NASA Technical Reports Server (NTRS)
Nese, Jon M.; Dutton, John A.
1993-01-01
The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.
Ocean circulation and climate during the past 120,000 years
NASA Astrophysics Data System (ADS)
Rahmstorf, Stefan
2002-09-01
Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5-10 °C and massive surges of icebergs into the North Atlantic Ocean - events that have occurred repeatedly during the last glacial cycle.
NASA Astrophysics Data System (ADS)
Moore, Andrew M.; Jacox, Michael G.; Crawford, William J.; Laughlin, Bruce; Edwards, Christopher A.; Fiechter, Jérôme
2017-08-01
Data assimilation is now used routinely in oceanography on both regional and global scales for computing ocean circulation estimates and for making ocean forecasts. Regional ocean observing systems are also expanding rapidly, and observations from a wide array of different platforms and sensor types are now available. Evaluation of the impact of the observing system on ocean circulation estimates (and forecasts) is therefore of considerable interest to the oceanographic community. In this paper, we quantify the impact of different observing platforms on estimates of the California Current System (CCS) spanning a three decade period (1980-2010). Specifically, we focus attention on several dynamically related aspects of the circulation (coastal upwelling, the transport of the California Current and the California Undercurrent, thermocline depth and eddy kinetic energy) which in many ways describe defining characteristics of the CCS. The circulation estimates were computed using a 4-dimensional variational (4D-Var) data assimilation system, and our analyses also focus on the impact of the different elements of the control vector (i.e. the initial conditions, surface forcing, and open boundary conditions) on the circulation. While the influence of each component of the control vector varies between different metrics of the circulation, the impact of each observing system across metrics is very robust. In addition, the mean amplitude of the circulation increments (i.e. the difference between the analysis and background) remains relatively stable throughout the three decade period despite the addition of new observing platforms whose impact is redistributed according to the relative uncertainty of observations from each platform. We also consider the impact of each observing platform on CCS circulation variability associated with low-frequency climate variability. The low-frequency nature of the dominant climate modes in this region allows us to track through time the impact of each observation on the circulation, and illustrates how observations from some platforms can influence the circulation up to a decade into the future.
U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model
2008-09-30
major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning circulation (AMOC), and (3) a...convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system. Ocean Model., 16, 141-159...a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal/estuarian applications. NCOM is
Ocean Data Assimilation in Support of Climate Applications: Status and Perspectives.
Stammer, D; Balmaseda, M; Heimbach, P; Köhl, A; Weaver, A
2016-01-01
Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable. Further advances are expected from improved models and methods for estimating and representing error information in data assimilation systems. Ultimately, data assimilation into coupled climate system components is needed to support ocean and climate services. However, maintaining the infrastructure and expertise for sustained data assimilation remains challenging.
The future of spaceborne altimetry. Oceans and climate change: A long-term strategy
NASA Technical Reports Server (NTRS)
Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)
1992-01-01
The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.
Demonstrating the Alaska Ocean Observing System in Prince William Sound
NASA Astrophysics Data System (ADS)
Schoch, G. Carl; McCammon, Molly
2013-07-01
The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.
NASA Technical Reports Server (NTRS)
Charney, J. G.; Kalnay, E.; Schneider, E.; Shukla, J.
1988-01-01
A numerical model of the circulation of a coupled axisymmetric atmosphere-ocean system was constructed to investigate the physical factors governing the location and intensity of the Intertropical Convergence Zone (ITCZ) over oceans and over land. The results of several numerical integrations are presented to illustrate the interaction of the individual atmospheric and oceanic circulations. It is shown that the ITCA cannot be located at the equator because the atmosphere-ocean system is unstable for lateral displacements of the ITCA from an equilibrium position at the equator.
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir
2010-05-01
The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the scope of the CMIP-5 (Coupled Model Intercomparison Project). On the base of the complex proposed the Pacific Ocean circulation eddy-resolving model was realized. The integration domain covers the Pacific from Equator to Bering Strait. The model horizontal resolution is 0.125 degree and it has 20 non-uniform sigma-levels in depth. The model adequately reproduces circulation large-scale structure and its variability: Kuroshio meandering, ocean synoptic eddies, frontal zones, etc. Kuroshio high variability is shown. The distribution of contaminant was simulated that is admittedly wasted near Petropavlovsk-Kamchatsky. The results demonstrate contaminant distribution structure and provide us understanding of hydrological fields formation processes in the North-West Pacific.
NASA Oceanic Processes Program, fiscal year 1983
NASA Technical Reports Server (NTRS)
Nelson, R. M. (Editor); Pieri, D. C. (Editor)
1984-01-01
Accomplishments, activities, and plans are highlighted for studies of ocean circulation, air sea interaction, ocean productivity, and sea ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.
Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes
NASA Astrophysics Data System (ADS)
Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin
2016-04-01
Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.
Spaceborne studies of ocean circulation
NASA Technical Reports Server (NTRS)
Patzert, W. C.
1984-01-01
The history and near-term future of ocean remote sensing to study ocean circulation are examined. Seasat provided the first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) and laid the foundation for the next generation of satellite missions planned for the late 1980s. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (TOPography EXperiment) and NROSS (Navy Remote Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans' role in climate variability. The significance of such studies to such matters as climatic changes, fisheries, commerce, waste disposal, and national defense is noted.
The impact of oceanic heat transport on the atmospheric circulation
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Lunkeit, Frank
2017-04-01
A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.
Reconstructing Deep Ocean Circulation in the North Atlantic from Bermuda Rise, and Beyond
NASA Astrophysics Data System (ADS)
McManus, J. F.
2016-12-01
The large-scale subsurface circulation of the ocean is an important component of the Earth's climate system, and contributes to the global and regional transport of heat and mass. Assessing how this system has changed in the past is thus a priority for understanding natural climate variability. A long-coring campaign on Bermuda Rise has provided additional abundant high-quality sediments from this site of rapid accumulation in the deep western basin, situated beneath the subtropical gyre of the North Atlantic Ocean. These sediments allow the high-resolution reconstruction of deepwater chemistry and export from this key location throughout the last 150,000 years, covering the entire last glacial cycle in a continuous section of 35 meters in core KNR191-CDH19. The suite of proxy indicators analyzed includes uranium-series disequilibria, neodymium isotopes, and benthic stable isotopes. Combined with multiple previous studies of nearby cores on Bermuda Rise, the published and new proxy data from CDH19 confirm the variability of the deep circulation in the Atlantic Ocean in association with past climate changes. The multiple indicators, along with complementary data from other locations, display coherent evidence for contrasts between deep circulation during glacial and interglacial intervals, with persistent strong, deep ventilation only within the peak interglacial of marine isotope stage 5e (MIS 5e) and the Holocene. In contrast, repeated, dramatic variability in deep ocean circulation accompanied the millennial climate changes of the last glaciation and deglaciation. The largest magnitude circulation shifts occurred at the transitions into stadials associated with the Hudson strait iceberg discharges and between them and the ensuing northern interstadial warmings, significantly exceeding that of the overall glacial-interglacial difference, highlighting the potential oceanographic and climatic importance of short-term perturbations to the deep ocean circulation.
Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.
McCarthy, Gerard D; Haigh, Ivan D; Hirschi, Joël J-M; Grist, Jeremy P; Smeed, David A
2015-05-28
Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.
Parallel Computation of the Regional Ocean Modeling System (ROMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P; Song, Y T; Chao, Y
2005-04-05
The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less
Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.
2015-01-01
Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536
World Ocean Circulation Experiment
NASA Technical Reports Server (NTRS)
Clarke, R. Allyn
1992-01-01
The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.
Sustaining observations of the unsteady ocean circulation.
Frajka-Williams, E
2014-09-28
Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Atmosphere, ocean, and land: Critical gaps in Earth system models
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.; Hartley, Dana
1992-01-01
We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.
NASA Astrophysics Data System (ADS)
Holzer, Mark; DeVries, Timothy; Bianchi, Daniele; Newton, Robert; Schlosser, Peter; Winckler, Gisela
2017-01-01
Hydrothermal vents along the ocean's tectonic ridge systems inject superheated water and large amounts of dissolved metals that impact the deep ocean circulation and the oceanic cycling of trace metals. The hydrothermal fluid contains dissolved mantle helium that is enriched in 3He relative to the atmosphere, providing an isotopic tracer of the ocean's deep circulation and a marker of hydrothermal sources. This work investigates the potential for the 3He/4He isotope ratio to constrain the ocean's mantle 3He source and to provide constraints on the ocean's deep circulation. We use an ensemble of 11 data-assimilated steady-state ocean circulation models and a mantle helium source based on geographically varying sea-floor spreading rates. The global source distribution is partitioned into 6 regions, and the vertical profile and source amplitude of each region are varied independently to determine the optimal 3He source distribution that minimizes the mismatch between modeled and observed δ3He. In this way, we are able to fit the observed δ3He distribution to within a relative error of ∼15%, with a global 3He source that ranges from 640 to 850 mol yr-1, depending on circulation. The fit captures the vertical and interbasin gradients of the δ3He distribution very well and reproduces its jet-sheared saddle point in the deep equatorial Pacific. This demonstrates that the data-assimilated models have much greater fidelity to the deep ocean circulation than other coarse-resolution ocean models. Nonetheless, the modelled δ3He distributions still display some systematic biases, especially in the deep North Pacific where δ3He is overpredicted by our models, and in the southeastern tropical Pacific, where observed westward-spreading δ3He plumes are not well captured. Sources inferred by the data-assimilated transport with and without isopycnally aligned eddy diffusivity differ widely in the Southern Ocean, in spite of the ability to match the observed distributions of CFCs and radiocarbon for either eddy parameterization.
Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation.
Kienast, Markus; Kienast, Stephanie S; Calvert, Stephen E; Eglinton, Timothy I; Mollenhauer, Gesine; François, Roger; Mix, Alan C
2006-10-19
Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean-atmosphere feedbacks or by changes in the Atlantic thermohaline circulation. North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America, as well as the Indian and East Asian monsoon systems, but not with tropical Pacific sea surface temperatures. Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of approximately 1 degrees C, synchronous (within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of approximately 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from 230Th-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans' thermohaline circulation, although possibly amplified by tropical ocean-atmosphere interaction as suggested before.
The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene
Ganopolski; Kubatzki; Claussen; Brovkin; Petoukhov
1998-06-19
Simulations with a synchronously coupled atmosphere-ocean-vegetation model show that changes in vegetation cover during the mid-Holocene, some 6000 years ago, modify and amplify the climate system response to an enhanced seasonal cycle of solar insolation in the Northern Hemisphere both directly (primarily through the changes in surface albedo) and indirectly (through changes in oceanic temperature, sea-ice cover, and oceanic circulation). The model results indicate strong synergistic effects of changes in vegetation cover, ocean temperature, and sea ice at boreal latitudes, but in the subtropics, the atmosphere-vegetation feedback is most important. Moreover, a reduction of the thermohaline circulation in the Atlantic Ocean leads to a warming of the Southern Hemisphere.
Spice: Southwest Pacific Ocean Circulation and Climate Experiment
NASA Astrophysics Data System (ADS)
Ganachaud, A. S.; Melet, A.; Maes, C.
2010-12-01
South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. The transit in the Coral Sea is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. The south branch is associated with comparable impacts in the Tasman Sea area. The Southwest Pacific is a region of complex circulation, with the SEC splitting in strong zonal jets upon encountering island archipelagos. Those jets partition on the Australian eastern boundary to feed the East Australian Current for the southern branch and the North Queensland Current and eventually the Equatorial Undercurrent for the northern branch. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the South Pacific Convergence Zone (SPCZ) position and intensity. The circulation, and its influence on remote and regional climate, is poorly understood due to the lack of appropriate measurements. Ocean and atmosphere scientists from Australia, France, New Zealand, the United States and Pacific Island countries initiated an international research project under the auspices of CLIVAR to comprehend the southwest Pacific Ocean circulation and its direct and indirect influence on the climate and environment. SPICE is a regionally-coordinated experiment to measure, study and monitor the ocean circulation and the SPCZ, to validate and improve numerical models, and to integrate with assimilating systems. This ongoing project reflects a strong sense that substantial progress can be made through collaboration among South Pacific national research groups, coordinated with broader South Pacific projects.
The Ocean-Atmosphere Hydrothermohaline Conveyor Belt
NASA Astrophysics Data System (ADS)
Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent
2015-04-01
The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each other along a "line" corresponding to the Clausius-Clapeyron relationship. A geographical description of how and where this occurs together with this new hydrothermohaline stream function will be searched for. The net heat and freshwater transport of the ocean and atmosphere can aslo be calculated from the thermohaline and hydrothermal stream functions. The heat transport across isohumes in the atmosphere and isohalines in the ocean as well as the freshwater transport across isotherms in both the atmosphere and ocean are computed. The maximum heat transport is about 16 PW in the atmosphere, while that of the ocean is just about 1 PW. The freshwater transport across isotherms in the atmosphere and ocean are shown to be tightly connected with a net maximum freshwater transport of 4 SV in the atmosphere and 2 Sv in the ocean.
NASA Astrophysics Data System (ADS)
Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.
2012-06-01
Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.
Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands
NASA Astrophysics Data System (ADS)
Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge
2013-11-01
The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.
NASA Astrophysics Data System (ADS)
Ganachaud, A. S.; Sprintall, J.; Lin, X.; Ando, K.
2016-02-01
The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR (Climate Variability and Predictability). The key objectives are to understand the Southwest Pacific Ocean circulation and Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. It was designed to measure and monitor the ocean circulation, and to validate and improve numerical models. South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. Water transit through the Coral and Solomon Seas is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the SPCZ position and intensity. The circulation is complex, with the SEC splitting into zonal jets upon encountering island archipelagos, before joining either the East Australian Current or the New Guinea Costal UnderCurrent towards the equator. SPICE included large, coordinated in situ measurement programs and high resolution numerical simulations of the area. After 8 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. We will review the recent advancements and discuss our current knowledge gaps and important emerging research directions. In particular we will discuss how SPICE, along with the Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) and Indonesian ThroughFlow (ITF) programs could evolve toward an integrative observing system under CLIVAR coordination.
Sensitivity of the Carolina Coastal Ocean Circulation to Open Boundary and Atmospheric Forcing
NASA Astrophysics Data System (ADS)
Liu, X.; Xie, L.; Pietrafesa, L.
2003-12-01
The ocean circulation on the continental shelf off the Carolina coast is characterized by a complex flow regime and temporal variability, which is influenced by atmospheric forcing, the Gulf Stream system, complex coastline and bathymetry, river discharge and tidal forcing. In this study, a triple-nested, HYbrid Coordinate Ocean Model (HYCOM) is used to simulate the coastal ocean circulation on the continental shelf off the Carolina coast and its interactions with the offshore large-scale ocean circulation system. The horizontal mesh size in the innermost domain was set to 1 km, whereas the outermost domain coincides with the near real-time 1/12’ Atlantic HYCOM Nowcast/Forecast System operated at the Naval Research Laboratory. The intermediate domain uses a mesh size of 3 km. Atmospheric forcing fields for the Carolina coastal region are derived from the NOAA operational ETA model, the ECMWF reanalysis fields and NCEP/NCAR reanalysis fields. These forcing fields are derived at 0.8›¦, 1.125›¦ and 1.875›¦ resolutions, and at intervals of 6 hour, daily and monthly. The sensitivity of the model results to the spatial and temporal resolution of the atmospheric forcing fields is analyzed. To study the dependence of the model sensitivity on the model grid size, single-window simulations at resolutions of 1km, 3km and 9km are carried out using the same forcing fields that were applied to the nested system. Comparisons between the nested and the single domain simulation results will be presented.
Hydrothermal systems are a sink for dissolved black carbon in the deep ocean
NASA Astrophysics Data System (ADS)
Niggemann, J.; Hawkes, J. A.; Rossel, P. E.; Stubbins, A.; Dittmar, T.
2016-02-01
Exposure to heat during fires on land or geothermal processes in Earth's crust induces modifications in the molecular structure of organic matter. The products of this thermogenesis are collectively termed black carbon. Dissolved black carbon (DBC) is a significant component of the oceanic dissolved organic carbon (DOC) pool. In the deep ocean, DBC accounts for 2% of DOC and has an apparent radiocarbon age of 18,000 years. Thus, DBC is much older than the bulk DOC pool, suggesting that DBC is highly refractory. Recently, it has been shown that recalcitrant deep-ocean DOC is efficiently removed during hydrothermal circulation. Here, we hypothesize that hydrothermal circulation is also a net sink for deep ocean DBC. We analyzed DBC in samples collected at different vent sites in the Atlantic, Pacific and Southern oceans. DBC was quantified in solid-phase extracts as benzenepolycarboxylic acids (BPCAs) following nitric acid digestion. Concentrations of DBC were much lower in hydrothermal fluids than in surrounding deep ocean seawater, confirming that hydrothermal circulation acts as a net sink for oceanic DBC. The relative contribution of DBC to bulk DOC did not change during hydrothermal circulation, indicating that DBC is removed at similar rates as bulk DOC. The ratio of the oxidation products benzenehexacarboxylic acid (B6CA) to benzenepentacarboxylic acid (B5CA) was significantly higher in hydrothermally altered samples compared to ratios typically found in the deep ocean, reflecting a higher degree of condensation of DBC molecules after hydrothermal circulation. Our study identified hydrothermal circulation as a quantitatively important sink for refractory DBC in the deep ocean. In contrast to photodegradation of DBC at the sea surface, which is more efficient for more condensed DBC, i.e. decreasing the B6CA/B5CA ratio, hydrothermal processing increases the B6CA/B5CA ratio, introducing a characteristic hydrothermal DBC signature.
Impact of Seawater Nonlinearities on Nordic Seas Circulation
NASA Astrophysics Data System (ADS)
Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.
2017-12-01
The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.
Spaceborne Studies Of Ocean Circulation
NASA Astrophysics Data System (ADS)
Patzert, William C.
1984-08-01
The global view of the oceans seen by Seasat during its 1978 flight demonstrated the feasibility of ocean remote sensing. These first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) laid the foundation for two satellite missions planned for the late 1980's. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (Topography Experiment) and NROSS (Navy Remote Ocean Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans role in climate variability. Sea surface winds (calculated from scatterometer measurements) are the fundamental driving force for ocean waves and currents (estimated from altimeter measurements). On a global scale, the winds and currents are approximately equal partners in redistributing the excess heat gained in the tropics from solar radiation to the cooler polar regions. Small perturbations in this system can dramatically alter global weather, such as the El Niho event of 1982-83. During an El Ni?io event, global wind patterns and ocean currents are perturbed causing unusual ocean warming in the tropical Pacfic Ocean. These ocean events are coupled to complex fluctuations in global weather. Only with satellites will we be able to collect the global data sets needed to study events such as El Ni?o. When TOPEX and NROSS fly, oceanographers will have the equivalent of meteorological high and low pressure charts of ocean topography as well as the surface winds to study ocean "weather." This ability to measure ocean circulation and its driving forces is a critical element in understanding the influence of oceans on society. Climatic changes, fisheries, commerce, waste disposal, and national defense are all involved.
High-latitude ocean ventilation and its role in Earth's climate transitions
MacGilchrist, Graeme A. ; Brown, Peter J.; Evans, D. Gwyn; Meijers, Andrew J. S.; Zika, Jan D.
2017-01-01
The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’. PMID:28784714
High-latitude ocean ventilation and its role in Earth's climate transitions.
Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D
2017-09-13
The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian
2014-05-01
The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D.; Nash, J. D.; Shroyer, E.; de Steur, L.; Catania, G. A.; Stearns, L. A.
2016-12-01
The acceleration, retreat, and thinning of Greenland's outlet glaciers coincided with a warming of Atlantic waters, suggesting that marine-terminating glaciers are sensitive to ocean forcing. However, we still lack a precise understanding of what factors control the variability of ocean heat transport toward the glacier terminus. Here we use an idealized ocean general circulation model (3D MITgcm) to systematically evaluate how fjord circulation driven by subglacial plumes, wind stress (along-fjord and along-shelf), and tides depends on grounding line depth, fjord width, sill height, and latitude. Our results indicate that while subglacial plumes in deeply grounded systems can draw shelf waters over a sill and toward the glacier, shallowly grounded systems require external forcing to renew basin waters. We use a coupled sea ice model to explore the competing influence of tidal mixing and surface buoyancy forcing on fjord stratification. Passive tracers injected in the plume, fjord basin, and shelf waters are used to quantify turnover timescales. Finally, we compare our model results with a two-year mooring record to explain fundamental differences in observed circulation and hydrography in Rink Isbræ and Kangerlussuup Sermia fjords in west Greenland. Our results underscore the first-order effect that geometry has in controlling fjord circulation and, thus, ocean heat flux to the ice.
Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust
NASA Astrophysics Data System (ADS)
Farahat, Navah X.; Archer, David; Abbot, Dorian S.
2017-08-01
Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.
U. S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model
2009-01-01
2008). There are three major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning ...Smith, 2007. Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system...σ-z coordinates, and (3) a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal
AMOC decadal variability in Earth system models: Mechanisms and climate impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Alexey
This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability andmore » predictability, directly relevant to the questions of climate predictability, were at the center of the research work.« less
Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki
2012-01-01
We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.
Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Technical Reports Server (NTRS)
Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-01-01
Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.
Thoughts on Multi-sphere Study in the Indo-Pacific Convergent Zone
NASA Astrophysics Data System (ADS)
Wang, F.
2016-12-01
Interactions of the ocean with other components of the earth system, such as atmosphere, lithosphere, and biosphere are the front and hotspot of the ocean and earth sciences. In the Indonesian Archipelago and adjacent western Pacific and eastern Indian Oceans, both the upper oceanic circulation and lower atmospheric circulation convergent and consequently enhance the fresh water and heat fluxes, affecting the East Asian and global climate. This region is considered as the world's center of marine bio-diversity and sediment discharge, as well as the collision center of the Eurasian, Indian and Pacific plates. Why and how the energy and material of multiple spheres convergent toward the region are important scientific issues on the front of earth system science and marine sciences, and need to be investigated through international cooperation.
NASA Astrophysics Data System (ADS)
Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy
2018-03-01
During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate the capacity for increased carbon storage by artificially maximising the efficiency of the biological pump in our ensemble members. We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon pumps in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable. The drawdown experiment highlights the importance of the strength of the biological pump in the control state for model studies of increased biological efficiency.
NASA Astrophysics Data System (ADS)
Jolliff, Jason Keith; Smith, Travis A.; Ladner, Sherwin; Arnone, Robert A.
2014-03-01
The U.S. Naval Research Laboratory (NRL) is developing nowcast/forecast software systems designed to combine satellite ocean color data streams with physical circulation models in order to produce prognostic fields of ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system to rapidly combine the latest satellite imagery of the oil slick distribution with surface circulation fields in order to produce oil slick transport scenarios and forecasts. In one such sequence of experiments, MODIS satellite true color images were combined with high-resolution ocean circulation forecasts from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®) to produce 96-h oil transport simulations. These oil forecasts predicted a major oil slick landfall at Grand Isle, Louisiana, USA that was subsequently observed. A key driver of the landfall scenario was the development of a coastal buoyancy current associated with Mississippi River Delta freshwater outflow. In another series of experiments, longer-term regional circulation model results were combined with oil slick source/sink scenarios to simulate the observed containment of surface oil within the Gulf of Mexico. Both sets of experiments underscore the importance of identifying and simulating potential hydrodynamic conduits of surface oil transport. The addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend beyond horizontal trajectory analysis.
The Global Ocean Observing System
NASA Technical Reports Server (NTRS)
Kester, Dana
1992-01-01
A Global Ocean Observing System (GOOS) should be established now with international coordination (1) to address issues of global change, (2) to implement operational ENSO forecasts, (3) to provide the data required to apply global ocean circulation models, and (4) to extract the greatest value from the one billion dollar investment over the next ten years in ocean remote sensing by the world's space agencies. The objectives of GOOS will focus on climatic and oceanic predictions, on assessing coastal pollution, and in determining the sustainability of living marine resources and ecosystems. GOOS will be a complete system including satellite observations, in situ observations, numerical modeling of ocean processes, and data exchange and management. A series of practical and economic benefits will be derived from the information generated by GOOS. In addition to the marine science community, these benefits will be realized by the energy industries of the world, and by the world's fisheries. The basic oceanic variables that are required to meet the oceanic and predictability objectives of GOOS include wind velocity over the ocean, sea surface temperature and salinity, oceanic profiles of temperature and salinity, surface current, sea level, the extent and thickness of sea ice, the partial pressure of CO2 in surface waters, and the chlorophyll concentration of surface waters. Ocean circulation models and coupled ocean-atmosphere models can be used to evaluate observing system design, to assimilate diverse data sets from in situ and remotely sensed observations, and ultimately to predict future states of the system. The volume of ocean data will increase enormously over the next decade as new satellite systems are launched and as complementary in situ measuring systems are deployed. These data must be transmitted, quality controlled, exchanged, analyzed, and archived with the best state-of-the-art computational methods.
A perspective on the future of physical oceanography.
Garabato, Alberto C Naveira
2012-12-13
The ocean flows because it is forced by winds, tides and exchanges of heat and freshwater with the overlying atmosphere and cryosphere. To achieve a state where the defining properties of the ocean (such as its energy and momentum) do not continuously increase, some form of dissipation or damping is required to balance the forcing. The ocean circulation is thought to be forced primarily at the large scales characteristic of ocean basins, yet to be damped at much smaller scales down to those of centimetre-sized turbulence. For decades, physical oceanographers have sought to comprehend the fundamentals of this fractal puzzle: how the ocean circulation is driven, how it is damped and how ocean dynamics connects the very different scales of forcing and dissipation. While in the last two decades significant advances have taken place on all these three fronts, the thrust of progress has been in understanding the driving mechanisms of ocean circulation and the ocean's ensuing dynamical response, with issues surrounding dissipation receiving comparatively little attention. This choice of research priorities stems not only from logistical and technological difficulties in observing and modelling the physical processes responsible for damping the circulation, but also from the untested assumption that the evolution of the ocean's state over time scales of concern to humankind is largely independent of dissipative processes. In this article, I illustrate some of the key advances in our understanding of ocean circulation that have been achieved in the last 20 years and, based on a range of evidence, contend that the field will soon reach a stage in which uncertainties surrounding the arrest of ocean circulation will pose the main challenge to further progress. It is argued that the role of the circulation in the coupled climate system will stand as a further focal point of major advances in understanding within the next two decades, supported by the drive of physical oceanography towards a more operational enterprise by contextual factors. The basic elements that a strategy for the future must have to foster progress in these two areas are discussed, with an overarching emphasis on the promotion of curiosity-driven fundamental research against opposing external pressures and on the importance of upholding fundamental research as the apex of education in the field.
A Possible Cause for Recent Decadal Atlantic Meridional Overturning Circulation Decline
NASA Astrophysics Data System (ADS)
Latif, Mojib; Park, Taewook; Park, Wonsun
2017-04-01
The Atlantic Meridional Overturning Circulation (AMOC) is a major oceanic current system with widespread climate impacts. AMOC influences have been discussed among others with regard to Atlantic hurricane activity, regional sea level variability, and surface air temperature and precipitation changes on land areas adjacent to the North Atlantic Ocean. Most climate models project significant AMOC slowing during the 21st century, if atmospheric greenhouse gas concentrations continue to rise unabatedly. Recently, a marked decadal decline in AMOC strength has been observed, which was followed by strongly reduced oceanic poleward heat transport and record low sea surface temperature in parts of the North Atlantic. Here, we provide evidence from observations, re-analyses and climate models that the AMOC decline was due to the combined action of the North Atlantic Oscillation and East Atlantic Pattern, the two leading modes of North Atlantic atmospheric surface pressure variability, which prior to the decline both transitioned into their negative phases. This change in atmospheric circulation diminished oceanic heat loss over the Labrador Sea and forced ocean circulation changes lowering upper ocean salinity transport into that region. As a consequence, Labrador Sea deep convection weakened, which eventually slowed the AMOC. This study suggests a new mechanism for decadal AMOC variability, which is important to multiyear climate predictability and climate change detection in the North Atlantic sector.
NASA Astrophysics Data System (ADS)
Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten
2015-11-01
Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.
2009-06-30
Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean...2009 4. TITLE AND SUBTITLE Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate... Atlantic Meridional Overturning Circulation (AMOC) in global simulations performed with the depth coordinate Parallel Ocean Program (POP) ocean
A new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene
NASA Astrophysics Data System (ADS)
Riesselman, C. R.; Dowsett, H. J.; Scher, H. D.; Robinson, M. M.
2011-12-01
The mid-Pliocene (3.264 - 3.025 Ma) is the most recent interval in Earth's history with sustained global temperatures in the range of warming predicted for the 21st century, providing an appealing analog with which to examine the Earth system changes we might encounter in the coming century. Ongoing sea surface and deep ocean temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm anomaly coupled with increased evaporation in the mid-Pliocene, possibly driving enhanced meridional overturning circulation and North Atlantic Deep Water production. However deep ocean temperature is not a conclusive proxy for water mass, and most coupled model simulations predict transient decreases in North Atlantic Deep Water production in 21st century, presenting a contrasting picture of future warmer worlds. Here, we present early results from a new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic imprint on fossil fish teeth as a proxy for water mass source region along a three-site depth transect from the Walvis Ridge (subtropical South Atlantic). The deep ocean circulation reconstructions resulting from this project will add a new dimension to the PRISM effort and will be useful for both initialization and evaluation of future model simulations.
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.
2014-11-01
The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude-salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimate of the timescale of the circulation reveals a sluggish abyssal circulation during the LGM, and a Conveyor Belt circulation that is more vigorous due to the combination of a stronger wind stress and a shortened circulation route.
van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B
2017-07-01
Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.
Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa
2000-01-01
The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Sheng, Jinyu; Hannah, Charles
2017-08-01
This study presents applications of a two-way coupled wave-circulation modelling system over coastal waters, with a special emphasis of performance assessments of two different methods for nonlinear feedback of ocean surface gravity waves on three-dimensional (3D) ocean currents. These two methods are the vortex force (VF) formulation suggested by Bennis et al. (2011) and the latest version of radiation stress (RS) formulation suggested by Mellor (2015). The coupled modelling system is first applied to two idealized test cases of surf-zone scales to validate implementations of these two methods in the coupled wave-circulation system. Model results show that the latest version of RS has difficulties in producing the undertow over the surf zone. The coupled system is then applied to Lunenburg Bay (LB) of Nova Scotia during Hurricane Juan in 2003. The coupled system using both the VF and RS formulations generates much stronger and more realistic 3D circulation in the Bay during Hurricane Juan than the circulation-only model, demonstrating the importance of surface wave forces to the 3D ocean circulation over coastal waters. However, the RS formulation generates some weak unphysical currents outside the wave breaking zone due to a less reasonable representation for the vertical distribution of the RS gradients over a slopping bottom. These weak unphysical currents are significantly magnified in a two-way coupled system when interacting with large surface waves, degrading the model performance in simulating currents at one observation site. Our results demonstrate that the VF formulation with an appropriate parameterization of wave breaking effects is able to produce reasonable results for applications over coastal waters during extreme weather events. The RS formulation requires a complex wave theory rather than the linear wave theory for the approximation of a vertical RS term to improve its performance under both breaking and non-breaking wave conditions.
Coupled Regional Ocean-Atmosphere Modeling of the Mount Pinatubo Impact on the Red Sea
NASA Astrophysics Data System (ADS)
Stenchikov, G. L.; Osipov, S.
2017-12-01
The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.
NASA Astrophysics Data System (ADS)
d'Orgeville, M.; England, M. H.; Sijp, W. P.
2011-12-01
Changes in the ocean circulation on millenial timescales can impact the atmospheric CO2 concentration by two distinct mechanisms: either by modifying the non-buffered ocean carbon storage (through changes in the physical and biological oceanic pumps) or by directly varying the surface mean oceanic partial pressure of pCO2 (through changes in mean surface alkalinity, temperature or salinity). The equal importance of the two mechanisms is illustrated here by introducing a diagnostic buffered carbon budget on the results of simulations performed with an Earth System Climate Model. For all the circulation changes considered in this study (due to a freshening of the North Atlantic, or a change in the Southern Hemisphere Westerly winds), the sign of the atmospheric CO2 response is opposite to the sign of the non-buffered ocean carbon storage change, indicating a transfer of carbon between ocean and atmosphere reservoirs. However the concomitant changes in the buffered ocean carbon reservoir can either greatly enhance or almost inhibit the atmospheric response depending on its sign. This study also demonstrates the utility of the buffered carbon budget approach in diagnosing the transient response of the global carbon cycle to climatic variations.
2009-09-30
Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have... Fisheries and Ocean Sciences,903 Koyukuk Drive,Fairbanks,AK,99775 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND
2009-05-20
in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. dim. 21. 6599-6615. Blanke, B., Raynaud. S„ 1997. Kinematics of...Indian to the Atlantic Ocean in the warm upper-branch return flow of the thermohaline circulation (Cordon, 1985). The three numerical data sets...35. L20602. Biastoch, A., Boning. C.W.. Lutjeharms, J.RE., 2008b. Agulhas leakage dynamics affects decadal variability in Atlantic overturning
North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerovecki, Ivana; McClean, Julie; Koracin, Darko
2014-11-14
The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employedmore » in e.g. the Community Climate System Model (CCSM).« less
Impact Of Resolving Submesoscale Features On Modeling The Gulf Stream System
NASA Astrophysics Data System (ADS)
Chassignet, E.; Xu, X.
2016-02-01
Despite being one the best-known circulation pattern of the world ocean, the representation of the Gulf Stream, especially its energetic extension east of the New England Seamounts Chains in the western North Atlantic Ocean, has been a major challenge for ocean general circulation models even at eddy-rich resolutions. Here we show that, for the first time, a simulation of the North Atlantic circulation at 1/50° resolution realistically represents the narrow, energetic jet near 55°W when compared to observations, whereas similarly configured simulations at 1/25° and 1/12° resolution do not. This result highlights the importance of submesoscale features in driving the energetic Gulf Stream extension in the western North Atlantic. The results are discussed in terms of mesoscale and submesoscale energy power spectra.
Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2010-01-01
This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.
Modeling the Gulf Stream System: How Far from Reality?
NASA Technical Reports Server (NTRS)
Choa, Yi; Gangopadhyay, Avijit; Bryan, Frank O.; Holland, William R.
1996-01-01
Analyses of a primitive equation ocean model simulation of the Atlantic Ocean circulation at 1/6 deg horizontal resolution are presented with a focus on the Gulf Stream region. Among many successful features of this simulation, this letter describes the Gulf Stream separation from the coast of North America near Cape Hatteras, meandering of the Gulf Stream between Cape Hatteras and the Grand Banks, and the vertical structure of temperature and velocity associated with the Gulf Stream. These results demonstrate significant improvement in modeling the Gulf Stream system using basin- to global scale ocean general circulation models. Possible reasons responsible for the realistic Gulf Stream simulation are discussed, contrasting the major differences between the present model configuration and those of previous eddy resolving studies.
NASA Astrophysics Data System (ADS)
Hughes, Chris W.; Williams, Joanne; Blaker, Adam; Coward, Andrew; Stepanov, Vladimir
2018-02-01
We show how, by focusing on bottom pressure measurements particularly on the global continental slope, it is possible to avoid the "fog" of mesoscale variability which dominates most observables in the deep ocean. This makes it possible to monitor those aspects of the ocean circulation which are most important for global scale ocean variability and climate. We therefore argue that such measurements should be considered an important future component of the Global Ocean Observing System, to complement the present open-ocean and coastal elements. Our conclusions are founded on both theoretical arguments, and diagnostics from a fine-resolution ocean model that has realistic amplitudes and spectra of mesoscale variability. These show that boundary pressure variations are coherent over along-slope distances of tens of thousands of kilometres, for several vertical modes. We illustrate the value of this in the model Atlantic, by determining the time for boundary and equatorial waves to complete a circuit of the northern basin (115 and 205 days for the first and second vertical modes), showing how the boundary features compare with basin-scale theoretical models, and demonstrating the ability to monitor the meridional overturning circulation using these boundary measurements. Finally, we discuss applicability to the real ocean and make recommendations on how to make such measurements without contamination from instrumental drift.
Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom.
Oka, Akira; Niwa, Yoshihiro
2013-01-01
Vertical mixing in the ocean is a key driver of the global ocean thermohaline circulation, one of the most important factors controlling past and future climate change. Prior observational and theoretical studies have focused on intense tidal mixing near the sea bottom (near-field mixing). However, ocean general circulation models that employ a parameterization of near-field mixing significantly underestimate the strength of the Pacific thermohaline circulation. Here we demonstrate that tidally induced mixing away from the sea bottom (far-field mixing) is essential in controlling the Pacific thermohaline circulation. Via the addition of far-field mixing to a widely used tidal parameterization, we successfully simulate the Pacific thermohaline circulation. We also propose that far-field mixing is indispensable for explaining the presence of the world ocean's oldest water in the eastern North Pacific Ocean. Our findings suggest that far-field mixing controls ventilation of the deep Pacific Ocean, a process important for ocean carbon and biogeochemical cycles.
Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.
Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F
2014-07-03
Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the Bølling-Allerød interstadial.
NASA Astrophysics Data System (ADS)
He, R.; Zong, H.; Xue, Z. G.; Fennel, K.; Tian, H.; Cai, W. J.; Lohrenz, S. E.
2017-12-01
An integrated terrestrial-ocean ecosystem modeling system is developed and used to investigate marine physical-biogeochemical variabilities in the Gulf of Mexico and southeastern US shelf sea. Such variabilities stem from variations in the shelf circulation, boundary current dynamics, impacts of climate variability, as well as growing population and associated land use practices on transport of carbon and nutrients within terrestrial systems and their delivery to the coastal ocean. We will report our efforts in evaluating the performance of the coupled modeling system via extensive model and data comparisons, as well as findings from a suite of case studies and scenario simulations. Long-term model simulation results are used to quantify regional ocean circulation dynamics, nitrogen budget and carbon fluxes. Their corresponding sub-regional differences are also characterized and contrasted.
A Preliminary Study on the Circulation of an ocean covering a Synchronously Rotating Planet
NASA Astrophysics Data System (ADS)
Matsuo, H.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.; Nakajima, K.
2012-12-01
Recently, nearly 800 extrasolar planets have been detected. It seems that some of them present into habitable zone, in which planets can have ocean, and such planets rotate synchronously with their central stars. Ocean is necessary for life, and the circulation makes climate mild by heat transport on the earth. The earth is the only planet that has ocean in the solar system so that it has not been understood what oceanic circulation is like in another planets. The purpose of this study is prediction of oceanic circulation on extrasolar planets by using numerical simulation. As a first step, elementary consideration is made. The planet is almost entirely covered with ocean and whose rotation period corresponds with its orbital period. On synchronously rotating planets, the thermal contrast between day-hemisphere and night-hemisphere would be extreme. However, it may be lessend if there is significant zonal heat transport. The circulation in such conditions has not been known well. We performed a numerical experiment based on the linear shallow water equation, assuming that both the evaporation and the precipitation occur only on day-hemisphere (Noda et al., 2011). With these distributions of the evaporation and the precipitation, one may anticipate the circulation occurs in only day-hemisphere. However, the resulting calculation is characterized with zonally uniform zonal flow, which also covers night hemisphere. In addition, the intensity of the flow increases with time. That behavior can be understood by constructing asymptotic solution which is first degree in time. The importance of Coriolis force, which bends meridional flow to zonal flow, is identified. It is implied that, even when only day-hemisphere has the evaporation and precipitation, there may be significant amount of heat can be transported from the day-hemisphere to the night-hemisphere by the strong zonal flow. The growth of zonal flow would be stopped when the evaporation and the precipitation are balanced with mass transport in the bottom Ekman layer.
The Pattern and Dynamics of the Meridional Overturning Circulation in the Upper Ocean
2008-09-01
Atlantic . Figure 4a shows that the center of meridional overturning circulation occurs at a level of about one kilometer. Circulation is weak at...maintenance of the meridional overturning circulation in the Atlantic Ocean. 5. Global Simulation The most exciting experiment would be to fully model the...mechanisms responsible for the strength and maintenance of the meridional overturning circulation in the Atlantic Ocean are not
Walker circulation in a transient climate
NASA Astrophysics Data System (ADS)
Plesca, Elina; Grützun, Verena; Buehler, Stefan A.
2016-04-01
The tropical overturning circulations modulate the heat exchange across the tropics and between the tropics and the poles. The anthropogenic influence on the climate system will affect these circulations, impacting the dynamics of the Earth system. In this work we focus on the Walker circulation. We investigate its temporal and spatial dynamical changes and their link to other climate features, such as surface and sea-surface temperature patterns, El-Niño Southern Oscillation (ENSO), and ocean heat-uptake, both at global and regional scale. In order to determine the impact of anthropogenic climate change on the tropical circulation, we analyze the outputs of 28 general circulation models (GCMs) from the CMIP5 project. We use the experiment with 1% year-1 increase in CO2 concentration from pre-industrial levels to quadrupling of the concentration. Consistent with previous studies (ex. Ma and Xie 2013), we find that for this experiment most GCMs associate a weakening Walker circulation to a warming transient climate. Due to the role of the Walker Pacific cell in the meridional heat and moisture transport across the tropical Pacific and also the connection to ENSO, we find that a weakened Walker circulation correlates with more extreme El-Niño events, although without a change in their frequency. The spatial analysis of the Pacific Walker cell suggests an eastward displacement of the ascending branch, which is consistent with positive SST anomalies over the tropical Pacific and the link of the Pacific Walker cell to ENSO. Recent studies (ex. England et al. 2014) have linked a strengthened Walker circulation to stronger ocean heat uptake, especially in the western Pacific. The inter-model comparison of the correlation between Walker circulation intensity and ocean heat uptake does not convey a robust response for the investigated experiment. However, there is some evidence that a stronger weakening of the Walker circulation is linked to a higher transient climate response (temperature change by the time of CO2 doubling), which in turn might be related to a decreased ocean heat uptake. This uncertainty across the models we attribute to the multitude of factors controlling ocean and atmosphere heat exchange, both at global and regional scales, as well as to the present capabilities of GCMs in simulating this exchange. References: England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A., 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change 4 (3): 222-227. Ma, J., and Xie, S. P., 2013. Regional Patterns of Sea Surface Temperature Change: A Source of Uncertainty in Future Projections of Precipitation and Atmospheric Circulation*. Journal of Climate, 26 (8): 2482-2501
Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System
2011-02-16
34, Elisabeth Remy’, Anthony Rosati*3", Andreas Schiller’, Doug M. Smith’"’, Detlef Stammer ’, Nozomi Sugiura", Kevin E. Trenberth "*’, Yan...and Beyond ENSO. In these proceedings (Vol. 2). 10. Stammer D. & Co-Authors (2002). The Global Ocean Circulation During 1992-1997 Estimated from...GODAE. Oceanography 22(3), 128-143. 25. Stammer , D. & Co-Authors (2010). Ocean Information Provided through Ensemble Ocean Syntheses. In these
NASA Astrophysics Data System (ADS)
Carmack, E. C.; Yamamoto-Kawai, M.; Haine, T. W. N.; Bacon, S.; Bluhm, B. A.; Lique, C.; Melling, H.; Polyakov, I. V.; Straneo, F.; Timmermans, M.-L.; Williams, W. J.
2016-03-01
The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.
A reanalysis dataset of the South China Sea.
Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu
2014-01-01
Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992-2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability.
A reanalysis dataset of the South China Sea
Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu
2014-01-01
Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992–2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability. PMID:25977803
Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean
Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard
2013-01-01
[1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales. PMID:26074634
Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean.
Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard
2013-12-16
[1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales.
A numerical world ocean general circulation model Part I. Basic design and barotropic experiment
NASA Astrophysics Data System (ADS)
Han, Young-June
1984-08-01
A new six-layer world ocean general circulation model based on the primitive system of equations is described in detail and its performance in the case of a homogeneous ocean is described. These test integrations show that the model is capable of reproducing the observed mean barotropic or vertically-integrated transport, as well as the seasonal variability of the major ocean gyres. The surface currents, however, are dominated by the Ekman transport, and such non-linear features as the western boundary currents and the equatorial countercurrents are poorly represented. The abyssal boundary countercurrents are also absent due to the lack of thermohaline forcing. The most conspicuous effect of the bottom topography on a homogeneous ocean is seen in the Southern ocean where the calculated Antarctic circumpolar transport through the Drake passage ( ≈ 10 Sv, with bathymetry included) greatly underestimates the observed transport (≈ 100 Sv).
NASA Technical Reports Server (NTRS)
Takano, Kenji
1996-01-01
An oceanic data assimilation system which allows to utilize the forthcoming Tropical Rainfall Measuring Mission (TRMM) data has been developed and applied to the Pacific Ocean to produce the velocity field. The assimilated data will be indispensable to examine the effects of rainfall and its variability on the structure and circulation of the tropical oceans and to assess the impact of global warming due to the increase of carbon dioxide on the ocean circulation system and the marine pollution caused by oil spill and ocean damping of radionuclide. The data will also provide the verification for the oceanic and ocean-atmosphere coupled General Circulation Models (GCM's). The system consists of oceanic GCM, analysis scheme and data. In the system the flow field has been determined to be physically consistent with the observed density field and the sea surface winds derived from the Special Sensor Microwave Imagery (SSM/I) data which drive the ocean current. The time integration has been performed for five years until the flow field near the surface attained the steady state starting from the rest ocean with observed temperature and salinity fields, and the SSM/I surface wind velocity. The resultant flow field showed high producibility of the system. Especially the flow near the ocean surface agreed well with available observed data. The system, for the first time, succeeded to produce the eastward subtropical current which has been discovered in the joint investigation on Kuroshio current (CSK) in the 1960s. To verify the quality of the flow field a trajectory analysis has been carried out and compared with the Algos buoy data. BRIEF DESCRIPTION OF THE DATA ASSIMILATION SYSTEM ## Oceanic GCM and analysis scheme--The basic equations are much the same as used for the GCM's, except for the Newtonian damping terms introduced into the prediction equations for the potential temperature and salinity to maintain these fields as observed. The C grid of 2'lat. by 2'long. in horizontal and the 11 vertical levels are applied to the entire Pacific Ocean. At the east and west ocean boundaries the periodic boundary conditions are applied creating fictitious ocean there. The SMAC Method is used to increase the accuracy of mass conservation. * Data--The JODC temperature and salinity data obtained from 1906 to 1988 are used in the system between Long.100'E. and 60'W. The surface wind data are derived from the SSM/I data by Dr-R. Atlas of NASA/GSFC. The data set contains every 6 hours data from July 1987 to June 1989 on the grid of 2'lat. by 2.5'long. The averaged for the whole period and then interpolated into the 2'lat. by 2'long. grid data are used to force the system. The sea bottom topography data was based on the General Bathymetric Chart of the Ocean (GEBCO) supplied by the Canadian Hydrographic Service under contract with the International Hydrographic Organization and International Oceanographic Commission of UNESCO.
Arctic sea-ice variability and its implication to the path of pollutants under a changing climate
NASA Astrophysics Data System (ADS)
Castro-Morales, K.; Gerdes, R.; Riemann-Campe, K.; Köberle, C.; Losch, M.
2012-04-01
The increasing concentration of pollutants from anthropogenic origin in the Arctic atmosphere, water, sediments and biota has been evident during the last decade. The sea-ice is an important vehicle for pollutants in the Arctic Ocean. Pollutants are taken up by precipitation and dry atmospheric deposition over the snow and ice cover during winter and released to the ocean during melting. Recent changes in the sea-ice cover of the Arctic Ocean affect the fresh water balance and the oceanic circulation, and with it, the fate of pollutants in the system. The Arctic Ocean is characterized by complex dynamics and strong stratification. Thus, to evaluate the current and future changes in the Arctic circulation high-resolution models are needed. As part of the EU FP7 project ArcRisk (under the scope of the IPY), we use a high resolution regional sea-ice-ocean coupled model covering the Arctic Ocean and the subpolar North Atlantic based on the Massachusetts Institute of Technology - circulation model (MITgcm). Under realistic atmospheric forcing we obtain hindcast results of circulation patterns for the period 1990 - 2010 for validation of the model. We evaluate possible consequences on the pathways and transport of contaminants by downscaling future climate scenario runs available in the coupled model intercomparison project (CMIP3) for the following fifty years. Particular interest is set in the Barents Sea. In this shallow region strong river runoff, sea-ice delivered from the interior of the Arctic Ocean and warm waters from the North Atlantic current are main sources of contaminants. Under a changing climate, a higher input of contaminants delivered to surface waters is expected, remaining in the interior of the Arctic Ocean in a strongly stratified water column remaining.
Methods of testing parameterizations: Vertical ocean mixing
NASA Technical Reports Server (NTRS)
Tziperman, Eli
1992-01-01
The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.
Seasonal variation of the South Indian tropical gyre
NASA Astrophysics Data System (ADS)
Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.
2016-04-01
The South Indian tropical gyre receives and redistributes water masses from the Indonesian Throughflow (ITF), a source of Pacific Ocean water which represents the only low-latitude connector between the world oceans and, therefore, a key component in the global ocean circulation and climate system. We investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR), based on satellite altimeter data (AVISO) and global atlases of temperature and salinity (CARS09), wind stress (SCOW) and wind-driven circulation. Two novel large-scale features governing the upper geostrophic circulation of the South Indian tropical gyre are revealed. First, the seasonal shrinkage of the ocean gyre. This occurs when the South Equatorial Countercurrent (SECC) recirculates before arrival to Sumatra from winter to spring, in apparent synchronization with the annual cycle of the ITF. Second, the open-ocean upwelling is found to vary following seasonality of the overlying geostrophic ocean gyre, a relationship that has not been previously shown for this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. Broadly speaking, the seasonal shrinkage of the ocean gyre (and the SCTR) is the one feature that differs most when the geostrophic circulation is compared to the wind-driven Sverdrup circulation. From late autumn to spring, the eastward SECC recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC at longitudes more westward than predicted from the barotropic wind-driven circulation. Because our findings are based on time-averaged seasonal fields from 22 years of satellite altimeter data and from about 60 years of non-systematic sampling of ocean temperature and salinity data (CARS09), we stress the importance of further study on the possibility that interanual variability in the seasonal ITF may cause changes in the seasonal resizing of the ocean gyre and its associated upwelling ridge.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene.
Zhang, Zhongshi; Nisancioglu, Kerim H; Ninnemann, Ulysses S
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ(13)C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ(13)C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene
Zhang, Zhongshi; Nisancioglu, Kerim H.; Ninnemann, Ulysses S.
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ13C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ13C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features. PMID:23422667
NASA Astrophysics Data System (ADS)
Pratik, Kad; Parekh, Anant; Karmakar, Ananya; Chowdary, Jasti S.; Gnanaseelan, C.
2018-05-01
The present study examines changes in the low-level summer monsoon circulation over the Arabian Sea and their impact on the ocean dynamics using reanalysis data. The study confirms intensification and northward migration of low-level jet during 1979 to 2015. Further during the study period, an increase in the Arabian Sea upper ocean heat content is found in spite of a decreasing trend in the net surface heat flux, indicating the possible role of ocean dynamics in the upper ocean warming. Increase in the anti-cyclonic wind stress curl associated with the change in the monsoon circulation induces downwelling over the central Arabian Sea, favoring upper ocean warming. The decreasing trend of southward Ekman transport, a mechanism transporting heat from the land-locked north Indian Ocean to southern latitudes, also supports increasing trend of the upper ocean heat content. To reinstate and quantify the role of changing monsoon circulation in increasing the heat content over the Arabian Sea, sensitivity experiment is carried out using ocean general circulation model. In this experiment, the model is forced by inter-annual momentum forcing while rest of the forcing is climatological. Experiment reveals that the changing monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport, which strongly endorses our hypothesis that changing ocean dynamics associated with low-level monsoon circulation is causing the increasing trend in the heat content of the Arabian Sea.
Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea
NASA Astrophysics Data System (ADS)
Osipov, Sergey; Stenchikov, Georgiy
2017-11-01
The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.
REVIEWS OF TOPICAL PROBLEMS: Free convection in geophysical processes
NASA Astrophysics Data System (ADS)
Alekseev, V. V.; Gusev, A. M.
1983-10-01
A highly significant geophysical process, free convection, is examined. Thermal convection often controls the dynamical behavior in several of the earth's envelopes: the atmosphere, ocean, and mantle. Section 2 sets forth the thermohydrodynamic equations that describe convection in a compressible or incompressible fluid, thermochemical convection, and convection in the presence of thermal diffusion. Section 3 reviews the mechanisms for the origin of the global atmospheric and oceanic circulation. Interlatitudinal convection and jet streams are discussed, as well as monsoon circulation and the mean meridional circulation of ocean waters due to the temperature and salinity gradients. Also described are the hypotheses for convective motion in the mantle and the thermal-wave (moving flame) mechanism for inducing global circulation (the atmospheres of Venus and Mars provide illustrations). Eddy formation by convection in a centrifugal force field is considered. Section 4 deals with medium- and small-scale convective processes, including hurricane systems with phase transitions, cellular cloud structure, and convection penetrating into the ocean, with its stepped vertical temperature and salinity microstructure. Self-oscillatory processes involving convection in fresh-water basins are discussed, including effects due to the anomalous (p,T) relation for water.
NASA Astrophysics Data System (ADS)
Jungclaus, J. H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Mikolajewicz, U.; Notz, D.; von Storch, J. S.
2013-06-01
MPI-ESM is a new version of the global Earth system model developed at the Max Planck Institute for Meteorology. This paper describes the ocean state and circulation as well as basic aspects of variability in simulations contributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The performance of the ocean/sea-ice model MPIOM, coupled to a new version of the atmosphere model ECHAM6 and modules for land surface and ocean biogeochemistry, is assessed for two model versions with different grid resolution in the ocean. The low-resolution configuration has a nominal resolution of 1.5°, whereas the higher resolution version features a quasiuniform, eddy-permitting global resolution of 0.4°. The paper focuses on important oceanic features, such as surface temperature and salinity, water mass distribution, large-scale circulation, and heat and freshwater transports. In general, these integral quantities are simulated well in comparison with observational estimates, and improvements in comparison with the predecessor system are documented; for example, for tropical variability and sea ice representation. Introducing an eddy-permitting grid configuration in the ocean leads to improvements, in particular, in the representation of interior water mass properties in the Atlantic and in the representation of important ocean currents, such as the Agulhas and Equatorial current systems. In general, however, there are more similarities than differences between the two grid configurations, and several shortcomings, known from earlier versions of the coupled model, prevail.
2009-01-01
Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) School of Fisheries and Ocean
The Ocean Topography Experiment (TOPEX) - Some questions answered
NASA Technical Reports Server (NTRS)
Townsend, W. F.
1985-01-01
The Ocean Topography Experiment (TOPEX) is to provide a basis for improving the understanding of the general circulation of the global oceans. In the context of this experiment, measurements of the surface topography of the oceans are to be conducted with the aid of radar altimetry. The obtained data, when combined with appropriate in situ observations, will make it possible to determine the three-dimensional structure of the ocean currents. The in situ observations needed are to be provided by the World Ocean Circulation Experiment (WOCE). Information regarding the ocean surface winds obtained with the aid of the NASA Scatterometer (NSCAT) to be flown on the Navy Remote Ocean Sensing System (N-ROSS) can supplement the TOPEX and WOCE data about the oceans. The TOPEX satellite is to be designed for a three year lifetime, but it will carry expendables for two additional years. Attention is given to TOPEX as an international program, aspects of timing regarding the conduction of the various experiments dealing with the oceans and the global climate, and the special characteristics of the TOPEX mission.
Subseafloor processes in mid-ocean ridge hydrothennal systems
NASA Astrophysics Data System (ADS)
Alt, Jeffrey C.
Convective circulation of seawater through oceanic crust at mid-ocean ridges (MOR) and on ridge flanks has wide-ranging effects on heat transport, the chemical and isotopic compositions of ocean crust and seawater, mineralization of the crust, and on the physical properties of oceanic basement. Submarine hydrothermal systems remove about 30% of the heat lost from oceanic crust [Selater et al., 1981; Stein and Stein, 1994], and chemical and isotopic exchange between seawater and basement rocks exerts important controls on the composition of seawater [Edmond et al., 1979a; Thompson, 1983]. The composition of altered crust is also changed and, when subducted, this altered crust can contribute to chemical and isotopic heterogeneities in the mantle [Zindler and Hart, 1986] and may affect the compositions of volcanic rocks in island arcs [Perfit et al., 1980; Tatsumi, 1989]. Mineralization of ocean crust occurs where metals, leached from large volumes of altered crust at depth, are concentrated at or near the surface by hydrothermal circulation [Hannington, 1995]. Hydrothermal alteration of magnetic minerals may affect the source of marine magnetic anomalies [Pariso and Johnson, 1991], and the formation of secondary minerals influences the density, porosity, and seismic velocity structure of the crust [Wilkens et al., 1991; Jacobson, 1992].
Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates
NASA Astrophysics Data System (ADS)
Harris, R. N.; Spinelli, G. A.; Fisher, A. T.
2017-12-01
We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.
The impact of Southern Ocean gateways on the Cenozoic climate evolution
NASA Astrophysics Data System (ADS)
von der Heydt, Anna; Viebahn, Jan; Dijkstra, Henk
2016-04-01
During the Cenozoic period, which covers the last 65 Million (Ma) years, Earth's climate has undergone a major long-term transition from warm "greenhouse" to colder "icehouse" conditions with extensive ice sheets in the polar regions of both hemispheres. On the very long term the gradual cooling may be seen as response to the overall slowly decreasing atmospheric CO2-concentration due to weathering processes in the Earth System, however, continental geometry has changed considerably over this period and the long-term gradual trend was interrupted, by several rapid transitions as well as periods where temperature and greenhouse gas concentrations seem to be decoupled. The Eocene-Oligocene boundary (˜34 Ma, E/O) and mid-Miocene climatic transition (˜13 Ma, MCT) reflect major phases of Antarctic ice sheet build-up and global climate cooling, while Northern Hemisphere ice sheets developed much later, most likely at the Pliocene-Pleistocene transition (˜2.7Ma). Thresholds in atmospheric CO2-concentration together with feedback mechanisms related to land ice formation are now among the favoured mechanisms of these climatic transitions, while the long-proposed ocean circulation changes caused by opening of tectonic gateways seem to play a less direct role. The opening of the Southern Ocean gateways, notably the Drake Passage and the Tasman Gateway as well as the northward movement of Australia over this long time period, however, has eventually led to the development of today's strongest ocean current, the Antarctic Circumpolar Current (ACC), playing a major role in the transport properties of the global ocean circulation. The overall state of the global ocean circulation, therefore, preconditions the climate system to dramatic events such as major ice sheet formation. Here, we present results of a state-of-the art global climate model (CESM) under various continental configurations: (i) present day geometry, (ii) present day geometry with a closed Drake Passage and (iii) a recently developed late Eocene continental configuration. Between the different configurations we find significant differences in heat transport as well as sea surface and deep ocean temperatures around the Antarctic continent. By decomposing the heat transport with respect to different ocean circulation regimes, we reveal the dominant physical processes responsible for the heat transport changes. Moreover, we compare the fully coupled system with the corresponding ocean-only simulations in order to further analyze the interplay between the ocean gateways, sea-ice and atmospheric feedbacks. Finally, for the ocean-only simulations we also compare eddy-resolving spatial resolution with non-eddying resolution to quantify the relevance of resolved mesoscale turbulence on the changes in ocean circulation regimes induced by gateway openings. In conclusion, we demonstrate that for deciphering the different mechanisms active in the steps of the Cenozoic greenhouse-to-icehouse transition detailed analyses of the pathways of heat in the different climate subsystems are crucial in order to clearly identify the physical processes at work.
Operational seasonal and interannual predictions of ocean conditions
NASA Technical Reports Server (NTRS)
Leetmaa, Ants
1992-01-01
Dr. Leetmaa described current work at the U.S. National Meteorological Center (NMC) on coupled systems leading to a seasonal prediction system. He described the way in which ocean thermal data is quality controlled and used in a four dimensional data assimilation system. This consists of a statistical interpolation scheme, a primitive equation ocean general circulation model, and the atmospheric fluxes that are required to force this. This whole process generated dynamically consist thermohaline and velocity fields for the ocean. Currently routine weekly analyses are performed for the Atlantic and Pacific oceans. These analyses are used for ocean climate diagnostics and as initial conditions for coupled forecast models. Specific examples of output products were shown both in the Pacific and the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.
2017-12-01
Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.
The Atlantic Multidecadal Oscillation without a role for ocean circulation.
Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn
2015-10-16
The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO. Copyright © 2015, American Association for the Advancement of Science.
Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo
2018-01-26
Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.
Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo
2018-01-01
Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.
Global Observations and Understanding of the General Circulation of the Oceans
NASA Technical Reports Server (NTRS)
1984-01-01
The workshop was organized to: (1) assess the ability to obtain ocean data on a global scale that could profoundly change our understanding of the circulation; (2) identify the primary and secondary elements needed to conduct a World Ocean Circulation Experiment (WOCE); (3) if the ability is achievable, to determine what the U.S. role in such an experiment should be; and (4) outline the steps necessary to assure that an appropriate program is conducted. The consensus of the workshop was that a World Ocean Circulation Experiment appears feasible, worthwhile, and timely. Participants did agree that such a program should have the overall goal of understanding the general circulation of the global ocean well enough to be able to predict ocean response and feedback to long-term changes in the atmosphere. The overall goal, specific objectives, and recommendations for next steps in planning such an experiment are included.
Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition
NASA Astrophysics Data System (ADS)
Goldner, A.; Herold, N.; Huber, M.
2014-07-01
Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.
Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.
Goldner, A; Herold, N; Huber, M
2014-07-31
Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.
Reversed flow of Atlantic deep water during the Last Glacial Maximum.
Negre, César; Zahn, Rainer; Thomas, Alexander L; Masqué, Pere; Henderson, Gideon M; Martínez-Méndez, Gema; Hall, Ian R; Mas, José L
2010-11-04
The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.
The Southern Ocean biogeochemical divide.
Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L
2006-06-22
Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.
Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan (PREPRINT)
2009-05-18
analysis of upper-limb meridional overturning circulation interior ocean pathways in the tropical/subtropical Atlantic . In: Interhemispheric Water...diminishing returns are encountered when either resolution is increased. 3 1. Introduction Coupled ocean-atmosphere general circulation models have become...northwest Caribbean Sea 4 and GOM. Evaluation is difficult because ocean general circulation models incorporate a large suite of numerical algorithms
The Indian Ocean as a Connector
NASA Astrophysics Data System (ADS)
Durgadoo, J. V.; Biastoch, A.; Boning, C. W.
2016-02-01
The Indian Ocean is a conduit for the upper ocean flow of the global thermohaline circulation. It receives water from the Pacific Ocean through the Indonesian throughflow and the Tasman leakage, and exports water into the Atlantic by means of Agulhas leakage. A small contribution from the northern Indian Ocean is also detectable within Agulhas leakage. Changes on different timescales in the various components of the Pacific inflows and the Atlantic outflow have been reported. Little is known on the role of the Indian Ocean circulation in communicating changes from the Pacific into the Atlantic, let alone any eventual alterations in response to climate change. The precise routes and timescales of Indonesian throughflow, Tasman leakage, Red Sea and Persian Gulf Waters towards the Atlantic are examined in a Lagrangian framework within a high-resolution global ocean model. In this presentation, the following questions are addressed: How are Pacific waters modified in the Indian Ocean before reaching the Agulhas system? On what timescale is water that enters the Indian Ocean from the Pacific flushed out? How important are detours in the Bay of Bengal and Arabian Sea?
The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation
NASA Astrophysics Data System (ADS)
Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.
2016-12-01
Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.
Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture
NASA Astrophysics Data System (ADS)
Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David
2017-07-01
Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.
NASA Astrophysics Data System (ADS)
Nikurashin, Maxim; Gunn, Andrew
2017-04-01
The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Khangaonkar, Tarang
2010-11-19
Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolutionmore » (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.« less
An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System
NASA Astrophysics Data System (ADS)
Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong
2018-03-01
An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.
NASA Technical Reports Server (NTRS)
Nese, Jon M.
1989-01-01
A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.
Evaluation of the Tropical Pacific Observing System from the Data Assimilation Perspective
2014-01-01
hereafter, SIDA systems) have the capacity to assimilate salinity profiles imposing a multivariate (mainly T-S) balance relationship (summarized in...Fujii et al., 2011). Current SIDA systems in operational centers generally use Ocean General Circulation Models (OGCM) with resolution typically 1...long-term (typically 20-30 years) ocean DA runs are often performed with SIDA systems in operational centers for validation and calibration of SI
2012-09-30
unbalanced motions is likely to occur. Due to an rapidly expanding set of investigation on oceanic flows at submesoscales, it is increasingly clear...Uchiyama, E. M. Lane, J. M. Restrepo, & J. C. McWilliams, 2011: A vortex force analysis of the interaction of rip currents and gravity waves. J. Geophys...particular topographic features, the torque is pervasively positive (cyclonic) along the Stream, in opposition to the anticyclonic wind curl in the
Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed
NASA Astrophysics Data System (ADS)
Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.
2018-02-01
Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.
Climate and CO2 coupling in the early Cenozoic Greenhouse
NASA Astrophysics Data System (ADS)
Rae, J. W. B.; Greenop, R.; Kaminski, M.; Sexton, P. F.; Foster, G. L.; Greene, S. E.; Littley, E.; Kirtland Turner, S.; Ridgwell, A.
2017-12-01
The early Cenozoic is a time of climatic extremes: hyperthermals pepper the transition from extreme global warmth to the start of Cenozoic cooling, with these evolving climate regimes accompanied by major changes in ocean chemistry and biota. The exogenic carbon cycle, and ocean-atmospheric CO2 in particular, is thought to have played a key role in these climatic changes, but the carbon chemistry of the early Cenozoic ocean remains poorly constrained. Here we present new boron isotope data from benthic foraminifera, which can be used to constrain relative changes in ocean pH. These are coupled with modelling experiments performed with the cGenie Earth system model to provide new constraints on the carbon cycle and carbonate system of the early Cenozoic. While our benthic boron isotope data do not readily provide a record of surface ocean CO2 , they do place constraints on the whole ocean-atmosphere carbonate system, alongside changes in ocean circulation and biogeochemistry, and also have relatively robust calcite tests and small `vital effects'. During the late Paleocene ascent to peak greenhouse conditions and the middle Eocene descent towards the icehouse, our boron isotope data show close coupling with benthic δ18O, demonstrating a clear link between CO2 and climate. However within the early Eocene our boron isotope data reveal more dynamic changes in deep ocean pH, which may be linked to changes in ocean circulation. Overall, our data demonstrate the ability of CO2 to regulate the climate system across varying boundary conditions, and the influence of both the long-term carbon cycle and shorter-term ocean biogeochemical cycling on Earth's climate.
Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes
NASA Astrophysics Data System (ADS)
Marinov, I.; Gnanadesikan, A.
2011-02-01
The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.
Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes
NASA Astrophysics Data System (ADS)
Marinov, I.; Gnanadesikan, A.
2010-11-01
The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.
2009-02-01
the largest zonal current in the world, which links the Atlantic , Indian and Pacific Oceans. The associated Meridional Overturning Circulation (MOC...formed in polar regions (Wunsch and Ferrari, 2004). Mixing is especially important in the Southern Ocean where the Meridional Overturning Circulation ...general circulation of the ocean and an important driver of the lower cell of the Meridional Overturning Circulation . Wunsch (1998) estimated that the
Large Scale Eocene Ocean Circulation Transition Could Help Antarctic Glaciation.
NASA Astrophysics Data System (ADS)
Baatsen, M.
2016-12-01
The global climate underwent major changes going from the Eocene into the Oligocene, including the formation of a continental-scale Antarctic ice sheet. In addition to a gradual drawdown of CO2 since the Early Eocene, the changing background geography of the earth may also have played a crucial role in setting the background oceanic circulation pattern favorable to ice growth. On the other hand, the ocean circulation may have changed only after the ice sheet started growing, with a similar climatic imprint. It is, therefore, still under debate what the primary forcing or trigger of this transition was. Using an ocean general circulation model (POP) and two different geography reconstruc-tions for the middle-late Eocene, we find two distinctly different patterns of the oceanic circulation to be possible under the same forcing. The first one features deep-water formation and warmer SSTs in the Southern Pacific while in the second, deep water forms in the North Pacific Ocean and Southern Ocean SSTs are colder. The presence of a double equilibrium shows that the ocean circulation was highly susceptible to large scale transitions during the middle-late Eocene. Additionally, changes in benthic oxygen and Neodymium isotopes depict significant changes during the same period. We suggest that a transition in the global meridional overturing circulation can explain the observed changes and preconditions the global climate for the two-step transition into an Icehouse state at the Eocene-Oligocene boundary.
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Davis, G. R.; Wang, H.
1975-01-01
The author has identified the following significant results. An integrated satellite-aircraft-drogue approach was developed which employs remotely tracked expendable drogues together with satellite and aircraft observations of oil slicks, waste plumes, and natural tracers, such as suspended sediment. Tests conducted on the Continental Shelf and in Delaware Bay indicate that the system provides a cost effective means of monitoring current circulation and verifying oil slick and ocean waste dispersion models even under severe environmental conditions.
2008-06-01
31 1. Seasonal Development .......................................................................32 2. Winter Monsoon...summary of the monsoon system in the Indian Ocean. The top part indicates the wind cycle; the lower part shows the major currents that develop in...energy interests in the Indian Ocean’s waters. The rapid economic progress in developing nations, such as India and South Africa, also adds up their
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; ...
2017-11-30
Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; Singh, Hansi A.
2018-01-01
The temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity and weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai
Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less
Constrained circulation at Endeavour ridge facilitates colonization by vent larvae.
Thomson, Richard E; Mihály, Steven F; Rabinovich, Alexander B; McDuff, Russell E; Veirs, Scott R; Stahr, Frederick R
2003-07-31
Understanding how larvae from extant hydrothermal vent fields colonize neighbouring regions of the mid-ocean ridge system remains a major challenge in oceanic research. Among the factors considered important in the recruitment of deep-sea larvae are metabolic lifespan, the connectivity of the seafloor topography, and the characteristics of the currents. Here we use current velocity measurements from Endeavour ridge to examine the role of topographically constrained circulation on larval transport along-ridge. We show that the dominant tidal and wind-generated currents in the region are strongly attenuated within the rift valley that splits the ridge crest, and that hydrothermal plumes rising from vent fields in the valley drive a steady near-bottom inflow within the valley. Extrapolation of these findings suggests that the suppression of oscillatory currents within rift valleys of mid-ocean ridges shields larvae from cross-axis dispersal into the inhospitable deep ocean. This effect, augmented by plume-driven circulation within rift valleys having active hydrothermal venting, helps retain larvae near their source. Larvae are then exported preferentially down-ridge during regional flow events that intermittently over-ride the currents within the valley.
NASA Astrophysics Data System (ADS)
Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.
2016-02-01
I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.
Multiple states in the late Eocene ocean circulation
NASA Astrophysics Data System (ADS)
Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.
2018-04-01
The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.
Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content
NASA Astrophysics Data System (ADS)
Piecuch, Christopher G.; Ponte, Rui M.; Little, Christopher M.; Buckley, Martha W.; Fukumori, Ichiro
2017-09-01
The subpolar North Atlantic (SPNA) is subject to strong decadal variability, with implications for surface climate and its predictability. In 2004-2005, SPNA decadal upper ocean and sea-surface temperature trends reversed from warming during 1994-2004 to cooling over 2005-2015. This recent decadal trend reversal in SPNA ocean heat content (OHC) is studied using a physically consistent, observationally constrained global ocean state estimate covering 1992-2015. The estimate's physical consistency facilitates quantitative causal attribution of ocean variations. Closed heat budget diagnostics reveal that the SPNA OHC trend reversal is the result of heat advection by midlatitude ocean circulation. Kinematic decompositions reveal that changes in the deep and intermediate vertical overturning circulation cannot account for the trend reversal, but rather ocean heat transports by horizontal gyre circulations render the primary contributions. The shift in horizontal gyre advection reflects anomalous circulation acting on the mean temperature gradients. Maximum covariance analysis (MCA) reveals strong covariation between the anomalous horizontal gyre circulation and variations in the local wind stress curl, suggestive of a Sverdrup response. Results have implications for decadal predictability.
NASA Astrophysics Data System (ADS)
Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.
2016-12-01
Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.
NASA Astrophysics Data System (ADS)
Kawamura, Ryuichi; Aruga, Hiromitsu; Matsuura, Tomonori; Iizuka, Satoshi
Using the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data aided by a coupled ocean-atmosphere model, we investigated two different regimes of anomalous Walker circulation system over the Pacific and Indian Oceans before and after a climate shift, which occurred in the late 1970s. During the period before the climate shift, an upper-level velocity potential anomaly systematically moves eastward from the tropical Indian Ocean to the warm pool region of the western Pacific during the growth phase of El Niño-Southern Oscillation (ENSO). In the meantime, the activities of South Asian and Australian summer monsoon systems are directly affected by the evolution of the anomalous Walker circulation. During the period after the climate shift, in contrast, an upperlevel velocity potential anomaly in the vicinity of the Philippine Sea and maritime continent is observed to expand westward into the northern Indian Ocean and South Asia during the decay phase of ENSO. This feature is identified with a major precursory signal of an anomalous South Asian summer monsoon in the preceding spring. The model captures a systematic eastward propagation similar to that observed prior to the late 1970s, but fails to reproduce the westward extension of the velocity potential anomaly observed to prevail after the late 1970s. The model results suggest that the cross-basin connection between the two oceans is a prerequisite for the turnabout of ENSO prior to the climate shift, in terms of the occurrence of westerly wind bursts.
Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank
NASA Astrophysics Data System (ADS)
Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao
2003-03-01
The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.
Can increased poleward oceanic heat flux explain the warm Cretaceous climate?
NASA Astrophysics Data System (ADS)
Schmidt, Gavin A.; Mysak, Lawrence A.
1996-10-01
The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric latent heat transport, where an increased hydrological cycle (especially in the tropical sinking cases) contributes up to an extra 1 PW of poleward heat transport. Better constraints on the oceanic deepwater circulation during this period are necessary before the meridional circulation can be unambiguously described.
NASA Astrophysics Data System (ADS)
Swapna, P.; Jyoti, J.; Krishnan, R.; Sandeep, N.; Griffies, S. M.
2017-10-01
North Indian Ocean sea level has shown significant increase during last three to four decades. Analyses of long-term climate data sets and ocean model sensitivity experiments identify a mechanism for multidecadal sea level variability relative to global mean. Our results indicate that North Indian Ocean sea level rise is accompanied by a weakening summer monsoon circulation. Given that Indian Ocean meridional heat transport is primarily regulated by the annual cycle of monsoon winds, weakening of summer monsoon circulation has resulted in reduced upwelling off Arabia and Somalia and decreased southward heat transport, and corresponding increase of heat storage in the North Indian Ocean. These changes in turn lead to increased retention of heat and increased thermosteric sea level rise in the North Indian Ocean, especially in the Arabian Sea. These findings imply that rising North Indian Ocean sea level due to weakening of monsoon circulation demands adaptive strategies to enable a resilient South Asian population.
500 kyr of Indian Ocean Walker Circulation Variability Using Foraminiferal Mg/Ca and Stable Isotopes
NASA Astrophysics Data System (ADS)
Groeneveld, J.; Mohtadi, M.; Lückge, A.; Pätzold, J.
2017-12-01
The tropical Indian Ocean is a key location for paleoclimate research affected by different oceanographic and atmospheric processes. Annual climate variations are strongly controlled by the Indian and Asian Monsoon characterized by bi-annually reversing trade winds. Inter-annual climate variations in the Walker circulation are caused by the Indian Ocean Dipole and El Niño-Southern Oscillation resulting in either heavy flooding or severe droughts like for example the famine of 2011 in eastern Africa. Oceanographically the tropical western Indian Ocean receives water masses from the Indonesian Gateway area, sub-Antarctic waters that upwell south of the equator, and the outflow waters from the highly saline Red Sea. On the other hand, the tropical western Indian Ocean is a major source for providing water masses to the Agulhas Current system. Although the eastern Indian Ocean has been studied extensively, the tropical western Indian Ocean is still lacking in high quality climate-archives that have the potential to provide important information to understand how the ocean and atmospheric zonal circulation have changed in the past, and possibly will change in the future. Until now there were no long sediment cores available covering several glacial-interglacial cycles in the tropical western Indian Ocean. Core GeoB 12613-1, recovered during RV Meteor Cruise M75/2 east of the island of Pemba off Tanzania, provides an open-ocean core with well-preserved sediments covering the last five glacial-interglacial cycles ( 500 kyr). Mg/Ca and stable isotopes on both surface- and thermocline dwelling foraminifera have been performed to test how changes in sea water temperatures and relative sea water salinity were coupled on orbital time scales. The results are compared with similar records generated for the tropical eastern Indian Ocean in core SO139-74KL off Sumatra. Water column stratification on both sides of the Indian Ocean and the cross-basin gradients in sea water temperature and relative salinity varied both on millennial and orbital time scales implying changes in the Walker circulation.
Glacial ocean circulation and stratification explained by reduced atmospheric temperature
NASA Astrophysics Data System (ADS)
Jansen, Malte F.
2017-01-01
Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.
Glacial ocean circulation and stratification explained by reduced atmospheric temperature
Jansen, Malte F.
2017-01-01
Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5–10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage. PMID:27994158
Glacial ocean circulation and stratification explained by reduced atmospheric temperature.
Jansen, Malte F
2017-01-03
Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.
NASA Astrophysics Data System (ADS)
Peralta Ferriz, C.; Morison, J.
2014-12-01
Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1
The Ocean's Role in Outlet Glacier Variability: A Case Study from Uummannaq, Greenland
NASA Astrophysics Data System (ADS)
Sutherland, D.; Catania, G. A.; Bartholomaus, T. C.; Nash, J. D.; Shroyer, E.; Walker, R. T.; Stearns, L. A.
2014-12-01
The dynamics controlling the coupling between fjord circulation and outlet glacier movement are poorly understood. Here, we use oceanographic data collected from 2013-2014 from two west Greenland fjords, Rink Isbrae and Kangerdlugssup Sermerssua, to constrain the spatial and temporal variability observed in fjord circulation. We aim to quantify the ocean's role, if any, in explaining the marked differences in glacier behavior from two systems that are in close proximity to one another. Combining time series data from a set of subsurface moorings with repeat transects in each fjord allows an unprecedented look at the temporal and spatial variability in circulation. We find significant differences in the variability in each fjord and discuss the implications for the glaciers.
Topex/Poseidon: A United States/France mission. Oceanography from space: The oceans and climate
NASA Technical Reports Server (NTRS)
1992-01-01
The TOPEX/POSEIDON space mission, sponsored by NASA and France's space agency, the Centre National d'Etudes Spatiales (CNES), will give new observations of the Earth from space to gain a quantitative understanding of the role of ocean currents in climate change. Rising atmospheric concentrations of carbon dioxide and other 'greenhouse gases' produced as a result of human activities could generate a global warming, followed by an associated rise in sea level. The satellite will use radar altimetry to measure sea-surface height and will be tracked by three independent systems to yield accurate topographic maps over the dimensions of entire ocean basins. The satellite data, together with the Tropical Ocean and Global Atmosphere (TOGA) program and the World Ocean Circulation Experiment (WOCE) measurements, will be analyzed by an international scientific team. By merging the satellite observations with TOGA and WOCE findings, the scientists will establish the extensive data base needed for the quantitative description and computer modeling of ocean circulation. The ocean models will eventually be coupled with atmospheric models to lay the foundation for predictions of global climate change.
Determination and impact of surface radiative processes for TOGA COARE
NASA Technical Reports Server (NTRS)
Curry, Judith A.; Ackerman, Thomas; Rossow, William B.; Webster, Peter J.
1991-01-01
Experiments using atmospheric general circulation models have shown that the atmospheric circulation is very sensitive to small changes in sea surface temperature in the tropical western Pacific Ocean warm pool region. The mutual sensitivity of the ocean and the atmosphere in the warm pool region places stringent requirements on models of the coupled ocean atmosphere system. At present, the situation is such that diagnostic studies using available data sets have been unable to balance the surface energy budget in the warm pool region to better than 50 to 80 W/sq m. The Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment (COARE) is an observation and modelling program that aims specifically at the elucidation of the physical process which determine the mean and transient state of the warm pool region and the manner in which the warm pool interacts with the global ocean and atmosphere. This project focuses on one very important aspect of the ocean atmosphere interface component of TOGA COARE, namely the temporal and spatial variability of surface radiative fluxes in the warm pool region.
Importance of ocean salinity for climate and habitability
Cullum, Jodie; Stevens, David P.; Joshi, Manoj M.
2016-01-01
Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies. PMID:27044090
Importance of ocean salinity for climate and habitability.
Cullum, Jodie; Stevens, David P; Joshi, Manoj M
2016-04-19
Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.
3D Visualization of Global Ocean Circulation
NASA Astrophysics Data System (ADS)
Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.
2015-12-01
Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.
Characterizing ocean gyres formation within a bay using vorticity and HF radar measurements
NASA Astrophysics Data System (ADS)
Ragnoli, E.; Donncha, F. O.; Hartnett, M.
2012-04-01
In situations in which wind forcing plays a dominant role in surface currents it becomes important to understand its correlation with parameters that can be used to characterise circulation patterns within a bay. These datasets can then be used in the detection and characterisation of ocean gyres. A network of high frequency radars (NUIG CODAR) is deployed within Galway Bay, on the West Coast of Ireland as a backbone system within an integrated coastal ocean observation system. This system provides real-time synoptic measurements of both ocean surface currents and surface waves across the entire bay. In this work, vorticity is identified as a defining quantity for the characterisation of circulating flow patterns (in particular for the detection of ocean gyres) and it is directly calculated from the measured velocity vectors of NUIG CODAR. A correlation study with wind and tide measurements is then undertaken in order to investigate the dependencies between vorticity and those parameters. A comprehensive NUIG CODAR, weather station and tide gauge monitoring program was conducted over a 30 days period and the data collected analysed for the correlation with the computed vorticity. Tidal information from the FES2004 Global tidal atlas defined surface elevations at the open sea boundaries in the west and in the south. Data from a tide gauge deployed within the bay, which provided real-time tidal data at 6 minute intervals, was used to fine-tune model elevations. A weather station located at National University of Ireland, Galway provided measured wind data for the model. The NUIG CODAR coastal observation system detects strong, non-persistent, gyre formation within Galway Bay. During periods of relatively large tidal ranges (order 4m) and light wind conditions well defined, cyclonic circulation is developed within the bay. The correlation analysis shows that the gyres tend to form soon after high tide and last until the next low water; the gyre structure is transported about the bay with the bulk advection of tidal motion. This is the first time this feature has been observed and the significance of its consequences on water circulation will be the subject of future research.
NASA Astrophysics Data System (ADS)
Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.
2014-05-01
During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. A long-standing hypothesis is that the formation of the Antarctic Circumpolar Current due to opening/deepening of Southern Ocean gateways led to glaciation of the Antarctic continent. However, while this hypothesis remains controversial, its assessment via coupled climate model simulations depends crucially on the spatial resolution in the ocean component. More precisely, only high-resolution modeling of the turbulent ocean circulation is capable of adequately describing reorganizations in the ocean flow field and related changes in turbulent heat transport. In this study, for the first time results of a high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed Drake Passage are presented. Changes in global ocean temperatures, heat transport, and ocean circulation (e.g., Meridional Overturning Circulation and Antarctic Coastal Current) are established by comparison with an open Drake Passage high-resolution reference simulation. Finally, corresponding low-resolution simulations are also analyzed. The results highlight the essential impact of the ocean eddy field in palaeoclimatic change.
NASA Astrophysics Data System (ADS)
Kracher, Daniela; Manzini, Elisa; Reick, Christian H.; Schultz, Martin; Stein, Olaf
2014-05-01
Climate change is driven by an increasing release of anthropogenic greenhouse gases (GHGs) such as carbon dioxide and nitrous oxide (N2O). Besides fossil fuel burning, also land use change and land management are anthropogenic sources of GHGs. Especially inputs of reactive nitrogen via fertilizer and deposition lead to enhanced emissions of N2O. One effect of a drastic future increase in surface temperature is a modification of atmospheric circulation, e.g. an accelerated Brewer Dobson circulation affecting the exchange between troposphere and stratosphere. N2O is inert in the troposphere and decayed only in the stratosphere. Thus, changes in atmospheric circulation, especially changes in the exchange between troposphere and stratosphere, will affect the atmospheric transport, decay, and distribution of N2O. In our study we assess the impact of global warming on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O. As terrestrial N2O emissions are highly determined by inputs of reactive nitrogen - the location of which being determined by human choice - we examine in particular the importance of latitudinal source regions of N2O for its global distribution. For this purpose we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation.
Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports
Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem
2016-01-01
A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea. PMID:27410682
Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports.
Daryabor, Farshid; Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem
2016-01-01
A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.
Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max
2016-01-01
This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.
NASA Astrophysics Data System (ADS)
Li, X.; Yu, Y.
2016-12-01
The horizontal coordinate systems commonly used in most global ocean models are the sphere latitude-longitude grid and displaced poles such as tripolar grid. The effect of the horizontal coordinate system on Atlantic Meridional Overturning Circulation (AMOC) is evaluated using an oceanic general circulation model (OGCM). Two experiments are conducted with the model using latitude-longitude grid (Lat_1) and tripolar grid (Tri). Results show that Tri simulates a stronger NADW than Lat_1, as more saline water masses enter into the GIN Seas in Tri. Two reasons can be attributed to the stronger NADW. One is the removal of zonal filter in Tri, which leads to an increasing of zonal gradient of temperature and salinity, thus strengthens the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because the realistic topography is applied in tripolar grid and the longitude-latitude grid employs an artificial island around the North Pole. In order to evaluate the effect of filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, enhanced filter can also increase the NADW, for more saline water is suppressed to go north and accumulated in the Labrador Sea, especially in the experiment with enhanced filter on salinity (Lat_2_S).
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Wahle, Kathrin
2015-04-01
This study addresses the coupling between wind wave and circulation models on the example of the German Bight and its coastal area called the Wadden Sea (the area between the barrier islands and the coast). This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The uncertainties in most of the presently used models result from the nonlinear feedback between strong tidal currents and wind-waves, which can no longer be ignored, in particular in the coastal zone where its role seems to be dominant. A nested modelling system is used in the Helmholtz-Zentrum Geesthacht to producing reliable now- and short-term forecasts of ocean state variables, including wind waves and hydrodynamics. In this study we present analysis of wave and hydrographic observations, as well as the results of numerical simulations. The data base includes ADCP observations and continuous measurements from data stations. The individual and collective role of wind, waves and tidal forcing are quantified. The performance of the forecasting system is illustrated for the cases of several extreme events. Effects of ocean waves on coastal circulation and SST simulations are investigated considering wave-dependent stress and wave breaking parameterization during extreme events, e.g. hurricane Xavier in December, 2013. Also the effect which the circulation exerts on the wind waves is tested for the coastal areas using different parameterizations. The improved skill resulting from the new developments in the forecasting system, in particular during extreme events, justifies further enhancements of the coastal pre-operational system for the North Sea and German Bight.
The ECCO Family of State Estimates: An Overview
NASA Astrophysics Data System (ADS)
Wunsch, C.
2008-12-01
The idea of ECCO (Estimating the Circulation and Climate of the Ocean)originated in the middle 1980s, when it became apparent that a global oceanographic observing system for the general circulation would become a reality as it did through the World Ocean Circulation Experiment. Observational design involved extremely diverse technologies and oceanic flow regimes. To be physically interpretable, these diverse data and physical processes would need to be combined into a useful, coherent, whole. Such a synthesis can only be done with a skillful GCM having useful resolution. ECCO originated as an experiment to demonstrate the technical feasibility of such a synthesis and to determine if any of several possible methods was preferable. In contrast to a number of other superficially similar efforts, mainly derived from weather forecasting methods, the ECCO goal was to estimate the long-term circulation mean and its variability on climate (decadal and longer) time scales in a form exactly satisfying known equations of motion. ECCO was made feasible with the simultaneous construction of a new GCM (MIT) along with the development of an automatic differentiation (AD) software tool(now called TAF) which rendered practical the method of Lagrange multipliers (called the adjoint method in oceanography). Parallel developments of simplified sequential methods (smoothers) provided an alternative, also practical, methodology. One can now use the existing (publicly available) machinery to discuss the ocean circulation and its variability. The huge variety of issues connected with the global circulation has meant that an entire family of estimates has grown up, each having different emphases (primarily global; but some primarily regional---the tropics, the Southern Ocean); some focussed on physics---the role of eddies or sea ice). The methodology leads, usefully, to intense scrutiny of data and model errors and spatio-temporal coverage. As with any estimation problem, no uniquely 'correct' solution is now or ever going to be possible-- -only evolving best estimates. Further development of these and similar methodologies appears to be a necessary, inevitable, and growing component of oceanography and climate.
NASA Astrophysics Data System (ADS)
Zodiatis, George; Radhakrishnan, Hari; Lardner, Robin; Hayes, Daniel; Gertman, Isaac; Menna, Milena; Poulain, Pierre-Marie
2014-05-01
The general anticlockwise circulation along the coastline of the Eastern Mediterranean Levantine Basin was first proposed by Nielsen in 1912. Half a century later the schematic of the circulation in the area was enriched with sub-basin flow structures. In late 1980s, a more detailed picture of the circulation composed of eddies, gyres and coastal-offshore jets was defined during the POEM cruises. In 2005, Millot and Taupier-Letage have used SST satellite imagery to argue for a simpler pattern similar to the one proposed almost a century ago. During the last decade, renewed in-situ multi-platforms investigations under the framework of CYBO, CYCLOPS, NEMED, GROOM, HaiSec and PERSEUS projects, as well the development of the operational ocean forecasts and hindcasts in the framework of the MFS, ECOOP, MERSEA and MyOcean projects, have made possible to obtain an improved, higher spatial and temporal resolution picture of the circulation in the area. After some years of scientific disputes on the circulation pattern of the region, the new in-situ data sets and the operational numerical simulations confirm the relevant POEM results. The existing POM-based Cyprus Coastal Ocean Forecasting System (CYCOFOS), downscaling the MyOcean MFS, has been providing operational forecasts in the Eastern Mediterranean Levantine Basin region since early 2002. Recently, Radhakrishnan et al. (2012) parallelized the CYCOFOS hydrodynamic flow model using MPI to improve the accuracy of predictions while reducing the computational time. The parallel flow model is capable of modeling the Eastern Mediterranean Levantine Basin flow at a resolution of 500 m. The model was run in hindcast mode during which the innovations were computed using the historical data collected using gliders and cruises. Then, DD-OceanVar (D'Amore et al., 2013), a data assimilation tool based on 3DVAR developed by CMCC was used to compute the temperature and salinity field corrections. Numerical modeling results after the data assimilation will be presented.
Century/millennium internal climate oscillations in an ocean-atmosphere-continental ice sheet model
NASA Technical Reports Server (NTRS)
Birchfield, Edward G.; Wang, Huaxiao; Rich, Jonathan J.
1994-01-01
We demonstrate in a simple climate model that there exist nonlinear feedbacks between the atmosphere, ocean, and ice sheets capable of producing century/millennium timescale internal oscillations resembling those seen in the paleoclimate record. Feedbacks involve meridional heat and salt transports in the North Atlantic, surface ocean freshwater fluxes associated with melting and growing continental ice sheets in the northen hemisphere and with Atlantic to Pacific water vapor transport. The positive feedback between the production of North Atlantic Deep Water (NADW) and the meridional salt transport by the Atlantic thermohaline circulation tends to destabilize the climate system, while the negative feedback between the freshwater flux, either to or from the continental ice sheets, and meridional heat flux to the high-latitude North Atlantic, accomplished by the thermohaline circulation, stabilizes the system. The thermohaline circulation plays a central role in both positive and negative feedbacks because of its transport of both heat and salt. Because of asymmetries between the growth and melt phases the oscillations are, in general, accompanied by a growing or decreasing ice volume over each cycle, which in the model is reflected by increasing or decreasing mean salinity.
Oceanic an climatic consequences of a sudden large-scale West Antarctic Ice Sheet collapse
NASA Astrophysics Data System (ADS)
Scarff, Katie; Green, Mattias; Schmittner, Andreas
2015-04-01
Atmospheric warming is progressing to the point where the West Antarctic Ice Sheet (WAIS) will experience an elevated rate of discharge. The current discharge rate of WAIS is around 0.005Sv, but this rate will most likely accelerate over this century. The input of freshwater, in the form of ice, may have a profound effect on oceanic circulation systems, including potentially reducing the formation of deep water in the Southern Ocean and thus triggering or enhancing the bipolar seesaw. Using UVic - an intermediate complexity ocean-climate model - we investigate how various hosing rates from the WAIS will impact of the present and future ocean circulation and climate. These scenarios range from observed hosing rates (~0.005Sv) being applied for 100 years, to a total collapse of the WAIS over the next 100 years (the equivalent to a0.7Sv hosing). We show that even the present day observed rates can have a significant impact on the ocean and atmospheric temperatures, and that the bipolar seesaw may indeed be enhanced by the Southern Ocean hosing. Consequently, there is a speed-up of the Meridional Overturning Circulation (MOC) early on during the hosing, which leads to a warming over the North Atlantic, and a subsequent reduction in the MOC on centennial scales. The larger hosing cases show more dramatic effects with near-complete shutdowns of the MOC during the hosing. Furthermore, global warming scenarios based on the IPCC "business as usual" scenario show that the atmospheric warming will change the response of the ocean to Southern Ocean hosing and that the warming will dominate the perturbation. The potential feedback between changes in the ocean stratification in the scenarios and tidally driven abyssal mixing via tidal conversion is also explored.
Effects of Drake Passage on the Ocean's Thermal and Mechanical Energy Budget in a Coupled AOGCM
NASA Astrophysics Data System (ADS)
von der Heydt, A. S.; Viebahn, J. P.
2016-12-01
During the Cenozoic Earth's climate has undergone a major long-term transition from `greenhouse' to `icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The gradual cooling may be seen as response to the overall slowly decreasing atmospheric CO2-concentration due to weathering processes in the Earth System, however, continental geometry has changed considerably over this period and the long-term gradual trend was interrupted, by several rapid transitions and periods where temperature and greenhouse gas concentrations seem to be decoupled. The Eocene-Oligocene boundary ( 34 Ma, E/O) and mid-Miocene climatic transition ( 13 Ma, MCT) reflect major phases of Antarctic ice sheet build-up and global climate cooling, while Northern Hemisphere ice sheets developed much later ( 2.7Ma). Thresholds in atmospheric CO2-concentration together with feedback mechanisms related to land ice formation are among the favoured mechanisms of these climatic transitions, while the long-proposed ocean circulation changes caused by opening of tectonic gateways seem to play a less direct role. The opening of the Southern Ocean gateways, however, has eventually led to the development of today's strongest ocean current, the Antarctic Circumpolar Current, playing a major role in the transport properties of the global ocean circulation. The overall state of the global ocean circulation, therefore, must precondition the climate system to dramatic events such as major ice sheet formation. Closing Drake Passage in ocean-only and coupled climate models under otherwise present-day boundary conditions has become a classic experiment, indicating that there exists a considerable uncertainty in the climate response of those models to a closed Drake Passage. Here we quantify the climate response to a closed Drake Passage in a state-of-the-art coupled climate model (CESM). We show that the ocean gateway mechanism is robust in the sense that the equatorward expansion of the Southern Ocean sub-polar gyres inevitably leads to widespread warming around Antarctica. Moreover, we provide a framework to characterise the ocean temperature response to a closed Drake Passage in terms of both the mechanical and thermal energy budget of the ocean.
Coastal ocean circulation during Hurricane Sandy
NASA Astrophysics Data System (ADS)
Miles, Travis; Seroka, Greg; Glenn, Scott
2017-09-01
Hurricane Sandy (2012) was the second costliest tropical cyclone to impact the United States and resulted in numerous lives lost due to its high winds and catastrophic storm surges. Despite its impacts little research has been performed on the circulation on the continental shelf as Sandy made landfall. In this study, integrated ocean observing assets and regional ocean modeling were used to investigate the coastal ocean response to Sandy's large wind field. Sandy's unique cross-shelf storm track, large size, and slow speed resulted in along-shelf wind stress over the coastal ocean for nearly 48 h before the eye made landfall in southern New Jersey. Over the first inertial period (˜18 h), this along-shelf wind stress drove onshore flow in the surface of the stratified continental shelf and initiated a two-layer downwelling circulation. During the remaining storm forcing period a bottom Ekman layer developed and the bottom Cold Pool was rapidly advected offshore ˜70 km. This offshore advection removed the bottom Cold Pool from the majority of the shallow continental shelf and limited ahead-of-eye-center sea surface temperature (SST) cooling, which has been observed in previous storms on the MAB such as Hurricane Irene (2011). This cross-shelf advective process has not been observed previously on continental shelves during tropical cyclones and highlights the need for combined ocean observing systems and regional modeling in order to further understand the range of coastal ocean responses to tropical cyclones.
Longitudinal differentiation among pelagic populations in a planktic foraminifer
Ujiié, Yurika; Asami, Takahiro; de Garidel-Thoron, Thibault; Liu, Hui; Ishitani, Yoshiyuki; de Vargas, Colomban
2012-01-01
Evolutionary processes in marine plankton have been assumed to be dependent on the oceanic circulation system, which transports plankton between populations in marine surface waters. Gene flow facilitated by oceanic currents along longitudinal gradients may efficiently impede genetic differentiation of pelagic populations in the absence of confounding marine environmental effects. However, how responsible oceanic currents are for the geographic distribution and dispersal of plankton is poorly understood. We examined the phylogeography of the planktic foraminifer Pulleniatina obliquiloculata in the Indo-Pacific Warm Pool (IPWP) by using partial small subunit ribosomal DNA (SSU rDNA) sequences. We found longitudinal clines in the frequencies of three distinct genetic types in the IPWP area. These frequencies were correlated with environmental factors that are characteristic of three water masses in the IPWP. Noteworthy, populations inhabiting longitudinally distant water masses at the Pacific and Indian sides of the IPWP were genetically different, despite transportation of individuals via oceanic currents. These results demonstrate that populations of pelagic plankton have diverged genetically among different water masses within a single climate zone. Changes of the oceanic circulation system could have impacted the geographic patterns of dispersal and divergence of pelagic plankton. PMID:22957176
NASA Astrophysics Data System (ADS)
Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey
2018-01-01
Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.
Role of the North Atlantic Ocean in Low Frequency Climate Variability
NASA Astrophysics Data System (ADS)
Danabasoglu, G.; Yeager, S. G.; Kim, W. M.; Castruccio, F. S.
2017-12-01
The Atlantic Ocean is a unique basin with its extensive, North - South overturning circulation, referred to as the Atlantic meridional overturning circulation (AMOC). AMOC is thought to represent the dynamical memory of the climate system, playing an important role in decadal and longer time scale climate variability as well as prediction of the earth's future climate on these time scales via its large heat and salt transports. This oceanic memory is communicated to the atmosphere primarily through the influence of persistent sea surface temperature (SST) variations. Indeed, many modeling studies suggest that ocean circulation, i.e., AMOC, is largely responsible for the creation of coherent SST variability in the North Atlantic, referred to as Atlantic Multidecadal Variability (AMV). AMV has been linked to many (multi)decadal climate variations in, e.g., Sahel and Brazilian rainfall, Atlantic hurricane activity, and Arctic sea-ice extent. In the absence of long, continuous observations, much of the evidence for the ocean's role in (multi)decadal variability comes from model simulations. Although models tend to agree on the role of the North Atlantic Oscillation in creating the density anomalies that proceed the changes in ocean circulation, model fidelity in representing variability characteristics, mechanisms, and air-sea interactions remains a serious concern. In particular, there is increasing evidence that models significantly underestimate low frequency variability in the North Atlantic compared to available observations. Such model deficiencies can amplify the relative influence of external or stochastic atmospheric forcing in generating (multi)decadal variability, i.e., AMV, at the expense of ocean dynamics. Here, a succinct overview of the current understanding of the (North) Atlantic Ocean's role on the regional and global climate, including some outstanding questions, will be presented. In addition, a few examples of the climate impacts of the AMV via atmospheric teleconnections from a set of coupled simulations, also considering the relative roles of its tropical and extratropical components, will be highlighted.
Tropical Ocean Global Atmosphere (TOGA) Meteorological and Oceanographic Data Sets for 1985 and 1986
NASA Technical Reports Server (NTRS)
Halpern, D.; Ashby, H.; Finch, C.; Smith, E.; Robles, J.
1990-01-01
The Tropical Ocean Global Atmosphere (TOGA) Program is a component of the World Meteorological Organization (WMO)/International Council of Scientific Unions (ICSU) World Climate Research Program (WCRP). One of the objectives of TOGA, which began in 1985, is to determine the limits of predictability of monthly mean sea surface temperature variations in tropical regions. The TOGA program created a raison d'etre for an explosive growth of the tropical ocean observing system and a substantial improvement in numerical simulations from atmospheric and oceanic general circulation models. Institutions located throughout the world are involved in the TOGA-distributed active data archive system. The diverse TOGA data sets for 1985 and 1986, including results from general circulation models, are included on a CD-ROM. Variables on the CD-ROM are barometric pressure, surface air temperature, dewpoint temperature Cartesian components of surface wind, surface sensible and latent heat fluxes,Cartesian components of surface wind stress and of an index of surface wind stress, sea level, sea surface temperature, and depth profiles of temperature and current in the upper ocean. Some data sets are global in extent, some are regional and cover portions of an ocean basin. Data on the CD-ROM can be extracted with an Apple Macintosh or an IBM PC.
Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model
2013-08-26
Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds
Antarctic warming driven by internal Southern Ocean deep convection oscillations
NASA Astrophysics Data System (ADS)
Martin, Torge; Pedro, Joel B.; Steig, Eric J.; Jochum, Markus; Park, Wonsun; Rasmussen, Sune O.
2016-04-01
Simulations with the free-running, complex coupled Kiel Climate Model (KCM) show that heat release associated with recurring Southern Ocean deep convection can drive centennial-scale Antarctic temperature variations of 0.5-2.0 °C. We propose a mechanism connecting the intrinsic ocean variability with Antarctic warming that involves the following three steps: Preconditioning: heat supplied by the lower branch of the Atlantic Meridional Overturning Circulation (AMOC) accumulates at depth in the Southern Ocean, trapped by the Weddell Gyre circulation; Convection onset: wind and/or sea-ice changes tip the preconditioned, thermally unstable system into the convective state; Antarctic warming: fast sea-ice-albedo feedbacks (on annual to decadal timescales) and slower Southern Ocean frontal and sea-surface temperature adjustments to the convective heat release (on multi-decadal to centennial timescales), drive an increase in atmospheric heat and moisture transport towards Antarctica resulting in warming over the continent. Further, we discuss the potential role of this mechanism to explain climate variability observed in Antarctic ice-core records.
Approximate Stokes Drift Profiles and their use in Ocean Modelling
NASA Astrophysics Data System (ADS)
Breivik, O.; Biblot, J.; Janssen, P. A. E. M.
2016-02-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. I will show some results from the coupled atmosphere-wave-ocean ensemble forecast system of ECMWF where these wave effects are now included in the ocean model component.
Amino Acid Stability in the Early Oceans
NASA Technical Reports Server (NTRS)
Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.
2015-01-01
It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.
On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals
NASA Astrophysics Data System (ADS)
Saynisch, J.; Irrgang, C.; Thomas, M.
2018-03-01
Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fitting constants could be analyzed for physical properties of the ocean, e.g., the heat budget. To test and evaluate this approach, synthetic true and proxy magnetic signals are derived from a global circulation model of the ocean. Both data sets are compared in dependence of location and time scale. We study and report when and where the proxy data describe the true signal sufficiently well. Correlations above 0.6 and explained variances of above 80% can be reported for large parts of the Antarctic ocean, thus explaining the major part of the global, subseasonal magnetic signal.
Understanding variability of the Southern Ocean overturning circulation in CORE-II models
NASA Astrophysics Data System (ADS)
Downes, S. M.; Spence, P.; Hogg, A. M.
2018-03-01
The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.
231Pa and 230Th in the ocean model of the Community Earth System Model (CESM1.3)
NASA Astrophysics Data System (ADS)
Gu, Sifan; Liu, Zhengyu
2017-12-01
The sediment 231Pa / 230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model-data comparison and to improve our understanding of the sediment 231Pa / 230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the fully coupled implementation of the scavenging behavior of 231Pa and 230Th with the active marine ecosystem module (particle-coupled: hereafter p-coupled), another form of 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate (particle-fixed: hereafter p-fixed). The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of ocean circulation. Under present-day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and the sediment 231Pa / 230Th activity ratio in good agreement with available observations. In addition, in response to freshwater forcing, the p-coupled and p-fixed sediment 231Pa / 230Th activity ratios behave similarly over large areas of low productivity on long timescales, but can differ substantially in some regions of high productivity and on short timescales, indicating the importance of biological productivity in addition to ocean transport. Therefore, our model provides a potentially powerful tool to help the interpretation of sediment 231Pa / 230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.
Role of the ocean in climate changes
NASA Technical Reports Server (NTRS)
Gulev, Sergey K.
1992-01-01
The present program aimed at the study of ocean climate change is prepared by a group of scientists from State Oceanographic Institute, Academy of Science of Russia, Academy of Science of Ukraine and Moscow State University. It appears to be a natural evolution of ideas and achievements that have been developed under national and international ocean research projects such as SECTIONS, WOCE, TOGA, JGOFS and others. The two primary goals are set in the program ROCC. (1) Quantitative description of the global interoceanic 'conveyor' and it's role in formation of the large scale anomalies in the North Atlantic. The objectives on the way to this goal are: to get the reliable estimates of year-to-year variations of heat and water exchange between the Atlantic Ocean and the atmosphere; to establish and understand the physics of long period variations in meridianal heat and fresh water transport (MHT and MFWT) in the Atlantic Ocean; to analyze the general mechanisms, that form the MHT and MFWT in low latitudes (Ekman flux), middle latitudes (western boundary currents) and high latitudes (deep convection) of the North Atlantic; to establish and to give quantitative description of the realization of global changes in SST, surface salinity, sea level and sea ice data. (2) Development of the observational system pointed at tracing the climate changes in the North Atlantic. This goal merges the following objectives: to find the proper sites that form the inter annual variations of MHT; to study the deep circulation in the 'key' points; to develop the circulation models reflecting the principle features of interoceanic circulation; and to define global and local response of the atmosphere circulation to large scale processes in the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Mackensen, A.; Zahn, R.; Hall, I.; Kuhn, G.; Koc, N.; Francois, R.; Hemming, S.; Goldstein, S.; Rogers, J.; Ehrmann, W.
2003-04-01
Quantifying oceanic variability at timescales of oceanic, atmospheric, and cryospheric processes are the fundamental objectives of the international IMAGES program. In this context the Southern Ocean plays a leading role in that it is involved, through its influence on global ocean circulation and carbon budget, with the development and maintenance of the Earth's climate system. The seas surrounding Antarctica contain the world's only zonal circum-global current system that entrains water masses from the three main ocean basins, and maintains the thermal isolation of Antarctica from warmer surface waters to the north. Furthermore, the Southern Ocean is a major site of bottom and intermediate water formation and thus actively impacts the global thermohaline circulation (THC). This proposal is an outcome of the IMAGES Southern Ocean Working Group and constitutes one component of a suite of new IMAGES/IODP initiatives that aim at resolving past variability of the Antarctic Circumpolar Current (ACC) on orbital and sub-orbital timescales and its involvement with rapid global ocean variability and climate instability. The primary aim of this proposal is to determine millennial- to sub-centennial scale variability of the ACC and the ensuing Atlantic-Indian water transports, including surface transports and deep-water flow. We will focus on periods of rapid ocean and climate change and assess the role of the Southern Ocean in these changes, both in terms of its thermohaline circulation and biogeochemical inventories. We propose a suite of 11 sites that form a latitudinal transect across the ACC in the westernmost Indian Ocean sector of the Southern Ocean. The transect is designed to allow the reconstruction of ACC variability across a range of latitudes in conjunction with meridional shifts of the surface ocean fronts. The northernmost reaches of the transect extend into the Agulhas Current and its retroflection system which is a key component of the THC warm water return flow to the Atlantic. The principal topics are: (i) the response of the ACC to climate variability; (ii) the history of the Southern Ocean surface ocean fronts during periods of rapid climate change; (iii) the history of North Atlantic Deep Water (NADW) export to the deep South Indian Ocean; (iv) the variability of Southern Ocean biogeochemical fluxes and their influence on Circumpolar Deep Water (CDW) carbon inventories and atmospheric chemistry; and (v) the variability of surface ocean fronts and the Indian-Atlantic surface ocean density flux. To achieve these objectives we will generate fine-scale records of palaeoceanographic proxies that are linked to a variety of climatically relevant ocean parameters. Temporal resolution of the records, depending on sedimentation rates, will range from millennial to sub-centennial time scales. Highest sedimentation rates are expected at coring sites located on current-controlled sediment drifts, whereas dense sampling of cores with moderate sedimentation rates will enable at least millennial-scale events to be resolved.
NASA Astrophysics Data System (ADS)
Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc
2018-05-01
The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux between coupled simulations with different atmospheric circulations. Finally, we analyze the impact of model tuning and show that it can offset part of the feedbacks.
NASA Astrophysics Data System (ADS)
Odalen, M.; Nycander, J.; Oliver, K. I. C.; Nilsson, J.; Brodeau, L.; Ridgwell, A.
2016-02-01
During glacials, atmospheric CO2 is significantly lowered; the decrease is about 1/3 or 90 ppm during the last four glacial cycles. Since the ocean reservoir of carbon, and hence the ocean capacity for storing carbon, is substantially larger than the atmospheric and terrestrial counterparts, it is likely that this lowering was caused by ocean processes, drawing the CO2 into the deep ocean. The Southern Ocean circulation and biological efficiency are widely accepted as having played an important part in this CO2 drawdown. However, the relative effects of different processes contributing to this oceanic uptake have not yet been well constrained. In this work, we focus on better constraining two of these processes; 1) the effect of increased efficiency of the biological carbon uptake, and 2) the effect of changes in global mean ocean temperature on the abiotic ocean-atmosphere CO2 equilibrium. By performing ensemble runs using an Earth System Model of Intermediate Complexity (EMIC) we examine the changes in atmospheric pCO2 achieved by 100% nutrient utilization efficiency of biology. The simulations display different ocean circulation patterns and hence different global ocean mean temperatures. By restoring the atmospheric pCO2 to a target value during the spin-up phase, the total carbon content differs between each of the ensemble members. The difference is due to circulation having direct effects on biology, but also on global ocean mean temperature, changing the solubility of CO2. This study reveals the relative importance of of the processes 1 and 2 (mentioned above) for atmospheric pCO2 in a changed climate. The results of this study also show that a difference in carbon content after spin-up can have a significant effect on the drawdown potential of a maximised biological efficiency. Thus, the choice of spin-up characteristics in a model study of climate change CO2 dynamics may significantly affect the outcome of the study.
Ocean science. Enhanced: internal tides and ocean mixing.
Garrett, Chris
2003-09-26
Recent satellite and in situ observations have shown that at ocean ridges and other seafloor topographic features, a substantial amount of energy is transferred from the main ocean tides into "internal tides." In his Perspective, Garrett explains how these internal waves with tidal periods propagate through the density-stratified deep ocean and eventually break down into turbulence. The resulting mixing affects ocean stratification and ocean circulation. It thus influences climate as well as biological production. The energy for the internal tides is derived from the rotational energy of the Earth-Moon system changes of the length of the day and the distance to the Moon.
Does coupled ocean enhance ozone-hole-induced Southern Hemisphere circulation changes?
NASA Astrophysics Data System (ADS)
Son, S. W.; Han, B. R.; Kim, S. Y.; Park, R.
2017-12-01
The ozone-hole-induced Southern Hemisphere (SH) circulation changes, such as poleward shift of westerly jet and Hadley cell widening, have been typically explored with either coupled general circulation models (CGCMs) prescribing stratospheric ozone or chemistry-climate models (CCMs) prescribing surface boundary conditions. Only few studies have utilized ocean-coupled CCMs with a relatively coarse resolution. To better quantify the role of interactive chemistry and coupled ocean in the ozone-hole-induced SH circulation changes, the present study examines a set of CGCM and CCM simulations archived for the Coupled Model Intercomparison Project phase 5 (CMIP5) and CCM initiative (CCMI). Although inter-model spread of Antarctic ozone depletion is substantially large especially in the austral spring, both CGCMs with relatively simple ozone chemistry and CCMs with fully interactive comprehensive chemistry reasonably well reproduce long-term trends of Antarctic ozone and the associated polar-stratospheric temperature changes. Most models reproduce a poleward shift of SH jet and Hadley-cell widening in the austral summer in the late 20th century as identified in reanalysis datasets. These changes are quasi-linearly related with Antarctic ozone changes, confirming the critical role of Antarctic ozone depletion in the austral-summer zonal-mean circulation changes. The CGCMs with simple but still interactive ozone show slightly stronger circulation changes than those with prescribed ozone. However, the long-term circulation changes in CCMs are largely insensitive to the coupled ocean. While a few models show the enhanced circulation changes when ocean is coupled, others show essentially no changes or even weakened circulation changes. This result suggests that the ozone-hole-related stratosphere-troposphere coupling in the late 20th century may be only weakly sensitive to the coupled ocean.
A Profiling Float System for the North Arabian Sea
2017-11-29
purpose of this Defense University Research Instrumentation Program grant was to purchase a set of profiling floats to form an upper ocean observing ...purchase a set of profiling floats to form an upper ocean observing system for the Northern Arabian Sea Circulation - autonomous research (NASCar...resolution numerical simulations. To achieve these goals the DRI will utilize new observational methods that do not rely on a traditional ship-based
Tide, Ocean and Climate on Exoplanets
NASA Astrophysics Data System (ADS)
Si, Y.; Yang, J.
2017-12-01
On Earth, tide is a main part of the driving force for the deep ocean overturning circulation. For habitable planets around low-mass stars, the tidal force is expected to be much stronger than that on Earth, due to the fact that the habitable zone is very close to the host stars and that tide force is inversely proportional to the orbital distance cubed. The deep ocean overturning circulation on this type of planets is therefore expected to be much stronger than that on Earth, if all else being equal. We test this hypothesis using a fully coupled atmosphere-ocean model, the Community Climate System Model version 3 (CCSM3). Our results show that the intensity of oceanic meridional overturning circulation (MOC) is approximately proportional to κ1/3, where κ is the mixing coefficient across density interfaces and it is mainly determined by the strength of the tidal force. As a result of the enhanced MOC, more heat is transported to dark regions and sea ice melts completely there, and meanwhile more heat is mixed from the surface to the deep ocean and thereby the entire ocean becomes much warmer (Fig. 1). A positive cloud feedback further warms the global ocean and atmosphere. These results imply that one planet with a stronger tidal force will likely enter a globally ice-covered snowball state at a lower stellar flux and enter a moist greenhouse or runaway greenhouse state at also a lower stellar flux, meaning that the tidal force acts to push the habitable zone outward. This study significantly improves our understanding of the possible coupling between planetary orbit, ocean, climate, and habitability on exoplanets.
NASA Astrophysics Data System (ADS)
Ramp, Steven R.; Lermusiaux, Pierre F. J.; Shulman, Igor; Chao, Yi; Wolf, Rebecca E.; Bahr, Frederick L.
2011-09-01
A comprehensive data set from the ocean and atmosphere was obtained just north of the Monterey Bay as part of the Monterey Bay 2006 (MB06) field experiment. The wind stress, heat fluxes, and sea surface temperature were sampled by the Naval Postgraduate School's TWIN OTTER research aircraft. In situ data were collected using ships, moorings, gliders and AUVs. Four data-assimilating numerical models were additionally run, including the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS ®) model for the atmosphere and the Harvard Ocean Prediction System (HOPS), the Regional Ocean Modeling System (ROMS), and the Navy Coastal Ocean Model (NCOM) for the ocean. The scientific focus of the Adaptive Sampling and Prediction Experiment (ASAP) was on the upwelling/relaxation cycle and the resulting three-dimensional coastal circulation near a coastal promontory, in this case Point Año Nuevo, CA. The emphasis of this study is on the circulation over the continental shelf as estimated from the wind forcing, two ADCP moorings, and model outputs. The wind stress during August 2006 consisted of 3-10 day upwelling favorable events separated by brief 1-3 day relaxations. During the first two weeks there was some correlation between local winds and currents and the three models' capability to reproduce the events. During the last two weeks, largely equatorward surface wind stress forced the sea surface and barotropic poleward flow occurred over the shelf, reducing model skill at predicting the circulation. The poleward flow was apparently remotely forced by mesoscale eddies and alongshore pressure gradients, which were not well simulated by the models. The small, high-resolution model domains were highly reliant on correct open boundary conditions to drive these larger-scale poleward flows. Multiply-nested models were no more effective than well-initialized local models in this respect.
A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea
NASA Astrophysics Data System (ADS)
Hazel, J.; Stewart, A.
2016-12-01
The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.
NASA Technical Reports Server (NTRS)
Vincent, Dayton G.; Robertson, Franklin
1993-01-01
The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.
Tropical Cyclone Footprint in the Ocean Mixed Layer Observed by Argo in the Northwest Pacific
2014-10-25
668. Hu, A., and G. A. Meehl (2009), Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport, Geo...atmospheric circulation [Hart et al., 2007]. Several studies, based on observations and modeling, suggest that TC-induced energy input and mixing may play...an important role in climate variability through regulating the oceanic general circulation and its variability [e.g., Emanuel, 2001; Sriver and Huber
NASA Technical Reports Server (NTRS)
Fukumori, I.; Fu, L. L.; Chao, Y.
1998-01-01
The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.
Linkages between ocean circulation, heat uptake and transient warming: a sensitivity study
NASA Astrophysics Data System (ADS)
Pfister, Patrik; Stocker, Thomas
2016-04-01
Transient global warming due to greenhouse gas radiative forcing is substantially reduced by ocean heat uptake (OHU). However, the fraction of equilibrium warming that is realized in transient climate model simulations differs strongly between models (Frölicher and Paynter 2015). It has been shown that this difference is not only related to the magnitude of OHU, but also to the radiative response the OHU causes, measured by the OHU efficacy (Winton et al., 2010). This efficacy is strongly influenced by the spatial pattern of the OHU and its changes (Rose et al. 2014, Winton et al. 2013), predominantly caused by changes in the Atlantic meridional overturning circulation (AMOC). Even in absence of external greenhouse gas forcing, an AMOC weakening causes a radiative imbalance at the top of the atmosphere (Peltier and Vettoretti, 2014), inducing in a net warming of the Earth System. We investigate linkages between those findings by performing both freshwater and greenhouse gas experiments in an Earth System Model of Intermediate Complexity. To assess the sensitivity of the results to ocean and atmospheric transport as well as climate sensitivity, we use an ensemble of model versions, systematically varying key parameters. We analyze circulation changes and radiative adjustments in conjunction with traditional warming metrics such as the transient climate response and the equilibrium climate sensitivity. This aims to improve the understanding of the influence of ocean circulation and OHU on transient climate change, and of the relevance of different metrics for describing this influence. References: Frölicher, T. L. and D.J. Paynter (2015), Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales, Environ. Res. Lett., 10, 075022 Peltier, W. R., and G. Vettoretti (2014), Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res. Lett., 41, 7306-7313 Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll (2014), The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake, Geophys. Res. Lett., 41, 1071-1078 Winton M., K. Takahashi and I. M. Held (2010), Importance of ocean heat uptake efficacy to transient climate change, J. Clim., 23, 2333-44 Winton, M., S. M. Griffies, B. Samuels, J. L. Sarmiento and T. L. Frölicher (2013) Connecting changing ocean circulation with changing climate, J. Clim., 26, 2268-78
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa M.; Rhines, P. B.; Worthen, D. L.
2012-01-01
Winters with frequent atmospheric blocking, in a band of latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean. This is evident in atmospheric reanalysis data, both modern and for the full 20th century. Blocking is approximately in phase with Atlantic multidecadal ocean variability (AMV). Wintertime atmospheric blocking involves a highly distorted jetstream, isolating large regions of air from the westerly circulation. It influences the ocean through windstress-curl and associated air/sea heat flux. While blocking is a relatively high-frequency phenomenon, it is strongly modulated over decadal timescales. The blocked regime (weaker ocean gyres, weaker air-sea heat flux, paradoxically increased transport of warm subtropical waters poleward) contributes to the warm phase of AMV. Atmospheric blocking better describes the early 20thC warming and 1996-2010 warm period than does the NAO index. It has roots in the hemispheric circulation and jet stream dynamics. Subpolar Atlantic variability covaries with distant AMOC fields: both these connections may express the global influence of the subpolar North Atlantic ocean on the global climate system.
Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon
NASA Astrophysics Data System (ADS)
Chang, Ping; Zhang, Rong; Hazeleger, Wilco; Wen, Caihong; Wan, Xiuquan; Ji, Link; Haarsma, Reindert J.; Breugem, Wim-Paul; Seidel, Howard
2008-07-01
Abrupt changes in the African monsoon can have pronounced socioeconomic impacts on many West African countries. Evidence for both prolonged humid periods and monsoon failures have been identified throughout the late Pleistocene and early Holocene epochs. In particular, drought conditions in West Africa have occurred during periods of reduced North Atlantic thermohaline circulation, such as the Younger Dryas cold event. Here, we use an ocean-atmosphere general circulation model to examine the link between oceanographic changes in the North Atlantic Ocean and changes in the strength of the African monsoon. Our simulations show that when North Atlantic thermohaline circulation is substantially weakened, the flow of the subsurface North Brazil Current reverses. This leads to decreased upper tropical ocean stratification and warmer sea surface temperatures in the equatorial South Atlantic Ocean, and consequently reduces African summer monsoonal winds and rainfall over West Africa. This mechanism is in agreement with reconstructions of past climate. We therefore suggest that the interaction between thermohaline circulation in the North Atlantic Ocean and wind-driven currents in the tropical Atlantic Ocean contributes to the rapidity of African monsoon transitions during abrupt climate change events.
Satellite altimetric measurements of the ocean. Report of the TOPEX Science Working Group
NASA Technical Reports Server (NTRS)
Stewart, R.
1981-01-01
The scientific usefulness of satellite measurements of ocean topography for the study of ocean circulation was investigated. The following topics were studied: (1) scientific problems which use altimetric measurements of ocean topography; (2) the extent in which in situ measurements are complementary or required; (3) accuracy, precision, and spatial and temporal resolutions which are required of the topographic measurements; (4) errors associated with measurement techniques; and (5) influences of these errors on scientific problems. An operational system for measuring ocean topography, was defined and the cost of conducting such a topographic experiment, was estimated.
NASA Astrophysics Data System (ADS)
Yu, S.; Pritchard, M. S.
2017-12-01
The role of different location of top-of-atmosphere (TOA) solar forcing to the annual-mean, zonal-mean ITCZ location is examined in a dynamic ocean coupled Community Earth System Model. We observe a damped ITCZ shift response that is now a familiar response of coupled GCMs, but a new finding is that the damping efficiency is increases monotonically as the latitudinal location of forcing is moved poleward. More Poleward forcing cases exhibit weaker shifts of the annual-mean ITCZ position consistent with a more ocean-centric cross-equatorial energy partitioning response to the forcing, which is in turn linked to changes in ocean circulation, not thermodynamic structure. The ocean's dynamic response is partly due to Ekman-driven shallow overturning circulation responses, as expected from a recent theory, but also contains a significant Atlantic meridional overturning circulation (AMOC) component--which is in some sense surprising given that it is activated even in near-tropical forcing experiments. Further analysis of the interhemispheric energy budget reveals the surface heating feedback response provides a useful framework for interpreting the cross-equatorial energy transport partitioning between atmosphere and ocean. Overall, the results of this study may help explain the mixed results of the degree of ITCZ shift response to interhemispheric asymmetric forcing documented in coupled GCMs in recent years. Furthermore, the sensitive AMOC response motivates expanding current coupled theoretical frameworks on meridional energy transport partitioning to include effects beyond Ekman transport.
Incorporating Density Properties of MgSO4 Brines Into Icy World Ocean Simulations
NASA Astrophysics Data System (ADS)
Goodman, J. C.; Vance, S.
2011-12-01
The structure and flow of the subsurface oceans in icy worlds depends on the sources of buoyancy within these oceans. Buoyancy is determined by the equation of state, in which density is a nonlinear function of temperature, salinity, and pressure. Equations of state for terrestrial seawater (with Na and Cl as the principal dissolved species) are well-developed, but icy world oceans may contain a different balance of species, including Na, Mg, SO4, and NH4 (Kargel et al, 2000). Recent work by Vance and Brown (2011, pers. comm.) has mapped out the density and thermodynamic properties of MgSO4 brines under icy world conditions. We have developed code to incorporate this equation of state data for MgSO4 brines into two different ocean simulation models. First, we investigate a single-column convection model, which is able to find the equilibrium structure and heat transport of an icy world ocean. We explore the heat transport through the ocean subject to a variety of assumptions about ocean salinity and seafloor heat and salt flux. We resolve the paradox posed by Vance and Brown (2004): warm salty MgSO4 brine emitted by a seafloor hydrothermal system may be positively buoyant at the seafloor, but become negatively buoyant (sinking) at lower pressure. How does heat escape the ocean, if it cannot be transported by convection? Second, we add MgSO4 dynamics to a full 3-D time-dependent general circulation model (the MIT GCM), which is able to simulate both the global-scale circulation of the world's ocean and investigate the highly turbulent dynamics of buoyant hydrothermal systems. We ask, "Are buoyancy-driven flows in a MgSO4 brine ocean significantly different than similarly-driven flows in terrestrial seawater?"
State estimation improves prospects for ocean research
NASA Astrophysics Data System (ADS)
Stammer, Detlef; Wunsch, C.; Fukumori, I.; Marshall, J.
Rigorous global ocean state estimation methods can now be used to produce dynamically consistent time-varying model/data syntheses, the results of which are being used to study a variety of important scientific problems. Figure 1 shows a schematic of a complete ocean observing and synthesis system that includes global observations and state-of-the-art ocean general circulation models (OGCM) run on modern computer platforms. A global observing system is described in detail in Smith and Koblinsky [2001],and the present status of ocean modeling and anticipated improvements are addressed by Griffies et al. [2001]. Here, the focus is on the third component of state estimation: the synthesis of the observations and a model into a unified, dynamically consistent estimate.
Ockham's Razorblade Shaving Wind-Induced Circulation
NASA Astrophysics Data System (ADS)
Bergmann, Juan Carlos
2010-05-01
Terrestrial physical oceanography is fortunate because of the existence of the continents that divide the low-latitude oceans into basins. At first glance, the previous statement appears to be not obvious because an ocean-planet should be much simpler to describe. Simple-case explanation is the central aspect of Ockham's Razorblade: If a theory fails to describe the most-simple case properly, the theory is, at least, ‘not good'. Also Descartes' methodical rules take the most-simple case as starting point. The analysis of wind-induced circulation on an ocean-planet will support the initial statement. Earth's south hemisphere is dominated by the oceans. The continents' influence on the zonal-average zonal-wind climate is relatively small. Therefore, South Hemisphere's zonal wind pattern is a relatively good proxy for that of an ocean planet. Application of this wind-stress pattern to an ocean planet yields reasonable meridional mass-flow results from the polar-regions down to the high-pressure belts: Down-welling and up-welling of water-mass are approximately balanced. However, the entire tropical circulation can in principle not be closed because there is only down-welling - even if the extreme down-welling in the equatorial belt (± 8°, with a singularity at the equator) is disregarded. The only input to the calculations is the observed terrestrial south-hemisphere zonal wind-stress pattern. Meridional stress is irrelevant because it produces a closed zonal Ekman-transport around the ocean planet (sic!). Vertical mass-transport is calculated from the divergence of the wind-induced meridional Ekman-mass-transport, which in its turn is a necessary consequence of angular-momentum conservation. No assumptions are made on how the return-flows at depth are forced because the wind-force equations cannot contribute hereto. This circumstance expresses a fundamental difference to atmospheric circulation, where mechanical forcing is caused by the pressure-fields that result from differential heating/cooling and therefore ‘automatically' comprise the entire circulation system. Wind-caused oceanic flow is exclusively generated by frictional wind-forces at the surface, and other processes in the ocean are not causally connected hereto. In absence of continents it is quite difficult to ‘find' the corresponding forcing for the meridional return-flows - and it can definitely not be wind-force-caused - very strange! The fact that the wind-induced circulation can only be closed by the action of other processes, which are not causally connected to wind-forces, demonstrates that something must be fundamentally wrong. The singularity at the equator and the extreme down-welling in the equatorial belt indicate an additional severe problem that can only be avoided if zonal wind-stress is completely excluded. Escape to additional assumptions is similar to the introduction of the epicycles in order to explain the planets' retrograde motion in maintaining geocentric cosmology. Should the previous analysis be ignored in favour of maintaining the ‘established' ideas of wind-induced circulation or should there be an effort to formulate new ideas that provide closed and balanced circulation without employing other processes than wind-forces?
Dynamics of a Snowball Earth ocean.
Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli
2013-03-07
Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.
NASA Astrophysics Data System (ADS)
Kourafalou, V.; Kang, H.; Perlin, N.; Le Henaff, M.; Lamkin, J. T.
2016-02-01
Connectivity around the South Florida coastal regions and between South Florida and Cuba are largely influenced by a) local coastal processes and b) circulation in the Florida Straits, which is controlled by the larger scale Florida Current variability. Prediction of the physical connectivity is a necessary component for several activities that require ocean forecasts, such as oil spills, fisheries research, search and rescue. This requires a predictive system that can accommodate the intense coastal to offshore interactions and the linkages to the complex regional circulation. The Florida Straits, South Florida and Florida Keys Hybrid Coordinate Ocean Model is such a regional ocean predictive system, covering a large area over the Florida Straits and the adjacent land areas, representing both coastal and oceanic processes. The real-time ocean forecast system is high resolution ( 900m), embedded in larger scale predictive models. It includes detailed coastal bathymetry, high resolution/high frequency atmospheric forcing and provides 7-day forecasts, updated daily (see: http://coastalmodeling.rsmas.miami.edu/). The unprecedented high resolution and coastal details of this system provide value added on global forecasts through downscaling and allow a variety of applications. Examples will be presented, focusing on the period of a 2015 fisheries cruise around the coastal areas of Cuba, where model predictions helped guide the measurements on biophysical connectivity, under intense variability of the mesoscale eddy field and subsequent Florida Current meandering.
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Fomin, Vladimir; Diansky, Nikolay; Korshenko, Evgeniya
2017-04-01
In this paper, we present the improved version of the ocean general circulation sigma-model developed in the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). The previous version referred to as INMOM (Institute of Numerical Mathematics Ocean Model) is used as the oceanic component of the IPCC climate system model INMCM (Institute of Numerical Mathematics Climate Model (Volodin et al 2010,2013). Besides, INMOM as the only sigma-model was used for simulations according to CORE-II scenario (Danabasoglu et al. 2014,2016; Downes et al. 2015; Farneti et al. 2015). In general, INMOM results are comparable to ones of other OGCMs and were used for investigation of climatic variations in the North Atlantic (Gusev and Diansky 2014). However, detailed analysis of some CORE-II INMOM results revealed some disadvantages of the INMOM leading to considerable errors in reproducing some ocean characteristics. So, the mass transport in the Antarctic Circumpolar Current (ACC) was overestimated. As well, there were noticeable errors in reproducing thermohaline structure of the ocean. After analysing the previous results, the new version of the OGCM was developed. It was decided to entitle is INMSOM (Institute of Numerical Mathematics Sigma Ocean Model). The new title allows one to distingwish the new model, first, from its older version, and second, from another z-model developed in the INM RAS and referred to as INMIO (Institute of Numerical Mathematics and Institute of Oceanology ocean model) (Ushakov et al. 2016). There were numerous modifications in the model, some of them are as follows. 1) Formulation of the ocean circulation problem in terms of full free surface with taking into account water amount variation. 2) Using tensor form of lateral viscosity operator invariant to rotation. 3) Using isopycnal diffusion including Gent-McWilliams mixing. 4) Using atmospheric forcing computation according to NCAR methodology (Large and Yeager 2009). 5) Improvement river runoff algorithm accounting the total amount of discharged water. 6) Using explicit leapfrog time scheme for all lateral operators and implicit Euler scheme for vertical diffusion and viscosity. The INMSOM is tested by reproducing World Ocean circulation and thermohaline characteristics using the well-proved CORE dataset. The presentation is devoted to the analysis of new INMSOM simulation results, estimation of their quality and comparison to the ones previously obtained with the INMOM. The main aim of the INMSOM development is using it as the oceanic component of the next version of INMCM. The work was supported by the Russian Foundation for Basic Research (grants № 16-05-00534 and № 15-05-07539) References 1. Danabasoglu, G., Yeager S.G., Bailey D., et al., 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 73, 76-107. 2. Danabasoglu, G., Yeager S.G., Kim W.M. et al., 2016: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 97, 65-90. 3. Downes S.M., Farneti R., Uotila P. et al. An assessment of Southern Ocean water masses and sea ice during 1988-2007 in a suite of interannual CORE-II simulations. Ocean Modelling (2015), 94, 67-94. 4. Farneti R., Downes S.M., Griffies S.M. et al. An assessment of Antarctic Circumpolar Current and Southern Ocean Meridional Overturning Circulation during 1958-2007 in a suite of interannual CORE-II simulations, Ocean Modelling (2015), 93, 84-120. 5. Gusev A.V. and Diansky N.A. Numerical simulation of the World ocean circulation and its climatic variability for 1948-2007 using the INMOM. Izvestiya, Atmospheric and Oceanic Physics, 2014, V. 50, N. 1, P. 1-12 6. Large, W., Yeager, S., 2009. The global climatology of an interannually varying air-sea flux data set. Clim Dyn, V. 33, P. 341-364. 7. Ushakov K.V., Grankina T.B., Ibraev R.A. Modeling the water circulation in the North Atlantic in the scope of the CORE-II experiment. Izvestiya, Atmospheric and Oceanic Physics. 2016. V. 52, № 4, P. 365-375
NASA Astrophysics Data System (ADS)
Piotrowski, A. M.; Elderfield, H.; Howe, J. N. W.
2014-12-01
The last few million years saw changing boundary conditions to the Earth system which set the stage for bi-polar glaciation and Milankovich-forced glacial-interglacial cycles which dominate Quaternary climate variability. Recent studies have highlighted the relative importance of temperature, ice volume and ocean circulation changes during the Mid-Pleistocene Transition at ~900 ka (Elderfield et al., 2012, Pena and Goldstein, 2014). Reconstructing the history of global deep water mass propagation and its carbon content is important for fully understanding the ocean's role in amplifying Milankovich changes to cause glacial-interglacial transitions. A new foraminiferal-coating Nd isotope record from ODP Site 1123 on the deep Chatham Rise is interpreted as showing glacial-interglacial changes in the bottom water propagation of Atlantic-sourced waters into the Pacific via the Southern Ocean during the last 1 million years. This is compared to globally-distributed bottom water Nd isotope records; including a new deep western equatorial Atlantic Ocean record from ODP Site 929, as well as published records from ODP 1088 and Site 1090 in the South Atlantic (Pena and Goldstein, 2014), and ODP 758 in the deep Indian Ocean (Gourlan et al., 2010). Atlantic-to-Pacific gradients in deep ocean neodymium isotopes are constructed for key time intervals to elucidate changes in deep water sourcing and circulation pathways through the global ocean. Benthic carbon isotopes are used to estimate deep water nutrient contents of deep water masses and constrain locations and modes of deep water formation. References: Elderfield et al. Science 337, 704 (2012) Pena and Goldstein, Science 345, 318 (2014) Gourlan et al., Quaternary Science Reviews 29, 2484-2498 (2010)
TOPEX/Poseidon - An international satellite oceanography mission
NASA Technical Reports Server (NTRS)
Townsend, W. F.; Fellous, J.-L.
1986-01-01
The TOPEX/Poseidon mission, a joint NASA-CNES effort, strives to provide highly accurate global ocean topography measurements over a three year period utilizing highly advanced satellite radar altimetry techniques. Scheduled for launch in late 1991, the TOPEX/Poseidon satellite, together with ESA's first European remote sensing satellite and NASA's scatterometer, promises to provide a fundamental breakthrough in the present knowledge of how the oceans work as a global system. As part of the World Ocean Circulation Experiment, TOPEX/Poseidon measurements will aid in the determination of the three-dimensional current structure of the global oceans.
Metrological challenges for measurements of key climatological observables Part 2: oceanic salinity
NASA Astrophysics Data System (ADS)
Pawlowicz, R.; Feistel, R.; McDougall, T. J.; Ridout, P.; Seitz, S.; Wolf, H.
2016-02-01
Salinity is a key variable in the modelling and observation of ocean circulation and ocean-atmosphere fluxes of heat and water. In this paper, we examine the climatological relevance of ocean salinity, noting fundamental deficiencies in the definition of this key observable, and its lack of a secure foundation in the International System of Units, the SI. The metrological history of salinity is reviewed, problems with its current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10.
Application of Satellite Altimetry to Ocean Circulation Studies: 1987-1994
NASA Technical Reports Server (NTRS)
Fu, L. -L.; Cheney, R. E.
1994-01-01
Altimetric measurement of the height of the sea surface from space provides global observation of the world's oceans. The last eight years have witnessed a rapid growth in the use of altimetry data from the study of the ocean circulations, thanks to the multiyear data from the Geosat Mission.
Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele
The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physicallymore » and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.« less
2008-06-06
MBARI buoy M2, profiling to 250 m depth (Figure 1). Instruments on board included a CTD, fluorometer, oxygen and nitrate sensors, bioluminescence, and...dimensional multiscale ocean variability: Massachusetts Bay. Journal of Marine Systems, Special issue on “Three-dimensional ocean circulation: Lagrangian...Oceanography”, T. Paluszkiewicz and S. Harper, Eds., Vol. 19, 1, 172-183. Liang, X.S. and Anderson, D.G.M. (2007) Multiscale Window Transform, SIAM J
Dyamical Systems Theory and Lagrangian Data Assimilation in 4D Geophysical Fluid Dynamics
The long-term goal of our project (known as OCEAN 3D +1) was to better understand and predict ocean circulation features that are fundamentally three...dimensional in space and that vary in time. In particular, we sought to quantify the dynamical processes that govern the formation , evolution, and...predictability of 3D +1 transport pathways in the ocean. Our approach was to develop algorithms to thoroughly analyze a hierarchy of model and
Multi-platform operational validation of the Western Mediterranean SOCIB forecasting system
NASA Astrophysics Data System (ADS)
Juza, Mélanie; Mourre, Baptiste; Renault, Lionel; Tintoré, Joaquin
2014-05-01
The development of science-based ocean forecasting systems at global, regional, and local scales can support a better management of the marine environment (maritime security, environmental and resources protection, maritime and commercial operations, tourism, ...). In this context, SOCIB (the Balearic Islands Coastal Observing and Forecasting System, www.socib.es) has developed an operational ocean forecasting system in the Western Mediterranean Sea (WMOP). WMOP uses a regional configuration of the Regional Ocean Modelling System (ROMS, Shchepetkin and McWilliams, 2005) nested in the larger scale Mediterranean Forecasting System (MFS) with a spatial resolution of 1.5-2km. WMOP aims at reproducing both the basin-scale ocean circulation and the mesoscale variability which is known to play a crucial role due to its strong interaction with the large scale circulation in this region. An operational validation system has been developed to systematically assess the model outputs at daily, monthly and seasonal time scales. Multi-platform observations are used for this validation, including satellite products (Sea Surface Temperature, Sea Level Anomaly), in situ measurements (from gliders, Argo floats, drifters and fixed moorings) and High-Frequency radar data. The validation procedures allow to monitor and certify the general realism of the daily production of the ocean forecasting system before its distribution to users. Additionally, different indicators (Sea Surface Temperature and Salinity, Eddy Kinetic Energy, Mixed Layer Depth, Heat Content, transports in key sections) are computed every day both at the basin-scale and in several sub-regions (Alboran Sea, Balearic Sea, Gulf of Lion). The daily forecasts, validation diagnostics and indicators from the operational model over the last months are available at www.socib.es.
The Southern Ocean's role in ocean circulation and climate transients
NASA Astrophysics Data System (ADS)
Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.
2017-12-01
The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.
Does Southern Ocean Surface Forcing Shape the Global Ocean Overturning Circulation?
NASA Astrophysics Data System (ADS)
Sun, Shantong; Eisenman, Ian; Stewart, Andrew L.
2018-03-01
Paleoclimate proxy data suggest that the Atlantic Meridional Overturning Circulation (AMOC) was shallower at the Last Glacial Maximum (LGM) than its preindustrial (PI) depth. Previous studies have suggested that this shoaling necessarily accompanies Antarctic sea ice expansion at the LGM. Here the influence of Southern Ocean surface forcing on the AMOC depth is investigated using ocean-only simulations from a state-of-the-art climate model with surface forcing specified from the output of previous coupled PI and LGM simulations. In contrast to previous expectations, we find that applying LGM surface forcing in the Southern Ocean and PI surface forcing elsewhere causes the AMOC to shoal only about half as much as when LGM surface forcing is applied globally. We show that this occurs because diapycnal mixing renders the Southern Ocean overturning circulation more diabatic than previously assumed, which diminishes the influence of Southern Ocean surface buoyancy forcing on the depth of the AMOC.
ICPP: Approach for Understanding Complexity of Plasma
NASA Astrophysics Data System (ADS)
Sato, Tetsuya
2000-10-01
In this talk I wish to present an IT system that could promote Science of Complexity. In order to deal with a seemingly `complex' phenomenon, which means `beyond analytical manipulation', computer simulation is a viable powerful tool. However, complexity implies a concept beyond the horizon of reductionism. Therefore, rather than simply solving a complex phenomenon for a given boundary condition, one must establish an intelligent way of attacking mutual evolution of a system and its environment. NIFS-TCSC has been developing a prototype system that consists of supercomputers, virtual reality devices and high-speed network system. Let us explain this by picking up a global atmospheric circulation group, global oceanic circulation group and local weather prediction group. Local weather prediction group predicts the local change of the weather such as the creation of cloud and rain in the near future under the global conditions obtained by the global atmospheric and ocean groups. The global groups run simulations by modifying the local heat source/sink evaluated by the local weather prediction and then obtain the global conditions in the next time step. By repeating such a feedback performance one can predict the mutual evolution of the local system and its environment. Mutual information exchanges among multiple groups are carried out instantaneously by the networked common virtual reality space in which 3-D global and local images of the atmospheric and oceanic circulation and the cloud and rain maps are arbitrarily manipulated by any of the groups and commonly viewed. The present networking system has a great advantage that any simulation groups can freely and arbitrarily change their alignment, so that mutual evolution of any stratum system can become tractable by utilizing this network system.
Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II
2017-08-11
inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khangaonkar, Tarang; Long, Wen; Xu, Wenwei
The Salish Sea consisting of Puget Sound and Georgia Basin in U.S and Canadian waters has been the subject of several independent data collection and modeling studies. However, these interconnected basins and their hydrodynamic interactions have not received attention as a contiguous unit. The Strait of Juan de Fuca is the primary pathway through which Pacific Ocean water enters the Salish Sea but the role played by Johnstone Strait and the complex channels northeast of Vancouver Island, connecting the Salish Sea and the Pacific Ocean, on overall Salish Sea circulation has not been characterized. In this paper we present amore » modeling-based assessment of the two-layer circulation and transport through the multiple interconnected sub-basins within the Salish Sea including the effect of exchange via Johnstone Strait and Discovery Islands. The Salish Sea Model previously developed using the finite volume community ocean model (FVCOM) was expanded over the continental shelf for this assessment encircling Vancouver Island, including Discovery Islands, Johnstone Strait, Broughton Archipelago and the associated waterways. A computational technique was developed to allow summation of volume fluxes across arbitrary transects through unstructured finite volume cells. Tidally averaged volume fluxes were computed at multiple transects. The results were used to validate the classic model of Circulation in Embracing Sills for Puget Sound and to provide quantitative estimates of the lateral distribution of tidally averaged transport through the system. Sensitivity tests with and without exchanges through Johnstone Strait demonstrate that it is a pathway for Georgia Basin runoff and Fraser River water to exit the Salish Sea and for Pacific Ocean inflow. However the relative impact of this exchange on circulation and flushing in Puget Sound Basin is small.« less
Interior Pathways to Dissipation of Mesoscale Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadiga, Balasubramanya T.
This talk at Goethe University asks What Powers Overturning Circulation? How does Ocean Circulation Equilibrate? There is a HUGE reservoir of energy sitting in the interior ocean. Can fluid dynamic instabilities contribute to the mixing required to drive global overturning circulation? Study designed to eliminate distinguished horizontal surfaces such as bottom BL and surface layer
Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.
2014-03-01
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends.
Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends
NASA Astrophysics Data System (ADS)
Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications
NASA Astrophysics Data System (ADS)
Goodwin, Philip
2012-07-01
To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.
Ocean products delivered by the Mercator Ocean Service Department
NASA Astrophysics Data System (ADS)
Crosnier, L.; Durand, E.; Soulat, F.; Messal, F.; Buarque, S.; Toumazou, V.; Landes, V.; Drevillon, M.; Lellouche, J.
2008-12-01
The newly created Service Department at Mercator Ocean is now offering various services for academic and private ocean applications. Mercator Ocean runs operationally ocean forecast systems for the Global and North Atlantic Ocean. These systems are based on an ocean general circulation model NEMO as well as on data assimilation of sea level anomalies, sea surface temperature and temperature and salinity vertical profiles. Three dimensional ocean fields of temperature, salinity and currents are updated and available weekly, including analysis and 2 weeks forecast fields. The Mercator Ocean service department is now offering a wide range of ocean derived products. This presentation will display some of the various products delivered in the framework of academic and private ocean applications: " Monitoring of the ocean current at the surface and at depth in several geographical areas for offshore oil platform, for offshore satellite launch platform, for transatlantic sailing or rowing boat races. " Monitoring of ocean climate indicators (Coral bleaching...) for marine reserve survey; " Monitoring of upwelling systems for fisheries; " Monitoring of the ocean heat content for tropical cyclone monitoring. " Monitoring of the ocean temperature/salinity and currents to guide research vessels during scientific cruises. The Mercator Ocean products catalogue will grow wider in the coming years, especially in the framework of the European GMES MyOcean project (FP7).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolter, K.
Clusters of sea level pressure (SLP), surface wind, cloudiness, and sea surface temperature (SST) in the domain of the tropical Atlantic, eastern Pacific, and Indian Oceans are introduced and discussed in terms of general circulation and climate. They appear to capture well the large-scale degrees of freedom of the seasonal fields. In the Atlantic, and, to a lesser extent, in the eastern Pacific, most analyzed fields group into zonally oriented trade wind clusters. These are separated distinctly by the near-equatorial trough axis. By contrast, the Indian Ocean features strong interhemispheric connections associations with the monsoon systems of boreal summer and,more » to a lesser degree, of boreal winter. The usefulness of clusters thus established is elucidated with respect to the Southern Oscillation (SO). General circulation changes associated with this planetary pressure seesaw are deduced from the correlation maps of surface field clusters for January/February and July/August. During the positive SO phase (i.e., anomalously high pressure over the eastern Pacific and anomalously low pressure over Indonesia), both the Atlantic and eastern Pacific near-equatorial troughs are inferred to be shifted towards the north from July/August SLP, wind, and cloudiness fields. While eastern Pacific trade winds are weakened in both seasons in the positive PO phase, the Atlantic trades appear strengthened at the same time in the winter hemisphere only. Over the Indian Ocean, the monsoon circulation seems to be strengthened during the positive SO phase, with the summer monsoon displaying a more complex picture. Its SLP, cloudiness, and SST fields support an enhanced southwest monsoon, while its surface winds appear largely inconclusive. SST is lowered during the positive SO phase in all three tropical oceans.« less
NASA Astrophysics Data System (ADS)
Petrick, Benjamin F.; McClymont, Erin L.; Marret, Fabienne; van der Meer, Marcel T. J.
2015-09-01
The Southeast Atlantic Ocean is an important component of global ocean circulation, as it includes heat and salt transfer into the Atlantic through the Agulhas leakage as well as the highly productive Benguela upwelling system. Here we reconstruct sea surface temperatures (SSTs) from Ocean Drilling Program (ODP) Site 1087 in the Southeast Atlantic to investigate surface ocean circulation patterns during the late Pleistocene (0-500 ka). The UK'37 index and dinoflagellate cyst assemblages are used to reconstruct SSTs, δDalkenone is used to reconstruct changes in sea surface salinity, and mass accumulation rates of alkenones and chlorine pigments are quantified to detect changing marine export productivity. The greatest amplitude of SST warming precedes decreases in benthic δ18O and therefore occurs early in the transition from glacials to interglacials. The δDalkenone, as a salinity indicator, increases before SSTs, suggesting that the pattern of Agulhas leakage is more complex than suggested by SST proxies. Marine isotope stage (MIS) 10 shows an anomalous pattern: it is marked by a pronounced increase in chlorine concentration, which may be related to enhanced/expanded Benguela upwelling reaching the core site. We find no evidence of an absence of Agulhas leakage throughout the record, suggesting that there is no Agulhas cutoff even during MIS 10. Finally, the ODP Site 1087 record shows an increasing strength of Agulhas leakage towards the present day, which may have impacted the intensity of the Atlantic meridional overturning circulation. As a result, the new analyses from ODP Site 1087 demonstrate a complex interaction between influences of the Benguela upwelling and the Agulhas leakage through the late Pleistocene, which are inferred here to reflect changing circulation patterns in the Southern Ocean and in the atmosphere.
US Navy Operational Global Ocean and Arctic Ice Prediction Systems
2014-09-01
meridional overturning circulation (Figure 29 in Hurlburt et al., 2011), when comparing a non-assimilative simulation with a data assimilative...boundary current regions of the Gulf Stream ( Atlantic ), the Kuroshio (Pacific), and the Agulhas and Somali Currents (both Indian). Consequently...Oceanic and Atmospheric Administration at the National Centers for Environmental Prediction (NCEP), initially for the North Atlantic (Mehra and
Anisotropic shear dispersion parameterization for ocean eddy transport
NASA Astrophysics Data System (ADS)
Reckinger, Scott; Fox-Kemper, Baylor
2015-11-01
The effects of mesoscale eddies are universally treated isotropically in global ocean general circulation models. However, observations and simulations demonstrate that the mesoscale processes that the parameterization is intended to represent, such as shear dispersion, are typified by strong anisotropy. We extend the Gent-McWilliams/Redi mesoscale eddy parameterization to include anisotropy and test the effects of varying levels of anisotropy in 1-degree Community Earth System Model (CESM) simulations. Anisotropy has many effects on the simulated climate, including a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, impacts on the meridional overturning circulation and ocean energy and tracer uptake, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. A process-based parameterization to approximate the effects of unresolved shear dispersion is also used to set the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.
NASA Astrophysics Data System (ADS)
Heslop, E. E.; Tintore, J.; Ruiz, S.; Allen, J.; López-Jurado, J. L.
2014-12-01
A quiet revolution is taking place in ocean observations; in the last decade new multi-platform, integrated ocean observatories have been progressively implemented by forward looking countries with ocean borders of economic and strategic importance. These systems are designed to fill significant gaps in our knowledge of the ocean state and ocean variability, through long-term, science and society-led, ocean monitoring. These ocean observatories are now delivering results, not the headline results of a single issue experiment, but carefully and systematically improving our knowledge of ocean variability, and thereby, increasing model forecast skill and our ability to link physical processes to ecosystem response. Here we present the results from a 3-year quasi-continuous glider monitoring of a key circulation 'choke' point in the Western Mediterranean, undertaken by SOCIB (Balearic Islands Coastal Ocean Observing and Forecasting System). For the first time data from the high frequency glider sampling show variations in the transport volumes of water over timescales of days to weeks, as large as those previously only identifiable as seasonal or eddy driven. Although previous surveys noted high cruise-to-cruise variability, they were insufficient to show that in fact water volumes exchanged through this narrow 'choke' point fluctuate on 'weather' timescales. Using the glider data to leverage an 18-year record of ship missions, we define new seasonal cycles for the exchange of watermasses, challenging generally held assumptions. The pattern of the exchange is further simplified through the characterisation of 5 circulation modes and the defining of a new seasonal cycle for the interplay between mesoscale and basin scale dynamics. Restricted 'choke points' between our ocean basins are critical locations to monitor water transport variability, as they constrain the inter-basin exchange of heat, salt and nutrients. At the Ibiza Channel 'choke' point, the exchange of watermass is known to affect local ecosystems, including the spawning grounds of commercially important fish stocks, at a biodiversity hotspot. This new insight will be vital in improving our ocean model forecast skill and in the development of integrated ocean products for society.
Aquarius main structure configuration
NASA Astrophysics Data System (ADS)
Eremenko, A.
The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.
Aquarius Main Structure Configuration
NASA Technical Reports Server (NTRS)
Eremenko, Alexander
2012-01-01
The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.
Geothermal influences on the abyssal ocean
NASA Astrophysics Data System (ADS)
Emile-Geay, J.; Madec, G.
2017-12-01
Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and circulation. We conclude with a perspective on the role of conductive geothermal heat loss versus localized, advective hydrothermal heat flow on abyssal dynamics, and delineate unsolved research problems for the years ahead.
Salinity Remote Sensing and the Study of the Global Water Cycle
NASA Technical Reports Server (NTRS)
Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.
2007-01-01
The SMOS and AquariusISAC-D satellite missions will begin a new era to map the global sea surface salinity (SSS) field and its variability from space within the next twothree years. They will provide critical data needed to study the interactions between the ocean circulation, global water cycle and climate. Key scientific issues to address are (1) mapping large expanses of the ocean where conventional SSS data do not yet exist, (2) understanding the seasonal and interannual SSS variations and the link to precipitation, evaporation and sea-ice patterns, (3) links between SSS and variations in the oceanic overturning circulation, (4) air-sea coupling processes in the tropics that influence El Nino, and (4) closing the marine freshwater budget. There is a growing body of oceanographic evidence in the form of salinity trends that portend significant changes in the hydrologic cycle. Over the past several decades, highlatitude oceans have become fresher while the subtropical oceans have become saltier. This change is slowly spreading into the subsurface ocean layers and may be affecting the strength of the ocean's therrnohaline overturning circulation. Salinity is directly linked to the ocean dynamics through the density distribution, and provides an important signature of the global water cycle. The distribution and variation of oceanic salinity is therefore attracting increasing scientific attention due to the relationship to the global water cycle and its influence on circulation, mixing, and climate processes. The oceans dominate the water cycle by providing 86% of global surface evaporation (E) and receiving 78% of global precipitation (P). Regional differences in E-P, land runoff, and the melting or freezing of ice affect the salinity of surface water. Direct observations of E-P over the ocean have large uncertainty, with discrepancies between the various state-of-the-art precipitation analyses of a factor of two or more in many regions. Quantifying the climatic influence of the oceanic water cycle requires more accurately resolving the net air-sea water flux. Measuring global SSS trends on seasonal to interannual timescales by satellite is fundamental to this problem because the SSS trends represent detectable time-integrated signals of the variable marine hydrological cycle. Satellite measurements, coupled with an array of in situ observations, will provide global synoptic SSS fields for the first time history. These data will provide a strong constraint on climate models and data assimilation efforts, which must properly represent the freshwater budget in terms of E-P, ocean advection and surface layer mixing in order to accurately simulate the true ocean state. The SSS fields will allow us to quantify the covariability between the SSS and the strong seasonal E-P cycle in the tropics and high latitudes. Field measurement campaigns to exploit satellite and in situ measurements to close the seasonal E-P cycle over an ocean region are being considered. Lastly the satellite systems will monitor and trace the large long-lived SSS anomalies from year to year that have the potential to influence El Nino and the large scale ocean circulation.
2008-10-01
Director NCST E. R. Franchi , 7000 ^^M^4^k ro£— 4// 2^/s y Public Affairs (Unclassified/ Unlimited Only), Code 7030 4 Division, Code Author, Code...from the Navy Operational Global Atmospheric Prediction System (NOGAPS, Hogan and Rosmond, 1991) and assimilates data via the Navy Coupled Ocean...forecasts using Global , Atlantic, Gulf of Mexico, and northern Gulf of Mexico configurations of HYCOM. Proceedings, Ocean Optics XIX, Castelvecchio Pascoli
A Weak Constraint 4D-Var Assimilation System for the Navy Coastal Model Using the Representer Method
2013-01-01
the help of the Parametric Fortrai compiler (PFC), Erwig et al. 2007 . Some general circulation models of the complexity of NCOM have seen 1 similar...the Mir general circulation model (MITgcm, Marotzke et al. 1999) also used in the ECCO consortium assimilation experiments ( Stammer et al. 2002...using the« inverse Regional Ocean Modeling System (IROMS, Di Lorenzo et al. 2007 ) with horizontal resolutions of 10 and 30km. The CCS is a large
Large-Scale Atmosphere-Ocean Coupling.
1984-05-01
connection. between Pacific tropical diabatic heating anomalies and extratropical circulation system over the North Pacific from East Asia to the...and G. J. Boer, 1972: REFERENCES The General Circulation of the Tropical Atmosphere and Interaction with Extratropical Latitudes. Vol. 1. MIT Press...implications for the development of severe convective storms . Mom. We& Rev.. Chang, C.-P., and K. M. Lau, 1980: Northeasterly cold surges 167, 682-703. and
Real Time System for Practical Acoustic Monitoring of Global Ocean Temperature. Volume 3
1994-06-30
signal processing software to the SSAR. This software performs Doppler correction , circulating sums, matched filtering and pulse compression, estimation...Doppler correction , circulating sums, matched filtering and pulse compression, estimation of multipath arrival angle, and peak- picking. At the... geometrica , sound speed, and focuing region sAles to the acoustic wavelengths Our work on this problem is based on an oceanographic application. To
The Aquarius Mission: Sea Surface Salinity from Space
NASA Technical Reports Server (NTRS)
Koblinsky, Chester; Chao, Y.; deCharon, A.; Edelstein, W.; Hildebrand, P.; Lagerloef, G.; LeVine, D.; Pellerano, F.; Rahmat-Samii, Y.; Ruf, C.
2001-01-01
Aquarius is a new satellite mission concept to study the impact of the global water cycle on the ocean, including the response of the ocean to buoyancy forcing and the subsequent feedback of the ocean on the climate. The measurement objective of Aquarius is sea surface salinity, which reflects the concentration of freshwater at the ocean surface. Salinity affects the dielectric constant of sea water and, consequently, the radiometric emission of the sea surface to space. Rudimentary space observations with an L-band radiometer were first made from Skylab in the mid-70s and numerous aircraft missions of increasing quality and improved technology have been conducted since then. Technology is now available to carry out a global mission, which includes both an accurate L band (1.413 Ghz) radiometer and radar system in space and a global array of in situ observations for calibration and validation, in order to address key NASA Earth Science Enterprise questions about the global cycling of water and the response of the ocean circulation to climate change. The key scientific objectives of Aquarius examine the cycling of water at the ocean's surface, the response of the ocean circulation to buoyancy forcing, and the impact of buoyancy forcing on the ocean's thermal feedback to the climate. Global surface salinity will also improve our ability to model the surface solubility chemistry needed to estimate the air-sea exchange of CO2. In order to meet these science objectives, the NASA Salinity Sea Ice Working Group over the past three years has concluded that the mission measurement goals should be better than 0.2 practical salinity units (psu) accuracy, 100 km resolution, and weekly to revisits. The Aquarius mission proposes to meet these measurement requirements through a real aperture dual-polarized L band radiometer and radar system. This system can achieve the less than 0.1 K radiometric temperature measurement accuracy that is required. A 3 m antenna at approx. 600km altitude in a sun-synchronous orbit and 300 km swath can provide the desired 100 km resolution global coverage every week. Within this decade, it may be possible to combine satellite sea surface salinity measurements with ongoing satellite observations of temperature, surface height, air-sea fluxes; vertical profiles of temperature and salinity from the Argo program; and modern ocean/atmosphere modeling and data assimilation tools, in order to finally address the complex influence of buoyancy on the ocean circulation and climate.
The East African monsoon system: Seasonal climatologies and recent variations: Chapter 10
Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Husak, Gregory J.; Michaelsen, J.
2016-01-01
This chapter briefly reviews the complex climatological cycle of the East African monsoon system, paying special attention to its connection to the larger Indo-Pacific-Asian monsoon cycle. We examine the seasonal monsoon cycle, and briefly explore recent circulation changes. The spatial footprint of our analysis corresponds with the “Greater Horn of Africa” (GHA) region, extending from Tanzania in the south to Yemen and Sudan in the north. During boreal winter, when northeast trade winds flow across the northwest Indian Ocean and the equatorial moisture transports over the Indian Ocean exhibit strong westerly mean flows over the equatorial Indian Ocean, East African precipitation is limited to a few highland areas. As the Indian monsoon circulation transitions during boreal spring, the trade winds over the northwest Indian Ocean reverse, and East African moisture convergence supports the “long” rains. In boreal summer, the southwesterly Somali Jet intensifies over eastern Africa. Subsidence forms along the westward flank of this jet, shutting down precipitation over eastern portions of East Africa. In boreal fall, the Jet subsides, but easterly moisture transports support rainfall in limited regions of the eastern Horn of Africa. We use regressions with the trend mode of global sea surface temperatures to explore potential changes in the seasonal monsoon circulations. Significant reductions in total precipitable water are indicated in Kenya, Tanzania, Rwanda, Burundi, Uganda, Ethiopia, South Sudan, Sudan, and Yemen, with moisture transports broadly responding in ways that reinforce the climatological moisture transports over the Indian Ocean. Over Kenya, southern Ethiopia and Somalia, regressions with velocity potential indicate increased convergence aloft. Near the surface, this convergence appears to manifest as a surface high pressure system that modifies moisture transports in these countries as well as Uganda, Tanzania, Rwanda, and Burundi. An analysis of rainfall changes indicates significant declines in parts of Tanzania, Rwanda, Burundi, Uganda, Kenya, Somalia, Ethiopia, and Yemen.
NASA Astrophysics Data System (ADS)
Strobach, E.; Molod, A.; Menemenlis, D.; Forget, G.; Hill, C. N.; Campin, J. M.; Heimbach, P.
2017-12-01
Forcing ocean models with reanalysis data is a common practice in ocean modeling. As part of this practice, prescribed atmospheric state variables and interactive ocean SST are used to calculate fluxes between the ocean and the atmosphere. When forcing an ocean model with reanalysis fields, errors in the reanalysis data, errors in the ocean model and errors in the forcing formulation will generate a different solution compared to other ocean reanalysis solutions (which also have their own errors). As a first step towards a consistent coupled ocean-atmosphere reanalysis, we compare surface heat fluxes from a state-of-the-art atmospheric reanalysis, the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), to heat fluxes from a state-of-the-art oceanic reanalysis, the Estimating the Circulation and Climate of the Ocean Version 4, Release 2 (ECCO-v4). Then, we investigate the errors associated with the MITgcm ocean model in its ECCO-v4 ocean reanalysis configuration (1992-2011) when it is forced with MERRA-2 atmospheric reanalysis fields instead of with the ECCO-v4 adjoint optimized ERA-interim state variables. This is done by forcing ECCO-v4 ocean with and without feedbacks from MERRA-2 related to turbulent fluxes of heat and moisture and the outgoing long wave radiation. In addition, we introduce an intermediate forcing method that includes only the feedback from the interactive outgoing long wave radiation. The resulting ocean circulation is compared with ECCO-v4 reanalysis and in-situ observations. We show that, without feedbacks, imbalances in the energy and the hydrological cycles of MERRA-2 (which are directly related to the fact it was created without interactive ocean) result in considerable SST drifts and a large reduction in sea level. The bulk formulae and interactive outgoing long wave radiation, although providing air-sea feedbacks and reducing model-data misfit, strongly relax the ocean to observed SST and may result in unwanted features such as large change in the water budget. These features have implications in on desired forcing recipe to be used. The results strongly and unambiguously argue for next generation data assimilation climate studies to involve fully coupled systems.
Pacific Circulation and the Resilience of its Equatorial Reefs
NASA Astrophysics Data System (ADS)
Cohen, A. L.; Drenkard, E.
2012-12-01
High rates of calcification by tropical reef-building corals are paramount to the maintenance of healthy reefs. Investigations of the impact of ocean acidification in both laboratory and field studies demonstrate unequivocally the dependence of coral and coral reef calcification on the carbonate ion concentration of seawater, a dependence predicted by fundamental laws of physical chemistry. Nevertheless, results from a new generation of experiments that exploit the biology of coral calcification, suggest that effects of ocean acidification can - in some instances - be mitigated with simultaneous manipulation of multiple factors. These laboratory results imply that coral reefs in regions projected to experience changes in, for example, nutrient delivery, light and flow, in addition to pH and carbonate ion concentration, may be more resilient (or vulnerable) to the effects of ocean acidification alone. If demonstrated to be true, these observations have profound implications for the conservation and management of coral reefs in the 21st century. We quantified spatial and temporal variability in rates of calcification of a dominant Indo-Pacific reef building coral across sites where changes in ocean circulation patterns drive variability in multiple physical, chemical and biological parameters. Such changes are occurring against a background of variability and trends in carbonate system chemistry. Our field data provide support for hypotheses based on laboratory observations, and show that impacts of ocean acidification on coral calcification can be partially and in some cases, fully, offset by simultaneous changes in multiple factors. Our results imply that projected changes in oceanic and atmospheric circulation patterns, driven by global warming, must be considered when predicting coral reef resilience, or vulnerability, to 21st century ocean acidification.
Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.
2011-01-01
The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.
Inter comparison of Tropical Indian Ocean features in different ocean reanalysis products
NASA Astrophysics Data System (ADS)
Karmakar, Ananya; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.
2017-09-01
This study makes an inter comparison of ocean state of the Tropical Indian Ocean (TIO) in different ocean reanalyses such as global ocean data assimilation system (GODAS), ensemble coupled data assimilation (ECDA), ocean reanalysis system 4 (ORAS4) and simple ocean data assimilation (SODA) with reference to the in-situ buoy observations, satellite observed sea surface temperature (SST), EN4 analysis and ocean surface current analysis real time (OSCAR). Analysis of mean state of SST and sea surface salinity (SSS) reveals that ORAS4 is better comparable with satellite observations as well as EN4 analysis, and is followed by SODA, ECDA and GODAS. The surface circulation in ORAS4 is closer to OSCAR compared to the other reanalyses. However mixed layer depth (MLD) is better simulated by SODA, followed by ECDA, ORAS4 and GODAS. Seasonal evolution of error indicates that the highest deviation in SST and MLD over the TIO exists during spring and summer in GODAS. Statistical analysis with concurrent data of EN4 for the period of 1980-2010 supports that the difference and standard deviation (variability strength) ratio for SSS and MLD is mostly greater than one. In general the strength of variability is overestimated by all the reanalyses. Further comparison with in-situ buoy observations supports that MLD errors over the equatorial Indian Ocean (EIO) and the Bay of Bengal are higher than with EN4 analysis. Overall ORAS4 displays higher correlation and lower error among all reanalyses with respect to both EN4 analysis and buoy observations. Major issues in the reanalyses are the underestimation of upper ocean stability in the TIO, underestimation of surface current in the EIO, overestimation of vertical shear of current and improper variability in different oceanic variables. To improve the skill of reanalyses over the TIO, salinity vertical structure and upper ocean circulation need to be better represented in reanalyses.
Variability of the Somali Current and eddies during the southwest monsoon regimes
NASA Astrophysics Data System (ADS)
Trott, Corinne B.; Subrahmanyam, Bulusu; Murty, V. S. N.
2017-09-01
The meso-scale eddies and currents in the Arabian Sea are analyzed using different satellite observations, Simple Oceanic Data Assimilation (SODA) reanalysis, and Ocean Reanalysis System 4 (ORAS4) from 1993 to 2016 to investigate the impacts of Southwest (SW) Monsoon strength on Somali Current (SC) mesoscale circulations such as the Great Whirl (GW), the Socotra Eddy (SE), the Southern Gyre (SG), and smaller eddies. Increased Ekman pumping during stronger SW monsoons strengthens coastal upwelling along the Somali coast. The Arabian Sea basin-wide anticyclonic circulation and presence of the GW form mesoscale circulation patterns favourable to advection of upwelled waters eastward into the central Arabian Sea. In September, after the SW monsoon winds reach peak strength in July and August, a higher number of discrete anticyclonic eddies with higher (> 20 cm) sea surface height anomalies develop in strong and normal intensity SW monsoon seasons than weaker SW monsoon seasons.
On the stability of the Atlantic meridional overturning circulation.
Hofmann, Matthias; Rahmstorf, Stefan
2009-12-08
One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC.
Thermohaline circulation crisis and impacts during the mid-Pleistocene transition.
Pena, Leopoldo D; Goldstein, Steven L
2014-07-18
The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41-thousand-year to 100-thousand-year cycles and developed higher-amplitude climate variability without substantial changes in the Milankovitch forcing. Here, we document, by using Nd isotopes, a major disruption of the ocean thermohaline circulation (THC) system during the MPT between marine isotope stages (MISs) 25 and 21 at ~950 to 860 thousand years ago, which effectively marks the first 100-thousand-year cycle, including an exceptional weakening through a critical interglacial (MIS 23) at ~900 thousand years ago. Its recovery into the post-MPT 100-thousand-year world is characterized by continued weak glacial THC. The MPT ocean circulation crisis facilitated the coeval drawdown of atmospheric CO2 and high-latitude ice sheet growth, generating the conditions that stabilized 100-thousand-year cycles. Copyright © 2014, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Lee, Borom; Nam, Seung-Il; Huh, Youngsook; Lee, Mi Jung
2015-04-01
Changes in oceanographic circulation in the Artic have a large influence on the global oceanic and climate system of the Earth through the geological times. In particular, freshwater input from the North Pacific to the western Arctic Ocean affects the Atlantic meridional overturning circulation (AMOC) after the opening of the Bering Strait. Seawater-derived neodymium isotope in marine sediments has been used as a proxy to trace the origin of water masses and oceanic circulation system. The global average residence time of Nd is shorter than the global ocean mixing time and dissolved Nd in seawater behaves quasi-conservatively. In the modern Arctic Ocean, the Nd isotope distribution is dominated by Atlantic source water, although the circum-Arctic riverine discharge and Pacific-derived waters also have noticeable impacts. In this study, we investigated seawater-derived neodymium isotope records from a sediment core recovered from the Chukchi Sea to understand the changes in hydrograhic circulation of the western Arctic during the Holocene. A gravity core, ARA02B 01A, was collected on the northern shelf of the Chukchi Sea (73°37.8939'N, 166°30.9838'W, ca. 111 m in water depth) during the RV Araon expedition in 2011. To obtain seawater-derived Nd records, we extracted Fe-Mn oxide coatings as an authigenic fraction from bulk sediments by leaching with acid-reducing solution after removing carbonate by leaching with acetic acid. Our preliminary results might show a general pattern of increasing radiogenic ɛNd values through Holocene intervals. Therefore, it implies that ɛNd results may be related with variations in the intensity of Bering Strait inflow during the last ~9.31 ka BP. The radiogenic trend was strongly pronounced from the late Holocene (ɛNd -7.23; ca. 8.84 ka BP) to the middle Holocene (ɛNd -4.78; ca. 6.18 ka BP) and vaguely during the middle Holocene. After 4.13 ka BP, ɛNd values were increased again from -4.86 to -4.03 at 0.57 ka BP. But 87Sr/86Sr values vary from 0.70929 to 0.70991 throughout the whole sediment core and they might be higher than the Sr isotopic value of modern seawater (0.70918). This implies that the leachates may not be preserved past seawater signal. Thus, our preliminary results indicate that further studies for assessment of leaching methods and for other reliable seawater-derived records (including authigenic carbonates, i.e., foraminiferal and bivalve shells which are found in sediment cores) are necessary.
NASA Astrophysics Data System (ADS)
Hwang, Jin Hwan; Pham, Van Sy
2017-04-01
The Big-Brother Experiment (BBE) evaluates the effect of domain size on the ocean regional circulation model (ORCMs) in the downscaling and nesting from the ocean global circulation (OGCMs). The BBE first establishes a mimic ocean global circulation models (M-OGCMs) data and employs a ORCM to simulate for a highly resolved large domain. This M-OGCM's results were then filtered to remove short scales then used for boundary and initial conditions of the nested ORCMs, which have the same resolution to the M-OGCMs. The various sizes of domain were embedded in the M-OGCMs and the cases were simulated to see the effect of domain size with the extra buffering distance to the results of the ORCMs. The diagnostic variables including temperature, salinity and vorticity of the nested domain are then compared with those of the M-OGCMs before filtering. Differences between them can address the errors associating with the sizes of the domain, which are not attributed unambiguously to models errors or observational errors. The results showed that domain size significantly impacts on the results of ORCMs. As the domain size of the ORCM becomes lager, the distance of the extra space between the area of interest and the updated LBCs increases. So, the results of ORCMs perform more highly correlated with the M-OGCM. But, there are a certain optimal sizes of the OGCMs, which could be larger than nested ORCMs' domain size from 2 to 10 times, depending on the computational costs. Key words: domain size, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.
Meridional Transect of Atlantic Overturning Circulation across the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Pena, L. D.; Seguí, M. J.; Kim, J.; Yehudai, M.; Farmer, J. R.; Ford, H. L.; Haynes, L.; Hoenisch, B.; Raymo, M. E.; Ferretti, P.; Bickert, T.
2016-12-01
The Mid-Pleistocene Transition (MPT) marked a major transition in glacial-interglacial periodicity from dominantly 41 kyr to 100 kyr cycles between 1.3-0.7 Ma. From Nd isotope records in the South Atlantic, Pena and Goldstein (Science, 2014) concluded that the Atlantic overturning circulation circulation experienced major weakening between 950-850 ka (MIS 25-21), which generated the climatic conditions that intensified cold periods, prolonged their duration, and stabilized 100 kyr cycles. Such weakening would provide a mechanism for decreased atmospheric CO2 (Hönisch et al., Science, 2009) by allowing for additional atmospheric CO2 to be stored in the deep ocean. We present a summary of work in-progress to generate two dimensional representations of the Atlantic meridional overturning circulation, from the north Atlantic to the Southern Ocean, at different time slices over the past 2Ma, including the MPT, based on Nd isotope ratios measured on Fe-Mn-oxide encrusted foraminifera and fish debris. Thus far we are analyzing samples from DSDP/ODP Sites 607, 1063 from the North Atlantic, 926 from the Equatorial Atlantic, 1264, 1267, 1088, 1090 in the South Atlantic, and 1094 from the Southern Ocean. Our data generated thus far support important changes in the overturning circulation during the MPT, and greater glacial-interglacial variability in the 100 kyr world compared with the 40 kyr world. In addition, the data indicate a North Atlantic-sourced origin for the ocean circulation disruption during the MPT. Comparison with ɛNd records in different ocean basins and with benthic foraminiferal δ13C and B/Ca ratios will also allow us to understand the links between deep ocean circulation changes and the global carbon cycle.
NASA Astrophysics Data System (ADS)
Jacobs, Zoe; Popova, Katya; Hirschi, Joel; Coward, Andrew; Yool, Andrew; van Gennip, Simon; Anifowose, Babtunde; Harrington-Missin, Liam
2017-04-01
Although oil blowouts from deep-water drilling happen very rarely, they can cause catastrophic damage to the environment. Despite such potentially high impacts, relatively little research effort has gone into understanding subsurface oil plumes in the deep ocean. In this study, we demonstrate the significance of this problem and offer potential solutions using a novel approach based on a leading-edge, high-resolution global ocean circulation model. We present examples demonstrating: (a) the importance of ocean circulation in the propagation of oil spills; and (b) likely circulation footprints for oil spills at four key locations in the Atlantic Ocean that exist in different circulation regimes - the shelves of Brazil, the Gulf of Guinea, the Gulf of Mexico and the Faroe-Shetland Channel. In order to quantify the variability at each site on seasonal timescales, interannual timescales and at different depths, we utilize the Modified Hausdorff Distance (MHD), which is a shape-distance metric that measures the similarity between two shapes. The scale of the footprints across the four focus locations varies considerably and is determined by the main circulation features in their vicinity. For example, the hypothetical oil plume can be affected by variations in the speed and location of a particular current (e.g. Brazil Current at the Brazilian shelf site) or be influenced by different currents entirely depending on the release depth, month and year (e.g. Angola Current or Southern Equatorial Current at the Gulf of Guinea site). Overall, our results demonstrate the need to use state of the art global, or basin-scale, ocean circulation models when assessing the environmental impacts of proposed oil drilling activities.
NASA Technical Reports Server (NTRS)
Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.
1995-01-01
This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.
NASA Technical Reports Server (NTRS)
Koblinsky, C. J.
1984-01-01
Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.
The Abrupt Onset of the Modern South Asian Monsoon Winds (iodp Exp. 359)
NASA Astrophysics Data System (ADS)
Betzler, C.; Eberli, G. P.; Kroon, D.; Wright, J. D.; Swart, P. K.; Nath, B. N.; Reijmer, J.; Alvarez Zarikian, C. A.
2016-12-01
The South Asian Monson (SAM) is one of the most extreme features in Earth's climate system, yet its initiation and variations are not well established. The SAM is a seasonal reversal of winds accompanied by changes in precipitation with heavy rain during the summer monsoon. It is one of the most intense annually recurring climatic elements and of immense importance in supplying moisture to the Indian subcontinent thus affecting human population and vegetation, as well as marine biota in the surrounding seas. The seasonal precipitation change is one of the SAM elements most noticed on land, whereas the reversal of the wind regime is the dominating driver of circulation in the central and northern Indian Ocean realm. New data acquired during International Ocean Discovery Program Expedition 359 from the Inner Sea of the Maldives provide a previously unread archive that reveals an abrupt onset of the SAM-linked ocean circulation pattern and its relationship to the long term Neogene climate cooling. In particular it registers ocean current fluctuations and changes of intermediate water mass properties for the last 25 myrs that are directly related to the monsoon. Dating the deposits of SAM wind-driven currents yields an age of 12.9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of sedimentary organic matter. A weaker `proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.
NASA Astrophysics Data System (ADS)
Moshonkin, Sergey; Bagno, Alexey; Gritsun, Andrey; Gusev, Anatoly
2017-04-01
Numerical experiments were performed with the global atmosphere-ocean model INMCM5 (for version of the international project CMIP6, resolution for atmosphere is 2°x1.5°, 21 level) and with the three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM). Spatial resolution of the INMCM5 oceanic component is 0.5°x0.25°. Both models have 40 s-levels in ocean. Previously, the simulations were carried out for INMCM5 to generate climatic system stable state. Then model was run for 180 years. In the experiment with INMOM, CORE-II data for 1948-2009 were used. As the goal for comparing results of two these numerical models, we selected evolution of the density and velocity anomalies in the 0-300m active ocean layer near Fram Strait in the Greenland Sea, where oceanic cyclonic circulation influences Atlantic-Arctic water exchange. Anomalies were count without climatic seasonal cycle for time scales smaller than 30 years. We use Singular Value Decomposition analysis (SVD) for density-velocity anomalies with time lag from minus one to six months. Both models perform identical stable physical result. They reveal that changes of heat and salt transports by West Spitsbergen and East Greenland currents, caused by atmospheric forcing, produce the baroclinic modes of velocity anomalies in 0-300m layer, thereby stabilizing ocean response on the atmospheric forcing, which stimulates keeping water exchange between the North Atlantic and Arctic Ocean at the certain climatological level. The first SVD-mode of density-velocity anomalies is responsible for the cyclonic circulation variability. The second and third SVD-modes stabilize existing ocean circulation by the anticyclonic vorticity generation. The second and third SVD-modes give 35% of the input to the total dispersion of density anomalies and 16-18% of the input to the total dispersion of velocity anomalies for numerical results as in INMCM5 so in INMOM models. Input to the total dispersion of velocity anomalies for the first SVD-mode is equal to 50% for INMCM5 and only 19% for INMOM. The research was done in the INM RAS. The model INMOM was supported by Russian Foundation for Basic Research (grant №16-05-00534), and the model INMCM was supported by the Russian Scientific Foundation (grant №14-27-00126).
NASA Astrophysics Data System (ADS)
Li, Xiaolan; Yu, Yongqiang; Liu, Hailong; Lin, Pengfei
2017-06-01
The horizontal coordinate systems commonly used in most global ocean models are the spherical latitude-longitude grid and displaced poles, such as a tripolar grid. The effect of the horizontal coordinate system on Atlantic meridional overturning circulation (AMOC) is evaluated by using an OGCM (ocean general circulation model). Two experiments are conducted with the model—one using a latitude-longitude grid (referred to as Lat_1) and the other using a tripolar grid (referred to as Tri). The results show that Tri simulates a stronger North Atlantic deep water (NADW) than Lat_1, as more saline water masses enter the Greenland-Iceland-Norwegian (GIN) seas in Tri. The stronger NADW can be attributed to two factors. One is the removal of the zonal filter in Tri, which leads to an increasing of the zonal gradient of temperature and salinity, thus strengthening the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because realistic topography is applied in the tripolar grid while the latitude-longitude grid employs an artificial island around the North Pole. In order to evaluate the effect of the filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, an enhanced filter can also augment NADW formation, since more saline water is suppressed in the GIN seas, but accumulated in the Labrador Sea, especially in experiment Lat_2_S, which is the experiment with an enhanced filter on salinity.
Modeling tides and their influence on the circulation in Prince William Sound, Alaska
NASA Astrophysics Data System (ADS)
Wang, Xiaochun; Chao, Yi; Zhang, Hongchun; Farrara, John; Li, Zhijin; Jin, Xin; Park, Kyungeen; Colas, Francois; McWilliams, James C.; Paternostro, Chris; Shum, C. K.; Yi, Yuchan; Schoch, Carl; Olsson, Peter
2013-07-01
In the process of developing a real-time data-assimilating coastal ocean forecasting system for Prince William Sound, Alaska, tidal signal was added to a three-domain nested model for the region. The model, which is configured from the Regional Ocean Modeling System (ROMS), has 40 levels in the vertical direction and horizontal resolutions of 10.6km, 3.6km and 1.2km for its three nested domains, respectively. In the present research, the ROMS tidal solution was validated using data from coastal tide gauges, satellite altimeters, high-frequency coastal radars, and Acoustic Doppler Current Profiler (ADCP) current surveys. The error of barotropic tides, as measured by the total root mean square discrepancy of eight major tidal constituents is 5.3cm, or 5.6% of the tidal sea surface height variability in the open ocean. Along the coastal region, the total discrepancy is 9.6cm, or 8.2% of the tidal sea surface height variability. Model tidal currents agree reasonably well with the observations. The influence of tides on the circulation was also investigated using numerical experiments. Besides tides, other types of forcing fields (heat flux, wind stress, evaporation minus precipitation, and freshwater discharge) were also included in the model. Our results indicate that tides play a significant role in shaping the mean circulation of the region. For the summer months, the tidal residual circulation tends to generate a cyclonic gyre in the central Sound. The net transport into the Sound through Hinchinbrook Entrance is reduced. Tides also increase the mixed layer depth in the Sound, especially during the winter months.
Topex/Poseidon satellite - Enabling a joint U.S.-French mission for global ocean study
NASA Technical Reports Server (NTRS)
Hall, Ralph L.
1990-01-01
A joint U.S./French mission, which represents a merging of the prior NASA Topex and CNES Poseidon progams, is described. The Topex/Poseidon satellite will contribute to two of the World Climate Research Program's phases: the World Ocean Circulation Experiment and the Tropical Ocean Global Atmosphere experiment. The satellite's instruments will measure the ocean currents and their variability on the global basis via satellite altimetry and precision orbit determinations. The paper describes the satellite configuration and characteristics and the mission instruments and system elements. The Topex/Poseidon's design diagrams and block diagrams are included.
NASA Astrophysics Data System (ADS)
Hong, Yu; Moore, John C.; Jevrejeva, Svetlana; Ji, Duoying; Phipps, Steven J.; Lenton, Andrew; Tilmes, Simone; Watanabe, Shingo; Zhao, Liyun
2017-03-01
We analyze the multi-earth system model responses of ocean temperatures and the Atlantic Meridional Overturning Circulation (AMOC) under an idealized solar radiation management scenario (G1) from the Geoengineering Model Intercomparison Project. All models simulate warming of the northern North Atlantic relative to no geoengineering, despite geoengineering substantially offsetting the increases in mean global ocean temperatures. Increases in the temperature of the North Atlantic Ocean at the surface (˜0.25 K) and at a depth of 500 m (˜0.10 K) are mainly due to a 10 Wm-2 reduction of total heat flux from ocean to atmosphere. Although the AMOC is slightly reduced under the solar dimming scenario, G1, relative to piControl, it is about 37% stronger than under abrupt4 × CO2 . The reduction of the AMOC under G1 is mainly a response to the heat flux change at the northern North Atlantic rather than to changes in the water flux and the wind stress. The AMOC transfers heat from tropics to high latitudes, helping to warm the high latitudes, and its strength is maintained under solar dimming rather than weakened by greenhouse gas forcing acting alone. Hence the relative reduction in high latitude ocean temperatures provided by solar radiation geoengineering, would tend to be counteracted by the correspondingly active AMOC circulation which furthermore transports warm surface waters towards the Greenland ice sheet, warming Arctic sea ice and permafrost.
Alaska North Shore Ocean Acoustics Study
2015-09-30
effects of changing ice cover, wind patterns and circulation/upwelling on underwater sound propagation and ambient noise in the areas of continental ...noise field along the edge of Arctic continental shelf. Underwater sound propagation in Arctic oceans with ice cover is influenced by the elastic...von der Heydt has been implmenting the following system upgrades: 1. Replacing the existing Seascan timebase ( drift 2 to 3ms/day) with a
Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea
NASA Astrophysics Data System (ADS)
Bruneau, Nicolas; Zika, Jan; Toumi, Ralf
2017-10-01
We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.
Iceberg discharges of the last glacial period driven by oceanic circulation changes
Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa; Ritz, Catherine
2013-01-01
Proxy data reveal the existence of episodes of increased deposition of ice-rafted detritus in the North Atlantic Ocean during the last glacial period interpreted as massive iceberg discharges from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence of the crucial role that the ocean plays both for past and future behavior of the cryosphere suggests a climatic control of these ice surges. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet–ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg discharge that closely agrees with ice-rafted debris records over the past 80 ka, indicating that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age. PMID:24062437
Nathalie F. Goodkin,; Bo-Shian Wang,; Chen-Feng You,; Konrad Hughen,; Prouty, Nancy G.; Bates, Nicholas; Scott Doney,
2015-01-01
The oceans absorb anthropogenic CO2 from the atmosphere, lowering surface ocean pH, a concern for calcifying marine organisms. The impact of ocean acidification is challenging to predict as each species appears to respond differently and because our knowledge of natural changes to ocean pH is limited in both time and space. Here we reconstruct 222 years of biennial seawater pH variability in the Sargasso Sea from a brain coral, Diploria labyrinthiformis. Using hydrographic data from the Bermuda Atlantic Time-series Study and the coral-derived pH record, we are able to differentiate pH changes due to surface temperature versus those from ocean circulation and biogeochemical changes. We find that ocean pH does not simply reflect atmospheric CO2 trends but rather that circulation/biogeochemical changes account for >90% of pH variability in the Sargasso Sea and more variability in the last century than would be predicted from anthropogenic uptake of CO2 alone.
Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea
NASA Astrophysics Data System (ADS)
Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.
2018-06-01
The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.
NASA Astrophysics Data System (ADS)
Le Traon, P. Y.
2012-04-01
The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. Topex/Poseidon revolutionized our vision and understanding of the ocean. It provided new views of the large scale seasonal and interannual sea level and ocean circulation variations. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. The ERS-1/2 orbit was well adapted for mesoscale circulation sampling but the orbit determination and altimeter performance were much less precise than for T/P. We demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. This was an essential first step for the merging of T/P and ERS-1/2. The second step required the development of a global optimal interpolation method. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 years. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution was essential to the development of global ocean forecasting, a second revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) (1998-2008) was phased with the T/P and ERS-1/2 successors (Jason-1 and ENVISAT) and was instrumental in the development of global operational oceanography capabilities. Europe played a leading role in GODAE. In 1998, the global in-situ observing system was inadequate for the global scope of GODAE. This led to the development of Argo, an initial joint venture between CLIVAR and GODAE. Argo has been an outstanding success. The 3000 Argo profiling floats now provide the most important global in-situ observations to monitor and understand the role of the ocean on the earth climate. This is a third revolution in oceanography. I was lucky enough to be involved with many colleagues and friends in these three revolutions or breakthroughs in oceanography. The presentation will provide some historical background on the development of the SSALTO/DUACS merged altimeter products and an overview of their utility and use for ocean research and operational oceanography. I will thengo throughthe development of operational oceanography and Argo over the past 15 years focussing on European contributions, in particular, in the framework of the GMES Marine Service, EuroGOOSand the Euro-Argo research infrastructure. Perspectives and new challenges for the integrated global ocean observing system will be finally discussed.
How potentially predictable are midlatitude ocean currents?
Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi
2016-01-01
Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954
NASA Technical Reports Server (NTRS)
Ganachaud, Alexandre; Wunsch, Carl; Kim, Myung-Chan; Tapley, Byron
1997-01-01
A global estimate of the absolute oceanic general circulation from a geostrophic inversion of in situ hydrographic data is tested against and then combined with an estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model computed using the JGM-3 gravity-field solution. Within the quantitative uncertainties of both the hydrographic inversion and the geoid estimate, the two estimates derived by very different methods are consistent. When the in situ inversion is combined with the altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully consistent with both hydrography and altimetry, is found. There is, however, little reduction in the uncertainties of the calculated ocean circulation and its mass and heat fluxes because the best available geoid estimate remains noisy relative to the purely oceanographic inferences. The conclusion drawn from this is that the comparatively large errors present in the existing geoid models now limit the ability of satellite altimeter data to improve directly the general ocean circulation models derived from in situ measurements. Because improvements in the geoid could be realized through a dedicated spaceborne gravity recovery mission, the impact of hypothetical much better, future geoid estimates on the circulation uncertainty is also quantified, showing significant hypothetical reductions in the uncertainties of oceanic transport calculations. Full ocean general circulation models could better exploit both existing oceanographic data and future gravity-mission data, but their present use is severely limited by the inability to quantify their error budgets.
NASA Astrophysics Data System (ADS)
Liu, Y.; Weisberg, R. H.
2016-02-01
Interactions of the Loop Current (LC) system with the West Florida Shelf (WFS) are examined using 20+ years (1993 - 2015) of Ssalto/Duacs multi-mission altimetry data in the eastern Gulf of Mexico. Characteristic patterns of LC system sea surface height and surface geostrophic currents are extracted by an unsupervised neural network, Self-Organizing Map, along with their frequencies of occurrence. These current patterns suggest linkages with harmful algae bloom occurrences as recorded by in situ K. brevis cell counts. It is argued that LC system interactions with the shelf slope play an important role in WFS ecology through the upwelling of new inorganic nutrients across the shelf break. This is particularly important when the LC impinges on the southwest corner of the WFS slope, thereby impacting shallow water isobaths and setting the entire shelf circulation into motion. If such conditions persist, then deeper ocean waters with elevated nutrient content may broach the shelf and be transported landward. Resetting the nutrient state of the shelf by the coastal ocean circulation in response to deep-ocean forcing demonstrates the importance of physical oceanography in shelf ecology.
NASA Technical Reports Server (NTRS)
Lindqwister, Ulf J.; Lichten, Stephen M.; Davis, Edgar S.; Theiss, Harold L.
1993-01-01
Topex/Poseidon, a cooperative satellite mission between United States and France, aims to determine global ocean circulation patterns and to study their influence on world climate through precise measurements of sea surface height above the geoid with an on-board altimeter. To achieve the mission science aims, a goal of 13-cm orbit altitude accuracy was set. Topex/Poseidon includes a Global Positioning System (GPS) precise orbit determination (POD) system that has now demonstrated altitude accuracy better than 5 cm. The GPS POD system includes an on-board GPS receiver and a 6-station GPS global tracking network. This paper reviews early GPS results and discusses multi-mission capabilities available from a future enhanced global GPS network, which would provide ground-based geodetic and atmospheric calibrations needed for NASA deep space missions while also supplying tracking data for future low Earth orbiters. Benefits of the enhanced global GPS network include lower operations costs for deep space tracking and many scientific and societal benefits from the low Earth orbiter missions, including improved understanding of ocean circulation, ocean-weather interactions, the El Nino effect, the Earth thermal balance, and weather forecasting.
Interactions Between Ocean Circulation and Topography in Icy Worlds
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2018-05-01
To what extent does topography at the water-rock interface control the general circulation patterns of icy world oceans? And contrariwise, to what extent does liquid flow control the topography at the ice-water interface (or interfaces)?
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.
2014-03-01
The change of the thermohaline circulation (THC) between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present day climate are explored using an Ocean General Circulation Model and stream functions projected in various coordinates. Compared to the present day period, the LGM circulation is reorganised in the Atlantic Ocean, in the Southern Ocean and particularly in the abyssal ocean, mainly due to the different haline stratification. Due to stronger wind stress, the LGM tropical circulation is more vigorous than under modern conditions. Consequently, the maximum tropical transport of heat is slightly larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes and reorganising the freshwater transport. The LGM circulation is represented as a large intrusion of saline Antarctic Bottom Water into the Northern Hemisphere basins. As a result, the North Atlantic Deep Water is shallower in the LGM simulation. The stream functions in latitude-salinity coordinates and thermohaline coordinates point out the different haline regimes between the glacial and interglacial period, as well as a LGM Conveyor Belt circulation largely driven by enhanced salinity contrast between the Atlantic and the Pacific basin. The thermohaline structure in the LGM simulation is the result of an abyssal circulation that lifts and deviates the Conveyor Belt cell from the area of maximum volumetric distribution, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimation of the turnover times reveal a deep circulation almost sluggish during the LGM, and a Conveyor Belt cell more vigorous due to the combination of stronger wind stress and shortened circulation route.
2008-07-06
bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The...small values below the sill depth in all of the simulations. e The upper ocean northward flow of the meridional overturning circulation (MOC) is...plus the northward upper ocean flow (14 Sv) of the meridional overturning circulation (MOC). The mean Gulf Stream IR northwall pathway ±lrr from
Causes of strong ocean heating during glacial periods
NASA Astrophysics Data System (ADS)
Zimov, N.; Zimov, S. A.
2013-12-01
During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface are taken as constant. Energy income to the interior box from the geothermal heat flux is also taken as constant. Even though energy inputs are taken as constants, the model manages to recreate the glacial-interglacial cycles. In the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior box accumulates heat, while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal convection take place, and the ocean quickly (within 14,600 years) releases the heat. The magnitude and duration of such cycles correspond with magnitudes and durations reconstructed for actual glacial-interglacial cycles. From the proposed mechanism it follows that during the glaciations it is likely that the Arctic Ocean was a big reservoir of isotopically light fresh ice. If in a glacial period, the World Ocean were half filled with warm water from the Red Sea and bioproductivity of the ocean declined because of the slow circulation, then carbon storage within the ocean reservoir would decline by ~2000 Pg (10^15 g) of carbon.
Exploring the southern ocean response to climate change
NASA Technical Reports Server (NTRS)
Martinson, Douglas G.; Rind, David; Parkinson, Claire
1993-01-01
The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.
Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Astrophysics Data System (ADS)
Trossman, D.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-12-01
We argue that a substantial fraction of the uncertainty in the cloud radiative feedback during transient climate change may be due to uncertainty in the ocean circulation perturbation. A suite of climate model simulations in which the ocean circulation, the cloud radiative feedback, or a combination of both are held fixed while CO2 doubles, shows that changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback. Specifically, a slowdown in the Atlantic Meridional Overturning Circulation (AMOC) helps to maintain low cloud cover in the Northern Hemisphere extratropics. We propose that the AMOC decline increases the meridional SST gradient, strengthening the storm track, its attendant clouds and the amount of shortwave radiation they reflect back to space. If the results of our model were to scale proportionately in the CMIP5 models, whose AMOC decline ranges from 15 to 60% under RCP8.5, then as much as 70% of the intermodel spread in the cloud radiative feedback and 35% of the spread in the transient climate response could possibly stem from the model representations of AMOC decline.
Depth of origin of ocean-circulation-induced magnetic signals
NASA Astrophysics Data System (ADS)
Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik
2018-01-01
As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.
NASA Astrophysics Data System (ADS)
Cares, Z.; Farr, C. L.; LeVay, L.; Tangunan, D.; Brentegani, L.
2017-12-01
International Ocean Discovery Program (IODP) Expedition 361 cored six sites along the greater Agulhas Current System to track its intensity through time and to better understand its role in global oceanic circulation and climate. One of the main scientific objectives of this expedition was to determine the dynamics of the Indian-Atlantic Ocean Gateway circulation during Pliocene-Pleistocene climate changes in association with changing wind fields and migrating ocean fronts. The Indian-Atlantic Ocean Gateway contains a pronounced oceanic frontal system, the position of which has the potential to influence global climate on millennial scales. Owing to the physical differences between the frontal zones, this region has complex biogeochemistry, changes in phytoplankton distribution, and variations in primary productivity. Site U1475 was cored on the Agulhas Plateau in the Southwestern Indian Ocean and recovered a complete sequence of calcareous ooze spanning the last 7 Ma. Previous studies at this locality have shown latitudinal migrations of the frontal zones over the past 350 kyr that resulted in prominent millennial shifts in primary production, biological pump efficiency, and microfossil assemblages that coincide with Antarctic climate variability. Here we present initial results comprised of calcareous nannoplankton assemblages in order to test if similar latitudinal frontal migrations occurred during the Pliocene-Pleistocene transition (PPT; 2.7 Ma). The calcareous nannoplankton assemblage shows an abundance increase of taxa associated with cooler water and higher primary production across the PPT interval. In addition to a change in species abudance, the Shannon diversity index drops notably across the transition, which is typical of nannoplankton communities in more productive regions. These data suggest that a long-term change in sea surface temperature and nutrient availability took place across the PPT, potentially linked to the northward migration of frontal zones.
The impacts of the atmospheric annular mode on the AMOC and its feedback in an idealized experiment
NASA Astrophysics Data System (ADS)
Santis, Wlademir; Aimola, Luis; Campos, Edmo J. D.; Castellanos, Paola
2018-03-01
The interdecadal variability of the atmospheric and oceanic meridional overturning circulation is studied, using a coupled model with two narrow meridional barriers representing the land and a flat bottomed Aquaplanet. Empirical orthogonal function (EOF) analysis are used in the atmospheric and oceanic meridional overturning cells, revealing the atmospheric interdecadal variability is dominated by an annular mode, in both hemispheres, which introduces in the ocean a set of patterns of variability. The most energetic EOFs in the ocean are the barotropic responses from the annular mode. The interaction between the heat anomalies, due to the barotropic response, and the thermohaline circulation of each basin leads to a resonance mechanism that feeds back to the atmospheric forcing, modulating the annular mode spectrum. Besides the barotropic response, the annular mode introduces anomalies of salinity and temperature in the subtropical Atlantic that affects its upper buoyancy. These anomalies are incorporated within the ocean circulation and advected until the areas of deep sinking in the northern Atlantic, impacting on its overturning circulation as well.
NASA Astrophysics Data System (ADS)
Wang, Huiqun; Yuan, Yaochu; Guan, Weibing; Lou, Ruyun; Wang, Kangshan
2004-07-01
On the basis of the recently obtained hydrographic data in the South China Sea, the improved Princeton Ocean Model with a generalized topography-following coordinate system is used to study the circulation in the region during summer 2000. Several sensitivity experiments are carried out to achieve reasonable model parameters for the South China Sea (SCS). It is shown from the resting stratification experiments that the generalized topography-following coordinate scheme is better than the standard sigma grid scheme for reducing the pressure gradient errors. The combination of sea surface height anomaly derived from TOPEX/Poseidon and numerical results with both diagnostic and semidiagnostic simulations provides a consistent circulation pattern for the SCS in August, and the main circulation features can be summarized as follows: (1) There is a notable anticyclonic warm eddy southeast of Vietnam with a horizontal scale of ˜300 km, and there is a cyclonic cold eddy. The simultaneous existence of these cold and warm eddies is one of the important circulation characteristics in the SCS during summer 2000. (2) A secondary cold eddy is found east of Vietnam. (3) The northwestern part of the SCS is dominated by an anticyclonic circulation system. (4) There is also a secondary warm eddy southwest off the Luzon Island. (5) A cyclonic eddy is found west off the Borneo Island. (6) A western intensification phenomenon obviously occurs in the SCS. The dynamical mechanisms of the above-mentioned circulation pattern in the SCS are the interaction between the wind stress and bottom topography and the joint effect of baroclinicity and relief.
NASA Astrophysics Data System (ADS)
Scholz, Patrick; Lohmann, Gerrit
2017-04-01
The sub-Arctic oceans like the Sea of Okhotsk, the Bering Sea, the Labrador Sea or the Greenland- Irminger-Norwegian (GIN) Sea react particularly sensitive to global climate changes and have the potential to reversely regulate climate change by CO2 uptake in the other areas of the world. So far, the natural processes in the Arctic and Subarctic system, especially over the Pacific realm, remain poorly understood in terms of numerical modeling. As such, in this study we focus on the North Pacific and its adjacent marginal seas (e.g. the Sea of Okhotsk, the Bering Sea and the Sea of Japan), which have nowadays a significant role in the climate system of the Northwest Pacific by influencing the atmospheric and oceanic circulation as well as the hydrology of the Pacific water masses. The Sea of Okhotsk, in particular, is characterized by a highly dynamical sea-ice coverage, where, in autumn and winter, due to massive sea ice formation and brine rejection, the Sea of Okhotsk Intermediate Water (SOIW) is formed which contributes to the mid-depth (500-1000m) water layer of the North Pacific known as newly formed North Pacific Intermediate Water (NPIW). By employing a Finite-Element Sea-Ice Ocean Model (FESOM), in a global configuration, but with high resolution over the marginal seas of the Northwest Pacific Ocean ( 7 km), we tested different meshes and forcing improvements to correct the general ocean circulation in the North Pacific realm towards a more realistic pattern. By using different forcing data (e.g. CORE2, ERA-40/interim, CCMP-correction), adapting the mesh resolutions in the tropical and subtropical North Pacific and changing the bathymetry over important inflow straits (e.g. Amukta Passage, Kruzenstern Strait), we show that the better results are obtained (when compared with observational data) via a combination of CCMP corrected COREv2 forcing with increased resolution in the pathway of the Kuroshio Extension Current and Northern Equatorial Current.
NASA Technical Reports Server (NTRS)
Lee, T.; Fukumori, I.; Fu, L. L.
2002-01-01
In this study, we address issues using sea level measurements obtained by the TOPEX/Poseidon satellite altimter and circulation estimated by the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO).
Observations and Modeling of the Transient General Circulation of the North Pacific Basin
NASA Technical Reports Server (NTRS)
McWilliams, James C.
2000-01-01
Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.
Approximate Stokes Drift Profiles and their use in Ocean Modelling
NASA Astrophysics Data System (ADS)
Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian
2016-04-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).
Parameterized and resolved Southern Ocean eddy compensation
NASA Astrophysics Data System (ADS)
Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman
2018-04-01
The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.
Basin-Wide Oceanographic Array Bridges the South Atlantic
NASA Astrophysics Data System (ADS)
Ansorge, I. J.; Baringer, M. O.; Campos, E. J. D.; Dong, S.; Fine, R. A.; Garzoli, S. L.; Goni, G.; Meinen, C. S.; Perez, R. C.; Piola, A. R.; Roberts, M. J.; Speich, S.; Sprintall, J.; Terre, T.; Van den Berg, M. A.
2014-02-01
The meridional overturning circulation (MOC) is a global system of surface, intermediate, and deep ocean currents. The MOC connects the surface layer of the ocean and the atmosphere with the huge reservoir of the deep sea and is the primary mechanism for transporting heat, freshwater, and carbon between ocean basins. Climate models show that past changes in the strength of the MOC were linked to historical climate variations. Further research suggests that the MOC will continue to modulate climate change scenarios on time scales ranging from decades to centuries [Latif et al., 2006].
NASA Astrophysics Data System (ADS)
German, C. R.; von Damm, K. L.
2003-12-01
What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been found at more than 40 locations throughout the Pacific, North Atlantic, and Indian Oceans (e.g., Van Dover et al., 2002) with further evidence - from characteristic chemical anomalies in the ocean water column - of its occurrence in even the most remote and slowly spreading ocean basins ( Figure 3), from the polar seas of the Southern Ocean (German et al., 2000; Klinkhammer et al., 2001) to the extremes of the ice-covered Arctic ( Edmonds et al., 2003). (61K)Figure 3. Schematic map of the global ridge crest showing the major ridge sections along which active hydrothermal vents have already been found (red circles) or are known to exist from the detection of characteristic chemical signals in the overlying water column (orange circles). Full details of all known hydrothermally active sites and plume signals are maintained at the InterRidge web-site: http://triton.ori.u-tokyo.ac.jp/~intridge/wg-gdha.htm The most spectacular manifestation of seafloor hydrothermal circulation is, without doubt, the high-temperature (>400 °C) "black smokers" that expel fluids from the seafloor along all parts of the global ocean ridge crest. In addition to being visually compelling, vent fluids also exhibit important enrichments and depletions when compared to ambient seawater. Many of the dissolved chemicals released from the Earth's interior during venting precipitate upon mixing with the cold, overlying seawater, generating thick columns of black metal-sulfide and oxide mineral-rich smoke - hence the colloquial name for these vents: "black smokers" (Figure 4). In spite of their common appearance, high-temperature hydrothermal vent fluids actually exhibit a wide range of temperatures and chemical compositions, which are determined by subsurface reaction conditions. Despite their spectacular appearance, however, high-temperature vents may only represent a small fraction - perhaps as little as 10% - of the total hydrothermal heat flux close to ridge axes. A range of studies - most notably along the Juan de Fuca Ridge (JdFR) in the NE Pacific Ocean (Rona and Trivett, 1992; Schultz et al., 1992; Ginster et al., 1994) have suggested that, instead, axial hydrothermal circulation may be dominated by much lower-temperature diffuse flow exiting the seafloor at temperatures comparable to those first observed at the Galapagos vent sites in 1977. The relative importance of high- and low-temperature hydrothermal circulation to overall ocean chemistry remains a topic of active debate. (141K)Figure 4. (a) Photograph of a "black smoker" hydrothermal vent emitting hot (>400 °C) fluid at a depth of 2,834 m into the base of the oceanic water column at the Brandon vent site, southern EPR. The vent is instrumented with a recording temperature probe. (b) Diffuse flow hydrothermal fluids have temperatures that are generally <35 °C and, therefore, may host animal communities. This diffuse flow site at a depth of 2,500 m on the EPR at 9°50' N is populated by Riftia tubeworms, mussels, crabs, and other organisms. While most studies of seafloor hydrothermal systems have focused on the currently active plate boundary (˜0-1 Ma crust), pooled heat-flow data from throughout the world's ocean basins (Figure 1) indicate that convective heat loss from the oceanic lithosphere actually continues in crust from 0-65 Ma in age ( Stein et al., 1995). Indeed, most recent estimates would indicate that hydrothermal circulation through this older (1-65 Ma) section, termed "flank fluxes," may be responsible for some 70% or more of the total hydrothermal heat loss associated with spreading-plate boundaries - either in the form of warm (20-65 °C) altered seawater, or as cooler water, which is only much more subtly chemically altered ( Mottl, 2003).When considering the impact of hydrothermal circulation upon the chemical composition of the oceans and their underlying sediments, however, attention returns - for many elements - to the high-temperature "black smoker" systems. Only here do many species escape from the seafloor in high abundance. When they do, the buoyancy of the high-temperature fluids carries them hundreds of meters up into the overlying water column as they mix and eventually form nonbuoyant plumes containing a wide variety of both dissolved chemicals and freshly precipitated mineral phases. The processes active within these dispersing hydrothermal plumes play a major role in determining the net impact of hydrothermal circulation upon the oceans and marine geochemistry.
Thermal Transgressions and Phanerozoic Extinctions
NASA Astrophysics Data System (ADS)
Worsley, T. R.; Kidder, D. L.
2007-12-01
A number of significant Phanerozoic extinctions are associated with marine transgressions that were probably driven by rapid ocean warming. The conditions associated with what we call thermal transgressions are extremely stressful to life on Earth. The Earth system setting associated with end-Permian extinction exemplifies an end-member case of our model. The conditions favoring extreme warmth and sea-level increases driven by thermal expansion are also conducive to changes in ocean circulation that foster widespread anoxia and sulfidic subsurface ocean waters. Equable climates are characterized by reduced wind shear and weak surface ocean circulation. Late Permian and Early Triassic thermohaline circulation differs considerably from today's world, with minimal polar sinking and intensified mid-latitude sinking that delivers sulfate from shallow evaporative areas to deeper water where it is reduced to sulfide. Reduced nutrient input to oceans from land at many of the extinction intervals results from diminished silicate weathering and weakened delivery of iron via eolian dust. The falloff in iron-bearing dust leads to minimal nitrate production, weakening food webs and rendering faunas and floras more susceptible to extinction when stressed. Factors such as heat, anoxia, ocean acidification, hypercapnia, and hydrogen sulfide poisoning would significantly affect these biotas. Intervals of tectonic quiescence set up preconditions favoring extinctions. Reductions in chemical silicate weathering lead to carbon dioxide buildup, oxygen drawdown, nutrient depletion, wind and ocean current abatement, long-term global warming, and ocean acidification. The effects of extinction triggers such as large igneous provinces, bolide impacts, and episodes of sudden methane release are more potent against the backdrop of our proposed preconditions. Extinctions that have characteristics we call for in the thermal transgressions include the Early Cambrian Sinsk event, as well as extinction events at the Frasnian-Famennian, end-Devonian, end Permian, Early Toarcian, Cenomanian-Turonian, and end Cretaceous. The Late Paleocene and end Triassic extinctions are still under evaluation. The extinctions associated with the glacio-eustatic sea-level change in the Late Ordovician are not consistent with the conditions of our model.
NASA Technical Reports Server (NTRS)
Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn
2014-01-01
Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate change over Antarctic and the Southern Ocean.
Popova, Ekaterina; Yool, Andrew; Byfield, Valborg; Cochrane, Kevern; Coward, Andrew C; Salim, Shyam S; Gasalla, Maria A; Henson, Stephanie A; Hobday, Alistair J; Pecl, Gretta T; Sauer, Warwick H; Roberts, Michael J
2016-06-01
Ocean warming 'hotspots' are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kracher, D.; Manzini, E.; Reick, C. H.; Schultz, M. G.; Stein, O.
2014-12-01
Greenhouse gas induced climate change will modify the physical conditions of the atmosphere. One of the projected changes is an acceleration of the Brewer-Dobson circulation in the stratosphere, as it has been shown in many model studies. This change in the stratospheric circulation consequently bears an effect on the transport and distribution of atmospheric components such as N2O. Since N2O is involved in ozone destruction, a modified distribution of N2O can be of importance for ozone chemistry. N2O is inert in the troposphere and decays only in the stratosphere. Thus, changes in the exchange between troposphere and stratosphere can also affect the stratospheric sink of N2O, and consequently its atmospheric lifetime. N2O is a potent greenhouse gas with a global warming potential of currently approximately 300 CO2-equivalents in a 100-year perspective. A faster decay in atmospheric N2O mixing ratios, i.e. a decreased atmospheric lifetime of N2O, will also reduce its global warming potential. In order to assess the impact of climate change on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O, we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean-atmosphere N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation. Increasing surface temperatures and CO2 concentrations in the stratosphere impact atmospheric circulation differently. Thus, we conduct a series of transient runs with the atmospheric model of MPI-ESM to isolate different factors governing a shift in atmospheric circulation. From those transient simulations we diagnose decreasing tropospheric N2O concentrations, increased transport of N2O from the troposphere to the stratosphere, and increasing stratospheric decay of N2O leading to a reduction in atmospheric lifetime of N2O, in dependency to climate change evolution.
NASA Astrophysics Data System (ADS)
Black, A. E.; Baranow, N.; Amdur, S.; Cook, M. S.
2017-12-01
Ocean circulation and biological productivity play an important role in the climate system through their contribution to global heat transport and air-sea exchange of CO2. Oceanic oxygen concentration provides insight to ocean circulation and biological productivity. Sediment laminations provide a valuable proxy for local oceanic oxygen concentration. Many sediment cores from the Pacific Ocean are laminated from the last deglaciation, but previous studies have not provided an in-depth examination of laminations over many glacial and interglacial (G/IG) cycles. Typically, studies to date that consider bioturbation as a proxy for oxygen concentration have only considered one sediment core from a site, leaving ambiguity as to whether laminations faithfully record local oxygen levels. With sediment cores from three different holes (A, C, D) on the northern Bering Slope from IODP site U1345 (1008m), we investigate how faithfully laminations record oxygen concentration. We assign a bioturbation index from 1 to 4 for 1-cm intervals for the cores from each of the three holes and align the holes based on physical properties data. We find that the bioturbation is relatively consistent (within one bioturbation unit) between holes, suggesting that laminations may be a faithful, if not perfect, proxy for local oxygen concentration. After examining laminations from a complete hole, representing over 500,000 years, there seems to be no consistent pattern of laminations during the past five glacial cycles, suggesting there is no consistent pattern to oxygen concentration during glacial periods in the northern Bering Slope. Thus, hypotheses on ocean circulation and productivity in the northern Bering Sea from the last deglaciation may not apply to previous G/IG cycles.
NASA Astrophysics Data System (ADS)
Liu, Zedong; Wan, Xiuquan
2018-04-01
The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.
NASA Astrophysics Data System (ADS)
Chatterjee, Abhisek; Shankar, D.; McCreary, J. P.; Vinayachandran, P. N.; Mukherjee, A.
2017-04-01
Circulation in the Bay of Bengal (BoB) is driven not only by local winds, but are also strongly forced by the reflection of equatorial Kelvin waves (EKWs) from the eastern boundary of the Indian Ocean. The equatorial influence attains its peak during the monsoon-transition period when strong eastward currents force the strong EKWs along the equator. The Andaman Sea, lying between the Andaman and Nicobar island chains to its west and Indonesia, Thailand, and Myanmar to the south, east, and north, is connected to the equatorial ocean and the BoB by three primary passages, the southern (6°N), middle (10°N), and northern (15°N) channels. We use ocean circulation models, together with satellite altimeter data, to study the pathways by which equatorial signals pass through the Andaman Sea to the BoB and associated dynamical interactions in the process. The mean coastal circulation within the Andaman Sea and around the islands is primarily driven by equatorial forcing, with the local winds forcing a weak sea-level signal. On the other hand, the current forced by local winds is comparable to that forced remotely from the equator. Our results suggest that the Andaman and Nicobar Islands not only influence the circulation within the Andaman Sea, but also significantly alter the circulation in the interior bay and along the east coast of India, implying that they need to be represented accurately in numerical models of the Indian Ocean.
Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics
NASA Astrophysics Data System (ADS)
Wang, Kun; Deser, Clara; Sun, Lantao; Tomas, Robert A.
2018-05-01
The role of ocean dynamics in the transient adjustment of the coupled climate system to an abrupt loss of Arctic sea ice is investigated using experiments with Community Climate System Model version 4 in two configurations: a thermodynamic slab mixed layer ocean and a full-depth ocean that includes both dynamics and thermodynamics. Ocean dynamics produce a distinct sea surface temperature warming maximum in the eastern equatorial Pacific, accompanied by an equatorward intensification of the Intertropical Convergence Zone and Hadley Circulation. These tropical responses are established within 25 years of ice loss and contrast markedly with the quasi-steady antisymmetric coupled response in the slab-ocean configuration. A heat budget analysis reveals the importance of anomalous vertical advection tied to a monotonic temperature increase below 200 m for the equatorial sea surface temperature warming maximum in the fully coupled model. Ocean dynamics also rapidly modify the midlatitude atmospheric response to sea ice loss.
Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2
NASA Astrophysics Data System (ADS)
Skinner, L. C.; Primeau, F.; Freeman, E.; de La Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.
2017-07-01
While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ~689+/-53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO2 change.
Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission
NASA Technical Reports Server (NTRS)
Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.
2011-01-01
Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.
Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilderson, T.P.; Kashgarian, M.; Schrag, D.P.
We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.« less
Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilderson, T P; Kashgarian, M; Schrag, D P
2001-02-23
We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.« less
Antarctica and global change research
NASA Astrophysics Data System (ADS)
Weller, Gunter; Lange, Manfred
1992-03-01
The Antarctic, including the continent and Southern Ocean with the subantarctic islands, is a critical area in the global change studies under the International Geosphere-Biosphere Program (IGBP) and the World Climate Research Program (WCRP). Major scientific problems include the impacts of climate warming, the ozone hole, and sea level changes. Large-scale interactions between the atmosphere, ice, ocean, and biota in the Antarctic affect the entire global system through feedbacks, biogeochemical cycles, deep-ocean circulation, atmospheric transport of heat, moisture, and pollutants, and changes in ice mass balances. Antarctica is also a rich repository of paleoenvironmental information in its ice sheet and its ocean and land sediments.
Near-Surface Monsoonal Circulation of the Vietnam East Sea from Lagrangian Drifters
2015-09-30
Sea from Lagrangian Drifters Luca Centurioni Scripps Institution of Oceanography 9500 Gilman Drive Mail Code 0213 La Jolla, California 92103...Contribute to the study of coastal and open ocean current systems in sparsely sampled regions such us the South China Sea (SCS), using a Lagrangian ...We intend to make new Lagrangian and Eulerian observations to measure the seasonal circulation 1) in the coastal waters of Vietnam and 2) in the SCS
Eddy Resolving Global Ocean Prediction including Tides
2013-09-30
atlantic meridional overturning circulation in the subpolar North Atlantic . Journal of Geophysical Research vol 118, doi:10.1002/jgrc,20065. [published, refereed] ...global ocean circulation model was examined using results from years 2005-2009 of a seven and a half year 1/12.5° global simulation that resolves...internal tides, along with barotropic tides and the eddying general circulation . We examined tidal amplitudes computed using 18 183-day windows that
Low helium flux from the mantle inferred from simulations of oceanic helium isotope data
NASA Astrophysics Data System (ADS)
Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert
2010-09-01
The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.
Thermohaline circulation and its box models simulation
NASA Astrophysics Data System (ADS)
Bazyura, Kateryna; Polonsky, Alexander; Sannikov, Viktor
2014-05-01
Ocean Thermochaline circulation (THC) is the part of large-scale World Ocean circulation and one of the main climate system components. It is generated by global meridional density gradients, which are controlled by surface heat and freshwater fluxes. THC regulates climate variability on different timescales (from decades to thousands years) [Stocker (2000), Clark (2002)]. Study of paleoclimatic evidences of abrupt and dramatic changes in ocean-atmosphere system in the past (such as, Dansgaard-Oeschger and Heinrich events or Younger Dryas, see e.g., [Rahmstorf (2002), Alley & Clark(1999)]) shows that these events are connected with THC regimes. At different times during last 120,000 years, three THC modes have prevailed in the Atlantic. They can be labeled as stadial, interstadial and Heinrich modes or as cold, warm and off mode. THC collapse (or thermohaline catastrophe) can be one of the consequences of global warming (including modern anthropogenic climate changes occurring at the moment). The ideas underlying different box-model studies, possibility of thermochaline catastrophe in present and past are discussed in this presentation. Response of generalized four box model of North Atlantic thermohaline circulation [developing the model of Griffies & Tzippermann (1995)] on periodic, stochastic and linear forcing is studied in details. To estimate climatic parameters of the box model we used monthly salinity and temperature data of ECMWF operational Ocean Reanalysis System 3 (ORA-S3) and data from atmospheric NCEP/NCAR reanalysis on precipitation, and heat fluxes for 1959-2011. Mean values, amplitude of seasonal cycle, amplitudes and periods of typical interdecadal oscillations, white noise level, linear trend coefficients and their significance level were estimated for every hydrophysical parameter. In response to intense freshwater or heat forcing, THC regime can change resulting in thermohaline catastrophe. We analyze relevant thresholds of external forcing in cases of using linear and nonlinear seawater state equation. In the frame of four-box model it is shown that: 1) The occurrence of the thermohaline catastrophe, which is likely happened at Younger Dryas period or developed as Heinrich events in the past, is improbable in modern climate epoch. 2) Choice of nonlinear seawater equitation of state leads to stabilization of warm mode of THC, which corresponds to modern climate state. 3) Typical white noise in heat and freshwater fluxes leads to generation of multidecadal oscillations of volume transport. Time-scale of these oscillations coincides with Atlantic Multidecadal oscillation periodicity. So, it is shown that that recent climate is characterized by quasi-periodical stable multidecadal THC warm regime. Stocker, T. F., 2000: Past and future reorganisations in the climate system. Quat. Sci.Rev, Vol. 19, P.301-319. Clark U., 2002: The role of the thermohaline circulation in abrupt climate change. Nature. Vol. 415, P.863-869. Rahmstorf S., 2002: Ocean circulation and climate during the past 120000 years. Nature. Vol. 419, P.207-214. Alley, R. B. & Clark, P. U., 1999: The deglaciation of the Northern Hemisphere: a global perspective. Annu.Rev. Earth Planet. Sci. Vol. 27, P.149-182. Griffies S.M., Tziperman E., 1995: A linear thermohaline oscillator driven by stochastic atmospheric forcing. Journal of Climate. Vol. 8. P. 2440-2453.
Hydrothermal systems in small ocean planets.
Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael
2007-12-01
We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).
Srokosz, M A; Bryden, H L
2015-06-19
The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport for climate is well acknowledged. Climate models predict that the AMOC will slow down under global warming, with substantial impacts, but measurements of ocean circulation have been inadequate to evaluate these predictions. Observations over the past decade have changed that situation, providing a detailed picture of variations in the AMOC. These observations reveal a surprising degree of AMOC variability in terms of the intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes in strength affecting the ocean heat content, and the decline of the AMOC over the decade, both of the latter two exceeding the variations seen in climate models. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Naughten, Kaitlin A.; Meissner, Katrin J.; Galton-Fenzi, Benjamin K.; England, Matthew H.; Timmermann, Ralph; Hellmer, Hartmut H.; Hattermann, Tore; Debernard, Jens B.
2018-04-01
An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of warm water from offshore.
NASA Astrophysics Data System (ADS)
Hochmuth, K.; Gohl, K.; Leitchenkov, G. L.; Sauermilch, I.; Whittaker, J. M.; De Santis, L.; Olivo, E.; Uenzelmann-Neben, G.; Davy, B. W.
2017-12-01
Although the Southern Ocean plays a fundamental role in the global climate and ocean current system, paleo-ocean circulation models of the Southern Ocean suffer from missing boundary conditions. A more accurate representation of the geometry of the seafloor and their dynamics over long time-scales are key for enabling more precise reconstructions of the development of the paleo-currents, the paleo-environment and the Antarctic ice sheets. The accurate parameterisation of these models controls the meaning and implications of regional and global paleo-climate models. The dynamics of ocean currents in proximity of the continental margins is also controlled by the development of the regional seafloor morphology of the conjugate continental shelves, slopes and rises. The reassessment of all available reflection seismic and borehole data from Antarctica as well as its conjugate margins of Australia, New Zealand, South Africa and South America, allows us to create paleobathymetric grids for various time slices during the Cenozoic. Those grids inform us about sediment distribution and volume as well a local sedimentation rates. The earliest targeted time slice of the Eocene/Oligocene Boundary marks a significant turning point towards an icehouse climate. From latest Eocene to earliest Oligocene the Southern Ocean changes fundamentally from a post greenhouse to an icehouse environment with the establishment of a vast continental ice sheet on the Antarctic continent. With the calculated sediment distribution maps, we can evaluate the dynamics of the sedimentary cover as well as the development of structural obstacles such as oceanic plateaus and ridges. The ultimate aim of this project is - as a community based effort - to create paleobathymetric grids at various time slices such as the Mid-Miocene Climatic Optimum and the Pliocene/Pleistocene, and eventually mimic the time steps used within the modelling community. The observation of sediment distribution and local sediment volumes open the door towards more sophisticated paleo-topograpy studies of the Antarctic continent and more detailed studies of the paleo-circulation. Local paleo - water depths at the oceanic gateways or the position of paleo-shelf edges highly influence the regional circulation patterns supporting more elaborated climate models.
Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing
2018-04-16
The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.
Modeling South Pacific Ice-Ocean Interactions in the Global Climate System
NASA Technical Reports Server (NTRS)
Holland, David M.; Jenkins, Adrian; Jacobs, Stanley S.
2001-01-01
The objective of this project has been to improve the modeling of interactions between large Antarctic ice shelves and adjacent regions of the Southern Ocean. Our larger goal is to gain a better understanding of the extent to which the ocean controls ice shelf attrition, thereby influencing the size and dynamics of the Antarctic Ice Sheet. Melting and freezing under ice shelves also impacts seawater properties, regional upwelling and sinking and the larger-scale ocean circulation. Modifying an isopycnal coordinate general circulation model for use in sub-ice shelf cavities, we found that the abrupt change in water column thickness at an ice shelf front does not form a strong barrier to buoyancy-driven circulation across the front. Outflow along the ice shelf base, driven by melting of the thickest ice, is balanced by deep inflow. Substantial effort was focused on the Filchner-Ronne cavity, where other models have been applied and time-series records are available from instruments suspended beneath the ice. A model comparison indicated that observed changes in the production of High Salinity Shelf Water could have a major impact on circulation within the cavity. This water propagates into the cavity with an asymmetric seasonal signal that has similar phasing and shape in the model and observations, and can be related to winter production at the sea surface. Even remote parts of the sub-ice shelf cavity are impacted by external forcing on sub-annual time scales. This shows that cavity circulations and products, and therefore cavity shape, will respond to interannual variability in sea ice production and longer-term climate change. The isopycnal model gives generally lower net melt rates than have been obtained from other models and oceanographic data, perhaps due to its boundary layer formulation, or the lack of tidal forcing. Work continues on a manuscript describing the Ross cavity results.
An Oceanographic Perspective on the Charney Report
NASA Astrophysics Data System (ADS)
Wunsch, C. I.
2009-12-01
The Charney report (“Carbon Dioxide and Climate: A Scientific Assessment”, NRC 1979) was produced early in the discussions of oncoming climate change. Despite the somewhat crude understanding in 1979, its climate sensitivity estimates have proven remarkably stable over the past three decades. From the perspective of an oceanographic member of the Committee, the deliberations made it clear how primitive knowledge was of the ocean circulation at that time. The inability to say very much about how rapidly the ocean would take up carbon and heat led to the formulation and conduct of the World Ocean Circulation Experiment (WOCE) and associated programs such as the Joint Global Ocean Flux Study (JGOFS). Thus one less-obvious outcome of the Report was the various initiatives that brought a revolution in understanding of the ocean circulation and its climate impacts. That the range of uncertainty has not been reduced from its 1979 estimate is in part a consequence of the discovery of many elements influencing climate sensitivities which were only marginally perceived by the Committee. The climate system is far better understood today, but as the scientific cliché has it, we now know much more about what we don’t know.. One unexpected result of the Report was the insistence---by the G. W. Bush Administration---that since the uncertainty range had not diminished, the US global change research program had been a waste of money. The inference was dealt with in yet another, much longer, NRC report, “Thinking Strategically: The Appropriate Use of Metrics for the Climate Change Science Program.”
NASA Astrophysics Data System (ADS)
Xu, G.; Bemis, K. G.
2014-12-01
Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic theories to estimate the crustal permeability, a fundamental property of subsurface hydrothermal circulation, from the phase shift of the tidal oscillations of venting temperature relative to ambient ocean tides. These results together shed light on the influences of seismic and oceanic processes on a seafloor hydrothermal system.
Gent, Peter R
2016-01-01
Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Tsujino, Hiroyuki; Toyoda, Takahiro; Nakano, Hideyuki
2017-08-01
This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10-15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.
Atlantic Ocean Circulation and Climate: The Current View From the Geological Record
NASA Astrophysics Data System (ADS)
Curry, W.
2006-12-01
Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.
NASA Astrophysics Data System (ADS)
Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman
2018-03-01
The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.
NASA Supercomputer Improves Prospects for Ocean Climate Research
NASA Technical Reports Server (NTRS)
Menemenlis, D.; Hill, C.; Adcroft, A.; Campin, J. -M.; Cheng, B.; Ciotti, B.; Fukumori, I.; Heimbach, P.; Henze, C.; Kohl, A.;
2005-01-01
Estimates of ocean circulation constrained by in situ and remotely sensed observations have become routinely available during the past five years, and they are being applied to myriad scientific and operational problems [Stammer et al.,2002]. Under the Global Ocean Data Assimilation Experiment (GODAE), several regional and global estimates have evolved for applications in climate research, seasonal forecasting, naval operations, marine safety, fisheries,the offshore oil industry, coastal management, and other areas. This article reports on recent progress by one effort, the consortium for Estimating the Circulation and Climate of the Ocean (ECCO), toward a next-generation synthesis of ocean and sea-ice data that is global, that covers the full ocean depth, and that permits eddies.
Miocene deepwater oceanography
NASA Astrophysics Data System (ADS)
Woodruff, Fay; Savin, Samuel M.
1989-02-01
A global synthesis of Miocene benthic foraminiferal carbon and oxygen isotopic and faunal abundance data indicates that Miocene thermohaline circulation evolved through three regimes corresponding approximately to early, middle, and late Miocene times. There is evidence for major qualitative differences between the circulation of the modern ocean and the Miocene ocean prior to 11 Ma. The 13C/12C ratios of the benthic foraminifera Cibicidoides are interpreted in terms of water mass aging, i.e., the progressive depletion of dissolved O2 and lowering of δ13C values as the result of oxidation of organic matter as water flows further from its sources at the surface of the oceans. Both isotopic and faunal data indicate that the early Miocene regime, from 22 to 15 Ma, was the most different from today's. During that interval intermediate and deep waters of both the Atlantic and the Pacific oceans aged in a northward direction, and the intermediate waters of the Indian, the South Atlantic and the South Pacific oceans were consistently the youngest in the global ocean. We speculate that early Miocene global thermohaline circulation may have been strongly influenced by the influx of warm saline water, Tethyan Indian Saline Water, from the Tethys into the northern Indian Ocean. The isotopic and faunal data suggest that flow from the Tethyan region into the Indian Ocean diminished or terminated at about 14 Ma. Isotopic and faunal data give no evidence for North Atlantic Deep Water (NADW) formation prior to about 14.5 Ma (with the exception of a brief episode in the early Miocene). From 14.5 to 11 Ma NADW formation was weak, and circumpolar and Antarctic water flooded the deep South Atlantic and South Pacific as the Antarctic ice cap grew. From about 10 Ma to the end of the Miocene, thermohaline circulation resembled the modern circulation in many ways. In latest Miocene time (6 to 5 Ma) circulation patterns were very similar to today's except that NADW formation was greatly diminished. The distribution pattern of siliceous oozes in Miocene sediments is consistent with our proposed reconstruction of thermohaline circulation. Major changes which occurred in circulation during the middle Miocene were probably related to the closing of the Tethys and may have contributed to rapid middle Miocene growth of the Antarctic ice cap. Appendices 1, 4, 6, and 7 are available withentire article on microfiche. Order fromAmerican Geophysical Union, 2000 FloridaAvenue, N.W., Washington, DC 20009.Document 88P-002; $5.00. Payment mustaccompany order.
2011-06-09
A Delta II rocket launches with the Aquarius/SAC-D spacecraft payload from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Friday, June 10, 2011. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Wang, Zeliang; Lu, Youyu; Dupont, Frederic; W. Loder, John; Hannah, Charles; G. Wright, Daniel
2015-03-01
Simulations with a coarse-resolution global ocean model during 1958-2004 are analyzed to understand the inter-annual and decadal variability of the North Atlantic. Analyses of Empirical Orthogonal Functions (EOFs) suggest relationships among basin-scale variations of sea surface height (SSH) and depth-integrated circulation, and the winter North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) indices. The linkages between the atmospheric indices and ocean variables are shown to be related to the different roles played by surface momentum and heat fluxes in driving ocean variability. In the subpolar region, variations of the gyre strength, SSH in the central Labrador Sea and the NAO index are highly correlated. Surface heat flux is important in driving variations of SSH and circulation in the upper ocean and decadal variations of the Atlantic Meridional Overturning Circulation (AMOC). Surface momentum flux drives a significant barotropic component of flow and makes a noticeable contribution to the AMOC. In the subtropical region, momentum flux plays a dominant role in driving variations of the gyre circulation and AMOC; there is a strong correlation between gyre strength and SSH at Bermuda.
1991-01-01
Foundation FYDP ......... Five Year Defense Plan FSI ............ Fog Stability Index 17 G G ................ gravity, giga- GISM ......... Gridded ...Global Circulation Model GOES-TAP GOES imagery processing & dissemination system GCS .......... grid course GOFS ........ Global Ocean Flux Study GD...Analysis Support System Complex Systems GRID .......... Global Resource Information Data -Base GEMAG ..... geomagnetic GRIST..... grazing-incidence solar
Dynamical Evaluation of Ocean Models using the Gulf Stream as an Example
2010-01-01
transport for the Atlantic meridional overturning circulation (AMOC) as the 3 nonlinear solutions discussed in Section 2. The model boundary is...Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ... overturning circulation (AMOC) streamfunction with a 5 Sv contour interval from (a) 1/12° Atlantic MICOM, (b) 1/12° Atlantic HYCOM, and (c) 1/12
Dynamical Evaluation of Ocean Models Using the Gulf Stream as an Example
2012-02-10
Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ...30 35 55N 65N Fig. 21.14 Atlantic meridional overturning circulation (AMOC) streamfunction from the same four simulations as Fig. 21.11. An AMOC...typically develops a northern or southern bias. A shallow bias in the southward abyssal flow of the Atlan- tic Meridional Overturning Circulation (AMOC
On the stability of the Atlantic meridional overturning circulation
Hofmann, Matthias; Rahmstorf, Stefan
2009-01-01
One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC. PMID:19897722
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Alexey
2013-11-23
The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.
NASA Astrophysics Data System (ADS)
Buckley, Martha W.; Marshall, John
2016-03-01
This is a review about the Atlantic Meridional Overturning Circulation (AMOC), its mean structure, temporal variability, controlling mechanisms, and role in the coupled climate system. The AMOC plays a central role in climate through its heat and freshwater transports. Northward ocean heat transport achieved by the AMOC is responsible for the relative warmth of the Northern Hemisphere compared to the Southern Hemisphere and is thought to play a role in setting the mean position of the Intertropical Convergence Zone north of the equator. The AMOC is a key means by which heat anomalies are sequestered into the ocean's interior and thus modulates the trajectory of climate change. Fluctuations in the AMOC have been linked to low-frequency variability of Atlantic sea surface temperatures with a host of implications for climate variability over surrounding landmasses. On intra-annual timescales, variability in AMOC is large and primarily reflects the response to local wind forcing; meridional coherence of anomalies is limited to that of the wind field. On interannual to decadal timescales, AMOC changes are primarily geostrophic and related to buoyancy anomalies on the western boundary. A pacemaker region for decadal AMOC changes is located in a western "transition zone" along the boundary between the subtropical and subpolar gyres. Decadal AMOC anomalies are communicated meridionally from this region. AMOC observations, as well as the expanded ocean observational network provided by the Argo array and satellite altimetry, are inspiring efforts to develop decadal predictability systems using coupled atmosphere-ocean models initialized by ocean data.
Ocean Drilling: Forty Years of International Collaboration
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki
2010-10-01
International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.
NASA Astrophysics Data System (ADS)
Jungclaus, J. H.; Moreno-Chamarro, E.; Lohmann, K.; Zanchettin, D.
2016-02-01
While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.
NASA Astrophysics Data System (ADS)
Jungclaus, Johann; Moreno-Chamarro, Eduardo; Lohmann, Katja
2016-04-01
While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.
NASA Astrophysics Data System (ADS)
Frouin, Robert; Ueyoshi, Kyozo; Kampel, Milton
2007-09-01
Numerical experiments conducted with an ocean general ocean circulation model reveal the potential influence of solar radiation absorbed by phytoplankton on the thermal structure and currents of the Tropical Atlantic Ocean. In the model, solar radiation penetration is parameterized explicitly as a function of chlorophyll-a concentration, the major variable affecting water turbidity in the open ocean. Two types of runs are performed, a clear water (control) run with a constant minimum chlorophyll-a concentration of 0.02 mgm -3, and a turbid water (chlorophyll) run with space- and time-varying chlorophyll-a concentration from satellite data. The difference between results from the two runs yields the biological effects. In the chlorophyll run, nutrients and biology production are implicitly taken into account, even though biogeochemical processes are not explicitly included, since phytoplankton distribution, prescribed from observations, is the result of those processes. Due to phytoplankton-radiation forcing, the surface temperature is higher by 1-2 K on average annually in the region of the North Equatorial current, the Northern part of the South Equatorial current, and the Caribbean system, and by 3-4 K in the region of the Guinea current. In this region, upwelling is reduced, and heat trapped in the surface layers by phytoplankton is not easily removed. The surface temperature is lower by 1 K in the Northern region of the Benguela current, due to increased upwelling. At depth, the equatorial Atlantic is generally cooler, as well as the eastern part of the tropical basin (excluding the region of the sub-tropical gyres). The North and South equatorial currents, as well as the Equatorial undercurrent, are enhanced by as much as 3-4 cms -1, and the circulation of the subtropical gyres is increased. Pole-ward heat transport is slightly reduced North of 35°N, suggesting that phytoplankton, by increasing the horizontal return flow in the subtropical region, may exert a cooling influence on higher latitude regions. The findings indicate that biology-induced buoyancy plays a significant role, in an indirect if not direct way, in the variability of the Tropical Atlantic Ocean, with consequences on atmospheric circulation and climate.
Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di, Lorenzo E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; Levin, J.; McWilliams, J.C.; Miller, A.J.; Moore, A.M.; Powell, T.M.; Shchepetkin, A.F.; Sherwood, C.R.; Signell, R.P.; Warner, J.C.; Wilkin, J.
2008-01-01
Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers; redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoyancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations, enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less diffusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-purpose regional ocean prediction systems.
NASA Astrophysics Data System (ADS)
Bergamasco, A.; Budgell, W. P.; Carniel, S.; Sclavo, M.
2005-03-01
Conveyor belt circulation controls global climate through heat and water fluxes with atmosphere and from tropical to polar regions and vice versa. This circulation, commonly referred to as thermohaline circulation (THC), seems to have millennium time scale and nowadays--a non-glacial period--appears to be as rather stable. However, concern is raised by the buildup of CO2 and other greenhouse gases in the atmosphere (IPCC, Third assessment report: Climate Change 2001. A contribution of working group I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, UK) 2001, http://www.ipcc.ch) as these may affect the THC conveyor paths. Since it is widely recognized that dense-water formation sites act as primary sources in strengthening quasi-stable THC paths (Stommel H., Tellus131961224), in order to simulate properly the consequences of such scenarios a better understanding of these oceanic processes is needed. To successfully model these processes, air-sea-ice-integrated modelling approaches are often required. Here we focus on two polar regions using the Regional Ocean Modeling System (ROMS). In the first region investigated, the North Atlantic-Arctic, where open-ocean deep convection and open-sea ice formation and dispersion under the intense air-sea interactions are the major engines, we use a new version of the coupled hydrodynamic-ice ROMS model. The second area belongs to the Antarctica region inside the Southern Ocean, where brine rejections during ice formation inside shelf seas origin dense water that, flowing along the continental slope, overflow becoming eventually abyssal waters. Results show how nowadays integrated-modelling tasks have become more and more feasible and effective; numerical simulations dealing with large computational domains or challenging different climate scenarios can be run on multi-processors platforms and on systems like LINUX clusters, made of the same hardware as PCs, and codes have been accordingly modified.This relevant numerical help coming from the computer science can now allow scientists to devote larger attention in the efforts of understanding the deep mechanisms of such complex processes.
Impact of CO2 and continental configuration on Late Cretaceous ocean dynamics
NASA Astrophysics Data System (ADS)
Puceat, Emmanuelle; Donnadieu, Yannick; Moiroud, Mathieu; Guillocheau, François; Deconinck, Jean-François
2014-05-01
The Late Cretaceous period is characterized by a long-term climatic cooling (Huber et al., 1995; Pucéat et al., 2003; Friedrich et al., 2012) and by major changes in continental configuration with the widening of the Atlantic Ocean, the initiation of the Tethyan ocean closure, and the deepening of the Central Atlantic Gateway. The Late Cretaceous also marks the end of the occurrence of Oceanic Anoxic Events (OAEs), that are associated to enhanced organic carbon burial, to major crises of calcifying organisms, and to possible ocean acidification (Jenkyns, 2010). It has been suggested that the evolution in continental configuration and climate occurring during the Late Cretaceous could have induced a reorganization in the oceanic circulation, that may have impacted the oxygenation state of the oceanic basins and contributed to the disappearance of OAEs (Robinson et al., 2010; Robinson and Vance, 2012). Yet there is no consensus existing on the oceanic circulation modes and on their possible evolution during the Late Cretaceous, despite recent improvement of the spatial and temporal coverage of neodymium isotopic data (ɛNd), a proxy of oceanic circulation (MacLeod et al., 2008; Robinson et al., 2010; Murphy and Thomas, 2012; Robinson and Vance, 2012; Martin et al., 2012; Moiroud et al., 2012). Using the fully coupled ocean-atmosphere General Circulation Model FOAM, we explore in this work the impact on oceanic circulation of changes in continental configuration between the mid- and latest Cretaceous. Two paleogeography published by Sewall et al. (2007) were used, for the Cenomanian/Turonian boundary and for the Maastrichtian. For each paleogeography, 3 simulations have been realized, at 2x, 4x, and 8x the pre-industrial atmospheric CO2 level, in order to test the sensitivity of the modelled circulation to CO2. Our results show for both continental configurations a bipolar mode for the oceanic circulation displayed by FOAM. Using the Cenomanian/Turonian land-sea mask, two major areas of deep-water production are simulated in the model, one located in the northern and northwestern Pacific area, and the other located in the southern Pacific. An additional area is present in the southern Atlantic Ocean, near the modern Weddell Sea area, but remains very limited. Using the Maastrichtian land-sea mask, the simulations show a major change in the ocean dynamic with the disappearance of the southern Pacific convection cell. The northern Pacific area of deep-water production is reduced to the northwestern Pacific region only. By contrast, the simulations show a marked development of the southern Atlantic deep-water production, that intensifies and extends eastward along the Antarctic coast. These southern Atlantic deep-waters are conveyed northward into the North Atlantic and eastward to the Indian Ocean. Importantly, changes in atmospheric CO2 level do not impact the oceanic circulation simulated by FOAM, at least in the range of tested values. The circulation simulated by FOAM is coherent with existing ɛNd data for the two studied periods and support an intensification of southern Atlantic deep-water production along with a reversal of the deep-water fluxes through the Carribean Seaway as the main causes of the decrease in ɛNd values recorded in the Atlantic and Indian deep-waters during the Late Cretaceous. The simulations reveal a change from a sluggish circulation in the south Atlantic simulated with the Cenomanian/Turonian paleogeography to a much more active circulation in this basin using the Maastrichtian paleogeography, that may have favoured the disappearance of OAEs after the Late Cretaceous. Friedrich, O., Norris, R.D., Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans - A 55 m.y. record of Earth's temperature and carbon cycle. Geology 40 (2), 107-110. Huber, B.T., Hodell, D.A., Hamilton, C.P., 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. of Am. Bull. 107, 1164-1191. Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems 11, doi:10.1029/2009GC002788. MacLeod, K.G., Martin, E.E., Blair, S.W., 2008. Nd isotopic excursion across Cretaceous Ocean Anoxic Event 2 (Cenomanian-Turonian) in the tropical North Atlantic. Geology 36 (10), 811-814. Martin, E.E., MacLeod, K.G., Jiménez Berrocoso, Á., Bourbon, E., 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth Planet. Sci. Lett. 327-328, 111-120. Moiroud, M., Pucéat, E., Donnadieu, Y., Bayon, G., Moriya, K., Deconinck, J.F., and Boyet, M., 2012. Evolution of the neodymium isotopic signature of neritic seawater on a northwestern Pacific margin: new constrains on possible end-members for the composition of deep-water masses in the Late Cretaceous ocean. Chemical Geology 356, p. 160-170. Murphy, D.P., Thomas, D.J., 2012. Cretaceous deep-water formation in the Indian sector of the Southern Ocean. Paleoceanography 27, doi:10.1029/2011PA002198. Pucéat, E., Lécuyer, C., Sheppard, S.M.F., Dromart, G., Reboulet, S., Grandjean, P., 2003. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18 (2), doi:10.1029/2002PA000823. Robinson, A., Murphy, D.P., Vance, D., Thomas, D.J., 2010. Formation of 'Southern Component Water' in the Late Cretaceous: evidence from Nd-isotopes. Geological Society of America 38 (10), 871-874 Robinson, S.A., Vance, D., 2012. Widespread and synchronous change in deep-ocean circulation in the North and South Atlantic during the Late Cretaceous. Paleoceanography 27, PA1102, doi:10.1029/2011PA002240. Sewall, J.O., van de Wal, R.S.W., can der Zwan, K., van Oosterhout, C., Dijkstra, H.A., and Scotese, C.R., 2007. Climate model boundary conditions for four Cretaceous time slices. Clim. Past 3, p. 647-657.
Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden
NASA Astrophysics Data System (ADS)
Lucazeau, Francis; Leroy, Sylvie; Rolandone, Frédérique; d'Acremont, Elia; Watremez, Louise; Bonneville, Alain; Goutorbe, Bruno; Düsünur, Doga
2010-07-01
In order to investigate the importance of fluid circulation associated with the formation of ocean-continent transitions (OCT), we examine 162 new heat-flow (HF) measurements in the eastern Gulf of Aden, obtained at close locations along eight seismic profiles and with multi-beam bathymetry. The average HF values in the OCT and in the oceanic domain (~ 18 m.y.) are very close to the predictions of cooling models, showing that the overall importance of fluids remains small at the present time compared to oceanic ridge flanks of the same age. However, local HF anomalies are observed, although not systematically, in the vicinity of the unsedimented basement and are interpreted by the thermal effect of meteoric fluids flowing laterally. We propose a possible interpretation of hydrothermal paths based on the shape of HF anomalies and on the surface morphology: fluids can circulate either along-dip or along-strike, but are apparently focussed in narrow "pipes". In several locations in the OCT, there is no detectable HF anomaly while the seismic velocity structure suggests serpentinization and therefore past circulation. We relate the existence of the present day fluid circulation in the eastern Gulf of Aden to the presence of unsedimented basement and to the local extensional stress in the vicinity of the Socotra-Hadbeen fault zone. At the scale of rifted-margins, fluid circulation is probably not as important as in the oceanic domain because it can be inhibited rapidly with high sedimentation rates, serpentinization and stress release after the break-up.
Southern Ocean vertical iron fluxes; the ocean model effect
NASA Astrophysics Data System (ADS)
Schourup-Kristensen, V.; Haucke, J.; Losch, M. J.; Wolf-Gladrow, D.; Voelker, C. D.
2016-02-01
The Southern Ocean plays a key role in the climate system, but commonly used large-scale ocean general circulation biogeochemical models give different estimates of current and future Southern Ocean net primary and export production. The representation of the Southern Ocean iron sources plays an important role for the modeled biogeochemistry. Studies of the iron supply to the surface mixed layer have traditionally focused on the aeolian and sediment contributions, but recent work has highlighted the importance of the vertical supply from below. We have performed a model study in which the biogeochemical model REcoM2 was coupled to two different ocean models, the Finite Element Sea-ice Ocean Model (FESOM) and the MIT general circulation model (MITgcm) and analyzed the magnitude of the iron sources to the surface mixed layer from below in the two models. Our results revealed a remarkable difference in terms of mechanism and magnitude of transport. The mean iron supply from below in the Southern Ocean was on average four times higher in MITgcm than in FESOM and the dominant pathway was entrainment in MITgcm, whereas diffusion dominated in FESOM. Differences in the depth and seasonal amplitude of the mixed layer between the models affect on the vertical iron profile, the relative position of the base of the mixed layer and ferricline and thereby also on the iron fluxes. These differences contribute to differences in the phytoplankton composition in the two models, as well as in the timing of the onset of the spring bloom. The study shows that the choice of ocean model has a significant impact on the iron supply to the Southern Ocean mixed layer and thus on the modeled carbon cycle, with possible implications for model runs predicting the future carbon uptake in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrnstein, Aaron R.
An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration,more » and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO 2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No dramatic or persistent signs of error growth in the passive tracer outgassing or the ocean circulation are observed to result from AMR.« less
An ocean data assimilation system and reanalysis of the World Ocean hydrophysical fields
NASA Astrophysics Data System (ADS)
Zelenko, A. A.; Vil'fand, R. M.; Resnyanskii, Yu. D.; Strukov, B. S.; Tsyrulnikov, M. D.; Svirenko, P. I.
2016-07-01
A new version of the ocean data assimilation system (ODAS) developed at the Hydrometcentre of Russia is presented. The assimilation is performed following the sequential scheme analysis-forecast-analysis. The main components of the ODAS are procedures for operational observation data processing, a variational analysis scheme, and an ocean general circulation model used to estimate the first guess fields involved in the analysis. In situ observations of temperature and salinity in the upper 1400-m ocean layer obtained from various observational platforms are used as input data. In the new ODAS version, the horizontal resolution of the assimilating model and of the output products is increased, the previous 2D-Var analysis scheme is replaced by a more general 3D-Var scheme, and a more flexible incremental analysis updating procedure is introduced to correct the model calculations. A reanalysis of the main World Ocean hydrophysical fields over the 2005-2015 period has been performed using the updated ODAS. The reanalysis results are compared with data from independent sources.
Arctic Ocean Pathways in the 21st century
NASA Astrophysics Data System (ADS)
Aksenov, Yevgeny; van Gennip, Simon J.; Kelly, Stephen J.; Popova, Ekaterina E.; Yool, Andrew
2017-04-01
In the last three decades, changes in the Arctic environment have been occurring at an increasing rate. The opening up of large areas of previously sea ice-covered ocean affects the marine environment with potential impacts on Arctic ecosystems, including through changes in Arctic access, industries and societies. Changes to sea ice and surface winds result in large-scale shifts in ocean circulation and oceanic pathways. This study presents a high-resolution analysis of the projected ocean circulation and pathways of the Arctic water masses across the 21st century. The analysis is based on an eddy-permitting high-resolution global simulation of the ocean general circulation model NEMO (Nucleus for European Modelling of the Ocean) at the 1/4-degree horizontal resolution. The atmospheric forcing is from HadGEM2-ES model output from IPCC Assessment Report 5 (AR5) simulations performed for Coupled Model Intercomparison Project 5 (CMIP5), and follow the Representative Concentration Pathway 8.5 (RCP8.5) scenario. During the 21st century the AO experiences a significant warming, with sea surface temperature increased by in excess of 4 deg. C. Annual mean Arctic sea ice thickness drops to less than 0.5m, and the Arctic Ocean is ice-free in summer from the mid-century. We use an off-line tracer technique to investigate Arctic pathways of the Atlantic and Pacific waters (AW and PW respectively) under this future climate. The AW tracers have been released in the eastern Fram Strait and in the western Barents Sea, whereas the PW tracer has been seeded in the Bering Strait. In the second half of the century the upper 1000 m ocean circulation shows a reduction in the eastward AW flow along the continental slopes towards the Makarov and Canada basins and a deviation of the PW flow away from the Beaufort Sea towards the Siberian coast. Strengthening of Arctic boundary current and intensification of the cyclonic gyre in the Nansen basin of the Arctic Ocean is accompanied by weakening of the current and an anti-cyclonic gyre spin-up in the Makarov Basin. This presents a shift of the Arctic circulation "dipole" and of the Transpolar Drift, with the consequence that the PW flow towards Fram Strait is significantly reduced by the end of the century, weakening the Pacific-Atlantic connection via the Arctic Ocean, and reducing the Arctic freshwater outflow into the North Atlantic. Examination of the simulations suggests that these circulation changes are primarily due to the shift in the wind.
C-GLORSv5: an improved multipurpose global ocean eddy-permitting physical reanalysis
NASA Astrophysics Data System (ADS)
Storto, Andrea; Masina, Simona
2016-11-01
Global ocean reanalyses combine in situ and satellite ocean observations with a general circulation ocean model to estimate the time-evolving state of the ocean, and they represent a valuable tool for a variety of applications, ranging from climate monitoring and process studies to downstream applications, initialization of long-range forecasts and regional studies. The purpose of this paper is to document the recent upgrade of C-GLORS (version 5), the latest ocean reanalysis produced at the Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) that covers the meteorological satellite era (1980-present) and it is being updated in delayed time mode. The reanalysis is run at eddy-permitting resolution (1/4° horizontal resolution and 50 vertical levels) and consists of a three-dimensional variational data assimilation system, a surface nudging and a bias correction scheme. With respect to the previous version (v4), C-GLORSv5 contains a number of improvements. In particular, background- and observation-error covariances have been retuned, allowing a flow-dependent inflation in the globally averaged background-error variance. An additional constraint on the Arctic sea-ice thickness was introduced, leading to a realistic ice volume evolution. Finally, the bias correction scheme and the initialization strategy were retuned. Results document that the new reanalysis outperforms the previous version in many aspects, especially in representing the variability of global heat content and associated steric sea level in the last decade, the top 80 m ocean temperature biases and root mean square errors, and the Atlantic Ocean meridional overturning circulation; slight worsening in the high-latitude salinity and deep ocean temperature emerge though, providing the motivation for further tuning of the reanalysis system. The dataset is available in NetCDF format at doi:10.1594/PANGAEA.857995.
NASA Astrophysics Data System (ADS)
Kawamura, H.; Furuno, A.; Kobayashi, T.; In, T.; Nakayama, T.; Ishikawa, Y.; Miyazawa, Y.; Usui, N.
2017-12-01
To understand the concentration and amount of Fukushima-derived Cs-137 in the ocean, this study simulates the oceanic dispersion of Cs-137 by an oceanic dispersion model SEA-GEARN-FDM developed at Japan Atomic Energy Agency (JAEA) and multiple oceanic general circulation models. The Cs-137 deposition amounts at the sea surface were used as the source term in oceanic dispersion simulations, which were estimated by atmospheric dispersion simulations with a Worldwide version of System for Prediction of Environmental Emergency Dose Information version II (WSPEEDI-II) developed at JAEA. The direct release from the Fukushima Daiichi Nuclear Power Plant into the ocean based on in situ Cs-137 measurements was used as the other source term in oceanic dispersion simulations. The simulated air Cs-137 concentrations qualitatively replicated those measured around the North Pacific. The accumulated Cs-137 ground deposition amount in the eastern Japanese Islands was consistent with that estimated by aircraft measurements. The oceanic dispersion simulations relatively well reproduced the measured Cs-137 concentrations in the coastal and offshore oceans during the first few months after the Fukushima disaster, and in the open ocean during the first year post-disaster. It was suggested that Cs-137 dispersed along the coast in the north-south direction during the first few months post-disaster, and were subsequently dispersed offshore by the Kuroshio Current and Kuroshio Extension. Mesoscale eddies accompanied by the Kuroshio Current and Kuroshio Extension played an important role in dilution of Cs-137. The Cs-137 amounts were quantified in the coastal, offshore, and open oceans during the first year post-disaster. It was demonstrated that Cs-137 actively dispersed from the coastal and offshore oceans to the open ocean, and from the surface layer to the deeper layer in the North Pacific.
Aspects of oceanic forcing of drought over Southwest Asia and the United States
NASA Astrophysics Data System (ADS)
Hoell, Andrew
An exceptionally severe drought affected much of the Northern Hemisphere mid-latitudes during 1998 -- 2002, with maxima over Southwest Asia and the United States. Previous research has suggested that the oceans played an important role in the hemispheric drought, with oceanic links to tropical Indo-west Pacific Ocean convection highlighted as important for Southwest Asia, and several additional ocean regions suggested as important for the United States. Here, the regional and hemispheric circulation response to tropical Indo-west Pacific Ocean convection is examined for both Southwest Asia and the United States, and the relative importance of individual sea surface temperature areas are explored for United States precipitation. For Southwest Asia, the regional thermodynamic forcing of precipitation and the Northern Hemisphere circulation are related to the leading pattern of Indian Ocean precipitation and its intraseasonal and interannual contributions. Both intraseasonal and interannual timescales are associated with baroclinic Gill-Matsuno-like circulation responses extending over southern Asia, but the interannual component also has a strong equivalent-barotropic circulation. A stationary barotropic Rossby wave extending over North America is associated with interannual tropical Indo-west Pacific Ocean convection and is supported by barotropic ray tracing. For United States regions, historical SST and precipitation links are identified for 1948 -- 1997, and the importance of these links are assessed during the 1998 -- 2002 drought using a linear regression model. The reconstructed precipitation has good correspondence for the Southwest and Southeast United States, but is not able to reproduce precipitation variability over the Northwest and Central United States, especially Texas.
Using Icebergs to Constrain Fjord Circulation and Link to Glacier Dynamics
NASA Astrophysics Data System (ADS)
Sutherland, D.; Straneo, F.; Hamilton, G. S.; Stearns, L. A.; Roth, G.
2014-12-01
The importance of icebergs is increasingly being recognized in the ocean-glacier interactions community. Icebergs are ubiquitous in Greenland's outlet glacial fjords and provide a physical link between the glacier and the ocean into which they melt. The iceberg shape is influenced by glacier size and calving mechanics, while the amount of melt produced depends on ambient water properties and the residence time of the iceberg in the fjord. Here, we use hourly positions of icebergs tracked with helicopter deployed GPS sensors to calculate velocities in the Sermilik Fjord/Helheim Glacier system. Data comes from three summertime deployments in 2012-2014, where icebergs were tagged in the ice mélange and moved through the fjord and onto the continental shelf. The iceberg-derived velocities provide information on ice mélange movement, fjord variability, and coastal currents on the shelf. Using simple melt rate parameterizations, we estimate the total freshwater input due to iceberg melt in Sermilik Fjord based on the observed residence times and satellite-derived iceberg distributions. These observations complement conventional oceanographic and glaciological data, and can quickly, and relatively inexpensively, characterize circulation throughout any given glacier-ocean system.
2009-09-01
channel. More recently, they examined the role of eddies in the overturning circulation of the Southern Ocean using the hemispheric HIM with realistic... meridional velocity with intervals of 0.1 · 10−3ms−1 159 PV equation to study the bay-scale circulations : d dt ( f + ζ H0 − f0h0 H 20 ) = F, (4.30) where...2009-18 DOCTORAL DISSERTATION by Yu Zhang September 2009 Slope/shelf Circulation and Cross-slope/shelf Transport Out of a Bay Driven by Eddies from
Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models
NASA Astrophysics Data System (ADS)
Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.
2014-12-01
Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.
2014-12-01
The rate of mass loss from the Greenland Ice Sheet quadrupled over the last two decades and may be due in part to changes in ocean heat transport to marine-terminating outlet glaciers. Meltwater commonly discharges at the grounding line in these outlet glacier fjords, generating a turbulent upwelling plume that separates from the glacier face when it reaches neutral density. This mechanism is the current paradigm for setting the magnitude of net heat transport in Greenland's glacial fjords. However, sufficient observations of meltwater plumes are not available to test the buoyancy-driven circulation hypothesis. Here, we use an ocean general circulation model (MITgcm) of the near-glacier field to investigate how plume water properties, terminal height, centerline velocity and volume transport depend on the initial conditions and numerical parameter choices in the model. These results are compared to a hydrodynamic mixing model (CORMIX), typically used in civil engineering applications. Experiments using stratification profiles from the continental shelf quantify the errors associated with using far-field observatons to initialize near-glacier plume models. The plume-scale model results are then integrated with a 3-D fjord-scale model of the Rink Isbrae glacier/fjord system in west Greenland. We find that variability in the near-glacier plume structure can strongly control the resulting fjord-scale circulation. The fjord model is forced with wind and tides to examine how oceanic and atmospheric forcing influence net heat transport to the glacier.
The Southwest Pacific Ocean circulation and climate experiment (SPICE)
NASA Astrophysics Data System (ADS)
Ganachaud, A.; Cravatte, S.; Melet, A.; Schiller, A.; Holbrook, N. J.; Sloyan, B. M.; Widlansky, M. J.; Bowen, M.; Verron, J.; Wiles, P.; Ridgway, K.; Sutton, P.; Sprintall, J.; Steinberg, C.; Brassington, G.; Cai, W.; Davis, R.; Gasparin, F.; Gourdeau, L.; Hasegawa, T.; Kessler, W.; Maes, C.; Takahashi, K.; Richards, K. J.; Send, U.
2014-11-01
The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Niño-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions.
NASA Astrophysics Data System (ADS)
Dukhovskoy, Dmitry; Bourassa, Mark
2017-04-01
Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity fields should manifest different behaviors of the isopycnals in the Nordic Seas. Time evolution of isopycnal depths in the sensitivity experiments forced by different wind fields is discussed. Results of these sensitivity experiments demonstrate a relationship between the isopycnal surfaces and the wind stress curl. The numerical experiments are also analyzed to investigate the relationship between the East Greenland Current and the wind stress curl over the Nordic Seas. The transport of the current at this location has substantial contribution from wind-driven large-scale circulation. This wind-driven part of the East Greenland Current is a western-intensified return flow of a wind-driven cyclonic gyre in the central Nordic Seas. The numerical experiments with different wind fields reveal notable sensitivity of the East Greenland Current to differences in the wind forcing.
NASA Astrophysics Data System (ADS)
Galbraith, Eric; de Lavergne, Casimir
2018-03-01
Over the past few million years, the Earth descended from the relatively warm and stable climate of the Pliocene into the increasingly dramatic ice age cycles of the Pleistocene. The influences of orbital forcing and atmospheric CO2 on land-based ice sheets have long been considered as the key drivers of the ice ages, but less attention has been paid to their direct influences on the circulation of the deep ocean. Here we provide a broad view on the influences of CO2, orbital forcing and ice sheet size according to a comprehensive Earth system model, by integrating the model to equilibrium under 40 different combinations of the three external forcings. We find that the volume contribution of Antarctic (AABW) vs. North Atlantic (NADW) waters to the deep ocean varies widely among the simulations, and can be predicted from the difference between the surface densities at AABW and NADW deep water formation sites. Minima of both the AABW-NADW density difference and the AABW volume occur near interglacial CO2 (270-400 ppm). At low CO2, abundant formation and northward export of sea ice in the Southern Ocean contributes to very salty and dense Antarctic waters that dominate the global deep ocean. Furthermore, when the Earth is cold, low obliquity (i.e. a reduced tilt of Earth's rotational axis) enhances the Antarctic water volume by expanding sea ice further. At high CO2, AABW dominance is favoured due to relatively warm subpolar North Atlantic waters, with more dependence on precession. Meanwhile, a large Laurentide ice sheet steers atmospheric circulation as to strengthen the Atlantic Meridional Overturning Circulation, but cools the Southern Ocean remotely, enhancing Antarctic sea ice export and leading to very salty and expanded AABW. Together, these results suggest that a `sweet spot' of low CO2, low obliquity and relatively small ice sheets would have poised the AMOC for interruption, promoting Dansgaard-Oeschger-type abrupt change. The deep ocean temperature and salinity simulated under the most representative `glacial' state agree very well with reconstructions from the Last Glacial Maximum (LGM), which lends confidence in the ability of the model to estimate large-scale changes in water-mass geometry. The model also simulates a circulation-driven increase of preformed radiocarbon reservoir age, which could explain most of the reconstructed LGM-preindustrial ocean radiocarbon change. However, the radiocarbon content of the simulated glacial ocean is still higher than reconstructed for the LGM, and the model does not reproduce reconstructed LGM deep ocean oxygen depletions. These ventilation-related disagreements probably reflect unresolved physical aspects of ventilation and ecosystem processes, but also raise the possibility that the LGM ocean circulation was not in equilibrium. Finally, the simulations display an increased sensitivity of both surface air temperature and AABW volume to orbital forcing under low CO2. We suggest that this enhanced orbital sensitivity contributed to the development of the ice age cycles by amplifying the responses of climate and the carbon cycle to orbital forcing, following a gradual downward trend of CO2.
Sensitivities of marine carbon fluxes to ocean change.
Riebesell, Ulf; Körtzinger, Arne; Oschlies, Andreas
2009-12-08
Throughout Earth's history, the oceans have played a dominant role in the climate system through the storage and transport of heat and the exchange of water and climate-relevant gases with the atmosphere. The ocean's heat capacity is approximately 1,000 times larger than that of the atmosphere, its content of reactive carbon more than 60 times larger. Through a variety of physical, chemical, and biological processes, the ocean acts as a driver of climate variability on time scales ranging from seasonal to interannual to decadal to glacial-interglacial. The same processes will also be involved in future responses of the ocean to global change. Here we assess the responses of the seawater carbonate system and of the ocean's physical and biological carbon pumps to (i) ocean warming and the associated changes in vertical mixing and overturning circulation, and (ii) ocean acidification and carbonation. Our analysis underscores that many of these responses have the potential for significant feedback to the climate system. Because several of the underlying processes are interlinked and nonlinear, the sign and magnitude of the ocean's carbon cycle feedback to climate change is yet unknown. Understanding these processes and their sensitivities to global change will be crucial to our ability to project future climate change.
Can Arctic Sea Ice Decline Weaken the Atlantic Meridional Overturning Circulation?
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Sevellec, F.; Liu, W.
2017-12-01
The ongoing decline of Arctic sea ice exposes the ocean to anomalous surface heat and freshwater fluxes, resulting in positive buoyancy anomalies that can affect ocean circulation. In this study (detailed in Sevellec, Fedorov, Liu 2017, Nature Climate Change) we apply an optimal flux perturbation framework and comprehensive climate model simulations (using CESM) to estimate the sensitivity of the Atlantic meridional overturning circulation (AMOC) to such buoyancy forcing over the Arctic and globally, and more generally AMOC sensitivity to sea ice decline. We find that on decadal timescales flux anomalies over the subpolar North Atlantic have the largest impact on the AMOC; however, on multi-decadal timescales (longer than 20 years), anomalies in the Arctic become more important. These positive buoyancy anomalies from the Arctic spread to the North Atlantic, weakening the AMOC and its poleward heat transport after several decades. Therefore, the Arctic sea ice decline may explain the suggested slow-down of the AMOC and the "Warming Hole" persisting in the subpolar North Atlantic. Further, we discuss how the proposed connection, i.e. Arctic sea ice contraction would lead to an AMOC slow-down, varies across different earth system models. Overall, this study demonstrates that Arctic sea ice decline can play an active role in ocean and climate change.
The effects of cloud radiative forcing on an ocean-covered planet
NASA Technical Reports Server (NTRS)
Randall, David A.
1990-01-01
Cumulus anvil clouds, whose importance has been emphasized by observationalists in recent years, exert a very powerful influence on deep tropical convection by tending to radiatively destabilize the troposphere. In addition, they radiatively warm the column in which they reside. Their strong influence on the simulated climate argues for a much more refined parameterization in the General Circulation Model (GCM). For Seaworld, the atmospheric cloud radiative forcing (ACRF) has a powerful influence on such basic climate parameters as the strength of the Hadley circulation, the existence of a single narrow InterTropical Convergence Zone (ITCZ), and the precipitable water content of the atmosphere. It seems likely, however, that in the real world the surface CRF feeds back negatively to suppress moist convection and the associated cloudiness, and so tends to counteract the effects of the ACRF. Many current climate models have fixed sea surface temperatures but variable land-surface temperatures. The tropical circulations of such models may experience a position feedback due to ACRF over the oceans, and a negative or weak feedback due to surface CRF over the land. The overall effects of the CRF on the climate system can only be firmly established through much further analysis, which can benefit greatly from the use of a coupled ocean-atmospheric model.
NASA Astrophysics Data System (ADS)
Kwiatkowski, L.; Caldeira, K.; Ricke, K.
2014-12-01
With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.
Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin
NASA Technical Reports Server (NTRS)
Hall, Callie; Zanoni, Vicki; Estep, Leland; Terrie, Gregory; D'Sa, Eurico; Pagnutti, Mary
2004-01-01
The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting.
Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks
NASA Astrophysics Data System (ADS)
Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.
2017-12-01
Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.
The Southern Ocean in the Coupled Model Intercomparison Project phase 5
Meijers, A. J. S.
2014-01-01
The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Short, D. A.
1984-01-01
Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.
NASA Technical Reports Server (NTRS)
Mcguirk, James P.
1990-01-01
Satellite data analysis tools are developed and implemented for the diagnosis of atmospheric circulation systems over the tropical Pacific Ocean. The tools include statistical multi-variate procedures, a multi-spectral radiative transfer model, and the global spectral forecast model at NMC. Data include in-situ observations; satellite observations from VAS (moisture, infrared and visible) NOAA polar orbiters (including Tiros Operational Satellite System (TOVS) multi-channel sounding data and OLR grids) and scanning multichannel microwave radiometer (SMMR); and European Centre for Medium Weather Forecasts (ECHMWF) analyses. A primary goal is a better understanding of the relation between synoptic structures of the area, particularly tropical plumes, and the general circulation, especially the Hadley circulation. A second goal is the definition of the quantitative structure and behavior of all Pacific tropical synoptic systems. Finally, strategies are examined for extracting new and additional information from existing satellite observations. Although moisture structure is emphasized, thermal patterns are also analyzed. Both horizontal and vertical structures are studied and objective quantitative results are emphasized.
2009-01-01
Ocean Model 7:285-322 Halliwell GR Jr, Weisberg RH, Mayer DA (2003) A synthetic float analysis of upper-limb meridional overturning circulation ...encompasses a variety of coastal regions (the broad Southwest Florida shelf, the narrow Atlantic Keys shelf, the shallow Florida Bay, and Biscayne...products. The results indicate that the successful hindcasting of circulation patterns in a coastal area that is characterized by complex topography and
Adaptation of a general circulation model to ocean dynamics
NASA Technical Reports Server (NTRS)
Turner, R. E.; Rees, T. H.; Woodbury, G. E.
1976-01-01
A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.
2010-01-01
Circulation in the Indonesian Seas: 1/12 degree Global HYCOM and the INSTANT Observations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...SUPPLEMENTARY NOTES 14. ABSTRACT A l/l 2 global version of the HYbrid Coordinate Ocean Model (HYCOM) using 3-hourly atmospheric forcing is analyzed and...TERMS Indonesian Throughflow, global HYCOM, INSTANT, Inter-ocean exchange, ocean modeling 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b
Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condron, Alan
The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS showmore » the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.« less
NASA Astrophysics Data System (ADS)
Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.
2016-09-01
The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.
Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.
2012-01-01
Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with observations. Our analysis focuses initially on probing the inter-model differences in energy fluxes / transports and Walker Circulation response to forcing. We then attempt to identify statistically the El Nino- / La Nina-related ocean heat content variability unique to each model and regress out the associated energy flux, ocean heat transport and Walker response on these shorter time scales for comparison to that of the anthropogenic signals.
2011-06-10
A Delta II rocket launches with the Aquarius/SAC-D spacecraft payload from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Friday, June 10, 2011. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, set to launch June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.
2016-02-01
In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea-ice covered and salinity stratified ocean, and consists of a sea-ice component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The sea-ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea-ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the sea ice acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in sea ice.
NASA Astrophysics Data System (ADS)
Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll
2017-08-01
The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
Inomata, Y; Aoyama, M; Tsumune, D; Motoi, T; Nakano, H
2012-12-01
¹³⁷Cs is one of the conservative tracers applied to the study of oceanic circulation processes on decadal time scales. To investigate the spatial distribution and the temporal variation of ¹³⁷Cs concentrations in surface seawater in the North Pacific Ocean after 1957, a technique for optimum interpolation (OI) was applied to understand the behaviour of ¹³⁷Cs that revealed the basin-scale circulation of Cs ¹³⁷Cs in surface seawater in the North Pacific Ocean: ¹³⁷Cs deposited in the western North Pacific Ocean from global fallout (late 1950s and early 1960s) and from local fallout (transported from the Bikini and Enewetak Atolls during the late 1950s) was further transported eastward with the Kuroshio and North Pacific Currents within several years of deposition and was accumulated in the eastern North Pacific Ocean until 1967. Subsequently, ¹³⁷Cs concentrations in the eastern North Pacific Ocean decreased due to southward transport. Less radioactively contaminated seawater was also transported northward, upstream of the North Equatorial Current in the western North Pacific Ocean in the 1970s, indicating seawater re-circulation in the North Pacific Gyre.
NASA Astrophysics Data System (ADS)
Wu, Chi-Hua; Lee, Shih-Yu; Chiang, John C. H.
2018-07-01
On orbital timescales, higher summer insolation is thought to strengthen the continental monsoon while weakening the maritime monsoon in the Northern hemisphere. Through simulations using the Community Earth System Model, we evaluated the relative influence of perihelion precession and high obliquity in the early Holocene during the Asian summer monsoon. The major finding was that precession dominates the atmospheric heating change over the Tibetan Plateau-Himalayas and Maritime Continent, whereas obliquity is responsible for the heating change over the equatorial Indian Ocean. Thus, precession and obliquity can play contrasting roles in driving the monsoons on orbital timescales. In late spring-early summer, interior Asian continental heating drives the South and East Asian monsoons. The broad-scale monsoonal circulation further expands zonally in July-August, corresponding to the development of summer monsoons in West Africa and the subtropical Western North Pacific (WNP) as well as a sizable increase in convection over the equatorial Indian Ocean. Tropical and oceanic heating becomes crucial in late summer. Over South Asia-Indian Ocean (50°E-110°E), the precession maximum intensifies the monsoonal Hadley cell (heating with an inland/highland origin), which is opposite to the meridional circulation change induced by high obliquity (heating with a tropical origin). The existence of the Tibetan Plateau-Himalayas intensifies the precessional impact. During the late-summer phase of the monsoon season, the effect of obliquity on tropical heating can be substantial. In addition to competing with Asian continental heating, obliquity-enhanced heating over the equatorial Indian Ocean also has a Walker-type circulation impact, resulting in suppression of precession-enhanced heating over the Maritime Continent.
Ocean regional circulation model sensitizes to resolution of the lateral boundary conditions
NASA Astrophysics Data System (ADS)
Pham, Van Sy; Hwang, Jin Hwan
2017-04-01
Dynamical downscaling with nested regional oceanographic models is an effective approach for forecasting operationally coastal weather and projecting long term climate on the ocean. Nesting procedures deliver the unwanted in dynamic downscaling due to the differences of numerical grid sizes and updating steps. Therefore, such unavoidable errors restrict the application of the Ocean Regional Circulation Model (ORCMs) in both short-term forecasts and long-term projections. The current work identifies the effects of errors induced by computational limitations during nesting procedures on the downscaled results of the ORCMs. The errors are quantitatively evaluated for each error source and its characteristics by the Big-Brother Experiments (BBE). The BBE separates identified errors from each other and quantitatively assess the amount of uncertainties employing the same model to simulate for both nesting and nested model. Here, we focus on discussing errors resulting from two main matters associated with nesting procedures. They should be the spatial grids' differences and the temporal updating steps. After the diverse cases from separately running of the BBE, a Taylor diagram was adopted to analyze the results and suggest an optimization intern of grid size and updating period and domain sizes. Key words: lateral boundary condition, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.
Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Julie L.
The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea icemore » and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.« less
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.
Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H
2017-09-01
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.
Extinction of a fast-growing oyster and changing ocean circulation in Pliocene tropical America
NASA Astrophysics Data System (ADS)
Kirby, Michael X.; Jackson, Jeremy B. C.
2004-12-01
Ocean circulation changed profoundly in the late Cenozoic around tropical America as a result of constriction and final closure of the Central American seaway. In response, regional planktonic productivity is thought to have decreased in the Caribbean Sea. Previous studies have shown that shallow-marine communities reflect these changes by reorganizing from a suspension-feeder dominated community to a more carbonate-rich, phototrophic-based community. Although changes in diversity, abundance, and body size of various shallow-marine invertebrates have previously been examined, no study has specifically used growth rate in suspension feeders to examine the effect that changes in ocean circulation may have had on shallow-marine communities. Here we show that a fast-growing oyster went extinct concurrently with changes in ocean circulation and planktonic productivity in the Pliocene. Faster-growing Crassostrea cahobasensis went extinct, whereas slower-growing Crassostrea virginica and columbiensis survived to the Holocene. Miocene Pliocene C. cahobasensis grew 522% faster in shell carbonate and 251% faster in biomass relative to Quaternary C. virginica and C. columbiensis. Although differences in growth are due to proximate differences in environment, the disappearance of faster-growing C. cahobasensis from shallow-marine environments and the continued survival of slower-growing C. virginica and C. columbiensis in marginal-marine environments (e.g., estuaries, lagoons) is consistent with the view that concurrent changes in ocean circulation and declining primary production resulted in the restriction of Crassostrea to marginal-marine environments.
Arctic Climate and Atmospheric Planetary Waves
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Haekkinen, S.
2000-01-01
Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.
Geochemical constraints on the origin of serpentinization of oceanic mantle
NASA Astrophysics Data System (ADS)
Li, Z.; Lee, C. A.
2004-12-01
The lower seismic zone of double seismic zones in subducting oceanic lithosphere is suggested to be a result of serpentine or chlorite dehydration in the lithospheric mantle (Hacker et al., 2003). However, the mechanism by which oceanic lithospheric mantle is serpentinized is unclear. One way is through hydrothermal circulation where the lithospheric mantle represents part of the circuit through which seawater passes and then returns to the ocean. Another way is to inject seawater into the lithospheric mantle through fractures in the overlying crust without having a return path of water to the ocean. The two mechanisms differ in that the former is an open system process whereas the latter is a closed system process in which the mantle serves as a ¡°sponge¡± for water. Identifying the dominant process is important. For example, if the mantle is part of a hydrothermal circulation cell, the interaction of seawater with the mantle will influence the composition of seawater. This also has important implications for the heat flow out of seafloor. On the other hand, if serpentinization occurs by a closed system process, there will be no influence on seawater composition. Previous studies have suggested that serpentinization of ophiolite bodies was an isochemical process, hence closed system, but it was not clear in these studies whether serpentinization occurred in situ in the oceanic lithosphere. To better understand serpentinization processes in the oceanic lithosphere, we investigated a continuous transition zone of relatively unaltered harzburgite to completely serpentinized harzburgite in the Feather River Ophiolite in northern California. These samples are highly enriched in Na, K, Rb, Cs, U, and Sr, which strongly suggests that serpentinization occurred while the oceanic lithosphere was beneath the ocean. All samples (n=19) have Al2O3 contents ranging from 0.6 to 2.5 wt.% and have extremely depleted light rare-earth element abundances, indicating that these samples are cpx-free harzburgites, which have experienced roughly 20 to 35% melt extraction. The degree of serpentinization was quantified using the concentration of magnetite, a by-product of serpentinization. The lack of antigorite suggests that serpentinization occurred at temperatures lower than 300 C. By comparing Cr and Cr/Al systematics to that predicted from theoretical partial melting calculations and empirical relationships in unaltered peridotite xenoliths, it is shown that Cr and Al are immobile. Al content was thus used to determine the composition of the protolith, which allows us to estimate the amount of depletion/enrichment of a given element by processes other than melt depletion. Most of the harzburgites show no evidence for mantle metasomatism as evidenced by extreme depletions in LREE elements. Consistent with previous studies, we find no depletions in Mg, Fe, or Ca. As seawater is undersaturated in Mg-bearing minerals, an open system process would yield progressive depletion of Mg as is seen in abyssal peridotites, which have been weathered by seawater at the bottom of the seafloor (e.g., Snow et al. 1995). Collectively, this suggests that, except for the addition of seawater and its constituents, serpentinization of the Feather River Ophiolite, was a closed system process. By combining these observations with the results of our field mapping project, we suggest that serpentinization of the lithospheric mantle occurs by local introduction of seawater through fractures extending from the crust and into the mantle. We find no evidence that serpentinized zones in oceanic lithospheric mantle represents an extremely deep hydrothermal circulation cell.
Linking the South Atlantic Meridional Overturning Circulation and the Global Monsoons
NASA Astrophysics Data System (ADS)
Lopez, H.; Dong, S.; Goni, G. J.; Lee, S. K.
2016-02-01
This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.
Microbial decomposition of marine dissolved organic matter in cool oceanic crust
NASA Astrophysics Data System (ADS)
Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.
2018-05-01
Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.
NASA Astrophysics Data System (ADS)
Muglia, J.; Skinner, L.; Schmittner, A.
2017-12-01
Circulation changes have been suggested to play an important role in the sequestration of atmospheric CO2 in the glacial ocean. However, previous studies have resulted in contradictory results regarding the strength of the Atlantic Meridional Overturning Circulation (AMOC) and three-dimensional, quantitative reconstructions of the glacial ocean constrained by multiple proxies remain lacking. Here we simulate the modern and glacial ocean using a coupled, global, three-dimensional, physical-biogeochemical model constrained simultaneously by d13C, radiocarbon, and d15N to explore the effects of AMOC differences and Southern Ocean iron fertilization on the distributions of these isotopes and ocean carbon storage. We show that d13C and radiocarbon data sparsely sampled at the locations of existing glacial sediment cores can be used to reconstruct the modern AMOC accurately. Applying this method to the glacial ocean we find that a surprisingly weak (6-9 Sv or about half of today's) and shallow AMOC maximizes carbon storage and best reproduces the sediment data. Increasing the atmospheric soluble iron flux in the model's Southern Ocean intensifies export production, carbon storage, and improves agreement with d13C and d15N reconstructions. Our best fitting model is a significant improvement compared with previous studies. It suggests that a weak and shallow AMOC and enhanced iron fertilization conspired to maximize carbon storage in the glacial ocean.
North Atlantic forcing of tropical Indian Ocean climate.
Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas
2014-05-01
The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.
Impact of river discharge on the California coastal ocean circulation and variability
NASA Astrophysics Data System (ADS)
Leiva, J.; Chao, Y.; Farrara, J. D.; Zhang, H.
2016-12-01
A real-time California coastal ocean nowcast and forecast system is used to quantify the impact of river discharge on the California coastal ocean circulation and variability. River discharge and freshwater runoff is monitored by an extensive network of stream gages maintained through the U.S. Geological Survey, that offers archived stream flow records as well as real-time datasets. Of all the rivers monitored by the USGS, 25 empty into the Pacific Ocean and contribute a potential source of runoff data. Monthly averages for the current water year yield discharge estimates as high as 6,000 cubic meters per second of additional freshwater input into our present model. Using Regional Ocean Modeling System (ROMS), we performed simulations from October 2015 to May 2016 with and without the river discharge. Results of these model simulations are compared with available observations including both in situ and satellite. Particular attention is paid to the salinity simulation. Validation is done with comparisons to sea glider data available through Oregon State University and UC San Diego, which provides depth profiles along the California coast during this time period. Additional validation is performed through comparisons with sea surface salinity measurements from the Soil Moisture and Ocean Salinity (SMOS) mission. Continued testing for previous years, e.g. between 2011 and 2015, is being made using the Aquarius sea surface salinity data. Discharge data collected by the USGS stream gages provides a necessary source of freshwater input that must be accounted for. Incorporating a new runoff source produces a more robust model that generates improved forecasts. Following validation with available sea glider and satellite data, the enhanced model can be adapted to real-time forecasting.
Design, fabrication and systems integration of a satellite tracked, free-drifting ocean data buoy
NASA Technical Reports Server (NTRS)
Wallace, J. W.; Cox, J. W.
1976-01-01
Engineering details are presented of a small free-drifting buoy configuration designed for use in the study of continental shelf water circulation patterns in the Chesapeake Bight of the Western North Atlantic Ocean. The buoy incoporated French instrumentation and was interrogated by the French EOLE satellite to provide position and four channels of temperature data. The buoy design included a variable depth drogue and a power supply sufficient for six weeks of continuous operations. Proof tests of the configuration indicated an adequate design and subsequent field experiments verified the proper functioning of the system.
The formation of the ocean’s anthropogenic carbon reservoir
Iudicone, Daniele; Rodgers, Keith B.; Plancherel, Yves; Aumont, Olivier; Ito, Takamitsu; Key, Robert M.; Madec, Gurvan; Ishii, Masao
2016-01-01
The shallow overturning circulation of the oceans transports heat from the tropics to the mid-latitudes. This overturning also influences the uptake and storage of anthropogenic carbon (Cant). We demonstrate this by quantifying the relative importance of ocean thermodynamics, circulation and biogeochemistry in a global biochemistry and circulation model. Almost 2/3 of the Cant ocean uptake enters via gas exchange in waters that are lighter than the base of the ventilated thermocline. However, almost 2/3 of the excess Cant is stored below the thermocline. Our analysis shows that subtropical waters are a dominant component in the formation of subpolar waters and that these water masses essentially form a common Cant reservoir. This new method developed and presented here is intrinsically Lagrangian, as it by construction only considers the velocity or transport of waters across isopycnals. More generally, our approach provides an integral framework for linking ocean thermodynamics with biogeochemistry. PMID:27808101
North Atlantic ocean circulation and abrupt climate change during the last glaciation.
Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D
2016-07-29
The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change. Copyright © 2016, American Association for the Advancement of Science.
Prospects for altimetry and scatterometry in the 90's. [satellite oceanography
NASA Technical Reports Server (NTRS)
Townsend, W. F.
1985-01-01
Current NASA plans for altimetry and scatterometry of the oceans using spaceborne instrumentation are outlined. The data of interest covers geostrophic and wind-driven circulation, heat content, the horizontal heat flux of the ocean, and the interactions between atmosphere and ocean and ocean and climate. A proposed TOPEX satellite is to be launched in 1991, carrying a radar altimeter to measure the ocean surface topography. Employing dual-wavelength operation would furnish ionospheric correction data. Multibeam instruments could also be flown on the multiple-instrument polar orbiting platforms comprising the Earth Observation System. A microwave radar scatterometer, which functions on the basis of Bragg scattering of microwave energy off of wavelets, would operate at various view angles and furnish wind speeds accurate to 1.5 m/sec and directions accurate to 20 deg.
Atlantic Ocean Circulation at the Last Glacial Maximum: Inferences from Data and Models
2012-09-01
available. Uncertainties in proxies themselves, and in the dating of the proxy records, are generally lower for the LGM than for periods further back...proven useful in understanding new aspects of the modern ocean circulation. Due to the poor dating resolution of sediment cores from the LGM period, and...Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPI- LOG) project was an effort to reconstruct the state of the Earth in glacial states; a
Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa
2015-01-01
The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels") can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.
Applying Ensemble Kalman Filter to Regional Ocean Circulation Model in the East Asian Marginal Sea
NASA Astrophysics Data System (ADS)
Pak, Gyun-Do; Kim, Young Ho; Chang, Kyung-Il
2010-05-01
We successfully apply the ensemble Kalman filter (EnKF) data assimilation scheme to the East Sea Regional Ocean Model (ESROM). The ESROM solves the three dimensional ocean primitive equations with the hydrostatic and Boussinesq approximations. The domain of ESROM fully covers East Sea with grid intervals of approximately 0.1˚. The ESROM has one inflow port, the Korea Strait, and two outflow ports, the Tsugaru and Soya straits. High resolution bathymetry of 1/60˚ (Choi et al., 2002) is adopted for the model topography. The ESROM is initialized using hydrographic data from World Ocean Atlas (WOA), and forced by monthly mean surface and open boundary conditions supplied from European Centre for Medium-Range Weather Forecast data, WOA and so on. The EnKF system is composed of 16 ensembles and thousands of observation data are assimilated at every assimilation step into its parallel version, which significantly reduces the required memory and computational time more than 3-fold compared with its serial version. To prevent the collapse of ensembles due to rank deficiency, we employ various schemes such as localization and inflation of the background error covariance and disturbance of observations. Sea surface temperature from the Advanced Very High Resolution Radiometer and in-situ temperature profiles from various sources including Argo floats have been assimilated into the EnKF system. For cyclonic circulation in the northern East Sea and paths of the East Korean Warm Current and the Nearshore Branch, the EnKF system reproduces the mean surface circulation more realistically than that in the case without data assimilation. Simulated area-averaged vertical temperature profiles also agrees well with the Generalized Digital Environmental Model data, which indicates that the EnKF system corrects the warming of subsurface temperature and the erosion of the permanent thermocline that are usually observed in numerical models without data assimilation. We also quantitatively validate the EnKF system by comparing its results with observed temperatures at 100 m for two years in the southwestern East Sea. We find that spatial and temporal correlations are higher and root-mean-square errors are lower in the EnKF system as compared with those systems without data assimilation.
Development and validation of a regional coupled forecasting system for S2S forecasts
NASA Astrophysics Data System (ADS)
Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.
2017-12-01
Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.
Atmospheric and oceanographic research review, 1979
NASA Technical Reports Server (NTRS)
1980-01-01
Papers generated by atmospheric, oceanographic, and climatological research performed during 1979 at the Goddard Laboratory for Atmospheric Sciences are presented. The GARP/global weather research is aimed at developing techniques for the utilization and analysis of the FGGE data sets. Observing system studies were aimed at developing a GLAS TIROS N sounding retrieval system and preparing for the joint NOAA/NASA AMTS simulation study. The climate research objective is to support the development and effective utilization of space acquired data systems by developing the GLAS GCM for short range climate predictions, studies of the sensitivity of climate to boundary conditions, and predictability studies. Ocean/air interaction studies concentrated on the development of models for the prediction of upper ocean currents, temperatures, sea state, mixed layer depths, and upwelling zones, and on studies of the interactions of the atmospheric and oceanic circulation systems on time scales of a month or more.
Full-field versus anomaly initialization in the MiKlip decadal prediction system
NASA Astrophysics Data System (ADS)
Kröger, Jürgen; Pohlmann, Holger; Sienz, Frank; Marotzke, Jochem; Baehr, Johanna; Köhl, Armin; Kameshvar, Modali; Stammer, Detlef; Vamborg, Freja; Müller, Wolfgang
2017-04-01
We show how ocean initialization from full-fields instead of anomalies in the MiKlip decadal prediction system significantly reduces rediction skill of ocean heat content (OHC) in the northern North Atlantic. The MiKlip prediction system, which is based on the Max-Planck-Institute Earth system model (MPI-ESM), is initialized by assimilating selected state parameters from reanalyses. Here, we apply either full-field or anomaly nudging in the ocean. We apply full fields from two different ocean reanalyses. We show that nudging of temperature and salinity in the ocean modifies OHC and also induces changes in mass and heat transports associated with the Atlantic meridional overturning circulation. In the North Atlantic, the OHC tendencies from the ocean reanalyses are adopted quite well by our forecast system, regardless of using full fields or anomalies. The resulting ocean transport, on the other hand, reveals considerable differences between full-field and anomaly nudging. In the assimilations, the ocean heat transport together with the net heat exchange at the surface does not correspond to the induced OHC tendencies, the heat budget is not closed. Discrepancies in the budget in the cases of full-field nudging exceed those in the case of anomaly nudging by a factor of 2-3. The nudging-induced changes in ocean transport continue to be present in the free running hindcasts, a clear expression of memory in our coupled system. In forecast mode, on annual to inter-annual scales, ocean heat ransport appears to be the dominant driver of North Atlantic OHC. Thus, we ascribe a significant reduction in OHC prediction skill when using full-field instead of anomaly initialization to the poor initialization of the ocean flow.
Oceanic Circulation. A Programmed Unit of Instruction.
ERIC Educational Resources Information Center
Marine Maritime Academy, Castine.
This booklet contains a programmed lesson on oceanic circulation. It is designed to allow students to progress through the subject at their own speed. Since it is written in linear format, it is suggested that students proceed through the program from "frame" to succeeding "frame." Instructions for students on how to use the booklet are included.…
NASA Astrophysics Data System (ADS)
Lau, William Ka-Ming; Kim, Kyu-Myong
2017-05-01
In this paper, we have compared and contrasted competing influences of greenhouse gases (GHG) warming and aerosol forcing on Asian summer monsoon circulation and rainfall based on CMIP5 historical simulations. Under GHG-only forcing, the land warms much faster than the ocean, magnifying the pre-industrial climatological land-ocean thermal contrast and hemispheric asymmetry, i.e., warmer northern than southern hemisphere. A steady increasing warm-ocean-warmer-land (WOWL) trend has been in effect since the 1950's substantially increasing moisture transport from adjacent oceans, and enhancing rainfall over the Asian monsoon regions. However, under GHG warming, increased atmospheric stability due to strong reduction in mid-tropospheric and near surface relative humidity coupled to an expanding subsidence areas, associated with the Deep Tropical Squeeze (DTS, Lau and Kim, 2015b) strongly suppress monsoon convection and rainfall over subtropical and extratropical land, leading to a weakening of the Asian monsoon meridional circulation. Increased anthropogenic aerosol emission strongly masks WOWL, by over 60% over the northern hemisphere, negating to a large extent the rainfall increase due to GHG warming, and leading to a further weakening of the monsoon circulation, through increasing atmospheric stability, most likely associated with aerosol solar dimming and semi-direct effects. Overall, we find that GHG exerts stronger positive rainfall sensitivity, but less negative circulation sensitivity in SASM compared to EASM. In contrast, aerosols exert stronger negative impacts on rainfall, but less negative impacts on circulation in EASM compared to SASM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashgarian, M; Guilderson, T P
We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of the invasion of fossil fuel CO{sub 2} and bomb {sup 14}C into the atmosphere and surface oceans. Therefore the {Delta}{sup 14}C data that are produced in this study can be used to validate the ocean uptake of fossil fuel CO2 in coupled ocean-atmosphere models. This study takes advantage of the quasi-conservative nature of {sup 14}C as a water mass tracer by using {Delta}{sup 14}C time series in corals to identify changes in the shallow circulation of the Pacific. Although the data itself provides fundamental information on surface water mass movement the true strength is a combined approach which is greater than the individual parts; the data helps uncover deficiencies in ocean circulation models and the model results place long {Delta}{sup 14}C time series in a dynamic framework which helps to identify those locations where additional observations are most needed.« less
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Hector Timerman, Foreign Minister of Argentina, Buenos Aires, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
2011-06-08
The Delta II rocket with it's Aquarius/SAC-D spacecraft payload is seen shortly after the service structure is rolled back on Thursday, June 9, 2011, at Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, set to launch June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
2011-06-08
The Delta II rocket with it's Aquarius/SAC-D spacecraft payload is seen as the service structure is rolled back on Thursday, June 9, 2011, at Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, set to launch June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Decadal predictions of the North Atlantic CO2 uptake.
Li, Hongmei; Ilyina, Tatiana; Müller, Wolfgang A; Sienz, Frank
2016-03-30
As a major CO2 sink, the North Atlantic, especially its subpolar gyre region, is essential for the global carbon cycle. Decadal fluctuations of CO2 uptake in the North Atlantic subpolar gyre region are associated with the evolution of the North Atlantic Oscillation, the Atlantic meridional overturning circulation, ocean mixing and sea surface temperature anomalies. While variations in the physical state of the ocean can be predicted several years in advance by initialization of Earth system models, predictability of CO2 uptake has remained unexplored. Here we investigate the predictability of CO2 uptake variations by initialization of the MPI-ESM decadal prediction system. We find large multi-year variability in oceanic CO2 uptake and demonstrate that its potential predictive skill in the western subpolar gyre region is up to 4-7 years. The predictive skill is mainly maintained in winter and is attributed to the improved physical state of the ocean.
Warm and Saline Events Embedded in the Meridional Circulation of the Northern North Atlantic
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.
2011-01-01
Ocean state estimates from 1958 to 2005 from the Simple Ocean Assimilation System (SODA) system are analyzed to understand circulation between subtropical and subpolar Atlantic and their connection with atmospheric forcing. This analysis shows three periods (1960s, around 1980, and 2000s) with enhanced warm, saline waters reaching high latitudes, alternating with freshwater events originating at high latitudes. It complements surface drifter and altimetry data showing the subtropical -subpolar exchange leading to a significant temperature and salinity increase in the northeast Atlantic after 2001. The warm water limb of the Atlantic meridional overturning cell represented by SODA expanded in density/salinity space during these warm events. Tracer simulations using SODA velocities also show decadal variation of the Gulf Stream waters reaching the subpolar gyre and Nordic seas. The negative phase of the North Atlantic Oscillation index, usually invoked in such variability, fails to predict the warming and salinization in the early 2000s, with salinities not seen since the 1960s. Wind stress curl variability provided a linkage to this subtropical/subpolar gyre exchange as illustrated using an idealized two ]layer circulation model. The ocean response to the modulation of the climatological wind stress curl pattern was found to be such that the northward penetration of subtropical tracers is enhanced when amplitude of the wind stress curl is weaker than normal. In this case both the subtropical and subpolar gyres weaken and the subpolar density surfaces relax; hence, the polar front moves westward, opening an enhanced northward access of the subtropical waters in the eastern boundary current.
Influence of Sea Ice on the Thermohaline Circulation in the Arctic-North Atlantic Ocean
NASA Technical Reports Server (NTRS)
Mauritzen, Cecilie; Haekkinen, Sirpa
1997-01-01
A fully prognostic coupled ocean-ice model is used to study the sensitivity of the overturning cell of the Arctic-North-Atlantic system to sea ice forcing. The strength of the thermohaline cell will be shown to depend on the amount of sea ice transported from the Arctic to the Greenland Sea and further to the subpolar gyre. The model produces a 2-3 Sv increase of the meridional circulation cell at 25N (at the simulation year 15) corresponding to a decrease of 800 cu km in the sea ice export from the Arctic. Previous modeling studies suggest that interannual and decadal variability in sea ice export of this magnitude is realistic, implying that sea ice induced variability in the overturning cell can reach 5-6 Sv from peak to peak.
The Potential for Predicting Precipitation on Seasonal-to-Interannual Timescales
NASA Technical Reports Server (NTRS)
Koster, R. D.
1999-01-01
The ability to predict precipitation several months in advance would have a significant impact on water resource management. This talk provides an overview of a project aimed at developing this prediction capability. NASA's Seasonal-to-Interannual Prediction Project (NSIPP) will generate seasonal-to-interannual sea surface temperature predictions through detailed ocean circulation modeling and will then translate these SST forecasts into forecasts of continental precipitation through the application of an atmospheric general circulation model and a "SVAT"-type land surface model. As part of the process, ocean variables (e.g., height) and land variables (e.g., soil moisture) will be updated regularly via data assimilation. The overview will include a discussion of the variability inherent in such a modeling system and will provide some quantitative estimates of the absolute upper limits of seasonal-to-interannual precipitation predictability.
NASA Astrophysics Data System (ADS)
Dukhovskoy, D. S.; Chassignet, E. P.; Hogan, P. J.; Metzger, E. J.; Posey, P.; Smedstad, O. M.; Stefanova, L. B.; Wallcraft, A. J.
2016-12-01
The great potential of numerical models to provide a high-resolution continuous picture of the environmental characteristics of the Arctic system is related to the problem of reliability and accuracy of the simulations. Recent Arctic Ocean model intercomparison projects have identified substantial disagreements in water mass distribution and circulation among the models over the last two decades. In situ and satellite observations cannot yield enough continuous in time and space information to interpret the observed changes in the Arctic system. Observations combined with Arctic Ocean models via data assimilation provide perhaps the most complete knowledge about the state of the Arctic system. We use outputs from the US Navy Global Ocean Forecast System (20-year reanalysis + analysis) to investigate several hypotheses that have been put forward regarding the current state and recent changes in the Arctic Ocean. The system is based on the 0.08-degree HYbrid Coordinate Ocean Model (HYCOM) and can be run with two-way coupling to the Los Alamos Community Ice CodE (CICE) or with an energy-loan ice model. Observations are assimilated by the Navy Coupled Ocean Data Assimilation (NCODA) algorithm. HYCOM temperature and salinity fields are shown to be in good agreement with observational data in the Arctic and North Atlantic. The model reproduces changes in the freshwater budget in the Arctic as reported in other studies. The modeled freshwater fluxes between the Arctic Ocean and the North Atlantic are analyzed to document and discuss the interaction between the two regions over the last two decades.
Are Surface Waters Around Greenland Getting Saltier in a Warming Climate?
NASA Astrophysics Data System (ADS)
Vinogradova, N. T.; Ponte, R. M.; Piecuch, C. G.; Little, C. M.
2016-02-01
During the past two decades, most surface waters around Greenland ice sheet and in the Nordic Seas became significantly saltier. Given the fact that these waters feed the North Atlantic thermohaline circulation, an increase in surface salinity, which can exceed 0.2 psu in places, might have an important impact on the global ocean circulation and on future projections of the climate state. Surface salinification may seem counter-intuitive to the reported long-term increase in freshwater supply to the region from river discharge and ice melting, sparking debates about whether the freshening of the subpolar gyre has ceased, and whether the recent salinification, if continued, will be able to forestall the projected slowdown of the overturning circulation. Here we assess what controls contemporary salinity changes by examining various terms of the salinity budget, including the dilution effect due to air-sea fluxes of freshwater, fluxes of salt due to sea ice formation/melting, and ocean fluxes of salinity associated with advective and diffusive processes. We use an ocean state estimate produced by the ECCO consortium to consider the budgets over the period 1992-2011. ECCO estimates produce salinity fields close to the observations and, crucial for our purposes, permit closed budget diagnostics of salinity and respective fluxes. The budgets are formulated within the entire water column in order to examine three-dimensional structure of freshwater storage and establish a link between the surface and upper-ocean change in near-Greenland waters. Over the past two decades, patterns of change are evident in all budget terms, with ocean fluxes either offsetting or enhancing surface forcing, including the effects of sea ice dynamics. Interpretation is provided within the context of a changing climate, including intensification of the hydrological cycle and weakening of ocean transports and overturning, as well as natural decadal-to-interdacadal variability present in the system.
NASA Astrophysics Data System (ADS)
Marshall, J.; Ferreira, D.; O'Gorman, P. A.; Seager, S.
2011-12-01
One method of studying earth-like exoplanets is to view earth as an exoplanet and consider how its climate might change if, for example, its obliquity were ranged from 0 to 90 degrees. High values of obliquity challenge our understanding of climate dynamics because if obliquity exceeds 54 degrees, then polar latitudes receive more energy per unit area than do equatorial latitudes. Thus the pole will become warmer than the equator and we are led to consider a world in which the meridional temperature gradients, and associated prevailing zonal wind, have the opposite sign to the present earth. The problem becomes even richer when one considers the dynamics of an ocean, should one exist below. A central question for the ocean circulation is: what is the pattern of surface winds at high obliquities?, for it is the winds that drive the ocean currents and thermohaline circulation. How do atmospheric weather systems growing in the easterly sheared middle latitude jets determine the surface wind pattern? Should one expect middle latitude easterly winds? Finally, a key aspect with regard to habitability is to understand how the atmosphere and ocean of this high obliquity planet work cooperatively together to transport energy meridionally, mediating the warmth of the poles and the coldness of the equator. How extreme are seasonal temperature fluctuations? Should one expect to find ice around the equator? Possible answers to some of these questions have been sought by experimentation with a coupled atmosphere, ocean and sea-ice General Circulation Model of an earth-like aquaplanet: i.e. a planet like our own but on which there is only an ocean but no land. The coupled climate is studied across a range of obliquities (23.5, 54 and 90). We present some of the descriptive climatology of our solutions and how they shed light on the deeper questions of coupled climate dynamics that motivate them. We also review what they tell us about habitability on such planets.
NASA Astrophysics Data System (ADS)
Cohen-Solal, E.; Le Treut, H.
We describe the initial bias of the climate simulated by a coupled ocean-atmosphere model. The atmospheric component is a state-of-the-art atmospheric general circulation model, whereas the ocean component is limited to the upper ocean and includes a mixed layer whose depth is computed by the model. As the full ocean general circulation is not computed by the model, the heat transport within the ocean is prescribed. When modifying the prescribed heat transport we also affect the initial drift of the model. We analyze here one of the experiments where this drift is very strong, in order to study the key processes relating the changes in the ocean transport and the evolution of the model's climate. In this simulation, the ocean surface temperature cools by 1.5°C in 20 y. We can distinguish two different phases. During the first period of 5 y, the sea surface temperatures become cooler, particularly in the intertropical area, but the outgoing longwave radiation at the top-of-the-atmosphere increases very quickly, in particular at the end of the period. An off-line version of the model radiative code enables us to decompose this behaviour into different contributions (cloudiness, specific humidity, air and surface temperatures, surface albedo). This partitioning shows that the longwave radiation evolution is due to a decrease of high level cirrus clouds in the intertropical troposphere. The decrease of the cloud cover also leads to a decrease of the planetary albedo and therefore an increase of the net short wave radiation absorbed by the system. But the dominant factor is the strong destabilization by the longwave cooling, which is able to throw the system out of equilibrium. During the remaining of the simulation (second phase), the cooling induced by the destabilization at the top-of-the-atmosphere is transmitted to the surface by various processes of the climate system. Hence, we show that small variations of ocean heat transport can force the model from a stable to an unstable state via atmospheric processes which arise wen the tropics are cooling. Even if possibly overestimated by our GCM, this mechanism may be pertinent to the maintenance of present climatic conditions in the tropics. The simplifications inherent in our model's design allow us to investigate the mechanism in some detail.
Decadal Prediction Efforts in GMAO (Global Modeling and Assimilation Office)
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Suarez, Max; Schubert, Siegfried
2010-01-01
The Global Modeling and Assimilation Office (GMAO) plans to use our GEOS-5 atmosphere-ocean general circulation model (AOGCM) to explore issues associated with predictability on decadal time scales and to contribute to the decadal prediction project that is part ofCMIP5. The GEOS-5 AOGCM is comprised of the GEOS-5 AGCM with the Catchment Land Surface Model, coupled to GFDL's MOM, version 4. We have assimilation systems for both the atmosphere and ocean. For our climate prediction efforts, the atmosphere will be initialized from the GEOS-5 Modem Era Retrospective-analysis for Research and Applications (MERRA), available from 1979 to present at 112 resolution, and from 1948 to present at 2 resolution. The ocean assimilation is conducted within the coupled model framework, using the MERRA as a constraint for both the atmosphere and the ocean. The decadal prediction experiments will be conducted with a 1 atmosphere and a 112 ocean. Some initial results will be presented, focusing on initialization aspects of the GEOS-5 system.
Lachniet, Matthew S; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J; Vazquez-Selem, Lorenzo
2013-06-04
The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18-24 cal ka B.P.) monsoon with similar δ(18)O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9-11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka.
Lachniet, Matthew S.; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J.; Vazquez-Selem, Lorenzo
2013-01-01
The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18–24 cal ka B.P.) monsoon with similar δ18O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9–11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka. PMID:23690596
Passive, off-axis convection through the southern flank of the Costa Rica rift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, A.T.; Becker, K.; Narasimhan, T.N.
1990-06-10
Pore fluids are passively convecting through young oceanic sediments and crust around Deep Sea Drilling Project (DSDP) site 504 on the southern flank of the Costa Rica Rift, as inferred from a variety of geological, geochemical, and geothermal observations. The presence of a fluid circulation system is supported by new data collected on Ocean Drilling Program (ODP) leg 111 and a predrilling survey cruise over the heavily sedimented, 5.9 Ma site; during the latter, elongated heat flow anomalies were mapped subparallel to structural strike, with individual measurements of twice the regional mean value, and strong lateral and vertical geochemical gradientsmore » were detected in pore waters squeezed from sediment cores. Also, there is a strong correlation between heat flow, bathymetry, sediment thickness, and inferred fluid velocities up through the sediments. Although the forces which drive passive circulation are not well understood, it has generally been thought that the length scale of heat flow variations provides a good indication of the depth of hydrothermal circulation within the oceanic crust. The widely varied geothermal and hydrogeological observations near site 504 are readily explained by a model which combines (1) basement relief, (2) irregular sediment drape, (3) largely conductive heat transfer through the sediments overlying the crust, and (4) thermal and geochemical homogenization of pore fluids at the sediment/basement interface, which results from (5) topographically induced, passive hydrothermal circulation with large aspect ratio, convection cells. This convection involves mainly the permeable, upper 200-300 m of crust; the deeper crust is not involved.« less
NASA Astrophysics Data System (ADS)
Wallmann, K.; Schneider, B.; Sarnthein, M.
2016-02-01
We have developed and employed an Earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus (DP), reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC, and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, low-stands led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to inferred shoaling of Atlantic meridional overturning circulation and more efficient utilization of nutrients in the Southern Ocean. The diminished ventilation of deep water in the glacial Atlantic and Southern Ocean led to significant 14C depletions with respect to the atmosphere. According to our model, the deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in nutrient utilization in the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 can be explained by fast changes in ocean dynamics and nutrient utilization whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Zlotnicki, V.; Holland, W. R.; Malanotte-Rizzoli, P.
1991-01-01
The overall objectives of the proposed investigation are to study the dynamics of the large-scale recirculating cells of water in the ocean, which are loosely defined as 'gyres' in this study. A gyre is normally composed of a swift western boundary current (e.g., the Gulf Stream and the Kuroshio), a tight recirculating cell attached to the current, and a large-scale sluggish return flow. The water, of course, is not entirely recirculating within a gyre. The exchange of water among gyres is an important process in maintaining the meridional heat transport of the ocean. The gyres constitute a major mode of water movement in the ocean and play significant roles in the global climate system.
A Microscale View of Mixing and Overturning Across the Antarctic Circumpolar Current
NASA Astrophysics Data System (ADS)
Naveira Garabato, A.; Polzin, K. L.; Ferrari, R. M.; Zika, J. D.; Forryan, A.
2014-12-01
The meridional overturning circulation and stratication of the global ocean are shaped critically by processes in the Southern Ocean. The zonally unblocked nature of the Antarctic Circumpolar Current (ACC) confers the region with a set of special dynamics that ultimately results in the focussing therein of large vertical exchanges between layers spanning the global ocean pycnocline. These vertical exchanges are thought to be mediated by oceanic turbulent motions (associated with mesoscale eddies and small-scale turbulence), yet the vastness of the Southern Ocean and the sparse and intermittent nature of turbulent processes make their relative roles and large-scale impacts extremely difficult to assess.Here, we address the problem from a new angle, and use measurements of the centimetre-scale signatures of mesoscale eddies and small-scale turbulence obtained during the DIMES experiment to determine the contributions of those processes to sustaining large-scale meridional overturning across the ACC. We find that mesoscale eddies and small-scale turbulence play complementary roles in forcing a meridional circulation of O(1 mm / s) across the Southern Ocean, and that their roles are underpinned by distinct and abrupt variations in the rates at which they mix water parcels. The implications for our understanding of the Southern Ocean circulation's sensitivity to climatic change will be discussed.
Break-up of the Atlantic deep western boundary current into eddies at 8 degrees S.
Dengler, M; Schott, F A; Eden, C; Brandt, P; Fischer, J; Zantopp, R J
2004-12-23
The existence in the ocean of deep western boundary currents, which connect the high-latitude regions where deep water is formed with upwelling regions as part of the global ocean circulation, was postulated more than 40 years ago. These ocean currents have been found adjacent to the continental slopes of all ocean basins, and have core depths between 1,500 and 4,000 m. In the Atlantic Ocean, the deep western boundary current is estimated to carry (10-40) x 10(6) m3 s(-1) of water, transporting North Atlantic Deep Water--from the overflow regions between Greenland and Scotland and from the Labrador Sea--into the South Atlantic and the Antarctic circumpolar current. Here we present direct velocity and water mass observations obtained in the period 2000 to 2003, as well as results from a numerical ocean circulation model, showing that the Atlantic deep western boundary current breaks up at 8 degrees S. Southward of this latitude, the transport of North Atlantic Deep Water into the South Atlantic Ocean is accomplished by migrating eddies, rather than by a continuous flow. Our model simulation indicates that the deep western boundary current breaks up into eddies at the present intensity of meridional overturning circulation. For weaker overturning, continuation as a stable, laminar boundary flow seems possible.
Was ocean acidification responsible for history's greatest extinction?
NASA Astrophysics Data System (ADS)
Schultz, Colin
2011-11-01
Two hundred fifty million years ago, the world suffered the greatest recorded extinction of all time. More than 90% of marine animals and a majority of terrestrial species disappeared, yet the cause of the Permian-Triassic boundary (PTB) dieoff remains unknown. Various theories abound, with most focusing on rampant Siberian volcanism and its potential consequences: global warming, carbon dioxide poisoning, ocean acidification, or the severe drawdown of oceanic dissolved oxygen levels, also known as anoxia. To narrow the range of possible causes, Montenegro et al. ran climate simulations for PTB using the University of Victoria Earth System Climate Model, a carbon cycle-climate coupled general circulation model.
NASA Astrophysics Data System (ADS)
Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.
2010-12-01
The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur along the equator and coastal regions. A qualitative analysis of sea surface temperature (MODIS) and sea surface height (CCAR) shows that changes in Argo temperature and salinity data are associated with seasonal temperature and changes in evaporation as well as coastal upwelling. Eddy circulation is seen in the subsurface in the Oman Sea and Arabian Sea west of the Murray Ridge in addition to the seasonal influence of the Persian Gulf and Red Sea.
Three-dimensional circulation dynamics of along-channel flow in stratified estuaries
NASA Astrophysics Data System (ADS)
Musiak, Jeffery Daniel
Estuaries are vital because they are the major interface between humans and the oceans and provide valuable habitat for a wide range of organisms. Therefore it is important to model estuarine circulation to gain a better comprehension of the mechanics involved and how people effect estuaries. To this end, this dissertation combines analysis of data collected in the Columbia River estuary (CRE) with novel data processing and modeling techniques to further the understanding of estuaries that are strongly forced by riverflow and tides. The primary hypothesis tested in this work is that the three- dimensional (3-D) variability in along-channel currents in a strongly forced estuary can be largely accounted for by including the lateral variations in density and bathymetry but neglecting the secondary, or lateral, flow. Of course, the forcing must also include riverflow and oceanic tides. Incorporating this simplification and the modeling ideas put forth by others with new modeling techniques and new ideas on estuarine circulation will allow me to create a semi-analytical quasi 3-D profile model. This approach was chosen because it is of intermediate complexity to purely analytical models, that, if tractable, are too simple to be useful, and 3-D numerical models which can have excellent resolution but require large amounts of time, computer memory and computing power. Validation of the model will be accomplished using velocity and density data collected in the Columbia River Estuary and by comparison to analytical solutions. Components of the modeling developed here include: (1) development of a 1-D barotropic model for tidal wave propagation in frictionally dominated systems with strong topography. This model can have multiple tidal constituents and multiply connected channels. (2) Development and verification of a new quasi 3-D semi-analytical velocity profile model applicable to estuarine systems which are strongly forced by both oceanic tides and riverflow. This model includes diurnal and semi-diurnal tidal and non- linearly generated overtide circulation and residual circulation driven by riverflow, baroclinic forcing, surface wind stress and non-linear tidal forcing. (3) Demonstration that much of the lateral variation in along-channel currents is caused by variations in along- channel density forcing and bathymetry.
Impacts of changing ocean circulation on the distribution of marine microplastic litter.
Welden, Natalie Ac; Lusher, Amy L
2017-05-01
Marine plastic pollution is currently a major scientific focus, with attention paid to its distribution and impacts within ecosystems. With recent estimates indicating that the mass of plastic released to the marine environment may reach 250 million metric tons by 2025, the effects of plastic on our oceans are set to increase. Distribution of microplastics, those plastics measuring less than 5 mm, are of increasing concern because they represent an increasing proportion of marine litter and are known to interact with species in a range of marine habitats. The local abundance of microplastic is dependent on a complex interaction between the scale of local plastic sources and prevailing environmental conditions; as a result, microplastic distribution is highly heterogeneous. Circulation models have been used to predict plastic distribution; however, current models do not consider future variation in circulation patterns and weather systems caused by a changing climate. In this study, we discuss the potential impacts of global climate change on the abundance and distribution of marine plastic pollution. Integr Environ Assess Manag 2017;13:483-487. © 2017 SETAC. © 2017 SETAC.
Effect of gravity waves on the North Atlantic circulation
NASA Astrophysics Data System (ADS)
Eden, Carsten
2017-04-01
The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.
The importance of altimeter and scatterometer data for ocean prediction
NASA Technical Reports Server (NTRS)
Hurlburt, H. E.
1984-01-01
The prediction of ocean circulation using satellite altimeter data is discussed. Three classes of oceanic response to atmospheric forcing are outlined and examined. Storms, surface waves, eddies, and ocean currents were evaluated in terms of forecasting time requirements. Scatterometer and radiometer applications to ocean prediction are briefly reviewed.
NASA Astrophysics Data System (ADS)
Dentith, Jennifer E.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Tindall, Julia C.; Smith, Robin S.
2018-05-01
Low-resolution, complex general circulation models (GCMs) are valuable tools for studying the Earth system on multi-millennial timescales. However, slowly evolving salinity drifts can cause large shifts in climatic and oceanic regimes over thousands of years. We test two different schemes for neutralising unforced salinity drifts in the FAMOUS GCM: surface flux correction and volumetric flux correction. Although both methods successfully maintain a steady global mean salinity, local drifts and subsequent feedbacks promote cooling (≈ 4 °C over 6000 years) and freshening (≈ 2 psu over 6000 years) in the North Atlantic Ocean, and gradual warming (≈ 0.2 °C per millennium) and salinification (≈ 0.15 psu per millennium) in the North Pacific Ocean. Changes in the surface density in these regions affect the meridional overturning circulation (MOC), such that, after several millennia, the Atlantic MOC (AMOC) is in a collapsed state, and there is a strong, deep Pacific MOC (PMOC). Furthermore, the AMOC exhibits a period of metastability, which is only identifiable with run lengths in excess of 1500 years. We also compare simulations with two different land surface schemes, demonstrating that small biases in the surface climate may cause regional salinity drifts and significant shifts in the MOC (weakening of the AMOC and the initiation then invigoration of PMOC), even when the global hydrological cycle has been forcibly closed. Although there is no specific precursor to the simulated AMOC collapse, the northwest North Pacific and northeast North Atlantic are important areas that should be closely monitored for trends arising from such biases.
Mesoscale Effects on Carbon Export: A Global Perspective
NASA Astrophysics Data System (ADS)
Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.
2018-04-01
Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (<2%) however, the impact on local export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.
Regular network model for the sea ice-albedo feedback in the Arctic.
Müller-Stoffels, Marc; Wackerbauer, Renate
2011-03-01
The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.
van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M
2007-05-01
We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene
Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; Jaccard, Samuel L.; Tiedemann, Ralf; Haug, Gerald H.
2017-01-01
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming. PMID:28924606
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene
Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; ...
2017-09-13
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less
Numerical analysis of seawater circulation in carbonate platforms: I. Geothermal convection
Sanford, W.E.; Whitaker, F.F.; Smart, P.L.; Jones, G.
1998-01-01
Differences in fluid density between cold ocean water and warm ground water can drive the circulation of seawater through carbonate platforms. The circulating water can be the major source of dissolved constituents for diagenetic reactions such as dolomitization. This study was undertaken to investigate the conditions under which such circulation can occur and to determine which factors control both the flux and the patterns of fluid circulation and temperature distribution, given the expected ranges of those factors in nature. Results indicate that the magnitude and distribution of permeability within a carbonate platform are the most important parameters. Depending on the values of horizontal and vertical permeability, heat transport within a platform can occur by one of three mechanisms: conduction, forced convection, or free convection. Depth-dependent relations for porosity and permeability in carbonate platforms suggest circulation may decrease rapidly with depth. The fluid properties of density and viscosity are controlled primarily by their dependency on temperature. The bulk thermal conductivity of the rocks within the platform affects the conductive regime to some extent, especially if evaporite minerals are present within the section. Platform geometry has only a second-order effect on circulation. The relative position of sealevel can create surface conditions that range from exposed (with a fresh-water lens present) to shallow water (with hypersaline conditions created by evaporation in constricted flow conditions) to submerged or drowned (with free surface water circulation), but these boundary conditions and associated ocean temperature profiles have only a second-order effect on fluid circulation. Deep, convective circulation can be caused by horizon tal temperature gradients and can occur even at depths below the ocean bottom. Temperature data from deep holes in the Florida and Bahama platforms suggest that geothermal circulation is actively occurring today to depths as great as several kilometers.
Glacial-Interglacial Variability of Nd isotopes in the South Atlantic and Southern Ocean
NASA Astrophysics Data System (ADS)
Knudson, K. P.; Goldstein, S. L.; Pena, L.; Seguí, M. J.; Kim, J.; Yehudai, M.; Fahey, T.
2017-12-01
Understanding the relationship between meridional overturning circulation and climate is key to understanding the processes and feedbacks underlying future climate changes. North Atlantic Deep Water (NADW) represents a major water mass that participates in global oceanic circulation and undergoes substantial reorganization with climate changes on millennial and orbital timescales. Nd isotopes are semi-quantitative water mass tracers that reflect the mixing of end-member water masses, and their values in the Southern Ocean offer the ability to characterize NADW variability over time. Here, we present paleo-circulation records of Nd isotopes measured on fish debris and Fe-Mn encrusted foraminifera from ODP Sites 1090 (42° 54.82'S, 3702 m), and 1094 (53° 10.81'S, 2807 m). Site 1090 is located in the Cape Basin, SE Atlantic, near the lower boundary between NADW and Circumpolar Deep Water (CDW), while 1094 is in the Circumpolar Current. They are ideal locations to monitor changes in the export of NADW to the Southern Ocean. These new results build on previous work (Pena and Goldstein, 2014) to document meridional overturning changes in the Southern Ocean.
Influence of Continental Geometry on the Onset and Spatial Distribution of Monsoonal Precipitation
NASA Astrophysics Data System (ADS)
Hui, K. L.; Bordoni, S.
2017-12-01
Recent studies have shown that the rapid onset of the monsoon is due to a switch between a dynamical regime where the tropical circulation strength is controlled by eddy momentum fluxes, to a monsoon regime where the strength is more directly controlled by energetic constraints, which causes the monsoonal cross-equatorial cell to grow rapidly in strength and extent. While it is now widely accepted that land-sea contrast is not necessary to generate monsoons, the spatial distribution of land can still affect important features of monsoons. This study focuses on the influence of continental geometry on the monsoonal precipitation. We use an idealized aquaplanet model with a slab ocean, where land and ocean differ only by the mixed-layer depth of the slab ocean, which is two orders of magnitude smaller over land than over ocean. The model is run with different zonally symmetric configurations of Northern Hemispheric land that extends poleward from southern boundaries at various latitudes. Simulations with a continent extending to tropical latitudes are able to reproduce the monsoonal precipitation distribution and rapid onset well. For continents with more poleward southern boundaries and weaker hemispheric asymmetry, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. A local maximum in precipitation forms over the continent even when the continent does not extend into the deeper tropics, but this is primarily associated with local recycling from the saturated surface rather than moisture flux convergence by a deep and broad monsoonal circulation. Further analysis shows that a decrease in hemispheric asymmetry prevents the establishment of a reversed meridional gradient in lower-level moist static energy and, with it, a poleward displaced convergence zone. This suggests that in order to have the rapid onset of monsoonal precipitation, tropical regions of low thermal inertia may be necessary to facilitate the transition of the tropical circulation to a dynamical regime that restricts the degree to which eddy momentum fluxes influence the circulation strength and allows the cell the grow rapidly in strength and poleward extent. These results provide some useful insights for developing theories to better understand the mechanisms of rapid onset of monsoon systems worldwide.
The Errors Sources Affect to the Results of One-Way Nested Ocean Regional Circulation Model
NASA Astrophysics Data System (ADS)
Pham, S. V.
2016-02-01
Pham-Van Sy1, Jin Hwan Hwang2 and Hyeyun Ku3 Dept. of Civil & Environmental Engineering, Seoul National University, KoreaEmail: 1phamsymt@gmail.com (Corresponding author) Email: 2jinhwang@snu.ac.krEmail: 3hyeyun.ku@gmail.comAbstractThe Oceanic Regional Circulation Model (ORCM) is an essential tool in resolving highly a regional scale through downscaling dynamically the results from the roughly revolved global model. However, when dynamic downscaling from a coarse resolution of the global model or observations to the small scale, errors are generated due to the different sizes of resolution and lateral updating frequency. This research evaluated the effect of four main sources on the results of the ocean regional circulation model (ORCMs) during downscaling and nesting the output data from the ocean global circulation model (OGCMs). Representative four error sources should be the way of the LBC formulation, the spatial resolution difference between driving and driven data, the frequency for up-dating LBCs and domain size. Errors which are contributed from each error source to the results of the ORCMs are investigated separately by applying the Big-Brother Experiment (BBE). Within resolution of 3km grid point of the ORCMs imposing in the BBE framework, it clearly exposes that the simulation results of the ORCMs significantly depend on the domain size and specially the spatial and temporal resolution of lateral boundary conditions (LBCs). The ratio resolution of spatial resolution between driving data and driven model could be up to 3, the updating frequency of the LBCs can be up to every 6 hours per day. The optimal domain size of the ORCMs could be smaller than the OGCMs' domain size around 2 to 10 times. Key words: ORCMs, error source, lateral boundary conditions, domain size Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast" and "Development of Technology for CO2 Marine Geological Storage". We also thank to the administrative supports of the Integrated Research Institute of Construction and Environmental Engineering of the Seoul National University.
Dynamical balance in the Indonesian Seas circulation
NASA Astrophysics Data System (ADS)
Burnett, William H.; Kamenkovich, Vladimir M.; Jaffe, David A.; Gordon, Arnold L.; Mellor, George L.
2000-09-01
A high resolution, four-open port, non-linear, barotropic ocean model (2D POM) is used to analyze the Indonesian Seas circulation. Both local and overall momentum balances are studied. It is shown that geostrophy holds over most of the area and that the Pacific-Indian Ocean pressure difference is essentially balanced by the resultant of pressure forces acting on the bottom.
Application of classical thermodynamic principles to the study of oceanic overturning circulation
NASA Astrophysics Data System (ADS)
Gade, Herman G.; Gustafsson, Karin E.
2004-08-01
Stationary deep-reaching overturning circulation in the ocean is studied by means of classical thermodynamic methods employing closed cycles in pV-space (p, pressure; V, volume). From observed (or computed) density fields, the pV-method may be used to infer the power required for driving a circulation with a given mass flux, or, if the available power is known, the resulting mass flux of the circulation may be assessed. Here, the circulation is assumed to be driven by diapycnal mixing caused by internal disturbances of meteorological and tidal origin and from transfer of geothermal heat through the ocean bottom. The analysis is developed on the basis that potential energy produced by any of these mechanisms is available for driving a circulation of the water masses above its level of generation. The method also takes into account secondary generated potential energy resulting from turbulence developed by the ensuing circulation.Models for different types of circulation are developed and applied to four types of hemispheric circulation with deep-water formation, convection and sinking in an idealized North Atlantic. Our calculations show that the energy input must exceed 15 J kg
1 for a cycle to the bottom to exist. An energy supply of 2 TW would in that case support a constant vertical mass flux of 3.2 G kg s
1 (3.1 Sv). Computed mass fluxes reaching the surface in the subtropics, corresponding to the same energy input, range between 2.3 5.2 G kg s
1, depending on the type of convection/sinking involved. Much higher flux values ensue with ascending water masses reaching the surface at higher geographical latitudes.The study reveals also that compressibility of sea water does not enhance the circulation. An incompressible system, operating within the same mass flux and temperature range, would require about 25% less energy supply, provided that the circulation comprises the same water masses. It is furthermore shown that the meridional distribution of surface salinity, with higher values in the tropics and lower values in regions of deep-water formation, actually enhances the circulation in comparison with one of a more uniform surface salinity. With a homohaline North Atlantic, operating within the same temperature range as presently observed, an increase of 66% of power supply would be required in order that the mass flux of the overturning circulation should remain the same.
Climate Ocean Modeling on Parallel Computers
NASA Technical Reports Server (NTRS)
Wang, P.; Cheng, B. N.; Chao, Y.
1998-01-01
Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.
Decadal variations of Pacific North Equatorial Current bifurcation from multiple ocean products
NASA Astrophysics Data System (ADS)
Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin
2014-02-01
In this study, we examine the decadal variations of the Pacific North Equatorial Current (NEC) bifurcation latitude (NBL) averaged over upper 100 m and underlying dynamics over the past six decades using 11 ocean products, including seven kinds of ocean reanalyzes based on ocean data assimilation systems, two kinds of numerical simulations without assimilating observations and two kinds of objective analyzes based on in situ observations only. During the period of 1954-2007, the multiproduct mean of decadal NBL anomalies shows maxima around 1965/1966, 1980/1981, 1995/1996, and 2003/2004, and minima around 1958, 1971/1972, 1986/1987, and 2000/2001, respectively. The NBL decadal variations are related to the first Empirical Orthogonal Function mode of decadal anomalies of sea surface height (SSH) in the northwestern tropical Pacific Ocean, which shows spatially coherent variation over the whole region and explains most of the total variance. Further regression and composite analyzes indicate that northerly/southerly NBL corresponds to negative/positive SSH anomalies and cyclonic/anticyclonic gyre anomalies in the northwestern tropical Pacific Ocean. These decadal circulation variations and thus the decadal NBL variations are governed mostly by the first two vertical modes and attribute the most to the first baroclinic mode. The NBL decadal variation is highly positively correlated with the tropical Pacific decadal variability (TPDV) around the zero time lag. With a lead of about half the decadal cycle the NBL displays closer but negative relationship to TPDV in four ocean products, possibly manifesting the dynamical role of the circulation in the northwestern tropical Pacific in the phase-shifting of TPDV.
TOPEX watershed coming in oceanography
NASA Technical Reports Server (NTRS)
Cleven, G. C.; Neilson, R. A.; Yamarone, C. A., Jr.
1983-01-01
The NASA Ocean Topography Experiment (TOPEX) will use precision radar altimetry to determine topographic features of the global oceans from which currents may be deduced. TOPEX will coincide with the World Ocean Circulation Experiment (WOCE), which will be conducted at the end of this decade and shall involve ships, fixed and drifting buoys, aircraft observations, and satellite remote sensing, to resolve fundamental questions about the flow of water in the global ocean. TOPEX will contribute to WOCE the measurement of satellite height above the sea surface, and the precise radial position above a reference ellipsoid for the earth. The combination of these two measurements with the marine geoid yields the topographic data sought. Three years of topographic data, together with conventional oceanographic data and theoretical ocean models, will be needed to derive the mean and variable components of ocean circulation.
NASA Astrophysics Data System (ADS)
Bracco, Annalisa; Kucharski, Fred; Molteni, Franco; Hazeleger, Wilco; Severijns, Camiel
2007-04-01
This study investigates how accurately the interannual variability over the Indian Ocean basin and the relationship between the Indian summer monsoon and the El Niño Southern Oscillation (ENSO) can be simulated by different modelling strategies. With a hierarchy of models, from an atmospherical general circulation model (AGCM) forced by observed SST, to a coupled model with the ocean component limited to the tropical Pacific and Indian Oceans, the role of heat fluxes and of interactive coupling is analyzed. Whenever sea surface temperature anomalies in the Indian basin are created by the coupled model, the inverse relationship between the ENSO index and the Indian summer monsoon rainfall is recovered, and it is preserved if the atmospherical model is forced by the SSTs created by the coupled model. If the ocean model domain is limited to the Indian Ocean, changes in the Walker circulation over the Pacific during El-Niño years induce a decrease of rainfall over the Indian subcontinent. However, the observed correlation between ENSO and the Indian Ocean zonal mode (IOZM) is not properly modelled and the two indices are not significantly correlated, independently on season. Whenever the ocean domain extends to the Pacific, and ENSO can impact both the atmospheric circulation and the ocean subsurface in the equatorial Eastern Indian Ocean, modelled precipitation patterns associated both to ENSO and to the IOZM closely resemble the observations.
NASA Astrophysics Data System (ADS)
Galy, A.; Carder, E.; Elderfield, H.
2006-12-01
It has been long recognised that the input of Mg in the ocean by river is removed by precipitation of Mg-rich bearing phases, either directly from the ocean such as dolomite or through hydrothermal circulation in the oceanic crust. The sampling of hydrothermal fluids demonstrated the efficiency of Mg consumption by the alteration of the oceanic crust, even at temperatures as low as 15°. For high-temperature fluids vented through black or white smokers in the vicinity of the ridge, the Mg concentration is up to 50 time lower than in seawater, and the close relationship between chlorine and Mg led to the idea that seawater was feeding the hydrothermal system and that Mg is quantitatively removed from it during high-T° alteration, the so called zero Mg hypothesis. Despite some hint for a non zero Mg hydrothermal end-member for a handful sites, the low concentration of Mg in oceanic hydrothermal fluids (around 1 mmol/l) has been mainly attributed to contamination by seawater during the sampling. Here we present Mg isotopic composition of 14 seawater samples from the Atlantic, Pacific and Indian Oceans and the Mediterranean and Red Seas and covering a range of depth of almost 5km and 26 hydrothermal fluids from 7 sites in the Atlantic and Pacific Oceans with temperature from 15° to 380°C. We find the magnesium isotope composition of seawater to be constant, with a δ^{26}Mg = -0.82±0.10 ‰ relative to the DSM3 standard. This value is consistent with a long residence time for Mg in seawater. In addition, out of the 26 hydrothermal fluids studied, more than 58% differ from seawater for their Mg isotopic composition by more than 2σ. This number rises up to 88% at 2σmean level and the shift is systematic with the fluids being either indistinguishable from seawater or enriched in light isotopes by up to 2.4‰ in δ^{26}Mg. This clearly demonstrates that fluids having low Mg concentrations are not solely bearing Mg added by contamination during sampling. The isotopic and concentration data are consistent with the preferential incorporation of heavy isotopes of Mg during the weathering and already similar to the mechanisms found in soil (Tipper et al., 2006a, doi:10.1016/j.epsl.2006.04.033). The fractionation factor (α) is around 1.001 for the high-T° fluids, while the low temperature fluids, samples off axis during the ODP Leg 168 (Est of Juan de Fuca Ridge), requires a more variable and higher α of 1.001 to 1.003. At low temperature, the α is somehow greater that the estimate made from the soil formation but the T-α relationship is consistent with the expected behaviour for an equilibrium isotopic fractionation. However, such a large α implies that the significant flux of the low-T component of the hydrothermal circulation required to fulfil the heat budget of the oceanic lithosphere would buffer any isotopic mass balance calculation of the oceanic Mg to an unsustainable value (e.g. Tipper et al., 2006b, doi:10.1016/j.epsl.2006.07.037). Therefore, either the low-T hydrothermal circulation leaves the Mg unaffected, or the off axis fluids from the ODP Leg 168 are not representative of the global low-T hydrothermal circulation. Given that Mg gets significantly re-incorporated in soil processes, we favour the later hypothesis and propose that a significant part of the low-T hydrothermal circulation is occurring around relief of the oceanic floor, including seamounts, with a different residence-time and chemistry than what have been described in the ODP Leg 168 setting.
Combined simulation of carbon and water isotopes in a global ocean model
NASA Astrophysics Data System (ADS)
Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna
2013-04-01
Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.
On the sensitivity of the global ocean circulation to reconstructions of paleo-bathymetry
NASA Astrophysics Data System (ADS)
Weber, Tobias; Thomas, Maik
2013-04-01
The ability to model the long-term evolution of the climate does considerably depend on the accuracy of ocean models and their interaction with the atmosphere. Thereby, the ocean model's behavior with respect to uncertain and changing boundary conditions is of crucial importance. One of the remaining questions is, how different reconstructions of the ocean floor influence the model. Although of general interest, this effect has mostly been neglected, so far. We modeled Pliocene and pre-industrial ocean currents with the Max-Planck-Institute Ocean Model (MPIOM), forced by climatologies derived from an atmospheric and vegetational Global Circulation Model (GCM). We equipped it with different reconstructions of the bathymetry, what allowed us to study the model's sensitivity regarding changes in bathymetry. On the one hand we examined the influence of reconstructions with different locations of major ridges, but the same treatment of the shelf. On the other hand, reconstruction techniques that treated the shelf areas differently were taken into consideration. This leads to different oceanic circulation realizations, which induce changes in deep ocean temperature and salinity. Some of the simulations result in unrealistic behavior, such as an increase in surface temperature by several degrees. Most important, small bathymetric changes in the areas of deep water formation near Greenland and the Antarctic alter the thermohaline circulation strongly. This leads to its complete cessation in some of the simulations and therefore to stationary deep laying ocean masses. This shows that not all bathymetric reconstruction sequences are applicable for the generation of boundary conditions for GCMs. In order to obtain reliable and physically realistic data from the models, the reconstruction method to be used for the paleo-bathymetry also needs to be applied to the present day bathymetry. This reconstruction can then be used in a control simulation which can be validated against measurements. Hereby systematic errors introduced by the reconstruction technique are identified.
NASA Astrophysics Data System (ADS)
Brendryen, J.; Hannisdal, B.; Haaga, K. A.; Haflidason, H.; Castro, D. D.; Grasmo, K. J.; Sejrup, H. P.; Edwards, R. L.; Cheng, H.; Kelly, M. J.; Lu, Y.
2016-12-01
Abrupt millennial scale climatic events known as Dansgaard-Oeschger events are a defining feature of the Quaternary climate system dynamics in the North Atlantic and beyond. We present a high-resolution multi-proxy record of ocean-ice sheet interactions in the Norwegian Sea spanning the interval between 50 and 150 ka BP. A comparison with low latitude records indicates a very close connection between the high northern latitude ocean-ice sheet interactions and large scale changes in low latitude atmospheric circulation and hydrology even on sub-millennial scales. The records are placed on a common precise radiometric chronology based on correlations to U/Th dated speleothem records from China and the Alps. This enables a comparison of the records to orbital and other climatically important parameters such as U/Th dated sea-level data from corals and speleothems. We explore the drive-response relationships in these coupled systems with the information transfer (IT) and the convergent cross mapping (CCM) analytical techniques. These methods employ conceptually different approaches to detect the relative strength and directionality of potentially chaotic and nonlinearly coupled systems. IT is a non-parametric measure of information transfer between data records based on transfer entropy, while CCM relies on delay reconstructions using Takens' theorem. This approach enables us to address how the climate system processes interact and how this interaction is affected by external forcing from for example greenhouse gases and orbital variability.
NASA Astrophysics Data System (ADS)
Tintoré, Joaquín
2017-04-01
The last 20 years of ocean research have allowed a description of the state of the large-scale ocean circulation. However, it is also well known that there is no such thing as an ocean state and that the ocean varies a wide range of spatial and temporal scales. More recently, in the last 10 years, new monitoring and modelling technologies have emerged allowing quasi real time observation and forecasting of the ocean at regional and local scales. Theses new technologies are key components of recent observing & forecasting systems being progressively implemented in many regional seas and coastal areas of the world oceans. As a result, new capabilities to characterise the ocean state and more important, its variability at small spatial and temporal scales, exists today in many cases in quasi-real time. Examples of relevance for society can be cited, among others our capabilities to detect and understand long-term climatic changes and also our capabilities to better constrain our forecasting capabilities of the coastal ocean circulation at temporal scales from sub-seasonal to inter-annual and spatial from regional to meso and submesoscale. The Mediterranean Sea is a well-known laboratory ocean where meso and submesoscale features can be ideally observed and studied as shown by the key contributions from projects such as Perseus, CMEMS, Jericonext, among others. The challenge for the next 10 years is the integration of theses technologies and multiplatform observing and forecasting systems to (a) monitor the variability at small scales mesoscale/weeks) in order (b) to resolve the sub-basin/seasonal and inter-annual variability and by this (c) establish the decadal variability, understand the associated biases and correct them. In other words, the new observing systems now allow a major change in our focus of ocean observation, now from small to large scales. Recent studies from SOCIB -www.socib.es- have shown the importance of this new small to large-scale multi-platform approach in ocean observation. Three examples from the integration capabilities of SOCIB facilities will be presented and discussed. First the quasi-continuous high frequency glider monitoring of the Ibiza Channel since 2011, an important biodiversity hot spot and a 'choke' point in the Western Mediterranean circulation, has allowed us to reveal a high frequency variability in the North-South exchanges, with very significant changes (0.8 - 0.9 Sv) occurring over periods of days to week of the same order as the previously known seasonal cycle. HF radar data and model results have also contributed more recently to better describe and understand the variability at small scales. Second, the Alborex/Perseus project multi-platform experiment (e.g., RV catamaran, 2 gliders, 25 drifters, 3 Argo type profilers & satellite data) that focused on submesoscale processes and ecosystem response and carried out in the Alborán Sea in May 2014. Glider results showed significant chlorophyll subduction in areas adjacent to the steep density front with patterns related to vertical motion. Initial dynamical interpretations will be presented. Third and final, I will discuss the key relevance of the data centre to guarantee data interoperability, quality control, availability and distribution for this new approach to ocean observation and forecasting to be really efficient in responding to key scientific state of the art priorities, enhancing technology development and responding to society needs.
Variance and Predictability of Precipitation at Seasonal-to-Interannual Timescales
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, Max J.; Heiser, Mark
1999-01-01
A series of atmospheric general circulation model (AGCM) simulations, spanning a total of several thousand years, is used to assess the impact of land-surface and ocean boundary conditions on the seasonal-to-interannual variability and predictability of precipitation in a coupled modeling system. In the first half of the analysis, which focuses on precipitation variance, we show that the contributions of ocean, atmosphere, and land processes to this variance can be characterized, to first order, with a simple linear model. This allows a clean separation of the contributions, from which we find: (1) land and ocean processes have essentially different domains of influence, i.e., the amplification of precipitation variance by land-atmosphere feedback is most important outside of the regions (mainly in the tropics) that are most affected by sea surface temperatures; and (2) the strength of land-atmosphere feedback in a given region is largely controlled by the relative availability of energy and water there. In the second half of the analysis, the potential for seasonal-to-interannual predictability of precipitation is quantified under the assumption that all relevant surface boundary conditions (in the ocean and on land) are known perfectly into the future. We find that the chaotic nature of the atmospheric circulation imposes fundamental limits on predictability in many extratropical regions. Associated with this result is an indication that soil moisture initialization or assimilation in a seasonal-to-interannual forecasting system would be beneficial mainly in transition zones between dry and humid regions.
Geometrical constraint on the localization of deep water formation
NASA Astrophysics Data System (ADS)
Ferreira, D.; Marshall, J.
2008-12-01
That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and a large basin in the northern hemisphere).
Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system
NASA Astrophysics Data System (ADS)
Kushner, P. J.; Blackport, R.
2016-12-01
In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them.
Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system
NASA Astrophysics Data System (ADS)
Kushner, Paul; Blackport, Russell
2017-04-01
In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them. References: Blackport, R. and P. Kushner, 2017: Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system. J. Climate, in press. Blackport, R. and P. Kushner, 2016: The Transient and Equilibrium Climate Response to Rapid Summertime Sea Ice Loss in CCSM4. J. Climate, 29, 401-417, doi: 10.1175/JCLI-D-15-0284.1.
Circulation and multiple-scale variability in the Southern California Bight
NASA Astrophysics Data System (ADS)
Dong, Changming; Idica, Eileen Y.; McWilliams, James C.
2009-09-01
The oceanic circulation in the Southern California Bight (SCB) is influenced by the large-scale California Current offshore, tropical remote forcing through the coastal wave guide alongshore, and local atmospheric forcing. The region is characterized by local complexity in the topography and coastline. All these factors engender variability in the circulation on interannual, seasonal, and intraseasonal time scales. This study applies the Regional Oceanic Modeling System (ROMS) to the SCB circulation and its multiple-scale variability. The model is configured in three levels of nested grids with the parent grid covering the whole US West Coast. The first child grid covers a large southern domain, and the third grid zooms in on the SCB region. The three horizontal grid resolutions are 20 km, 6.7 km, and 1 km, respectively. The external forcings are momentum, heat, and freshwater flux at the surface and adaptive nudging to gyre-scale SODA reanalysis fields at the boundaries. The momentum flux is from a three-hourly reanalysis mesoscale MM5 wind with a 6 km resolution for the finest grid in the SCB. The oceanic model starts in an equilibrium state from a multiple-year cyclical climatology run, and then it is integrated from years 1996 through 2003. In this paper, the 8-year simulation at the 1 km resolution is analyzed and assessed against extensive observational data: High-Frequency (HF) radar data, current meters, Acoustic Doppler Current Profilers (ADCP) data, hydrographic measurements, tide gauges, drifters, altimeters, and radiometers. The simulation shows that the domain-scale surface circulation in the SCB is characterized by the Southern California Cyclonic Gyre, comprised of the offshore equatorward California Current System and the onshore poleward Southern California Countercurrent. The simulation also exhibits three subdomain-scale, persistent ( i.e., standing), cyclonic eddies related to the local topography and wind forcing: the Santa Barbara Channel Eddy, the Central-SCB Eddy, and the Catalina-Clemente Eddy. Comparisons with observational data reveal that ROMS reproduces a realistic mean state of the SCB oceanic circulation, as well as its interannual (mainly as a local manifestation of an ENSO event), seasonal, and intraseasonal (eddy-scale) variations. We find high correlations of the wind curl with both the alongshore pressure gradient (APG) and the eddy kinetic energy level in their variations on time scales of seasons and longer. The geostrophic currents are much stronger than the wind-driven Ekman flows at the surface. The model exhibits intrinsic eddy variability with strong topographically related heterogeneity, westward-propagating Rossby waves, and poleward-propagating coastally-trapped waves (albeit with smaller amplitude than observed due to missing high-frequency variations in the southern boundary conditions).
Abrupt climate change and transient climates during the Paleogene: a marine perspective.
Zachos, J C; Lohmann, K C; Walker, J C; Wise, S W
1993-03-01
Detailed investigations of high latitude sequences recently collected by the Ocean Drilling Program (ODP) indicate that periods of rapid climate change often culminated in brief transient climates, with more extreme conditions than subsequent long term climates. Two examples of such events have been identified in the Paleogene; the first in latest Paleocene time in the middle of a warming trend that began several million years earlier: the second in earliest Oligocene time near the end of a Middle Eocene to Late Oligocene global cooling trend. Superimposed on the earlier event was a sudden and extreme warming of both high latitude sea surface and deep ocean waters. Imbedded in the latter transition was an abrupt decline in high latitude temperatures and the brief appearance of a full size continental ice-sheet on Antarctica. In both cases the climate extremes were not stable, lasting for less than a few hundred thousand years, indicating a temporary or transient climate state. Geochemical and sedimentological evidence suggest that both Paleogene climate events were accompanied by reorganizations in ocean circulation, and major perturbations in marine productivity and the global carbon cycle. The Paleocene-Eocene thermal maximum was marked by reduced oceanic turnover and decreases in global delta 13C and in marine productivity, while the Early Oligocene glacial maximum was accompanied by intensification of deep ocean circulation and elevated delta 13C and productivity. It has been suggested that sudden changes in climate and/or ocean circulation might occur as a result of gradual forcing as certain physical thresholds are exceeded. We investigate the possibility that sudden reorganizations in ocean and/or atmosphere circulation during these abrupt transitions generated short-term positive feedbacks that briefly sustained these transient climatic states.
Abrupt climate change and transient climates during the Paleogene: a marine perspective
NASA Technical Reports Server (NTRS)
Zachos, J. C.; Lohmann, K. C.; Walker, J. C.; Wise, S. W.
1993-01-01
Detailed investigations of high latitude sequences recently collected by the Ocean Drilling Program (ODP) indicate that periods of rapid climate change often culminated in brief transient climates, with more extreme conditions than subsequent long term climates. Two examples of such events have been identified in the Paleogene; the first in latest Paleocene time in the middle of a warming trend that began several million years earlier: the second in earliest Oligocene time near the end of a Middle Eocene to Late Oligocene global cooling trend. Superimposed on the earlier event was a sudden and extreme warming of both high latitude sea surface and deep ocean waters. Imbedded in the latter transition was an abrupt decline in high latitude temperatures and the brief appearance of a full size continental ice-sheet on Antarctica. In both cases the climate extremes were not stable, lasting for less than a few hundred thousand years, indicating a temporary or transient climate state. Geochemical and sedimentological evidence suggest that both Paleogene climate events were accompanied by reorganizations in ocean circulation, and major perturbations in marine productivity and the global carbon cycle. The Paleocene-Eocene thermal maximum was marked by reduced oceanic turnover and decreases in global delta 13C and in marine productivity, while the Early Oligocene glacial maximum was accompanied by intensification of deep ocean circulation and elevated delta 13C and productivity. It has been suggested that sudden changes in climate and/or ocean circulation might occur as a result of gradual forcing as certain physical thresholds are exceeded. We investigate the possibility that sudden reorganizations in ocean and/or atmosphere circulation during these abrupt transitions generated short-term positive feedbacks that briefly sustained these transient climatic states.
NASA Astrophysics Data System (ADS)
Wilcock, W.
2003-04-01
Hydrothermal circulation is the dominant mechanism for cooling young oceanic crust and knowledge of its depth, extent and timing is critical for our understanding of crustal accretion. At fast-spreading ridges there is considerable controversy regarding the importance of this process in the lower crust. Geochemical data indicate that high-temperature hydrothermal fluids react with the lower crust but they also suggest that the reactions are limited to a narrow temperature interval and involve relatively small volumes of fluid. As a result many geochemical studies conclude that high-temperature hydrothermal circulation plays a relatively small role in heat transport in the lower crust and occurs in a closed system that is isolated from upper crustal hydrothermal cells. In contrast, seismic observations on the fast spreading East Pacific Rise show that the mid-crustal axial magma chamber is underlain by a low velocity zone which is no more than 5-8 km wide throughout the lower crust and is interpreted as a region of elevated temperatures containing relatively low average melt fractions. Irrespective of the style of lower crustal accretion, simple physical considerations suggest that this structure is only thermally feasible if the lower crust cools by extensive hydrothermal circulation. Modeling studies indicate that this requires the permeability of the lower crust to temporarily reach at least ~10-13 m2. In order to reconcile the geochemical and geophysical data it is important to recognize that the thermal constraints do not require pervasive seawater circulation in the lower crust and can be satisfied by focused flow through narrow permeable zones spaced as far as about 1 km apart. Widely spaced regions of flow might be difficult to find in the field especially if the sampling strategies focus on the freshest outcrops. There is a tendency to overestimate the volume of fluid that must circulate through an open single-pass system. The fluid-rock ratios (0.2 - 1) inferred from oxygen isotope studies are often cited as evidence of limited circulation but when interpreted physically they are actually sufficient to transport a substantial proportion of the heat required to solidify and cool the lower crust. Nevertheless the geophysical constraints are also compatible with circulation in a two-layer double diffusive system favored by many researchers, in which the lower crust is cooled by a recirculating brine cell.
Phillips, R.L.; Grantz, A.
2001-01-01
The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modem circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during the last glacial maximum on the North Slope of Alaska, suggests that atmospheric circulation in the western Arctic during late Quaternary was similar to that of the present. ?? 2001 Elsevier Science B.V.
The vertical distribution of nutrients and oxygen 18 in the upper Arctic Ocean
NASA Astrophysics Data System (ADS)
BjöRk, GöRan
1990-09-01
The observed vertical nutrient distribution including a maximum at about 100 m depth in the Arctic Ocean is investigated using a one-dimensional time-dependent circulation model together with a simple biological model. The circulation model includes a shelf-forced circulation. This is thought to take place in a box from which the outflow is specified regarding temperature and volume flux at different salinities. It has earlier been shown that the circulation model is able to reproduce the observed mean salinity and temperature stratification in the Arctic Ocean. Before introducing nutrients in the model a test is performed using the conservative tracer δ18 (18O/16O ratio) as one extra state variable in order to verify the circulation model. It is shown that the field measurements can be simulated. The result is, however, rather sensitive to the tracer concentration in the Bering Strait inflow. The nutrients nitrate, phosphate, and silicate are then treated by coupling a simple biological model to the circulation model. The biological model describes some overall effects of production, sinking, and decomposition of organic matter. First a standard case of the biological model is presented. This is followed by some modified cases. It is shown that the observed nutrient distribution including the maximum can be generated. The available nutrient data from the Arctic Ocean are not sufficient to decide which among the cases is the most likely to occur. One case is, however, chosen as the best case. A nutrient budget and estimates of the magnitudes of the new production are presented for this case.
A simple predictive model for the structure of the oceanic pycnocline
Gnanadesikan
1999-03-26
A simple theory for the large-scale oceanic circulation is developed, relating pycnocline depth, Northern Hemisphere sinking, and low-latitude upwelling to pycnocline diffusivity and Southern Ocean winds and eddies. The results show that Southern Ocean processes help maintain the global ocean structure and that pycnocline diffusion controls low-latitude upwelling.
NASA Astrophysics Data System (ADS)
Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio
2017-10-01
Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.
Interannual to decadal variability of circulation in the northern Japan/East Sea, 1958-2006
NASA Astrophysics Data System (ADS)
Stepanov, Dmitry; Stepanova, Victoriia; Gusev, Anatoly
2015-04-01
We use a numerical ocean model INMOM (Institute of Numerical Mathematics Ocean Model) and atmospheric forcing data extracted from the CORE (Coordinated Ocean Reference Experiments) dataset and reconstruct a circulation in the Japan/East Sea (JES) from 1958 to 2006 and its interannual and decadal variability in the intermediate and abyssal layers in the northern JES. It is founded that the circulation is cyclonic over the course of a climatological year. The circulation increases in spring and decreases in autumn. We analyzes the relative vorticity (RV) averaged over the Japan Basin (JB) and show that the variability is characterized by the interannual oscillations (2.3, 3.7 and 4.7 years) and decadal variability (9.5 and 14.3 years). The spectrum structure of the average RV variability does not change with depth; however, the energy of the decadal oscillations decreases in contrast to that of the interannual oscillations. We analyze monthly anomalies of the wind stress curl and sensible heat flux and reveal that interannual variability (3-4 years) of the circulation over the JB result from 4-year variability of the wind stress curl. In contrast, the decadal variability (period of 9.5 years) of the circulation over the JB is generated by both the wind stress curl and the decadal variability in deep convection.
NASA Astrophysics Data System (ADS)
Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.
2014-04-01
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.
Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE
NASA Astrophysics Data System (ADS)
Mazloff, Matthew R.; Boening, Carmen
2016-04-01
Air-ice-ocean interactions in the Antarctic lead to formation of the densest waters on Earth. These waters convect and spread to fill the global abyssal oceans. The heat and carbon storage capacity of these water masses, combined with their abyssal residence times that often exceed centuries, makes this circulation pathway the most efficient sequestering mechanism on Earth. Yet monitoring this pathway has proven challenging due to the nature of the formation processes and the depth of the circulation. The Gravity Recovery and Climate Experiment (GRACE) gravity mission is providing a time series of ocean mass redistribution and offers a transformative view of the abyssal circulation. Here we use the GRACE measurements to infer, for the first time, a 2003-2014 time series of Antarctic Bottom Water export into the South Pacific. We find this export highly variable, with a standard deviation of 1.87 sverdrup (Sv) and a decorrelation timescale of less than 1 month. A significant trend is undetectable.
Submesoscale Rossby waves on the Antarctic circumpolar current.
Taylor, John R; Bachman, Scott; Stamper, Megan; Hosegood, Phil; Adams, Katherine; Sallee, Jean-Baptiste; Torres, Ricardo
2018-03-01
The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations.
A Pacific Ocean general circulation model for satellite data assimilation
NASA Technical Reports Server (NTRS)
Chao, Y.; Halpern, D.; Mechoso, C. R.
1991-01-01
A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.
Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.
2011-01-01
Atmospheric blocking over the northern North Atlantic involves isolation of large regions of air from the westerly circulation for 5-14 days or more. From a recent 20th century atmospheric reanalysis (1,2) winters with more frequent blocking persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability (AMV). Ocean circulation is forced by wind-stress curl and related air/sea heat exchange, and we find that their space-time structure is associated with dominant blocking patterns: weaker ocean gyres and weaker heat exchange contribute to the warm phase of AMV. Increased blocking activity extending from Greenland to British Isles is evident when winter blocking days of the cold years (1900-1929) are subtracted from those of the warm years (1939-1968).
The circulation of a baroclinic ocean around planetary scale islands with topography
NASA Astrophysics Data System (ADS)
Pedlosky, J.
2010-12-01
The circulation around planetary-scale islands is considered for an island with a topographic skirt for a stratified ocean. The simplest model of the ocean is a two layer ocean in a circular domain with the island in the center. When the girdling topography is steep, closed geostrophic contours guide the flow in each of the two layers although that guiding occurs at different horizontal locations in each layer. For flows with weak dissipation, modeled as bottom and interfacial friction, explicit formulae are given for the dependence of the streamfunction in each layer on the ambient potential vorticity, f/(layer depth). Numerical model calculations will be presented to supplement the analytical results.
An integrated weather and sea-state forecasting system for the Arabian Peninsula (WASSF)
NASA Astrophysics Data System (ADS)
Kallos, George; Galanis, George; Spyrou, Christos; Mitsakou, Christina; Solomos, Stavros; Bartsotas, Nikolaos; Kalogrei, Christina; Athanaselis, Ioannis; Sofianos, Sarantis; Vervatis, Vassios; Axaopoulos, Panagiotis; Papapostolou, Alexandros; Qahtani, Jumaan Al; Alaa, Elyas; Alexiou, Ioannis; Beard, Daniel
2013-04-01
Nowadays, large industrial conglomerates such as the Saudi ARAMCO, require a series of weather and sea state forecasting products that cannot be found in state meteorological offices or even commercial data providers. The two major objectives of the system is prevention and mitigation of environmental problems and of course early warning of local conditions associated with extreme weather events. The management and operations part is related to early warning of weather and sea-state events that affect operations of various facilities. The environmental part is related to air quality and especially the desert dust levels in the atmosphere. The components of the integrated system include: (i) a weather and desert dust prediction system with forecasting horizon of 5 days, (ii) a wave analysis and prediction component for Red Sea and Arabian Gulf, (iii) an ocean circulation and tidal analysis and prediction of both Red Sea and Arabian Gulf and (iv) an Aviation part specializing in the vertical structure of the atmosphere and extreme events that affect air transport and other operations. Specialized data sets required for on/offshore operations are provided ate regular basis. State of the art modeling components are integrated to a unique system that distributes the produced analysis and forecasts to each department. The weather and dust prediction system is SKIRON/Dust, the wave analysis and prediction system is based on WAM cycle 4 model from ECMWF, the ocean circulation model is MICOM while the tidal analysis and prediction is a development of the Ocean Physics and Modeling Group of University of Athens, incorporating the Tidal Model Driver. A nowcasting subsystem is included. An interactive system based on Google Maps gives the capability to extract and display the necessary information for any location of the Arabian Peninsula, the Red Sea and Arabian Gulf.
NASA Astrophysics Data System (ADS)
Kashid, Satishkumar S.; Maity, Rajib
2012-08-01
SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different 'homogeneous monsoon regions'.
Connectivity modeling and graph theory analysis predict recolonization in transient populations
NASA Astrophysics Data System (ADS)
Rognstad, Rhiannon L.; Wethey, David S.; Oliver, Hilde; Hilbish, Thomas J.
2018-07-01
Population connectivity plays a major role in the ecology and evolution of marine organisms. In these systems, connectivity of many species occurs primarily during a larval stage, when larvae are frequently too small and numerous to track directly. To indirectly estimate larval dispersal, ocean circulation models have emerged as a popular technique. Here we use regional ocean circulation models to estimate dispersal of the intertidal barnacle Semibalanus balanoides at its local distribution limit in Southwest England. We incorporate historical and recent repatriation events to provide support for our modeled dispersal estimates, which predict a recolonization rate similar to that observed in two recolonization events. Using graph theory techniques to describe the dispersal landscape, we identify likely physical barriers to dispersal in the region. Our results demonstrate the use of recolonization data to support dispersal models and how these models can be used to describe population connectivity.
pyhector: A Python interface for the simple climate model Hector
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
2017-04-01
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
NASA Astrophysics Data System (ADS)
Albrecht, F.; Pizarro, O.; Montecinos, A.
2016-12-01
The subtropical ocean gyre in the South Pacific is a large scale wind-driven ocean circulation, including the Peru-Chile Current, the westward South Equatorial Current, the East Australian Current, and the eastward South Pacific Current. Large scale ocean circulations play an essential role in the climate of the Earth over long and short term time scales.In the recent years a spin-up of this circulation has been recognized analyzing observations of sea level, temperature and salinity profiles, sea surface temperature and wind. Until now it is not clear whether this spin-up is decadal variability or whether it is a long-term trend introduced by anthropogenic forcing. This study aims to analyze whether and how anthropogenic forcing influences the position and the strength of the gyre in the 20th century. To determine that, yearly means of different variables of an ensemble of CMIP5 models are analyzed. The experiments 'historical' and 'historicalNat' are examined. The 'historical' experiment simulates the climate of the 20th century and the 'historicalNat' experiment covers the same time period, but only includes natural forcings. Comparing the outcomes of these two experiments is supposed to give information about the anthropogenic influence on the subtropical gyre of the South Pacific.The main variable we analyze is sea level change. This is directly related to the gyre circulation. The center of the gyre is characterized by a high pressure zone (high sea level) and the temporal and spatial variability of the sea level height field gives information about changes in the gyre circulation. The CMIP5 databank includes steric and dynamic sea level changes. Steric sea level, that is the contribution of temperature and salinity of the water, describes the major contribution to regional sea level change with respect to the global mean. Density changes contract or expand the water, which also changes the sea surface height. This does not only occur at the surface, but at all layers in the ocean. Sea level change thus integrates ocean variability throughout the depth of the ocean. Sea level simulations of the different experiments are compared using long-term trends, multi-year anomalies and EOF-Analysis. Changes in temperature and salinity in the deeper ocean are used to describe the development of the gyre below the surface.
Role of Greenland meltwater in the changing Arctic
NASA Astrophysics Data System (ADS)
Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel
2016-04-01
Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to track propagation of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The presentation discusses the role of Greenland meltwater in the Arctic environment and how this can explain observed cessation of the quasi-decadal Arctic variability. The rate and pathways of Greenland meltwater in the sub-Arctic seas derived from the coordinated model experiments are analyzed. The presented study discusses a possible scenario of the Arctic in the future. It is argued that Greenland meltwater being accumulated in the sub-Arctic seas since the 1990s can trigger a negative feedback mechanism that may impede or even reverse processes of Arctic warming observed in the 21st century.
A simple model of the effect of ocean ventilation on ocean heat uptake
NASA Astrophysics Data System (ADS)
Nadiga, Balu; Urban, Nathan
2017-11-01
Transport of water from the surface mixed layer into the ocean interior is achieved, in large part, by the process of ventilation-a process associated with outcropping isopycnals. Starting from such a configuration of outcropping isopycnals, we derive a simple model of the effect of ventilation on ocean uptake of anomalous radiative forcing. This model can be seen as an improvement of the popular anomaly-diffusing class of energy balance models (AD-EBM) that are routinely employed to analyze and emulate the warming response of both observed and simulated Earth system. We demonstrate that neither multi-layer, nor continuous-diffusion AD-EBM variants can properly represent both surface-warming and the vertical distribution of ocean heat uptake. The new model overcomes this deficiency. The simplicity of the models notwithstanding, the analysis presented and the necessity of the modification is indicative of the role played by processes related to the down-welling branch of global ocean circulation in shaping the vertical distribution of ocean heat uptake.
Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake
Cotté, Cédric; Bailleul, Frédéric; Lalire, Maxime; Gaspar, Philippe
2016-01-01
It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large. PMID:27555651
NASA Astrophysics Data System (ADS)
Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin
2018-06-01
We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.
Overview of the Coastal Marine Discovery Service: data discovery, visualization, and understanding
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Mattmann, C. A.; Cinquini, L.; O'Brien, F. J.; Resneck, G.; Siegrist, Z.
2012-12-01
Many resources available for coastal ocean research and management remain underutilized. Typically, the emphasis in the past has been on increasing access and usability of remote sensing satellite products from NASA data centers. Significant progress has been made in this regard although access and discovery mechanisms still remain disjointed. Less attention has been paid to discovery and usability to ocean in situ records and circulation model products, because typically these are organized and maintained on a smaller regional level such as a university or smaller division of a larger national agency. The NASA Coastal Marine Discovery Service, a NASA ACCESS funded activity, focuses on improving discovery of these regional coastal ocean web services and data portals, including databases for satellite imagery, in situ and field measurements, ocean circulation models, and GIS coverages as a few examples. Beyond resource discovery, the CMDS integrated system (http://cmds.jpl.nasa.gov) leverages open source technology for unifying coastal ocean data within the framework on a GIS web client, the Easy GIS Net Viewer. In sum, CMDS consists of an online catalog of coastal resources that allows users to quickly discover the availability of data for their region of interest, physical parameter of interest or specific regional project of interest, or any combination of these. After discovery, data can be transparently linked to Netviewer client to view, overlay and interrogate products, and make GIS-like queries on the data layers to investigate statistical relationships. In this presentation, we will review the CMDS system, it architecture and resource harvesting approach, and more importantly demonstrate real world use of cases of data exploration, visualization and ultimately understanding.
Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing
NASA Astrophysics Data System (ADS)
Vecchi, Gabriel A.; Soden, Brian J.; Wittenberg, Andrew T.; Held, Isaac M.; Leetmaa, Ants; Harrison, Matthew J.
2006-05-01
Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean-driven by convection to the west and subsidence to the east-known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.
Assessment of Energy Production Potential from Ocean Currents along the United States Coastline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, Kevin
Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potentialmore » energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.« less
Interhemispheric Changes in Atlantic Ocean Heat Content and Their Link to Global Monsoons
NASA Astrophysics Data System (ADS)
Lopez, H.; Lee, S. K.; Dong, S.; Goni, G. J.
2015-12-01
This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° is opposite with heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream and mean storm track. The mechanism described here could easily be interpreted for the case of strong SAMHT, with the reverse influence on the interhemispheric atmospheric circulation and monsoons. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.
NASA Astrophysics Data System (ADS)
Sofianos, Sarantis S.; Johns, William E.
2002-11-01
The mechanisms involved in the seasonal exchange between the Red Sea and the Indian Ocean are studied using an Oceanic General Circulation Model (OGCM), namely the Miami Isopycnic Coordinate Ocean Model (MICOM). The model reproduces the basic characteristics of the seasonal circulation observed in the area of the strait of Bab el Mandeb. There is good agreement between model results and available observations on the strength of the exchange and the characteristics of the water masses involved, as well as the seasonal flow pattern. During winter, this flow consists of a typical inverse estuarine circulation, while during summer, the surface flow reverses, there is an intermediate inflow of relatively cold and fresh water, and the hypersaline outflow at the bottom of the strait is significantly reduced. Additional experiments with different atmospheric forcing (seasonal winds, seasonal thermohaline air-sea fluxes, or combinations) were performed in order to assess the role of the atmospheric forcing fields in the exchange flow at Bab el Mandeb. The results of both the wind- and thermohaline-driven experiments exhibit a strong seasonality at the area of the strait, which is in phase with the observations. However, it is the combination of both the seasonal pattern of the wind stress and the seasonal thermohaline forcing that can reproduce the observed seasonal variability at the strait. The importance of the seasonal cycle of the thermohaline forcing on the exchange flow pattern is also emphasized by these results. In the experiment where the thermohaline forcing is represented by its annual mean, the strength of the exchange is reduced almost by half.
Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models
Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya
2016-01-01
Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere–ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave–turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave–turbulence interaction effects in both general ocean circulation models and atmosphere–ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability. PMID:26953182
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, looks on as other panelest speak during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Michael Freilich, NASA Earth Science Division Director, NASA Headquarters, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Aguiar, Eva; Mourre, Baptiste; Heslop, Emma; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín
2017-04-01
This study focuses on the validation of the high resolution Western Mediterranean Operational model (WMOP) developed at SOCIB, the Balearic Islands Coastal Observing and Forecasting System. The Mediterranean Sea is often seen as a small scale ocean laboratory where energetic eddies, fronts and circulation features have important ecological consequences. The Medclic project is a program between "La Caixa" Foundation and SOCIB which aims at characterizing and forecasting the "oceanic weather" in the Western Mediterranean Sea, specifically investigating the interactions between the general circulation and mesoscale processes. We use a WMOP 2009-2015 free run hindcast simulation and available observational datasets (altimetry, moorings and gliders) to both assess the numerical simulation and investigate the ocean variability. WMOP has a 2-km spatial resolution and uses CMEMS Mediterranean products as initial and boundary conditions, with surface forcing from the high-resolution Spanish Meteorological Agency model HIRLAM. Different aspects of the spatial and temporal variability in the model are validated from local to regional and basin scales: (1) the principal axis of variability of the surface circulation using altimetry and moorings along the Iberian coast, (2) the inter-annual changes of the surface flows incorporating also glider data, (3) the propagation of mesoscale eddies formed in the Algerian sub-basin using altimetry, and (4) the statistical properties of eddies (number, rotation, size) applying an eddy tracker detection method in the Western Mediterranean Sea. With these key points evaluated in the model, EOF analysis of sea surface height maps are used to investigate spatial patterns of variability associated with eddies, gyres and the basis-scale circulation and so gain insight into the interconnections between sub-basins, as well as the interactions between physical processes at different scales.
Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa; Rhines, Peter B.; Worthlen, Denise L.
2011-01-01
Based on the 20th century atmospheric reanalysis, winters with more frequent blocking, in a band of blocked latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability. Atmospheric blocking over the northern North Atlantic, which involves isolation of large regions of air from the westerly circulation for 5 days or more, influences fundamentally the ocean circulation and upper ocean properties by impacting wind patterns. Winters with clusters of more frequent blocking between Greenland and western Europe correspond to a warmer, more saline subpolar ocean. The correspondence between blocked westerly winds and warm ocean holds in recent decadal episodes (especially, 1996-2010). It also describes much longer-timescale Atlantic multidecadal ocean variability (AMV), including the extreme, pre-greenhouse-gas, northern warming of the 1930s-1960s. The space-time structure of the wind forcing associated with a blocked regime leads to weaker ocean gyres and weaker heat-exchange, both of which contribute to the warm phase of AMV.
The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current.
Thompson, Andrew F
2008-12-28
Although the Antarctic Circumpolar Current (ACC) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange, it remains one of the most poorly represented components of global climate models. Accurately describing the circulation of the ACC is made difficult owing to the prominent role that mesoscale eddies and jets, oceanic equivalents of atmospheric storms and storm tracks, have in setting the density structure and transport properties of the current. The successes and limitations of different representations of eddy processes in models of the ACC are considered, with particular attention given to how the circulation responds to changes in wind forcing. The dynamics of energetic eddies and topographically steered jets may both temper and enhance the sensitivity of different aspects of the ACC's circulation to changes in climate.
NASA Technical Reports Server (NTRS)
Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.
2012-01-01
Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.
NASA Astrophysics Data System (ADS)
Germe, Agathe; Sévellec, Florian; Mignot, Juliette; Fedorov, Alexey; Nguyen, Sébastien; Swingedouw, Didier
2017-12-01
Decadal climate predictability in the North Atlantic is largely related to ocean low frequency variability, whose sensitivity to initial conditions is not very well understood. Recently, three-dimensional oceanic temperature anomalies optimally perturbing the North Atlantic Mean Temperature (NAMT) have been computed via an optimization procedure using a linear adjoint to a realistic ocean general circulation model. The spatial pattern of the identified perturbations, localized in the North Atlantic, has the largest magnitude between 1000 and 4000 m depth. In the present study, the impacts of these perturbations on NAMT, on the Atlantic meridional overturning circulation (AMOC), and on climate in general are investigated in a global coupled model that uses the same ocean model as was used to compute the three-dimensional optimal perturbations. In the coupled model, these perturbations induce AMOC and NAMT anomalies peaking after 5 and 10 years, respectively, generally consistent with the ocean-only linear predictions. To further understand their impact, their magnitude was varied in a broad range. For initial perturbations with a magnitude comparable to the internal variability of the coupled model, the model response exhibits a strong signature in sea surface temperature and precipitation over North America and the Sahel region. The existence and impacts of these ocean perturbations have important implications for decadal prediction: they can be seen either as a source of predictability or uncertainty, depending on whether the current observing system can detect them or not. In fact, comparing the magnitude of the imposed perturbations with the uncertainty of available ocean observations such as Argo data or ocean state estimates suggests that only the largest perturbations used in this study could be detectable. This highlights the importance for decadal climate prediction of accurate ocean density initialisation in the North Atlantic at intermediate and greater depths.
NASA Astrophysics Data System (ADS)
Fontana, C.; Brasseur, P.; Brankart, J.-M.
2012-04-01
Today, the routine assimilation of satellite data into operational models of the ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North-Atlantic. The aim is on one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modelling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9 year-long period. In this frame, two experiences are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, the nitrate World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface chlorophyll concentrations analysis and forecast, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related litterature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentration deeper than 50 m. The assessement of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalysing the ocean biogeochemistry based on ocean color data.
NASA Astrophysics Data System (ADS)
Fontana, C.; Brasseur, P.; Brankart, J.-M.
2013-01-01
Today, the routine assimilation of satellite data into operational models of ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North Atlantic. The aim is on the one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modeling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9-year period. In this frame, two experiments are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, nitrate of the World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface analysis and forecast chlorophyll concentrations, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related literature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentrations deeper than 50 meters. The assessment of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalyzing the ocean biogeochemistry based on ocean color data.
Artist Concept of U.S.-European Jason-3 Ocean Altimetry Satellite over California
2013-05-23
Artist concept of the U.S.-European Jason-3 spacecraft over the California coast. Jason-3 will precisely measure the height of the ocean surface, allowing scientists to monitor ocean circulation and sea level.
NASA Astrophysics Data System (ADS)
Muschitiello, Francesco; D'Andrea, William J.; Dokken, Trond M.; Schmittner, Andreas
2017-04-01
Understanding the impact of ocean circulation on the global atmospheric CO2 budget is of paramount importance for anticipating the consequences of projected future changes in Atlantic Meridional Overturning Circulation (AMOC). In particular, the efficiency of the oceanic biological pump can impact atmospheric CO2 through changes in vertical carbon export mediated by variations in the nutrient inventory of the North Atlantic basin. However, the causal relationship between North Atlantic Ocean circulation, biological carbon sequestration, and atmospheric CO2 is poorly understood. Here we present new high-resolution planktic-benthic 14C data and biomarker records from an exceptionally well-dated marine core from the Nordic Seas spanning the last deglaciation ( 15,000-10,000 years BP). The records document for the first time large and rapid atmospheric CO2 drawdowns and increase in plankton stocks during major North Atlantic cooling events. Using transient climate simulations from a fully coupled climate-biosphere model, we show that minor perturbations of the North Atlantic biological pump resulting from surface freshening and AMOC weakening can have a major impact on the global atmospheric CO2 budget. Furthermore, our data help clarifying the timing and magnitude of the deglacial CO2 signal recorded in Antarctic ice cores. We conclude that the global CO2 budget is more sensitive to perturbations in North Atlantic circulation than previously thought, which has significance in the future debate of the AMOC response to anthropogenic warming.
Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation
NASA Astrophysics Data System (ADS)
Brasseur, L. H.; Banahan, S.; Cowles, T.
2009-05-01
The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.
Physics-based coastal current tomographic tracking using a Kalman filter.
Wang, Tongchen; Zhang, Ying; Yang, T C; Chen, Huifang; Xu, Wen
2018-05-01
Ocean acoustic tomography can be used based on measurements of two-way travel-time differences between the nodes deployed on the perimeter of the surveying area to invert/map the ocean current inside the area. Data at different times can be related using a Kalman filter, and given an ocean circulation model, one can in principle now cast and even forecast current distribution given an initial distribution and/or the travel-time difference data on the boundary. However, an ocean circulation model requires many inputs (many of them often not available) and is unpractical for estimation of the current field. A simplified form of the discretized Navier-Stokes equation is used to show that the future velocity state is just a weighted spatial average of the current state. These weights could be obtained from an ocean circulation model, but here in a data driven approach, auto-regressive methods are used to obtain the time and space dependent weights from the data. It is shown, based on simulated data, that the current field tracked using a Kalman filter (with an arbitrary initial condition) is more accurate than that estimated by the standard methods where data at different times are treated independently. Real data are also examined.
NASA Astrophysics Data System (ADS)
Oliver, Eric C. J.
2014-01-01
Intraseasonal variability of the tropical Indo-Pacific ocean is strongly related to the Madden-Julian Oscillation (MJO). Shallow seas in this region, such as the Gulf of Thailand, act as amplifiers of the direct ocean response to surface wind forcing by efficient setup of sea level. Intraseasonal ocean variability in the Gulf of Thailand region is examined using statistical analysis of local tide gauge observations and surface winds. The tide gauges detect variability on intraseasonal time scales that is related to the MJO through its effect on local wind. The relationship between the MJO and the surface wind is strongly seasonal, being most vigorous during the monsoon, and direction-dependent. The observations are then supplemented with simulations of sea level and circulation from a fully nonlinear barotropic numerical ocean model (Princeton Ocean Model). The numerical model reproduces well the intraseasonal sea level variability in the Gulf of Thailand and its seasonal modulations. The model is then used to map the wind-driven response of sea level and circulation in the entire Gulf of Thailand. Finally, the predictability of the setup and setdown signal is discussed by relating it to the, potentially predictable, MJO index.
A High-Resolution Model of the Beaufort Sea Circulation
NASA Astrophysics Data System (ADS)
Hedstrom, K.; Danielson, S. L.; Curchitser, E. N.; Lemieux, J. F.; Kasper, J.
2016-02-01
Configuration of and results from a coupled sea-ice ocean model of the Beaufort Sea shelf at 900 m resolution will be shown. Challenging features of the domain include large fresh water flux from the MacKenzie River, seasonal land-fast ice, and ice-covered open boundary conditions. A pan-Arctic domain provides boundary fields for both the ocean and sea-ice models (Regional Ocean Modeling System - myroms.org). Both models are forced with river inputs from the ARDAT climatology (Whitefield et al., 2015), which includes heat content as well as flow rate. Coastal discharges are prescribed as lateral inflows distributed over the depth of the ocean-land interface. New in the Beaufort domain is the use of a landfast ice parameterization (Lemieux, 2015), which adds a large bottom stress to the ice when the estimated keel depth approaches that of the ocean.
Abyssal Upwelling in Mid-Ocean Ridge Fracture Zones
NASA Astrophysics Data System (ADS)
Clément, Louis; Thurnherr, Andreas M.
2018-03-01
Turbulence in the abyssal ocean plays a fundamental role in the climate system by sustaining the deepest branch of the overturning circulation. Over the western flank of the Mid-Atlantic Ridge in the South Atlantic, previously observed bottom-intensified and tidally modulated mixing of abyssal waters appears to imply a counterintuitive densification of deep and bottom waters. Here we show that inside fracture zones, however, turbulence is elevated away from the seafloor because of intensified downward propagating near-inertial wave energy, which decays below a subinertial shear maximum. Ray-tracing simulations predict a decay of wave energy subsequent to wave-mean flow interactions. The hypothesized wave-mean flow interactions drive a deep flow toward lighter densities of up to 0.6 Sv over the mid-ocean ridge flank in the Brazil Basin, and the same process may also cause upwelling of abyssal waters in other ocean basins with mid-ocean ridges with fracture zones.
NASA Astrophysics Data System (ADS)
Lu, Mengqian; Lall, Upmanu
2017-04-01
The threats that hydroclimatic extremes pose to sustainable development, safety and operation of infrastructure are both severe and growing. Recent heavy precipitation triggered flood events in many regions and increasing frequency and intensity of extreme precipitation suggested by various climate projections highlight the importance of understanding the associated hydrometeorological patterns and space-time variability of such extreme events, and developing a new approach to improve predictability with a better estimation of uncertainty. This clear objective requires the optimal utility of Big Data analytics on multi-source datasets to extract informative predictors from the complex ocean-atmosphere coupled system and develop a statistical and physical based framework. The proposed presentation includes the essence of our selected works in the past two years, as part of our Global Floods Initiatives. Our approach for an improved extreme prediction begins with a better understanding of the associated atmospheric circulation patterns, under the influence and regulation of slowly changing oceanic boundary conditions [Lu et al., 2013, 2016a; Lu and Lall, 2016]. The study of the associated atmospheric circulation pattern and the regulation of teleconnected climate signals adopted data science techniques and statistical modeling recognizing the nonstationarity and nonlinearity of the system, as the underlying statistical assumptions of the classical extreme value frequency analysis are challenged in hydroclimatic studies. There are two main factors that are considered important for understanding how future flood risk will change. One is the consideration of moisture holding capacity as a function of temperature, as suggested by Clausius-Clapeyron equation. The other is the strength of the convergence or convection associated with extreme precipitation. As convergence or convection gets stronger, rain rates can be expected to increase if the moisture is available. For extreme rainfall events in the mid-latitudes, tropical moisture sources related to strong convection from equatorial oceans were identified together with atmospheric circulation conditions that in favor of consistent transport and convergence of moisture [Lu et al., 2013; Lu and Lall, 2016]. Further, [Lu et al., 2016a] linked the influence of the slowly changing oceanic boundary conditions with the development of the global atmospheric circulation and showed that (1) strong convection over the oceans and the atmospheric moisture transport and flow convergence indicated by atmospheric pressure fields can determine where and when extreme precipitation occurs; and (2) the time-lagged spatial relationship between teleconnected oceanic signals and synoptic atmospheric circulations can improve the predictability of extreme precipitation globally over the next 30 days; such a forecast would be potentially very useful for flood preparation at a lead time that is well beyond the lead time of meteorological forecasts, and it corresponds to a gap in the predictability between quantitative precipitation forecasts and seasonal-to-interannual climate prediction. Lastly, we will demonstrate our most recent results showing the merits of utilizing climate informed forecasts for water resources management, considering irrigation supply, hydropower and flood control, with marked-based financial instruments [Lu et al., 2016b].
NASA Astrophysics Data System (ADS)
Amol, P.; Shankar, D.; Fernando, V.; Mukherjee, A.; Aparna, S. G.; Fernandes, R.; Michael, G. S.; Khalap, S. T.; Satelkar, N. P.; Agarvadekar, Y.; Gaonkar, M. G.; Tari, A. P.; Kankonkar, A.; Vernekar, S. P.
2014-06-01
We present current data from acoustic Doppler current profilers (ADCPs) moored on the continental slope off the west coast of India. The data were collected at four locations (roughly at Kanyakumari, Kollam, Goa, and Mumbai) extending from ˜ 7° to ˜ 20°N during 2008-2012. The observations show that a seasonal cycle, including an annual cycle, is present in the West India Coastal Current (WICC); this seasonal cycle, which strengthens northward, shows considerable interannual variability and is not as strongly correlated along the coast as in climatologies based on ship drifts or the altimeter. The alongshore decorrelation of the WICC is much stronger at intraseasonal periods, which are evident during the winter monsoon all along the coast. This intraseasonal variability is stronger in the south. A striking feature of the WICC is upward phase propagation, which implies an undercurrent whose depth becomes shallower as the season progresses. There are also instances when the phase propagates downward. At the two southern mooring locations off Kollam and Kanyakumari, the cross-shore current, which is usually associated with eddy-like circulations, is comparable to the alongshore current on occasions. A comparison with data from the OSCAR (Ocean Surface Currents Analyses Real-time) data product shows not only similarities, but also significant differences, particularly in the phase. One possible reason for this phase mismatch between the ADCP current at 48 m and the OSCAR current, which represents the current in the 0-30 m depth range, is the vertical phase propagation. Current products based on Ocean General Circulation Models like ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) and GODAS (Global Ocean Data Assimilation System) show a weaker correlation with the ADCP current, and ECCO2 does capture some of the observed variability.
Seasonal Variability of Salt Transport During the Indian Ocean Monsoons
2011-08-27
Wunsch, J. Marotzkc, and J. Toolc (2000). Meridional overturning and large-scale circulation of the Indian Ocean, J. Geophvs Res., W5(C\\ 1), 26,117...and II. Hasumi (2006), Effects of model resolution on salt transport through northern high-latitude passages and Atlantic meridional overturning ...affects meridional circulation and aids the transport of salt [Sevellec et ai, 2008; Czaja, 2009]. Deep convection could be inhibited by the freshening
Use of variational methods in the determination of wind-driven ocean circulation
NASA Technical Reports Server (NTRS)
Gelos, R.; Laura, P. A. A.
1976-01-01
Simple polynomial approximations and a variational approach were used to predict wind-induced circulation in rectangular ocean basins. Stommel's and Munk's models were solved in a unified fashion by means of the proposed method. Very good agreement with exact solutions available in the literature was shown to exist. The method was then applied to more complex situations where an exact solution seems out of the question.
Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data
NASA Technical Reports Server (NTRS)
Kelly, Kathryn A.
1999-01-01
The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.
Long-Term Model Assimilated Aerosols from MERRA-2: Data and Services at NASA GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana; Huwe, Paul; Vollmer, Bruce; Kempler, Steve
2016-01-01
The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is the atmospheric reanalysis conducted with NASA assimilation system GEOS-5. Alongside the meteorological data assimilation, MERRA-2 includes an interactive analysis of aerosols, land, ocean, and ice that feed back into circulation.
NASA Astrophysics Data System (ADS)
Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.
2016-02-01
Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is more affected by bubble injection, and reacts differently to temperature change. Oxygen is also produced and consumed by photosynthesis and respiration respectively at a specific ratio to CO2. These properties enable us to use oxygen as a separate constraint from carbon to determine the effect these various processes have on gas cycling, and the global ocean circulation.
Forecasting the ocean optical environment in support of Navy mine warfare operations
NASA Astrophysics Data System (ADS)
Ladner, S. D.; Arnone, R.; Jolliff, J.; Casey, B.; Matulewski, K.
2012-06-01
A 3D ocean optical forecast system called TODS (Tactical Ocean Data System) has been developed to determine the performance of underwater LIDAR detection/identification systems. TODS fuses optical measurements from gliders, surface satellite optical properties, and 3D ocean forecast circulation models to extend the 2-dimensional surface satellite optics into a 3-dimensional optical volume including subsurface optical layers of beam attenuation coefficient (c) and diver visibility. Optical 3D nowcast and forecasts are combined with electro-optical identification (EOID) models to determine the underwater LIDAR imaging performance field used to identify subsurface mine threats in rapidly changing coastal regions. TODS was validated during a recent mine warfare exercise with Helicopter Mine Countermeasures Squadron (HM-14). Results include the uncertainties in the optical forecast and lidar performance and sensor tow height predictions that are based on visual detection and identification metrics using actual mine target images from the EOID system. TODS is a new capability of coupling the 3D optical environment and EOID system performance and is proving important for the MIW community as both a tactical decision aid and for use in operational planning, improving timeliness and efficiency in clearance operations.
NASA Astrophysics Data System (ADS)
Sofianos, Sarantis S.; Johns, William E.
2003-03-01
The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.
Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport.
Villar, Emilie; Farrant, Gregory K; Follows, Michael; Garczarek, Laurence; Speich, Sabrina; Audic, Stéphane; Bittner, Lucie; Blanke, Bruno; Brum, Jennifer R; Brunet, Christophe; Casotti, Raffaella; Chase, Alison; Dolan, John R; d'Ortenzio, Fabrizio; Gattuso, Jean-Pierre; Grima, Nicolas; Guidi, Lionel; Hill, Christopher N; Jahn, Oliver; Jamet, Jean-Louis; Le Goff, Hervé; Lepoivre, Cyrille; Malviya, Shruti; Pelletier, Eric; Romagnan, Jean-Baptiste; Roux, Simon; Santini, Sébastien; Scalco, Eleonora; Schwenck, Sarah M; Tanaka, Atsuko; Testor, Pierre; Vannier, Thomas; Vincent, Flora; Zingone, Adriana; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Acinas, Silvia G; Bork, Peer; Boss, Emmanuel; de Vargas, Colomban; Gorsky, Gabriel; Ogata, Hiroyuki; Pesant, Stéphane; Sullivan, Matthew B; Sunagawa, Shinichi; Wincker, Patrick; Karsenti, Eric; Bowler, Chris; Not, Fabrice; Hingamp, Pascal; Iudicone, Daniele
2015-05-22
Agulhas rings provide the principal route for ocean waters to circulate from the Indo-Pacific to the Atlantic basin. Their influence on global ocean circulation is well known, but their role in plankton transport is largely unexplored. We show that, although the coarse taxonomic structure of plankton communities is continuous across the Agulhas choke point, South Atlantic plankton diversity is altered compared with Indian Ocean source populations. Modeling and in situ sampling of a young Agulhas ring indicate that strong vertical mixing drives complex nitrogen cycling, shaping community metabolism and biogeochemical signatures as the ring and associated plankton transit westward. The peculiar local environment inside Agulhas rings may provide a selective mechanism contributing to the limited dispersal of Indian Ocean plankton populations into the Atlantic. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.
2016-11-01
Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.
NASA Technical Reports Server (NTRS)
Song, Y. T.
2002-01-01
It is found that two adaptive parametric functions can be introduced into the basic ocean equations for utilizing the optimal or hybrid features of commonly used z-level, terrain- following, isopycnal, and pressure coordinates in numerical ocean models. The two parametric functions are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara (1 974), the Jacobian pressure gradient formulation of Song (1 998), and a newly developed metric factor that permits both compressible (non-Boussinesq) and incompressible (Boussinesq) approximations. Based on the new formulation, an adaptive modeling strategy is proposed and a staggered finite volume method is designed to ensure conservation of important physical properties and numerical accuracy. Implementation of the combined techniques to SCRUM (Song and Haidvogel1994) shows that the adaptive modeling strategy can be applied to any existing ocean model without incurring computational expense or altering the original numerical schemes. Such a generalized coordinate model is expected to benefit diverse ocean modelers for easily choosing optimal vertical structures and sharing modeling resources based on a common model platform. Several representing oceanographic problems with different scales and characteristics, such as coastal canyons, basin-scale circulation, and global ocean circulation, are used to demonstrate the model's capability for multiple applications. New results show that the model is capable of simultaneously resolving both Boussinesq and non-Boussinesq, and both small- and large-scale processes well. This talk will focus on its applications of multiple satellite sensing data in eddy-resolving simulations of Asian Marginal Sea and Kurosio. Attention will be given to how Topex/Poseidon SSH, TRMM SST; and GRACE ocean bottom pressure can be correctly represented in a non- Boussinesq model.
Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations
Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; Kimball, J.S.; Kwok, R.; Lammers, R.B.; Lee, C.M.; Lettenmaier, D.P.; McDonald, K.C.; Podest, E.; Pundsack, J.W.; Rudels, B.; Serreze, Mark C.; Shiklomanov, A.; Skagseth, O.; Troy, T.J.; Vorosmarty, C.J.; Wensnahan, M.; Wood, E.F.; Woodgate, R.; Yang, D.; Zhang, K.; Zhang, T.
2010-01-01
Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification.
Particle transport model sensitivity on wave-induced processes
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna
2017-04-01
Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.
A Coupled Regional Climate Simulator for the Gulf of St. Lawrence, Canada
NASA Astrophysics Data System (ADS)
Faucher, M.; Saucier, F.; Caya, D.
2003-12-01
The climate of Eastern Canada is characterized by atmosphere-ocean-ice interactions due to the closeness of the North Atlantic Ocean and the Labrador Sea. Also, there are three relatively large inner basins: the Gulf of St-Lawrence, the Hudson Bay / Hudson Strait / Foxe Basin system and the Great Lakes, influencing the evolution of weather systems and therefore the regional climate. These basins are characterized by irregular coastlines and variables sea-ice in winter, so that the interactions between the atmosphere and the ocean are more complex. There are coupled general circulation models (GCMs) that are available to study the climate of Eastern Canada, but their resolution (near 350km) is to low to resolve the details of the regional climate of this area and to provide valuable information for climate impact studies. The goal of this work is to develop a coupled regional climate simulator for Eastern Canada to study the climate and its variability, necessary to assess the future climate in a double CO2 situation. An off-line coupling strategy through the interacting fields is used to link the Canadian Regional Climate Model developed at the "Universite du Quebec a Montreal" (CRCM, Caya and Laprise 1999) to the Gulf of St. Lawrence ocean model developed at the "Institut Maurice-Lamontagne" (GOM, Saucier et al. 2002). This strategy involves running both simulators separately and alternatively, using variables from the other simulator to supply the needed forcing fields every day. We present the results of a first series of seasonal simulations performed with this system to show the ability of our climate simulator to reproduce the known characteristics of the regional circulation such as mesoscale oceanic features, fronts and sea-ice. The simulations were done for the period from December 1st, 1989 to March 31st, 1990. The results are compared with those of previous uncoupled runs (Faucher et al. 2003) and with observations.
Ocean heat content variability in an ensemble of twentieth century ocean reanalyses
NASA Astrophysics Data System (ADS)
de Boisséson, Eric; Balmaseda, Magdalena Alonso; Mayer, Michael
2017-08-01
This paper presents a ten-member ensemble of twentieth century Ocean ReAnalyses called ORA-20C. ORA-20C assimilates temperature and salinity profiles and is forced by the ECMWF twentieth century atmospheric reanalysis (ERA-20C) over the 1900-2010 period. This study attempts to identify robust signals of ocean heat content change in ORA-20C and detect contamination by model errors, initial condition uncertainty, surface fluxes and observing system changes. It is shown that ORA-20C trends and variability in the first part of the century result from the surface fluxes and model drift towards a warmer mean state and weak meridional overturning circulation. The impact of the observing system in correcting the mean state causes the deceleration of the warming trend and alters the long-term climate signal. The ensemble spread reflects the long-lasting memory of the initial conditions and the convergence of the system to a solution compatible with surface fluxes, the ocean model and observational constraints. Observations constrain the ocean heat uptake trend in the last decades of the twentieth century, which is similar to trend estimations from the post-satellite era. An ocean heat budget analysis attributes ORA-20C heat content changes to surface fluxes in the first part of the century. The heat flux variability reflects spurious signals stemming from ERA-20C surface fields, which in return result from changes in the atmospheric observing system. The influence of the temperature assimilation increments on the heat budget is growing with time. Increments control the most recent ocean heat uptake signals, highlighting imbalances in forced reanalysis systems in the ocean as well as in the atmosphere.
Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene
NASA Astrophysics Data System (ADS)
Christensen, B. A.; Renema, W.; Henderiks, J.; De Vleeschouwer, D.; Groeneveld, J.; Castañeda, I. S.; Reuning, L.; Bogus, K.; Auer, G.; Ishiwa, T.; McHugh, C.; Gallagher, S. J.; Fulthorpe, C.; Expedition 356 Scientists, I.
2016-12-01
Our understanding of the onset of aridity in Australia and associated mechanisms is limited by the availability of long, continuous climate archives, particularly for the NW shelf in the Pliocene. Five sites were cored and logged on IODP Expedition 356, western Australian margin. Analysis of the natural gamma ray (NGR) suite of downhole logs, provide insights to the timing and rate of climate change. NGR data provide an outstanding tool to assess continental humidity (K%) and aridity (Th/K, Uppm); interpretations are supported with clay mineral data. We show progressive constriction of the Indonesian Throughflow (ITF) and the emerging Maritime Continent drove Australian climate to become drier and more variable. We identify 3 intervals of latest Miocene through early Pleistocene change: sudden onset of humidity at 5.5 Ma (Humid Interval), followed by decreased humidity (Transition Interval) and establishment of the NW dust pathway (Arid Interval) at 2.3 Ma. The Humid Interval is associated with the Western Pacific Warm Pool (WPWP) expansion west to the South China Sea and higher Indian Ocean SSTs. Our study of the NW region confirms wetter climates ringed the arid center during the early Pliocene. Reduced moisture availability began at 3.3 Ma, coincident with cooling in the WPWP and elsewhere, global atmospheric circulation constriction and Indian Ocean subsurface freshening and cooling, a direct response to ITF constriction. Greatest aridity and the onset of the modern dust pathway, documented in Th/K and Uppm logs beginning 2.3 Ma, is coincident with orbitally- controlled climatic change, and reorganization of Indian Ocean circulation. Our data indicate Australian climate is driven by tectonic and oceanographic changes in the ITF. Such changes altered regional atmospheric moisture transport and Indian Ocean circulation patterns and led to a shift from Pacific to Indian Ocean influence on theNW Australian climate, well after the intensification of northern hemisphere glaciation. We conclude that the Maritime Continent is the switchboard modulating teleconnections between monsoonal and glacial climate systems.
NASA Astrophysics Data System (ADS)
Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.
2018-02-01
In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the observed surface and subsurface temperature variations from early spring to summer during the years 2014 and 2015 over the Indo-Pacific region. This study highlights the importance of maintaining observing systems such as ARGO for accurate monsoon forecast.
Impact of the Agulhas Return Current on the glacial Subantarctic region in the South Indian Ocean
NASA Astrophysics Data System (ADS)
Ikehara, M.; Crosta, X.; Manoj, M. C.
2017-12-01
The Southern Ocean has played an important role in the evolution of the global climate system. The Southern Ocean circulation is dominated by the Antarctic Circumpolar Current (ACC), the world's longest and largest current system. Sea ice coverage on sea surface strongly affects the climate of the Southern Hemisphere through its impacts on the energy and gas budget, on the atmospheric circulation, on the hydrological cycle, and on the biological productivity. The Agulhas Return Current (ARC) originates from the Agulhas Current, the major western boundary current in the Indian Ocean, and transports heat from subtropical to subantarctic region. It's thought that the Agulhas leakage from the Indian Ocean to the Atlantic was reduced for the last glacial due to a northward shift of the westerlies and ACC, however, there are still unknown yet how the ARC was responded to the reduced Agulhas leakage. A piston core DCR-1PC was collected from the Del Caño Rise (46°S, 44°E, 2632m), Indian sector of the Southern Ocean. Core site located in the Subantarctic region between the Subtropical Front (STF) and Subantarctic Front (SAF). Age model of the core was established by radiocarbon dating of planktic foraminifer Globorotalia bulloides and oxygen isotope stratigraphy of benthic foraminifers Cibicidoides wuellerstorfi and Melonis bareelanus. Sediment of DCR-1PC show the cyclic changes of diatom/carbonate ooze sedimentation corresponding to Southern Ocean fronts' migrations on glacial-interglacial timescales. Records of ice-rafted debris (IRD) and oxygen isotope in planktic foraminfer G. bulloides suggest that the melting of sea ice was significantly increased during the last glacial maximum (LGM) in the Subantarctic surface water. Diatom assemblage based summer SST also shows the relative warmer condition in the Subantarctic during the LGM. These results might be explained by the strong influence of the Agulhas Return Current during the LGM in the Subantarctic. The reduced Agulhas leakage due to a northward shift of the westerlies and ACC impacted significantly on sea ice melting in the glacial Subantarctic region in the South Indian Ocean.
NASA Astrophysics Data System (ADS)
Korbacz, A.; Brzeziński, A.; Thomas, M.
2008-04-01
We use new estimates of the global atmospheric and oceanic angular momenta (AAM, OAM) to study the influence on LOD/UT1. The AAM series was calculated from the output fields of the atmospheric general circulation model ERA-40 reanalysis. The OAM series is an outcome of global ocean model OMCT simulation driven by global fields of the atmospheric parameters from the ERA- 40 reanalysis. The excitation data cover the period between 1963 and 2001. Our calculations concern atmospheric and oceanic effects in LOD/UT1 over the periods between 20 days and decades. Results are compared to those derived from the alternative AAM/OAM data sets.
NASA Technical Reports Server (NTRS)
Rapp, Richard H.
1998-01-01
This paper documents the development of a degree 360 expansion of the dynamic ocean topography (DOT) of the POCM_4B ocean circulation model. The principles and software used that led to the final model are described. A key principle was the development of interpolated DOT values into land areas to avoid discontinuities at or near the land/ocean interface. The power spectrum of the POCM_4B is also presented with comparisons made between orthonormal (ON) and spherical harmonic magnitudes to degree 24. A merged file of ON and SH computed degree variances is proposed for applications where the DOT power spectrum from low to high (360) degrees is needed.
The importance of planetary rotation period for ocean heat transport.
Cullum, J; Stevens, D; Joshi, M
2014-08-01
The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.
Spin-up simulation behaviors in a climate model to build a basement of long-time simulation
NASA Astrophysics Data System (ADS)
Lee, J.; Xue, Y.; De Sales, F.
2015-12-01
It is essential to develop start-up information when conducting long-time climate simulation. In case that the initial condition is already available from the previous simulation of same type model this does not necessary; however, if not, model needs spin-up simulation to have adjusted and balanced initial condition with the model climatology. Otherwise, a severe spin may take several years. Some of model variables such as deep soil temperature fields and temperature in ocean deep layers in initial fields would affect model's further long-time simulation due to their long residual memories. To investigate the important factor for spin-up simulation in producing an atmospheric initial condition, we had conducted two different spin-up simulations when no atmospheric condition is available from exist datasets. One simulation employed atmospheric global circulation model (AGCM), namely Global Forecast System (GFS) of National Center for Environmental Prediction (NCEP), while the other employed atmosphere-ocean coupled global circulation model (CGCM), namely Climate Forecast System (CFS) of NCEP. Both models share the atmospheric modeling part and only difference is in applying of ocean model coupling, which is conducted by Modular Ocean Model version 4 (MOM4) of Geophysical Fluid Dynamics Laboratory (GFDL) in CFS. During a decade of spin-up simulation, prescribed sea-surface temperature (SST) fields of target year is forced to the GFS daily basis, while CFS digested only first time step ocean condition and freely iterated for the rest of the period. Both models were forced by CO2 condition and solar constant given from the target year. Our analyses of spin-up simulation results indicate that freely conducted interaction between the ocean and the atmosphere is more helpful to produce the initial condition for the target year rather than produced by fixed SST forcing. Since the GFS used prescribed forcing exactly given from the target year, this result is unexpected. The detail analysis will be discussed in this presentation.