Atlantic thermohaline circulation: Implications for the design of an ocean observation system

    NASA Astrophysics Data System (ADS)

    Deutsch, C.; Hall, M. G.; Bradford, D. F.; Keller, K.

    2003-04-01

    Many climate models predict a collapse of the North Atlantic thermohaline circulation (THC) as a result of anthropogenic climate change. The economic damages attending such a global change are likely to be significant. Detecting such a THC collapse - should it happen in the future - would certainly affect climate policy. We argue that the present ocean observation system would detect a change in the THC intensity only after the point at which climate policy would be able to respond with effective mitigation. This is because the present ocean observation system observes too infrequently and/or the inferred ocean circulation is too uncertain. This conclusion holds for a variety of analysis methods, both from a Bayesian and from a frequentist point of view. Our simple analysis shows, however, that a THC change could be detected in time to be useful for climate policy by making more frequent observations. A cost-benefit analysis suggests that the benefits of such an improved ocean observation system would considerably exceed the costs.

  5. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    PubMed

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-01

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  6. The Madden-Julian Oscillation in General Circulation Models

    SciTech Connect

    Sperber, K R; Gleckler, P J; Doutriaux, C; Groups, A M; Groups, C M; Slingo, J M; Inness, P M; Gualdi, S; Li, W

    2003-10-27

    A methodology is utilized to analyze in a standardized fashion the Madden-Julian Oscillation (MJO) in general circulation models. This is attained by projecting 20-100 day bandpass filtered outgoing longwave radiation (OLR) from the models onto the two leading empirical orthogonal functions (EOF's) of observed OLR that characterize the propagation of MJO convection from the Indian Ocean to the central Pacific Ocean. The resulting principal component time series are then screened to isolate boreal winters during which they exhibit a lead-lag relationship consistent with observations. This PC subset is used for linear regression to determine the ability of the models to simulate the observed spacetime variability of the MJO. The vast majority of models underestimate the amplitude of the MJO convective anomalies by a factor of two or more, and the eastward propagation of convection is less coherent than observed, typically. For a given family of models, coupling to an ocean leads to better organization of the large-scale convection. The low-level moisture convergence mechanism for eastward propagation is represented in limited cases, as is the vertical structure of the MJO.

  7. Circulating a Good Service Model at Its Core: Circulation!

    ERIC Educational Resources Information Center

    Hernandez, Edmee Sofia; Germain, Carol Anne, Ed.

    2009-01-01

    Circulation is the library's tireless foot soldier: it serves as the front gate to the library's services and resources. This service point is where most patrons enter and leave; and experience their first and last impressions--impressions that linger. In an age when academic libraries are facing meager budgets and declining usage statistics, this…

  8. Deep Ocean Circulation, Heat Transport and the Timing of Climate Change

    NASA Astrophysics Data System (ADS)

    Curry, W. B.; Lynch-Stieglitz, J.

    2015-12-01

    Since the 1960s, changes in the production of North Atlantic Deep Water (NADW) have been invoked as a way to influence climate changes in the southern hemisphere, to synchronize the changes in both hemispheres or to trigger an early climate response in the southern hemisphere. While not the first to document the role of NADW and changes in heat transport in hemispheric linkages, Tom Crowley's 1992 paper "North Atlantic Deep Water Cools the Southern Hemisphere" was an elegant and influential contribution outlining how changes in NADW production may have caused the early southern hemisphere response seen on orbital time scales by Hays, Imbrie and Shackleton (1976) as well as other researchers studying climate variability in marine sediments and polar ice cores. Our understanding of climate change and ocean circulation has improved greatly since the early 1990s. Modern observations have increased our understanding of processes governing deep water production, mixing and circulation. A dedicated community effort to better reconstruct past changes in ocean circulation has resulted in: 1) longer and more highly-resolved time series of deep water production on orbital time scales; 2) reconstructions of the bathymetric and geographic distribution of nutrients that are affected by circulation and water mass geometry; 3) the development of new ways to determine rates of ocean overturning, especially in the Atlantic; and 4) the development of highly-resolved records of ocean circulation that document variability on centennial and millennial time scales. In this presentation we aim to synthesize the current state of understanding of deep water production and climate change on these longer time scales.

  9. Detecting a Potential Collapse of the North Atlantic Thermohaline Circulation: the Benefit of an Improved Ocean Observation System

    NASA Astrophysics Data System (ADS)

    Deutsch, C.; Bradford, D. F.; Keller, K.

    2001-12-01

    Many climate models predict a collapse of the North Atlantic thermohaline circulation (THC) as a result of anthropogenic climate change. The economic damages attending such a global change are likely to be non-negligible. Detecting such a THC collapse --- should it happen in the future --- would certainly affect climate policy. We argue that the present observation system would not detect a diminishing North Atlantic THC before it reaches a level below which models indicate it would not recover for centuries (we refer to this as the point of no return). Our simple analysis suggests that detection with 90% confidence would occur only after the point of no return because the present ocean observation system observes too infrequently and/or the inferred ocean circulation is too uncertain. This conclusion holds for a variety of analysis methods, both from a Bayesian and from a frequentist point of view. Detection of a THC collapse before the point of no return could be achieved in our model by more frequent observations. A crude cost-benefit analysis suggests that the benefits of such an improved ocean observation system would considerably exceed the costs.

  10. Tracing Thermohaline Circulation Slowdown by Temperature Increase of the Intermediate-depth Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ruhlemann, C.; Mulitza, S.; Lohmann, G.; Paul, A.; Prange, M.; Wefer, G.

    2002-12-01

    Climate modeling studies predict that under a global greenhouse-gas warming situation the ocean's thermohaline circulation (THC) might weaken or even shut down. The detailed conditions for such an event are not well understood, it is however likely that a more or less complete collapse of the thermohaline circulation could be triggered by changes in surface conditions leading to fresher and/or warmer sea surface in high latitudes. Current observations indicate a freshening of the North Atlantic and concomitant reduction in the Iceland-Scotland overflow suggesting that a change of the THC might already be in progress. The North Atlantic, however, is a region that undergoes considerable hydrographic variations on annual to decadal timescales. Hence, additional observations from locations other than the North Atlantic, that allow for the early detection of THC change are required. We used benthic foraminiferal oxygen isotope ratios from two sediment cores recovered at 426 m and 1299 m water depth in the eastern and western tropical Atlantic to show that strong reductions in thermohaline overturning during the last deglaciation were associated with rapid and intense warming of intermediate-depth waters. A climate model simulation revealed that a similar temperature pattern is expected for a reduction in modern thermohaline overturning in response to changes in the North Atlantic freshwater budget. We suggest that a temperature increase of tropical Atlantic mid-depth waters, as it is already observed for the past century, could serve as a sensitive indicator of THC slowdown with a high signal-to-noise ratio.

  11. Modelling the distribution of plutonium in the Pacific Ocean.

    PubMed

    Nakano, Masanao; Povinec, Pavel P

    2003-01-01

    An Oceanic General Circulation Model (OGCM) including a plutonium scavenging model as well as an advection-diffusion model has been developed for modelling the distribution of plutonium in the Pacific Ocean. Calculated 239, 240Pu water profile concentrations and 239, 240Pu inventories in water and sediment of the Pacific Ocean have showed a reasonable agreement with the experimental results. The presence of local fallout plutonium in central North Pacific waters has been confirmed. The observed 240Pu/239Pu mass ratios confirm that plutonium originating from local fallout from nuclear weapons tests carried out at Bikini and Enewetak Atolls is more rapidly removed from surface waters to deeper waters than plutonium originating from global fallout. The developed OGCM can be used for modelling the dispersion of other non-conservative tracers in the ocean as well. PMID:12860091

  12. The development of a coupled ice-ocean model for forecasting ice conditions in the Arctic

    NASA Astrophysics Data System (ADS)

    Riedlinger, Shelley H.; Preller, Ruth H.

    1991-09-01

    A coupled ice-ocean model has been developed to investigate how a better simulation of ice-ocean interaction can improve sea ice forecasting capabilities. The coupling of the ice and ocean results in improved temporal variability of ocean circulation and heat and salt exchange between ice and ocean. The U.S. Navy's Polar Ice Prediction System is coupled to a diagnostic version of the Bryan-Cox three-dimensional ocean circulation model. A horizontal grid spacing of 127 km was used in the coupled model with 17 vertical levels from the surface to the ocean bottom. Atmospheric data from the Naval Operational Global Atmospheric Prediction System (NOGAPS) for 1986 were used to force the model. The ice-ocean model simulation yielded realistic ice thickness distributions, ice drifts, and ocean currents. The model predicted accurate seasonal trends in ice growth and decay. Excess ice is often grown in the Greenland and Barents seas in fall and winter. This is due, in part, to the model's grid resolution which does not accurately resolve narrow currents, such as the West Spitsbergen Current. A sensitivity study of the heat transfer coefficients used in the ice model showed that the ice edge could be improved by using different coefficient values for thick ice, thin ice, and open water. Other sensitivity studies examined the effect of removing the "distorted" physics frequently used in the Bryan-Cox ocean circulation model and the effect of the vertical eddy momentum coefficient on the surface ocean circulation. An additional simulation was made using 1989 NOGAPS forcing to examine what type of variability could occur when using different years of NOGAPS forcing in the diagnostic ocean model. Significant differences occurred between the 1989 and 1986 ice thickness distributions as well as the oceanic heat fluxes. These differences show that the forecast system, which presently uses an ocean "climatology," can benefit from the variability allowed by the diagnostic ocean model.

  13. Zoogeography of intertidal communities in the West Indian Ocean as determined by ocean circulation systems: patterns from the Tetraclita barnacles.

    PubMed

    Tsang, Ling Ming; Achituv, Yair; Chu, Ka Hou; Chan, Benny Kwok Kan

    2012-01-01

    The Indian Ocean is the least known ocean in the world with the biogeography of marine species in the West Indian Ocean (WIO) understudied. The hydrography of WIO is characterized by four distinct oceanographic systems and there were few glacial refugia formations in the WIO during the Pleistocene. We used the widely distributed intertidal barnacle Tetraclita to test the hypothesis that the distribution and connectivity of intertidal animals in the WIO are determined by the major oceanographic regime but less influenced by historical events such as Pleistocene glaciations. Tetraclita were studied from 32 locations in the WIO. The diversity and distribution of Tetraclita species in the Indian Ocean were examined based on morphological examination and sequence divergence of two mitochondrial genes (12S rDNA and COI) and one nuclear gene (histone 3, H3). Divergence in DNA sequences revealed the presence of seven evolutionarily significant units (ESUs) of Tetraclita in WIO, with most of them recognized as valid species. The distribution of these ESUs is closely tied to the major oceanographic circulation systems. T. rufotincta is distributed in the Monsoonal Gyre. T. ehsani is present in the Gulf of Oman and NW India. Tetraclita sp. nov. is associated with the Hydrochemical Front at 10°S latitude. T. reni is confined to southern Madagascan and Mauritian waters, influenced by the West Wind Drift. The endemic T. achituvi is restricted to the Red Sea. Tetraclita serrata consists of two ESUs (based on mtDNA analysis) along the east to west coast of South Africa. The two ESUs could not be distinguished from morphological analysis and nuclear H3 sequences. Our results support that intertidal species in the West Indian Ocean are associated with each of the major oceanographic circulation systems which determine gene flow. Geographical distribution is, however, less influenced by the geological history of the region. PMID:23024801

  14. Zoogeography of Intertidal Communities in the West Indian Ocean as Determined by Ocean Circulation Systems: Patterns from the Tetraclita Barnacles

    PubMed Central

    Tsang, Ling Ming; Achituv, Yair; Chu, Ka Hou; Chan, Benny Kwok Kan

    2012-01-01

    The Indian Ocean is the least known ocean in the world with the biogeography of marine species in the West Indian Ocean (WIO) understudied. The hydrography of WIO is characterized by four distinct oceanographic systems and there were few glacial refugia formations in the WIO during the Pleistocene. We used the widely distributed intertidal barnacle Tetraclita to test the hypothesis that the distribution and connectivity of intertidal animals in the WIO are determined by the major oceanographic regime but less influenced by historical events such as Pleistocene glaciations. Tetraclita were studied from 32 locations in the WIO. The diversity and distribution of Tetraclita species in the Indian Ocean were examined based on morphological examination and sequence divergence of two mitochondrial genes (12S rDNA and COI) and one nuclear gene (histone 3, H3). Divergence in DNA sequences revealed the presence of seven evolutionarily significant units (ESUs) of Tetraclita in WIO, with most of them recognized as valid species. The distribution of these ESUs is closely tied to the major oceanographic circulation systems. T. rufotincta is distributed in the Monsoonal Gyre. T. ehsani is present in the Gulf of Oman and NW India. Tetraclita sp. nov. is associated with the Hydrochemical Front at 10°S latitude. T. reni is confined to southern Madagascan and Mauritian waters, influenced by the West Wind Drift. The endemic T. achituvi is restricted to the Red Sea. Tetraclita serrata consists of two ESUs (based on mtDNA analysis) along the east to west coast of South Africa. The two ESUs could not be distinguished from morphological analysis and nuclear H3 sequences. Our results support that intertidal species in the West Indian Ocean are associated with each of the major oceanographic circulation systems which determine gene flow. Geographical distribution is, however, less influenced by the geological history of the region. PMID:23024801

  15. Zoogeography of intertidal communities in the West Indian Ocean as determined by ocean circulation systems: patterns from the Tetraclita barnacles.

    PubMed

    Tsang, Ling Ming; Achituv, Yair; Chu, Ka Hou; Chan, Benny Kwok Kan

    2012-01-01

    The Indian Ocean is the least known ocean in the world with the biogeography of marine species in the West Indian Ocean (WIO) understudied. The hydrography of WIO is characterized by four distinct oceanographic systems and there were few glacial refugia formations in the WIO during the Pleistocene. We used the widely distributed intertidal barnacle Tetraclita to test the hypothesis that the distribution and connectivity of intertidal animals in the WIO are determined by the major oceanographic regime but less influenced by historical events such as Pleistocene glaciations. Tetraclita were studied from 32 locations in the WIO. The diversity and distribution of Tetraclita species in the Indian Ocean were examined based on morphological examination and sequence divergence of two mitochondrial genes (12S rDNA and COI) and one nuclear gene (histone 3, H3). Divergence in DNA sequences revealed the presence of seven evolutionarily significant units (ESUs) of Tetraclita in WIO, with most of them recognized as valid species. The distribution of these ESUs is closely tied to the major oceanographic circulation systems. T. rufotincta is distributed in the Monsoonal Gyre. T. ehsani is present in the Gulf of Oman and NW India. Tetraclita sp. nov. is associated with the Hydrochemical Front at 10°S latitude. T. reni is confined to southern Madagascan and Mauritian waters, influenced by the West Wind Drift. The endemic T. achituvi is restricted to the Red Sea. Tetraclita serrata consists of two ESUs (based on mtDNA analysis) along the east to west coast of South Africa. The two ESUs could not be distinguished from morphological analysis and nuclear H3 sequences. Our results support that intertidal species in the West Indian Ocean are associated with each of the major oceanographic circulation systems which determine gene flow. Geographical distribution is, however, less influenced by the geological history of the region.

  16. North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Lin, Hongyang; Chen, Han-ching; Thompson, Keith; Bentsen, Mats; Böning, Claus W.; Bozec, Alexandra; Cassou, Christophe; Chassignet, Eric; Chow, Chun Hoe; Danabasoglu, Gokhan; Danilov, Sergey; Farneti, Riccardo; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Ilicak, Mehmet; Jung, Thomas; Masina, Simona; Navarra, Antonio; Patara, Lavinia; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sui, Chung-Hsiung; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yeager, Steve G.

    2016-08-01

    We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger

  17. Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system

    NASA Astrophysics Data System (ADS)

    Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.

    2014-04-01

    This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a

  18. A review of the Southern Oscillation - Oceanic-atmospheric circulation changes and related rainfall anomalies

    NASA Technical Reports Server (NTRS)

    Kousky, V. E.; Kagano, M. T.; Cavalcanti, I. F. A.

    1984-01-01

    The region of South America is emphasized in the present consideration of the Southern Oscillation (SO) oceanic and atmospheric circulation changes. The persistence of climate anomalies associated with El Nino-SO events is due to strong atmosphere-ocean coupling. Once initiated, the SO follows a certain sequence of events with clearly defined effects on tropical and subtropical rainfall. Excessive rainfall related to the SO in the central and eastern Pacific, Peru, Ecuador, and southern Brazil, are complemented by drought in Australia, Indonesia, India, West Africa, and northeast Brazil. El Nino-SO events are also associated with dramatic changes in the tropospheric flow pattern over a broad area of both hemispheres.

  19. What is the skill of ocean tracers in reducing uncertainties about ocean diapycnal mixing and projections of the Atlantic Meridional Overturning Circulation?

    NASA Astrophysics Data System (ADS)

    Goes, Marlos; Urban, Nathan M.; Tonkonojenkov, Roman; Haran, Murali; Schmittner, Andreas; Keller, Klaus

    2010-12-01

    Current projections of the oceanic response to anthropogenic climate forcings are uncertain. Two key sources of these uncertainties are (1) structural errors in current Earth system models and (2) imperfect knowledge of model parameters. Ocean tracer observations have the potential to reduce these uncertainties. Previous studies typically consider each tracer separately, neglect potentially important statistical properties of the system, or use methods that impose rather daunting computational demands. Here we extend and improve upon a recently developed approach using horizontally averaged vertical profiles of chlorofluorocarbon (CFC-11), radiocarbon (Δ14C), and temperature (T) observations to reduce model parametric and structural uncertainties. Our method estimates a joint probability density function, which considers cross-tracer correlations and spatial autocorrelations of the errors. We illustrate this method by estimating two model parameters related to the vertical diffusivity, the background vertical diffusivity, and the upper Southern Ocean mixing. We show that enhancing the upper Southern Ocean mixing in the model improves the representations of ocean tracers and improves the hindcasts of the Atlantic Meridional Overturning Circulation (AMOC). The most probable value of the background vertical diffusivity in the pelagic pycnocline is between 0.1 and 0.2 cm2 s-1. According to the statistical method, observations of Δ14C reduce the uncertainty about the background vertical diffusivity mostly followed by CFC-11 and T. Using all three tracers jointly reduces the model uncertainty by 40%, more than each tracer individually. Given several important caveats, we illustrate how the reduced model parametric uncertainty improves probabilistic projections of the AMOC.

  20. Numerical modeling of intrinsically and extrinsically forced seasonal circulation in the China Seas: A kinematic study

    NASA Astrophysics Data System (ADS)

    Gan, Jianping; Liu, Zhiqiang; Liang, Linlin

    2016-07-01

    We developed a new three-dimensional, high-resolution ocean circulation model for the entire China Seas (CS) region. The model considered the linked physics associated with the western boundary current, monsoonal wind, and tidal forcings, and topography in both the CS and the adjacent oceans. From this well-validated model, we derived new insights into the three-dimensional seasonal circulation of the CS in response to the intrinsic forcing of monsoonal winds and extrinsic forcing of flow exchange with adjacent oceans through the straits and over the slope around the periphery of the CS. Besides the East Asian monsoon forcing, we found that the extrinsic forcings interact coherently with each other and with the interior circulation to jointly shape the CS circulation. Specifically, we revealed rotating layered circulation in the CS. The circulation in the South China Sea has a vertical cyclonic-anticyclonic-cyclonic pattern in the upper-middle-lower layers, which we relate to the inflow-outflow-inflow transport in those layers in the Luzon Strait. The circulation in the East China Sea (ECS) is characterized by a vertically variable cyclonically rotating flow, and the circulation in the Yellow Sea (YS) is represented by a cyclonic movement in the upper layer and an anticyclonic movement in the lower layer. We attribute the cross-shelf variation of the along-shelf current to the ECS circulation pattern, while the vertically variable intrusive current at the central trough, together with the seasonally varied west and east coastal currents, shape the two-layer circulation in the YS.

  1. North Atlantic ocean circulation and abrupt climate change during the last glaciation

    NASA Astrophysics Data System (ADS)

    Henry, L. G.; McManus, J. F.; Curry, W. B.; Roberts, N. L.; Piotrowski, A. M.; Keigwin, L. D.

    2016-07-01

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ13C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean’s persistent, central role in abrupt glacial climate change.

  2. Recurring Cold Winters over the Gulf Stream and Implications for Northern Hemisphere Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Strey, S. T.

    2015-12-01

    As polar amplification of climate warming continues, the potential for increased blocking patterns in the Northern Hemisphere jet stream in conjunction with Arctic climate change exists. During such blocking events the Gulf Stream may be exposed to repeated Cold Air Outbreak (CAO) events, especially during winter. Hypothesizing, based upon basic physical and thermodynamic properties of seawater, one would expect increased CAO events to lead alteration of key characteristics of the Gulf Stream. As the Gulf Stream is a well-known participant in the Atlantic meridional overturning circulation (AMOC), and the Gulf Stream feeds the North Atlantic Current into the Arctic Ocean, interesting consequences to alterations of this local system into the large-scale general climate circulation are expected. This study uses CESM's POP to examine 30 years of CAO intensive winters alongside 30 years of repeated winter warm events to quantify potential subsequent changes in the AMOC and North Atlantic Arctic Ocean inflow.

  3. Observations and Modeling of the Transient General Circulation of the North Pacific Basin

    NASA Technical Reports Server (NTRS)

    McWilliams, James C.

    2000-01-01

    Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.

  4. Response to Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation".

    PubMed

    Clement, Amy; Cane, Mark A; Murphy, Lisa N; Bellomo, Katinka; Mauritsen, Thorsten; Stevens, Bjorn

    2016-06-24

    Zhang et al interpret the mixed-layer energy budget in models as showing that "ocean dynamics play a central role in the AMO." Here, we show that their diagnostics cannot reveal the causes of the Atlantic Multidecadal Oscillation (AMO) and that their results can be explained with minimal ocean influence. Hence, we reaffirm our findings that the AMO in models can be understood primarily as the upper-ocean thermal response to stochastic atmospheric forcing. PMID:27339977

  5. Response to Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation".

    PubMed

    Clement, Amy; Cane, Mark A; Murphy, Lisa N; Bellomo, Katinka; Mauritsen, Thorsten; Stevens, Bjorn

    2016-06-24

    Zhang et al interpret the mixed-layer energy budget in models as showing that "ocean dynamics play a central role in the AMO." Here, we show that their diagnostics cannot reveal the causes of the Atlantic Multidecadal Oscillation (AMO) and that their results can be explained with minimal ocean influence. Hence, we reaffirm our findings that the AMO in models can be understood primarily as the upper-ocean thermal response to stochastic atmospheric forcing.

  6. The effect of sudden ice sheet melt on ocean circulation and surface climate 14-16 ka

    NASA Astrophysics Data System (ADS)

    Ivanovic, Ruza; Gregoire, Lauren; Wickert, Andrew; Valdes, Paul

    2016-04-01

    Collapse of ice sheets can cause significant sea-level rise and widespread climate change. Around 14.6 thousand years ago, global sea level rose by ˜15 m in less than 350 years[1] during an event known as Meltwater Pulse 1a. Modelling work[2,3] has suggested that approximately half of this ˜50 mm yr-1 sea level rise came from a North American ice Saddle Collapse that drained into the Arctic and Atlantic Oceans. However, dating uncertainties make it difficult to determine the sequence of events and their drivers, leaving many fundamental questions. For example, did the abrupt ice melting and subsequent ocean freshening have any detectable climatic impact? Was melting from the Northern American ice sheets responsible for the Older-Dryas[4] or other cooling events? And how were all these signals linked to changes in Atlantic Ocean overturning circulation[e.g.5]? To address these questions, we examined the effect of the North American ice Saddle Collapse using a newly developed high resolution network drainage model coupled to an atmosphere-ocean-vegetation General Circulation Model. Here, we present the first quantitative routing estimates of the consequent meltwater discharge and its impact on climate. The results show that approximately 50% of the Saddle Collapse meltwater pulse was routed down the Mackenzie River into the Arctic Ocean, and around half was discharged directly into the Atlantic via the St. Lawrence River. This meltwater flux, equivalent to a total of 7 m of sea-level rise, caused a strong weakening of Atlantic Meridional Overturning Circulation (AMOC) and widespread Northern Hemisphere cooling. The greatest cooling is in the Arctic, but there is also significant warming over North America. We find that AMOC (and climate) is most sensitive to meltwater discharged to the Arctic Ocean. [1] Deschamps et al. (2012) Nature 483, 559-564. [2] Gregoire et al. (2012) Nature 487, 219-222. [3] Gomez et al. (2015) GRL 42(10), 3954-3962. [4] Menviel et al. (2010

  7. A hierarchy of thermohaline circulation models. Final report

    SciTech Connect

    Cessi, P.; Young, W.R.

    1998-04-01

    The objectives of this effort were: (1) to understand the variability caused by the competitive roles of salt and heat in the ocean circulation; (2) to understand the effect of differential advection of active tracers, such as temperature, salinity and angular momentum; and (3) to improve the parametrization of convection in models of the ocean circulation. One result of the project is the discovery that the characteristics of the quasi-periodic centennial and millennial oscillations found in OGCM`s, associated with alternating suppression and activation of high latitude convection, are extremely sensitive to the salinity flux and specific choice of convective adjustment scheme. In particular, the period of the oscillation depends crucially on the salinity fluxes (whether deterministic or with a stochastic component) and can be arbitrarily long. This result has clarified that these long-period oscillations (termed flushes) are not the result of the excitation of an intrinsic linear eigenmode of the system, but rather are relaxation-oscillations towards one of the several equilibria available to the system. This implies that it is the amplitude, rather than the period, of the oscillation which is almost independent of the salinity flux.

  8. The Closure History of the Central American Seaway and its Relationship to Ocean Circulation and Climate

    NASA Astrophysics Data System (ADS)

    Waite, A. J.; Martin, E. E.; Lawrence, K. T.; Ladlow, C. G.; Newkirk, D.

    2014-12-01

    Paleoceanographic and ecologic studies suggest that gradual shoaling of the Central American Seaway (CAS) as the Isthmus of Panama rose between ~13 to 2 Ma caused a stepwise shutdown of deep, intermediate, and shallow Pacific water flow through the seaway into the Caribbean. This diminishing communication is thought to have significantly influenced surface currents, ocean circulation at depth, and ultimately regional and global climate. However, new studies of Panama's volcanic/tectonic history suggest the isthmus rose much earlier than previous estimates, calling into question many of our accepted implications for this gateway event under the 'Panama Hypothesis,' including strengthened thermohaline circulation, North Atlantic Deep Water production, increased North Atlantic temperature, and ties to Northern Hemisphere glaciation. Despite considerable research, few paleoceanographic studies have directly examined the possibility of earlier events in the closure history of the CAS and thus the precise linkages and timing are not well defined. To investigate early restricted CAS flow related to sill formation or pulsed exhumation events, we examine two sets of independent paleoceanographic reconstructions from Ocean Drilling Program sediment cores from the region. We assess the presence of Pacific waters within the Caribbean over the last 30 Ma via the Nd-isotopic composition of fish teeth from several Caribbean sites; these records point to sustained transport of Pacific waters into the Caribbean from at least 30 to 10 Ma. Further, alkenone-derived sea surface temperature (SST) reconstructions from the Eastern Equatorial Pacific (EEP) indicate the presence of consistently warm (>27 °C) waters in the EEP from ~12 to ~5 Ma, after which time SSTs at sites within the modern cold tongue begin to cool appreciably. The SST data imply that the EEP cold tongue, which some studies suggest is linked in part to the rise of the Panamanian isthmus, did not develop until after 5

  9. Modelling the global coastal ocean.

    PubMed

    Holt, Jason; Harle, James; Proctor, Roger; Michel, Sylvain; Ashworth, Mike; Batstone, Crispian; Allen, Icarus; Holmes, Robert; Smyth, Tim; Haines, Keith; Bretherton, Dan; Smith, Gregory

    2009-03-13

    Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries. PMID:19087928

  10. Sensitivity of climate and Atlantic overturning circulation to uncertain ocean gateway configurations for the late Miocene

    NASA Astrophysics Data System (ADS)

    Bradshaw, C.; Lunt, D. J.; Flecker, R.; Martinez-Mendez, G.

    2013-12-01

    investigate how the opening and closing of these gateways might influence ocean circulation, and hence climate, with late Miocene boundary conditions using the fully coupled atmosphere-ocean-vegetation GCM HadCM3L with TRIFFID. We show how the model suggests these gateways in different configurations might influence NADW production, with results from all possible combinations of these three gateways presented and compared to the available proxy data. The climatic implications of the presence of the Barents Shelf and Kara Shelf land masses prior to their final erosion has not been the subject of much research, either through modelling or data interpretation, and indeed many model simulations for the Miocene do not include these shelves as land masses at all. Here we also test our hypothesis that these land masses also impact NADW production through the restriction of the exchange of water between the Arctic Ocean and the Greenland-Iceland-Norwegian Sea. We hypothesize that their presence as land masses results in a saltier North Atlantic than occurs after their erosion; without the land masses there, the North Atlantic would experience more influence from the East Greenland Current (colder/fresher) and less influence of the Irminger Current (warmer/saltier).

  11. A river flow routing scheme for general circulation models

    NASA Astrophysics Data System (ADS)

    Arora, Vivek K.; Chiew, Francis H. S.; Grayson, Rodger B.

    1999-06-01

    The routing of runoff estimates from General Circulation Models (GCMs) is important to model river flow from large river basins and to estimate freshwater inflow into the oceans. Present routing approaches use arbitrary constants and empirical equations to determine travel times between the GCM grid cells. A new river flow routing scheme is developed, which uses physical catchment and river channel information and river discharge data. The scheme uses surface runoff and deep percolation data from land surface parameterization schemes, and routing is performed via linear surface and groundwater reservoirs. Geomorphological relationships between mean annual river discharge and other physical variables are used to interpolate existing information to define the channel morphology for the digital river networks at the routing model resolution. Applications of the routing scheme to the Mississippi and Amazon River Basins indicate that it performs adequately. The scheme does not require the calibration of parameters and can thus be easily used in GCMs.

  12. Summer mean full depth circulation in North Atlantic Ocean along 59.5 N

    NASA Astrophysics Data System (ADS)

    Gladyshev, Vsevolod; Sokov, Alexey; Gladyshev, Sergey

    2016-04-01

    The large scale oceanic circulation in the North Atlantic is an important part of the climate system. Warm saline upper-ocean waters derived in subtropics release heat into the atmosphere while moving northward as North Atlantic Current and by mixing with colder fresher Arctic waters sink in the subpolar basins therefore originating reverse equatorward flow of cold fresh water. This mechanism, known as Atlantic Meridional Overturning Circulation (MOC) is of fundamental importance in the meridional heat transport. Using data from yearly direct hydrographic measurements at 59.5 N with satellite altimetry data in the period 2009-2015 a mean state of the full-depth summer circulation in the region is estimated. Zonal distribution of the 2009-2015 mean summer velocities across the 59.5 N is obtained using four different data sets from (1) pair of WS 300 kHz LADCPs measurements, (2) ship mounted TRDI OS 38 kHz ADCP measurements, (3) AVISO altimetry data (surface absolute geostrophic velocities), and (4) geostrophic velocities data calculated using CTD measurements. By combining those data mean absolute transport is estimated. Results are compared and analyzed confirming and elaborating previous research. Also assessment of the errors associated with full-depth ADCP profiles is settled. This evaluation allows arguing about certainty of collected data and can be used to improve accuracy of circulation rating.

  13. Modelling Tropical Cyclones-Ocean interactions: the role of the Atmophere - Ocean coupling frequency

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Enrico; Fogli, Pier Giuseppe; Gualdi, Silvio; Masina, Simona; Navarra, Antonio

    2016-04-01

    The interaction between Tropical Cyclones (TCs) and ocean is a major mechanism responsible for energy exchange between the atmosphere and the ocean. TCs affect the thermal and dynamical structure of the ocean, but the magnitude of the impact is still uncertain. Very few CMIP5 models demonstrated ability in representing TCs, mainly due to their horizontal resolution. We aim to improve TCs representation in next CMIPs experiments through the new CMCC-CM2VHR General Circulation Model, having a horizontal resolution of 1/4 degree in both atmospheric and ocean components. The model is capable to represent realistically TCs up to Cat-5 Typhoons. A good representation of the TC-Ocean interaction strongly depends on the coupling frequency between the atmospheric and the ocean components. In this work, we found that a better representation of the negative Sea Surface Temperature - TC induced feedback, through a high (hourly) coupling frequency, ensures the reduction of the TC induced Power Dissipation Index (PDI) bias of one order of magnitude. In addition, a cat-5 storm case study is deeply investigated also in terms of TC effects on the deep ocean.

  14. Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations

    PubMed Central

    Kitsios, V.; Frederiksen, J. S.; Zidikheri, M. J.

    2014-01-01

    Parametrizations of the subgrid eddy–eddy and eddy–meanfield interactions are developed for the simulation of baroclinic ocean circulations representative of an idealized Antarctic Circumpolar Current. Benchmark simulations are generated using a spectral spherical harmonic quasi-geostrophic model with maximum truncation wavenumber of T=504, which is equivalent to a resolution of 0.24° globally. A stochastic parametrization is used for the eddy–eddy interactions, and a linear deterministic parametrization for the eddy–meanfield interactions. The parametrization coefficients are determined from the statistics of benchmark simulations truncated back to the large eddy simulation (LES) truncation wavenumber, TR

  15. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    SciTech Connect

    Wang, P; Song, Y T; Chao, Y; Zhang, H

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds of processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.

  16. Parameterizations in high resolution isopycanl wind-driven ocean models

    SciTech Connect

    Jensen, T.G.; Randall, D.A.

    1993-01-01

    For the CHAMMP project, we proposed to implement and test new numerical schemes, parameterizations of boundary layer flow and development and implement mixed layer physics in an existing isopycnal models. The objectives for the proposed research were; implement the Arakawa and Hsu, scheme in an existing isopycnal model of the Indian Ocean; recode the new model for a highly parallel architecture; determine effects of various parameterizations of islands; determine the correct lateral boundary condition for boundary layer currents, as for instance the Gulf Stream and other western boundary currents.; and incorporate a oceanic mixed layer on top of the isopycnal deep layers. This is, primarily a model development project, with emphasis on determining the influence and parameterization of narrow flows along continents and through chains of small islands on the large scale oceanic circulation, which is resolved by climate models. The new model is based on the multi-layer FSU Indian Ocean model. Our research strategy is to; recode a one-layer version of the Indian Ocean Model for a highly parallel computer; add thermodynamics to a rectangular domain version of the new model; implement the irregular domain from the Indian Ocean Model into the box model; change the numerical scheme for the continuity equation to the scheme proposed by; perform parameterization experiments with various coast line and island geometries. This report discusses project progress for period August 1, 1992 through December 31, 1992.

  17. Climate science: Unexpected fix for ocean models

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Thompson, Luanne

    2016-07-01

    Computational models persistently underestimate strong currents that redistribute ocean heat. This problem is solved in models in which ocean eddies are damped by coupling of the atmosphere with the sea. See Letter p.533

  18. Insights From Magnesium Isotopic Compositions on the Oceanic Hydrothermal Circulation: Is Seamount Weathering the Solution?

    NASA Astrophysics Data System (ADS)

    Galy, A.; Carder, E.; Elderfield, H.

    2006-12-01

    It has been long recognised that the input of Mg in the ocean by river is removed by precipitation of Mg-rich bearing phases, either directly from the ocean such as dolomite or through hydrothermal circulation in the oceanic crust. The sampling of hydrothermal fluids demonstrated the efficiency of Mg consumption by the alteration of the oceanic crust, even at temperatures as low as 15°. For high-temperature fluids vented through black or white smokers in the vicinity of the ridge, the Mg concentration is up to 50 time lower than in seawater, and the close relationship between chlorine and Mg led to the idea that seawater was feeding the hydrothermal system and that Mg is quantitatively removed from it during high-T° alteration, the so called zero Mg hypothesis. Despite some hint for a non zero Mg hydrothermal end-member for a handful sites, the low concentration of Mg in oceanic hydrothermal fluids (around 1 mmol/l) has been mainly attributed to contamination by seawater during the sampling. Here we present Mg isotopic composition of 14 seawater samples from the Atlantic, Pacific and Indian Oceans and the Mediterranean and Red Seas and covering a range of depth of almost 5km and 26 hydrothermal fluids from 7 sites in the Atlantic and Pacific Oceans with temperature from 15° to 380°C. We find the magnesium isotope composition of seawater to be constant, with a δ^{26}Mg = -0.82±0.10 ‰ relative to the DSM3 standard. This value is consistent with a long residence time for Mg in seawater. In addition, out of the 26 hydrothermal fluids studied, more than 58% differ from seawater for their Mg isotopic composition by more than 2σ. This number rises up to 88% at 2σmean level and the shift is systematic with the fluids being either indistinguishable from seawater or enriched in light isotopes by up to 2.4‰ in δ^{26}Mg. This clearly demonstrates that fluids having low Mg concentrations are not solely bearing Mg added by contamination during sampling. The isotopic

  19. Scientific development of a massively parallel ocean climate model. Final report

    SciTech Connect

    Semtner, A.J.; Chervin, R.M.

    1996-09-01

    Over the last three years, very significant advances have been made in refining the grid resolution of ocean models and in improving the physical and numerical treatments of ocean hydrodynamics. Some of these advances have occurred as a result of the successful transition of ocean models onto massively parallel computers, which has been led by Los Alamos investigators. Major progress has been made in simulating global ocean circulation and in understanding various ocean climatic aspects such as the effect of wind driving on heat and freshwater transports. These steps have demonstrated the capability to conduct realistic decadal to century ocean integrations at high resolution on massively parallel computers.

  20. Miocene Indian Ocean Circulation: A High-Resolution Multivariate Analysis of Interbasinal Records

    NASA Astrophysics Data System (ADS)

    Irving, D. H.; Smart, C.; Ramsay, A. T.; Thomas, E.

    2006-12-01

    Ocean circulation in the Indian Ocean during the Miocene progresses through three configurations in response to changes in plate movement and global climate. Principal Component Analysis (PCA) was carried out on benthic foraminifera, stable isotope and sedimentological data sampled at 100 kyr intervals from cores recovered from ODP sites 237, 707, 709 and 710 in the Somali Basin (SOB) and sites 214, 216 and 238 in the Mid-Indian Basin (MIB). These analyses provide insight into the structure and dynamics of the Indian Ocean through most of the Miocene (25--6 Ma) and suggest forcing mechanisms of the circulation system in this and adjacent ocean basins. Bulk responses of infaunal and epifaunal species mask local and regional oceanic signals that this study extracts by analysis at the species level. Isotopic ratios are used to describe the depth structure of the two basins. Coupled with sedimentological data, the dynamics of the basins is described in terms of the major events of the Miocene, namely Tethyan closure, the growth of the West Antarctic Ice Sheet (WAIS) and the initiation of the monsoon. PCA of the time series data show three separate components which correlate with these three phases in the history of the Indian Ocean. These are: i) 25-18 Ma, a stratified SOB with warm dense Tethyan outflow waters (TOW) underlying cooler, less dense water that is weakly coupled across the Chagos- Laccadive Ridge (CLR) with an unstratified MIB; ii) 18-12 Ma, mixing in the SOB as TOW diminishes due to seaway closure, and increasing cool bottom waters which penetrate further north with time, accompanied by stratification of the MIB and stronger coupling of surface waters promoting nutrient transfer eastwards; iii) 12-6 Ma, overturn and upwelling in the SOB with occasional strong fluxes of cooler WAIS bottom water and strong stratification in the MIB, with a westerly flux of warm water overtopping a more greatly subsided CLR.

  1. Modeling the Sun's Global Meridional Circulation

    NASA Astrophysics Data System (ADS)

    Dikpati, M.

    2013-12-01

    Meridional circulation is an important ingredient for solar dynamo models, and hence knowing its speed, its profile in latitude and depth and its time variation is crucial for understanding the dynamo. Observations provide us with knowledge about its speed and profile at the surface, more accurately at low to mid-latiudes. Consensus has not been reached regarding what is happening in polar regions and at greater depths. The theory of meridional circulation with latitude and depth can give us guidance as to what may be happening in these regions. A hierarchy of complexity of approaches to develop this theory is possible. We have built a global hydro-dynamical model of meridional circulation that includes Coriolis forces from differential rotation, turbulent Reynolds stresses, pressure forces, and provision for thermodynamics. By specifying differential rotations motivated by observations, we find that the steady-state solutions from this model include the following patterns: i) one long cell with poleward surface flow and an equatorward return flow at the base of the convection zone when there is no density increase with depth; ii) a primary flow-cell with poleward surface flow at low to mid-latitudes, together with a second, high latitude, reversed equatorward flow cell in the case of a solar-like density increase with depth and a solar-like differential rotation. However, for solar-like turbulent viscosity, the meridional flow speeds are much larger than observed, implying that an additional physical mechanism is needed that works against the meridional flow. The most likely candidate is a negative buoyancy force arising from small departures of the radial temperature gradient from the adiabatic gradient. There are several possible mechanisms for producing such an effect, but none can be defined well from available observations.

  2. Electrical Lumped Model Examination for Load Variation of Circulation System

    NASA Astrophysics Data System (ADS)

    Koya, Yoshiharu; Ito, Mitsuyo; Mizoshiri, Isao

    Modeling and analysis of the circulation system enables the characteristic decision of circulation system in the body to be made. So, many models of circulation system have been proposed. But, they are complicated because the models include a lot of elements. Therefore, we proposed a complete circulation model as a lumped electrical circuit, which is comparatively simple. In this paper, we examine the effectiveness of the complete circulation model as a lumped electrical circuit. We use normal, angina pectoris, dilated cardiomyopathy and myocardial infarction for evaluation of the ventricular contraction function.

  3. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability

    PubMed Central

    Hu, Aixue; Meehl, Gerald A.; Han, Weiqing; Timmermann, Axel; Otto-Bliesner, Bette; Liu, Zhengyu; Washington, Warren M.; Large, William; Abe-Ouchi, Ayako; Kimoto, Masahide; Lambeck, Kurt; Wu, Bingyi

    2012-01-01

    Abrupt climate transitions, known as Dansgaard-Oeschger and Heinrich events, occurred frequently during the last glacial period, specifically from 80–11 thousand years before present, but were nearly absent during interglacial periods and the early stages of glacial periods, when major ice-sheets were still forming. Here we show, with a fully coupled state-of-the-art climate model, that closing the Bering Strait and preventing its throughflow between the Pacific and Arctic Oceans during the glacial period can lead to the emergence of stronger hysteresis behavior of the ocean conveyor belt circulation to create conditions that are conducive to triggering abrupt climate transitions. Hence, it is argued that even for greenhouse warming, abrupt climate transitions similar to those in the last glacial time are unlikely to occur as the Bering Strait remains open. PMID:22493225

  4. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability.

    PubMed

    Hu, Aixue; Meehl, Gerald A; Han, Weiqing; Timmermann, Axel; Otto-Bliesner, Bette; Liu, Zhengyu; Washington, Warren M; Large, William; Abe-Ouchi, Ayako; Kimoto, Masahide; Lambeck, Kurt; Wu, Bingyi

    2012-04-24

    Abrupt climate transitions, known as Dansgaard-Oeschger and Heinrich events, occurred frequently during the last glacial period, specifically from 80-11 thousand years before present, but were nearly absent during interglacial periods and the early stages of glacial periods, when major ice-sheets were still forming. Here we show, with a fully coupled state-of-the-art climate model, that closing the Bering Strait and preventing its throughflow between the Pacific and Arctic Oceans during the glacial period can lead to the emergence of stronger hysteresis behavior of the ocean conveyor belt circulation to create conditions that are conducive to triggering abrupt climate transitions. Hence, it is argued that even for greenhouse warming, abrupt climate transitions similar to those in the last glacial time are unlikely to occur as the Bering Strait remains open. PMID:22493225

  5. Modeling pCO sub 2 in the upper ocean

    SciTech Connect

    Archer, D.

    1990-12-01

    This report summarizes our current understanding of the physical, chemical, and biological processes that control the natural cycling of carbon dioxide (CO{sub 2}) in the surface ocean. Because the physics of mixing at the ocean surface creates the essential framework for the chemistry and biology, and because the literature on surface ocean mixing is extensive, a major focus of the report is to review existing mixed layer models for the upper ocean and their implementation in global ocean circulation models. Three families of mixed layer models have been developed. The integrated turbulent kinetic energy'' (TKE) models construct a budget for surface ocean TKE, using the wind stress as source and dissipation as sink for TKE. The shear instability'' models maintain profiles of current velocity resulting from the wind stress. Turbulence closure'' models are the most general and the most complicated of the three types, and are based on laboratory studies of fluid turbulence. This paper explores behavioral distinctions between the three types of models, and summarizes previously published comparisons of the generality, accuracy, and computational requirements of the three models. The application of mixed layer models to treatment of sea ice is also reviewed. 101 refs., 7 figs., 1 tab.

  6. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    PubMed

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-01

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  7. Variability of Ocean Heat Uptake: Reconciling Observations and Models

    SciTech Connect

    AchutaRao, K M; Santer, B D; Gleckler, P J; Taylor, K; Pierce, D; Barnett, T; Wigley, T L

    2005-05-05

    This study examines the temporal variability of ocean heat uptake in observations and in climate models. Previous work suggests that coupled Atmosphere-Ocean General Circulation Models (A-OGCMs) may have underestimated the observed natural variability of ocean heat content, particularly on decadal and longer timescales. To address this issue, we rely on observed estimates of heat content from the 2004 World Ocean Atlas (WOA-2004) compiled by Levitus et al. (2005). Given information about the distribution of observations in WOA-2004, we evaluate the effects of sparse observational coverage and the infilling that Levitus et al. use to produce the spatially-complete temperature fields required to compute heat content variations. We first show that in ocean basins with limited observational coverage, there are important differences between ocean temperature variability estimated from observed and infilled portions of the basin. We then employ data from control simulations performed with eight different A-OGCMs as a test-bed for studying the effects of sparse, space- and time-varying observational coverage. Subsampling model data with actual observational coverage has a large impact on the inferred temperature variability in the top 300 and 3000 meters of the ocean. This arises from changes in both sampling depth and in the geographical areas sampled. Our results illustrate that subsampling model data at the locations of available observations increases the variability, reducing the discrepancy between models and observations.

  8. DETECTORS AND EXPERIMENTAL METHODS: Circulation model for water circulation and purification in a water Cerenkov detector

    NASA Astrophysics Data System (ADS)

    Lu, Hao-Qi; Yang, Chang-Gen; Wang, Ling-Yu; Xu, Ji-Lei; Wang, Rui-Guang; Wang, Zhi-Min; Wang, Yi-Fang

    2009-07-01

    Owing to its low cost and good transparency, highly purified water is widely used as a medium in large water Cerenkov detector experiments. The water circulation and purification system is usually needed to keep the water in good quality. In this work, a practical circulation model is built to describe the variation of the water resistivity in the circulation process and compared with the data obtained from a prototype experiment. The successful test of the model makes it useful in the future design and optimization of the circulation/purification system.

  9. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  10. Design of the UCLA general circulation model

    NASA Technical Reports Server (NTRS)

    Arakawa, A.

    1972-01-01

    An edited version is reported of notes distributed at the Summer Workshop on the UCLA General Circulation Model in June 1971. It presents the computational schemes of the UCLA model, along with the mathematical and physical principles on which these schemes are based. Included are the finite difference schemes for the governing fluid-dynamical equations, designed to maintain the important integral constraints and dispersion characteristics of the motion. Also given are the principles of parameterization of cumulus convection by an ensemble of identical clouds. A model of the ground hydrology, involving the liquid, ice and snow states of water, is included. A short summary is given of the scheme for computing solar and infrared radiation transfers through clear and cloudy air.

  11. Does the sensitivity of Southern Ocean circulation depend upon bathymetric details?

    PubMed

    Hogg, Andrew McC; Munday, David R

    2014-07-13

    The response of the major ocean currents to changes in wind stress forcing is investigated with a series of idealized, but eddy-permitting, model simulations. Previously, ostensibly similar models have shown considerable variation in the oceanic response to changing wind stress forcing. Here, it is shown that a major reason for these differences in model sensitivity is subtle modification of the idealized bathymetry. The key bathymetric parameter is the extent to which the strong eddy field generated in the circumpolar current can interact with the bottom water formation process. The addition of an embayment, which insulates bottom water formation from meridional eddy fluxes, acts to stabilize the deep ocean density and enhances the sensitivity of the circumpolar current. The degree of interaction between Southern Ocean eddies and Antarctic shelf processes may thereby control the sensitivity of the Southern Ocean to change.

  12. Does the sensitivity of Southern Ocean circulation depend upon bathymetric details?

    PubMed

    Hogg, Andrew McC; Munday, David R

    2014-07-13

    The response of the major ocean currents to changes in wind stress forcing is investigated with a series of idealized, but eddy-permitting, model simulations. Previously, ostensibly similar models have shown considerable variation in the oceanic response to changing wind stress forcing. Here, it is shown that a major reason for these differences in model sensitivity is subtle modification of the idealized bathymetry. The key bathymetric parameter is the extent to which the strong eddy field generated in the circumpolar current can interact with the bottom water formation process. The addition of an embayment, which insulates bottom water formation from meridional eddy fluxes, acts to stabilize the deep ocean density and enhances the sensitivity of the circumpolar current. The degree of interaction between Southern Ocean eddies and Antarctic shelf processes may thereby control the sensitivity of the Southern Ocean to change. PMID:24891390

  13. Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations

    NASA Astrophysics Data System (ADS)

    Huck, Thierry; Vallis, Geoffrey K.

    2001-08-01

    What can we learn from performing a linear stability analysis of the large-scale ocean circulation? Can we predict from the basic state the occurrence of interdecadal oscillations, such as might be found in a forward integration of the full equations of motion? If so, do the structure and period of the linearly unstable modes resemble those found in a forward integration? We pursue here a preliminary study of these questions for a case in idealized geometry, in which the full nonlinear behavior can also be explored through forward integrations. Specifically, we perform a three-dimensional linear stability analysis of the thermally-driven circulation of the planetary geostrophic equations. We examine the resulting eigenvalues and eigenfunctions, comparing them with the structure of the interdecadal oscillations found in the fully nonlinear model in various parameter regimes. We obtain a steady state by running the time-dependent, nonlinear model to equilibrium using restoring boundary conditions on surface temperature. If the surface heat fluxes are then diagnosed, and these values applied as constant flux boundary conditions, the nonlinear model switches into a state of perpetual, finite amplitude, interdecadal oscillations. We construct a linearized version of the model by empirically evaluating the tangent linear matrix at the steady state, under both restoring and constant-flux boundary conditions. An eigen-analysis shows there are no unstable eigenmodes of the linearized model with restoring conditions. In contrast, under constant flux conditions, we find a single unstable eigenmode that shows a striking resemblance to the fully-developed oscillations in terms of three-dimensional structure, period and growth rate. The mode may be damped through either surface restoring boundary conditions or sufficiently large horizontal tracer diffusion. The success of this simple numerical method in idealized geometry suggests applications in the study of the stability of

  14. Oceanic mesoscale variability and general circulation from satellite altimetry: A status report

    NASA Technical Reports Server (NTRS)

    Fu, L. L.

    1983-01-01

    Progress on the applications of satellite altimetry from SEASAT and Geos-3 to the study of oceanic mesoscale variability and general circulation is reviewed. The major conclusion for the applications to mesoscale variability is that an optimally designed altimetric mission with a lifetime of several years will improve our knowledge of the global mesoscale variability to an extent unattainable by any other practical means. The proposed Topex mission will allow one to view the global oceanic variability in such a wide range of periods and wavelengths: from 20 days to 3 to 5 years; from 50 to 10,000 km. However, the goal of determining the general circulation cannot be achieved by a single altimetric mission, because a highly accurate geoid needs to be determined independently. The scenario of the combination of Topex with Gravsat, a gravity mission that will give accurate geoid information, will allow the global general circulation to be determined at scales as small as 100 km. Areas of research needing to be performed with existing altimeter data are also discussed.

  15. Atlantic Ocean Circulation during the Latest Cretaceous and Early Paleogene: Progressive Deep Water Exchange

    NASA Astrophysics Data System (ADS)

    Batenburg, Sietske J.; Voigt, Silke; Friedrich, Oliver; Osborne, Ann; Frank, Martin

    2015-04-01

    The Atlantic deep ocean circulation in the Latest Cretaceous (75-66 Ma) was dominated by regional processes, as indicated by the presence of distinct deep water masses. Due to the opening of the Atlantic Ocean, its different sub-basins became progressively connected and a global mode of ocean circulation commenced in the early Paleogene, ~60 Ma. To understand the evolution of deep water formation and exchange, Nd-isotope data and δ13C stratigraphies are generated for a range of sites in the North and South Atlantic. These permit to identify different intermediate and deep-water masses, to recognize their potential source regions and to determine the exact timing of deep water connection. The carbonate-rich pelagic sediments of Site U1403 near Newfoundland can be astronomically tuned and correlated to the global δ13C framework. Relatively negative seawater ɛNd(t) signatures in the 67-62 Ma interval at Site U1403 of ~-10 are distinct from those recorded further south in the North Atlantic. Possible explanations could include elevated non-radiogenic weathering inputs from the North American craton. In the latest Maastrichtian, the Site U1403 ɛNd(t) record displays a short-term positive excursion before the K/Pg boundary (67-66 Ma) followed by a sudden drop to unradiogenic values at the boundary. Changes in ocean circulation might be related to climatic changes in the pre-extinction interval and the impact itself. The ɛNd(t) records at Sites 1267 and 525 at Walvis Ridge show that an early Maastrichtian excursion to highly radiogenic values reflects a brief interval at 72-70 Ma, related to a period of increased hot-spot volcanism. Concomitant measurements of ɛNd(t) values in three different archives, fish teeth, ferromanganese coatings of bulk sediments and of foraminifera, provide a test for the partial influence of detrital particles on the isotopic composition of coatings. The first data of Sites U1403, 1267 and 525 indicate the occurrence of a common deep

  16. Atlantic Ocean Circulation during the Latest Cretaceous and Early Paleogene: Progressive Deep Water Exchange

    NASA Astrophysics Data System (ADS)

    Batenburg, S. J.; Voigt, S.; Friedrich, O.; Frank, M.

    2014-12-01

    The Atlantic deep ocean circulation in the Latest Cretaceous (75-66 Ma) was dominated by regional processes, as indicated by the presence of distinct deep water masses. Due to the opening of the Atlantic Ocean, its different sub-basins became progressively connected and a global mode of ocean circulation commenced in the early Paleogene, ~60 Ma. To understand the evolution of deep water formation and exchange, Nd-isotope data and δ13C stratigraphies are generated for a range of sites in the North and South Atlantic. These permit to identify different intermediate and deep-water masses, to recognize their potential source regions and to determine the exact timing of deep water connection. The carbonate-rich pelagic sediments of Site U1403 near Newfoundland can be astronomically tuned and correlated to the global δ13C framework. Relatively negative seawater ɛNd(t) signatures in the 67-62 Ma interval at Site U1403 of ~-10 are distinct from those recorded further south in the North Atlantic. Possible explanations could include elevated non-radiogenic weathering inputs from the North American craton. In the latest Maastrichtian, the Site U1403 ɛNd(t) record displays a short-term positive excursion before the K/Pg boundary (67-66 Ma) followed by a sudden drop to unradiogenic values at the boundary. Changes in ocean circulation might be related to climatic changes in the pre-extinction interval and the impact itself. The ɛNd(t) records at Sites 1267 and 525 at Walvis Ridge show that an early Maastrichtian excursion to highly radiogenic values reflects a brief interval at 72-70 Ma, related to a period of increased hot-spot volcanism. Concomitant measurements of ɛNd(t) values in three different archives, fish teeth, ferromanganese coatings of bulk sediments and of foraminifera, provide a test for the partial influence of detrital particles on the isotopic composition of coatings. The first data of Sites U1403, 1267 and 525 indicate the occurrence of a common deep

  17. Quantifying predictability variations in a low-order ocean-atmosphere model - A dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.; Dutton, John A.

    1993-01-01

    The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.

  18. Energetically consistent ocean models (Georg Wüst medal lecture)

    NASA Astrophysics Data System (ADS)

    Eden, Carsten; Olbers, Dirk; Czeschel, Lars; Brüggemann, Nils

    2015-04-01

    The energy transfers between the three principal dynamical regimes -- small-scale turbulence, internal gravity waves and geostrophically balanced motion -- are fundamental to the energy cycle of the ocean but poorly understood and quantified. Since the interactions of the dynamical regimes ultimately link the smallest scales to the largest scales by a variety of complex processes, understanding these interactions is mandatory to understand the dynamics of the ocean, to construct models and to predict climate. Here, an effort is documented to develop an energetically consistent model, in which the energy of the mean model variables interacts with the parameterised dynamical regimes without any spurious energy sources or sinks. This means that the energy available to drive the circulation, e.g. by interior mixing in the ocean, is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. Central to the concept is the parameterisation module IDEMIX which predicts and consistently links the sources of internal gravity wave energy in the ocean, its propagation and dissipation. Important components which need further development are physically consistent parameterisations for the dissipation of the geostrophically balanced motion for which different possibilities are explored. The model performance is validated using idealised and realistic global model configurations. The parameterised internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. In contrast, the wind work on the mean circulation contributes by about 1.8 TW to the large-scale circulation.

  19. Modeling the circulation of the Dead Sea

    NASA Astrophysics Data System (ADS)

    Brenner, Steve; Lensky, Nadav; Gertman, Isaac

    2015-04-01

    The Dead Sea is a hypersaline, terminal lake located at the lowest point on the land surface of the Earth. Its current level is more than 429 m below MSL, and due to a negative water balance (mainly anthropogenic), the lake level has been dropping at an average rate of more than 1 m/yr for more than 30 years. The mean salinity has also been steadily increasing and today is close to 280 psu. The region of the Dead Sea is a unique landscape that has important historical, cultural, and economic value and therefore such an extreme change of the lake has significant environmental and economic consequences. In recent years there has been a notable increase in observing and monitoring of the lake through continuous measurements from several fixed buoys as well as during quasi-regular cruises. In order to complement the measurements and improve our understanding of the dynamics of this unique lake a three dimensional circulation model is being developed. Previous modeling efforts were limited mainly to a one dimensional column model which was coupled to a comprehensive physio-chemical model and used for long term multi-decadal simulations. In this study the focus is on understanding the dynamical processes that control the lake-wide circulation on time scales ranging from days to seasons. The first step was to replace the equation of state with an equation appropriate for the hypersaline conditions, in addition to some minor tuning of the turbulence closure scheme. Results will be presented from preliminary simulations of the wind driven circulation in various seasons. A case study of a recent unusual winter flooding event, during which the lake level rose by more than 20 cm over a two month period, will also be presented. The model successfully simulated the observed transition from holomictic to meromictic conditions and epilimnion dilution during this event, as well as the restoration of holomictic conditions when the level started to drop again. The relationship

  20. On theories dealing with the interaction of surface waves and ocean circulation

    NASA Astrophysics Data System (ADS)

    Mellor, George

    2016-07-01

    The classic theory for the interaction of surface gravity waves and the general ocean circulation entails the so-called wave radiation stress terms in the phase-averaged momentum equation. The equations of motion are for the combined Eulerian current and Stokes drift. On the other hand, a more recent approach includes the so-called vortex force term in the momentum equation wherein the only wave property is Stokes drift. The equations of motion are for the Eulerian current. The idea has gained traction in the ocean science community, a fact that motivates this paper. A question is: can both theories be correct? This paper answers the question in the negative and presents arguments in favor of the wave radiation theory. The vortex force approach stems from an interesting mathematical construct, but it does stand up to physical or mathematical scrutiny as described in this paper. Although not the primary focus of the paper, some discussion of Langmuir circulation is included since the vortex force was first introduced as the basis of this oceanic cellular phenomenon. Finaly the paper explains the difference in the derivation of the radiation stress theory and the vortex force theory: the later theory entails errors related to its use of curl and reverse-curl [or uncurl] processes.

  1. Seawater Circulation and Thermal Sink at OCEAN Ridges - FIELD Evidence in Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Nicolas, A. A.; Boudier, F. I.; Cathles, L. M.; Buck, W. R.; Celerier, B. P.

    2014-12-01

    Exceptionally, the lowermost gabbros in the Oman ophiolite are black and totally fresh, except for minute traces of impregnation by seawater fluids at very high temperature (~1000°C). These black gabbros sharply contrast with normal, whitish gabbros altered down to Low-T~500-350°C. These hydrous alterations are ascribed to an unconventional model of seawater circulation and cooling of the permanent magma chambers of fast spreading ocean ridges. In this model, gabbros issued from the magma chamber cross a ~100 m thick thermal boundary layer (TBL) before reaching a narrow, Low-T high permeability channel where the heated return seawater is flowing towards black smokers and the local gabbros are altered. Uprising mantle diapirs in Oman diverge at ~5 km on each side of the palaeo-ridge axis and feed an overlying magma chamber that closes at this distance from axis. Preservation of black gabbros along the Moho implies that the loop of seawater alteration locally does not reach Moho beyond this ~5km distance (otherwise black gabbros would be altered in whitish gabbros). This defines an internal "thermal sink" within ~5 km to the ridge axis. There, the sink is efficiently cooled by the active hydrothermal convection that is ridge transverse. This has been documented near the Galapagos ridge by marine geophysical data, within the same distance. Beyond this critical distance, the cooling system becomes dominantly conductive and ridge-parallel. The TBL and attached return flow channels must be rising into the overcooled, accreted crust. Beyond the thermal sink, the 500°C isotherm rebounds into the crust. It is only after ~ 1My of crustal drift that this isotherm penetrates into the uppermost mantle in a sustained fashion, developing serpentinites at the expense of peridotites.

  2. Hospitable archean climates simulated by a general circulation model.

    PubMed

    Wolf, E T; Toon, O B

    2013-07-01

    Evidence from ancient sediments indicates that liquid water and primitive life were present during the Archean despite the faint young Sun. To date, studies of Archean climate typically utilize simplified one-dimensional models that ignore clouds and ice. Here, we use an atmospheric general circulation model coupled to a mixed-layer ocean model to simulate the climate circa 2.8 billion years ago when the Sun was 20% dimmer than it is today. Surface properties are assumed to be equal to those of the present day, while ocean heat transport varies as a function of sea ice extent. Present climate is duplicated with 0.06 bar of CO2 or alternatively with 0.02 bar of CO2 and 0.001 bar of CH4. Hot Archean climates, as implied by some isotopic reconstructions of ancient marine cherts, are unattainable even in our warmest simulation having 0.2 bar of CO2 and 0.001 bar of CH4. However, cooler climates with significant polar ice, but still dominated by open ocean, can be maintained with modest greenhouse gas amounts, posing no contradiction with CO2 constraints deduced from paleosols or with practical limitations on CH4 due to the formation of optically thick organic hazes. Our results indicate that a weak version of the faint young Sun paradox, requiring only that some portion of the planet's surface maintain liquid water, may be resolved with moderate greenhouse gas inventories. Thus, hospitable late Archean climates are easily obtained in our climate model.

  3. Hospitable archean climates simulated by a general circulation model.

    PubMed

    Wolf, E T; Toon, O B

    2013-07-01

    Evidence from ancient sediments indicates that liquid water and primitive life were present during the Archean despite the faint young Sun. To date, studies of Archean climate typically utilize simplified one-dimensional models that ignore clouds and ice. Here, we use an atmospheric general circulation model coupled to a mixed-layer ocean model to simulate the climate circa 2.8 billion years ago when the Sun was 20% dimmer than it is today. Surface properties are assumed to be equal to those of the present day, while ocean heat transport varies as a function of sea ice extent. Present climate is duplicated with 0.06 bar of CO2 or alternatively with 0.02 bar of CO2 and 0.001 bar of CH4. Hot Archean climates, as implied by some isotopic reconstructions of ancient marine cherts, are unattainable even in our warmest simulation having 0.2 bar of CO2 and 0.001 bar of CH4. However, cooler climates with significant polar ice, but still dominated by open ocean, can be maintained with modest greenhouse gas amounts, posing no contradiction with CO2 constraints deduced from paleosols or with practical limitations on CH4 due to the formation of optically thick organic hazes. Our results indicate that a weak version of the faint young Sun paradox, requiring only that some portion of the planet's surface maintain liquid water, may be resolved with moderate greenhouse gas inventories. Thus, hospitable late Archean climates are easily obtained in our climate model. PMID:23808659

  4. Arctic sea ice circulation and drift speed: Decadal trends and ocean currents

    NASA Astrophysics Data System (ADS)

    Kwok, R.; Spreen, G.; Pang, S.

    2013-05-01

    We examine the basinwide trends in sea ice circulation and drift speed and highlight the changes between 1982 and 2009 in connection to regional winds, multiyear sea ice coverage, ice export, and the thinning of the ice cover. The polarity of the Arctic Oscillation (AO) is used as a backdrop for summarizing the variance and shifts in decadal drift patterns. The 28-year circulation fields show a net strengthening of the Beaufort Gyre and the Transpolar Drift, especially during the last decade. The imprint of the arctic dipole anomaly on the mean summer circulation is evident (2001-2009) and enhances summer ice area export at the Fram Strait. Between 2001 and 2009, the large spatially averaged trends in drift speeds (winter: +23.6%/decade, summer: +17.7%/decade) are not explained by the much smaller trends in wind speeds (winter: 1.46%/decade, summer: -3.42%/decade). Notably, positive trends in drift speed are found in regions with reduced multiyear sea ice coverage. Over 90% of the Arctic Ocean has positive trends in drift speed and negative trends in multiyear sea ice coverage. The increased responsiveness of ice drift to geostrophic wind is consistent with a thinner and weaker seasonal ice cover and suggests large-scale changes in the air-ice-ocean momentum balance. The retrieved mean ocean current field from decadal-scale average ice motion captures a steady drift from Siberia to the Fram Strait, an inflow north of the Bering Strait, and a westward drift along coastal Alaska. This mean current is comparable to geostrophic currents from satellite-derived dynamic topography.

  5. Monitoring estuarine circulation and ocean waste dispersion using an integrated satellite-aircraft-drogue approach

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Davis, G.; Wang, H.; Whelan, W.; Tornatore, G.

    1976-01-01

    The mounting economic pressure to extract oil and other resources from the Continental Shelf and to continue using the Shelf for waste disposal is creating a need for cost-effective synoptic means of determining currents in this area. An integrated satellite-aircraft-drogue approach has been developed which employs remotely tracked expendable drogues together with satellite and aircraft observations of waste plumes and tracers, such as dyes or suspended sediment. Tests conducted on the Continental Shelf and in Delaware Bay indicate that the system provides a cost-effective means of studying current circulation, oil slick movement, and ocean waste dispersion even under severe environmental conditions.

  6. Using ocean tracers to reduce uncertainties about ocean diapycnal mixing and model projections

    NASA Astrophysics Data System (ADS)

    Goes, M. P.; Urban, N.; Keller, K.; Schmittner, A.; Tonkonojenkov, R.; Haran, M.

    2010-12-01

    Current projections of the oceanic response to anthropogenic climate forcings are uncertain. Two key sources of these uncertainties are (i) structural errors in current Earth system models and (ii) imperfect knowledge of model parameters. Ocean tracers observations have the potential to reduce these uncertainties. Previous studies typically consider each tracer separately, neglect potentially important statistical properties of the system, or use methods that impose rather daunting computational demands. Here we extend and improve upon a recently developed approach using horizontally averaged vertical profiles of chlorofluorocarbon (CFC-11), radiocarbon (DC14), and temperature (T) observations to reduce model parametric and structural uncertainties. Our method estimates a joint probability density function, which considers cross-tracer correlations and spatial autocorrelations of the errors. We illustrate this method by estimating two model parameters related to the vertical diffusivity, the background vertical diffusivity and the upper Southern Ocean mixing. We show that enhancing the upper Southern Ocean mixing in the model improves the representations of ocean tracers, as well as improves hindcasts of the Atlantic Meridional Overturning Circulation (AMOC) and Ocean Carbon uptake. The most probable value of the background vertical diffusivity in the pelagic pycnocline is between 0.1-0.2 cm2/s. According to the statistical method, observations of DC14 reduce the uncertainty about the background vertical diffusivity the most followed by CFC-11 and T. Using all three tracers jointly reduces the model uncertainty by 40%, more than each tracer individually. Given several important caveats, we illustrate how the reduced model parametric uncertainty improves probabilistic projections of the AMOC and Ocean Carbon uptake.

  7. Ventilation of the Miocene Arctic Ocean: An idealized model study

    NASA Astrophysics Data System (ADS)

    Thompson, Bijoy; Nilsson, Johan; Nycander, Jonas; Jakobsson, Martin; Döös, Kristofer

    2010-11-01

    A model study of an idealized early Miocene Arctic Ocean has been undertaken. The work is motivated by the first drill core retrieved from the Lomonosov Ridge in the central Arctic Ocean, which suggests a transition from anoxic to oxic condition during the early Miocene, a feature presumably related to the opening of the Fram Strait. Here, the ventilation in a semienclosed basin, connected with the ocean through a strait with a sill, is examined using an ocean circulation model that includes a passive age tracer. In particular, we investigate how the ventilation depends on strait geometry, freshwater influx, and surface wind stress. We find that the turnover time, characterizing the bulk ventilation rate, is primarily controlled by the strait width and the wind stress. Generally, the oldest water in the basin is encountered near the sill depth, but wind forcing displaces the oldest water downward. For narrow straits, the turnover time gives an upper bound on the mean age of the basin water. The results have implications when translating local oxygen conditions, recorded in the sediment sequence from the Lomonosov Ridge, to basin-scale circulation patterns. Further, the results indicate that the early Miocene Arctic Ocean became well ventilated when the Fram Strait reached a width of about 100 km.

  8. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  9. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    PubMed Central

    Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Abstract Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state‐of‐the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  10. Observing Global Ocean Circulation From Space: The First Year's Results From the TOPEX/POSEIDON Mission

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.

    1993-01-01

    The joint U.S./France TOPEX/Poseidon satellite was launched on August 10, 1992, and became operational 43 days later. The major goal of the mission is to use a radar altimeter system for making precise measurements of the height of the sea surface for the study of the dynamics of large-scale ocean circulation, which is a key to understanding global climate change. Additionally, the data are used for studying ocean tides and marine geophysics. The radar altimeter also measures wave height and wind speed. The mission is being conducted to optimize the sea surface height measurements for a minimum of three years. The primary objective of the first six months of the mission was to calibrate and validate the mission's measurements...

  11. Observing Global Ocean Circulation From Space: The First Year's Results From the TOPEX/POSEIDON Mission

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.

    1993-01-01

    The joint U.S./France TOPEX/Poseidon satellite was launched on August 10, 1992, and became operational 42 days later. The major goal of the mission is to use a radar altimeter system for making precise measurements of the height of the sea surface for the study of the dynamics of large-scale ocean circulation, which is a key to understanding global climate change. Additionally, the data are used for studying ocean tides and marine geophysics. The radar altimeter also measures wave height and wind speed. The mission is being conducted to optimize the sea surface height measurements for a minimum of three years. The primary objective of the first six months of the mission was to calibrate and validate the mission's measurements. The verification results indicate that all the measurement objectives have been met...

  12. On the choice of orbits for an altimetric satellite to study ocean circulation and tides

    NASA Technical Reports Server (NTRS)

    Parke, Michael E.; Stewart, Robert H.; Farless, David L.; Cartwright, David E.

    1987-01-01

    The choice of an orbit for satellite altimetric studies of the ocean's circulation and tides requires an understanding of the orbital characteristics that influence the accuracy of the satellite's measurements of sea level and the temporal and spatial distribution of the measurements. The orbital characteristics that influence accurate calculations of the satellite's position as a function of time are examined, and the pattern of ground tracks laid down on the ocean's surface as a function of the satellite's altitude and inclination is studied. The results are used to examine the aliases in the measurements of surface geostrophic currents and tides. Finally, these considerations are used to specify possible orbits that may be useful for the upcoming Topex/Poseidon mission.

  13. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates*

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Prange, M.; Schmittner, A.; Schneider, B.; Weinelt, M.

    2009-01-01

    A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern Hemisphere Glaciation (NHG) and pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic, that and continue until today. The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4). Various models and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and East Pacific. Each closing event led to enhanced North Atlantic meridional overturning circulation and strengthened the poleward transport of salt and heat (warmings of +2-3°C). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia, which led to enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, the closing of CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~1 psu from 3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.

  14. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates

    NASA Astrophysics Data System (ADS)

    Sarnthein, M.; Bartoli, G.; Prange, M.; Schmittner, A.; Schneider, B.; Weinelt, M.; Andersen, N.; Garbe-Schönberg, D.

    2009-06-01

    A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG) and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001). The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4) (Lisiecki and Raymo, 2005). Various models (sensu Driscoll and Haug, 1998) and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2-3°C) (Bartoli et al., 2005). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007), which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.

  15. Parameterizations in high resolution isopycnal wind-driven ocean models

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Randall, D. A.

    1994-01-01

    For the Computer Hardware Advanced Mathematics and Model Physics (CHAMMP) project, developing a new multilayer ocean model, based on the hydrodynamic FSU Indian Ocean model was proposed. The new model will include prognostic temperature and salinity and will be coded for massively parallel machines. Other specific objectives for the proposed research were to: incorporate a oceanic mixed layer on top of the isopycnal deep layers; implement positive definite scheme for advection; determine effects of islands on large scale flow; and investigate lateral boundary conditions for boundary layer currents. The mixed layer model is proposed to be of a bulk type with prognostic equations for temperature and salinity. Development of parallel code will be done in cooperation with other CHAMMP participants, mainly the ocean modelling group at LANL. The main objective is model development, while the application is to determine the influence and parameterization of narrow flows along continents and through chains of small islands on the large scale oceanic circulation. Test runs with artificial wind stress and heat flux will be used to determine model stability, performance, and optimization for the new model configuration. Tests will include western boundary currents, coastal upwelling, and equatorial dynamics. This report discusses project progress for period January 1, 1993 through December 31, 1993.

  16. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    NASA Astrophysics Data System (ADS)

    Ohno, Masao; Hayashi, Tatsuya; Sato, Masahiko; Kuwahara, Yoshihiro; Mizuta, Asami; Kita, Itsuro; Sato, Tokiyuki; Kano, Akihiro

    2016-05-01

    Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  17. Ocean Circulation and Gateway Closures During the Late Miocene (~13-5 Ma)

    NASA Astrophysics Data System (ADS)

    Nathan, S. A.; Leckie, R. M.

    2004-12-01

    Long-term climate change is driven by tectonic influences, including changes in ocean circulation that are the result of ocean gateway closure. During the middle to late Miocene (~13-5 Ma), both tropical ocean circulation and deep water production were reorganized due to the increasing constriction of the Indonesian and Central American seaways. For example, the waters of the modern Pacific equatorial current system do not move freely into the Indian Ocean (i.e., via the Indonesian Throughflow, ITF) but instead pile up to form the Western Pacific Warm Pool (a thermal anomaly that greatly influences tropical Pacific climate and ocean circulation). Here we use a continuous record of multispecies stable isotope stratigraphy and foraminiferal assemblage counts from Ontong Java Plateau to demonstrate that during middle to late Miocene time, progressive restriction of the ITF, modulated by sea level fluctuations, resulted in the waxing and waning of a proto-warm pool in the western equatorial Pacific (WEP). The proto-warm pool profoundly affected the early late Miocene "carbonate crash" (an anomalous decrease of carbonate in deep sea sediments) and the late Miocene "biogenic bloom" (sharp increase in carbonate accumulation rates across the tropical Indo-Pacific). We hypothesize that El Niño/La Niña-like alternations of tropical carbonate preservation and productivity between the western and eastern equatorial Pacific during the late Miocene were the consequence of early warm pool development and decay. A proto-warm pool was formed ~12.1-10.6 Ma, which initiated a nutrient-rich Equatorial Undercurrent and/or increased Trade Wind strength. These La Niña-like conditions sustained carbonate productivity in the eastern equatorial Pacific (EEP) at a time when carbonate preservation sharply declined in the Caribbean. Proto-warm pool weakening and El Niño-like conditions ~10.6-8.8 Ma intensified a "carbonate crash" in the EEP, while resurgence of the warm pool and La Ni

  18. A regional ocean model for the Southwest Pacific Ocean region to assess the risk of storms

    NASA Astrophysics Data System (ADS)

    Natoo, N.; Paul, A.; Hadfield, M.; Jendersie, S.; Bornman, J.; de Lange, W.; Ye, W.; Schulz, M.

    2012-04-01

    New Zealand's coasts are not only affected by mid-latitude storms, but infrequently also by storms that originate from the tropics. Projections for the southern hemisphere's southwest Pacific island countries for the 21st century show a poleward shift of the mid-latitude storm tracks, which consequently might result in changes in wind, precipitation and temperature patterns. Furthermore, an increase in frequency of intense storms is expected for the New Zealand region, which will very likely increase the risk of storm surges and flooding of coastal and low-lying regions. We employ the Regional Ocean Modeling System (ROMS) to assess the changes in the storm climate of the New Zealand region. The model set-up uses a resolution of ~50 km for the Southwest Pacific Ocean "parent domain" and ~10 km for the New Zealand "child domain", to well represent the major eddies that influence the climate of North Island. With the aim to later utilize this nested ocean model set-up as part of a coupled ocean-atmosphere modelling system for the Southwest Pacific Ocean region, results for the 20th century will be presented. The simulated circulation is shown to be largely consistent with the observed regional oceanography.

  19. Numerical modelling of floating debris in the world's oceans.

    PubMed

    Lebreton, L C-M; Greer, S D; Borrero, J C

    2012-03-01

    A global ocean circulation model is coupled to a Lagrangian particle tracking model to simulate 30 years of input, transport and accumulation of floating debris in the world ocean. Using both terrestrial and maritime inputs, the modelling results clearly show the formation of five accumulation zones in the subtropical latitudes of the major ocean basins. The relative size and concentration of each clearly illustrate the dominance of the accumulation zones in the northern hemisphere, while smaller seas surrounded by densely populated areas are also shown to have a high concentration of floating debris. We also determine the relative contribution of different source regions to the total amount of material in a particular accumulation zone. This study provides a framework for describing the transport, distribution and accumulation of floating marine debris and can be continuously updated and adapted to assess scenarios reflecting changes in the production and disposal of plastic worldwide.

  20. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  1. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  2. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f‑5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  3. Coastal ocean variability in the US Pacific Northwest region: seasonal patterns, winter circulation, and the influence of the 2009-2010 El Niño

    NASA Astrophysics Data System (ADS)

    Durski, Scott M.; Kurapov, Alexander L.; Allen, John S.; Kosro, P. Michael; Egbert, Gary D.; Shearman, R. Kipp; Barth, John A.

    2015-12-01

    A 2-km horizontal resolution ocean circulation model is developed for a large coastal region along the US Pacific Northwest (34-50N) to study how continental shelf, slope, and interior ocean variability influence each other. The model has been run for the time period September 2008-May 2011, driven by realistic surface momentum and heat fluxes obtained from an atmospheric model and lateral boundary conditions obtained from nesting in a global ocean model. The solution compares favorably to satellite measurements of sea surface temperature and sea surface height, observations of surface currents by high-frequency radars, mooring temperature time series, and glider temperature and salinity sections. The analysis is focused on the seasonal response of the coastal ocean with particular emphasis on the winter circulation patterns which have previously garnered relatively little attention. Interannual variability is examined through a comparison of the 2009-2010 winter influenced by El Niño and the winters in the preceding and following years. Strong northward winds combined with reduced surface cooling along the coast north of Cape Mendocino (40.4N) in winter 2009-2010, resulting in a vigorous downwelling season, characterized by relatively energetic northward currents and warmer ocean temperatures over the continental shelf and upper slope. An analysis of the time variability of the volume-averaged temperature and salinity in a coastal control volume (CV), that extends from 41 to 47N and offshore from the coast to the 200-m isobath, clearly shows relevant integrated characteristics of the annual cycle and the transitions between winter shelf circulation forced by northward winds and the summer circulation driven primarily by southward, upwelling-favorable winds. The analysis also reveals interesting interannual differences in these characteristics. In particular, the CV volume-average temperature remains notably warmer during January-March 2010 of the El Niño winter.

  4. Simulation of the world ocean climate with a massively parallel numerical model

    NASA Astrophysics Data System (ADS)

    Ushakov, K. V.; Ibrayev, R. A.; Kalmykov, V. V.

    2015-07-01

    The INM-IO numerical World Ocean model is verified through the calculation of the model ocean climate. The numerical experiment was conducted for a period of 500 years following the CORE-I protocol. We analyze some basic elements of the large-scale ocean circulation and local and integral characteristics of the model solution. The model limitations and ways they are overcome are described. The results generally fit the level of leading models. This experiment is a necessary step preceding the transition to high-resolution diagnostic and prognostic calculations of the state of the World Ocean and its individual basins.

  5. Joint assimilation of Aquarius-derived sea surface salinity and AVHRR-derived sea surface temperature in an ocean general circulation model using SEEK filter: Implication for mixed layer depth and barrier layer thickness

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhisek; Sharma, Rashmi; Kumar, Raj; Basu, Sujit

    2015-10-01

    Sea surface salinity (SSS) from Aquarius mission and sea surface temperature (SST) from Advanced Very High Resolution Radiometer (AVHRR) for the years 2012-2014 are assimilated into the global Massachusetts Institute of Technology General Circulation Model (MITGCM). Investigation of the impact of assimilation of these two data sets on simulated mixed layer depth (MLD) and barrier layer thickness (BLT) forms the core of our study. The method of assimilation is the Singular Evolutive Extended Kalman (SEEK) filter. Several assimilation runs are performed. Single-parameter assimilation, as well as joint assimilation, is conducted. To begin with, the model simulated SST and SSS are compared with independent Argo observations of these two parameters. Use of latitudinally varying error variances, which is a novel feature of our study, gives rise to the significant improvement in the simulation of SSS and SST. The best result occurs when joint assimilation is performed. Afterward, simulated MLD and BLT are compared with the same parameters derived from Argo observations forming an independent validation data set. Comparisons are performed both in temporal and spatial domains. Significant positive impact of assimilation is found in all the cases studied, and joint assimilation is found to outperform single-parameter assimilation in each of the cases considered. It is found that simulations of MLD and BLT improve up to 24% and 29%, respectively, when a joint assimilation of SSS and SST is carried out.

  6. Using Advanced Data Assimilation For Assessing The Capabilities And Limits Of Using The GOCE Geoid To Improve The Shelf And Coastal Ocean Low-Frequency Circulations

    NASA Astrophysics Data System (ADS)

    Julien, L.; Pierre J., D.; Guilhem, M.; Georges, B.; Matthieu, L.; Muriel, L.; Roger, H.; Catherine, B.

    2008-12-01

    Realistic ocean modelling is part of the new challenges that has arisen in the past decade in order to access precise and accurate knowledge of the ocean circulation, especially at regional and coastal scales. An efficient ocean modelling system is now built both on both a hydrodynamic model and a data assimilation technique. Altimetric data plays a central role because of their relative abundance, coverage and repetitive sampling. At the large scales, using a geostrophic balance equation, the upper-layer ocean circulation could be approximately retrieved from the ocean surface topography, assuming that the ocean surface reference level, given by the geoid, is known with sufficient accuracy. However the geoid solutions do not contain the smaller scales characterizing coastal dynamics. More generally, the lack of control over the permanent circulations is a serious limitation for the regional ocean modelling and forecasting. The need for better ocean geoids has then been identified for a long time, and the recent gravimetric satellite missions are a first step to solve the problem. The GOCE satellite, developed at ESA and scheduled for lift- off in September 2008, will operate between two and two and a half years. Its main objective is to further improve our knowledge of the geopotential in providing a higher resolution static model for a variety of applications, especially in oceanography. The scientific community expects that the improved geoid model from GOCE will significantly advance our skill at modelling the mean ocean circulation, by using (1) precise geocentric sea surface elevations obtained from global altimetric measurements, (2) a mean geoid model with an accuracy of the order of one centimeter on spatial scales down to the width of boundary currents, (3) additional oceanographic data sets required to constrain ocean circulation models with data assimilation. The study presented here aims to assess the capabilities and the limits of the use of the GOCE

  7. The Early Jurassic climate: General circulation model simulations and the paleoclimate record

    SciTech Connect

    Chandler, M.A.

    1992-01-01

    This thesis presents the results of several general circulation model simulations of the Early Jurassic climate. The general circulation model employed was developed at the Goddard Institute for Space Studies while most paleoclimate data were provided by the Paleographic Atlas Project of the University of Chicago. The first chapter presents an Early Jurassic base simulation, which uses detailed reconstructions of paleogeography, vegetation, and sea surface temperature as boundary condition data sets. The resulting climatology reveals an Earth 5.2[degrees]C warmer, globally, than at present and a latitudinal temperature gradient dominated by high-latitude warming (+20[degrees]C) and little tropical change (+1[degrees]C). Comparisons show a good correlation between simulated results and paleoclimate data. Sensitivity experiments are used to investigate any model-data mismatches. Chapters two and three discuss two important aspects of Early Jurassic climate, continental aridity and global warming. Chapter two focuses on the hydrological capabilities of the general circulation model. The general circulation model's hydrologic diagnostics are evaluated, using the distribution of modern deserts and Early Jurassic paleoclimate data as validating constraints. A new method, based on general circulation model diagnostics and empirical formulae, is proposed for evaluating moisture balance. Chapter three investigates the cause of past global warming, concentrating on the role of increased ocean heat transport. Early Jurassic simulations show that increased ocean heat transports may have been a major factor in past climates. Increased ocean heat transports create latitudinal temperature gradients that closely approximate paleoclimate data and solve the problem of tropical overheating that results from elevated atmospheric carbon dioxide. Increased carbon dioxide cannot duplicate the Jurassic climate without also including increased ocean heat transports.

  8. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  9. GPU Developments for General Circulation Models

    NASA Astrophysics Data System (ADS)

    Appleyard, Jeremy; Posey, Stan; Ponder, Carl; Eaton, Joe

    2014-05-01

    Current trends in high performance computing (HPC) are moving towards the use of graphics processing units (GPUs) to achieve speedups through the extraction of fine-grain parallelism of application software. GPUs have been developed exclusively for computational tasks as massively-parallel co-processors to the CPU, and during 2013 an extensive set of new HPC architectural features were developed in a 4th generation of NVIDIA GPUs that provide further opportunities for GPU acceleration of general circulation models used in climate science and numerical weather prediction. Today computational efficiency and simulation turnaround time continue to be important factors behind scientific decisions to develop models at higher resolutions and deploy increased use of ensembles. This presentation will examine the current state of GPU parallel developments for stencil based numerical operations typical of dynamical cores, and introduce new GPU-based implicit iterative schemes with GPU parallel preconditioning and linear solvers based on ILU, Krylov methods, and multigrid. Several GCMs show substantial gain in parallel efficiency from second-level fine-grain parallelism under first-level distributed memory parallel through a hybrid parallel implementation. Examples are provided relevant to science-scale HPC practice of CPU-GPU system configurations based on model resolution requirements of a particular simulation. Performance results compare use of the latest conventional CPUs with and without GPU acceleration. Finally a forward looking discussion is provided on the roadmap of GPU hardware, software, tools, and programmability for GCM development.

  10. Warm Bias and Parameterization of Boundary Upwelling in Ocean Models

    SciTech Connect

    Cessi, Paola; Wolfe, Christopher

    2012-11-06

    It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

  11. CMIP: a study of climate variability and predictability according to general circulation models

    SciTech Connect

    Covey, C.; Santer, B.D.; Cohen-Solal, E.

    1996-09-01

    Coupled ocean-atmosphere general circulation models are used to predict future global changes, such as warming due to anthropogenic greenhouse gases (Houghton et al., 1996). In addition, coupled-GCM simulations of the natural climate (without human interference) can be compared with observations over the past century. Recent work along such lines concludes that an anthropogenic signal of global warming is emerging from natural variability `noise` (ibid.). More careful and systematic examination of the models seems warranted, however. Toward that end the World Climate Research Program has begun the Coupled ocean-atmosphere Model Intercomparison Project.

  12. A High Resolution Record of Ocean Circulation since the last Interglacial from Nd isotopes

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Piotrowski, A. M.; Hemming, S. R.; Fairbanks, R. G.; Zylberberg, D. R.

    2004-12-01

    The variability of the global conveyor through ice ages has been a matter of dispute due to different indications from different paleocirculation proxies. Nd isotopes in marine precipitates conservatively reflect water mass mixing along their transport paths, and are changed only by addition of a new component of Nd. We present the first high resolution Nd isotope record of paleocirculation between MIS 1 and 5c from Cape Basin cores RC11-83 and TNO57-21. The record indicates a strong conveyer during warm northern hemisphere interglacial and interstadial intervals, and a weaker one during glacials and stadial intervals. The pattern of changes varies with Greenland paleotemperature. A first quantification attempt indicates that NADW export during the LGM was half the magnitude of the early Holocene. The strengthening through Termination 1 covaries with Greenland temperature and North Atlantic sea ice coverage. It markedly weakens between the Bolling and Younger Dryas. The weakening during the MIS 5a/4 transition is sharp, occurring within 1 ka. Throughout MIS 3 short-term maxima are associated with prominent interstadials in Greenland ice records (8, 12, 14, 17). Local minima at ~40 and ~62 ka may be associated with Heinrich events 4 and 6. During the ice age initiation and termination, global carbon budget shifts preceded circulation changes, and these were preceded by ice sheet growth during the initiation. There is no apparent lead-lag during interstadial warmings. The observations allow for ocean circulation to be a trigger of major climate change during abrupt events that are not driven by orbital forcing. At major glacial-interglacial boundaries, the global carbon budget and thermohaline ocean circulation both respond to the climate changes that forced the growth and decline of continental ice sheets. Overall the data show that Nd isotope ratios can be a powerful tool to trace paleocirculation history.

  13. Deglacial Ocean Circulation Scheme at Intermediate Depths in the Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, R. C.; Marcantonio, F.; Schmidt, M. W.

    2014-12-01

    In the modern Atlantic Ocean, intermediate water circulation is largely governed by the southward flowing upper North Atlantic Deep Water (NADW) and the northward return flow Antarctic Intermediate Water (AAIW). During the last deglaciation, it is commonly accepted that the southward flow Glacial North Atlantic Intermediate Water, the glacial analogue of NADW, contributed significantly to past variations in intermediate water circulation. However, to date, there is no common consensus of the role AAIW played during the last deglaciation, especially across abrupt climate events such as the Heinrich 1 and the Younger Dryas. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between AAIW and northern-sourced intermediate waters in the past. High-resolution Nd isotopic compositions (ɛNd thereafter) of fish debris and bulk sediment acid-reductive leachate from the Southern Caribbean (VM12-107; 1079 m) are inconsistent, again casting concerns, as already raised by recent studies, on the reliability of the leachate method in extracting seawater ɛNd signature. This urges the need to carefully verify the seawater ɛNd integrity in sediment acid-reductive leachate in various oceanic settings. Fish debris Nd isotope record in our study displays a two-step decreasing trend from the early deglaciation to early Holocene. We interpret this as recording a two-step deglacial recovery of the upper NADW, given the assumption on a more radiogenic glacial northern-sourced water is valid. Comparing with authigenic ɛNd records in the Florida Straits [1] and the Demarara Rise [2], our new fish debris ɛNd results suggest that, in the tropical western North Atlantic, glacial and deglacial AAIW never penetrated beyond the lower depth limit of modern AAIW. [1] Xie et al., GCA (140) 2014; [2] Huang et al., EPSL (389) 2014

  14. Error analysis of empirical ocean tide models estimated from TOPEX/POSEIDON altimetry

    NASA Astrophysics Data System (ADS)

    Desai, Shailen D.; Wahr, John M.; Chao, Yi

    1997-11-01

    An error budget is proposed for the TOPEX/POSEIDON (T/P) empirical ocean tide models estimated during the primary mission. The error budget evaluates the individual contribution of errors in each of the altimetric range corrections, orbit errors caused by errors in the background ocean tide potential, and errors caused by the general circulation of the oceans, to errors in the ocean tide models of the eight principal diurnal and semidiurnal tidal components, and the two principal long-period tidal components. The effect of continually updating the T/P empirical ocean tide models during the primary T/P mission is illustrated through tide gauge comparisons and then used to predict the impact of further updates during the extended mission. Both the tide gauge comparisons and the error analysis predict errors in the tide models for the eight principal diurnal and semidiurnal constituents to be of the order of 2-3 cm root-sum-square. The dominant source of errors in the T/P ocean tide models appears to be caused by the general circulation of the oceans observed by the T/P altimeter. Further updates of the T/P empirical ocean tide models during the extended mission should not provide significant improvements in the diurnal and semidiurnal ocean tide models but should provide significant improvements in the long-period ocean tide models, particularly in the monthly (Mm) tidal component.

  15. Regional climates in the GISS global circulation model - Synoptic-scale circulation

    NASA Technical Reports Server (NTRS)

    Hewitson, B.; Crane, R. G.

    1992-01-01

    A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.

  16. Low-frequency variability in a climate model with a mixed-layer ocean

    SciTech Connect

    Gould-Stewart, S.

    1984-11-01

    A mixed-layer ocean model coupled to a global spectral atmospheric circulation model produces a warming in the model equatorial Pacific Ocean similar to the El Nino or Southern Oscillation (SO) response. The mechanism for producing the SO-like response in an ocean with heat storage and without ocean dynamics is investigated. The model is capable of simulating SO-like time scales, but the details of the structure of the warming differ significantly from the observed El Nino/Southern Oscillation (ENSO) response. 22 refs.

  17. Modeling Mesoscale Eddies in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Chao, Yi

    1999-01-01

    Ocean modeling plays an important role in understanding the current climatic conditions and predicting the future climate change. Modeling the ocean at eddy-permitting and/or eddy resolving resolutions (1/3 degree or higher) has a two-fold objective. One part is to represent the ocean as realistically as possible, because mesoscale eddies have an impact on the large-scale circulation. The second objective is to learn how to represent effects of mesoscale eddies without explicitly resolving them. This is particularly important for climate models which cannot be run at eddy-resolving resolutions because of the computational constraints. At JPL, a 1/6 degree latitude by 1/6 degree longitude with 37 vertical levels Atlantic Ocean model has been developed. The model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory (LANL). Using the 256-processor Cray T3D, we have conducted a 40-year integration of this Atlantic eddy-resolving ocean model. A regional analysis demonstrate that many observed features associated with the Caribbean Sea eddies can be realistically simulated by this model. Analysis of this Atlantic eddy-resolving ocean model further suggests that these Caribbean Sea eddies are connected with eddies formed outside the Caribbean Sea at the confluence of the North Brazil Current (NBC) and the North Equatorial Countercurrent. The diagram of the model simulated surface current shows that the Caribbean eddies ultimately originate in the NBC retroflection region, traveling more than a year from the North Brazil coast through the Lesser Antilles into the Caribbean Sea and eventually into the Gulf of Mexico. Additional information is contained in the original.

  18. Simulation of the tropical oceans with an ocean GCM coupled to an atmospheric mixed-layer model

    SciTech Connect

    Murtugudde, R.; Seager, R.; Busalacchi, A.

    1996-08-01

    A reduced gravity, primitive equation, ocean general circulation model (GCM) is coupled to an advective atmospheric mixed-layer (AML) model to demonstrate the importance of a nonlocal atmospheric mixed-layer parameterization for a proper simulation of surface heat fluxes and sea surface temperatures (SST). Seasonal variability of the model SSTs and the circulation are generally in good agreement with the observations in each of the tropical oceans. These results are compared to other simulations that use a local equilibrium mixed-layer model. Inclusion of the advective AML model is demonstrated to lead to a significant improvement in the SST simulation in all three oceans. Advection and diffusion of the air humidity play significant roles in determining SSTs even in the tropical Pacific where the local equilibrium assumption was previously deemed quite accurate. The main, and serious, model flaw is an inadequate representation of the seasonal cycle in the upwelling regions of the eastern Atlantic and Pacific Oceans. The results indicate that the feedback between mixed-layer depths and SSTs can amplify SST errors, implying that increased realism in the modeling of the ocean mixed layer increases the demand for realism in the representation of the surface heat fluxes. The performance of the GCM with a local-equilibrium mixed-layer model in the Atlantic is as poor as previous simple ocean model simulations of the Atlantic. The conclusion of earlier studies that the simple ocean model was at fault may, in fact, not be correct. Instead the local-equilibrium heat flux parameterization appears to have been the major source of error. Accurate SST predictions may, hence, be feasible by coupling the AML model to computationally efficient simple ocean models. 69 refs., 18 figs., 1 tab.