2013-10-02
and budgets on the inner margin of a river-dominated continental shelf, J. Geophys. Res. Oceans , 118, 4822–4838, doi:10.1002/jgrc.20362. 1...13/10.1002/jgrc.20362 4822 JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS , VOL. 118, 4822–4838, doi:10.1002/jgrc.20362, 2013 Report Documentation Page Form...shelf, and current velocities obtained from a three-dimensional (3-D) hydro- dynamic model (the Navy Coastal Ocean Model). The budget terms were used to
2011-09-30
community use for ROMS is biogeochemisty: chemical cycles, water quality, blooms , micro-nutrients, larval dispersal, biome transitions, and coupling to...J.C. McWilliams, X. Capet, and J. Kurian, 2010: Heat balance and eddies in the Peru- Chile Current System. Climate Dynamics, 37, in press. doi10.1007
Melt focusing and CO2 extraction at mid-ocean ridges: simulations of reactive two-phase flow
NASA Astrophysics Data System (ADS)
Keller, T.; Katz, R. F.; Hirschmann, M. M.
2016-12-01
The deep CO2 cycle is the result of fluxes between near-surface and mantle reservoirs. Outgassing from mid-ocean ridges is one of the primary fluxes of CO2 from the asthenosphere into the ocean-atmosphere reservoir. Focusing of partial melt to the ridge axis crucially controls this flux. However, the role of volatiles, in particular CO2 and H2O, on melt transport processes beneath ridges remains poorly understood. We investigate this transport using numerical simulations of two-phase, multi-component magma/mantle dynamics. The phases are solid mantle and liquid magma; the components are dunite, MORB, hydrated basalt, and carbonated basalt. These effective components capture accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Our results indicate that volatiles cause channelized melt transport, which leads to significant variability in volume and composition of focused melt. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing; distal volatile-rich melts are not focused to the axis. Up to 50% of these melts are instead emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of CO2 and H2O in the deep lithosphere, which has implications for LAB rheology and volatile recycling by subduction. Results from a suite of simulations, constrained by catalogued observational data [4,5,6] enable predictions of global MOR CO2 output. By combining observational constraints with self-consistent numerical simulations we obtain a range of CO2 output from the global ridge system of 28-110 Mt CO2/yr, corresponding to mean CO2 contents of 50-200 ppm in the mantle. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171. Fig: Simulation results of MOR magma/mantle dynamics with H2O and CO2, showing Darcy flux magnitude for half-spreading rates of 1 and 5 cm/yr.
NASA Astrophysics Data System (ADS)
Keller, Tobias; Katz, Richard F.
2015-04-01
Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES HK96 Hirth & Kohlstedt (1996), Earth Planet Sci Lett DH06 Dasgupta & Hirschmann (2006), doi:10.1038/nature04612. H10 Hirschmann (2010), doi:10.1016/j.pepi.2009.12.003. DH10 Dasgupta & Hirschmann (2010), doi:10.1016/j.epsl.2010.06.039. McK84 McKenzie (1984), J Pet KW12 Katz & Weatherley (2012), doi: 10.1016/j.epsl.2012.04.042. RBS11 Rudge, Bercovici & Spiegelman (2011), doi: 10.1111/j.1365-246X.2010.04870.x
2013-09-30
chemical cycles, water quality, blooms , micro-nutrients, larval dispersal, biome transitions, and coupling to higher tropic levels. We collaborate with...Kurian, 2012: Heat balance and eddies in the Peru- Chile Current System. Climate Dynamics 39, 509-529, doi:10.1007/s00382-011-1170-6. Colas, F., X
Inferring Dynamics from the Wavenumber Spectra of an Eddying Global Ocean Model with Embedded Tides
2012-12-12
MODEL WAVENUMBER SPECTRA (12(112 Ocean Model (HYCOM) [Chassignet et al., 2007 ; Metzger et al., 2010] with 1/12.5° (approximately 9 km) equatorial...Chassignet, E. P., H. E. Ilurlburt. O. M. Smedstad, G. R. Halliwcll, P. J. Hogan, A. J. Wallcraft, R. Baraille. and R. Bleck ( 2007 ), The HYCOM (HYbrid...tide models, J. Geophys. Res., 102, 25,173 25,194, doi:10.1029/97JC00445. Stammer , D. (1997), Global characteristics of ocean variability estimated
Melt focusing and geochemical evolution at mid-ocean ridges: simulations of reactive two-phase flow
NASA Astrophysics Data System (ADS)
Keller, T.; Katz, R. F.; Hirschmann, M. M.
2017-12-01
The geochemical character of MORB and related off-axis volcanic products reflects the signature of chemical reservoirs in the mantle, the processes of melt transport from source to surface, or both. Focusing of partial melt to the ridge axis controls the proportion of deep, volatile- and incompatible-rich melts that contribute to MORB formation. However, the effect of volatiles, including CO2 and H2O, on melt segregation and focusing remains poorly understood. We investigate this transport using 2-D numerical simulations of reactive two-phase flow. The phases are solid mantle and liquid magma. Major elements and volatiles are represented by a system with 4 or 6 pseudo-components. This captures accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Trace element transport is computed for 5 idealized elements between highly incompatible and compatible behavior. Our results indicate that volatiles cause channelized melt transport, which leads to fluctuations in volume and composition of melt focused to the axis. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing. Up to 50% of deep, volatile-rich melts are not focused to the axis, but are emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of volatiles and incompatibles in the deep lithosphere. This has implications for volatile recycling by subduction, seismic properties of the oceanic LAB, and potential sources for seamount volcanism. Results from a suite of simulations, constrained by catalogued observational data [4,5,6], enable prediction of global MORB and volatile output and systematic variations of major, volatile and trace element concentrations as a function of mantle conditions and dynamic properties. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171.
2013-07-25
EOF . SVD 1 Introduction Mesoscale eddies are abundant in the ocean. Chelton et al. ( 2007 ), based on 10 years of altimetry sea surface height anomaly...transport. The dynamic height has a strong annual signal due to steric variations (Wang and Koblinsky 1996; Stammer 1997). Since our study is...JOE.2004.838334 Chelton DB, Schlax MG, Samelson RM, deSzoeke RA ( 2007 ) Global observations of large oceanic eddies. Geophys Res Lett 34, L15606. doi
Toward a Global 1/25 deg HYCOM Ocean Prediction System with Tides
2011-09-30
Wallcraft, C. Lozano, H. L.Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, C. Werner, and J. Wilkin , 2009. U.S. GODAE...United States. Climate Dynamics, doi:10.1007/s00382-010-0988-7. Xu, X., W.J. Schmitz Jr., H.E. Hurlburt, P.J. Hogan , and E.P. Chassignet, 2010. Transport
Dynamical consequences of mantle heterogeneity in two-phase models of mid-ocean ridges
NASA Astrophysics Data System (ADS)
Katz, R. F.
2010-12-01
The mid-ocean ridge system, over 50,000 km in length, samples the magmatic products of a large swath of the asthenosphere. It provides our best means to assess the heterogeneity structure of the upper mantle. Interpretation of the diverse array of observations of MOR petrology, geochemistry, tomography, etc requires models that can map heterogeneity structure onto predictions testable by comparison with these observations. I report on progress to this end; in particular, I describe numerical models of coupled magma/mantle dynamics at mid-ocean ridges [1,2]. These models incorporate heterogeneity in terms of a simple, two-component thermochemical system with specified amplitude and spatial distribution. They indicate that mantle heterogeneity has significant fluid-dynamical consequences for both mantle and magmatic flow. Models show that the distribution of enrichment can lead to asymmetry in the strength of upwelling across the ridge-axis and channelised magmatic transport to the axis. Furthermore, heterogeneity can cause off-axis upwelling of partially molten diapirs, trapping of enriched melts off-axis, and re-fertilization of the mantle by pooled and refrozen melts. Predicted consequences of geochemical heterogeneity may also be considered. References: [1] Katz, RF, (2008); Magma dynamics with the Enthalpy Method: Benchmark Solutions and Magmatic Focusing at Mid-ocean Ridges. Journal of Petrology, doi: 10.1093/petrology/egn058. [2] Katz RF, (2010); Porosity-driven convection and asymmetry beneath mid-ocean ridges. Submitted to G3.
NASA Astrophysics Data System (ADS)
Piepenburg, Dieter; Buschmann, Alexander; Driemel, Amelie; Grobe, Hannes; Gutt, Julian; Schumacher, Stefanie; Segelken-Voigt, Alexandra; Sieger, Rainer
2017-07-01
Recent advances in underwater imaging technology allow for the gathering of invaluable scientific information on seafloor ecosystems, such as direct in situ views of seabed habitats and quantitative data on the composition, diversity, abundance, and distribution of epibenthic fauna. The imaging approach has been extensively used within the research project DynAMo (Dynamics of Antarctic Marine Shelf Ecosystems) at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven (AWI), which aimed to comparatively assess the pace and quality of the dynamics of Southern Ocean benthos. Within this framework, epibenthic spatial distribution patterns have been comparatively investigated in two regions in the Atlantic sector of the Southern Ocean: the shelf areas off the northern tip of the Antarctic Peninsula, representing a region with above-average warming of surface waters and sea-ice reduction, and the shelves of the eastern Weddell Sea as an example of a stable high-Antarctic marine environment that is not (yet) affected by climate change. The AWI Ocean Floor Observation System (OFOS) was used to collect seabed imagery during two cruises of the German research vessel Polarstern, ANT-XXIX/3 (PS81) to the Antarctic Peninsula from January to March 2013 and ANT-XXXI/2 (PS96) to the Weddell Sea from December 2015 to February 2016. Here, we report on the image and data collections gathered during these cruises. During PS81, OFOS was successfully deployed at a total of 31 stations at water depths between 29 and 784 m. At most stations, series of 500 to 530 pictures ( > 15 000 in total, each depicting a seabed area of approximately 3.45 m2 or 2.3 × 1.5 m) were taken along transects approximately 3.7 km in length. During PS96, OFOS was used at a total of 13 stations at water depths between 200 and 754 m, yielding series of 110 to 293 photos (2670 in total) along transects 0.9 to 2.6 km in length. All seabed images taken during the two cruises, including metadata, are available from the data publisher PANGAEA via the two persistent identifiers at https://doi.org/10.1594/PANGAEA.872719 (for PS81) and https://doi.org/10.1594/PANGAEA.862097 (for PS96).
NASA Astrophysics Data System (ADS)
Bayr, Tobias; Wengel, Christian; Latif, Mojib
2016-04-01
Dommenget (2010) found that El Niño-like variability, termed Slab Ocean El Niño, can exist in the absence of ocean dynamics and is driven by the interaction of the atmospheric surface heat fluxes and the heat content of the upper ocean. Further, Dommenget et al. (2014) report the Slab Ocean El Niño is not an artefact of the ECHAM5-AGCM coupled to a slab ocean model. In fact, atmospheric feedbacks crucial to the Slab Ocean El Niño can also be found in many state-of-the-art coupled climate models participating in CMIP3 and CMIP5, so that ENSO in many CMIP models can be understood as a mixed recharge oscillator/Slab Ocean El Niño mode. Here we show further analysis of the Slab Ocean El Niño atmospheric feedbacks in coupled models. The BCCR_CM2.0 climate model from the CMIP3 data base, which has a very large equatorial cold bias, has an El Niño that is mostly driven by Slab Ocean El Niño atmospheric feedbacks and is used as an example to describe Slab Ocean El Niño atmospheric feedbacks in a coupled model. In the BCCR_CM2.0, the ENSO-related variability in the 20°C isotherm (Z20), a measure of upper ocean heat content, is decoupled from the first mode of the seasonal cycle-related variability, while the two are coupled in observations, with ENSO being phase-locked to the seasonal cycle. Further analysis of the seasonal cycle in Z20 using SODA Ocean Reanalysis reveals two different regimes in the seasonal cycle along the equator: The first regime, to which ENSO is phase-locked, extends over the west and central equatorial Pacific and is driven by subsurface ocean dynamics. The second regime, extending in observations only over the cold tongue region, is driven by the seasonal cycle at the sea surface and is shifted by roughly six months relative to the first regime. In a series of experiments with the Kiel Climate Model (KCM) with different mean states due to tuning in the convection parameters, we can show that the strength of the equatorial cold bias and the coupling strength between the seasonal cycle of Z20 and ENSO are anti-correlated, i.e. a strong equatorial cold bias suppresses recharge oscillator dynamics and enhances Slab Ocean El Niño atmospheric feedbacks, supporting the results from the BCCR_CM2.0. This can be explained as with a stronger cold bias the second regime of the seasonal cycle in Z20, which extends in observations only over the small cold tongue region, expands westward and becomes more important, so that it decouples ENSO from the seasonal cycle in Z20. This has implications for some major characteristics of the ENSO like the propagation of SST anomalies, the phase locking of SST to the seasonal cycle, or the nonlinearity of ENSO. Dommenget, D., 2010: The slab ocean El Niño. Geophys. Res. Lett., 37, L20701, doi:10.1029/2010GL044888. - - , S. Haase, T. Bayr, and C. Frauen, 2014: Analysis of the Slab Ocean El Niño atmospheric feedbacks in observed and simulated ENSO dynamics. Clim. Dyn., doi:10.1007/s00382-014-2057-0.
Subpolar Atlantic cooling and North American east coast warming linked to AMOC slowdown
NASA Astrophysics Data System (ADS)
Rahmstorf, Stefan; Caesar, Levke; Feulner, Georg; Saba, Vincent
2017-04-01
Reconstructing the history of the Atlantic Meridional Overturning Circulation (AMOC) is difficult due to the limited availability of data. One approach has been to use instrumental and proxy data for sea surface temperature (SST), taking multi-decadal and longer SST variations in the subpolar gyre region as indicator for AMOC changes [Rahmstorf et al., 2015]. Recent high-resolution global climate model results [Saba et al., 2016] as well as dynamical theory and conceptual modelling [Zhang and Vallis, 2007] suggest that an AMOC weakening will not only cool the subpolar Atlantic but simultaneously warm the Northwest Atlantic between Cape Hatteras and Nova Scotia, thus providing a characteristic SST pattern associated with AMOC variations. We analyse sea surface temperature (SST) observations from this region together with high-resolution climate model simulations to better understand the linkages of SST variations to AMOC variability and to provide further evidence for an ongoing AMOC slowdown. References Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht (2015), Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nature Climate Change, 5(5), 475-480, doi: 10.1038/nclimate2554. Saba, V. S., et al. (2016), Enhanced warming of the Northwest Atlantic Ocean under climate change, Journal of Geophysical Research-Oceans, 121(1), 118-132, doi: 10.1002/2015JC011346. Zhang, R., and G. K. Vallis (2007), The Role of Bottom Vortex Stretching on the Path of the North Atlantic Western Boundary Current and on the Northern Recirculation Gyre, Journal of Physical Oceanography, 37(8), 2053-2080, doi: 10.1175/jpo3102.1.
Dynamic Topography of the Bering Sea
2011-01-01
ai, 2006a]. A disadvantage of this approach is its computational cost which prevents production of global 4DVar analyses [ Stammer et ai, 2002...Panteleev et al., 2007 ]. The numerical model is a modification of the C grid, z coordinate Ocean General Circulation Model (OGCM) designed by Madec...Res. Lett., 33. L09609, doi:l0.1029/2005GL024974. Pantclccv, G. G., A. Proshutinsky, M. Kulakov. D. A. Ncchacv, and W. Maslowski ( 2007
Interior Structure and Habitability of Ocean Worlds
NASA Astrophysics Data System (ADS)
Vance, S.; Bills, B. G.; Cammarano, F.; Panning, M. P.; Stähler, S. C.
2016-12-01
Earth's habitability depends critically on its interior structure and dynamics. Global redox cycles rely on Earth's mantle for continued flux of reduced materials (e.g., Hayes and Waldbauer 2006). Similarly, the habitability of ocean worlds must be understood in terms of their interior structure and evolution (Zolotov and Shock 2004, Hand et al. 2009, Nimmo and Pappalardo 2016, Vance et al. 2016). Combined seismology, gravity, and magnetic investigations may be able to distinguish between a hot active interior and a cold dead one. To evaluate such investigations, we are developing detailed models of interior density, elastic and anelastic structure, and associated seismic sources and signatures, building on prior work (Cammarano et al. 2006). We will present self-consistent 1-D structural models for ocean world interiors that use available thermodynamic data for fluids, ices, and rocks. Cammarano, F., V. Lekic, M. Manga, M. Panning, and B. Romanowicz (2006). Long-period seismology on Europa: 1. Physically consistent interior models. Journal of Geophysical Research, E12009:doi:10.1029/2006JE002710. Hand, K. P., C. Chyba, J. Priscu, R. Carlson, and K. Nealson (2009). Astrobiology and the Potential for Life on Europa, page 589. Arizona University Press. Hayes, J. M. and J. R. Waldbauer (2006). The carbon cycle and associated redox processes through time. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470):931-950. Nimmo, F. and R. T. Pappalardo (2016). Ocean Worlds in the Outer Solar System. Journal of Geophysical Research, doi:10.1002/2016JE005081 Vance, S. D., K. P. Hand, and R. T. Pappalardo (2016). Geophysical controls of chemical disequilibria in Europa. Geophysical Research Letters, doi:10.1002/2016GL068547. Zolotov, M. Y. and E. L. Shock (2004). A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. Journal of Geophysical Research-Planets, 109(E6):E06003.
30 CFR 250.1006 - How must I decommission and take out of service a DOI pipeline?
Code of Federal Regulations, 2011 CFR
2011-07-01
... a DOI pipeline? 250.1006 Section 250.1006 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... out of service a DOI pipeline? (a) The requirements for decommissioning pipelines are listed in § 250.1750 through § 250.1754. (b) The table in this section lists the requirements if you take a DOI...
NASA Astrophysics Data System (ADS)
Wibawa, Teja A.; Lehodey, Patrick; Senina, Inna
2017-02-01
Geo-referenced catch and fishing effort data of the bigeye tuna fisheries in the Indian Ocean over 1952-2014 were analyzed and standardized to facilitate population dynamics modeling studies. During this 62-year historical period of exploitation, many changes occurred both in the fishing techniques and the monitoring of activity. This study includes a series of processing steps used for standardization of spatial resolution, conversion and standardization of catch and effort units, raising of geo-referenced catch into nominal catch level, screening and correction of outliers, and detection of major catchability changes over long time series of fishing data, i.e., the Japanese longline fleet operating in the tropical Indian Ocean. A total of 30 fisheries were finally determined from longline, purse seine and other-gears data sets, from which 10 longline and 4 purse seine fisheries represented 96 % of the whole historical geo-referenced catch. Nevertheless, one-third of total nominal catch is still not included due to a total lack of geo-referenced information and would need to be processed separately, accordingly to the requirements of the study. The geo-referenced records of catch, fishing effort and associated length frequency samples of all fisheries are available at doi:10.1594/PANGAEA.864154.
NASA Astrophysics Data System (ADS)
Contoux, C.; Zhang, Z.; Li, C.; Nisancioglu, K. H.; Risebrobakken, B.
2014-12-01
Northern high latitudes are thought to have been especially warm during the late Pliocene (e.g. Dowsett et al., 2013). However, the mechanisms sustaining these warm high latitude conditions are debated, especially because warm high latitudes are not necessarily depending on a stronger AMOC (Zhang et al., 2013). On the global scale, several authors reported CO2 level variability during the Pliocene ranging from 280 ppm to 450 ppm (e.g. Badger et al., 2013), which could be linked with orbital variability. More regionally, an aridification of the Mediterranean region is thought to have increased the Mediterranean outflow during the same period (e.g. Khélifi et al., 2009). These different forcings must have impacted on salinity and temperature profiles in the North Atlantic/Arctic oceans, which are then recorded at the local scale in the proxies derived from sediment cores. In order to carefully interpret these proxies, it is necessary to understand the large scale dynamics of the region during that period and its potential maximum variability with CO2 and orbital changes as well as Mediterranean outflow increase. Using the NorESM-L coupled atmosphere ocean model, which has a refined oceanic grid in the Nordic Seas region, we investigate the roles of extreme CO2and orbital variability on the Atlantic and Arctic oceanic circulation. An additional test to higher salinity in the Mediterranean is carried out. This study is part of a larger project which aims at characterising the state of the Nordic Seas during the Pliocene, and includes multi-proxy reconstructions and sensitivity model studies. References Badger et al., 2013. High resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3 - 2.8 Ma), Philosophical Transactions of the Royal Society A, 371, 20130094. Dowsett et al., 2013. Sea surface temperature of the mid-Piacenzian ocean: a data-model comparison, Nature Scientific Reports, 3, 2013, doi:10.1038/srep02013. Khélifi et al., 2009. A major and long term intensification of the Mediterranean outflow water, 3.5 - 3.3 Ma ago, Geology, 2009,37;811-814, doi: 10.1130/G30058A.1 Zhang, Z.-S. et al., 2013. Mid-pliocene Atlantic meridional overturning circulation not unlike modern, Clim. Past, 9, 1495--1504, doi:10.5194/cp-9-1495-2013.
30 CFR 250.1005 - Inspection requirements for DOI pipelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Inspection requirements for DOI pipelines. 250.1005 Section 250.1005 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT... Pipelines and Pipeline Rights-of-Way § 250.1005 Inspection requirements for DOI pipelines. (a) Pipeline...
How strange was the Strangelove Ocean? New insights from Boron Isotopes.
NASA Astrophysics Data System (ADS)
Henehan, M. J.; Ridgwell, A.; Thomas, E.; Zhang, S.; Planavsky, N.; Alegret, L.; Schmidt, D. N.; Rae, J. W. B.; Foster, G. L.; Huber, B. T.; Hull, P. M.
2016-12-01
The idea of the `Strangelove Ocean'1 has captured the imagination of palaeoceanographers (and the public) since it was posited to explain the collapse or reverse in surface-deep ocean δ13C gradients after the Cretaceous-Palaeogene (K-Pg) boundary1. It describes a post-extinction ocean where primary productivity was drastically reduced, eliminating the surface-to-deep carbon isotope gradient produced by the biological pump. Survival of benthic foraminifera across the K-Pg (suggesting a persistent supply of organic matter to the deep) is difficult to reconcile with this ideae.g. 2. Geochemical proxies also suggest that severe export productivity reductions were at most regional3. This mismatch between patterns in δ13C and other indicators has thus been interpreted as a signal of changing vital effects in post-extinction pelagic calcifiers, toward lighter δ13C e.g. 2. However, it may be that vital effects in earliest Palaeocene foraminiferal survivors can account for only part of the convergence in δ13C between surface and deep ocean.4 In addition, analysis of carbonate preservation after the K-Pg boundary indicates large-scale carbonate system/ocean pH shifts at this time5, which could have produced secular changes in carbon isotope signals. Here we present new paired benthic and planktic boron isotope measurements that allow us to examine surface to deep ocean pH gradients (which in today's ocean are driven largely by biological activity) across the K-Pg boundary interval and into the early Palaeocene. We then couple these to model simulations to untangle the carbon cycle drivers, both physical and biological, that could have caused these changes in ocean pH gradients. We discuss implications for our understanding of this important interval in Earth history, with reference to the mechanisms of Earth system recovery following mass extinction. References:1. Hsü, K. J. & McKenzie, J. A., 1985. AGU Geophysical Monograph Series 32. doi:10.1029/GM032p0487 2. Alegret, L., et al., 2012. PNAS 109, 728-732. doi:10.1073/pnas.1110601109 3. Hull, P.M. & Norris, R.D., 2011. Paleoceanography 26, PA3205. doi:10.1029/2010PA002082 4. Birch, H.S., et al., 2016. Geology 44, 287-290. doi:10.1130/G37581.1 5. Henehan et al., 2016. Phil. Trans. Roy. Soc. B. 371, 20150510. doi:10.1098/rstb.2015.0510
NASA Astrophysics Data System (ADS)
Zanchettin, D.; Jungclaus, J. H.
2013-12-01
Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical propagation of temperature and salinity anomalies related to the AMV. In particular, we discuss the potential predictability of multidecadal fluctuations in North Atlantic SSTs based on indices derived from the sea-surface salinity field. We show how the two simulations provide AMV realizations with some distinguishable characteristics, e.g., the typical fluctuations' frequencies and the linkage with the North Atlantic meridional overturning and gyre circulations. We further show how information gained by investigating different definitions of the AMV [Zanchettin et al., 2013] helps designing numerical sensitivity studies for understanding the mechanism(s) behind this phenomenon, concerning both its origin and global impacts. References Dima, M., and G. Lohmann [2007], J. Clim., 20, 2706-2719, doi:10.1175/JCLI4174.1 Jungclaus, J.H., et al. [2005], J. Clim., 18, 4013- 4031, doi:10.1175/JCLI3462.1 Polyakov, I. V., et al. [2005], J. Clim., 18:4562-4581 Grossmann, I., and P. J. Klotzbach [2009], J. Geophys. Res., 114, D24107, doi:10.1029/2009JD012728 Zanchettin D., et al. [2013], Clim. Dyn., doi:10.1007/s00382-013-1669-0
Dynamic metabolic exchange governs a marine algal-bacterial interaction
Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto
2016-01-01
Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786
NASA Astrophysics Data System (ADS)
Garnier, Valérie; Honnorat, Marc; Benshila, Rachid; Boutet, Martial; Cambon, Gildas; Chanut, Jérome; Couvelard, Xavier; Debreu, Laurent; Ducousso, Nicolas; Duhaut, Thomas; Dumas, Franck; Flavoni, Simona; Gouillon, Flavien; Lathuilière, Cyril; Le Boyer, Arnaud; Le Sommer, Julien; Lyard, Florent; Marsaleix, Patrick; Marchesiello, Patrick; Soufflet, Yves
2016-04-01
The COMODO group (http://www.comodo-ocean.fr) gathers developers of global and limited-area ocean models (NEMO, ROMS_AGRIF, S, MARS, HYCOM, S-TUGO) with the aim to address well-identified numerical issues. In order to evaluate existing models, to improve numerical approaches and methods or concept (such as effective resolution) to assess the behavior of numerical model in complex hydrodynamical regimes and to propose guidelines for the development of future ocean models, a benchmark suite that covers both idealized test cases dedicated to targeted properties of numerical schemes and more complex test case allowing the evaluation of the kernel coherence is proposed. The benchmark suite is built to study separately, then together, the main components of an ocean model : the continuity and momentum equations, the advection-diffusion of the tracers, the vertical coordinate design and the time stepping algorithms. The test cases are chosen for their simplicity of implementation (analytic initial conditions), for their capacity to focus on a (few) scheme or part of the kernel, for the availability of analytical solutions or accurate diagnoses and lastly to simulate a key oceanic processus in a controlled environment. Idealized test cases allow to verify properties of numerical schemes advection-diffusion of tracers, - upwelling, - lock exchange, - baroclinic vortex, - adiabatic motion along bathymetry, and to put into light numerical issues that remain undetected in realistic configurations - trajectory of barotropic vortex, - interaction current - topography. When complexity in the simulated dynamics grows up, - internal wave, - unstable baroclinic jet, the sharing of the same experimental designs by different existing models is useful to get a measure of the model sensitivity to numerical choices (Soufflet et al., 2016). Lastly, test cases help in understanding the submesoscale influence on the dynamics (Couvelard et al., 2015). Such a benchmark suite is an interesting bed to continue research in numerical approaches as well as an efficient tool to maintain any oceanic code and assure the users a stamped model in a certain range of hydrodynamical regimes. Thanks to a common netCDF format, this suite is completed with a python library that encompasses all the tools and metrics used to assess the efficiency of the numerical methods. References - Couvelard X., F. Dumas, V. Garnier, A.L. Ponte, C. Talandier, A.M. Treguier (2015). Mixed layer formation and restratification in presence of mesoscale and submesoscale turbulence. Ocean Modelling, Vol 96-2, p 243-253. doi:10.1016/j.ocemod.2015.10.004. - Soufflet Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu , R. Benshila (2016). On effective resolution in ocean models. Ocean Modelling, in press. doi:10.1016/j.ocemod.2015.12.004
An inventory of Arctic Ocean data in the World Ocean Database
NASA Astrophysics Data System (ADS)
Zweng, Melissa M.; Boyer, Tim P.; Baranova, Olga K.; Reagan, James R.; Seidov, Dan; Smolyar, Igor V.
2018-03-01
The World Ocean Database (WOD) contains over 1.3 million oceanographic casts (where cast
refers to an oceanographic profile or set of profiles collected concurrently at more than one depth between the ocean surface and ocean bottom) collected in the Arctic Ocean basin and its surrounding marginal seas. The data, collected from 1849 to the present, come from many submitters and countries, and were collected using a variety of instruments and platforms. These data, along with the derived products World Ocean Atlas (WOA) and the Arctic Regional Climatologies, are exceptionally useful - the data are presented in a standardized, easy to use format and include metadata and quality control information. Collecting data in the Arctic Ocean is challenging, and coverage in space and time ranges from excellent to nearly non-existent. WOD continues to compile a comprehensive collection of Arctic Ocean profile data, ideal for oceanographic, environmental and climatic analyses (https://doi.org/10.7289/V54Q7S16).
Sonobuoy-Based, 3-D Acoustic Characterization of Shallow-Water Environments
2015-09-30
10.1109/JOE.2014.2362838, ( IEEE Xplore Early Access, 4 Dec 2014)]. For each type of buoy, the eigenvalues at 50, 75, 125, and 175 Hz were used as input...using sonobuoys,” IEEE J. Ocean. Eng., vol. 40, no. 3, pp. 607-620, Jul. 2015 (DOI: 10.1109/JOE.2014.2362838, ( IEEE Xplore Early Access, 4 Dec 2014...et al, “Modal mapping experiment and geoacoustic inversion using sonobuoys,” IEEE J. Ocean. Eng., vol. 40, no. 3, pp. 607- 620, Jul. 2015 (DOI
NASA Astrophysics Data System (ADS)
Bolrão, D. P.; Rozel, A.; Morison, A.; Labrosse, S.; Tackley, P. J.
2017-12-01
The idea that the Earth had a global magma ocean, mostly created by impacts, core formation, radiogenic and tidal heating, is well accepted nowadays. When this ocean starts to crystallise, if the melt is denser than the solid, a basal magma ocean is created below the solid part. These two magma oceans influence the dynamics and evolution of solid mantle. Near the boundaries, the vertical flow in the solid part creates a topography. If this topography is destroyed by melting/crystallisation processes in a time scale much shorter than the time needed to adjust the topography by viscous relaxation, then matter can cross the boundary. In this case, the boundary is said to be permeable. On the other hand, if this time is longer, matter cannot cross and the boundary is said impermeable. This permeability is defined by a non-dimensional phase change number, φ, introduced by Deguen, 2013. This φ is the ratio of the two timescales mentioned, and defines a permeable boundary when φ « 1, and an impermeable one when φ » 1. To understand the impact of magma oceans on the dynamics of the solid mantle, we use the convection code StagYY, with a 2D spherical annulus geometry, to compute the convection of the solid part. Our results show different convection behaviours depending on the type of boundary chosen. For the permeable case, we investigate the thermo-compositional evolution of the solid domain, explicitly taking into account the compositional evolution of the magma oceans. Reference: Deguen, R. Thermal convection in a spherical shell with melting/freezing at either or both of its boundaries. Journal of Earth Science, Vol. 24, No. 5, p. 669-682, 2013. doi: 10.1007/s12583-013-0364-8
Mohn, Christian; Denda, Anneke; Christiansen, Svenja; Kaufmann, Manfred; Peine, Florian; Springer, Barbara; Turnewitsch, Robert; Christiansen, Bernd
2018-04-01
Seamounts are amongst the most common physiographic structures of the deep-ocean landscape, but remoteness and geographic complexity have limited the systematic collection of integrated and multidisciplinary data in the past. Consequently, important aspects of seamount ecology and dynamics remain poorly studied. We present a data collection of ocean currents and raw acoustic backscatter from shipboard Acoustic Doppler Current Profiler (ADCP) measurements during six cruises between 2004 and 2015 in the tropical and subtropical Northeast Atlantic to narrow this gap. Measurements were conducted at seamount locations between the island of Madeira and the Portuguese mainland (Ampère, Seine Seamount), as well as east of the Cape Verde archipelago (Senghor Seamount). The dataset includes two-minute ensemble averaged continuous velocity and backscatter profiles, supplemented by spatially gridded maps for each velocity component, error velocity and local bathymetry. The dataset is freely available from the digital data library PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.883193.
Oceanic transform faults: how and why do they form? (Invited)
NASA Astrophysics Data System (ADS)
Gerya, T.
2013-12-01
Oceanic transform faults at mid-ocean ridges are often considered to be the direct product of plate breakup process (cf. review by Gerya, 2012). In contrast, recent 3D thermomechanical numerical models suggest that transform faults are plate growth structures, which develop gradually on a timescale of few millions years (Gerya, 2010, 2013a,b). Four subsequent stages are predicted for the transition from rifting to spreading (Gerya, 2013b): (1) crustal rifting, (2) multiple spreading centers nucleation and propagation, (3) proto-transform faults initiation and rotation and (4) mature ridge-transform spreading. Geometry of the mature ridge-transform system is governed by geometrical requirements for simultaneous accretion and displacement of new plate material within two offset spreading centers connected by a sustaining rheologically weak transform fault. According to these requirements, the characteristic spreading-parallel orientation of oceanic transform faults is the only thermomechanically consistent steady state orientation. Comparison of modeling results with the Woodlark Basin suggests that the development of this incipient spreading region (Taylor et al., 2009) closely matches numerical predictions (Gerya, 2013b). Model reproduces well characteristic 'rounded' contours of the spreading centers as well as the presence of a remnant of the broken continental crustal bridge observed in the Woodlark basin. Similarly to the model, the Moresby (proto)transform terminates in the oceanic rather than in the continental crust. Transform margins and truncated tip of one spreading center present in the model are documented in nature. In addition, numerical experiments suggest that transform faults can develop gradually at mature linear mid-ocean ridges as the result of dynamical instability (Gerya, 2010). Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps. The ridge instability is governed by rheological weakening of active fault structures. The instability is most efficient for slow to intermediate spreading rates, whereas ultraslow and (ultra)fast spreading rates tend to destabilize transform faults (Gerya, 2010; Püthe and Gerya, 2013) References Gerya, T. (2010) Dynamical instability produces transform faults at mid-ocean ridges. Science, 329, 1047-1050. Gerya, T. (2012) Origin and models of oceanic transform faults. Tectonophys., 522-523, 34-56 Gerya, T.V. (2013a) Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution. Phys. Earth Planet. Interiors, 214, 35-52. Gerya, T.V. (2013b) Initiation of transform faults at rifted continental margins: 3D petrological-thermomechanical modeling and comparison to the Woodlark Basin. Petrology, 21, 1-10. Püthe, C., Gerya, T.V. (2013) Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Res., DOI: http://dx.doi.org/10.1016/j.gr.2013.04.005 Taylor, B., Goodliffe, A., Martinez, F. (2009) Initiation of transform faults at rifted continental margins. Comptes Rendus Geosci., 341, 428-438.
NASA Astrophysics Data System (ADS)
Izett, Jonathan G.; Fennel, Katja
2018-02-01
Rivers deliver large amounts of fresh water, nutrients, and other terrestrially derived materials to the coastal ocean. Where inputs accumulate on the shelf, harmful effects such as hypoxia and eutrophication can result. In contrast, where export to the open ocean is efficient riverine inputs contribute to global biogeochemical budgets. Assessing the fate of riverine inputs is difficult on a global scale. Global ocean models are generally too coarse to resolve the relatively small scale features of river plumes. High-resolution regional models have been developed for individual river plume systems, but it is impractical to apply this approach globally to all rivers. Recently, generalized parameterizations have been proposed to estimate the export of riverine fresh water to the open ocean (Izett & Fennel, 2018, https://doi.org/10.1002/2017GB005667; Sharples et al., 2017, https://doi.org/10.1002/2016GB005483). Here the relationships of Izett and Fennel, https://doi.org/10.1002/2017GB005667 are used to derive global estimates of open-ocean export of fresh water and dissolved inorganic silicate, dissolved organic carbon, and dissolved organic and inorganic phosphorus and nitrogen. We estimate that only 15-53% of riverine fresh water reaches the open ocean directly in river plumes; nutrient export is even less efficient because of processing on continental shelves. Due to geographic differences in riverine nutrient delivery, dissolved silicate is the most efficiently exported to the open ocean (7-56.7%), while dissolved inorganic nitrogen is the least efficiently exported (2.8-44.3%). These results are consistent with previous estimates and provide a simple way to parameterize export to the open ocean in global models.
The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange
NASA Astrophysics Data System (ADS)
Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.
2013-04-01
Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent years has the potential to influence greenhouse gas exchange across terrestrial ecosystems and the Arctic Ocean, but the overall impact remains unclear. In this study, we therefore try to reduce this uncertainty by addressing the influence of the decline in sea ice extent on all affected greenhouse gas fluxes in the high latitudes. Also, we will address the need for more research, on the ocean and on the land, to understand the impact of a lower sea ice extent on Arctic greenhouse gas exchange. References: Bates, N. R., Moran, S. B., Hansell, D. A. and Mathis, J. T.: An increasing CO2 sink in the Arctic Ocean due to sea-ice loss, Geophys. Res. Lett., 33, L23609, doi:10.1029/2006GL027028, 2006. Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D., Sullivan, K., Wang, Y., Hu, X., Huang, W.-J., et al.: Decrease in the CO2 Uptake Capacity in an Ice-Free Arctic Ocean Basin, Science, 329(5991), 556-559, doi:10.1126/science.1189338, 2010. Kort, E. A., Wofsy, S. C., Daube, B. C., Diao, M., Elkins, J. W., Gao, R. S., Hintsa, E. J., Hurst, D. F., Jimenez, R., Moore, F. L., Spackman, J. R., et al.: Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north, Nature Geosci., 5(5), 318-321, doi:10.1038/NGEO1452, 2012. Nomura, D., Yoshikawa-Inoue, H. and Toyota, T.: The effect of sea-ice growth on air-sea CO2 flux in a tank experiment, vol. 58, pp. 418-426. 2006. Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Høye, T. T., Ims, R. A., et al.: Ecological Dynamics Across the Arctic Associated with Recent Climate Change, Science, 325(5946), 1355-1358, doi:10.1126/science.1173113, 2009. Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. and Christensen, P. B.: Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112, C03016, doi:10.1029/2006JC003572, 2007. Schuur, E. A. G., Abbott, B. and Network, P. C.: High risk of permafrost thaw, Nature, 480(7375), 32-33, 2011. Screen, J. A., Deser, C. and Simmonds, I.: Local and remote controls on observed Arctic warming, Geophys. Res. Lett., 39, L10709, doi:10.1029/2012GL051598, 2012. Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D. and Gustafsson, O.: Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf, Science, 327(5970), 1246-1250, doi:10.1126/science.1182221, 2010.
Vital Signs: Seismology of Europa and Other Ocean World
NASA Astrophysics Data System (ADS)
Kedar, S.; Vance, S.; Anandakrishnan, S.; Banerdt, W. B.; Bills, B. G.; Castillo, J. C.; Huang, H. H.; Jackson, J. M.; Lognonne, P. H.; Lorenz, R. D.; Panning, M. P.; Pike, W. T.; Stähler, S. C.; Tsai, V. C.
2016-12-01
Seismic investigations offer the most comprehensive view into the deep interiors of planetary bodies. The InSight mission and concepts for a Europa Lander and a Lunar Geophysical Network present unique opportunies for seismology to play a critical role in constraining interior structure and thermal state. In oceanic icy worlds, measuring the radial depths of compositional interfaces using seismology in a broad frequency range can sharpen inferences of interior structures deduced from gravity and magnetometry studies, such as those planned for NASA's proposed Europa Mission and ESA's JUICE mission. Seismology may also offer information about fluid motions within or beneath ice, which complements magnetic studies; and can record the dynamics of ice layers, which would reveal mechanisms and spatiotemporal occurrence of crack formation and propagation. Investigating these structures and processes in the future calls for detailed modeling of seismic sources and signatures, in order to develop the most suitable instrumentation. We will present results of simulations of plausible seismic sources and wave-field propagation in Europa, with extension to other oceanic icy worlds, building on prior studies (Kovach and Chyba 2001, Lee et al. 2003, Cammarano et al. 2006, Panning et al. 2006, Leighton et al. 2008). We also consider additional sources: gravitationally forced librations, which will create volume-filling turbulent flow, a possible seismic source similar to that seen from turbulent flow in terrestrial rivers; downflow of dense brines from chaos regions on Europa into its underlying ocean, which possibly resemble riverine flows and flows through glacial channels and ocean acoustic signals that couple with the overlying ice to produce seismic waves, by analogy with Earth's ocean-generated seismic hum. Cammarano, F., Lekic, V., Manga, M., Panning, M., and Romanowicz, B. (2006). JGR, E12009:doi:10.1029/2006JE002710. Kovach, R. L. and Chyba, C. F. (2001). Icarus, 150(2):279-287. Lee, S. W., Zanolin, M., Thode, A. M., Pappalardo, R. T., and Makris, N. C. (2003). Icarus, 165(1):144-167. Leighton, T. G., Finfer, D. C., and White, P. R. (2008). Icarus, 193(2):649-652. Panning, M., Lekic, V., Manga, M., and Romanowicz, B. (2006). Journal of Geophysical Research, E12008:doi:10.1029/2006JE002712.
Implementing DOIs for Oceanographic Satellite Data at PO.DAAC
NASA Astrophysics Data System (ADS)
Hausman, J.; Tauer, E.; Chung, N.; Chen, C.; Moroni, D. F.
2013-12-01
The Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is NASA's archive for physical oceanographic satellite data. It distributes over 500 datasets from gravity, ocean wind, sea surface topography, sea ice, ocean currents, salinity, and sea surface temperature satellite missions. A dataset is a collection of granules/files that share the same mission/project, versioning, processing level, spatial, and temporal characteristics. The large number of datasets is partially due to the number of satellite missions, but mostly because a single satellite mission typically has multiple versions or even temporal and spatial resolutions of data. As a result, a user might mistake one dataset for a different dataset from the same satellite mission. Due to the PO.DAAC'S vast variety and volume of data and growing requirements to report dataset usage, it has begun implementing DOIs for the datasets it archives and distributes. However, this was not as simple as registering a name for a DOI and providing a URL. Before implementing DOIs multiple questions needed to be answered. What are the sponsor and end-user expectations regarding DOIs? At what level does a DOI get assigned (dataset, file/granule)? Do all data get a DOI, or only selected data? How do we create a DOI? How do we create landing pages and manage them? What changes need to be made to the data archive, life cycle policy and web portal to accommodate DOIs? What if the data also exists at another archive and a DOI already exists? How is a DOI included if the data were obtained via a subsetting tool? How does a researcher or author provide a unique, definitive reference (standard citation) for a given dataset? This presentation will discuss how these questions were answered through changes in policy, process, and system design. Implementing DOIs is not a trivial undertaking, but as DOIs are rapidly becoming the de facto approach, it is worth the effort. Researchers have historically referenced the source satellite and data center (or archive), but scientific writings do not typically provide enough detail to point to a singular, uniquely identifiable dataset. DOIs provide the means to help researchers be precise in their data citations and provide needed clarity, standardization and permanence.
30 CFR 250.1002 - Design requirements for DOI pipelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Design requirements for DOI pipelines. 250.1002 Section 250.1002 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT... ratings based on stresses for pipe of the same or equivalent material. The actual bursting strength of the...
From pole to pole: 33 years of physical oceanography onboard R/V Polarstern
NASA Astrophysics Data System (ADS)
Driemel, Amelie; Fahrbach, Eberhard; Rohardt, Gerd; Beszczynska-Möller, Agnieszka; Boetius, Antje; Budéus, Gereon; Cisewski, Boris; Engbrodt, Ralph; Gauger, Steffen; Geibert, Walter; Geprägs, Patrizia; Gerdes, Dieter; Gersonde, Rainer; Gordon, Arnold L.; Grobe, Hannes; Hellmer, Hartmut H.; Isla, Enrique; Jacobs, Stanley S.; Janout, Markus; Jokat, Wilfried; Klages, Michael; Kuhn, Gerhard; Meincke, Jens; Ober, Sven; Østerhus, Svein; Peterson, Ray G.; Rabe, Benjamin; Rudels, Bert; Schauer, Ursula; Schröder, Michael; Schumacher, Stefanie; Sieger, Rainer; Sildam, Jüri; Soltwedel, Thomas; Stangeew, Elena; Stein, Manfred; Strass, Volker H.; Thiede, Jörn; Tippenhauer, Sandra; Veth, Cornelis; von Appen, Wilken-Jon; Weirig, Marie-France; Wisotzki, Andreas; Wolf-Gladrow, Dieter A.; Kanzow, Torsten
2017-03-01
Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and icebreaker Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available at doi:10.1594/PANGAEA.860066. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data - the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.
Impact of CO2 and continental configuration on Late Cretaceous ocean dynamics
NASA Astrophysics Data System (ADS)
Puceat, Emmanuelle; Donnadieu, Yannick; Moiroud, Mathieu; Guillocheau, François; Deconinck, Jean-François
2014-05-01
The Late Cretaceous period is characterized by a long-term climatic cooling (Huber et al., 1995; Pucéat et al., 2003; Friedrich et al., 2012) and by major changes in continental configuration with the widening of the Atlantic Ocean, the initiation of the Tethyan ocean closure, and the deepening of the Central Atlantic Gateway. The Late Cretaceous also marks the end of the occurrence of Oceanic Anoxic Events (OAEs), that are associated to enhanced organic carbon burial, to major crises of calcifying organisms, and to possible ocean acidification (Jenkyns, 2010). It has been suggested that the evolution in continental configuration and climate occurring during the Late Cretaceous could have induced a reorganization in the oceanic circulation, that may have impacted the oxygenation state of the oceanic basins and contributed to the disappearance of OAEs (Robinson et al., 2010; Robinson and Vance, 2012). Yet there is no consensus existing on the oceanic circulation modes and on their possible evolution during the Late Cretaceous, despite recent improvement of the spatial and temporal coverage of neodymium isotopic data (ɛNd), a proxy of oceanic circulation (MacLeod et al., 2008; Robinson et al., 2010; Murphy and Thomas, 2012; Robinson and Vance, 2012; Martin et al., 2012; Moiroud et al., 2012). Using the fully coupled ocean-atmosphere General Circulation Model FOAM, we explore in this work the impact on oceanic circulation of changes in continental configuration between the mid- and latest Cretaceous. Two paleogeography published by Sewall et al. (2007) were used, for the Cenomanian/Turonian boundary and for the Maastrichtian. For each paleogeography, 3 simulations have been realized, at 2x, 4x, and 8x the pre-industrial atmospheric CO2 level, in order to test the sensitivity of the modelled circulation to CO2. Our results show for both continental configurations a bipolar mode for the oceanic circulation displayed by FOAM. Using the Cenomanian/Turonian land-sea mask, two major areas of deep-water production are simulated in the model, one located in the northern and northwestern Pacific area, and the other located in the southern Pacific. An additional area is present in the southern Atlantic Ocean, near the modern Weddell Sea area, but remains very limited. Using the Maastrichtian land-sea mask, the simulations show a major change in the ocean dynamic with the disappearance of the southern Pacific convection cell. The northern Pacific area of deep-water production is reduced to the northwestern Pacific region only. By contrast, the simulations show a marked development of the southern Atlantic deep-water production, that intensifies and extends eastward along the Antarctic coast. These southern Atlantic deep-waters are conveyed northward into the North Atlantic and eastward to the Indian Ocean. Importantly, changes in atmospheric CO2 level do not impact the oceanic circulation simulated by FOAM, at least in the range of tested values. The circulation simulated by FOAM is coherent with existing ɛNd data for the two studied periods and support an intensification of southern Atlantic deep-water production along with a reversal of the deep-water fluxes through the Carribean Seaway as the main causes of the decrease in ɛNd values recorded in the Atlantic and Indian deep-waters during the Late Cretaceous. The simulations reveal a change from a sluggish circulation in the south Atlantic simulated with the Cenomanian/Turonian paleogeography to a much more active circulation in this basin using the Maastrichtian paleogeography, that may have favoured the disappearance of OAEs after the Late Cretaceous. Friedrich, O., Norris, R.D., Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans - A 55 m.y. record of Earth's temperature and carbon cycle. Geology 40 (2), 107-110. Huber, B.T., Hodell, D.A., Hamilton, C.P., 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. of Am. Bull. 107, 1164-1191. Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems 11, doi:10.1029/2009GC002788. MacLeod, K.G., Martin, E.E., Blair, S.W., 2008. Nd isotopic excursion across Cretaceous Ocean Anoxic Event 2 (Cenomanian-Turonian) in the tropical North Atlantic. Geology 36 (10), 811-814. Martin, E.E., MacLeod, K.G., Jiménez Berrocoso, Á., Bourbon, E., 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth Planet. Sci. Lett. 327-328, 111-120. Moiroud, M., Pucéat, E., Donnadieu, Y., Bayon, G., Moriya, K., Deconinck, J.F., and Boyet, M., 2012. Evolution of the neodymium isotopic signature of neritic seawater on a northwestern Pacific margin: new constrains on possible end-members for the composition of deep-water masses in the Late Cretaceous ocean. Chemical Geology 356, p. 160-170. Murphy, D.P., Thomas, D.J., 2012. Cretaceous deep-water formation in the Indian sector of the Southern Ocean. Paleoceanography 27, doi:10.1029/2011PA002198. Pucéat, E., Lécuyer, C., Sheppard, S.M.F., Dromart, G., Reboulet, S., Grandjean, P., 2003. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18 (2), doi:10.1029/2002PA000823. Robinson, A., Murphy, D.P., Vance, D., Thomas, D.J., 2010. Formation of 'Southern Component Water' in the Late Cretaceous: evidence from Nd-isotopes. Geological Society of America 38 (10), 871-874 Robinson, S.A., Vance, D., 2012. Widespread and synchronous change in deep-ocean circulation in the North and South Atlantic during the Late Cretaceous. Paleoceanography 27, PA1102, doi:10.1029/2011PA002240. Sewall, J.O., van de Wal, R.S.W., can der Zwan, K., van Oosterhout, C., Dijkstra, H.A., and Scotese, C.R., 2007. Climate model boundary conditions for four Cretaceous time slices. Clim. Past 3, p. 647-657.
78 FR 1594 - Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... Ocean Energy Management--Completed Actions Regulation Sequence No. Title Identifier No. 328 Revised Requirements for 1010-AD61 Well Plugging and Platform Decommissioning. Office of Surface Mining Reclamation and... DEPARTMENT OF THE INTERIOR (DOI) Bureau of Ocean Energy Management (BOEM) Completed Actions 328. Revised...
Impact location of objects hitting the water surface
NASA Astrophysics Data System (ADS)
Kadri, Usama
2017-04-01
Analysis of data, recorded on March 8th 2014 at the Comprehensive Test ban Treaty Organisation's hydroacoustic station off Cape Leeuwin Western Australia, reveal pressure signatures of objects impacting at the sea surface which could be associated with falling meteorites as well as the missing Malaysian MH370 airplane. The location of the sources are identified analytically by an inverse solution based on acoustic-gravity wave theory (e.g. see references below) which have been developed and validated experimentally. Apart from the direct contribution to the search efforts after the missing airplane, the method we describe here is very efficient for identifying the location of sources that result in a sudden change in the water pressure in general. References 1. T.Yamamoto,1982.Gravity waves and acoustic waves generated by submarine earthquakes, Soil Dyn. Earthquake Eng., 1, 75-82. 2. M. Stiassnie, 2010. Tsunamis and acoustic-gravity waves from underwater earthquakes, J. Eng. Math., 67, 23-32, doi:10.1007/s10665-009-9323-x. 3. U. Kadri and M. Staissnie, 2012. Acoustic-gravity waves interacting with the shelf break. J. Geophys. Res., 117, C03035, doi: 10.1029/2011JC007674. 4. E. Eyov, A. Klar, U. Kadri and M. Stiassnie, 2013. Progressive waves in a compressible ocean with elastic bottom, Wave Motion 50, 929-939. doi: 10.1016/j.wavemoti.2013.03.003 5. G. Hendin and M. Stiassnie, 2013. Tsunami and acoustic-gravity waves in water of constant depth, Phys. Fluids 25, 086103, doi: 10.1063/1.481799. 6. U. Kadri, 2016. Acoustic-gravity waves from an oscillating ice-block in arctic zones. Advances in Acoustics and Vibration, 8076108, http://dx.doi.org/10.1155/2016/8076108 7. T.C.A. Oliveira, U. Kadri, 2016. Acoustic-gravity waves from the 2004 Indian Ocean earthquake and tsunami. Journal of Geophysical Research: Oceans. doi: 10.1002/2016JC011742
Low-frequency variability of the Atlantic MOC in the eddying regime : the intrinsic component.
NASA Astrophysics Data System (ADS)
Gregorio, S.; Penduff, T.; Barnier, B.; Molines, J.-M.; Le Sommer, J.
2012-04-01
A 327-year 1/4° global ocean/sea-ice simulation has been produced by the DRAKKAR ocean modeling consortium. This simulation is forced by a repeated seasonal atmospheric forcing but nevertheless exhibits a substantial low-frequency variability (at interannual and longer timescales), which is therefore of intrinsic origin. This nonlinearly-generated intrinsic variability is almost absent from the coarse-resolution (2°) version of this simulation. Comparing the 1/4° simulation with its fully-forced counterpart, Penduff et al. (2011) have shown that the low-frequency variability of local sea-level is largely generated by the ocean itself in eddying areas, rather than directly forced by the atmosphere. Using the same simulations, the present study quantifies the imprint of the intrinsic low-frequency variability on the Meridional Overturning Circulation (MOC) at interannual-to-decadal timescales in the Atlantic. We first compare the intrinsic and atmospherically-forced interannual variances of the Atlantic MOC calculated in geopotential coordinates. This analysis reveals substantial sources of intrinsic MOC variability in the South Atlantic (driven by the Agulhas mesoscale activity according to Biastoch et al. (2008)), but also in the North Atlantic. We extend our investigation to the MOC calculated in isopycnal coordinates, and identify regions in the basin where the water mass transformation exhibits low-frequency intrinsic variability. In this eddy-permitting regime, intrinsic processes are shown to generate about half the total (geopotential and isopycnal) MOC interannual variance in certain key regions of the Atlantic. This intrinsic variability is absent from 2° simulations. Penduff, T., Juza, M., Barnier, B., Zika, J., Dewar, W.K., Treguier, A.-M., Molines, J.-M., Audiffren, N., 2011: Sea-level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 5652-5670. doi: 10.1175/JCLI-D-11-00077.1. Biastoch, A., Böning, C. W., Lutjeharms, J. R. E., 2008: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature, 456, 489-492, doi: 10.1038/nature07426.
Impacts of dynamical ocean coupling in MJO experiments using NICAM/NICOCO
NASA Astrophysics Data System (ADS)
Miyakawa, T.
2016-12-01
The cloud-system resolving atmosphereic model NICAM has been successfull in producing Madden-Julian Oscillations(MJOs), having it's prediction skill estimated to be about 4 weeks in a series of hindcast experiments for winter MJO events during 2003-2012 (Miyakawa et al. 2014). A simple mixed-layer ocean model has been applied with nudging towards a prescribed "persistent anomaly SST", which maintains the initial anomaly with a time-varying climatological seasonal cycle. This setup enables the model to interact with an ocean with reasonably realistic SST, and also run in a "forecast mode", without using any observational information after the initial date. A limitation is that under this setup, the model skill drops if the oceanic anomaly rapidly changes after the initial date in the real world. Here we run a recently developed, full 3D-ocean coupled version NICAM-COCO (NICOCO) and explore its impact on MJO simulations. Dynamical ocean models can produce oceanic waves/currents, but will also have a bias and drift away from reality. In a sub-seasonal simulation (an initial problem), it is essential to compare the merit of having better represented oceanic signals and the demerit of bias/drift. A test case simulation series featuring an MJO that triggered the abrupt termination of a major El Nino in 1998 shows that the abrupt termination occurs in all 9 simulation members, highlighting the merit of ocean coupling. However, this is a case where oceanic signals are at its extremes. We carried out an estimation of MJO prediction skill for a preliminary 1-degree mesh ocean version of NICOCO in a similar manner to Miyakawa et al. (2014). The MJO skill was degraded for simulations that was initialized at RMM phases 1 and 2 (corresponding to the Indian Ocean), while those initialized at phase 8 (Africa) was not strongly affected. The tendency of the model ocean to overestimate the Maritime Continent warm pool SST possibly delays the eastward propagation of MJO convective envelope, accounting for the degrade of prediction skills (phases 1 and 2). Reference:Madden-Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Miyakawa, T., M. Satoh, H. Miura, H. Tomita, H. Yashiro, A. T. Noda, Y. Yamada, C. Kodama, M. Kimoto & K. Yoneyama. Nature Comm. 5, 3769, doi:10.1038/ncomms4769.
NASA Astrophysics Data System (ADS)
Latto, Rebecca; Romanou, Anastasia
2018-03-01
In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the ocean carbon states
, as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. Our analysis shows that ocean carbon states are associated with the subtropical-subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air-sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown to be most important in the Southern Ocean flux bias. All data and analysis scripts are available at https://data.giss.nasa.gov/oceans/carbonstates/ (DOI: https://doi.org/10.5281/zenodo.996891).
Gulf of California Response to Hurricane Juliette
2010-01-01
desert. J. Geophys. Res. 109, C03043. doi:10.1029/2003JC001938. Barth, A., Alvera -Azcárate, A., Weisberg, R.H., 2008a. A nested model study of the Loop...Current generated variability and its impact on the West Florida Shelf. J. Geophys. Res. 113, C05009. doi:10.1029/2007JC004492. Barth, A., Alvera ...C08033. doi:10.1029/2007JC004585. Barth, A., Alvera -Azcárate, A., Weisberg, R.H., 2008c. Benefit of nesting a regional model into a large-scale ocean model
2016-12-30
of Oceanography . Also, ITP-V investigators have collaborated with aNa a! Postgraduate School 3 student (Gallaher) whose dissertation is based on...under Arctic sea-ice. Journal of Physical Oceanography , doi: http://dx.doi.org/l 0.1175/JPO-D-12-0191.1 Cole, S.T. , F.T. Thwaites, R.A. Krishfield
2016-12-30
graduate school at the Scripps institution of Oceanography . Also, ITP-Y investigators have collaborated with a Naval Postgraduate School 3 student...Physical Oceanography , doi: http://dx.doi.org/10. l J 75/JPO-D-1 2-0 19 l. l Cole, S.T., F.T. Thwaites, R.A. Kri shfield, and J.M. Toole, 2015
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [Docket No. BOEM-2012-0090... North Carolina AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of Intent To..., offshore wind energy developers, and the public in the Department of the Interior's (DOI) ``Smart from the...
A dichotomy in primary marine organic aerosol-cloud-climate system
NASA Astrophysics Data System (ADS)
Ceburnis, D.; Ovadnevaite, J.; Martucci, G.; Bialek, J.; Monahan, C.; Rinaldi, M.; Facchini, C.; Berresheim, H.; Worsnop, D. R.; O'Dowd, C.
2011-12-01
D. Ceburnis1, J. Ovadnevaite1, G. Martucci1, J. Bialek1, C. Monahan1, M. Rinaldi2, M. C. Facchini2, H. Berresheim1, D. R. Worsnop3,4 and C. D. O'Dowd1 1School of Physics & Centre for Climate and Air Pollution Studies, National University of Ireland Galway, University Road, Galway, Ireland 2Institute of Atmospheric Sciences and Climate, National Research Council, Bologna, 20129, Italy. 3 Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821-3976, USA 4 Physics Department, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland Organic matter has been observed to significantly contribute to particulate matter in every environment including pristine remote oceans. A significant if not dominant contribution of insoluble organic matter to marine aerosol has been proved to be of biogenic origin1,2. High time resolution measurements of marine organic matter have demonstrated a dynamic system with regular organic matter plume events occurring during summer3 as well as frequent open ocean particle formation events4. High-time resolution measurements of primary marine organic sea-spray physico-chemical properties reveal an apparent dichotomous behavior in terms of water uptake: specifically sea-spray aerosol enriched in organic matter possesses a low hygroscopic Growth Factor (GF~1.25) while simultaneously having a cloud condensation nucleus/condensation nuclei (CCN/CN) activation efficiency of between 83% at 0.25% supersaturation and 100% at 0.75%5. Simultaneous retrieval of Cloud Droplet Number Concentration (CDNC) during primary organic aerosol plumes reveal CDNC concentrations of 350 cm-3 in newly formed marine stratocumulus cloud for boundary layer organic mass concentrations of 3-4 ug m-36. It is suggested that marine hydrogels are responsible for this dichotomous behavior which has profound impacts to aerosol-cloud-climate system along with a better understood process analysis of aerosol formation by sea-spray7. A hydrophobic character of organic matter dominated aerosol in sub-saturated conditions should have significant implications for direct radiative effect while effectively forming cloud condensation nuclei should have significant contribution to indirect effect. 1 O'Dowd, C. D. et al. Nature 431, 676-680, doi:10.1038/Nature02959 (2004). 2 Ceburnis, D. et al. Atmos. Chem. Phys. Discuss. 11, 2749-2772, doi:doi:10.5194/acpd-11-2749-2011 (2011). 3 Ovadnevaite, J. et al. Geophys Res Lett 38, L02807, doi:10.1029/2010gl046083 (2011). 4 O'Dowd, C., et al. Geophys Res Lett 37, doi:L19805 10.1029/2010gl044679 (2010). 5 Ovadnevaite, J. et al. Geophys Res Lett (2011). 6 Martucci, G. and O'Dowd, C. D. Atmos. Meas. Tech. Discuss., 4, 4825-4865, doi:10.5194/amtd-4-4825-2011 (2011) 7 Gantt, B. et al. Atmos. Chem. Phys. Discuss. 11, 10525-10555, doi:10.5194/acpd-11-10525-2011 (2011).
Optimal Spectral Decomposition (OSD) for Ocean Data Assimilation
2015-01-01
tropical North Atlantic from the Argo float data (Chu et al. 2007 ), and temporal and spatial variability of global upper-ocean heat content (Chu 2011...O. V. Melnichenko, and N. C. Wells, 2007 : Long baro- clinic Rossby waves in the tropical North Atlantic observed fromprofiling floats. J...Harrison, and D. Stammer , D., Eds., Vol. 2, ESA Publ. WPP- 306, doi:10.5270/OceanObs09.cwp.86. Tang, Y., and R. Kleeman, 2004: SST assimilation
Deep structure of the Tristan-Gough plume revealed by geoid anomalies
NASA Astrophysics Data System (ADS)
Maia, M.; Flamme, J.; Cadio, C.; Lalancette, M. F.; Metivier, L.; Pajot-Métivier, G.; Diament, M.
2017-12-01
The origin of the hotspot Tristan da Cunha located at the southwestern end of Walvis Ridge in the Atlantic Ocean is still a controversial topic. We especially question on the nature of the involved geodynamical processes and on their origin depth. The latest results based on local seismic and magnetic data (Schlömer et al., 2016; Baba et al., 2016; Geissler et al., 2016) suggest the existence of a plume coming from the mid-mantle in the southwest of the archipelago. Here we give a regional view of mantle dynamics patterns in the area by using the high-quality satellite geoid data. To extract the mantle signature, we estimate the crustal and lithospheric signals of the ocean basin and South American and African continents, which contribute to mid- and long-wavelengths in the total geoid. We pay particular attention to the modeling of continental margins and their effects on the residual geoid signal. In addition, we explore a large density values set derived from petrological and geochemical studies in the calculation of the lithospheric geoid model. After subtracting the lithospheric signature to the EGM2008 geoid, we apply a multi-scale analysis, which unfolds the different components of the geoid residual signal. The analysis underlines a set of positive anomalies at 200-400 km in the study area, notably in north and west of Tristan de Cunha, and a positive anomaly at 700-1100 km scale in the southwest of the archipelago. These patterns do not change by using different lithospheric geoid models, which allow us to evaluate the reliability of the residual geoid anomalies. These results indicate the existence of small-scale density anomalies in the upper mantle and a larger scale density anomaly in the mid-mantle. Our study suggests that a large dome toped by plume clusters could be a good candidate to explain the volcanism of Tristan da Cunha.Schlömer et al., 2016 Hunting for the Tristan mantle plume..., EPSL, http://dx.doi.org/10.1016/j.epsl.2016.12.028Baba et al., 2016 Marine magnetotellurics imaged no distinct plume..., EPSL, http://dx.doi.org/10.1016/j.tecto.2016.09.033Geissler et al., 2016 Thickness of the oceanic crust, the lithosphere, and..., EPSL, http://dx.doi.org/10.1016/j.tecto.2016.12.013
NASA Astrophysics Data System (ADS)
Maguire, R.; Ritsema, J.
2017-12-01
The tectonic evolution of North America over the past 150 million years was heavily influenced by the complex subduction history of the Farallon plate. In particular, Laramide mountain building may have been triggered by the initiation of flat slab subduction in the late Cretaceous. While it has been proposed that the cause of slab flattening is related to the subduction of an oceanic plateau[1], direct geophysical evidence of a subducted oceanic plateau is lacking. Here, using P-to-S receiver functions, we detect a sharp seismic discontinuity at 720-km depth beneath the southeastern United States and Gulf of Mexico. We interpret this discontinuity as a garnet-to-bridgmanite phase transition occurring within a thickened Farallon crust. Our results are consistent with a subducted oceanic plateau (likely the conjugate half of the Hess rise) which is foundering below the base of the mantle transition zone. Additionally, we find a strong 520-km discontinuity beneath the southeastern United States which may indicate a hydrous transition zone due to the release of H2O from the Farallon slab. These results provide insight into the dynamics of flat slab subduction as well as the tectonic history of North America. [1] Livaccari, R. F., Burke, K., & Şengör, A. M. C. (1981). Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, v. 289, p. 276-278, doi: 10.1038/289276a0
NASA Astrophysics Data System (ADS)
Rau, G. H.; Carroll, S.; Ren, Z. J.
2015-12-01
Excess planetary CO2 and accompanying ocean acidification are naturally mitigated on geologic time scales via mineral weathering. Here, CO2 acidifies the hydrosphere, which then slowly reacts with silicate and carbonate minerals to produce dissolved bicarbonates that are ultimately delivered to the ocean. This alkalinity not only provides long-term sequestration of the excess atmospheric carbon, but it also chemically counters the effects of ocean acidification by stabilizing or raising pH and carbonate saturation state, thus helping rebalance ocean chemistry and preserving marine ecosystems. Recent research has demonstrated ways of greatly accelerating this process by its integration into energy systems. Specifically, it has been shown (1) that some 80% of the CO2 in a waste gas stream can be spontaneously converted to stable, seawater mineral bicarbonate in the presence of a common carbonate mineral - limestone. This can allow removal of CO2 from biomass combustion and bio-energy production while generating beneficial ocean alkalinity, providing a potentially cheaper and more environmentally friendly negative-CO2-emissions alternative to BECCS. It has also been demonstrated that strong acids anodically produced in a standard saline water electrolysis cell in the formation of H2 can be reacted with carbonate or silicate minerals to generate strong base solutions. These solutions are highly absorptive of air CO2, converting it to mineral bicarbonate in solution. When such electrochemical cells are powered by non-fossil energy (e.g. electricity from wind, solar, tidal, biomass, geothermal, etc. energy sources), the system generates H2 that is strongly CO2-emissions-negative, while producing beneficial marine alkalinity (2-4). The preceding systems therefore point the way toward renewable energy production that, when tightly coupled to geochemical mitigation of CO2 and formation of natural ocean "antacids", forms a high capacity, negative-CO2-emissions, "supergreen" source of fuel or electrcity. 1) http://pubs.acs.org/doi/pdf/10.1021/es102671x2) http://pubs.acs.org/doi/full/10.1021/es800366q3) http://www.pnas.org/content/110/25/10095.full.pdf4) http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00875
Long-term variations of SST and heat content in the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Huonsou-gbo, Aubains; Servain, Jacques; Caniaux, Guy; Araujo, Moacyr; Bourlès, Bernard; Veleda, Doris
2015-04-01
Recent studies (eg. Wen et al. 2010; Servain et al. 2014) suggest that subsurface processes influence the interannual variability of sea surface temperature (SST) in the tropical Atlantic through the Meridional Overturning Circulation (MOC) with time lags of several months. In this study, we used observed SST and Ocean heat content to test such hypothesis during the period 1964-2013. First results indicate great similarities in the positive linear trends of monthly standardized anomalies of SST, upper ocean heat content (0-500m) and deeper ocean heat content (500-2000m) averaged over the whole Atlantic Ocean. Strong positive trends of SST and deeper heat content occurred in the equatorial Atlantic, while a strong positive trend of the upper heat content was observed in the northeast Atlantic. These positive trends were the highest during the last two decades. The lagged positive correlation patterns between upper heat content anomalies over the whole gridded Atlantic Ocean and SST anomalies averaged over the equatorial region (60°W-15°E; 10°N-10°S) show a slow temporal evolution, which is roughly in agreement with the upper MOC. More detailed works about the mechanism, as well as about the origin of the highest positive trend of the deeper heat content in the equatorial region, are presently under investigation. References Servain J., G. Caniaux, Y. K. Kouadio, M. J. McPhaden, M. Araujo (2014). Recent climatic trends in the tropical Atlantic. Climate Dynamics, Vol. 43, 3071-3089, DOI 10.1007/s00382-014-2168-7.
NASA Astrophysics Data System (ADS)
Mancho, A. M.; Garcia-Garrido, V. J.; Wiggins, S.; Mendoza, C.
2015-12-01
The disappearance of Malaysia Airlines flight MH370 on the morning of the 8th of March 2014 is one of the great mysteries of our time. One relevant aspect of this mystery is that not a single piece of debris from the aircraft was found during the intensive surface search carried out in the months following the crash. Difficulties in the search efforts were due to the uncertainty in the plane's final impact point and the time passed since the accident and rise the question on how the debris was scattered in an always moving ocean, for which there exist multiple datasets that do not uniquely determine its state. Our approach to this problem is based on dynamical systems tools that identify dynamic barriers and coherent structures governing transport. By combining publicly available information supplied by different ocean data sources with these mathematical techniques, we are able to assess the spatio-temporal state of the ocean in the priority search area at the time of impact and the following weeks. Using this information we propose a revised search strategy by showing why one might not have expected to find debris in some large search areas targeted by the search services and determining regions where one might have expected impact debris to be located and that were not subjected to any exploration. This research has been supported by MINECO under grants MTM2014-56392-R and ICMAT Severo Ochoa project SEV-2011-0087 and ONR grant No. N00014- 01-1-0769. Computational support from CESGA is acknowledged. References [1] V. J. García-Garrido, A. M. Mancho, S. Wiggins, and C. Mendoza. A dynamical systems perspective on the absence of debris associated with the disappearance of flight MH370. Nonlin. Processes Geophys. Discuss., 2,1197-1225, doi:10.5194/npgd-2-1197-2015, 2015
Detecting Tsunami Genesis and Scales Directly from Coastal GPS Stations
NASA Astrophysics Data System (ADS)
Song, Y. Tony
2013-04-01
Different from the conventional approach to tsunami warnings that rely on earthquake magnitude estimates, we have found that coastal GPS stations are able to detect continental slope displacements of faulting due to big earthquakes, and that the detected seafloor displacements are able to determine tsunami source energy and scales instantaneously. This method has successfully replicated several historical tsunamis caused by the 2004 Sumatra earthquake, the 2005 Nias earthquake, the 2010 Chilean earthquake, and the 2011 Tohoku-Oki earthquake, respectively, and has been compared favorably with the conventional seismic solutions that usually take hours or days to get through inverting seismographs (reference listed). Because many coastal GPS stations are already in operation for measuring ground motions in real time as often as once every few seconds, this study suggests a practical way of identifying tsunamigenic earthquakes for early warnings and reducing false alarms. Reference Song, Y. T., 2007: Detecting tsunami genesis and scales directly from coastal GPS stations, Geophys. Res. Lett., 34, L19602, doi:10.1029/2007GL031681. Song, Y. T., L.-L. Fu, V. Zlotnicki, C. Ji, V. Hjorleifsdottir, C.K. Shum, and Y. Yi, 2008: The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 Tsunami, Ocean Modelling, doi:10.1016/j.ocemod.2007.10.007. Song, Y. T. and S.C. Han, 2011: Satellite observations defying the long-held tsunami genesis theory, D.L. Tang (ed.), Remote Sensing of the Changing Oceans, DOI 10.1007/978-3-642-16541-2, Springer-Verlag Berlin Heidelberg. Song, Y. T., I. Fukumori, C. K. Shum, and Y. Yi, 2012: Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean, Geophys. Res. Lett., doi:10.1029/2011GL050767 (Nature Highlights, March 8, 2012).
Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change
NASA Astrophysics Data System (ADS)
Shi, Q.
2017-12-01
Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res., 122, doi:10.1002/2016JA023351.
New data aid estimate of ocean's plastic content
NASA Astrophysics Data System (ADS)
Wendel, JoAnna
2014-12-01
Experts estimate that 5.25 trillion plastic particles—weighing in at nearly 269,000 tons—are floating in the world's oceans. A new paper in the open access journal PLOS ONE (doi:10.1371/journal.pone.011191) about the abundance of plastic in the oceans combines data from 24 expeditions between 2007 and 2013. These expeditions cover all five subtropical gyres—areas of high pressure where seawater churns and sinks—as well as Australian coastal waters, the Bay of Bengal, and even the Mediterranean Sea.
Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets
NASA Astrophysics Data System (ADS)
Kadri, Usama; Abdolali, Ali; Kirby, James T.
2017-04-01
We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234
Rapid Mission Assurance Assessment via Sociotechnical Modeling and Simulation
2015-05-01
USAF’s many missions has a central core: successful execution of military operations. The situation is akin to organizations (e.g., oil exploration...Journal of the American Medical Informatics Association, 11(2), 104-112. doi: 10.1197/jamia.M1471 Ashmore, W. C. (2009). Impact of Alleged Russian... Informatics , 74, 7-8. doi: 10.1016/j.ijmedinf.2005.02.003 Ekstrom, J. A., & Lau, G. T. (2008). Exploratory text mining of ocean law to measure overlapping
Research Spotlight: Narwhals document continued warming of Baffin Bay
NASA Astrophysics Data System (ADS)
Kumar, Mohi
2011-03-01
Baffin Bay, situated between northern Greenland and Canada, is a major gateway between waters from the North Atlantic and Arctic oceans. Dynamics within the bay help govern how much water from the Arctic flows south and sinks to form North Atlantic Deep Water, a deep current that drives ocean circulation on a global scale. Unfortunately, monitoring the deep reaches of Baffin Bay throughout the year is difficult—most oceanographic data are collected in the summer when the area is ice free. To overcome this inability to collect data in harsh winter conditions, Laidre et al. hit upon a novel solution: mounting instruments on narwhals to collect temperature and depth data. Narwhals, a top predator in this frigid ecosystem, make annual migrations from summering grounds in the Canadian High Arctic and western Greenland to wintering grounds in the dense offshore pack ice of Baffin Bay. Moreover, narwhals, which rank among the deepest-diving whales in the world, dive extensively and repeatedly to depths exceeding 1800 meters under pack ice to reach their major food source, the flatfish that swarm on the seafloor of Baffin Bay. Narwhal dives are nearly vertical, making this whale an ideal platform on which to mount surveying instruments. (Journal of Geophysical Research-Oceans, doi:10.1029/2009JC005820, 2010)
An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
NASA Astrophysics Data System (ADS)
Bakker, D. C. E.; Pfeil, B.; Smith, K.; Hankin, S.; Olsen, A.; Alin, S. R.; Cosca, C.; Harasawa, S.; Kozyr, A.; Nojiri, Y.; O'Brien, K. M.; Schuster, U.; Telszewski, M.; Tilbrook, B.; Wada, C.; Akl, J.; Barbero, L.; Bates, N. R.; Boutin, J.; Bozec, Y.; Cai, W.-J.; Castle, R. D.; Chavez, F. P.; Chen, L.; Chierici, M.; Currie, K.; de Baar, H. J. W.; Evans, W.; Feely, R. A.; Fransson, A.; Gao, Z.; Hales, B.; Hardman-Mountford, N. J.; Hoppema, M.; Huang, W.-J.; Hunt, C. W.; Huss, B.; Ichikawa, T.; Johannessen, T.; Jones, E. M.; Jones, S. D.; Jutterström, S.; Kitidis, V.; Körtzinger, A.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Manke, A. B.; Mathis, J. T.; Merlivat, L.; Metzl, N.; Murata, A.; Newberger, T.; Omar, A. M.; Ono, T.; Park, G.-H.; Paterson, K.; Pierrot, D.; Ríos, A. F.; Sabine, C. L.; Saito, S.; Salisbury, J.; Sarma, V. V. S. S.; Schlitzer, R.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Sullivan, K. F.; Sun, H.; Sutton, A. J.; Suzuki, T.; Sweeney, C.; Takahashi, T.; Tjiputra, J.; Tsurushima, N.; van Heuven, S. M. A. C.; Vandemark, D.; Vlahos, P.; Wallace, D. W. R.; Wanninkhof, R.; Watson, A. J.
2014-03-01
The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models. Data coverage Repository-References: Individual data set files and synthesis product: doi:10.1594/PANGAEA.811776 Gridded products: doi:10.3334/CDIAC/OTG.SOCAT_V2_GRID Available at: http://www.socat.info/ Coverage: 79° S to 90° N; 180° W to 180° E Location Name: Global Oceans and Coastal Seas Date/Time Start: 16 November 1968 ate/Time End: 26 December 2011
Autonomous observing platform CO2 data shed new light on the Southern Ocean carbon cycle
NASA Astrophysics Data System (ADS)
Olsen, Are
2017-06-01
While the number of surface ocean CO2 partial pressure (pCO2) measurements has soared the recent decades, the Southern Ocean remains undersampled. Williams et al. (2017, https://doi.org/10.1002/2016GB005541) now present pCO2 estimates based on data from pH-sensor equipped Bio-Argo floats, which have been measuring in the Southern Ocean since 2014. The authors demonstrate the utility of these data for understanding the carbon cycle in this region, which has a large influence on the distribution of CO2 between the ocean and atmosphere. Biogeochemical sensors deployed on autonomous platforms hold the potential to shape our view of the ocean carbon cycle in the coming decades.
NASA Astrophysics Data System (ADS)
Olsen, Are; Key, Robert M.; van Heuven, Steven; Lauvset, Siv K.; Velo, Anton; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; Jutterström, Sara; Steinfeldt, Reiner; Jeansson, Emil; Ishii, Masao; Pérez, Fiz F.; Suzuki, Toru
2016-08-01
Version 2 of the Global Ocean Data Analysis Project (GLODAPv2) data product is composed of data from 724 scientific cruises covering the global ocean. It includes data assembled during the previous efforts GLODAPv1.1 (Global Ocean Data Analysis Project version 1.1) in 2004, CARINA (CARbon IN the Atlantic) in 2009/2010, and PACIFICA (PACIFic ocean Interior CArbon) in 2013, as well as data from an additional 168 cruises. Data for 12 core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have been subjected to extensive quality control, including systematic evaluation of bias. The data are available in two formats: (i) as submitted but updated to WOCE exchange format and (ii) as a merged and internally consistent data product. In the latter, adjustments have been applied to remove significant biases, respecting occurrences of any known or likely time trends or variations. Adjustments applied by previous efforts were re-evaluated. Hence, GLODAPv2 is not a simple merging of previous products with some new data added but a unique, internally consistent data product. This compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg-1 in dissolved inorganic carbon, 6 µmol kg-1 in total alkalinity, 0.005 in pH, and 5 % for the halogenated transient tracers.The original data and their documentation and doi codes are available at the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/oceans/GLODAPv2/). This site also provides access to the calibrated data product, which is provided as a single global file or four regional ones - the Arctic, Atlantic, Indian, and Pacific oceans - under the doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2. The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2 methods and products and includes a broad overview of the secondary quality control results. The magnitude of and reasoning behind each adjustment is available on a per-cruise and per-variable basis in the online Adjustment Table.
Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing
NASA Astrophysics Data System (ADS)
Morrison, A.; Hogg, A.; Ward, M.
2011-12-01
The southern limb of the ocean's meridional overturning circulation plays a key role in the Earth's response to climate change. The rise in atmospheric CO2 during glacial-interglacial transitions has been attributed to outgassing of enhanced upwelling water masses in the Southern Ocean. However a dynamical understanding of the physical mechanisms driving the change in overturning is lacking. Previous modelling studies of the Southern Ocean have focused on the effect of wind stress forcing on the overturning, while largely neglecting the response of the upper overturning cell to changes in surface buoyancy forcing. Using a series of eddy-permitting, idealised simulations of the Southern Ocean, we show that surface buoyancy forcing in the mid-latitudes is likely to play a significant role in setting the strength of the overturning circulation. Air-sea fluxes of heat and precipitation over the Antarctic Circumpolar Current region act to convert dense upwelled water masses into lighter waters at the surface. Additional fluxes of heat or freshwater thereby facilitate the meridional overturning up to a theoretical limit derived from Ekman transport. The sensitivity of the overturning to surface buoyancy forcing is strongly dependent on the relative locations of the wind stress profile, buoyancy forcing and upwelling region. The idealised model results provide support for the hypothesis that changes in upwelling during deglaciations may have been driven by changes in heat and freshwater fluxes, instead of, or in addition to, changes in wind stress. Morrison, A. K., A. M. Hogg, and M. L. Ward (2011), Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing,
NASA Astrophysics Data System (ADS)
Arndt, Jan Erik; Schenke, Hans Werner; Jakobsson, Martin; Nitsche, Frank O.; Buys, Gwen; Goleby, Bruce; Rebesco, Michele; Bohoyo, Fernando; Hong, Jongkuk; Black, Jenny; Greku, Rudolf; Udintsev, Gleb; Barrios, Felipe; Reynoso-Peralta, Walter; Taisei, Morishita; Wigley, Rochelle
2013-06-01
International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 is a new digital bathymetric model (DBM) portraying the seafloor of the circum-Antarctic waters south of 60°S. IBCSO is a regional mapping project of the General Bathymetric Chart of the Oceans (GEBCO). The IBCSO Version 1.0 DBM has been compiled from all available bathymetric data collectively gathered by more than 30 institutions from 15 countries. These data include multibeam and single-beam echo soundings, digitized depths from nautical charts, regional bathymetric gridded compilations, and predicted bathymetry. Specific gridding techniques were applied to compile the DBM from the bathymetric data of different origin, spatial distribution, resolution, and quality. The IBCSO Version 1.0 DBM has a resolution of 500 × 500 m, based on a polar stereographic projection, and is publicly available together with a digital chart for printing from the project website (www.ibcso.org) and at
NASA Astrophysics Data System (ADS)
Rillo, Marina C.; Whittaker, John; Ezard, Thomas H. G.; Purvis, Andy; Henderson, Andrew S.; Stukins, Stephen; Miller, C. Giles
2016-12-01
The Henry Buckley Collection of Planktonic Foraminifera at the Natural History Museum in London (NHMUK) consists of 1665 single-taxon slides housing 23 897 individuals from 203 sites in all the major ocean basins, as well as a vast research library of Scanning Electron Microscope (SEM) photomicrographs. Buckley picked the material from the NHMUK Ocean-Bottom Deposit Collection and also from fresh tow samples. However, his collection remains largely unused as he was discouraged by his managers in the Mineralogy Department from working on or publicizing the collection. Nevertheless, Buckley published pioneering papers on isotopic interpretation of oceanographic and climatic change and was one of the first workers to investigate foraminiferal wall structure using the SEM technique. Details of the collection and images of each slide are available via the NHMUK Data Portal (http://dx.doi.org/10.5519/0035055). The Buckley Collection and its associated Ocean-Bottom Deposit Collection have great potential for taxon-specific studies as well as geochemical work, and both collections are available on request.
NASA Astrophysics Data System (ADS)
Valdivieso, Maria
2014-05-01
The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D.I. and E.C. Kent (2009), A New Air-Sea Interaction Gridded Dataset from ICOADS with Uncertainty Estimates. Bull. Amer. Meteor. Soc 90(5), 645-656. doi: 10.1175/2008BAMS2639.1. Dee, D. P. et al. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553-597. doi: 10.1002/qj.828. Kanamitsu M., Ebitsuzaki W., Woolen J., Yang S.K., Hnilo J.J., Fiorino M., Potter G. (2002), NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83:1631-1643. Large, W. and Yeager, S. (2009), The global climatology of an interannually varying air-sea flux data set. Clim. Dynamics, Volume 33, pp 341-364 Valdivieso, M. and co-authors (2014): Heat fluxes from ocean and coupled reanalyses, Clivar Exchanges. Issue 64. Yu, L., X. Jin, and R. A. Weller (2008), Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Technical Report OAFlux Project (OA2008-01), Woods Hole Oceanographic Institution. Zhang, Y., WB Rossow, AA Lacis, V Oinas, MI Mishchenk (2004), Calculation of radiative fluxes from the surface to top of atmsophere based on ISCCP and other global data sets. Journal of Geophysical Research: Atmospheres (1984-2012) 109 (D19).
NASA Astrophysics Data System (ADS)
Jurikova, Hana; Gutjahr, Marcus; Liebetrau, Volker; Brand, Uwe; Posenato, Renato; Garbelli, Claudio; Angiolini, Lucia; Eisenhauer, Anton
2017-04-01
The global biogeochemical cycling of carbon is fundamental for life on Earth with the ocean playing a key role as the largest and dynamically evolving CO2 reservoir. The boron isotope composition (commonly expressed in δ11B) of marine calcium carbonate is considered to be one of the most reliable paleo-pH proxies, potentially enabling us to reconstruct past ocean pH changes and understand carbon cycle perturbations along Earth's geological record (e.g. Foster et al., 2008; Clarkson et al., 2015). Brachiopods present an advantageous and largely underutilised archive for Phanerozoic carbon cycle reconstructions considering their high abundance in the geological record and its origin dating back to the early Cambrian. Moreover, their shell made of low-magnesium calcite makes these marine calcifiers more resistant to post-depositional diagenetic alteration of primary chemical signals. We have investigated the δ11B using MC-ICP-MS (Neptune Plus) and B/Ca and other elemental ratios (Mg/Ca, Sr/Ca, Al/Ca, Li/Ca, Ba/Ca, Na/Ca and Fe/Ca) using ICP-MS-Quadrupole (Agilent 7500cx) from the same specimens in pristine brachiopod shells from two sections from northern Italy during the Late Permian. These sections cover the δ13C excursion in excess of ˜4 ‰ (Brand et al., 2012) and are associated with major climate and environmental perturbations that lead to the mass extinction event at the Permian-Triassic boundary. Particular emphasis will be placed on the implications of our new paleo-pH estimates on the seawater chemistry during the Late Permian. Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K. and Farabegoli, E.: The end-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe, Chemical Geology 323, 121-144, doi:10.1016/j.chemgeo.2012.06.015, 2012. Clarkson, M.O., Kasemann, S.A., Wood, R.A., Lenton, T.M., Daines, S.J., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S.W. and Tipper, E.T.: Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229-232, doi: 10.1126/science.aaa0193, 2015. Foster, G.L.: Seawater pH, pCO2 and [CO32-] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth and Planetary Science Letters 271, 254-266. doi:10.1016/j.epsl.2008.04.015, 2008.
Eddy Resolving Global Ocean Prediction including Tides
2013-09-30
atlantic meridional overturning circulation in the subpolar North Atlantic . Journal of Geophysical Research vol 118, doi:10.1002/jgrc,20065. [published, refereed] ...global ocean circulation model was examined using results from years 2005-2009 of a seven and a half year 1/12.5° global simulation that resolves...internal tides, along with barotropic tides and the eddying general circulation . We examined tidal amplitudes computed using 18 183-day windows that
2015-08-20
evapotranspiration (ET) over oceans may be significantly lower than previously thought. The MEP model parameterized turbulent transfer coefficients...fluxes, ocean freshwater fluxes, regional crop yield among others. An on-going study suggests that the global annual evapotranspiration (ET) over...Bras, Jingfeng Wang. A model of evapotranspiration based on the theory of maximum entropy production, Water Resources Research, (03 2011): 0. doi
Reanalysis of biogeochemical properties in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Cossarini, Gianpiero; Teruzzi, Anna; Salon, Stefano; Solidoro, Cosimo
2014-05-01
In the 3D variational (3DVAR) assimilation approach the error covariance matrix can be decomposed in a series of operators. The decomposition makes the 3DVAR particularly suitable for marine biogeochemistry data assimilation, because of the reduced computational costs of the method and its modularity, which allows to define the covariance among the biogeochemical variables in a specific operator. In the present work, the results of 3DVAR assimilation of surface chlorophyll concentration in a multi-annual simulation of the Mediterranean Sea biogeochemistry are presented. The assimilated chlorophyll concentrations are obtained from satellite observations (Volpe et al. 2012). The multi-annual simulation is carried out using the OPATM-BFM model (Lazzari et al. 2012), which describes the low trophic web dynamics and is offline coupled with the MFS physical model (Oddo et al. 2009). In the OPATM-BFM four types of phytoplankton are simulated in terms of their content in carbon, nitrogen, phosphorous, silicon and chlorophyll. In the 3DVAR the error covariance matrix has been decomposed in three different operators, which account for the vertical, the horizontal and the biogeochemical covariance (Teruzzi et al. 2014). The biogeochemical operator propagates the result of the assimilation to the OPATM-BFM variables, providing innovation for the components of the four phytoplankton types. The biogeochemical covariance has been designed supposing that the assimilation preserves the physiological status and the relative abundances of phytoplankton types. Practically, the assimilation preserves the internal quotas of the components for each phytoplankton as long as the optimal growth rate condition are maintained. The quotas preservation is not applied when the phytoplankton is in severe declining growth phase, and the correction provided by the assimilation is set equal to zero. Moreover, the relative abundances among the phytoplankton functional types are preserved. The 3DVAR has been applied to the Mediterranean Sea for the period 1999-2010 with weekly assimilation. The results of the multi-annual run show that the assimilation improves the model skill in terms of a better representation of the mean chlorophyll concentrations over the Mediterranean Sea sub-regions and also in terms of spatial and temporal definition of local bloom events. Furthermore, the comparison with nutrients climatology based on in situ measurements show that the non assimilated variables are consistent with observations. The application of the 3DVAR revealed that in specific cases the correction introduced by the assimilation is not maintained by the model dynamics. In these cases, the satellite observations are characterized by local patchy bloom events, which are not well captured by the model. It has been observed that, since the bloom events are strongly affected by the vertical mixing dynamics, which support nutrients to the surface layer, a possible source of error are the mixing conditions provided by the physical model. Oddo et al. 2009. Ocean Science, 5(4), 461-473, doi:10.5194/os-5-461-2009. Lazzari et al. 2012. Biogeosciences, 9(1), 217-233, doi:10.5194/bg-9-217-2012. Teruzzi et al. 2014. Journal of Geophysical Research, 119, 1-18, doi:10.1002/2013JC009277. Volpe et al. 2012. Ocean Science Discussions, 9(2), 1349-1385, doi:10.5194/osd-9-1349-2012.
NASA Astrophysics Data System (ADS)
Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.
2015-10-01
In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485
C-GLORSv5: an improved multipurpose global ocean eddy-permitting physical reanalysis
NASA Astrophysics Data System (ADS)
Storto, Andrea; Masina, Simona
2016-11-01
Global ocean reanalyses combine in situ and satellite ocean observations with a general circulation ocean model to estimate the time-evolving state of the ocean, and they represent a valuable tool for a variety of applications, ranging from climate monitoring and process studies to downstream applications, initialization of long-range forecasts and regional studies. The purpose of this paper is to document the recent upgrade of C-GLORS (version 5), the latest ocean reanalysis produced at the Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) that covers the meteorological satellite era (1980-present) and it is being updated in delayed time mode. The reanalysis is run at eddy-permitting resolution (1/4° horizontal resolution and 50 vertical levels) and consists of a three-dimensional variational data assimilation system, a surface nudging and a bias correction scheme. With respect to the previous version (v4), C-GLORSv5 contains a number of improvements. In particular, background- and observation-error covariances have been retuned, allowing a flow-dependent inflation in the globally averaged background-error variance. An additional constraint on the Arctic sea-ice thickness was introduced, leading to a realistic ice volume evolution. Finally, the bias correction scheme and the initialization strategy were retuned. Results document that the new reanalysis outperforms the previous version in many aspects, especially in representing the variability of global heat content and associated steric sea level in the last decade, the top 80 m ocean temperature biases and root mean square errors, and the Atlantic Ocean meridional overturning circulation; slight worsening in the high-latitude salinity and deep ocean temperature emerge though, providing the motivation for further tuning of the reanalysis system. The dataset is available in NetCDF format at doi:10.1594/PANGAEA.857995.
NASA Astrophysics Data System (ADS)
Peralta Ferriz, C.; Morison, J.
2014-12-01
Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1
Understanding Climate Uncertainty with an Ocean Focus
NASA Astrophysics Data System (ADS)
Tokmakian, R. T.
2009-12-01
Uncertainty in climate simulations arises from various aspects of the end-to-end process of modeling the Earth’s climate. First, there is uncertainty from the structure of the climate model components (e.g. ocean/ice/atmosphere). Even the most complex models are deficient, not only in the complexity of the processes they represent, but in which processes are included in a particular model. Next, uncertainties arise from the inherent error in the initial and boundary conditions of a simulation. Initial conditions are the state of the weather or climate at the beginning of the simulation and other such things, and typically come from observations. Finally, there is the uncertainty associated with the values of parameters in the model. These parameters may represent physical constants or effects, such as ocean mixing, or non-physical aspects of modeling and computation. The uncertainty in these input parameters propagates through the non-linear model to give uncertainty in the outputs. The models in 2020 will no doubt be better than today’s models, but they will still be imperfect, and development of uncertainty analysis technology is a critical aspect of understanding model realism and prediction capability. Smith [2002] and Cox and Stephenson [2007] discuss the need for methods to quantify the uncertainties within complicated systems so that limitations or weaknesses of the climate model can be understood. In making climate predictions, we need to have available both the most reliable model or simulation and a methods to quantify the reliability of a simulation. If quantitative uncertainty questions of the internal model dynamics are to be answered with complex simulations such as AOGCMs, then the only known path forward is based on model ensembles that characterize behavior with alternative parameter settings [e.g. Rougier, 2007]. The relevance and feasibility of using "Statistical Analysis of Computer Code Output" (SACCO) methods for examining uncertainty in ocean circulation due to parameter specification will be described and early results using the ocean/ice components of the CCSM climate model in a designed experiment framework will be shown. Cox, P. and D. Stephenson, Climate Change: A Changing Climate for Prediction, 2007, Science 317 (5835), 207, DOI: 10.1126/science.1145956. Rougier, J. C., 2007: Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations, Climatic Change, 81, 247-264. Smith L., 2002, What might we learn from climate forecasts? Proc. Nat’l Academy of Sciences, Vol. 99, suppl. 1, 2487-2492 doi:10.1073/pnas.012580599.
NASA Astrophysics Data System (ADS)
Yoshida, Masaki
2014-05-01
Previous numerical studies of mantle convection focusing on subduction dynamics have indicated that the viscosity contrast between the subducting plate and the surrounding mantle have a primary effect on the behavior of subducting plates. The seismically observed plate stagnation at the base of the mantle transition zone (MTZ) under the Western Pacific and Eastern Eurasia is considered to mainly result from a viscosity increase at the ringwoodite to perovskite + magnesiowüstite (Rw→Pv+Mw) phase decomposition boundary, i.e., the boundary between the upper and lower mantle. The harzburgite layer, which is sandwiched between basaltic crust and depleted peridotite (lherzolite) layers, is a key component of highly viscous, cold oceanic plates. However, the possible sensitivity of the effective viscosity of harzburgite layers in the morphology of subducting plates that are flattened in the MTZ and/or penetrated in the lower mantle has not been examined systematically in previous three-dimensional (3D) numerical modeling studies that consider the viscosity increase at the boundary between the upper and lower mantle. In this study, in order to investigate the role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, I performed a series of numerical simulations of mantle convection with semi-dynamic plate subduction in 3D regional spherical-shell geometry. The results show that a buckled crustal layer is observed under the "heel" of the stagnant slab that begins to penetrate into the lower mantle, regardless of the magnitude of the viscosity contrast between the harzburgite layer and the underlying mantle, when the factor of viscosity increase at the boundary of the upper and lower mantle is larger than 60-100. As the viscosity contrast between the harzburgite layer and the underlying mantle increases, the curvature of buckling is larger. When the viscosity increase at the boundary of the upper and lower mantle and the viscosity contrast between the harzburgite layer and the underlying mantle are larger, the volumes of crustal and harzburgite materials trapped in the mantle transition zone (MTZ) are also larger, although almost all of the materials penetrate into the lower mantle. These materials are trapped in the MTZ for over tens of millions of years. The bending of crustal layers numerically observed in the present study is consistent with seismological evidence that there is a piece of subducted oceanic crust in the uppermost lower mantle beneath the subducting slab under the Mariana trench [Niu et al., 2003, JGR]. The results of the present study suggest that when the viscosity increase at the boundary of the upper and lower mantle is larger than 60-100, a seismically observed stagnant slab is reproduced. This result is consistent with the previous independent geodynamic studies. For instance, a 2D geodynamic model with lateral viscosity variations suggested that it would need to be substantially greater than 30, say, around 100, to explain the positive geoid anomaly in the subduction zones where the subducting slab reaches the boundary between the upper and lower mantle such as that of the western Pacific [Tosi et al., 2009, GJI]. References: [1] Tajima, F. Yoshida, M. and Ohtani, E., Conjecture with water and rheological control for subducting slab in the mantle transition zone, Geoscience Frontiers, doi:10.1016/j.gsf.2013.12.005, 2014. [2] Yoshida, M. The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, Geophys. Res. Lett., 40(20), 5387-5392, doi:10.1002/2013GL057578, 2013. [3] Yoshida, M. and Tajima, F., On the possibility of a folded crustal layer stored in the hydrous mantle transition zone, Phys. Earth Planet. Inter., 219, 34-48, doi:10.1016/j.pepi.2013.03.004, 2013.
CORAL DISEASE & HEALTH CONSORTIUM: FINDING SOLUTIONS
The National Oceanic Atmospheric Administration (NOAA), the Environmental Protection Agency (EPA), and the Department of Interior (DOI) developed the framework for a Coral Disease and Health Consortium (CDHC) for the United States Coral Reef Task Force (USCRTF) through an interag...
Detecting Tsunami Source Energy and Scales from GNSS & Laboratory Experiments
NASA Astrophysics Data System (ADS)
Song, Y. T.; Yim, S. C.; Mohtat, A.
2016-12-01
Historically, tsunami warnings based on the earthquake magnitude have not been very accurate. According to the 2006 U.S. Government Accountability Office report, an unacceptable 75% false alarm rate has prevailed in the Pacific Ocean (GAO-06-519). One of the main reasons for those inaccurate warnings is that an earthquake's magnitude is not the scale or power of the resulting tsunami. For the last 10 years, we have been developing both theories and algorithms to detect tsunami source energy and scales, instead of earthquake magnitudes per se, directly from real-time Global Navigation Satellite System (GNSS) stations along coastlines for early warnings [Song 2007; Song et al., 2008; Song et al., 2012; Xu and Song 2013; Titov et al, 2016]. Here we will report recent progress on two fronts: 1) Examples of using GNSS in detecting the tsunami energy scales for the 2004 Sumatra M9.1 earthquake, the 2005 Nias M8.7 earthquake, the 2010 M8.8 Chilean earthquake, the 2011 M9.0 Tohoku-Oki earthquake, and the 2015 M8.3 Illapel earthquake. 2) New results from recent state-of-the-art wave-maker experiments and comparisons with GNSS data will also be presented. Related reference: Titov, V., Y. T. Song, L. Tang, E. N. Bernard, Y. Bar-Sever, and Y. Wei (2016), Consistent estimates of tsunami energy show promise for improved early warning, Pur Appl. Geophs., DOI: 10.1007/s00024-016-1312-1. Xu, Z. and Y. T. Song (2013), Combining the all-source Green's functions and the GPS-derived source for fast tsunami prediction - illustrated by the March 2011 Japan tsunami, J. Atmos. Oceanic Tech., jtechD1200201. Song, Y. T., I. Fukumori, C. K. Shum, and Y. Yi (2012), Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean, Geophys. Res. Lett., doi:10.1029/2011GL050767. Song, Y. T., L.-L. Fu, V. Zlotnicki, C. Ji, V. Hjorleifsdottir, C.K. Shum, and Y. Yi, 2008: The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 Tsunami (2007), Ocean Modelling, doi:10.1016/j.ocemod.2007.10.007. Song, Y. T. (2007) Detecting tsunami genesis and scales directly from coastal GPS stations, Geophys. Res. Lett., 34, L19602, doi:10.1029/2007GL031681.
NASA Astrophysics Data System (ADS)
Vitale Brovarone, A.; Herwartz, D.; Castelli, D.; Malavieille, J.
2012-04-01
Timing of HP metamorphism in Alpine Corsica is highly debated. Controversial biostratigraphic and radiometric constraints results in a poor understanding of the evolution of Alpine Corsica and its meaning in the Western Mediterranean dynamics. Age estimates provided by means of several techniques (e.g. Ar-Ar, Sa-Nd, U-Pb) vary form Late Cretaceous to Late Eocene. Some authors favor a Late Cretaceous peak metamorphism under HP conditions followed by Late Eocene and Early Oligocene blueschist and greenschist retrogression, respectively. Others favor a Late Eocene peak metamorphism and consider the older estimates as affected by analytical inaccuracy. In order to unravel this debate, we provide new Lu-Hf constraints on garnet and lawsonite from the lawsonite-eclogite and lawsonite-blueschist units of Alpine Corsica, which represent a part of the so-called Schistes Lustrés complex. The two investigated units are interpreted to represent remnants of the former Corsican ocean-continent transition zone [2]. As Lu concentrates in the cores of the selected minerals during the early stages of growth and blocking temperatures are high, this method provides robust insight on the timing of prograde/peak metamorphism [1]. Garnet and lawsonite separated form three lawsonite-eclogite samples yield systematic Late Eocene ages at ~ 34 Ma, while lawsonite from the lawsonite-blueschist unit yields a slightly older age at ~ 37 Ma. These data are in agreement with U-Pb data on zircon from the lawsonite-eclogite unit (~ 34 Ma) [3], but are in contrast with a recent U-Pb estimate on the Corsican continental margin unit metamorphosed under blueschist condition, yielding an age of ~ 55 Ma [4]. These discrepancies indicate a complex paleogeographic setting and a diachronous metamorphic evolution along the Corsican ocean-continent transition zone. The Late Eocene HP metamorphism in the Schistes Lustrés of Alpine Corsica also provides important constraints in the evolution of the Alps-Apennine system and the surrounding Western Mediterranean area. [1] Skora, S., Baumgartner, L.P., Mahlen, N.J., Lapen, T.J., Johnson, C.M., Bussy, F. 2008. Estimation of a maximum Lu diffusion rate in a natural eclogite garnet. Swiss J. Geosci. DOI: 10.1007/s00015-008-1268-y. [2] Vitale Brovarone, A., Beltrando, M., Malavieille, J., Giuntoli, F, Tondella, E, Groppo, C., Beyssac, O. and Compagnoni, R., 2011a. Inherited Ocean-Continent Transition zones in deeply subducted terranes: Insights from Alpine Corsica, Lithos, doi: 10.1016/j.lithos.2011.02.013. [3] Martin., L., Rubatto, D., Vitale Brovarone, A., Hermann, J. 2011. Late Eocene lawsonite-eclogite facies metasomatism of a granulite sliver associated to ophiolites in Alpine Corsica. Lithos, doi:10.1016/j.lithos.2011.03.015 [4] Maggi M, Rossetti F, Theye T, Andersen T, Corfu F, Faccenna C. Sodic Pyroxene Bearing Phyllonites From the East Tenda Shear Zone: Constraining P-T Conditions and Timing of the Ligurian-Piemontese Ocean Overthrusting Onto the Variscan Corsica. Abstract Corsealp 2011. Saint Florent, Corsica, France.
Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover?
Tremblay, L B; Schmidt, G A; Pfirman, S; Newton, R; DeRepentigny, P
2015-10-13
Ice-rafted sediments of Eurasian and North American origin are found consistently in the upper part (13 Ma BP to present) of the Arctic Coring Expedition (ACEX) ocean core from the Lomonosov Ridge, near the North Pole (≈88° N). Based on modern sea-ice drift trajectories and speeds, this has been taken as evidence of the presence of a perennial sea-ice cover in the Arctic Ocean from the middle Miocene onwards (Krylov et al. 2008 Paleoceanography 23, PA1S06. (doi:10.1029/2007PA001497); Darby 2008 Paleoceanography 23, PA1S07. (doi:10.1029/2007PA001479)). However, other high latitude land and marine records indicate a long-term trend towards cooling broken by periods of extensive warming suggestive of a seasonally ice-free Arctic between the Miocene and the present (Polyak et al. 2010 Quaternary Science Reviews 29, 1757-1778. (doi:10.1016/j.quascirev.2010.02.010)). We use a coupled sea-ice slab-ocean model including sediment transport tracers to map the spatial distribution of ice-rafted deposits in the Arctic Ocean. We use 6 hourly wind forcing and surface heat fluxes for two different climates: one with a perennial sea-ice cover similar to that of the present day and one with seasonally ice-free conditions, similar to that simulated in future projections. Model results confirm that in the present-day climate, sea ice takes more than 1 year to transport sediment from all its peripheral seas to the North Pole. However, in a warmer climate, sea-ice speeds are significantly faster (for the same wind forcing) and can deposit sediments of Laptev, East Siberian and perhaps also Beaufort Sea origin at the North Pole. This is primarily because of the fact that sea-ice interactions are much weaker with a thinner ice cover and there is less resistance to drift. We conclude that the presence of ice-rafted sediment of Eurasian and North American origin at the North Pole does not imply a perennial sea-ice cover in the Arctic Ocean, reconciling the ACEX ocean core data with other land and marine records. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren
2017-04-01
Subglacial discharge from tidewater outlet glaciers forms convective bouyant freshwater plumes ascending close the glacier face, and entrainment of ambient bottom water increases the salinity of the water until the plume reaches its level of neutral buoyancy at sub-surface levels or reaches the surface. Relatively warm bottom water masses characterize many fjords around Greenland and therefore entrainment would also increase the temperature in the plumes and, thereby, impact the heat transport in the fjords. However, relatively few oceanographic measurements have been made in or near plumes from subglacial discharge and, therefore, the potential for subglacial discharge for increasing heat transport towards the tidewater outlet glaciers are poorly understood. We present the first direct hydrographic measurements in a plume from subglacial discharge in Godthåbsfjord (located on the western coast of Greenland) where a XCTD was launched from a helicopter directly into the plume. Measurements of the surface salinity showed that the plume only contained 7% of freshwater at the surface, implying a large entrainment with a mixing ratio of 1:13 between outflowing meltwater and saline fjord water. These observations are analyzed together with seasonal observations of ocean heat transport towards the tidewater outlet glaciers in Godthåbsfjord and we show that subglacial discharge only had modest effects on the overall heat budget in front of the glacier. These results were supported from a high-resolution three-dimensional model of Godthåbsfjord. The model explicitly considered subglacial freshwater discharge from three tidewater outlet glaciers where entrainment of bottom water was taken into account. Model results showed that subglacial discharge only affected the fjord circulation relatively close ( 10 km) to the glaciers. Thus, the main effect on heat transport was due to the freshwater discharge itself whereas the subsurface discharge and associated entrainment only had a minor dynamical effect on the fjord circulation. However, mixing of bottom water by subglacial discharge also brings large amounts of nutrients to the surface and estimates of the potential nutrient transport show that this may have a significant impact on the biological production in front of tidewater outlet glaciers. Related publications: Bendtsen, J., Mortensen, J., Lennert, K. and S. Rysgaard (2015), Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: the role of subglacial freshwater discharge, Geophys. Res. Lett., 42, doi:10.1002/2015GL063846. Bendtsen, J., Mortensen, J., and Rysgaard, S. (2015), Modelling subglacial discharge and its influence on ocean heat transport in Arctic fjords, Ocean Dynamics, 65, 1535-1546, 10.1007/s10236-015-0883-1. Mortensen, J., J. Bendtsen, K. Lennert, and S. Rysgaard (2014), Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N), J. Geophys. Res. Earth Surf., 119, 2591-2603, doi:10.1002/2014JF003267. Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M., Fahnestock, M. and S. Rysgaard (2013), On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. 118, 1-14, doi:10.1002/jgrc.20134.
Numerical simulation of stratified flows from laboratory experiments to coastal ocean
NASA Astrophysics Data System (ADS)
Fraunie, Philippe
2014-05-01
Numeric modeling of a flow past vertical strip uniformly towing with permanent velocity in horizontal direction in a linearly stratified talk which was based on a finite differences solver adapted to the low Reynolds Navier-Stokes equation with transport equation for salinity (LES simulation [6]) has demonstrated reasonable agreement with data of schlieren visualization, density marker and probe measurements of internal wave fields. Another approach based on two different numerical methods for one specific case of stably stratified incompressible flow was developed, using the compact finite-difference discretizations. The numerical scheme itself follows the principle of semi-discretisation, with high order compact discretisation in space, while the time integration is carried out by the Strong Stability Preserving Runge-Kutta scheme. Results were compared against the reference solution obtained by the AUSM finite volume method [7]. The test case allowed demonstrating the ability of selected numerical methods to represent stably stratified flows over horizontal strip [4] and hill type 2D obstacles [1, 3] with generation of internal waves. From previous LES [4] and RANS [8] realistic simulations code, the ability of research codes to reproduce field observations is discussed. ACKNOWLEDGMENTS This research work was supported by Region Provence Alpes Côte d'Azur - Modtercom project, the Research Plan MSM 6840770010 of the Ministry of education of Czech Republic and the Russian Foundation for Basic Research (grant 12-01-00128). REFERENCES 1. Chashechkin Yu.D., Mitkin V.V. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid // Dynamics of Atmosphere and Oceans. 2001. V. 34. P. 165-187. 2. Chashechkin, Yu. D. Hydrodynamics of a sphere in a stratified fluid // Fluid Dyn. 1989. V.24(1) P. 1-7. 3. Mitkin V. V., Chashechkin Yu. D. Transformation of hanging discontinuities into vortex systems in a stratified flow behind a cylinder // 2007. Fluid Dyn. V. 42 (1). P. 12-23. 4. Bardakov R. N., Mitkin V. V., Chashechkin Yu. D. Fine structure of a stratified flow near a flat-plate surface // J. Appl. Mech. Tech. Phys. 2007. V. 48(6) P. 840-851. 5. Chashechkin Yu. D., Mitkin V. V. An effect of a lift force on the structure of attached internal waves in a continuously stratified fluid // Dokl. Phys. 2001. V. 46 (6). P. 425-428. 6. Houcine H., Chashechkin Yu.D, Fraunié P., Fernando H.J.S., Gharbi A., Lili T. Numerical modeling of the generation of internal waves by uniform stratified flow over a thin vertical barrier // Int J. Num Methods in Fluids. 2012. V.68(4). P. 451-466. DOI: 10.1002/fld.2513 7. Bodnar T., Benes , Fraunié P., Kozel K.. Application of Compact Finite-Difference Schemes to Simulations of Stably Stratified Fluid Flows. Applied Mathematics and Computation 219 : 3336-3353 2012. doi:10.1016/j.amc.2011.08.058 8. Schaeffer A. Molcard A. Forget P. Fraunié P. Garreau P. Generation mechanisms for mesoscale eddies in the Gulf of Lions: radar observation and modelling. Ocean Dynamics vol 61, 10, pp1587-1609, 2011. DOI.1007/s10236-011-0482-8.
Picophytoplankton biomass distribution in the global ocean
NASA Astrophysics Data System (ADS)
Buitenhuis, E. T.; Li, W. K. W.; Vaulot, D.; Lomas, M. W.; Landry, M. R.; Partensky, F.; Karl, D. M.; Ulloa, O.; Campbell, L.; Jacquet, S.; Lantoine, F.; Chavez, F.; Macias, D.; Gosselin, M.; McManus, G. B.
2012-08-01
The smallest marine phytoplankton, collectively termed picophytoplankton, have been routinely enumerated by flow cytometry since the late 1980s during cruises throughout most of the world ocean. We compiled a database of 40 946 data points, with separate abundance entries for Prochlorococcus, Synechococcus and picoeukaryotes. We use average conversion factors for each of the three groups to convert the abundance data to carbon biomass. After gridding with 1° spacing, the database covers 2.4% of the ocean surface area, with the best data coverage in the North Atlantic, the South Pacific and North Indian basins, and at least some data in all other basins. The average picophytoplankton biomass is 12 ± 22 μg C l-1 or 1.9 g C m-2. We estimate a total global picophytoplankton biomass of 0.53-1.32 Pg C (17-39% Prochlorococcus, 12-15% Synechococcus and 49-69% picoeukaryotes), with an intermediate/best estimate of 0.74 Pg C. Future efforts in this area of research should focus on reporting calibrated cell size and collecting data in undersampled regions. http://doi.pangaea.de/10.1594/PANGAEA.777385
Description of Mixed-Phase Clouds in Weather Forecast and Climate Models
2014-09-30
deficits, leading to freeze-up of both sea ice and the ocean surface. The surface albedo and processes impacting the energy content of the upper ocean...appear key to producing a temporal difference be- tween the freeze-up of the sea - ice surface and adjacent open water. While synoptic conditions, atmos...Leck, 2013: Cloud and boundary layer interactions over the Arctic sea - ice in late summer, Atmos. Chem. Phys. Discuss., 13, 13191-13244, doi
Passive Acoustic Thermometry Using Low-Frequency Deep Water Noise
2014-09-30
M. Fowler, S. Salo, Antarctic icebergs : A significant natural ocean sound source in the Southern Hemisphere. Geochem. Geophys. DOI: 10.1002...1974). 24. J. Tournadre, F. Girard-Ardhuin, B. Legrésy, Antarctic icebergs distributions, 2002-2010. J. Geophys. Res: Oceans 117, C05004, (2012...surface in the Polar Regions (e.g. due to loud iceberg cracking events with levels up to 245 dB re 1 μPa at 1 m) can efficiently couple directly to the
O2-MAVS: an Instrument for Measuring Oxygen Flux
2010-06-01
al. (2007), “ Coral reefs under rapid climate change and ocean acidification ,” Science 318:1737-1742 [20] K.R.N. Anthony, D.I. Kline, S. Dove, and...O. Hoegh-Guldberg (2008), “ Ocean acidification causes bleaching and productivity loss in coral reef builders,” Proc. Nat. Acad. of Sci. 105:doi...deployments were made on shallow, warm-water coral reefs in La Parguera, Puerto Rico. Time series of net production obtained using the boundary
Wind and wave dataset for Matara, Sri Lanka
NASA Astrophysics Data System (ADS)
Luo, Yao; Wang, Dongxiao; Priyadarshana Gamage, Tilak; Zhou, Fenghua; Madusanka Widanage, Charith; Liu, Taiwei
2018-01-01
We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1) is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017) is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447).
IODP Expedition 335: Deep Sampling in ODP Hole 1256D
NASA Astrophysics Data System (ADS)
Teagle, D. A. H.; Ildefonse, B.; Blum, P.; IODP Expedition 335 Scientists, the
2012-04-01
Observations of the gabbroic layers of untectonized ocean crust are essential to test theoretical models of the accretion of new crust at mid-ocean ridges. Integrated Ocean Drilling Program (IODP) Expedition 335 ("Superfast Spreading Rate Crust 4") returned to Ocean Drilling Program (ODP) Hole 1256D with the intention of deepening this reference penetration of intact ocean crust a significant distance (~350 m) into cumulate gabbros. Three earlier cruises to Hole 1256D (ODP 206, IODP 309/312) have drilled through the sediments, lavas, and dikes and 100 m into a complex dike-gabbro transition zone. Operations on IODP Expedition 335 proved challenging throughout, with almost three weeks spent re-opening and securing unstable sections of the hole. When coring commenced, the comprehensive destruction of the coring bit required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets were successful, and they recovered large irregular samples that document a hitherto unseen sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting, and retrogressive processes. Hole 1256D is now clean of junk, and it has been thoroughly cleared of the drill cuttings that hampered operations during this and previous expeditions. At the end of Expedition 335, we briefly resumed coring before undertaking cementing operations to secure problematic intervals. To ensure the greatest scientific return from the huge efforts to stabilize this primary ocean lithosphere reference site, it would be prudent to resume the deepening of Hole 1256D in the nearest possible future while it is open to full depth. doi:10.2204/iodp.sd.13.04.2011
Tsunami mitigation - redistribution of energy
NASA Astrophysics Data System (ADS)
Kadri, Usama
2017-04-01
Tsunamis are water waves caused by the displacement of a large volume of water, in the deep ocean or a large lake, following an earthquake, landslide, underwater explosion, meteorite impacts, or other violent geological events. On the coastline, the resulting waves evolve from unnoticeable to devastating, reaching heights of tens of meters and causing destruction of property and loss of life. Over 225,000 people were killed in the 2004 Indian Ocean tsunami alone. For many decades, scientists have been studying tsunami, and progress has been widely reported in connection with the causes (1), forecasting (2), and recovery (3). However, none of the studies ratifies the approach of a direct mitigation of tsunamis, with the exception of mitigation using submarine barriers (e.g. see Ref. (4)). In an attempt to open a discussion on direct mitigation, I examine the feasibility of redistributing the total energy of a very long surface ocean (gravity) wave over a larger space through nonlinear resonant interaction with two finely tuned acoustic-gravity waves (see Refs. (5-8)). Theoretically, while the energy input in the acoustic-gravity waves required for an effective interaction is comparable to that in a tsunami (i.e. impractically large), employing the proposed mitigation technique the initial tsunami amplitude could be reduced substantially resulting in a much milder impact at the coastline. Moreover, such a technique would allow for the harnessing of the tsunami's own energy. Practically, this mitigation technique requires the design of highly accurate acoustic-gravity wave frequency transmitters or modulators, which is a rather challenging ongoing engineering problem. References 1. E. Bryant, 2014. Tsunami: the underrated hazard. Springer, doi:10.1007/978-3-319- 06133-7. 2. V. V. Titov, F. I. Gonza`lez, E. N. Bernard, M. C. Eble, H. O. Mofjeld, J. C. Newman, A. J. Venturato, 2005. Real-Time Tsunami Forecasting: Challenges and Solutions. Nat. Hazards 35:41-58, doi:10.1007/1-4020-3607-8 3 3. E. Check, 2005. Natural disasters: Roots of recovery. Nature 438, 910-911, doi:10.1038/438910a. 4. A. M. Fridman, L. S. Alperovich, L. Shemer, L. Pustil'nik, D. Shtivelman, A. G. Marchuk, D. Liberzon, 2010. Tsunami wave suppression using submarine barriers. Phys. Usp. 53 809-816, doi:10.3367/UFNe.0180.201008d.0843. 5. U. Kadri, M. Stiassnie, 2013. Generation of an acoustic-gravity wave by two gravity waves, and their mutual interaction. J. Fluid Mech. 735, R6, doi:10.1017/jfm.2013.539. 6. U. Kadri, 2015. Wave motion in a heavy compressible fluid: revisited. European Journal of Mechanics - B/Fluids, 49(A), 50-57, doi:10.1016/j.euromechflu.2014.07.008 7. U. Kadri, T.R. Akylas, 2016. On resonant triad interactions of acoustic-gravity waves. J. Fluid Mech., 788, R1(12 pages), doi:10.1017/jfm.2015.721. 8. U. Kadri, 2016. Triad resonance between a surface-gravity wave and two high frequency hydro-acoustic waves. Eur. J. Mech. B/Fluid, 55(1), 157-161, doi:10.1016/j.euromechflu.2015.09.008.
Temperature Versus Salinity Gradients Below the Ocean Mixed Layer
2012-05-03
where salinity controls the depth of the mixed layer are understood to have “barrier” layers [Lukas and Lindstrom , 1991], where the depth of vertically...the horizontal. For example, Rudnick and Martin [2002] have shown that the ocean mixed layer at sub-mesoscales is horizontally well density compensated...Res., 102, 23,063–23,078, doi:10.1029/97JC01443. Barron, C. N., A. B. Kara, P. J. Martin , R. C. Rhodes, and L. F. Smedstad (2006), Formulation
Proving and Improving Wave Models in the Arctic Ocean and its MIZ
2014-09-30
on a giant ice island in Baffin Bay, in which the response to a breakup event was measured and the size of the broken-out iceberg fragment tested...2014), In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone, Geophys. Res. Lett., 41, 5046–5051, doi:10.1002...Symposium on Ice, Singapore, August 11 to 15, 2014. Doble, M. J., and J.-R. Bidlot, 2013. Wave buoy measurements at the Antarctic sea ice edge
Submesoscale Routes to Lateral Mixing in the Ocean
2013-09-30
onset of restratification by mixed layer eddies, and find this to be coincident with the onset of the spring phytoplankton bloom (Mahadevan et al...Perry, Eddy- driven stratification initiates North Atlantic spring phytoplankton blooms, 2012, Science, 337 (6090), 54-58, DOI:10.1126/science.1218740
NASA Astrophysics Data System (ADS)
Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.
2013-12-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
NASA Astrophysics Data System (ADS)
Giesbrecht, K. E.; Miller, L. A.; Davelaar, M.; Zimmermann, S.; Carmack, E.; Johnson, W. K.; Macdonald, R. W.; McLaughlin, F.; Mucci, A.; Williams, W. J.; Wong, C. S.; Yamamoto-Kawai, M.
2014-03-01
We have assembled and conducted primary quality control on previously publicly unavailable water column measurements of the dissolved inorganic carbon system and associated biogeochemical parameters (oxygen, nutrients, etc.) made on 26 cruises in the subarctic and Arctic regions dating back to 1974. The measurements are primarily from the western side of the Canadian Arctic, but also include data that cover an area ranging from the North Pacific to the Gulf of St. Lawrence. The data were subjected to primary quality control (QC) to identify outliers and obvious errors. This data set incorporates over four thousand individual measurements of total inorganic carbon (TIC), alkalinity, and pH from the Canadian Arctic over a period of more than 30 years and provides an opportunity to increase our understanding of temporal changes in the inorganic carbon system in northern waters and the Arctic Ocean. The data set is available for download on the CDIAC (Carbon Dioxide Information Analysis Center) website: http://cdiac.ornl.gov/ftp/oceans/IOS_Arctic_Database/ (doi:10.3334/CDIAC/OTG.IOS_ARCT_CARBN).
Initial Orbit Determination Based on Propagation of Admissible Regions with Differential Algebra
2017-01-19
Asteroid close encounter characterization using differential algebra: the case of aphophis. Celestial Mechanics and Dynamical Astronomy , 107(4), 2010...Mechanics and Dynamical Astronomy , 112 (3):331–352, 2012. ISSN 09232958. doi: 10.1007/s10569-012-9400-8. Roberto Armellin, Pierluigi Di Lizia, and Renato... Astronomy , 90(1-2):59–87, 2004. ISSN 09232958. doi: 10.1007/s10569-004-6593-5. 50 DISTRIBUTION A. Approved for public release: distribution unlimited
An efficient climate model with water isotope physics: NEEMY
NASA Astrophysics Data System (ADS)
Hu, J.; Emile-Geay, J.
2015-12-01
This work describes the development of an isotope-enabled atmosphere-ocean global climate model, NEEMY. This is a model of intermediate complexity, which can run 100 model years in 30 hours using 33 CPUs. The atmospheric component is the SPEEDY-IER (Molteni et al. 2003; Dee et al. 2015a), which is a water isotope-enabled (with equilibrium and kinetic fractionation schemes in precipitation, evaporation and soil moisture) simplified atmospheric general circulation model, with T30 horizontal resolution and 8 vertical layers. The oceanic component is NEMO 3.4 (Madec 2008), a state-of-the-art oceanic model (~2° horizontal resolution and 31 vertical layers) with an oceanic isotope module (a passive tracer scheme). A 1000-year control run shows that NEEMY is stable and its energy is conserved. The mean state is comparable to that of CMIP3-era CGCMs, though much cheaper to run. Atmospheric teleconnections such as the NAO and PNA are simulated very well. NEEMY also simulates the oceanic meridional overturning circulation well. The tropical climate variability is weaker than observations, and the climatology exhibits a double ITCZ problem despite bias corrections. The standard deviation of the monthly mean Nino3.4 index is 0.61K, compared to 0.91K in observations (Reynolds et al. 2002). We document similarities and differences with a close cousin, SPEEDY-NEMO (Kucharski et al. 2015). With its fast speed and relatively complete physical processes, NEEMY is suitable for paleoclimate studies ; we will present some forced simulations of the past millennium and their use in forward-modeling climate proxies, via proxy system models (PSMs, Dee et al 2015b). References Dee, S., D. Noone, N. Buenning, J. Emile-Geay, and Y. Zhou, 2015a: SPEEDY-IER: A fast atmospheric GCM with water isotope physics. J. Geophys. Res. Atmos., 120: 73-91. doi:10.1002/2014JD022194. Dee, S. G., J. Emile-Geay, M. N. Evans, Allam, A., D. M. Thompson, and E. J. Steig, 2015b: PRYSM: an open-source framework for proxy system modeling, with applications to oxygen-isotope systems, J. Adv. Mod. Earth Sys., 07, doi:10.1002/2015MS000447. Kucharski et al., 2015: Atlantic forcing of Pacific decadal variability. Clim. Dyn., doi:10.1007/s00382-015-2705-z.
NASA Astrophysics Data System (ADS)
Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Baker, A.; Weber, M. E.; Woodward, J.; van Ommen, T. D.; Moy, A. D.; Davies, S. M.; Bird, M. I.; Winter, K.; Munksgaard, N.; Menviel, L.; Rootes, C.; Vohra, J.; Rivera, A.; Cooper, A.
2016-12-01
Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to identify ice-climate feedbacks that could improve future projections1,2. Whilst the sequence of events during this period are reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records2, making it difficult to assess relationships between Antarctic ice-sheet dynamics, climate change and sea-level rise3-5. Here we present results from a highly-resolved `horizontal ice core'6,7 from the Weddell Sea Embayment, which records millennial-scale ice-sheet dynamics across this extensive sector of Antarctica. Counterintuitively, we find ice-sheet surface drawdown of 600 m across the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago)5, with stabilisation during the subsequent millennia of atmospheric warming. Earth system and ice-sheet modelling highlights that this response was likely sustained by strong ocean-ice feedbacks4,8; however, the drivers remain uncertain. Given the coincidence of the ice-sheet changes recorded with marked shifts in atmospheric circulation9,10,11we suggest that millennial-scale Antarctic ice-sheet behaviour was initiated and sustained by global atmospheric teleconnections across the LGT. This has important ramifications ice-sheet stability under contemporary climate change, with changing atmospheric and oceanic circulation patterns. 1 Collins, M. et al. in Climate Change 2013: The Physical Science Basis. 2 Weber, M. E. et al. Nature 510, 134-138, (2014). 3 Weaver, A. J., et al., Science 299, 1709-1713, (2003). 4 Golledge, N. R. et al. Nat Commun 5, (2014). 5 Pedro, J. B. et al. Nature Geosci9. 51-55 (2015). 6 Turney, C. S. M. et al. Journal of Quaternary Science 28, 697-704 (2013). 7 Winter, K. et al. Geophys. Res. Lett.43. 5. 2019-2026 (2016). 8 Menviel, L., A. et al., Quaternary Science Reviews 30, 1155-1172 (2011). 9 Hogg, A. et al. Scientific Reports 6(2016). 10 Hughen, K. A., et al., Radiocarbon 46, 1161-1187 (2004). 11 Anderson, R. F. et al. Science 323, 1443-1448, doi:10.1126/science.1167441 (2009).
Seismic Investigations of Europa and Other Ocean Worlds
NASA Astrophysics Data System (ADS)
Vance, Steve; Tsai, Victor; Kedar, Sharon; Bills, Bruce; Castillo-Rogez, Julie; Jackson, Jennifer
2016-04-01
Seismic investigations offer the most comprehensive view into the deep interiors of planetary bodies. Developing missions (InSight, Europa Lander, Lunar Geophysical Network) identify seismology as a critical measurement to constrain interior structure and thermal state. In oceanic icy worlds, pinpointing the radial depths of compositional interfaces using seismology in a broad frequency range can address uncertainty in interior structures inferred from gravity and magnetometry studies, such as those planned for NASA's Europa and ESA's JUICE missions. Seismology also offers information about fluid motions within or beneath ice, which complement magnetic studies; and can record the dynamics of ice layers, which would reveal mechanisms and spatiotemporal occurrence of crack formation and propagation. Investigating these with future missions will require detailed modeling of seismic sources and signatures in order to develop the most suitable instrumentation. We evaluate seismic sources and their propagation in Europa, with extension to other oceanic icy worlds, building on prior studies (Kovach and Chyba 2001, Lee et al. 2003, Cammarano et al. 2006, Panning et al. 2006, Leighton et al. 2008). We also consider additional sources: gravitationally forced librations, which will create volume-filling turbulent flow (le Bars et al. 2015), a possible seismic source similar to that seen from turbulent flow in terrestrial rivers (Tsai et al., 2012; Gimbert et al., 2014; Chao et al., 2015); downflow of dense brines from chaos regions on Europa into its underlying ocean (Sotin et al. 2002), possibly resembling riverine flows and flows through glacial channels (Tsai and Rice 2012); ocean acoustic signals that couple with the overlying ice to produce seismic waves, by analogy with Earth's ocean-generated seismic hum (Kedar 2011, Ardhuin 2015). Ardhuin, F., Gualtieri, L., and Stutzmann, E. (2015). GRL., 42. Cammarano, F., Lekic, V., Manga, M., Panning, M., and Romanowicz, B. (2006). JGR, E12009:doi:10.1029/2006JE002710. Chao, W.-A., Wu, Y.-M., Zhao, L., Tsai, V. C., and Chen, C.-H. (2015). Scientific reports, 5. Gimbert, F., Tsai, V. C., and Lamb, M. P. (2014).JGR: Earth Surface, 119(10):2209-2238. Kedar, S. (2011). Comptes Rendus Geoscience, 343(8):548-557. Kovach, R. L. and Chyba, C. F. (2001). Icarus, 150(2):279-287. Lee, S. W., Zanolin, M., Thode, A. M., Pappalardo, R. T., and Makris, N. C. (2003). Icarus, 165(1):144-167. Leighton, T. G., Finfer, D. C., and White, P. R. (2008). Icarus, 193(2):649-652. Le Bars, M., Cébron, D., and Le Gal, P. (2015). Annual Review of Fluid Mechanics, 47:163-193. Panning, M., Lekic, V., Manga, M., and Romanowicz, B. (2006). Journal of Geophysical Research, E12008:doi:10.1029/2006JE002712. Sotin, C., Head, J. W., and Tobie, G. (2002). Geophysical Research Letters, 29(8):1233. Tsai, V. C., and J. R. Rice (2012). Journal of Applied Mechanics, 79: 031003.
A compilation of global bio-optical in situ data for ocean-colour satellite applications
NASA Astrophysics Data System (ADS)
Valente, André; Sathyendranath, Shubha; Brotas, Vanda; Groom, Steve; Grant, Michael; Taberner, Malcolm; Antoine, David; Arnone, Robert; Balch, William M.; Barker, Kathryn; Barlow, Ray; Bélanger, Simon; Berthon, Jean-François; Beşiktepe, Şükrü; Brando, Vittorio; Canuti, Elisabetta; Chavez, Francisco; Claustre, Hervé; Crout, Richard; Frouin, Robert; García-Soto, Carlos; Gibb, Stuart W.; Gould, Richard; Hooker, Stanford; Kahru, Mati; Klein, Holger; Kratzer, Susanne; Loisel, Hubert; McKee, David; Mitchell, Brian G.; Moisan, Tiffany; Muller-Karger, Frank; O'Dowd, Leonie; Ondrusek, Michael; Poulton, Alex J.; Repecaud, Michel; Smyth, Timothy; Sosik, Heidi M.; Twardowski, Michael; Voss, Kenneth; Werdell, Jeremy; Wernand, Marcel; Zibordi, Giuseppe
2016-06-01
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594/PANGAEA.854832 (Valente et al., 2015).
U.S. Department of the Interior South Central Climate Science Center
Shipp, Allison A.
2012-01-01
On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs) for the purpose of integrating DOI science and management expertise with similar contributions from our partners to provide information to support strategic adaptation and mitigation efforts on public and private lands across the United States and internationally. The South Central Climate Science Center (SC CSC) is supported by a consortium of partners that include The University of Oklahoma, Texas Tech University, Louisiana State University, The Chickasaw Nation, The Choctaw Nation of Oklahoma, Oklahoma State University, and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory. Additionally, the SC CSC will collaborate with a number of other universities, State and federal agencies, and nongovernmental organizations (NGOs) with interests and expertise in climate science. The primary partners of the SC CSC are the Landscape Conservation Cooperatives (LCCs), which include the Desert, Eastern Tallgrass Prairie and Big Rivers, Great Plains, Gulf Coast Prairie, Gulf Coastal Plains and Ozarks, and Southern Rockies. CSC collaborations are focused on common science priorities that address priority partner needs, eliminate redundancies in science, share scientific information and findings, and expand understanding of climate change impacts in the south-central United States and Mexico.
The impact of ice I rheology on interior models of Ganymede: The elastic vs. the visco-elastic case
NASA Astrophysics Data System (ADS)
Steinbrügge, Gregor; Hussmann, Hauke; Sohl, Frank; Oberst, Jürgen
2015-04-01
Many investigations on key processes of icy satellites are driven by the rheological behavior of planetary ices. Future missions to Jupiter's icy moons (e.g. JUICE / Europa clipper) aimed at constraining the thickness of the outer ice shell using radio science and/or laser altimetry will have to address this problem. We investigate for the case of Ganymede under which conditions the ice I viscosity could be constrained by measuring the phase-lag of the tidal response using laser altimetry. In the absence of seismic data, interior structure models are constrained by the satellite's mean density and mean moment-of-inertia factor. One key observable to reduce the ambiguity of the corresponding structural models is the measurement of the dynamic response of the satellite's outer ice shells to tidal forces exerted by Jupiter and characterized by the body tide surface Love numbers h2 and k2. The Love number k2 measures the variation of the gravitational potential due to tidally induced internal redistribution of mass and can be inferred from radio science experiments. The Love number h2 is a measure for the tide-induced radial displacement of the satellite's surface. It is an advantage that Ganymede's surface displacement Love number h2 can be expected to be measured with a high accuracy using laser altimetry (Steinbrügge et al., 2014). However, the determination of the resulting ice thickness further depends on the possible existence of a liquid subsurface water ocean and on the tidally effective rheology of the outer ice shell (Moore and Schubert, 2003). Here, we distinguish between an elastic, visco-elastic or even fluid behavior in the sense of the Maxwell model and alternative rheological models. In the case of Ganymede the fluid case would imply high ice temperatures which are at odds with thermal equilibrium models calculated by Spohn and Schubert (2003). However the visco-elastic case is still possible. Laboratory measurements of ice I (e.g. Sotin et al., 1998) suggest that the rigidity can be constrained and the ambiguity left by the structural model can be recovered by the simultaneous determination of the linear combination 1+k2-h2 (Wahr et al., 2006). However, the less well known viscosity can play a major role when inferring the thickness of the outer ice shell. Limits for measurements by laser altimetry will be discussed. References: Moore, W.B. and Schubert, G., "The tidal response of Ganymede and Callisto with and without liquid water oceans", Icarus, vol. 16, p. 223-226, 2003 Sotin, C., Grasset, O. and Beauchesne, S., "Thermodynamic properties of high pressure ices: Implications for the dynamics and internal structure of large icy satellites" in "Solar system ices", p. 79-96, Springer Netherlands, 1998, doi:10.1007/97894-011-5252-54 Spohn, T. and Schubert, G., "Oceans in the icy Galilean satellites of Jupiter?", Icarus, vol. 161, p. 456-467, 2003, doi: 10.1016/S0019-1035(02)00048-9 Steinbrügge, G., Hussmann, H., Stark, A., and Oberst, J., "Measuring Ganymede's tidal deformation by laser altimetry: application to the GALA Experiment", EGU General Assembly 2014, Abstract 3761 Wahr, J. M., Zuber, M. T., Smith, D. E., and Lunine, J. I., "Tides on Europa, and the thickness of Europa's icy shell" Journal of Geophysical Research: Planets, vol. 11, 2006. doi: 10.1029/2006JE002729
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... Galveston Ocean and Coastal Studies Building, Seawolf Parkway, Bldg. 3029, Galveston, TX. 11. Monday, April... Service, the Bureau of Land Management and the Bureau of Indian Affairs) (``DOI''); the Louisiana Coastal Protection and Restoration Authority, the Louisiana Oil Spill Coordinator's Office, the Louisiana Department...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... Interior; Bureau of Ocean Energy Management, Regulation and Enforcement; Attention: Cheryl Blundon; 381... special benefits. Under the Department of the Interior's (DOI) implementing policy, BOEMRE is required to charge fees for services that provide special benefits or privileges to an identifiable non-Federal...
produce software code and methodologies that are transferred to TARDEC and industry partners. These constraints", ASME Dynamic Systems and Control Conference, 2013, DOI:10.1115/DSCC2013-3935 Software Monitoring",IEEE Transactions on Control Systems Technology, DOI:10.1109/TCST.2012.2217143 Fast
NASA Astrophysics Data System (ADS)
Taillandier, Vincent; Wagener, Thibaut; D'Ortenzio, Fabrizio; Mayot, Nicolas; Legoff, Hervé; Ras, Joséphine; Coppola, Laurent; Pasqueron de Fommervault, Orens; Schmechtig, Catherine; Diamond, Emilie; Bittig, Henry; Lefevre, Dominique; Leymarie, Edouard; Poteau, Antoine; Prieur, Louis
2018-03-01
We report on data from an oceanographic cruise, covering western, central and eastern parts of the Mediterranean Sea, on the French research vessel Tethys 2 in May 2015. This cruise was fully dedicated to the maintenance and the metrological verification of a biogeochemical observing system based on a fleet of BGC-Argo floats. During the cruise, a comprehensive data set of parameters sensed by the autonomous network was collected. The measurements include ocean currents, seawater salinity and temperature, and concentrations of inorganic nutrients, dissolved oxygen and chlorophyll pigments. The analytical protocols and data processing methods are detailed, together with a first assessment of the calibration state for all the sensors deployed during the cruise. Data collected at stations are available at https://doi.org/10.17882/51678 and data collected along the ship track are available at https://doi.org/10.17882/51691.
NASA Astrophysics Data System (ADS)
Bensi, Manuel; Velaoras, Dimitris; Cardin, Vanessa; Perivoliotis, Leonidas; Pethiakis, George
2015-04-01
Long-term variations of temperature and salinity observed in the Adriatic and Aegean Seas seem to be regulated by larger-scale circulation modes of the Eastern Mediterranean (EMed) Sea, such as the recently discovered feedback mechanisms, namely the BiOS (Bimodal Oscillating System) and the internal thermohaline pump theories. These theories are the results of interpretation of many years' observations, highlighting possible interactions between two key regions of the EMed. Although repeated oceanographic cruises carried out in the past or planned for the future are a very useful tool for understanding the interaction between the two basins (e.g. alternating dense water formation, salt ingressions), recent long time-series of high frequency (up to 1h) sampling have added valuable information to the interpretation of internal mechanisms for both areas (i.e. mesoscale eddies, evolution of fast internal processes, etc.). During the last 10 years, three deep observatories were deployed and maintained in the Adriatic, Ionian, and Aegean Seas: they are respectively, the E2-M3A, the Pylos, and the E1-M3A. All are part of the largest European network of Fixed Point Open Ocean Observatories (FixO3, http://www.fixo3.eu/). Herein, from the analysis of temperature and salinity, and potential density time series collected at the three sites from the surface down to the intermediate and deep layers, we will discuss the almost perfect anti-correlated behavior between the Adriatic and the Aegean Seas. Our data, collected almost continuously since 2006, reveal that these observatories well represent the thermohaline variability of their own areas. Interestingly, temperature and salinity in the intermediate layer suddenly increased in the South Adriatic from the end of 2011, exactly when they started decreasing in the Aegean Sea. Moreover, Pylos data used together with additional ones (e.g. Absolute dynamic topography, temperature and salinity data from other platforms) collected along the typical pathway of the Levantine/Cretan intermediate waters towards the Adriatic Sea, reveal variability of the subsurface/intermediate layers (100-400m depth), which could possibly be attributed to seasonal variability or influences from dynamical features such as the Pelops Gyre. References Bensi, M., V. Cardin, A. Rubino, G. Notarstefano, and P. M. Poulain (2013), Effects of winter convection on the deep layer of the Southern Adriatic Sea in 2012, J. Geophys. Res. Oceans, 118, doi:10.1002/2013JC009432. Velaoras, D., G. Krokos, K. Nittis, and A. Theocharis (2014), Dense intermediate water outflow from the Cretan Sea: A salinity driven, recurrent phenomenon, connected to thermohaline circulation changes, J. Geophys. Res. Oceans, 119, doi:10.1002/2014JC009937.
Global Paleobathymetry for the Cenomanian-Turonian (90 Ma)
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.
2014-12-01
We present a paleo-ocean bathymetry reconstruction for Cenomanian-Turonian (90 Ma) time in a 0.1°x0.1° resolution for use in paleo-climate studies. Age of the ocean floor for the Cenomanian-Turonian (90 Ma) is from Müller et al. (2008 a,b); coastlines are from the PALEOMAP Project (Scotese, 2011). To reconstruct paleo-ocean bathymetry, we use a plate model equation to model depth to basement (Turcotte and Schubert, 2002). We estimate plate model equation parameter values from measurements of modern oceans (Crosby et al., 2006). On top of the depth to basement, we isostatically add a multilayer sediment model derived from area-corrected sediment thickness data (Divins, 2003; Whittaker et al., 2013). Lastly, we parameterize the modern continental shelf, slope, and rise in a "sediment wedge model" to connect the coastline with the closest ocean crust as defined by Müller et al. (2008 a, b). These parameters are defined using empirical relationships obtained from study of modern ocean transects where a complete rifting history is preserved (Atlantic and Southern oceans), and the closest approach of the respective oceanic crust (Müller et al., 2008a,b) to the coastline. We use the modern ocean as a test, comparing maps and cross sections of modern ocean bathymetry modeled using our reconstruction method with that of ETOPO1 (Amante and Eakins, 2009). Adding sea plateaus and seamounts minimize the difference between our modeled bathymetry and ETOPO1. Finally, we also present a comparison of our reconstructed paleo-bathymetry to that of Müller et al. (2008 a,b) for the Cenomanian-Turonian (90 Ma). References: Amante, C., Eakins, B.W., 2009, NOAA Tech. Memo. NESDIS NGDC-24, 19 p. Crosby, A., McKenzie, D., Sclater, J.G., 2006, Geophysical Journal Int. 166.2, 553-573. Divins, D., 2003, NOAA NGDC, Boulder, CO. Müller, R., Sdrolias, M., Gaina, C., Roest, W., 2008b, Geochemistry, Geophysics, Geosystems, 9, Q04006, doi:10.1029/2007GC001743 Müller, R., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C., 2008a, Science, 319, 1357-1362. Scotese, C., 2011, PALEOMAP Project, Arlington, Texas. Turcotte, D., Schubert, G., 2002, Cambridge University Press, Cambridge, 456 p. Whittaker, J., Goncharov, A., Williams, S., Müller, R., Leitchenkov, G., 2013, Geochemistry, Geophysics, Geosystems. DOI:10.1002/ggge.20181
The Effect of Solar Forcing on the Greenland Ice Sheet during the Holocene - A Model Study
NASA Astrophysics Data System (ADS)
Bügelmayer, Marianne; Roche, Didier; Renssen, Hans
2014-05-01
Abrupt climate changes did not only happen during glacials but also during interglacials such as the Holocene. Marine sediments provide evidence for the periodic occurrence of centennial-scale events with enhanced iceberg discharge during the past 11.000 years (Bond et al., 2001). These events were chronologically linked to reduced solar activity as reconstructed using cosmogenic isotopes (Bond et al., 2001), indicating that even an external forcing that is considered to be small, has a potential impact on climate due to several feedback mechanisms (Renssen et al., 2006). The interactions between climate and solar irradiance have been investigated using numerical models (e.g. Haigh, 1996; Renssen et al, 2006), but so far without dynamically computing the Greenland ice sheet and iceberg calving. Thus, the impact of solar variations on iceberg discharge and the underlying mechanisms have not been analysed so far. To analyse the effect of variations in solar activity on the Greenland ice sheet (GIS) and the iceberg calving, as well as possible feedback mechanisms that enhance the impact of the total solar irradiance, we use the earth system model of intermediate complexity (iLOVECLIM, Roche et al., 2013), coupled to the ice sheet/ice shelf model GRISLI (Ritz et al., 2001) and to a dynamic-thermodynamic iceberg module (Jongma et al., 2009, Bügelmayer et al., 2014) to perform transient experiments of the last 6000 years. The experiments are conducted applying reconstructed atmospheric greenhouse gas concentrations, volcanic aerosol loads, orbital parameters and variations in the total solar irradiance. We present the response of the coupled model to different solar irradiance scenarios to evaluate modeled GIS sensitivity to relatively modest variations in radiative forcing. Moreover, we investigate the dependence of the model results on the chosen model sensitivity. References: Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., … Bonani, G. (2001): Persistent solar influence on North Atlantic climate during the Holocene. Science (New York, N.Y.), 294(5549), 2130-6. doi:10.1126/science.1065680 Bügelmayer, M., Roche, D.M., Renssen, H. (2014): How do icebergs affect the Greenland ice sheet under pre-industrial conditions? - A model study with a fully coupled ice sheet-climate model. The Cryosphere Discussions 8, 187-228. Haigh, J. D. (1996): The Impact of Solar Variability on Climate. Science, 272, 981-984. Jongma, J.I., Driesschaert, E., Fichefet, T., Goosse, H., Renssen, H., (2009): The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Modelling 26, 104-113. Renssen, H., Goosse, H., Muscheler, R., & Branch, R. (2006): Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Climate of the Past, 2, 79-90. Ritz, C., Rommelaere, V. and Dumas, C.(2001): Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region, Journal of Geophysical Research, 106, 31943-31964, doi:10.1029/2001JD900232. Roche, D.M., Dumas, C., Bügelmayer, M., Charbit, S., Ritz, C. (2013): Adding a dynamical cryosphere into iLOVECLIM (version 1.0) - Part 1: Coupling with the GRISLI ice-sheet model, Geoscientific Model Development Discussion, 6, 5215-5249.
Dehumidification of Iberia by enhanced summer upwelling
NASA Astrophysics Data System (ADS)
Miranda, P. M.; Costa, V.; Nogueira, M.; Semedo, A.
2015-12-01
Dehumidification of Iberia by enhanced summer upwelling Miranda PMA, Costa V, Semedo AIDL, Faculdade de Ciências, University of LisbonA 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. Aknowledgements: Study supported by FCT Grant RECI/GEO-MET/0380/2012Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http://dx.doi.org/10.3402/tellusa.v65i0.19245.Bakun et al (2010) Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems, Global Change Biology, doi: 10.1111/j.1365-2486.2009.02094.xHoinka KP, Castro M (2003) The Iberian Peninsula thermal low. QJRMS, 129, 1491- 1511, doi: 10.1256/qj.01.189.Miranda et al (2013) Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Climate Dynamics, doi: 10.1007/s00382-012-1442-9.
A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2
NASA Astrophysics Data System (ADS)
Lauvset, Siv K.; Key, Robert M.; Olsen, Are; van Heuven, Steven; Velo, Anton; Lin, Xiaohua; Schirnick, Carsten; Kozyr, Alex; Tanhua, Toste; Hoppema, Mario; Jutterström, Sara; Steinfeldt, Reiner; Jeansson, Emil; Ishii, Masao; Perez, Fiz F.; Suzuki, Toru; Watelet, Sylvain
2016-08-01
We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1° × 1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972-2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1° × 1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).
Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone
NASA Astrophysics Data System (ADS)
Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.
2016-12-01
We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G., 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, Journal of Fluid Mechanics, 766, R1 doi:10.1017/jfm.2015.37 Kadri, U., 2016, Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones, Advances in Acoustics and Vibration. 2016. doi:10.1155/2016/8076108
Objective Estimates of Westward Rossby Wave and Eddy Propagation from Sea Surface Height Analyses
2009-03-17
Urban (2003), Calibration and ver- ification of Jason-1 using global along-track residuals with TOPEX, Mar. Geod ., 26, 305-317. Chclton, D. B...deep ocean processes in operational systems. Mar. Geod ., 27, 433 451, doi:10.l080/01490410490902007. Zlotnicki, V, L.-L. Fu, and W. Patzert (1989
IODP Expedition 340T: Borehole Logging at Atlantis Massif Oceanic Core Complex
NASA Astrophysics Data System (ADS)
Blackman, D.; Slagle, A.; Harding, A.; Guerin, G.; McCaig, A.
2013-03-01
Integrated Ocean Drilling Program (IODP) Expedition 340T returned to the 1.4-km-deep Hole U1309D at Atlantis Massif to carry out borehole logging including vertical seismic profiling (VSP). Seismic, resistivity, and temperature logs were obtained throughout the geologic section in the footwall of this oceanic core complex. Reliable downhole temperature measurements throughout and the first seismic coverage of the 800-1400 meters below seafloor (mbsf) portion of the section were obtained. Distinct changes in velocity, resistivity, and magnetic susceptibility characterize the boundaries of altered, olivine-rich troctolite intervals within the otherwise dominantly gabbroic se-quence. Some narrow fault zones also are associated with downhole resistivity or velocity excursions. Small deviations in temperature were measured in borehole fluid adjacent to known faults at 750 mbsf and 1100 mbsf. This suggests that flow of seawater remains active along these zones of faulting and rock alteration. Vertical seismic profile station coverage at zero offset now extends the full length of the hole, including the uppermost 150 mbsf, where detachment processes are expected to have left their strongest imprint. Analysis of wallrock properties, together with alteration and structural characteristics of the cores from Site U1309, highlights the likely interplay between lithology, structure, lithospheric hydration, and core complex evolution. doi:10.2204/iodp.sd.15.04.2013
SMAP Salinity Artifacts Associated With Presence of Rain
NASA Astrophysics Data System (ADS)
Jacob, M. M.; Santos-Garcia, A.; Jones, L.
2016-02-01
The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.
Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI
2014-03-01
values With the fat B1 map it is now possible to obtain a B1 map for the whole field of view. To do this we have been testing software to...10.1002/ mrm .21120. 7. Nehrke K. On the steady-state properties of actual flip angle imaging (AFI). Magn. Reson. Med. 2009;61:84–92. doi: 10.1002/ mrm ...by bilateral dynamic contrast‐enhanced MRI: A sensitivity and specificity study. Magn. … 2008;59:747–54. doi: 10.1002/ mrm .21530. 11. Hylton N
Departures from Axisymmetric Balance Dynamics during Secondary Eyewall Formation
2014-10-01
tensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866–1881, doi:10.1175/ 1520-0493(2002)130,1866:BCTTIO...2002: Environ- mental interactions in the GFDL hurricane model for Hurri- cane Opal . Mon. Wea. Rev., 130, 298–317, doi:10.1175/ 1520-0493(2002
NASA Astrophysics Data System (ADS)
Izett, Jonathan G.; Fennel, Katja
2018-02-01
Rivers deliver large amounts of terrestrially derived materials (such as nutrients, sediments, and pollutants) to the coastal ocean, but a global quantification of the fate of this delivery is lacking. Nutrients can accumulate on shelves, potentially driving high levels of primary production with negative consequences like hypoxia, or be exported across the shelf to the open ocean where impacts are minimized. Global biogeochemical models cannot resolve the relatively small-scale processes governing river plume dynamics and cross-shelf export; instead, river inputs are often parameterized assuming an "all or nothing" approach. Recently, Sharples et al. (2017), https://doi.org/10.1002/2016GB005483 proposed the SP number—a dimensionless number relating the estimated size of a plume as a function of latitude to the local shelf width—as a simple estimator of cross-shelf export. We extend their work, which is solely based on theoretical and empirical scaling arguments, and address some of its limitations using a numerical model of an idealized river plume. In a large number of simulations, we test whether the SP number can accurately describe export in unforced cases and with tidal and wind forcings imposed. Our numerical experiments confirm that the SP number can be used to estimate export and enable refinement of the quantitative relationships proposed by Sharples et al. We show that, in general, external forcing has only a weak influence compared to latitude and derive empirical relationships from the results of the numerical experiments that can be used to estimate riverine freshwater export to the open ocean.
The influence of Seychelles Dome on the large scale Tropical Variability
NASA Astrophysics Data System (ADS)
Manola, Iris; Selten, Frank; Hazeleger, Wilco
2013-04-01
The Seychelles Dome (SD) is the thermocline ridge just South of the equator in the Western Indian Ocean basin. It is characterized by strong atmospheric convection and a shallow thermocline and is associated with large intraseasonal convection and SST variability (Harrison and Vecchi 2001). The SD is influenced by surface and subsurface processes, such as air-sea fluxes, Ekman upwelling from wind stress curl, ocean dynamics (vertical mixing) and oceanic Rossby waves from southeastern Indian Ocean. The favoring season for a strong SD is the boreal winter, where the thermocline is most shallow. Then the southeasterly trade winds converge with the northwesterly monsoonal winds over the intertropical convergence zone and cause cyclonic wind stress curl that drives Ekman divergence and a ridging of the thermocline. It is found that the subseasonal and interranual variability of the SD is influenced by large scale events, such as the Indian Ocean Dipole (IOD), the ENSO and the Madden-Julian Oscillation (MJO) (Tozuka et al., 2010, Lloyd and Vecchi, 2010). The SD is enhanced by cooling events in the Western Indian Ocean and easterly winds that raise the thermocline and increase the upwelling. This can be associated with a strong Walker circulation, like negative IOD conditions or La Nina-like conditions. So far the studies focus on the origins of the SD variability, but the influence of the SD itself on regional or large scale climate is largely unknown. In this study we focus on the influence of the SD variations on the large scale tropical circulation. We analyze the covariance of the SD variations and the tropical circulation in a 200 year control imulation of the climate model EC-EARTH and perform idealized SST forced simulations to study the character of the atmospheric response and its relation to ENSO, IOD and MJO. References -Harrison, D. E. and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28, 3717-3720. -Lloyd, I. D., and G. A. Vecchi, 2010: Submonthly Indian Ocean cooling events and their interaction with large-scale conditions. J. Climate, 23, 700-716. -Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, doi:10.1029/2009JC005547.
NASA Astrophysics Data System (ADS)
Seneviratne, S. I.; Humphrey, V.; Nicolai-Shaw, N.; Gudmundsson, L.; Guillod, B.; Hirschi, M.; Michel, D.; Orth, R.; Zscheischler, J.
2016-12-01
In recent years, several new satellite products have been derived which allow an unprecendented assessment of terrestrial water storage and land-atmosphere dynamics. This presentation will review some of these new developments, with a focus on drought dynamics, plant-water interactions, and soil moisture-atmosphere feedbacks. Results derived based on the Gravity Recovery and Climate Experiment (GRACE, Humphrey et al. 2016) and the European Space Agency Climate Change Initiative (ESA CCI) Soil Moisture dataset (Nicolai-Shaw et al. 2015, 2016; Hirschi et al. 2014) will be highlighted, as well as assessments using satellite-based estimates of evapotranspiration (Mueller and Seneviratne 2014, Michel et al. 2016), vegetation activity (Zscheischler et al. 2015), and combined soil moisture and precipitation analyses (Guillod et al. 2015). These findings provide new insights on the development of prediction capabilities for droughts, precipitation events, and heat waves, and the reduction of uncertainties in climate model projections. References: Guillod, B.P., B. Orlowsky, D.G. Miralles, A.J. Teuling, and S.I. Seneviratne, 2015. Nature Communications, 6:6443, DOI: 10.1038/ncomms7443 Hirschi, M., B. Mueller, W. Dorigo, and S.I. Seneviratne, 2014. Remote Sensing of Environment, 154, 246-252. Humphrey, V., L. Gudmundsson, and S.I. Seneviratne, 2016. Surv. Geophysics, 37, 357-395, DOI 10.1007/s10712-016-9367-1. Michel, D., et al. 2016. Hydrol. Earth Syst. Sci. 20, 803-822, doi:10.5194/hess-20-803-2016. Mueller, M., and S.I. Seneviratne, 2014. Geophys. Res. Lett., 41, 1-7, doi:10.1002/2013GL058055. Nicolai-Shaw, N., L. Gudmundsson, M. Hirschi, and S.I. Seneviratne, 2016. Geophys. Res. Lett., in review. Nicolai-Shaw, N., M. Hirschi, H. Mittelbach, and S.I. Seneviratne, 2015. Journal of Geophysical Research, 120, doi:10.1002/2015JD023305. Zscheischler, J., R. Orth, and S.I. Seneviratne, 2015. Geophys. Res. Lett., 42, 9816-9824, doi:10.1002/2015GL066563.
Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development
Özel, Mehmet Neset; Langen, Marion; Hassan, Bassem A; Hiesinger, P Robin
2015-01-01
Filopodial dynamics are thought to control growth cone guidance, but the types and roles of growth cone dynamics underlying neural circuit assembly in a living brain are largely unknown. To address this issue, we have developed long-term, continuous, fast and high-resolution imaging of growth cone dynamics from axon growth to synapse formation in cultured Drosophila brains. Using R7 photoreceptor neurons as a model we show that >90% of the growth cone filopodia exhibit fast, stochastic dynamics that persist despite ongoing stepwise layer formation. Correspondingly, R7 growth cones stabilize early and change their final position by passive dislocation. N-Cadherin controls both fast filopodial dynamics and growth cone stabilization. Surprisingly, loss of N-Cadherin causes no primary targeting defects, but destabilizes R7 growth cones to jump between correct and incorrect layers. Hence, growth cone dynamics can influence wiring specificity without a direct role in target recognition and implement simple rules during circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.10721.001 PMID:26512889
The international Argo data infrastructure; past, present, and future.
NASA Astrophysics Data System (ADS)
Buck, J. J. H.; Pouliquen, S.; Thresher, A.; Schmechtig, C.; Ignaszewski, M.; Carval, T.; Scanderbeg, M.; Frost, M.
2016-12-01
The Argo array is composed of over 3,000 autonomous profiling floats that measure the temperature and salinity of the upper 2,000 m of the global deep ocean every ten days. Argo is a key component of the global ocean observing system and the data addresses crucial questions such as quantifying the heat content of the upper ocean and steric sea level change. Further to this data are routinely assimilated into operational ocean forecast models. Argo is underpinned by an international data system that was founded in the year 2,000 at the first meeting of the Argo data management team. The Argo data system is built on principles of open data and supplying data to both operational ocean models and research communities within 24 hours of collection. The data system served as a template for the established international OceanSITES community and the emerging Everyones Glider Observatories initiative. The Argo data system is composed of national Data Assembly Centers (DAC) that supply data to two mirrored Global Data Assembly Centres (GDAC). GDAC data exchanges are based on File Transfer Protocol (FTP). A significant recent data system development is the assignment of a single dynamic DOI to GDAC holdings enabling time dependent unambiguous data citation at a monthly granularity. The on-going evolution of Argo to address new global questions requires deeper data, shallower data, biogeochemical sampling and increased spatial coverage. These enhancements are increasing data complexity and volumes necessitating significant recent data format adaptation. The challenge and achievement was to preserve data formats and quality for existing established users while still allowing the integration of new data streams. The implementation of these adaptations is currently in progress within DACs. Argo data have been traditionally delivered via FTP protocol with developments are on-going to facilitate new users and emerging expectations on data delivery mechanisms. These experimental developments include access via Application Programming Interfaces such as ERDDAP, integration with other components of GOOS within the AtlantOS project, and a prototype 'Big Data' solution is being developed within the EU ENVRIplus project.
Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.
2013-01-01
The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and cultural resources. The South Central CSC will provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife, and cultural resources can use to anticipate, monitor, and adapt to climate change, actively engaging LCCs and other partners in translating science into management decisions. This document is the first Strategic Science Plan for the South Central CSC (2013-18). Using the January 2011 DOI guidance as a model, this document (1) describes the role and interactions of the South Central CSC among partners and stakeholders including Federal, State, and non-governmental organizations throughout the region; (2) describes a concept of what the center will provide to its partners; (3) defines a context for climate impacts in the south central United States; and (4) establishes the science priorities the center will address through research. Science priorities are currently organized as immediate or future research needs; however, this document is intended to be reevaluated and modified as partner needs change and as scientific work progresses.
2012-01-01
34Laser oscillations in nd-doped yttrium aluminum , yttrium gallium and gadolinium garnets ," Applied Physics Letters (10): 182. doi:10.1063/1.1753928...Aluminium Garnet ) Nd:YAG lasers, and inherent of this material is its fundamental 1064nm frequency that is frequency doubled to 532 nm to penetrate
Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry
NASA Astrophysics Data System (ADS)
Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.
2018-04-01
The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.
Sea-level and solid-Earth deformation feedbacks in ice sheet modelling
NASA Astrophysics Data System (ADS)
Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk
2014-05-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics
NASA Astrophysics Data System (ADS)
Wang, Kun; Deser, Clara; Sun, Lantao; Tomas, Robert A.
2018-05-01
The role of ocean dynamics in the transient adjustment of the coupled climate system to an abrupt loss of Arctic sea ice is investigated using experiments with Community Climate System Model version 4 in two configurations: a thermodynamic slab mixed layer ocean and a full-depth ocean that includes both dynamics and thermodynamics. Ocean dynamics produce a distinct sea surface temperature warming maximum in the eastern equatorial Pacific, accompanied by an equatorward intensification of the Intertropical Convergence Zone and Hadley Circulation. These tropical responses are established within 25 years of ice loss and contrast markedly with the quasi-steady antisymmetric coupled response in the slab-ocean configuration. A heat budget analysis reveals the importance of anomalous vertical advection tied to a monotonic temperature increase below 200 m for the equatorial sea surface temperature warming maximum in the fully coupled model. Ocean dynamics also rapidly modify the midlatitude atmospheric response to sea ice loss.
Task-dependent recurrent dynamics in visual cortex
Tajima, Satohiro; Koida, Kowa; Tajima, Chihiro I; Suzuki, Hideyuki; Aihara, Kazuyuki; Komatsu, Hidehiko
2017-01-01
The capacity for flexible sensory-action association in animals has been related to context-dependent attractor dynamics outside the sensory cortices. Here, we report a line of evidence that flexibly modulated attractor dynamics during task switching are already present in the higher visual cortex in macaque monkeys. With a nonlinear decoding approach, we can extract the particular aspect of the neural population response that reflects the task-induced emergence of bistable attractor dynamics in a neural population, which could be obscured by standard unsupervised dimensionality reductions such as PCA. The dynamical modulation selectively increases the information relevant to task demands, indicating that such modulation is beneficial for perceptual decisions. A computational model that features nonlinear recurrent interaction among neurons with a task-dependent background input replicates the key properties observed in the experimental data. These results suggest that the context-dependent attractor dynamics involving the sensory cortex can underlie flexible perceptual abilities. DOI: http://dx.doi.org/10.7554/eLife.26868.001 PMID:28737487
Miconi, Thomas
2017-01-01
Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior. DOI: http://dx.doi.org/10.7554/eLife.20899.001 PMID:28230528
NASA Astrophysics Data System (ADS)
Ols, Clémentine; Trouet, Valerie; Girardin, Martin P.; Hofgaard, Annika; Bergeron, Yves; Drobyshev, Igor
2018-06-01
The mid-20th century changes in North Atlantic Ocean dynamics, e.g. slow-down of the Atlantic meridional overturning thermohaline circulation (AMOC), have been considered as early signs of tipping points in the Earth climate system. We hypothesized that these changes have significantly altered boreal forest growth dynamics in northeastern North America (NA) and northern Europe (NE), two areas geographically adjacent to the North Atlantic Ocean. To test our hypothesis, we investigated tree growth responses to seasonal large-scale oceanic and atmospheric indices (the AMOC, North Atlantic Oscillation (NAO), and Arctic Oscillation (AO)) and climate (temperature and precipitation) from 1950 onwards, both at the regional and local levels. We developed a network of 6876 black spruce (NA) and 14437 Norway spruce (NE) tree-ring width series, extracted from forest inventory databases. Analyses revealed post-1980 shifts from insignificant to significant tree growth responses to summer oceanic and atmospheric dynamics both in NA (negative responses to NAO and AO indices) and NE (positive response to NAO and AMOC indices). The strength and sign of these responses varied, however, through space with stronger responses in western and central boreal Quebec and in central and northern boreal Sweden, and across scales with stronger responses at the regional level than at the local level. Emerging post-1980 associations with North Atlantic Ocean dynamics synchronized with stronger tree growth responses to local seasonal climate, particularly to winter temperatures. Our results suggest that ongoing and future anomalies in oceanic and atmospheric dynamics may impact forest growth and carbon sequestration to a greater extent than previously thought. Cross-scale differences in responses to North Atlantic Ocean dynamics highlight complex interplays in the effects of local climate and ocean-atmosphere dynamics on tree growth processes and advocate for the use of different spatial scales in climate-growth research to better understand factors controlling tree growth.
Short note: the experimental geopotential model XGM2016
NASA Astrophysics Data System (ADS)
Pail, R.; Fecher, T.; Barnes, D.; Factor, J. F.; Holmes, S. A.; Gruber, T.; Zingerle, P.
2018-04-01
As a precursor study for the upcoming combined Earth Gravitational Model 2020 (EGM2020), the Experimental Gravity Field Model XGM2016, parameterized as a spherical harmonic series up to degree and order 719, is computed. XGM2016 shares the same combination methodology as its predecessor model GOCO05c (Fecher et al. in Surv Geophys 38(3): 571-590, 2017. doi: 10.1007/s10712-016-9406-y). The main difference between these models is that XGM2016 is supported by an improved terrestrial data set of 15^' × 15^' gravity anomaly area-means provided by the United States National Geospatial-Intelligence Agency (NGA), resulting in significant upgrades compared to existing combined gravity field models, especially in continental areas such as South America, Africa, parts of Asia, and Antarctica. A combination strategy of relative regional weighting provides for improved performance in near-coastal ocean regions, including regions where the altimetric data are mostly unchanged from previous models. Comparing cumulative height anomalies, from both EGM2008 and XGM2016 at degree/order 719, yields differences of 26 cm in Africa and 40 cm in South America. These differences result from including additional information of satellite data, as well as from the improved ground data in these regions. XGM2016 also yields a smoother Mean Dynamic Topography with significantly reduced artifacts, which indicates an improved modeling of the ocean areas.
Luo, Yiyong; Lu, Jian; Liu, Fukai; ...
2017-03-27
The role of the ocean dynamics in the response of the equatorial Pacific Ocean to climate warming is investigated using both an atmosphere-ocean coupled climate system and its ocean component. Results show that the initial response (fast pattern) to an uniform heating imposed on to the ocean is a warming centered to the west of the dateline owing to the conventional ocean dynamical thermostat (ODT) mechanism in the eastern equatorial Pacific-a cooling effect arising from the up-gradient upwelling. In time, the warming pattern gradually propagates eastward, becoming more El Niño-like (slow pattern). The transition from the fast to the slowmore » patterns is likely resulted from i) the gradual warming of the equatorial thermocline temperature, which is associated with the arrival of the relatively warmer extratropical waters advected along the subsurface branch of the subtropical cells (STC) and ii) the reduction of the STC strength itself. A mixed layer heat budget analysis finds that it is the total ocean dynamical effect rather than the conventional ODT that holds the key for understanding the pattern of the SST in the equatorial Pacific and that the surface heat flux works mainly to compensate the ocean dynamics. Further passive tracer experiments with the ocean component of the coupled system verify the role of the ocean dynamical processes in initiating a La Niña-like SST warming and in setting the pace of the transition to an El Niño-like warming and identify an oceanic origin for the slow eastern Pacific warming independent of the weakening trade wind.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiyong; Lu, Jian; Liu, Fukai
The role of the ocean dynamics in the response of the equatorial Pacific Ocean to climate warming is investigated using both an atmosphere-ocean coupled climate system and its ocean component. Results show that the initial response (fast pattern) to an uniform heating imposed on to the ocean is a warming centered to the west of the dateline owing to the conventional ocean dynamical thermostat (ODT) mechanism in the eastern equatorial Pacific-a cooling effect arising from the up-gradient upwelling. In time, the warming pattern gradually propagates eastward, becoming more El Niño-like (slow pattern). The transition from the fast to the slowmore » patterns is likely resulted from i) the gradual warming of the equatorial thermocline temperature, which is associated with the arrival of the relatively warmer extratropical waters advected along the subsurface branch of the subtropical cells (STC) and ii) the reduction of the STC strength itself. A mixed layer heat budget analysis finds that it is the total ocean dynamical effect rather than the conventional ODT that holds the key for understanding the pattern of the SST in the equatorial Pacific and that the surface heat flux works mainly to compensate the ocean dynamics. Further passive tracer experiments with the ocean component of the coupled system verify the role of the ocean dynamical processes in initiating a La Niña-like SST warming and in setting the pace of the transition to an El Niño-like warming and identify an oceanic origin for the slow eastern Pacific warming independent of the weakening trade wind.« less
2014-09-30
were compared with 3-D multi-beam data collected by Paramo and Gerlotto. The data were consistent with the Anderson model in that both the data and...column of a random, oceanic waveguide,” J. Acoust. Soc. Am., DOI 10.1121/1.4881925 [published, refereed] Stanton, T.K., Bhatia, S., J. Paramo , and F
ONR Ocean Wave Dynamics Workshop
NASA Astrophysics Data System (ADS)
In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.
Impact of the Indonesian Throughflow on the Atlantic Meridional Overturning Circulation
NASA Astrophysics Data System (ADS)
Le Bars, Dewi; Dijkstra, Henk
2014-05-01
Understanding the mechanisms controlling the strength and variability of the Atlantic Meridional Overturning Circulation (AMOC) is one of the main topics of climate science and in particular physical oceanography. Current simple representations of the global ocean overturning separates the surface return flow to the Atlantic basin into a cold water path through the Drake Passage and a warm water path through the Indonesian Throughflow and Agulhas leakage. The relative importance of these two paths has been investigated in non-eddying ocean models. In these models the Agulhas retroflection cannot be modelled properly, which leads to an important overestimation of the Agulhas leakage. Furthermore, it seems that the in these models the relation between the meridional density gradient and the overturning strength is greatly simplified and changes significantly when eddies are resolved (Den Toom et al. 2013). As a result, the impact of the Pacific-Indian Oceans exchange through the Indonesian Throughflow on the AMOC is still unknown. To investigate this question we run a state-of-the-art ocean model, the Parallel Ocean Program (POP), globally, at eddy resolving resolution (0.1º). Using climatological forcing from the CORE dataset we perform two simulations of 110 years, a control experiment with realistic coastlines and one in which the Indonesian Passages are closed. Results show that, for a closed Indonesian Throughflow, the Indian Ocean cools down but its salinity increases. The Agulhas leakage reduces also by 3Sv (Le Bars et al. 2013) and the net effect on the south Atlantic is a cooling down and decrease salinity. The anomalies propagate slowly northward and a significant decrease of the AMOC is found at 26ºN after 50 years. This decrease AMOC also leads to reduced northward heat flux in the Atlantic. These processes are investigated with a detailed analysis of the heat and freshwater balances in the Atlantic-Arctic region and in the region south of 34ºS where Drake Passage waters meet Indian Ocean waters and influence the density filed of the whole Atlantic basin. Den Toom, M., H. Dijkstra, W. Weijer, M. Hecht, M. Maltrud, and E. van Sebille, 2013: Response of a Strongly Eddying Global Ocean to North Atlantic Freshwater Perturbations. J. Phys. Oceanogr. doi:10.1175/JPO-D-12-0155.1, in press. Le Bars, D., Dijkstra, H. a. and De Ruijter, W. P. M.: Impact of the Indonesian Throughflow on Agulhas leakage, Ocean Sci., 9(5), 773-785, doi:10.5194/os-9-773-2013, 2013.
NASA Astrophysics Data System (ADS)
Peralta-Ferriz, Cecilia; Morison, James; Zhang, Jinlun; Bonin, Jennifer
2014-05-01
The variability of ocean bottom pressure (OBP) in the Arctic is dominated by the variations in sea surface height (SSH) from daily to monthly timescales. Conversely, OBP variability is dominated by the changes in the steric pressure (StP) at inter-annual timescales, particularly off the continental shelves. The combination of GRACE-derived ocean bottom pressure and ICESat altimetry-derived sea surface height variations in the Arctic Ocean have provided new means of identifying inter-annual trends in StP (StP = OBP-SSH) and associated freshwater content (FWC) of the Arctic region (Morison et al., 2012). Morison et al. (2012) showed that from 2004 to 2008, the FWC increased in the Beaufort Gyre and decreased in the Siberian and Central Arctic, resulting in a relatively small net basin-averaged FWC change. In this work, we investigate the inter-annual trends from 2008 to 2012 in OBP from GRACE, SSH from the state-of-the-art pan-Arctic ocean model PIOMAS -validated with tide and pressure gauges in the Arctic-, and compute the trends in StP and FWC from 2008-2012. We compare these results with the previous trends from 2005-2008 described in Morison et al. (2012). Our initial findings suggest increased salinity in the entire Arctic basin (relative to the climatological seasonal variation) from 2008-2012, compared to the preceding four years (2005-2008). We also find that the trends in OBP, SSH and StP from 2008-2012 present a different behavior during the spring-summer and fall-winter, unlike 2005-2008, in which the trends were generally consistent through all months of the year. It seems since 2009, when the Beaufort Gyre relaxed and the export of freshwater from the Canada Basin into the Canadian Archipelago and Fram Strait, via the Lincoln Sea, was anomalously large (de Steur et al., 2013), the Arctic Ocean has entered a new circulation regime. The causes of such changes in the inter-annual trends of OBP, SSH and StP -hence FWC-, associated with the changes in the shape and strength of the Arctic Oscillation (AO) and the wind patterns, as well as with the changes in sea ice conditions will be explored. References: Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen, and M. Steele, Changing Arctic Ocean Freshwater Pathways Measured With ICESat and GRACE, Nature, 481, 66-70, DOI: 10.1038/nature10705, 2012. de Steur, L., et al. (2013), Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010, J. Geophys. Res. Oceans, 118, 4699-4715, doi:10.1002/jgrc.20341.
How well-connected is the surface of the global ocean?
Froyland, Gary; Stuart, Robyn M; van Sebille, Erik
2014-09-01
The Ekman dynamics of the ocean surface circulation is known to contain attracting regions such as the great oceanic gyres and the associated garbage patches. Less well-known are the extents of the basins of attractions of these regions and how strongly attracting they are. Understanding the shape and extent of the basins of attraction sheds light on the question of the strength of connectivity of different regions of the ocean, which helps in understanding the flow of buoyant material like plastic litter. Using short flow time trajectory data from a global ocean model, we create a Markov chain model of the surface ocean dynamics. The surface ocean is not a conservative dynamical system as water in the ocean follows three-dimensional pathways, with upwelling and downwelling in certain regions. Using our Markov chain model, we easily compute net surface upwelling and downwelling, and verify that it matches observed patterns of upwelling and downwelling in the real ocean. We analyze the Markov chain to determine multiple attracting regions. Finally, using an eigenvector approach, we (i) identify the five major ocean garbage patches, (ii) partition the ocean into basins of attraction for each of the garbage patches, and (iii) partition the ocean into regions that demonstrate transient dynamics modulo the attracting garbage patches.
NASA Astrophysics Data System (ADS)
Stüeken, E.; Bellefroid, E. J.; Prave, T.; Asael, D.; Planavsky, N.; Lyons, T. W.
2016-12-01
Eukaryotic microfossils first appear in the early Mesoproterozoic (1.8-1.6 billion years ago), but their record remains sparse for nearly a billion years. This observation has invited hypotheses about oxygen and nutrient limitation of eukaryotic organisms in a stratified ocean underneath an oxygen-poor atmosphere1,2. One of the most fossiliferous units of Mesoproterozoic age is the Torridonian Supergroup in northwestern Scotland (1.2-1.0 Ga)3, which has been interpreted as lacustrine, based on mild boron enrichments and close associations with fluvial sandstones4. Recent studies have documented unusually large δ34S fractionations and Mo enrichments in the Poll a'Mhuilt Member of the lower Torridonian, which led to the interpretation that non-marine environments became oxygenated earlier than the open ocean and were therefore important niches for early eukaryotes5,6. Here we revisited the Poll a'Mhuilt Member with new geochemical tools. We found δ98/95Mo values up to +1.2‰ in euxinic shales and carbonate-bound 87Sr/86Sr ratios of <0.707-0.710 that agree well with constraints on the composition of Mesoproterozoic seawater. Sedimentological observations revealed herringbone cross-bedding and wave ripples indicative of tidal activity. Collectively, our results are consistent with a marine influence during the time of deposition. The high Mo concentrations and δ34S fractions are most likely the results of evapo-concentration of seawater. These rocks can therefore not be used to make inferences about eukaryotic evolution in freshwater habitats. Instead, it is conceivable that marine margins with active oxygen production and dynamic wave mixing were more hospitable settings for eukaryotic evolution than potentially stagnant mid-Proterozoic lakes. 1. Reinhard, CT, et al.(2016) PNAS doi: 10.1073/pnas.1521544113. 2. Anbar, AD & AH Knoll (2002) Science 297: 1137-1142. 3. Strother, PK, et al.(2011) Nature 473: 505-509. 4. Stewart, AD, in: Memoirs of the Geological Society, ed. G Society. Vol. 24. 2002, Bath, UK: Geological Society. 5. Parnell, J, et al.(2010) Nature 468: 290-293. 6. Parnell, J, et al. (2015) Nature Comm. 6: doi:10.1038/ncomms7996.
Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling
Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A
2014-01-01
Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286
Research Spotlight: No tipping point for Arctic Ocean ice
NASA Astrophysics Data System (ADS)
Schultz, Colin
2011-03-01
Declines in the summer sea ice extent have led to concerns within the scientific community that the Arctic Ocean may be nearing a tipping point, beyond which the sea ice cap could not recover. In such a scenario, greenhouse gases in the atmosphere trap outgoing radiation, and as the Sun beats down 24 hours a day during the Arctic summer, temperatures rise and melt what remains of the polar sea ice cap. The Arctic Ocean, now less reflective, would absorb more of the Sun’s warmth, a feedback loop that would keep the ocean ice free. However, new research by Tietsche et al. suggests that even if the Arctic Ocean sees an ice-free summer, it would not lead to catastrophic runaway ice melt. The researchers, using a general circulation model of the global ocean and the atmosphere, found that Arctic sea ice recovers within 2 years of an imposed ice-free summer to the conditions dictated by general climate conditions during that time. Furthermore, they found that this quick recovery occurs whether the ice-free summer is triggered in 2000 or in 2060, when global temperatures are predicted to be 2°C warmer. (Geophysical Research Letters, doi:10.1029/2010GL045698, 2011)
Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter
NASA Technical Reports Server (NTRS)
Leitao, C. D.; Huang, N. E.; Parra, C. G.
1977-01-01
Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.
NASA Astrophysics Data System (ADS)
Sutanudjaja, Edwin H.; van Beek, Ludovicus P. H.; Wada, Yoshihide; Wisser, Dominik; de Graaf, Inge E. M.; Straatsma, Menno W.; Bierkens, Marc F. P.
2014-05-01
PCR-GLOBWB (PCRaster Global Water Balance) is a grid-based global hydrological model developed at the Department of Physical Geography, Utrecht University. For each grid cell, PCR-GLOBWB simulates moisture storage in vertically stacked soil layers, as well as the water exchange to the atmosphere and underlying groundwater reservoir. Exchange to the atmosphere comprises of precipitation, evaporation and transpiration, as well as snow accumulation and melt. All fluxes are all simulated by considering vegetation phenology and sub-grid variations in elevation, land cover and soil saturation. The model includes physically-based schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. Here we present and summarize the latest developments of PCR-GLOBWB. The new version of the model, PCR-GLOBWB 2.0, now runs at a spatial resolution of 5 arc min (about 10 km at the equator) and supersedes the previous generation of the model (30 arc min PCR-GLOBWB 1.0, van Beek et al., 2011). PCR-GLOBWB 2.0 consolidates all components that have been introduced since PCR-GLOWB 1.0 was first published (2011). Examples of these new components are: A comprehensive water demand and irrigation module (Wada et al., 2012). A dynamic attribution and return flow of water demand to surface water and groundwater resources (de Graaf et al., 2013). An advanced surface water routing scheme with wetland, lakes and floodplains of variable extent, thus simulating flooding and flood wave attenuation (Winsemius et al., 2013). An online scheme for dynamic withdrawal, allocation and consumptive use of groundwater and surface water resources, including a progressive introduction of reservoirs (Wada et al., 2013). Further development will include the inclusion of a dynamic reservoir operation/optimization scheme and a MODFLOW lateral groundwater flow module (Sutanudjaja et al., 2011; Sutanudjaja et al., 2014). Also, scripts used for deriving the parameterization from global data sources for the original model have been coupled with the model, resulting in a near-scalable model that facilitates its application for different domains and at varying resolutions. Results are very promising. When comparing simulated discharges to those observed by GRDC stations, the coefficient-of-determination is high. Human impacts, altering the seasonal and inter-annual variability of terrestrial water storage (TWS) signals, are well simulated by PCR-GLOBWB 2.0 and evident in the validation of simulated TWS with GRACE satellite observation (Tapley et al., 2004). Moreover, the simulation results of PCR-GLOBWB 2.0 compare well to several other remote sensing products, such as the soil moisture datasets of ERS/MetOp (Wagner et al., 1999) and AMSR-E (de Jeu and Owe, 2003), as well as the GLEAM evaporation product (Miralles et al., 2011). References: de Graaf et al., Advances in Water Resources (2013), http://dx.doi.org/10.1016/j.advwatres.2013.12.002 de Jeu and Owe, International Journal of Remote Sensing (2003), http://dx.doi.org/10.1080/0143116031000095934 Miralles et al., Hydrology and Earth System Sciences (2011), http://dx.doi.org/10.5194/hess-15-967-2011 Sutanudjaja et al., Hydrology and Earth System Sciences (2011), http://dx.doi.org/10.5194/hess-15-2913-2011 Sutanudjaja et al., Water Resources Research (2014), http://dx.doi.org/10.1002/2013WR013807 Tapley et al., Science (2004), http://dx.doi.org/10.1126/science.1099192 van Beek et al., Water Resources Research (2011), http://dx.doi.org/10.1029/2010WR009791 Wada et al., Water Resources Research (2012), http://dx.doi.org/10.1029/2011WR010562 Wada et al., Earth System Dynamics Discussion (2013), http://dx.doi.org/10.5194/esdd-4-355-2013 Wagner et al., Remote Sensing of Environment (1999), http://dx.doi.org/10.1016/S0034-4257(99)00036-X Winsemius et al., Hydrology and Earth System Sciences (2013), http://dx.doi.org/10.5194/hess-17-1871-2013
Fresh Water River discharges as observed by SMOS in the Arabian Sea and the Bay of Bengal
NASA Astrophysics Data System (ADS)
Olmedo, Estrella; Ballabrera-Poy, Joaquim; Turiel, Antonio
2017-04-01
The Bay of Bengal (BoB) and the Arabian Sea (AS) are two peculiar regions in the Indian Ocean exhibiting a wide range of Sea Surface Salinity (SSS) values. In the BoB, the strong summer monsoon rainfall and the continental run-offs into these semi-enclosed basins result in an intense dilution of the surface seawater in the northern part of the Bay, thereby inducing some of the lowest SSS water masses found in the tropical belt. In the AS, because of the intense variability associated with the monsoon cycle, water mass structure in the upper layers of the AS shows enormous variability in the space and time. As such, the role of the salinity in these regions is crucial in the ocean dynamics of these regions. After more than 7 years in orbit, the Soil Moisture and Ocean Salinity (SMOS) mission [1] continues to provide a series of salinity data that could be used to monitor the SSS variations in these climatically relevant regions, provided that systematic errors due to land contamination are reduced. Recently-developed algorithms for SSS retrieval [2] have improved the filtering criteria and the mitigation of the systematic bias, providing coherent SSS retrievals close to the land masses. In this work we have analyzed the SSS in 2-degree boxes located at the mouth of the main rivers in the BoB: Ganges-Brahmaputra, Irrawady, Mahanadi, Godovari; and in the AS: Indus. We have first tried to validate the SMOS salinity retrievals with in situ measurements. Since there is few available in situ data, we have also compared the climatological SSS behavior derived from SMOS with the ones provided by the World Ocean Atlas [3]. We have also compared the SMOS SSS data with historical data of discharges [4] and [5], ocean currents from the Ocean Surface Current Analyses Real-time (OSCAR) [6], Sea Surface Temperature from Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) [7],[8] and [9] and Chlorophyll data [10]. The conclusion of this work is that, when the proper filtering criteria is implemented, SMOS provides coherent SSS measurements close to the coast, and especially in these regions of the Indian Ocean, providing near real-time information suitable for validation and ocean data assimilation. References: [1] Font, J., Camps, A., Borges, A., Martin-Neira, M., Boutin, J., Reul, N., Kerr, Y., Hahne, A., and Mechlenburg, S. (2010). SMOS: the challenging sea surface salinity measurement from space. Proceedings of the IEEE, 98:649. [2] Olmedo, E., Martínez, J., Turiel, A., Ballabrera-Poy, J., and Portabella, M., (2017), "Debiased Non-Bayesian retrieval: a novel approach to SMOS Sea Surface Salinity, Remote Sensing of Environment, under review. [3] Zweng, M.M, J.R. Reagan, J.I. Antonov, R.A. Locarnini, A.V. Mishonov, T.P. Boyer, H.E. Garcia, O.K. Baranova, D.R. Johnson, D.Seidov, M.M. Biddle, 2013. World Ocean Atlas 2013, Volume 2: Salinity. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 74, 39 pp [4] Dai, A., and K. E. Trenberth, (2002): Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol., 3, 660-687 [5] Dai, A., T. Qian, K. E. Trenberth, and J. D Milliman, (2009): Changes in continental freshwater discharge from 1949-2004. J. Climate, 22, 10, 2773-2792 [6] Bonjean F. and G.S.E. Lagerloef, (2002): Diagnostic model and analysis of the surface currents in the tropical Pacific ocean, J. Phys. Oceanogr., 32, 2,938-2,954 [7] Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer, (2011). The perational Sea Surface Temperature and Sea Ice analysis (OSTIA). Remote Sensing of the Environment. doi: 10.1016/j.rse.2010.10.017 2011. [8] Martin, M.J., A. Hines and M.J. Bell, (2007). Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact. Q.J.R. Meteorol. Soc., 133:981-995. [9] John D. Stark, Craig J. Donlon, Matthew J. Martin and Michael E. McCulloch, (2007), OSTIA : An operational, high resolution, real time, global sea surface temperature analysis system., Oceans '07 IEEE Aberdeen, conference proceedings. Marine challenges: coastline to deep sea. Aberdeen, Scotland.IEEE. [10] NASA Goddard Space Flight Center, Ocean Biology Processing Group; (2014): Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data, NASA OB.DAAC, Greenbelt, MD, USA. http://doi.org/10.5067/ORBVIEW-2/SEAWIFS_OC.2014.0. Accessed 2016/12/31. Maintained by NASA Ocean Biology Distibuted Active Archive Center (OB.DAAC), Goddard Space Flight Center, Greenbelt MD.
Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force
NASA Astrophysics Data System (ADS)
Tort, Marine; Dubos, Thomas; Bouchut, François; Zeitlin, Vladimir
2014-05-01
Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force Marine Tort1, Thomas Dubos1, François Bouchut2 & Vladimir Zeitlin1,3 1 Laboratoire of Dynamical Meteorology, Univ. P. and M. Curie, Ecole Normale Supérieure, and Ecole Polytechnique, FRANCE 2 Université Paris-Est, Laboratoire d'Analyse et de Mathématiques Appliquées, FRANCE 3 Institut Universitaire de France Atmospheric and oceanic motion are usually modeled within the shallow-fluid approximation, which simplifies the 3D spherical geometry. For dynamical consistency, i.e. to ensure conservation laws for potential vorticity, energy and angular momentum, the horizontal component of the Coriolis force is neglected. Here new equation sets combining consistently a simplified shallow-fluid geometry with a complete Coriolis force is presented. The derivation invokes Hamilton's principle of least action with an approximate Lagrangian capturing the small increase with height of the solid-body entrainment velocity due to planetary rotation. A three-dimensional compressible model and a one-layer shallow-water model are obtained. The latter extends previous work done on the f-plane and β-plane. Preliminary numerical results confirm the accuracy of the 3D model within the range of parameters for which the equations are relevant. These new models could be useful to incorporate a full Coriolis force into existing numerical models and to disentangle the effects of the shallow-atmosphere approximation from those of the traditional approximation. Related papers: Tort M., Dubos T., Bouchut F. and Zeitlin V. Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography. J. Fluid Mech. (under revisions) Tort M. and Dubos T. Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Q.J.R. Meteorol. Soc. (DOI: 10.1002/qj.2274)
NASA Astrophysics Data System (ADS)
Shevyrnogov, Anatoly; Vysotskaya, Galina
Continuous monitoring of phytopigment concentrations in the ocean by space-borne methods makes possible to estimate ecological condition of biocenoses in critical areas. Unlike land vege-tation, hydrological processes largely determine phytoplankton dynamics, which may be either recurrent or random. The types of chlorophyll concentration dynamics can manifest as zones quasistationary by seasonal chlorophyll dynamics, perennial variations of phytopigment con-centrations, anomalous variations, etc., that makes possible revealing of hydrological structure of the ocean. While large-scale and frequently occurring phenomena have been much studied, the seldom-occurring changes of small size may be of interest for analysis of long-term processes and rare natural variations. Along with this, the ability to reflect consequences of anthropoge-nous impact or natural ecological disasters on the ocean biota makes the anomalous variations ecologically essential. Civilization aspiring for steady development and preservation of the bio-sphere, must have the knowledge of spatial distribution, seasonal dynamics and anomalies of the primary production process on the planet. In the papers of the authors (Shevyrnogov A.P., Vysotskaya G.S., Gitelzon J.I. Quasistationary areas of chlorophyll concentration in the world ocean as observed satellite data. Adv. Space Res. Vol. 18, No. 7, pp. 129-132, 1996) existence of zones, which are quasi-stationary with similar seasonal dynamics of chlorophyll concentration at surface layer of ocean, was shown. Results were obtained on the base of pro-cessing of time series of satellite images SeaWiFS. It was shown that fronts and frontal zones coincide with dividing lines between quasi-stationary areas, especially in areas of large oceanic streams. Biota of surface oceanic layer is more stable in comparison with quickly changing sur-face temperature. It gives a possibility to circumvent influence of high-frequency component (for example, a diurnal cycle) in investigation of dynamics of spatial distribution of surface streams. In addition, an analyses of nonstable ocean productivity phenomena, stood out time series of satellite images, showed existence of areas with different types of instability in the all Global ocean. They are observed as adjacent nonstationary zones of different size, which are associated by different ways with known oceanic phenomena. It is evident that dynamics of a spatial distribution of biological productivity can give an additional knowledge of complicated picture of surface oceanic layer hydrology.
Intrinsic Information Processing and Energy Dissipation in Stochastic Input-Output Dynamical Systems
2015-07-09
Crutchfield. Information Anatomy of Stochastic Equilibria, Entropy , (08 2014): 0. doi: 10.3390/e16094713 Virgil Griffith, Edwin Chong, Ryan James...Christopher Ellison, James Crutchfield. Intersection Information Based on Common Randomness, Entropy , (04 2014): 0. doi: 10.3390/e16041985 TOTAL: 5 Number...Learning Group Seminar, Complexity Sciences Center, UC Davis. Korana Burke and Greg Wimsatt (UCD), reviewed PRL “Measurement of Stochastic Entropy
Hydrographical and dynamical reconstruction of the Warm Core Cyprus Eddy from gliders data
NASA Astrophysics Data System (ADS)
Bosse, Anthony; Testor, Pierre; Hayes, Dan; Ruiz, Simon; Mauri, Elena; Charantonis, Anastase; d'Ortenzio, Fabrizio; Mortier, Laurent
2016-04-01
In the 80s, the POEM (Physical Oceanography of the Eastern Mediterranean) cruises in the Levantine Basin first revealed the presence of a very pronounced dynamical structure off Cyprus: The Cyprus Warm Core Eddy. Since then, a large amount of data have been collected thanks to the use of autonomous oceanic gliders (+8000 profiles since 2009). Part of those profiles were carried out in the upper layers down to 200 m, and we take benefit of a novel approach named ITCOMP SOM that uses a statistical approach to extend them down to 1000 m (see [1] for more details). This dataset have a particularly good spatio-temporal coverage in 2009 for about a month, thanks to simultaneous deployments of several gliders (up to 6). In this study, we present a set of 3D reconstruction of the dynamical and hydrographical characteristics of the Warm Core Cyprus Eddy between 2009 and 2015. Moreover, chlorophyll-a fluorescence data measured by the gliders give evidence to strong vertical velocities at the edge of the eddy. We discuss possible mechanisms (frontogenesis, symmetric instability) that could generate such signals and provide an assessment of the role of this peculiar circulation feature on the circulation and biogeochemistry of the Levantine basin. Reference: [1] Charantonis, A., P. Testor, L. Mortier, F. D'Ortenzio, S. Thiria (2015): Completion of a sparse GLIDER database using multi-iterative Self-Organizing Maps (ITCOMP SOM), Procedia Computer Science, 51(1):2198-2206. DOI: 10.1016/j.procs.2015.05.496
Dynamic subcellular localization of a respiratory complex controls bacterial respiration
Alberge, François; Espinosa, Leon; Seduk, Farida; Sylvi, Léa; Toci, René; Walburger, Anne; Magalon, Axel
2015-01-01
Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI: http://dx.doi.org/10.7554/eLife.05357.001 PMID:26077726
NASA Astrophysics Data System (ADS)
Edwards, Brian J.
2002-05-01
Given the premise that a set of dynamical equations must possess a definite, underlying mathematical structure to ensure local and global thermodynamic stability, as has been well documented, several different models for describing liquid crystalline dynamics are examined with respect to said structure. These models, each derived during the past several years using a specific closure approximation for the fourth moment of the distribution function in Doi's rigid rod theory, are all shown to be inconsistent with this basic mathematical structure. The source of this inconsistency lies in Doi's expressions for the extra stress tensor and temporal evolution of the order parameter, which are rederived herein using a transformation that allows for internal compatibility with the underlying mathematical structure that is present on the distribution function level of description.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.
2012-12-01
It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.
NASA Astrophysics Data System (ADS)
Shevyrnogov, Anatoly; Vysotskaya, Galina
Continuous monitoring of phytopigment concentrations and sea surface temperature in the ocean by space-borne methods makes possible to estimate ecological condition of biocenoses in critical areas. Unlike land vegetation, hydrological processes largely determine phytoplank-ton dynamics, which may be either recurrent or random. The types of chlorophyll concentration dynamics and sea surface temperature can manifest as zones quasistationary by seasonal dynamics, quasistationary areas (QSA). In the papers of the authors (A. Shevyrnogov, G. Vysotskaya, E. Shevyrnogov, A study of the stationary and the anomalous in the ocean surface chlorophyll distribution by satellite data. International Journal of Remote Sensing, Vol. 25, No.7-8, pp. 1383-1387, April 2004 & A. P. Shevyrnogov, G. S. Vysotskaya, J. I. Gitelson, Quasistationary areas of chlorophyll concentra-tion in the world ocean as observed satellite data Advances in Space Research, Volume 18, Issue 7, Pages 129-132, 1996) existence of zones, which are quasi-stationary with similar seasonal dynamics of chlorophyll concentration at surface layer of ocean, was shown. Results were obtained on the base of processing of time series of satellite images SeaWiFS. It was shown that fronts and frontal zones coincide with dividing lines between quasi-stationary are-as, especially in areas of large oceanic streams. To study the dynamics of the ocean for the period from 1985 through 2012 we used data on the temperature of the surface layer of the ocean and chlorophyll concentration (AVHRR, SeaWiFS and MODIS). Biota of surface oceanic layer is more stable in comparison with quickly changing surface tem-perature. It gives a possibility to circumvent influence of high-frequency component (for exam-ple, a diurnal cycle) in investigation of dynamics of spatial distribution of surface streams. In addition, an analyses of nonstable ocean productivity phenomena, stood out time series of satellite images, showed existence of areas with different types of instability in the all Global ocean. They are observed as adjacent nonstationary zones of different size, which are associ-ated by different ways with known oceanic phenomena. It is evident that dynamics of a spatial distribution of biological productivity can give an additional knowledge of complicated picture of surface oceanic layer hydrology. In this study we demonstrate different origin of appearance of quasistationary zones in the ocean. We can see that the border between quasi¬stationary zones is an indicator of the front between the Labrador Current and Gulfstream, other example of revealed pheno¬menon is a qua-sistationary area around of the British Isles that correlates with the relief of the oceanic bottom. Considering that the QSA maps are calculated almost for all surface of the Global ocean, not all QSA can be explained especially of small size. Although some small QSA are interesting. Also local QSA near estuaries of large rivers and large industrial centers, that can be result of a human impact. In sum satellite data is a powerful instrument for investigation of dynamic oceanic processes, their stability and unstability. The result of such study can be used for monitoring of long-term changes and their correlation of with climate dynamics.
Modelling MIZ dynamics in a global model
NASA Astrophysics Data System (ADS)
Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto
2016-04-01
Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.
NASA Astrophysics Data System (ADS)
Sanfilippo, A.; Dick, H. J.; Ohara, Y.
2011-12-01
Godzilla Megamullion is a giant oceanic core complex exposed in an extinct slow- to intermediate-spreading segment of the Parece Vela Basin (Philippine sea) [1; 2]. It exposes lower crust and mantle rocks on the sea-floor, offering a unique opportunity to unravel the architecture and the composition of the lower oceanic lithosphere of an extinct back arc basin. Here we present data on primitive troctolites and associated olivine-gabbros from the breakaway area of the Godzilla Megamullion. On the basis of the olivine/plagioclase volume ratio, the troctolites are subdivided into Ol-troctolites (Ol/Pl >1) and Pl-troctolites (Ol/Pl<1), which show evident textural differences. Ol-troctolites have rounded to polygonal olivine, subhedral plagioclase, and poikilitic clinopyroxene. This texture suggests chemical disequilibrium between the olivine and a melt crystallizing plagioclase and clinopyroxene. We interpret these rocks as reaction products of a dunite matrix with transient basaltic melts [e.g. 3; 4]. Pl-troctolites have euhedral plagioclase and poikilitic olivine and clinopyroxene. Irregular shapes and inverse zoning of the plagioclase chadacrysts within the olivine indicate disequilibrium between existing plagioclase and an olivine-clinopyroxene saturated melt. The occurrence of plagioclase chadacrysts within clinopyroxene ranging from irregular to euhedral in shape suggests crystallization of new lower-Na plagioclase with the clinopyroxene. Olivine oikocrysts in the Pl-troctolites have low-NiO olivine in equilibrium with a high-MgO melt. The Pl-troctolites, then, may be the product of reaction between a plagioclase cumulate and a basaltic melt produced by mixing the high-MgO melt residual to the formation of the Ol-troctolites with new magma. The effect of melt-rock reaction in the Pl- and Ol- troctolites explains the sharp decrease in plagioclase An with respect to Mg# in clinopyroxene and olivine. Furthermore, the melt is shifted towards lower Na, which is consistent with the low Na8 values of the associated MORB glasses (2.4-2.7 wt %). Our results, then, show that melt-rock interaction was a process active in the lower oceanic crust of the Parece Vela basin and that this process likely influences the composition of the erupted MORBs. [1]Ohara et al., 2003. InterRidge News 12, 27-29. [2]Tani et al., 2011. Geology 39, 47-50. doi:10.1130/G3132. [3] Suhr et al., 2008.Geochem. Geophys. Geosyst., 9, Q10007, doi:10.1029/2008GC002012 [4] Renna and Tribuzio, 2011, Journal of Petrology, doi:10.1093/petrology/egr029
Sedimentary Carbon Stocks: A National Assessment of Scotland's Fjords.
NASA Astrophysics Data System (ADS)
Smeaton, Craig; Austin, William; Davies, Althea; Howe, John
2017-04-01
Coastal sediments have been shown to be globally significant repositories for carbon (C) with an estimated 126.2 Tg of C being buried annually (Duarte et al. 2005). Though it is clear these areas are important for the long-term storage of C the actual quantity of C held within coastal sediment remains largely unaccounted for. The first step to understanding the role the coastal ocean plays in the global C cycle is to quantify the C held within these coastal sediments. Of the different coastal environment fjords have been shown to be hotspots for C burial with approximately 11 % of the annual global marine carbon sequestration occurring within fjordic environments (Smith et al. 2015). Through the development of a joint geophysical and geochemical methodology we estimated that the sediment in a mid-latitude fjord holds 26.9 ± 0.5 Mt of C (Smeaton et al., 2016), with these results suggesting that Scottish mid-latitude fjords could be a significant unaccounted store of C equivalent to their terrestrial counterparts (i.e. peatlands). Through the application of the joint geophysical and geochemical methodology developed by Smeaton et al (2016) to a number of other mid-latitude fjords, we will create detailed estimations of the sedimentary C stored at these individual sites. Using these detailed C stock estimations in conjunction with upscaling techniques we will establish the first national estimation of fjordic sedimentary C stocks. The data produced will allow for the sedimentary C stocks to be compared to other national C stocks, such as the Scottish peatlands (Chapman et al. 2009) and forestry (Forestry Commission, 2016). Alongside quantifying this large unaccounted for store of C in the coastal ocean this work also lays foundations for future work to understand the role of the coastal ocean in the global C cycle. Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1-8, doi:10.5194/bg-2-1-2005, 2005. Smeaton, C., Austin, W. E. N., Davies, A. L., Baltzer, A., Abell, R. E., and Howe, J. A.: Substantial stores of sedimentary carbon held in mid-latitude fjords, Biogeosciences, 13, 5771-5787, doi:10.5194/bg-13-5771-2016, 2016. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., and Galy, V.: High rates of organic carbon burial in fjord sediments globally, Nat. Geosci., 8, 450-453, doi:10.1038/NGEO2421, 2015.
A coupled ice-ocean model of upwelling in the marginal ice zone
NASA Technical Reports Server (NTRS)
Roed, L. P.; Obrien, J. J.
1983-01-01
A dynamical coupled ice-ocean numerical model for the marginal ice zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea ice model has a variable ice concentration and includes internal ice stress. The model is forced by stresses on the air/ocean and air/ice surfaces. The main coupling between the ice and the ocean is in the form of an interfacial stress on the ice/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress ice/ocean is proportional to the concentration of ice. A new mechanism for ice edge upwelling is suggested based on a geostrophic equilibrium solution for the sea ice medium. The upwelling reported in previous models invoking a stationary ice cover is shown to be replaced by a weak downwelling due to the ice motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across ice edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.
NASA Astrophysics Data System (ADS)
Wang, J.; Su, Z.; Klein, P.; Thompson, A. F.; Menemenlis, D.; Fu, L. L.
2016-12-01
The major observational advance expected from the Surface Water and Ocean Topography (SWOT) altimeter, compared with existing altimeters, is that it will provide wide-swath (120 km) along-track data that permit the sampling of oceanic scales between 15 and 150km. The potential of this satellite mission is to understand the dynamical impact of these small scales on ocean dynamics. Such impact is known to affect the vertical velocity field (and therefore the vertical fluxes of ocean properties) and significantly affect both the inverse and direct kinetic energy cascades. The need to monitor these scales on a global scale is illustrated by the results of a realistic global ocean simulation. This model has 1/48-degree horizontal grid spacing, 90 vertical levels, and the inclusion of tidal forcing. This simulation reveals a strong seasonality of ocean dynamics at scales less than 100 km, not only in the previously documented regions, such as the Kuroshio extension, Gulf Stream, and subtropical gyres; but also in most other regions, such as most of the Southern Hemisphere and the North-East Atlantic. This strong seasonality, with a maximum amplitude consistently in winter, is associated with deep winter mixed-layer and energetic mesoscale eddies, pointing to mixed-layer instability as a major driver of the seasonality of dynamics at small scales. In addition to seasonal variations, strong intermittencies of ocean dynamics with a period of one to two weeks are also observed occasionally with the same amplitude as the seasonal variability. In this presentation, we discuss the consequences and the challenges posed by the strong spatial and temporal variability to SWOT data analysis.
The Effects of Sediment Properties on Low Frequency Acoustic Propagation
2013-09-30
Ballroom Music Spillover into a Beluga Whale Aquarium Exhibit,” Advances in Acoustics and Vibration, 2012 (doi:10.1155/2012/402130) [ refereed]. 12... Acoustic Propagation James H. Miller and Gopu R. Potty University of Rhode Island Department of Ocean Engineering Narragansett, RI 02881 Phone (401...investigations have indicated that water-borne acoustic arrival properties such as their Airy Phase are sensitive to sediment shear properties. Our major
Knights, B
2003-07-01
Possible causes of declines in recruitment of European, American and Japanese eels to continental waters are reviewed. Negative correlations between the Den Oever glass eel recruitment index (DOI) and the North Atlantic Oscillation Index since 1938 are discussed, together with older anecdotal evidence. Correlations are established between the DOI and sea surface temperature anomalies at 100-250 m between 1952 and 1995 in the Sargasso Sea/Sub-Tropical Gyre (STG) spawning area. It is hypothesised that, associated with global warming trends, STG warming inhibits spring thermocline mixing and nutrient circulation, with negative impacts on productivity and hence food for leptocephalus larvae. Concurrent gyre spin-up also affects major currents and slowing of oceanic migration has probably enhanced starvation and predation losses. Local factors, such as unfavourable wind-driven currents, can also affect recruitment of glass eels on continental shelves. In contrast, evidence is discussed that indicates fishing mortality and continental climate change appear to have had lesser impacts. Similar starvation-advection explanations for declines in Japanese eel recruitment are proposed. Predictions for the future are made and multidisciplinary and integrated monitoring and research are recommended for managing eel stocks and fisheries.
The effects of mixed layer dynamics on ice growth in the central Arctic
NASA Astrophysics Data System (ADS)
Kitchen, Bruce R.
1992-09-01
The thermodynamic model of Thorndike (1992) is coupled to a one dimensional, two layer ocean entrainment model to study the effect of mixed layer dynamics on ice growth and the variation in the ocean heat flux into the ice due to mixed layer entrainment. Model simulations show the existence of a negative feedback between the ice growth and the mixed layer entrainment, and that the underlying ocean salinity has a greater effect on the ocean beat flux than does variations in the underlying ocean temperature. Model simulations for a variety of surface forcings and initial conditions demonstrate the need to include mixed layer dynamics for realistic ice prediction in the arctic.
Side-binding proteins modulate actin filament dynamics
Crevenna, Alvaro H; Arciniega, Marcelino; Dupont, Aurélie; Mizuno, Naoko; Kowalska, Kaja; Lange, Oliver F; Wedlich-Söldner, Roland; Lamb, Don C
2015-01-01
Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.04599.001 PMID:25706231
Johnson, Alyssa E; Shu, Huidy; Hauswirth, Anna G; Tong, Amy; Davis, Graeme W
2015-01-01
Lysosomes are classically viewed as vesicular structures to which cargos are delivered for degradation. Here, we identify a network of dynamic, tubular lysosomes that extends throughout Drosophila muscle, in vivo. Live imaging reveals that autophagosomes merge with tubular lysosomes and that lysosomal membranes undergo extension, retraction, fusion and fission. The dynamics and integrity of this tubular lysosomal network requires VCP, an AAA-ATPase that, when mutated, causes degenerative diseases of muscle, bone and neurons. We show that human VCP rescues the defects caused by loss of Drosophila VCP and overexpression of disease relevant VCP transgenes dismantles tubular lysosomes, linking tubular lysosome dysfunction to human VCP-related diseases. Finally, disruption of tubular lysosomes correlates with impaired autophagosome-lysosome fusion, increased cytoplasmic poly-ubiquitin aggregates, lipofuscin material, damaged mitochondria and impaired muscle function. We propose that VCP sustains sarcoplasmic proteostasis, in part, by controlling the integrity of a dynamic tubular lysosomal network. DOI: http://dx.doi.org/10.7554/eLife.07366.001 PMID:26167652
Capturing the temporal evolution of choice across prefrontal cortex
Hunt, Laurence T; Behrens, Timothy EJ; Hosokawa, Takayuki; Wallis, Jonathan D; Kennerley, Steven W
2015-01-01
Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behaviour in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making. DOI: http://dx.doi.org/10.7554/eLife.11945.001 PMID:26653139
Global, quantitative and dynamic mapping of protein subcellular localization
Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH
2016-01-01
Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775
Real-time imaging of Huntingtin aggregates diverting target search and gene transcription
Li, Li; Liu, Hui; Dong, Peng; Li, Dong; Legant, Wesley R; Grimm, Jonathan B; Lavis, Luke D; Betzig, Eric; Tjian, Robert; Liu, Zhe
2016-01-01
The presumptive altered dynamics of transient molecular interactions in vivo contributing to neurodegenerative diseases have remained elusive. Here, using single-molecule localization microscopy, we show that disease-inducing Huntingtin (mHtt) protein fragments display three distinct dynamic states in living cells – 1) fast diffusion, 2) dynamic clustering and 3) stable aggregation. Large, stable aggregates of mHtt exclude chromatin and form 'sticky' decoy traps that impede target search processes of key regulators involved in neurological disorders. Functional domain mapping based on super-resolution imaging reveals an unexpected role of aromatic amino acids in promoting protein-mHtt aggregate interactions. Genome-wide expression analysis and numerical simulation experiments suggest mHtt aggregates reduce transcription factor target site sampling frequency and impair critical gene expression programs in striatal neurons. Together, our results provide insights into how mHtt dynamically forms aggregates and disrupts the finely-balanced gene control mechanisms in neuronal cells. DOI: http://dx.doi.org/10.7554/eLife.17056.001 PMID:27484239
Dynamic range adaptation in primary motor cortical populations
Rasmussen, Robert G; Schwartz, Andrew; Chase, Steven M
2017-01-01
Neural populations from various sensory regions demonstrate dynamic range adaptation in response to changes in the statistical distribution of their input stimuli. These adaptations help optimize the transmission of information about sensory inputs. Here, we show a similar effect in the firing rates of primary motor cortical cells. We trained monkeys to operate a brain-computer interface in both two- and three-dimensional virtual environments. We found that neurons in primary motor cortex exhibited a change in the amplitude of their directional tuning curves between the two tasks. We then leveraged the simultaneous nature of the recordings to test several hypotheses about the population-based mechanisms driving these changes and found that the results are most consistent with dynamic range adaptation. Our results demonstrate that dynamic range adaptation is neither limited to sensory regions nor to rescaling of monotonic stimulus intensity tuning curves, but may rather represent a canonical feature of neural encoding. DOI: http://dx.doi.org/10.7554/eLife.21409.001 PMID:28417848
CTCF and cohesin regulate chromatin loop stability with distinct dynamics
Hansen, Anders S; Pustova, Iryna; Cattoglio, Claudia; Tjian, Robert; Darzacq, Xavier
2017-01-01
Folding of mammalian genomes into spatial domains is critical for gene regulation. The insulator protein CTCF and cohesin control domain location by folding domains into loop structures, which are widely thought to be stable. Combining genomic and biochemical approaches we show that CTCF and cohesin co-occupy the same sites and physically interact as a biochemically stable complex. However, using single-molecule imaging we find that CTCF binds chromatin much more dynamically than cohesin (~1–2 min vs. ~22 min residence time). Moreover, after unbinding, CTCF quickly rebinds another cognate site unlike cohesin for which the search process is long (~1 min vs. ~33 min). Thus, CTCF and cohesin form a rapidly exchanging 'dynamic complex' rather than a typical stable complex. Since CTCF and cohesin are required for loop domain formation, our results suggest that chromatin loops are dynamic and frequently break and reform throughout the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.25776.001 PMID:28467304
NASA Astrophysics Data System (ADS)
Qian, Xin; Feng, Qinglai; Chonglakmani, Chongpan; Monjai, Denchok
2013-12-01
Volcanic rocks in northwestern Thailand exposed dominantly in the Chiang Khong area, are commonly considered to be genetically linked to the tectonic evolution of the Paleo-Tethyan Ocean. The volcanic rocks consist mainly of andesitic to rhyolitic rocks and are traditionally mapped as Permian-Triassic sequences. Our zircon U-Pb geochronological results show that two andesitic samples (TL-1-B and TL-31-B), are representative of the Doi Yao volcanic zone, and give a mean weighted age of 241.2±4.6 Ma and 241.7±2.9 Ma, respectively. The rhyolitic sample (TL-32-B1) from the Doi Khun Ta Khuan volcanic zone erupted at 238.3±3.8 Ma. Such ages indicate that Chiang Khong volcanic rocks erputed during the early Middle Triassic period. Seven samples from the Doi Yao and Doi Khun Ta Khuan zones exhibit an affinity to arc volcanics. Three rhyolitic samples from the Chiang Khong area have a geochemical affinity to both arc and syn-collisional volcanic rocks. The Chiang Khong arc volcanic rocks can be geochemically compared with those in the Lampang area in northern Thailand, also consistent with those in Jinghong area of southwestern Yunnan. This indicates that the Chiang Rai arc-volcanic zone might northwardly link to the Lancangjiang volcanic zone in southwestern China.
Proceedings of a Coastal and Marine Spatial Planning Workshop for the Western United States
Thorsteinson, Lyman; Hirsch, Derrick; Helweg, David; Dhanju, Amardeep; Barmenski, Joan; Ferrero, Richard
2011-01-01
Recent scientific and ocean policy assessments demonstrate that a fundamental change in our current management system is required to achieve the long-term health of our ocean, coasts, and Great Lakes in order to sustain the services and benefits they provide to society. The present (2011) species- and sector-centric way we manage these ecosystems cannot account properly for cumulative effects, sustaining multiple ecosystem services, and holistically and explicitly evaluating the tradeoffs associated with proposed alternative and multiple human uses. A transition to an ecosystem-based approach to management and conservation of coastal and marine resources is needed. Competing uses and activities such as commerce, recreation, cultural practices, energy development, conservation, and national security are increasing pressure for new and expanded resource usage in coastal marine ecosystems. Current management efforts use a sector-by-sector approach that mostly focuses on a limited range of tools and outcomes [for example, oil and gas leases, fishery management plans, and Marine Protected Areas (MPAs)]. A comprehensive, ecosystem-based, and proactive approach to planning and managing these uses and activities is needed. Further, scientific understanding and information are essential to achieve an integrated decision-making process that includes knowledge of ecosystem services, existing and possible future conditions, and potential consequences of natural and anthropogenic events. Because no single government agency has executive authority for coastal or ocean resources, conflicting objectives around competing uses abound. In recent years, regional- and state-level initiatives in Coastal and Marine Spatial Planning (CMSP) have emerged to coordinate management activities. In some respects, the components and steps of the overall CMSP process are similar to how existing ocean resources are regulated and managed. For example, the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) uses spatial planning exercises in State Renewable Energy Task Force meetings to identify competing and conflicting ocean uses, and to delineate areas suitable for renewable energy development. Similarly terrestrial areas such as in national parks and national wildlife refuges managed by the Department of the Interior (DOI) prepare management plans for preservation and restoration of species and habitats of concern, some of which are protected by law. The analogy to CMSP is clear - multiple users and multiple expectations, resulting in the requirement to establish spatial plans for management of different resources and different ecosystem services. A two-day workshop on December 1-2, 2010, was convened for DOI representatives and several key non-DOI participants with roles in CMSP as a step toward clarifying national perspectives and consequences of the National Ocean Policy for the West (appendix 1). Discussions helped to develop an understanding of CMSP from the federal perspective and to identify regional priorities. An overarching theme was to promote a better understanding of current and future science needs. The workshop format included briefings by key Federal agencies on their understanding of the national focus followed by discussion of regional issues, including the needs for scientific information and coordination. The workshop also explored potential science contributions by Federal agencies and others; utilizing current capabilities, data, and information systems; and provided a foundation for possible future regional workshops focusing in turn on the West Coast Region (California, Oregon, and Washington), Pacific Islands (sometimes referred to as Oceania) and Alaska. Participants were asked to share information in the following areas, recognizing that the purpose would be to learn more about the national perspective (see appendixes 2-4): Explore how the Western U.S. (Alaska, Pacific Islands, and West Coast Region) migh
Modelling dynamics in protein crystal structures by ensemble refinement
Burnley, B Tom; Afonine, Pavel V; Adams, Paul D; Gros, Piet
2012-01-01
Single-structure models derived from X-ray data do not adequately account for the inherent, functionally important dynamics of protein molecules. We generated ensembles of structures by time-averaged refinement, where local molecular vibrations were sampled by molecular-dynamics (MD) simulation whilst global disorder was partitioned into an underlying overall translation–libration–screw (TLS) model. Modeling of 20 protein datasets at 1.1–3.1 Å resolution reduced cross-validated Rfree values by 0.3–4.9%, indicating that ensemble models fit the X-ray data better than single structures. The ensembles revealed that, while most proteins display a well-ordered core, some proteins exhibit a ‘molten core’ likely supporting functionally important dynamics in ligand binding, enzyme activity and protomer assembly. Order–disorder changes in HIV protease indicate a mechanism of entropy compensation for ordering the catalytic residues upon ligand binding by disordering specific core residues. Thus, ensemble refinement extracts dynamical details from the X-ray data that allow a more comprehensive understanding of structure–dynamics–function relationships. DOI: http://dx.doi.org/10.7554/eLife.00311.001 PMID:23251785
Enhancer regions show high histone H3.3 turnover that changes during differentiation
Deaton, Aimee M; Gómez-Rodríguez, Mariluz; Mieczkowski, Jakub; Tolstorukov, Michael Y; Kundu, Sharmistha; Sadreyev, Ruslan I; Jansen, Lars ET; Kingston, Robert E
2016-01-01
The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation. DOI: http://dx.doi.org/10.7554/eLife.15316.001 PMID:27304074
Wang, Jennifer T; Smith, Jarrett; Chen, Bi-Chang; Schmidt, Helen; Rasoloson, Dominique; Paix, Alexandre; Lambrus, Bramwell G; Calidas, Deepika; Betzig, Eric; Seydoux, Geraldine
2014-01-01
RNA granules have been likened to liquid droplets whose dynamics depend on the controlled dissolution and condensation of internal components. The molecules and reactions that drive these dynamics in vivo are not well understood. In this study, we present evidence that a group of intrinsically disordered, serine-rich proteins regulate the dynamics of P granules in C. elegans embryos. The MEG (maternal-effect germline defective) proteins are germ plasm components that are required redundantly for fertility. We demonstrate that MEG-1 and MEG-3 are substrates of the kinase MBK-2/DYRK and the phosphatase PP2APPTR−½. Phosphorylation of the MEGs promotes granule disassembly and dephosphorylation promotes granule assembly. Using lattice light sheet microscopy on live embryos, we show that GFP-tagged MEG-3 localizes to a dynamic domain that surrounds and penetrates each granule. We conclude that, despite their liquid-like behavior, P granules are non-homogeneous structures whose assembly in embryos is regulated by phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.04591.001 PMID:25535836
NASA Astrophysics Data System (ADS)
Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter
2015-04-01
The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the final product is accomplished. In conclusion, the developed integrated approach allows for estimating the dynamic topography and its inverse covariance matrix on arbitrary grids in space and time. The inverse covariance matrix contains the appropriate weights for model-data misfits in least-squares ocean model inversions. The focus of this study is on the North Atlantic Ocean. We will present the conceptual design and dynamic topography estimates based on time variable data from seven satellite altimeter missions (Jason-1, Jason-2, Topex/Poseidon, Envisat, ERS-2, GFO, Cryosat2) in combination with the latest GOCE gravity field model and in-situ data from the Argo floats and near-surface drifting buoys.
Cosmic meteor dust: potentially the dominant source of bio-available iron in the Southern Ocean
NASA Astrophysics Data System (ADS)
Dyrud, L. P.; Marsh, D. R.; Del Castillo, C. E.; Fentzke, J.; Lopez-Rosado, R.; Behrenfeld, M.
2012-12-01
Johnson, 2001 [Johnson, Kenneth. S. (2001), Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?, Global Biogeochem. Cycles, 15(1), 61-63, doi:10.1029/2000GB001295], first suggested that meteoric particulate flux could be a significant source of bio-available iron, particularly in regions with little or no eolean sources, such as the Southern Ocean. While these calculations raised intriguing questions, there were many large unknowns in the input calculations between meteor flux and bio-available ocean molecular densities. There has been significant research in the intervening decade on related topics, such as the magnitude (~200 ktons per year) and composition of the meteoric flux, its atmospheric evaporation, transport, mesospheric formation of potentially soluble meteoric smoke, and extraterrestrial iron isotope identification. Paramount of these findings are recent NCAR WACCM atmosphere model results demonstrating that the majority of meteoric constituents are transported towards the winter poles and the polar vortex. This may lead to a focusing of meteoritic iron deposition towards the Southern Ocean. We present a proposed research plan involving Southern Ocean sample collection and analysis and atmospheric and biological modeling to determine both the current relevance of meteoric iron, and examine the past and future consequences of cosmic dust under a changing climate.
Air-Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST
2012-11-01
Oceanic and Atmospheric Administration, and ONR for organizing the CBLAST experiment and collecting the data used for this study. Thanks also go to...Atmos. Oceanic Technol., 21, 457–469. Gill, A., 1982: Atmosphere – Ocean Dynamics. Academic Press, 662 pp. Haus, B. K., D. Jeong,M.A.Donelan, J. A...Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Ocean - ogr., 11, 324–336. Lindzen, R., 1990: Dynamics in Atmospheric
The GIK-Archive of sediment core radiographs with documentation
NASA Astrophysics Data System (ADS)
Grobe, Hannes; Winn, Kyaw; Werner, Friedrich; Driemel, Amelie; Schumacher, Stefanie; Sieger, Rainer
2017-12-01
The GIK-Archive of radiographs is a collection of X-ray negative and photographic images of sediment cores based on exposures taken since the early 1960s. During four decades of marine geological work at the University of Kiel, Germany, several thousand hours of sampling, careful preparation and X-raying were spent on producing a unique archive of sediment radiographs from several parts of the World Ocean. The archive consists of more than 18 500 exposures on chemical film that were digitized, geo-referenced, supplemented with metadata and archived in the data library PANGAEA®. With this publication, the images have become available open-access for use by the scientific community at https://doi.org/10.1594/PANGAEA.854841.
RNA Polymerase II cluster dynamics predict mRNA output in living cells
Cho, Won-Ki; Jayanth, Namrata; English, Brian P; Inoue, Takuma; Andrews, J Owen; Conway, William; Grimm, Jonathan B; Spille, Jan-Hendrik; Lavis, Luke D; Lionnet, Timothée; Cisse, Ibrahim I
2016-01-01
Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output. DOI: http://dx.doi.org/10.7554/eLife.13617.001 PMID:27138339
A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry
NASA Astrophysics Data System (ADS)
Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik; Savstrup Kristensen, Steen; Mayer, Christoph; Morlighem, Mathieu; Steinhage, Daniel
2016-10-01
The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies, and global surface height on a spherical grid with now 30 arcsec grid spacing. For this new data set, called RTopo-2, we used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We modified data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ, and Sermilik Fjord, assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centres of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF), and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database at doi:10.1594/PANGAEA.856844.
NASA Astrophysics Data System (ADS)
Guinet, C.; Xing, X.; Walker, E.; Monestiez, P.; Marchand, S.; Picard, B.; Jaud, T.; Authier, M.; `Cotté, C.; Dragon, A. C.; Diamond, E.; Antoine, D.; Lovell, P.; Blain, S.; D'Ortenzio, F.; Claustre, H.
2012-08-01
In-situ observation of the marine environment has traditionally relied on ship-based platforms. The obvious consequence is that physical and biogeochemical properties have been dramatically undersampled, especially in the remote Southern Ocean (SO). The difficulty in obtaining in situ data represents the major limitations to our understanding, and interpretation of the coupling between physical forcing and the biogeochemical response. Southern elephant seals (Mirounga leonina) equipped with a new generation of oceanographic sensors can measure ocean structure in regions and seasons rarely observed with traditional oceanographic platforms. Over the last few years, seals have allowed for a considerable increase in temperature and salinity profiles from the SO. However we were still lacking information on the spatio-temporal variation of phytoplankton concentration. This information is critical to assess how the biological productivity of the SO, with direct consequences on the amount of CO2 "fixed" by the biological pump, will respond to global warming. In this research program, we use an innovative sampling fluorescence approach to quantify phytoplankton concentration at sea. For the first time, a low energy consumption fluorometer was added to Argos CTD-SRDL tags, and these novel instruments were deployed on 27 southern elephant seals between 25 December 2007 and the 4 February 2011. As many as 3388 fluorescence profiles associated with temperature and salinity measurements were thereby collected from a vast sector of the Southern Indian Ocean. This paper address the calibration issue of the fluorometer before being deployed on elephant seals and present the first results obtained for the Indian Sector of the Southern Ocean. This in situ system is implemented in synergy with satellite ocean colour radiometry. Satellite-derived data is limited to the surface layer and is restricted over the SO by extensive cloud cover. However, with the addition of these new tags, we're able to assess the 3 dimension distribution of phytoplankton concentration by foraging southern elephant seals. This approach reveals that for the Indian sector of the SO, the surface chlorophyll a (chl a) concentrations provided by MODIS were underestimated by a factor of the order of 2-3 compared to in situ measurements. The scientific outcomes of this program include an improved understanding of both the present state and variability in ocean biology, and the accompanying biogeochemistry, as well as the delivery of real-time and open-access data to scientists (doi:10.7491/MEMO.1x).
NASA Astrophysics Data System (ADS)
Guinet, C.; Xing, X.; Walker, E.; Monestiez, P.; Marchand, S.; Picard, B.; Jaud, T.; Authier, M.; Cotté, C.; Dragon, A. C.; Diamond, E.; Antoine, D.; Lovell, P.; Blain, S.; D'Ortenzio, F.; Claustre, H.
2013-02-01
In situ observation of the marine environment has traditionally relied on ship-based platforms. The obvious consequence is that physical and biogeochemical properties have been dramatically undersampled, especially in the remote Southern Ocean (SO). The difficulty in obtaining in situ data represents the major limitations to our understanding, and interpretation of the coupling between physical forcing and the biogeochemical response. Southern elephant seals (Mirounga leonina) equipped with a new generation of oceanographic sensors can measure ocean structure in regions and seasons rarely observed with traditional oceanographic platforms. Over the last few years, seals have allowed for a considerable increase in temperature and salinity profiles from the SO, but we were still lacking information on the spatiotemporal variation of phytoplankton concentration. This information is critical to assess how the biological productivity of the SO, with direct consequences on the amount of CO2 "fixed'' by the biological pump, will respond to global warming. In this research programme, we use an innovative sampling fluorescence approach to quantify phytoplankton concentration at sea. For the first time, a low energy consumption fluorometer was added to Argos CTD-SRDL tags, and these novel instruments were deployed on 27 southern elephant seals between 25 December 2007 and the 4 February 2011. As many as 3388 fluorescence profiles associated with temperature and salinity measurements were thereby collected from a vast sector of the Southern Indian Ocean. This paper addresses the calibration issue of the fluorometer before being deployed on elephant seals and presents the first results obtained for the Indian sector of the Southern Ocean. This in situ system is implemented in synergy with satellite ocean colour radiometry. Satellite-derived data is limited to the surface layer and is restricted over the SO by extensive cloud cover. However, with the addition of these new tags, we are able to assess the 3-dimension distribution of phytoplankton concentration by foraging southern elephant seals. This approach reveals that for the Indian sector of the SO, the surface chlorophyll a (chl a) concentrations provided by MODIS were underestimated by a factor 2 compared to chl a concentrations estimated from HPLC corrected in situ fluorescence measurements. The scientific outcomes of this programme include an improved understanding of both the present state and variability in ocean biology, and the accompanying biogeochemistry, as well as the delivery of real-time and open-access data to scientists (doi:10.7491/MEMO.1).
The importance of planetary rotation period for ocean heat transport.
Cullum, J; Stevens, D; Joshi, M
2014-08-01
The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.
NASA Astrophysics Data System (ADS)
Pratik, Kad; Parekh, Anant; Karmakar, Ananya; Chowdary, Jasti S.; Gnanaseelan, C.
2018-05-01
The present study examines changes in the low-level summer monsoon circulation over the Arabian Sea and their impact on the ocean dynamics using reanalysis data. The study confirms intensification and northward migration of low-level jet during 1979 to 2015. Further during the study period, an increase in the Arabian Sea upper ocean heat content is found in spite of a decreasing trend in the net surface heat flux, indicating the possible role of ocean dynamics in the upper ocean warming. Increase in the anti-cyclonic wind stress curl associated with the change in the monsoon circulation induces downwelling over the central Arabian Sea, favoring upper ocean warming. The decreasing trend of southward Ekman transport, a mechanism transporting heat from the land-locked north Indian Ocean to southern latitudes, also supports increasing trend of the upper ocean heat content. To reinstate and quantify the role of changing monsoon circulation in increasing the heat content over the Arabian Sea, sensitivity experiment is carried out using ocean general circulation model. In this experiment, the model is forced by inter-annual momentum forcing while rest of the forcing is climatological. Experiment reveals that the changing monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport, which strongly endorses our hypothesis that changing ocean dynamics associated with low-level monsoon circulation is causing the increasing trend in the heat content of the Arabian Sea.
2013-12-24
channel flow using explicit filtering and dynamic mixed models, Physics of Fluids, (08 2012): 0. doi : 10.1063/1.4745007 Satbir Singh, Donghyun You...08 2013): 0. doi : 10.1016/j.ijheatfluidflow.2013.02.008 TOTAL: 2 Received Paper TOTAL: Number of Papers published in non peer-reviewed journals...coordinate xi Cartesian coordinates y Wall-normal coordinate z Cross-stream coordinate Greek Symbols α Angle of attack δ Dirac delta function; boundary
Crustal structure across the lateral edge of the Southern Tyrrhenian slab
NASA Astrophysics Data System (ADS)
Pio Lucente, Francesco; Piana Agostinetti, Nicola; Di Bona, Massimo; Govoni, Aladino; Bianchi, Irene
2015-04-01
In the southeastern corner of the Tyrrhenian basin, in the central Mediterranean Sea, a tight alignment of earthquakes along a well-defined Benioff zone reveals the presence of one of the narrowest active trenches worldwide, where one of the last fragments of the former Tethys ocean is consumed. Seismic tomography furnishes snapshot images of the present-day position and shape of this slab. Through receiver function analysis we investigate the layered structures overlying the slab. We compute receiver functions from the P-coda of teleseismic events at 13 temporary station deployed during the "Messina 1908-2008" research project (Margheriti, 2008), and operating for an average period of 15 months each. The crustal and uppermost mantle structure has been investigated using a trans-dimensional McMC algorithm developed by Piana Agostinetti and Malinverno (2010), obtaining a 1D S-wave velocity profile for each station. At three of the stations, operating for a longer period of time, the number and the azimuthal distribution of teleseisms allowed us to stack the RF data-set with back azimuth and to compute the harmonic expansion. The analysis of the back-azimuthal harmonics gave us insight on the presence of dipping interfaces and anisotropic layers at depth. The strike and the dip of interfaces and the anisotropic parameters have been quantified using the Neighbourhood Algorithm (Sambridge, 1999). Preliminary results highlight: (1) a neat differentiation of the isotropic S-wave velocity structure passing through the slab edge, from the tip of the Calabrian arc to the Peloritani Range, and (2) the presence of crustal complexities, such as dipping interfaces and anisotropic layers, both in the upper and lower crust. Margheriti, L. (2008), Understanding Crust Dynamics and Subduction in Southern Italy, Eos Trans. AGU, 89(25), 225-226, doi:10.1029/2008EO250002. Piana Agostinetti, N. and A. Malinverno (2010) Receiver Function inversion by trans-dimensional Monte Carlo sampling, Geophys. J. Int., 181(2) 858-872, doi: 10.1111/j.1365-246X.2010.04530.x Sambridge, M. (1999), Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space, Geophys. J. Int., 138, 479-494, doi:10.1046/j.1365-246X.1999.00876.x.
Direct observation of frequency modulated transcription in single cells using light activation
Larson, Daniel R; Fritzsch, Christoph; Sun, Liang; Meng, Xiuhau; Lawrence, David S; Singer, Robert H
2013-01-01
Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single steroid-responsive gene and follow dynamic synthesis of RNA from the activated locus. DOI: http://dx.doi.org/10.7554/eLife.00750.001 PMID:24069527
U.S. Geological Survey (USGS) Western Region: Alaska Coastal and Ocean Science
Holland-Bartels, Leslie
2009-01-01
The U.S. Geological Survey (USGS), a bureau of the Department of the Interior (DOI), is the Nation's largest water, earth, and biological science and mapping agency. The bureau's science strategy 'Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017' describes the USGS vision for its science in six integrated areas of societal concern: Understanding Ecosystems and Predicting Ecosystem Change; Climate Variability and Change; Energy and Minerals; Hazards, Risk, and Resilience; Environment and Wildlife in Human Health; and Water Census of the United States. USGS has three Regions that encompass nine geographic Areas. This fact sheet describes examples of USGS science conducted in coastal, nearshore terrestrial, and ocean environments in the Alaska Area.
Characterization and Modeling of Insect Swarms Using tools from Fluid Dynamics
2016-09-01
Scientific Reports, (01 2013): 1073 . doi: 10.1038/srep01073 James G. Puckett, Douglas H. Kelley, Nicholas T. Ouellette. Searching for effective...dynamics of laboratory insect swarms,” Sci. Rep. 3, 1073 (2013). [Ouellette et al. 2006] N. T. Ouellette, H. Xu, and E. Bodenschatz, “A quantitative
The Cirque du Soleil of Golgi membrane dynamics
2009-01-01
The role of lipid metabolic enzymes in Golgi membrane remodeling is a subject of intense interest. Now, in this issue, Schmidt and Brown (2009. J. Cell Biol. doi:10.1083/jcb.200904147) report that lysophosphatidic acid–specific acyltransferase, LPAAT3, contributes to Golgi membrane dynamics by suppressing tubule formation. PMID:19635838
The Cirque du Soleil of Golgi membrane dynamics.
Bankaitis, Vytas A
2009-07-27
The role of lipid metabolic enzymes in Golgi membrane remodeling is a subject of intense interest. Now, in this issue, Schmidt and Brown (2009. J. Cell Biol. doi:10.1083/jcb.200904147) report that lysophosphatidic acid-specific acyltransferase, LPAAT3, contributes to Golgi membrane dynamics by suppressing tubule formation.
Multiphase Dynamics of Magma Oceans
NASA Astrophysics Data System (ADS)
Boukaré, Charles-Edouard; Ricard, Yanick; Parmentier, Edgar M.
2017-04-01
Since the earliest study of the Apollo lunar samples, the magma ocean hypothesis has received increasing consideration for explaining the early evolution of terrestrial planets. Giant impacts seem to be able to melt significantly large planets at the end of their accretion. The evolution of the resulting magma ocean would set the initial conditions (thermal and compositionnal structure) for subsequent long-term solid-state planet dynamics. However, magma ocean dynamics remains poorly understood. The major challenge relies on understanding interactions between the physical properties of materials (e.g., viscosity (at liquid or solid state), buoyancy) and the complex dynamics of an extremely vigorously convecting system. Such complexities might be neglected in cases where liquidus/adiabat interactions and density stratification leads to stable situations. However, interesting possibilities arise when exploring magma ocean dynamics in other regime. In the case of the Earth, recent studies have shown that the liquidus might intersect the adiabat at mid-mantle depth and/or that solids might be buoyant at deep mantle conditions. These results require the consideration of more sophisticated scenarios. For instance, how does bottom-up crystallization look with buoyant crystals? To understand this complex dynamics, we develop a multiphase phase numerical code that can handle simultaneously phase change, the convection in each phase and in the slurry, as well as the compaction or decompaction of the two phases. Although our code can only run in a limited parameter range (Rayleigh number, viscosity contrast between phases, Prandlt number), it provides a rich dynamics that illustrates what could have happened. For a given liquidus/adiabat configuration and density contrast between melt and solid, we explore magma ocean scenarios by varying the relative timescales of three first order processes: solid-liquid separation, thermo-chemical convective motions and magma ocean cooling.
NASA Astrophysics Data System (ADS)
Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.
2015-04-01
In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted in phytoplankton biomass (i.e. chlorophyll a concentration) and size-based community composition (i.e. microphytoplankton, nanophytoplankton and picophytoplankton), using a~method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over five decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available in open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485.
Oceanic biogeochemical controls on global dynamics of persistent organic pollutants.
Dachs, Jordi; Lohmann, Rainer; Ockenden, Wendy A; Méjanelle, Laurence; Eisenreich, Steven J; Jones, Kevin C
2002-10-15
Understanding and quantifying the global dynamics and sinks of persistent organic pollutants (POPs) is important to assess their environmental impact and fate. Air-surface exchange processes, where temperature plays a central role in controlling volatilization and deposition, are of key importance in controlling global POP dynamics. The present study is an assessment of the role of oceanic biogeochemical processes, notably phytoplankton uptake and vertical fluxes of particles, on the global dynamics of POPs. Field measurements of atmospheric polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), and furans (PCDFs) are combined with remote sensing estimations of oceanic temperature, wind speed, and chlorophyll, to model the interactions between air-water exchange, phytoplankton uptake, and export of organic matter and POPs out of the mixed surface ocean layer. Deposition is enhanced in the mid-high latitudes and is driven by sinking marine particulate matter, rather than by a cold condensation effect. However, the relative contribution of the biological pump is a function of the physical-chemical properties of POPs. It is concluded that oceanic biogeochemical processes play a critical role in controlling the global dynamics and the ultimate sink of POPs.
NASA Astrophysics Data System (ADS)
Lewison, R. L.; Saumweber, W. J.; Erickson, A.; Martone, R. G.
2016-12-01
Dynamic ocean management, or management that uses near real-time data to guide the spatial distribution of commercial activities, is an emerging approach to balance ocean resource use and conservation. Employing a wide range of data types, dynamic ocean management in a fisheries context can be used to meet multiple objectives - managing target quota, bycatch reduction, and reducing interactions with species of conservation concern. There is a growing list of DOM applications currently in practice in fisheries around the world, yet the approach is new enough that both fishers and fisheries managers are unclear how DOM can be applied to their fishery. Here, we use the experience from dynamic ocean management applications that are currently in practice to address the commonly asked question "How can dynamic management approaches be implemented in a traditionally managed fishery?". Combining knowledge from the DOM participants with a review of regulatory frameworks and incentive structures, stakeholder participation, and technological requirements of DOM in practice, we identify ingredients that have supported successful implementation of this new management approach.
Crossing seas and occurrence of rogue waves
NASA Astrophysics Data System (ADS)
Bitner-Gregersen, Elzbieta; Toffoli, Alessandro
2017-04-01
The study is addressing crossing wave systems which may lead to formation of rogue waves. Onorato et al. (2006, 2010) have shown using the Nonlinear Schr?dringer (NLS) equations that the modulational instability and rogue waves can be triggered by a peculiar form of directional sea state, where two identical, crossing, narrow-banded random wave systems interact with each other. Such results have been underpinned by numerical simulations of the Euler equations solved with a Higher Order Spectral Method (HOSM) and experimental observations (Toffoli et al., 2011). They substantiate a dependence of the angle between the mean directions of propagation of the two crossing wave systems, with a maximum rogue wave probability for angles of approximately 40 degrees. Such an unusual sea state of two almost identical wave systems (approximately the same significant wave height and mean frequency) with high steepness and different directions was observed during the accident to the cruise ship Louis Majesty (Cavaleri et al. 2012). Occurrence of wind sea and swell having almost the same spectral period and significant wave height and crossing at the angle 40o < β < 60o has been investigated recently by Bitner-Gregersen and Toffoli (2014). The numerical simulations carried out by HOSM have shown that although directionality has an effect on the occurrence of extreme waves in crossing seas, rogue waves can occur not only for narrow-banded wave directional spreading but also broader spectral conditions. It seems that the most critical condition for occurrence of rogue waves in crossing seas is associated with energy and frequency of two wave systems while the angle between the wave systems and directional spreading will decide how large extreme waves will grow. The 40 degree angle and narrow-banded directional spreading seem to be generating the largest waves. The study shows that occurrence of rogue-prone crossing sea states is location specific, depending strongly on local characteristics of wave climate in a particular ocean region. These sea states have been observed in the North Atlantic as well as in the North and Norwegian Seas but only in low and intermediate wave conditions. They have not been found in a location off coast of Australia and Nigeria. There are some indications that in the future climate we may expect an increase number of occurrence of rogue-prone crossing sea states in some ocean regions An adopted partitioning procedure of a wave spectrum will impact the results. References Bitner-Gregersen, E.M. and Toffoli, A., 2014. Probability of occurrence of rogue sea states and consequences for design of marine structures. Special Issue of Ocean Dynamics, ISSN 1616-7341, 64(10), DOI 10.1007/s10236-014-0753-2. Cavaleri, L., Bertotti, L., Torrisi, L. Bitner-Gregersen, E., Serio, M. and Onorato, M., 2012. Rogue Waves in Crossing Seas: The Louis Majesty accident. J. Geophysical Research, 117, C00J10, doi:10.1029/2012JC007923 Onorato, M., A. Osborne, A. and M. Serio, 2006. Modulation instability in crossing sea states: A possible mechanism for the formation of freak waves. Phys. Rev. Lett., 96, 014503 Onorato M., Proment, D., Toffoli, A., 2010. Freak waves in crossing seas, European Physical Journal, 185, 45-55. Toffoli A., Bitner-Gregersen, E.M., Osborne, A. Serio, M., Monbaliu, J. , Onorato, M., 2011. Extreme waves in random crossing seas: Laboratory experiments and numerical simulations." Geophys. Res. Lett., 38(2011), L06605, doi: 10.1029/201.
NASA Astrophysics Data System (ADS)
Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.
2017-01-01
We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.
Mix or un-mix? Trace element segregation from a heterogeneous mantle, simulated.
NASA Astrophysics Data System (ADS)
Katz, R. F.; Keller, T.; Warren, J. M.; Manley, G.
2016-12-01
Incompatible trace-element concentrations vary in mid-ocean ridge lavas and melt inclusions by an order of magnitude or more, even in samples from the same location. This variability has been attributed to channelised melt flow [Spiegelman & Kelemen, 2003], which brings enriched, low-degree melts to the surface in relative isolation from depleted inter-channel melts. We re-examine this hypothesis using a new melting-column model that incorporates mantle volatiles [Keller & Katz 2016]. Volatiles cause a deeper onset of channelisation: their corrosivity is maximum at the base of the silicate melting regime. We consider how source heterogeneity and melt transport shape trace-element concentrations in basaltic lavas. We use both equilibrium and non-equilibrium formulations [Spiegelman 1996]. In particular, we evaluate the effect of melt transport on probability distributions of trace element concentration, comparing the inflow distribution in the mantle with the outflow distribution in the magma. Which features of melt transport preserve, erase or overprint input correlations between elements? To address this we consider various hypotheses about mantle heterogeneity, allowing for spatial structure in major components, volatiles and trace elements. Of interest are the roles of wavelength, amplitude, and correlation of heterogeneity fields. To investigate how different modes of melt transport affect input distributions, we compare melting models that produce either shallow or deep channelisation, or none at all.References:Keller & Katz (2016). The Role of Volatiles in Reactive Melt Transport in the Asthenosphere. Journal of Petrology, http://doi.org/10.1093/petrology/egw030. Spiegelman (1996). Geochemical consequences of melt transport in 2-D: The sensitivity of trace elements to mantle dynamics. Earth and Planetary Science Letters, 139, 115-132. Spiegelman & Kelemen (2003). Extreme chemical variability as a consequence of channelized melt transport. Geochemistry Geophysics Geosystems, http://doi.org/10.1029/2002GC000336
The self-consistent dynamic pole tide in non-global oceans
NASA Technical Reports Server (NTRS)
Dickman, S. R.
1988-01-01
The dynamic pole tide is determined by solving Laplace tide equations which take into account the presence of continents in oceans, oceanic self-gravitation and loading, and mantle elasticity. Dynamical effects are found to be only mild. It is shown that the dynamical pole tide contributes about one day more to the Chandler period than a static pole tide would, and dissipates wobble energy at a very weak rate. It is noted that, depending on the wobble period predicted for an oceanless elastic earth, mantle anelasticity at low frequencies may nevertheless contribute negligibly to the Chandler period.
Recent decadal trends in Iberian water vapour: GPS analysis and WRF process study
NASA Astrophysics Data System (ADS)
Miranda, Pedro M. A.; Nogueira, Miguel; Semedo, Alvaro; Benevides, Pedro; Catalao, Joao; Costa, Vera
2016-04-01
A 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. The same analysis with ERA-Interim reanalysis data, which was used to force the WRF simulations, does not reveal the same signal in PWV, and indeed correlates poorly with the GPS observations, indicating that the data assimilation process makes the water vapour data in reanalysis unusable for climate change purposes. The good correlation between the WRF simulated data and GPS observations allow for a detailed analysis of the processes involved in the evolution of the PWV field. Akcnowledgements: Study done within FCT Grant RECI/GEO-MET/0380/2012, financially supported by FCT Grant UID/ GEO/50019/2013-IDL Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http://dx.doi.org/10.3402/tellusa.v65i0.19245. Bakun et al (2010) Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems, Global Change Biology, doi: 10.1111/j.1365-2486.2009.02094.x Hoinka KP, Castro M (2003) The Iberian Peninsula thermal low. QJRMS, 129, 1491- 1511, doi: 10.1256/qj.01.189. Miranda et al (2013) Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Climate Dynamics, doi: 10.1007/s00382-012-1442-9.
2012-01-01
Medical Entomology, 49(4):813-824. 2012. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1603/ME11031 URL: http...importance as a disease vector of dengue and dengue hemorrhagic fever (Estrada-Franco and Craig 1995, Knudsen et al. 1996).Ae. albopictuswas solely...respon- sible from the outbreak of dengue fever in Hawaii during 2001 (Efßer et al. 2005). Ae. albopictus is also a potential vector of Venezuelan equine
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Xu, Peng; Xu, Tengfei
2017-01-01
An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.
The Importance of Planetary Rotation Period for Ocean Heat Transport
Stevens, D.; Joshi, M.
2014-01-01
Abstract The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier—the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability. Key Words: Exoplanet—Oceans—Rotation—Climate—Habitability. Astrobiology 14, 645–650. PMID:25041658
NASA Astrophysics Data System (ADS)
Dvornikov, Anton; Sein, Dmitry; Ryabchenko, Vladimir; Gorchakov, Victor; Pugalova, Svetlana
2015-04-01
This study is aimed at modelling the seasonal and inter-annual variability of sea-ice, ocean circulation and marine ecosystems in the Barents Sea in the modern period. Adequate description of marine ecosystems in the ice-covered seas crucially depends on the accuracy in determining of thicknesses of ice and snow on the sea surface which control penetrating photosynthetically active radiation under the ice. One of the few models of ice able to adequately reproduce the dynamics of sea ice is the sea ice model HELMI [1], containing 7 different categories of ice. This model has been imbedded into the Princeton Ocean Model. With this coupled model 2 runs for the period 1998-2007 were performed under different atmospheric forcing prescribed from NCEP/NCAR and ERA-40 archives. For prescribing conditions at the open boundary, all the necessary information about the horizontal velocity, level, temperature and salinity of the water, ice thickness and compactness was taken from the results of the global ocean general circulation model of the Max Planck Institute for Meteorology (Hamburg, Germany) MPIOM [2]. The resulting solution with NCEP forcing with a high accuracy simulates the seasonal and inter-annual variability of sea surface temperature (SST) estimated from MODIS data. The maximum difference between the calculated and satellite-derived SSTs (averaged over 4 selected areas of the Barents Sea) during the period 2000-2007 does not exceed 1.5 °C. Seasonal and inter-annual variations in the area of ice cover are also in good agreement with satellite-derived estimates. Pelagic ecosystem model developed in [3] has been coupled into the above hydrodynamic model and used to calculate the changes in the characteristics of marine ecosystems under NCEP forcing. Preliminarily the ecosystem model has been improved by introducing a parameterization of detritus deposition on the bottom and through the selection of optimal parameters for photosynthesis and zooplankton grazing, providing a solution having acceptable agreement with SeaWiFS estimates of surface chlorophyll "a" concentration. The solution for the period 1998-2007 correctly reproduces the start and end of vegetation period, and, with satisfactory accuracy, the level of the spring phytoplankton bloom, but systematically overestimates the SeaWiFS chlorophyll concentrations in the northern part of the sea and in the summer everywhere except for the southern part. According to the results, the region of phytoplankton blooming during the spring outbreak is bounded by the western boundary of the sea and the edge of solid ice. This work was supported by RFBR project № 13-05-00652 References 1. Haapala, J., Lönnroth, N., Stössel, A., 2005. A numerical study of open water formation in sea ice. J. Geophys. Res., V. 110(C9). P.1-17: doi: 10.1029/2003JC002200. 2. Gröger M., E. Maier-Reimer, U. Mikolajewicz, A. Moll, and D. Sein, 2013. NW European shelf under climate warming: implications for open ocean - shelf exchange, primary production, and carbon absorption. Biogeosciences, vol.10, 3767-3792, doi:10.5194/bg-10-3767-2013. 3. Anderson T.R., V. A. Ryabchenko; M. J. Fasham; V. A. Gorchakov. Denitrification in the Arabian Sea: A 3D ecosystem modeling study. Deep-Sea Research, Part I, V. 54, Issue 12, 2007, 2082-2119
Year Five of Southeast Atlantic Coastal Ocean Observing System (SEACOOS) Implementation
2007-12-15
137 total]. Alvera -Azcarate, A., A. Barth, J.M. Beckers, and R.H. Weisberg, 2007. Multivariate reconstruction of missing data in sea surface...temperature, chlorophyll and wind satellite fields. Jour. Geophys. Res., 112, C03008, doi: 10.1029/2006JC003660. Alvera -Azcarate, A., A. Barth, and R.H...A., J.-M. Beckers, A. Alvera -Azcarate, and R. H. Weisberg, 2007. Filtering inertia-gravity waves from the initial conditions of the linear shallow
Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin
2015-01-01
Host–parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors. DOI: http://dx.doi.org/10.7554/eLife.07616.001 PMID:26216042
NASA Astrophysics Data System (ADS)
Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.
2013-12-01
Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.
NASA Astrophysics Data System (ADS)
Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.
2017-12-01
Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.
Emergence of the Green’s Functions from Noise and Passive Acoustic Remote Sensing of Ocean Dynamics
2009-09-30
Acoustic Remote Sensing of Ocean Dynamics Oleg A. Godin CIRES/Univ. of Colorado and NOAA/OAR/Earth System Research Lab., R/PSD99, 325 Broadway...characterization of a time-varying ocean where ambient acoustic noise is utilized as a probing signal. • To develop a passive remote sensing technique for...inapplicable. 3. To quantify degradation of performance of passive remote sensing techniques due to ocean surface motion and other variations of underwater
(abstract) TOPEX/Poseidon: Four Years of Synoptic Oceanography
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng
1996-01-01
Exceeding all expectations of measurement precision and accuracy, the US/France TOPEX/Poseidon satellite mission is now in its 5th year. Returning more than 98 percent of the altimetric data, the measured global geocentric height of the sea surface has provided unprecedented opportunities to address a host of scientific problems ranging from the dynamics of ocean circulation to the distribution of internal tidal energy. Scientific highlights of this longest-running altimetric satellite mission include improvements in our understanding of the dynamics and thermodynamics of the large-scale ocean variability, such as, the properties of planetary waves; the energetics of basin-wide gyres; the heat budget of the ocean; and the ocean's response to wind forcing. For the first time, oceanographers have quantitative descriptions of a dynamic variable of the physical state of the global oceans available in near-real-time.
Effects of dynamic long-period ocean tides on changes in earth's rotation rate
NASA Technical Reports Server (NTRS)
Nam, Young; Dickman, S. R.
1990-01-01
As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the tide-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar tides are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of kappa by about 1 percent.
Multiscale modeling and simulation of microtubule-motor-protein assemblies
NASA Astrophysics Data System (ADS)
Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.
2015-12-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.
Multiscale modeling and simulation of microtubule-motor-protein assemblies.
Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J
2015-01-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.
Multiscale modeling and simulation of microtubule–motor-protein assemblies
Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.
2016-01-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729
Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki
2012-01-01
We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.
Collision and Break-off : Numerical models and surface observables
NASA Astrophysics Data System (ADS)
Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark
2013-04-01
The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary results in this area indicate the stress experienced by the overriding lithosphere changes through the collision and slab break-off process. This change is stress affects the topography, but also offers another observable for understanding collision zones. We relate our numerical model to Arabia-Eurasia collision which is thought to have begun around 35 Ma (Allen and Armstrong, 2008; Vincent et al., 2007). The post collision basin predicted by our numerical model can be associated with the Miocene carbonate deposits of the Qom formation (Morley et al., 2009). These Miocene carbonate deposits are found at approximately 200-300km from the suture zone and are stratigraphically "sandwiched" between terrestrial clastic sedimentary formations. The position of these deposits shows that they are intimately related with the collision process, and that this area of the overriding plate has dipped below sea level for about 10 Myrs during the Early Miocene. Another geographic area that offers possibility for observation of topography change produced during continental collision is the Italian Apennines. Here, slab detachment is proposed to have started around 30 Ma and a tear propagated north to south along Italy (Wortel, 2000). Van der Meulen et al., (1998) observed a period of basin formation followed by uplift using the sedimentary record. Migrating depocentres were interpreted as evidence of a slab tear propagating north to south. These depocentres are located on the overriding plate with the maximum observed depression around 100 km from the suture (Ascione et al., 2012). These observed depocentres could be analogous to the depressions observed in our numerical models. Allen, M. B. and Armstrong, H. A.: Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1-2), 52-58, doi:10.1016/j.palaeo.2008.04.021, 2008. Andrews, E. R. and Billen, M. I.: Rheologic controls on the dynamics of slab detachment, Tectonophysics, 464(1-4), 60-69, doi:10.1016/j.tecto.2007.09.004, 2009. Ascione, A., Ciarcia, S., Di Donato, V., Mazzoli, S. and Vitale, S.: The Pliocene-Quaternary wedge-top basins of southern Italy: an expression of propagating lateral slab tear beneath the Apennines, Basin Research, 24(4), 456-474, doi:10.1111/j.1365-2117.2011.00534.x, 2012. Bottrill, A. D., Van Hunen, J. and Allen, M. B.: Insight into collision zone dynamics from topography: numerical modelling results and observations, Solid Earth, 3(2), 387-399, doi:10.5194/se-3-387-2012, 2012. Gerya, T. V., Yuen, D. a. and Maresch, W. V.: Thermomechanical modelling of slab detachment, Earth and Planetary Science Letters, 226(1-2), 101-116, doi:10.1016/j.epsl.2004.07.022, 2004. Van Hunen, J. and Allen, M. B.: Continental collision and slab break-off: A comparison of 3-D numerical models with observations, Earth and Planetary Science Letters, 302(1-2), 27-37, doi:10.1016/j.epsl.2010.11.035, 2011. Van der Meulen, M. J., Meulenkamp, J. E. and Wortel, R.: Lateral shifts of Apenninic foredeep depocentres reflecting detachment of subducted lithosphere, Earth and Planetary Science Letters, 154(1-4), 203-219, doi:10.1016/S0012-821X(97)00166-0, 1998. Morley, C. K., Kongwung, B., Julapour, A. A., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K. and Kazemi, H.: Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area, Geosphere, 5(4), 325-362, doi:10.1130/GES00223.1, 2009. Vincent, S. J., Morton, A. C., Carter, A., Gibbs, S. and Barabadze, T. G.: Oligocene uplift of the Western Greater Caucasus: an effect of initial Arabia?Eurasia collision, Terra Nova, 19(2), 160-166, doi:10.1111/j.1365-3121.2007.00731.x, 2007. Wortel, M. J. R.: Subduction and Slab Detachment in the Mediterranean-Carpathian Region, Science, 290(5498), 1910-1917, doi:10.1126/science.290.5498.1910, 2000.
Earth and ocean dynamics program
NASA Technical Reports Server (NTRS)
Vonbun, F. O.
1976-01-01
The objectives and requirements of the Earth and Ocean Dynamics Programs are outlined along with major goals and experiments. Spaceborne as well as ground systems needed to accomplish program goals are listed and discussed along with program accomplishments.
Hydrology and circulation in the Algerian gyres
NASA Astrophysics Data System (ADS)
Mallil, Katia; Mortier, Laurent; Louanchi, Ferial; Testor, Pierre; Bosse, Anthony; Le Goff, Hervé; Schroeder, Kathrin; Margirier, Félix
2017-04-01
Introduction: The exploitation of data collected during the SOMBA-GE2014 cruise on the R/V Tethys II [1], combined with data from other sources, has allowed to firmly evidence two large scale cyclonic gyres in the East and West of the Algerian basin (already suggested in [2]) and to highlight the hydrological characteristics of these gyres. In particular, the differential warming of the deep waters of the gyres can be shown. Main results: East-West salinity and temperature sections across the Algerian basin for 2008, 2010 and 2014, reveal a clear hydrological separation of the water properties in the basin at around 4° W, especially in the intermediate layer: Waters in this layer are warmer and saltier in the eastern part. This difference in the hydrological properties results in a more pronounced double diffusion phenomenon shown by well defined staircases in the eastern part of the basin (or eastern gyre). A heating of about 0.04 °C/year of the deep waters is observed considering the period of (1980 to 2015) - respectively 0.048°C/year in the eastern gyre and 0.032°C/year in the western one. Indeed, the difference in the double diffusion phenomenon in the two gyres (which is an effective way of heat export to the deep ocean) could explain the difference in deep layer heating trends. References: [1] Mortier Laurent, Ait-Ameur Nadira, and Taillandier Vincent (2014), SOMBA GE cruise, RV Téthys II, http://dx.doi.org/10.17600/14007500 [2] Testor P., Send U., Gascard J.-C., Millot C., Taupier-Letage I., and Béranger K. (2005), The mean circulation of the southwestern Mediterranean Sea - the Algerian Gyres, J. Geophys. Res.,110, C11017, doi:10.1029/2004JC002861 [3] Borghini M., Bryden H., Schroeder K., Sparnocchia S., and Vetrano A. (2014), The Mediterranean is becoming saltier. Ocean Sci., 10, 693-700, doi: 10.1029/2004jc002861
High δ56Fe values in Samoan basalts
NASA Astrophysics Data System (ADS)
Konter, J. G.; Pietruszka, A. J.; Hanan, B. B.; Finlayson, V.
2014-12-01
Fe isotope fractionation spans ~0-0.4 permil in igneous systems, which cannot all be attributed to variable source compositions since peridotites barely overlap these compositions. Other processes may fractionate Fe isotopes such as variations in the degree of partial melting, magmatic differentiation, fluid addition related to the final stages of melt evolution, and kinetic fractionation related to diffusion. An important observation in igneous systems is the trend of increasing Fe isotope values against an index of magmatic fractionation (e.g. SiO2; [1]). The data strongly curve from δ56Fe >0.3 permil for SiO2 >70 wt% down to values around 0.09 permil from ~65 wt% down to 40 wt% SiO2 of basalts. However, ocean island basalts (OIBs) have a slightly larger δ56Fe variability than mid ocean ridge basalts (MORBs; [e.g. 2]). We present Fe isotope data on samples from the Samoan Islands (OIB) that have unusually high δ56Fe values for their SiO2 content. We rule out alteration by using fresh samples, and further test for the effects of magmatic processes on the δ56Fe values. In order to model the largest possible fractionation, unusually small degrees of melting with extreme fractionation factors are modeled with fractional crystallization of olivine alone, but such processing fails to fractionate the Fe isotopes to the observed values. Moreover, Samoan lavas likely also fractionated clinopyroxene, and its lower fractionation factor would limit the final δ56Fe value of the melt. We therefore suggest the mantle source of Samoan lavas must have had unusually high δ56Fe. However, there is no clear correlation with the highly radiogenic isotope signatures that reflect the unique source compositions of Samoa. Instead, increasing melt extraction correlates with lower δ56Fe values in peridotites assumed to be driven by the preference for the melt phase by heavy Fe3+, while high values may be related to metasomatism [3]. The latter would be in line with metasomatized xenoliths from Samoa [4]. [1] Heimann et al., 2008, doi:10.1016/j.gca.2008.06.009 [2] Teng et al., 2013, doi:10.1016/j.gca.2012.12.027 [3] Williams et al., 2004, doi: 10.1126/science.1095679 [4] Hauri et al., 1993, doi: 10.1038/365221a0
Ocean Tidal Dynamics and Dissipation in the Thick Shell Worlds
NASA Astrophysics Data System (ADS)
Hay, H.; Matsuyama, I.
2017-12-01
Tidal dissipation in the subsurface oceans of icy satellites has so far only been explored in the limit of a free-surface ocean or under the assumption of a thin ice shell. Here we consider ocean tides in the opposite limit, under the assumption of an infinitely rigid, immovable, ice shell. This assumption forces the surface displacement of the ocean to remain zero, and requires the solution of a pressure correction to ensure that the ocean is mass conserving (divergence-free) at all times. This work investigates the effect of an infinitely rigid lid on ocean dynamics and dissipation, focusing on implications for the thick shell worlds Ganymede and Callisto. We perform simulations using a modified version of the numerical model Ocean Dissipation in Icy Satellites (ODIS), solving the momentum equations for incompressible shallow water flow under a degree-2 tidal forcing. The velocity solution to the momentum equations is updated iteratively at each time-step using a pressure correction to guarantee mass conservation everywhere, following a standard solution procedure originally used in solving the incompressible Navier-Stokes equations. We reason that any model that investigates ocean dynamics beneath a global ice layer should be tested in the limit of an immovable ice shell and must yield solutions that exhibit divergence-free flow at all times.
Normative evidence accumulation in unpredictable environments
Glaze, Christopher M; Kable, Joseph W; Gold, Joshua I
2015-01-01
In our dynamic world, decisions about noisy stimuli can require temporal accumulation of evidence to identify steady signals, differentiation to detect unpredictable changes in those signals, or both. Normative models can account for learning in these environments but have not yet been applied to faster decision processes. We present a novel, normative formulation of adaptive learning models that forms decisions by acting as a leaky accumulator with non-absorbing bounds. These dynamics, derived for both discrete and continuous cases, depend on the expected rate of change of the statistics of the evidence and balance signal identification and change detection. We found that, for two different tasks, human subjects learned these expectations, albeit imperfectly, then used them to make decisions in accordance with the normative model. The results represent a unified, empirically supported account of decision-making in unpredictable environments that provides new insights into the expectation-driven dynamics of the underlying neural signals. DOI: http://dx.doi.org/10.7554/eLife.08825.001 PMID:26322383
Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael
2016-01-01
Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology. DOI: http://dx.doi.org/10.7554/eLife.19274.001 PMID:27801646
Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci
Noordermeer, Daan; Leleu, Marion; Schorderet, Patrick; Joye, Elisabeth; Chabaud, Fabienne; Duboule, Denis
2014-01-01
Hox genes are essential regulators of embryonic development. Their step-wise transcriptional activation follows their genomic topology and the various states of activation are subsequently memorized into domains of progressively overlapping gene products. We have analyzed the 3D chromatin organization of Hox clusters during their early activation in vivo, using high-resolution circular chromosome conformation capture. Initially, Hox clusters are organized as single chromatin compartments containing all genes and bivalent chromatin marks. Transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch autonomously from an inactive to an active compartment. These local 3D dynamics occur within a framework of constitutive interactions within the surrounding Topological Associated Domains, indicating that this regulation process is mostly cluster intrinsic. The step-wise progression in time is fixed at various body levels and thus can account for the chromatin architectures previously described at a later stage for different anterior to posterior levels. DOI: http://dx.doi.org/10.7554/eLife.02557.001 PMID:24843030
Mapping the dynamics of force transduction at cell–cell junctions of epithelial clusters
Ng, Mei Rosa; Besser, Achim; Brugge, Joan S; Danuser, Gaudenz
2014-01-01
Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both sub-cellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions. DOI: http://dx.doi.org/10.7554/eLife.03282.001 PMID:25479385
A dynamic mode of mitotic bookmarking by transcription factors
Teves, Sheila S; An, Luye; Hansen, Anders S; Xie, Liangqi; Darzacq, Xavier; Tjian, Robert
2016-01-01
During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking. DOI: http://dx.doi.org/10.7554/eLife.22280.001 PMID:27855781
Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana
Kawashima, Tomokazu; Maruyama, Daisuke; Shagirov, Murat; Li, Jing; Hamamura, Yuki; Yelagandula, Ramesh; Toyama, Yusuke; Berger, Frédéric
2014-01-01
In animals, microtubules and centrosomes direct the migration of gamete pronuclei for fertilization. By contrast, flowering plants have lost essential components of the centrosome, raising the question of how flowering plants control gamete nuclei migration during fertilization. Here, we use Arabidopsis thaliana to document a novel mechanism that regulates F-actin dynamics in the female gametes and is essential for fertilization. Live imaging shows that F-actin structures assist the male nucleus during its migration towards the female nucleus. We identify a female gamete-specific Rho-GTPase that regulates F-actin dynamics and further show that actin–myosin interactions are also involved in male gamete nucleus migration. Genetic analyses and imaging indicate that microtubules are dispensable for migration and fusion of male and female gamete nuclei. The innovation of a novel actin-based mechanism of fertilization during plant evolution might account for the complete loss of the centrosome in flowering plants. DOI: http://dx.doi.org/10.7554/eLife.04501.001 PMID:25303363
Microbial consortia at steady supply
Taillefumier, Thibaud; Posfai, Anna; Meir, Yigal; Wingreen, Ned S
2017-01-01
Metagenomics has revealed hundreds of species in almost all microbiota. In a few well-studied cases, microbial communities have been observed to coordinate their metabolic fluxes. In principle, microbes can divide tasks to reap the benefits of specialization, as in human economies. However, the benefits and stability of an economy of microbial specialists are far from obvious. Here, we physically model the population dynamics of microbes that compete for steadily supplied resources. Importantly, we explicitly model the metabolic fluxes yielding cellular biomass production under the constraint of a limited enzyme budget. We find that population dynamics generally leads to the coexistence of different metabolic types. We establish that these microbial consortia act as cartels, whereby population dynamics pins down resource concentrations at values for which no other strategy can invade. Finally, we propose that at steady supply, cartels of competing strategies automatically yield maximum biomass, thereby achieving a collective optimum. DOI: http://dx.doi.org/10.7554/eLife.22644.001 PMID:28473032
Hoijman, Esteban; Fargas, L; Blader, Patrick; Alsina, Berta
2017-01-01
Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI: http://dx.doi.org/10.7554/eLife.25543.001 PMID:28537554
Geyer, Elisabeth A; Burns, Alexander; Lalonde, Beth A; Ye, Xuecheng; Piedra, Felipe-Andres; Huffaker, Tim C; Rice, Luke M
2015-01-01
Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking. DOI: http://dx.doi.org/10.7554/eLife.10113.001 PMID:26439009
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing
2018-01-01
The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.
On the Interactions Between Planetary and Mesoscale Dynamics in the Oceans
NASA Astrophysics Data System (ADS)
Grooms, I.; Julien, K. A.; Fox-Kemper, B.
2011-12-01
Multiple-scales asymptotic methods are used to investigate the interaction of planetary and mesoscale dynamics in the oceans. We find three regimes. In the first, the slow, large-scale planetary flow sets up a baroclinically unstable background which leads to vigorous mesoscale eddy generation, but the eddy dynamics do not affect the planetary dynamics. In the second, the planetary flow feels the effects of the eddies, but appears to be unable to generate them. The first two regimes rely on horizontally isotropic large-scale dynamics. In the third regime, large-scale anisotropy, as exists for example in the Antarctic Circumpolar Current and in western boundary currents, allows the large-scale dynamics to both generate and respond to mesoscale eddies. We also discuss how the investigation may be brought to bear on the problem of parameterization of unresolved mesoscale dynamics in ocean general circulation models.
NASA Astrophysics Data System (ADS)
Young, Gillian; Jones, Hazel M.; Crosier, Jonathan; Bower, Keith N.; Darbyshire, Eoghan; Taylor, Jonathan W.; Liu, Dantong; Allan, James D.; Williams, Paul I.; Gallagher, Martin W.; Choularton, Thomas W.
2016-04-01
The Arctic sea-ice is intricately coupled to the atmosphere[1]. The decreasing sea-ice extent with the changing climate raises questions about how Arctic cloud structure will respond. Any effort to answer these questions is hindered by the scarcity of atmospheric observations in this region. Comprehensive cloud and aerosol measurements could allow for an improved understanding of the relationship between surface conditions and cloud structure; knowledge which could be key in validating weather model forecasts. Previous studies[2] have shown via remote sensing that cloudiness increases over the marginal ice zone (MIZ) and ocean with comparison to the sea-ice; however, to our knowledge, detailed in-situ data of this transition have not been previously presented. In 2013, the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign was carried out in the vicinity of Svalbard, Norway to collect in-situ observations of the Arctic atmosphere and investigate this issue. Fitted with a suite of remote sensing, cloud and aerosol instrumentation, the FAAM BAe-146 aircraft was used during the spring segment of the campaign (Mar-Apr 2013). One case study (23rd Mar 2013) produced excellent coverage of the atmospheric changes when transitioning from sea-ice, through the MIZ, to the open ocean. Clear microphysical changes were observed, with the cloud liquid-water content increasing by almost four times over the transition. Cloud base, depth and droplet number also increased, whilst ice number concentrations decreased slightly. The surface warmed by ~13 K from sea-ice to ocean, with minor differences in aerosol particle number (of sizes corresponding to Cloud Condensation Nuclei or Ice Nucleating Particles) observed, suggesting that the primary driver of these microphysical changes was the increased heat fluxes and induced turbulence from the warm ocean surface as expected. References: [1] Kapsch, M.L., Graversen, R.G. and Tjernström, M. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Clim. Change 3, 744-748, doi:10.1038/nclimate1884 (2013) [2] Palm, S. P., Strey, S. T., Spinhirne, J., and Markus, T.: Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. Journal of Geophysical Research (Atmospheres), 115, D21209, doi:10.1029/2010JD013900 (2010)
Exploring Earth's Atmospheric Biology using a Platform-Extensible Sampling Payload
NASA Astrophysics Data System (ADS)
Gentry, D.; Rothschild, L.
2012-12-01
The interactions between Earth's atmosphere and its biosphere, or aerobiology, remain a significant unknown. What few studies have been done conclusively show that Earth's atmosphere has a rich and dynamic microbial presence[Bowers et al., 2010]; that microbes suspended in air survive over long times (1-2 weeks)[Smith et al., 2010] and travel great distances (>5000 km)[Kellogg and Griffin, 2006]; that some airborne bacteria actively nucleate ice crystals, affecting meteorology[Delort et al., 2010]; and that the presence of microbes in the atmosphere has other planetary-scale effects[Delort et al., 2010]. Basic questions, however, such as the number of microbes present, their activity level and state, the different species present and their variance over time and space, remain largely unquantified. Compounding the significant physical and environmental challenges of reliable aerobiological sampling, collection and analysis of biological samples at altitudes above ~10-20 km has traditionally used ad hoc instrumentation and techniques, yielding primarily qualitative analytical results that lack a common basis for comparison[Bowers et al., 2010]. There is a strong need for broad-basis, repeatable, reliably comparable data about aerobiological basics. We describe here a high-altitude environmental and biological sampling project designed specifically to address these issues. The goal is a robust, reliable, re-usable sampling system, with open reproducibility and adaptability for multiple low-cost flight platforms (including ground-tethered systems, high-altitude balloons, and suborbital sounding rockets); by establishing a common modular payload structure for high-altitude sampling with appeal to a broad user base, we hope to encourage widespread collection of comparable aerobiological data. We are on our third prototype iteration, with demonstrated function of two sample capture modules, a support backbone (tracking, data logging, event response, etc.), a simple ground station, and a partially complete environmental sensing module. Successful deployments include ground sampling (Dec. 2011-ongoing, with biological and environmental data correlation) and instrument verification suborbital launches (Apr. 2012). Intensive calibration and characterization of the sampling modules is ongoing. Full three-module balloon flights are scheduled for Sep. 2012. References: Bowers, R. et al. (2010), Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments, The ISME Journal (2010), 1-12, doi:doi:10.1038/ismej.2010.167. Delort, A. M. et al. (2010), A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes, Atmospheric Research, 98249-260, doi:10.1016/j.atmosres.2010.07.004. Kellogg, C. A., and Griffin, D. W. (2006), Aerobiology and the global transport of desert dust, Trends in Ecology and Evolution, 21(11), 638-644, doi:10.1016/j.tree.2006.07.004. Smith, D. J. et al. (2010), Stratospheric microbiology at 20 km over the Pacific Ocean, Aerobiologia, 26(1), 35-46, doi:10.1007/s10453-009-9141-7.
Ocean Acidification from space: recent advances
NASA Astrophysics Data System (ADS)
Sabia, Roberto; Shutler, Jamie; Land, Peter; Fernandez-Prieto, Diego; Donlon, Craig; Reul, Nicolas
2017-04-01
The phenomenon referred to as Ocean Acidification (OA) is gathering increasing attention as one of the major foci of climate-related research, for its profound impact at scientific and socio-economic level. To date, the majority of the scientific studies into the potential impacts of OA have focused on in-situ measurements, laboratory-controlled experiments and models simulations. Satellite remote sensing technology have yet to be fully exploited, despite it has been stressed it could play a significant role by providing synoptic and frequent measurements for investigating globally OA processes, also extending in-situ carbonate chemistry measurements on different spatial/temporal scales [1,2]. Within this context, the purpose of the recently completed ESA "Pathfinders - Ocean Acidification" project was to quantitatively and routinely estimate OA-related parameters by means of a blending of satellite observations and model outputs in five case-study regions (global ocean, Amazon plume, Barents sea, Greater Caribbean and Bay of Bengal). Satellite Ocean Colour, Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) have been exploited, with an emphasis on the latter being the latest addition to the portfolio of satellite measured parameters. A proper merging of these different satellites products allows computing at least two independent proxies among the seawater carbonate system parameters: the partial pressure of CO2 in surface seawater (pCO2); the total Dissolved Inorganic Carbon (DIC), the total alkalinity (TA) and the surface ocean pH. In the project, efforts have been devoted to a systematic characterization of TA and DIC from space in the mentioned case-study regions; in this paper, also through the knowledge of these parameters, the objective is to come up with the currently best educated guess of the surface ocean pH [3] and Aragonite saturation state. This will also include an estimation of the achievable accuracy by propagating the errors in the satellite data sources. The overarching long-term objectives are to develop new algorithms and data processing strategies to overcome the relative immaturity of OA satellite products currently available, and to produce a global, temporally evolving, quasi-operational suite of OA satellite-derived data. References: [1] Land, P., J. Shutler, H. Findlay, F. Girard-Ardhuin, R. Sabia, N. Reul, J.-F. Piolle, B. Chapron, Y. Quilfen, J. Salisbury, D. Vandemark, R. Bellerby, and P. Bhadury, "Salinity from space unlocks satellite-based assessment of ocean acidification", Environmental Science & Technology, DOI: 10.1021/es504849s, Publication Date (Web): January 8, 2015 [2] Salisbury, J., D. Vandemark, B. Jönsson, W. Balch, S. Chakraborty, S. Lohrenz, B. Chapron, B. Hales, A. Mannino, J.T. Mathis, N. Reul, S.R. Signorini, R. Wanninkhof, and K.K. Yates. 2015. How can present and future satellite missions support scientific studies that address ocean acidification? Oceanography 28(2):108-121, http://dx.doi.org/10.5670/oceanog.2015.35. [3] Sabia R., D. Fernández-Prieto, J. Shutler, C. Donlon, P. Land, N. Reul, Remote Sensing of Surface Ocean pH Exploiting Sea Surface Salinity Satellite Observations, IGARSS '15 (International Geoscience and Remote Sensing Symposium), Milano, Italy, July 27 -31, 2015.
Sequential estimation and satellite data assimilation in meteorology and oceanography
NASA Technical Reports Server (NTRS)
Ghil, M.
1986-01-01
The central theme of this review article is the role that dynamics plays in estimating the state of the atmosphere and of the ocean from incomplete and noisy data. Objective analysis and inverse methods represent an attempt at relying mostly on the data and minimizing the role of dynamics in the estimation. Four-dimensional data assimilation tries to balance properly the roles of dynamical and observational information. Sequential estimation is presented as the proper framework for understanding this balance, and the Kalman filter as the ideal, optimal procedure for data assimilation. The optimal filter computes forecast error covariances of a given atmospheric or oceanic model exactly, and hence data assimilation should be closely connected with predictability studies. This connection is described, and consequences drawn for currently active areas of the atmospheric and oceanic sciences, namely, mesoscale meteorology, medium and long-range forecasting, and upper-ocean dynamics.
Osculating Keplerian Elements for Highly Non-Keplerian Orbits
2017-03-27
1.52133 2 McInnes, C. R., “The Existence and Stability of Families of Displacement Two-Body Orbits”, Celestial Mechanics and Dynamical Astronomy , Vol...j.actaastro.2011.08.012 5 Xu, M. and Xu, S., “Nonlinear dynamical analysis for displaced orbits above a planet”, Celestial Mechanics and Dynamical Astronomy ...Celestial Mechanics and Dynamical Astronomy , Vol. 110, No. 3, 2011, pp. 199-215. doi: 10.1007/s10569-011-9351-5 7 Macdonald, M., McKay, R. J., Vasile, M
NASA Astrophysics Data System (ADS)
Holt, A. F.; Royden, L.; Becker, T. W.; Faccenna, C.
2017-12-01
While it is well established that the slab pull of negatively buoyant oceanic plates is the primary driving force of plate tectonics, the dynamic "details" of subduction have proved difficult to pin down. We use the Philippine Sea Plate region of the western Pacific as a site to explore links between kinematic observables (e.g. topography and plate motions) and the dynamics of the subduction system (e.g. mantle flow, mantle pressure). To first order, the Philippine Sea Plate can be considered to be the central plate of a double slab system containing two slabs that dip in the same direction, to the west. This subduction configuration presents the opportunity to explore subduction dynamics in a setting where two closely spaced slabs interact via subduction-induced mantle flow and stresses transmitted through the intervening plate. We use a 3-D numerical approach (e.g. Holt et al., 2017), augmented by semi-analytical models (e.g. Jagoutz et al., 2017), to develop relationships between dynamic processes and kinematic properties, including plate velocities, lithospheric stress state, slab dip angles, and topography. When combined with subduction zone observables, this allows us to isolate the first order dynamic processes that are in operation in the Philippine Sea Plate region. Our results suggest that positive pressure build-up occurs in the asthenosphere between the two slabs (Izu-Bonin-Mariana and Ryukyu-Nankai), and that this is responsible for producing much of the observed kinematic variability in the region, including the steep dip of the Pacific slab at the Izu-Bonin-Mariana trench, as compared to the flat dip of the Pacific slab north of Japan. We then extend our understanding of the role of asthenospheric pressure to examine the forces responsible for the plate kinematics and dynamic topography of the entire Western Pacific subduction margin(s). References:Holt, A. F., Royden, L. H., Becker, T. W., 2017. Geophys. J. Int., 209, 250-265Jagoutz, O., Royden, L., Holt, A. F., Becker, T. W., 2015. Nature Geo., 8, doi:10.1038/ngeo2418
1997-09-30
research is multiscale , interdisciplinary and generic. The methods are applicable to an arbitrary region of the coastal and/or deep ocean and across the...dynamics. OBJECTIVES General objectives are: (I) To determine for the coastal and/or coupled deep ocean the multiscale processes which occur: i) in...Straits and the eastern basin; iii) extension and application of our balance of terms scheme (EVA) to multiscale , interdisciplinary fields with data
NASA Astrophysics Data System (ADS)
Talento, Stefanie; Barreiro, Marcelo
2018-03-01
This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño-Southern Oscillation, weakening its amplitude and low-frequency behaviour.
Year Five of Southeast Atlantic Coastal Ocean Observing System (SEACOOS) Implementation
2008-09-30
published or in press that acknowledge SEACOOS support (2003-2008) [137 total]. Alvera -Azcárate, A., A. Barth, J.M. Beckers, and R.H. Weisberg...C03008, doi:10.1029/2006JC003660. Alvera -Azcárate, A., A. Barth, and R.H. Weisberg, 2008. The surface circulation of the Caribbean Sea and the Gulf of...reef fishes on the continental shelf. Marine Technology Society Journal 39(2): 110-118. Barth, A., J.-M. Beckers, A. Alvera -Azcárate, and R. H
2011-02-16
Meleorol. Soc... 88 (8). 1197-121.1. 2007 . (DOI: 10.1175/ BAMS-88-8-1197) 4. GCOS Implementation Plan for the Global Observing System for Climate...21-25 September 2009, Hall, J.. Harrison 1) 1 and Stammer . D., Eds., ESA Publication WPP-306, 2010. 6. Le Traon, P.-Y.. and Co-Authors (2010...Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer , D., Eds., ESA Publication WPP
Swell and Sea in the Emerging Arctic Ocean
2014-01-01
exchanges of momentum, heat, and gases occur [Steele et al., 1989;Melville, 1996]. At the coasts, surface waves can force circulation and cause erosion...significant in forcing ice retreat [ Parkinson and Comiso, 2013], the waves asso- ciated with that storm were not modeled to be as large as the September storm...action at the Arctic coast, Geophys. Res. Lett., 38, L17503, doi:10.1029/2011GL048681. Parkinson , C. L., and J. C. Comiso (2013), On the 2012 record
2011-01-01
2008). Satellite tracking reveals distinct movement patterns for Type B and Type C killer whales in the southern Ross Sea, Antarctica. Polar Biology...Deakos, M. H., . . . Mahaffy, S. D. (2008). False killer whales (Pseudorca crassi- dens) around the main Hawaiian Islands: Long-term site fidelity...ern North Pacific false killer whales (Pseudorca crassi- dens). Canadian Journal of Zoology, 85, 783-794. http:// dx.doi.10.1139/Z07-059 Chivers, S. J
Atmospheric and Oceanic Processes in the Vicinity of an Island Strait
2011-03-01
the uniquely wind-driven origin of the Philippine dipole eddies. By contrast, in other volcanic island regions of the world (including the Hawaiian...Aristegui, and F. Herrera. 2000. Lee region of Gran Canaria . Journal of Geophysical Research 105(C7):17,173–17,193. Chang, C.-P., Z. Wang, and H...Gran Canaria ). Geophysical Research Letters 36, L14605, doi:10.1029/2008GL037010. Pullen, J., J.D. Doyle, P. May, C. Chavanne, P. Flament, and R.A
NASA Astrophysics Data System (ADS)
Lance, V. P.; DiGiacomo, P. M.; Ondrusek, M.; Stengel, E.; Soracco, M.; Wang, M.
2016-02-01
The NOAA/STAR ocean color program is focused on "end-to-end" production of high quality satellite ocean color products. In situ validation of satellite data is essential to produce the high quality, "fit for purpose" ocean color products that support users and applications in all NOAA line offices, as well as external (both applied and research) users. The first NOAA/OMAO (Office of Marine and Aviation Operations) sponsored research cruise dedicated to VIIRS SNPP validation was completed aboard the NOAA Ship Nancy Foster in November 2014. The goals and objectives of the 2014 cruise are highlighted in the recently published NOAA/NESDIS Technical Report. A second dedicated validation cruise is planned for December 2015 and will have been completed by the time of this meeting. The goals and objectives of the 2015 cruise will be discussed in the presentation. Participants and observations made will be reported. The NOAA Ocean Color Calibration/Validation (Cal/Val) team also works collaboratively with others programs. A recent collaboration with the NOAA Ocean Acidification program on the East Coast Ocean Acidification (ECOA) cruise during June-July 2015, where biogeochemical and optical measurements were made together, allows for the leveraging of in situ observations for satellite validation and for their use in the development of future ocean acidification satellite products. Datasets from these cruises will be formally archived at NOAA and Digital Object Identifier (DOI) numbers will be assigned. In addition, the NOAA Coast/OceanWatch Program is working to establish a searchable database. The beta version will begin with cruise data and additional in situ calibration/validation related data collected by the NOAA Ocean Color Cal/Val team members. A more comprehensive searchable NOAA database, with contributions from other NOAA ocean observation platforms and cruise collaborations is envisioned. Progress on these activities will be reported.
Epidemiological dynamics of Ebola outbreaks
House, Thomas
2014-01-01
Ebola is a deadly virus that causes frequent disease outbreaks in the human population. In this study, we analyse its rate of new introductions, case fatality ratio, and potential to spread from person to person. The analysis is performed for all completed outbreaks and for a scenario where these are augmented by a more severe outbreak of several thousand cases. The results show a fast rate of new outbreaks, a high case fatality ratio, and an effective reproductive ratio of just less than 1. DOI: http://dx.doi.org/10.7554/eLife.03908.001 PMID:25217532
Dynamic ocean management increases the efficiency and efficacy of fisheries management.
Dunn, Daniel C; Maxwell, Sara M; Boustany, Andre M; Halpin, Patrick N
2016-01-19
In response to the inherent dynamic nature of the oceans and continuing difficulty in managing ecosystem impacts of fisheries, interest in the concept of dynamic ocean management, or real-time management of ocean resources, has accelerated in the last several years. However, scientists have yet to quantitatively assess the efficiency of dynamic management over static management. Of particular interest is how scale influences effectiveness, both in terms of how it reflects underlying ecological processes and how this relates to potential efficiency gains. Here, we address the empirical evidence gap and further the ecological theory underpinning dynamic management. We illustrate, through the simulation of closures across a range of spatiotemporal scales, that dynamic ocean management can address previously intractable problems at scales associated with coactive and social patterns (e.g., competition, predation, niche partitioning, parasitism, and social aggregations). Furthermore, it can significantly improve the efficiency of management: as the resolution of the closures used increases (i.e., as the closures become more targeted), the percentage of target catch forgone or displaced decreases, the reduction ratio (bycatch/catch) increases, and the total time-area required to achieve the desired bycatch reduction decreases. In the scenario examined, coarser scale management measures (annual time-area closures and monthly full-fishery closures) would displace up to four to five times the target catch and require 100-200 times more square kilometer-days of closure than dynamic measures (grid-based closures and move-on rules). To achieve similar reductions in juvenile bycatch, the fishery would forgo or displace between USD 15-52 million in landings using a static approach over a dynamic management approach.
Dynamic Ocean Management Increases the Efficiency and Efficacy of Fisheries Management
NASA Astrophysics Data System (ADS)
Dunn, D. C.; Maxwell, S.; Boustany, A. M.; Halpin, P. N.
2016-12-01
In response to the inherent dynamic nature of the oceans and continuing difficulty in managing ecosystem impacts of fisheries, interest in the concept of dynamic ocean management, or real-time management of ocean resources, has accelerated in the last several years. However, scientists have yet to quantitatively assess the efficiency of dynamic management over static management. Of particular interest is how scale influences effectiveness, both in terms of how it reflects underlying ecological processes and how this relates to potential efficiency gains. In this presentation, we attempt to address both the empirical evidence gap and further the ecological theory underpinning dynamic management. We illustrate, through the simulation of closures across a range of spatiotemporal scales, that dynamic ocean management can address previously intractable problems at scales associated with coactive and social patterns (e.g., competition, predation, niche partitioning, parasitism and social aggregations). Further, it can significantly improve the efficiency of management: as the resolution of the individual closures used increases (i.e., as the closures become more targeted) the percent of target catch forgone or displaced decreases, the reduction ratio (bycatch/catch) increases, and the total time-area required to achieve the desired bycatch reduction decreases. The coarser management measures (annual time-area closures and monthly full fishery closures) affected up to 4-5x the target catch and required 100-200x the time-area of the dynamic measures (grid-based closures and move-on rules). To achieve similar reductions in juvenile bycatch, the fishery would forgo or displace between USD 15-52 million in landings using a static approach over a dynamic management approach.
Refinements on the inferred causative faults of the great 2012 Indian Ocean earthquakes
NASA Astrophysics Data System (ADS)
Revathy, P. M.; Rajendran, K.
2014-12-01
As the largest known intra-plate strike-slip events, the pair of 2012 earthquakes in the Wharton Basin is a rarity. Separated in time by 2 hours these events rouse interest also because of their short inter-event duration, complex rupture mechanism, and spatial-temporal proximity to the great 2004 Sumatra plate boundary earthquake. Reactivation of fossil ridge-transform pairs is a favoured mechanism for large oceanic plate earthquakes and their inherent geometry triggers earthquakes on conjugate fault systems, as observed previously in the Wharton Basin. The current debate is whether the ruptures occurred on the WNW-ESE paleo ridges or the NNE-SSW paleo transforms. Back-projection models give a complex rupture pattern that favours the WNW-ESE fault [1]. However, the static stress changes due to the 2004 Sumatra earthquake and 2005 Nias earthquake favour the N15°E fault [2]. We use the Teleseismic Body-Wave Inversion Program [3] and waveform data from Global Seismic Network, to obtain the best fit solutions using P and S-wave synthetic modelling. The preliminary P-wave analysis of both earthquakes gives source parameters that are consistent with the Harvard CMT solutions. The obtained slip distribution complies with the NNE-SSW transforms. Both these earthquakes triggered small tsunamis which appear as two distinctive pulses on 13 Indian Ocean tide gauges and buoys. Frequency spectra of the tsunami recordings from various azimuths provide additional constraint for the choice of the causative faults. References: [1] Yue, H., T. Lay, and K. D. Koper (2012), En echelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes, Nature, 490, 245-249, doi:10.1038/nature11492 [2] Delescluse, M., N. Chamot-Rooke, R. Cattin, L. Fleitout, O. Trubienko and C. Vigny April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust, Nature, 490(2012), pp. 240-244, doi:10.1038/nature11520 [3] M. Kikuchi and H. Kanamori, Note on Teleseismic Body-Wave Inversion Program, http://www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI/
Rolling Deck to Repository (R2R): Products and Services for the U.S. Research Fleet Community
NASA Astrophysics Data System (ADS)
Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Smith, S. R.; Stocks, K. I.
2016-02-01
The Rolling Deck to Repository (R2R) program is working to ensure open access to environmental sensor data routinely acquired by the U.S. academic research fleet. Currently 25 vessels deliver 7 TB/year of data to R2R from a suite of geophysical, oceanographic, meteorological, and navigational sensors on over 400 cruises worldwide. R2R ensures these data are preserved in trusted repositories, discoverable via standard protocols, and adequately documented for reuse. R2R has recently expanded to include the vessels Sikuliaq, operated by the University of Alaska; Falkor, operated by the Schmidt Ocean Institute; and Ronald H. Brown and Okeanos Explorer, operated by NOAA. R2R maintains a master catalog of U.S. research cruises, currently holding over 4,670 expeditions including vessel and cruise identifiers, start/end dates and ports, project titles and funding awards, science parties, dataset inventories with instrument types and file formats, data quality assessments, and links to related content at other repositories. Standard post-field cruise products are published including shiptrack navigation, near-real-time MET/TSG data, underway geophysical profiles, and CTD profiles. Software tools available to users include the R2R Event Logger and the R2R Nav Manager. A Digital Object Identifier (DOI) is published for each cruise, original field sensor dataset, standard post-field product, and document (e.g. cruise report) submitted by the science party. Scientists are linked to personal identifiers such as ORCIDs where available. Using standard identifiers such as DOIs and ORCIDs facilitates linking with journal publications and generation of citation metrics. R2R collaborates in the Ocean Data Interoperability Platform (ODIP) to strengthen links among regional and national data systems, populates U.S. cruises in the POGO global catalog, and is working toward membership in the DataONE alliance. It is a lead partner in the EarthCube GeoLink project, developing Semantic Web technologies to share data and documentation between repositories, and in the newly-launched EarthCube SeaView project, delivering data from R2R and other ocean data facilities to scientists using the Ocean Data View (ODV) software tool.
NASA Astrophysics Data System (ADS)
Sun, Liang; Li, Qiu-Yang
2017-04-01
The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for satellite-based observational data but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
Gagnon, Louis; Perdue, Katherine; Greve, Douglas N.; Goldenholz, Daniel; Kaskhedikar, Gayatri; Boas, David A.
2011-01-01
Diffuse Optical Imaging (DOI) allows the recovery of the hemodynamic response associated with evoked brain activity. The signal is contaminated with systemic physiological interference which occurs in the superficial layers of the head as well as in the brain tissue. The back-reflection geometry of the measurement makes the DOI signal strongly contaminated by systemic interference occurring in the superficial layers. A recent development has been the use of signals from small source-detector separation (1 cm) optodes as regressors. Since those additional measurements are mainly sensitive to superficial layers in adult humans, they help in removing the systemic interference present in longer separation measurements (3 cm). Encouraged by those findings, we developed a dynamic estimation procedure to remove global interference using small optode separations and to estimate simultaneously the hemodynamic response. The algorithm was tested by recovering a simulated synthetic hemodynamic response added over baseline DOI data acquired from 6 human subjects at rest. The performance of the algorithm was quantified by the Pearson R2 coefficient and the mean square error (MSE) between the recovered and the simulated hemodynamic responses. Our dynamic estimator was also compared with a static estimator and the traditional adaptive filtering method. We observed a significant improvement (two-tailed paired t-test, p < 0.05) in both HbO and HbR recovery using our Kalman filter dynamic estimator compared to the traditional adaptive filter, the static estimator and the standard GLM technique. PMID:21385616
Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations
NASA Astrophysics Data System (ADS)
Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.
2012-12-01
The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.
Stochastic analysis and modeling of abnormally large waves
NASA Astrophysics Data System (ADS)
Kuznetsov, Konstantin; Shamin, Roman; Yudin, Aleksandr
2016-04-01
In this work stochastics of amplitude characteristics of waves during the freak waves formation was estimated. Also amplitude characteristics of freak wave was modeling with the help of the developed Markov model on the basis of in-situ and numerical experiments. Simulation using the Markov model showed a great similarity of results of in-situ wave measurements[1], results of directly calculating the Euler equations[2] and stochastic modeling data. This work is supported by grant of Russian Foundation for Basic Research (RFBR) n°16-35-00526. 1. K. I. Kuznetsov, A. A. Kurkin, E. N. Pelinovsky and P. D. Kovalev Features of Wind Waves at the Southeastern Coast of Sakhalin according to Bottom Pressure Measurements //Izvestiya, Atmospheric and Oceanic Physics, 2014, Vol. 50, No. 2, pp. 213-220. DOI: 10.1134/S0001433814020066. 2. R.V. Shamin, V.E. Zakharov, A.I. Dyachenko. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y 3.E. N. Pelinovsky, K. I. Kuznetsov, J. Touboul, A. A. Kurkin Bottom pressure caused by passage of a solitary wave within the strongly nonlinear Green-Naghdi model //Doklady Physics, April 2015, Volume 60, Issue 4, pp 171-174. DOI: 10.1134/S1028335815040035
Stochastic Ocean Predictions with Dynamically-Orthogonal Primitive Equations
NASA Astrophysics Data System (ADS)
Subramani, D. N.; Haley, P., Jr.; Lermusiaux, P. F. J.
2017-12-01
The coastal ocean is a prime example of multiscale nonlinear fluid dynamics. Ocean fields in such regions are complex and intermittent with unstationary heterogeneous statistics. Due to the limited measurements, there are multiple sources of uncertainties, including the initial conditions, boundary conditions, forcing, parameters, and even the model parameterizations and equations themselves. For efficient and rigorous quantification and prediction of these uncertainities, the stochastic Dynamically Orthogonal (DO) PDEs for a primitive equation ocean modeling system with a nonlinear free-surface are derived and numerical schemes for their space-time integration are obtained. Detailed numerical studies with idealized-to-realistic regional ocean dynamics are completed. These include consistency checks for the numerical schemes and comparisons with ensemble realizations. As an illustrative example, we simulate the 4-d multiscale uncertainty in the Middle Atlantic/New York Bight region during the months of Jan to Mar 2017. To provide intitial conditions for the uncertainty subspace, uncertainties in the region were objectively analyzed using historical data. The DO primitive equations were subsequently integrated in space and time. The probability distribution function (pdf) of the ocean fields is compared to in-situ, remote sensing, and opportunity data collected during the coincident POSYDON experiment. Results show that our probabilistic predictions had skill and are 3- to 4- orders of magnitude faster than classic ensemble schemes.
A framework for using connectivity to measure and model water and sediment fluxes
NASA Astrophysics Data System (ADS)
Keessta, Saskia; Saco, Patricia; Nunes, Joao; Parsons, Tony; Poeppl, Ronny; Pereira, Paulo; Novara, Agata; Rodrigo Comino, Jesús; Jordán, Antonio; Masselink, Rens; Cerdà, Artemi
2017-04-01
For many years, scientists have tried to understand, describe and quantify water and sediment fluxes at multiple scales (Cerdà et al., 2013; Parsons et al., 2015; Poeppl et al., 2016; Masselink et al., 2016a; Rodrigo Comino et al., 2016). In the past two decades, a new concept called connectivity has been used by Earth Scientists as a means to describe and quantify the influences on the fluxes of water and sediment on different scales: aggregate, pedon, location on the slope, slope, watershed, and basin (Baartman et al., 2013; Parsons et al., 2015; López-Vicente et al., 2015; 2016; Masselink 2016b; Marchamalo et al., 2016; Mekonnen et al., 2016). A better understanding of connectivity can enhance our comprehension of landscape processes and provide a basis for the development of better measurement and modelling approaches, further leading to a better potential for implementing this concept as a management tool. Our research provides a short review of the State-of-the-Art of the connectivity concept, from which we conclude that scientists have been struggling to find a way to quantify connectivity so far. We adapt the knowledge of connectivity to better understand and quantify water and sediment transfers in catchment systems. First, we introduce a new approach to the concept of connectivity to study water and sediment transfers. In this approach water and sediment dynamics are divided in two parts: the system consists of phases and fluxes, each being separately measurable. This approach enables us to: i) better conceptualize our understanding of system dynamics at different timescales, including long timescales; ii) identify the main parameters driving system dynamics, and devise monitoring strategies which capture them; and, iii) build models with a holistic approach to simulate system dynamics without excessive complexity. Secondly, we discuss the role of system boundaries in designing measurement schemes and models. Natural systems have boundaries within which sediment connectivity varies between phases; in (semi-)arid regions these boundaries can be far apart in time due to extreme events. External disturbances (eg. climate change, changed land management) can change these boundaries. It is therefore important to consider the system state as a whole, including its boundaries and internal dynamics, when designing and implementing comprehensive monitoring and modelling approaches. Keywords: Connectivity, catchment systems, measuring and modelling approaches, co-evolution, management, boundary conditions, fire effects. Acknowledgements This research received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n_ 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Cerdà A, Brazier R, Nearing M, de Vente J. 2013. Scales and erosion. CATENA 102: 1-2. DOI: 10.1016/j.catena.2011.09.006 López-Vicente, M., E. Nadal-Romero, and E. L. H. Cammeraat. 2016. Hydrological Connectivity does Change Over 70 Years of Abandonment and Afforestation in the Spanish Pyrenees. Land Degradation and Development. doi:10.1002/ldr.2531. López-Vicente, M., L. Quijano, L. Palazón, L. Gaspar, and A. Navas. 2015. Assessment of Soil Redistribution at Catchment Scale by Coupling a Soil Erosion Model and a Sediment Connectivity Index (Central Spanish Pre-Pyrenees). Cuadernos De Investigacion Geografica 41 (1): 127-147. doi:10.18172/cig.2649. Marchamalo, M., J. M. Hooke, and P. J. Sandercock. 2016. Flow and Sediment Connectivity in Semi-Arid Landscapes in SE Spain: Patterns and Controls. Land Degradation and Development 27 (4): 1032-1044. doi:10.1002/ldr.2352. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD. 2016a. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes. DOI: 10.1002/hyp.10993 Masselink, R. J. H., S. D. Keesstra, A. J. A. M. Temme, M. Seeger, R. Giménez, and J. Casalí. 2016b. Modelling Discharge and Sediment Yield at Catchment Scale using Connectivity Components. Land Degradation and Development 27 (4): 933-945. doi:10.1002/ldr.2512. Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr catchment, north-west Ethiopia. Accepted to Land Degradation and Development. Parsons A.J., Bracken L., Peoppl , R., Wainwright J., Keesstra, S.D., 2015. Editorial: Introduction to special issue on connectivity in water and sediment dynamics. In press in Earth Surface Processes and Landforms. DOI: 10.1002/esp.3714 Parsons A.J., Bracken L., Peoppl , R., Wainwright J., Keesstra, S.D., 2015. Editorial: Introduction to special issue on connectivity in water and sediment dynamics. In press in Earth Surface Processes and Landforms. DOI: 10.1002/esp.3714 Poeppl, R.,E. Maroulis, J., Keesstra, S.D., 2016. Geomorphology. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. http://dx.doi.org/10.1016/j.geomorph.2016.07.033 Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keesstra, S.D., Prosdocimi, M., Brings, C., Marzen, M., Ramos, M.C., Senciales, J.M., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B., 2016. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of the Total Environment. In press DOI:10.1016/j.scitotenv.2016.05.163
Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere.
Sasaki, Hideharu; Klein, Patrice; Qiu, Bo; Sasai, Yoshikazu
2014-12-15
Ocean eddies (with a size of 100-300 km), ubiquitous in satellite observations, are known to represent about 80% of the total ocean kinetic energy. Recent studies have pointed out the unexpected role of smaller oceanic structures (with 1-50 km scales) in generating and sustaining these eddies. The interpretation proposed so far invokes the internal instability resulting from the large-scale interaction between upper and interior oceanic layers. Here we show, using a new high-resolution simulation of the realistic North Pacific Ocean, that ocean eddies are instead sustained by a different process that involves small-scale mixed-layer instabilities set up by large-scale atmospheric forcing in winter. This leads to a seasonal evolution of the eddy kinetic energy in a very large part of this ocean, with an amplitude varying by a factor almost equal to 2. Perspectives in terms of the impacts on climate dynamics and future satellite observational systems are briefly discussed.
Buttigieg, Pier Luigi; Fadeev, Eduard; Bienhold, Christina; Hehemann, Laura; Offre, Pierre; Boetius, Antje
2018-02-21
Microbial observation is of high relevance in assessing marine phenomena of scientific and societal concern including ocean productivity, harmful algal blooms, and pathogen exposure. However, we have yet to realise its potential to coherently and comprehensively report on global ocean status. The ability of satellites to monitor the distribution of phytoplankton has transformed our appreciation of microbes as the foundation of key ecosystem services; however, more in-depth understanding of microbial dynamics is needed to fully assess natural and anthropogenically induced variation in ocean ecosystems. While this first synthesis shows that notable efforts exist, vast regions such as the ocean depths, the open ocean, the polar oceans, and most of the Southern Hemisphere lack consistent observation. To secure a coordinated future for a global microbial observing system, existing long-term efforts must be better networked to generate shared bioindicators of the Global Ocean's state and health. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere
Sasaki, Hideharu; Klein, Patrice; Qiu, Bo; Sasai, Yoshikazu
2014-01-01
Ocean eddies (with a size of 100–300 km), ubiquitous in satellite observations, are known to represent about 80% of the total ocean kinetic energy. Recent studies have pointed out the unexpected role of smaller oceanic structures (with 1–50 km scales) in generating and sustaining these eddies. The interpretation proposed so far invokes the internal instability resulting from the large-scale interaction between upper and interior oceanic layers. Here we show, using a new high-resolution simulation of the realistic North Pacific Ocean, that ocean eddies are instead sustained by a different process that involves small-scale mixed-layer instabilities set up by large-scale atmospheric forcing in winter. This leads to a seasonal evolution of the eddy kinetic energy in a very large part of this ocean, with an amplitude varying by a factor almost equal to 2. Perspectives in terms of the impacts on climate dynamics and future satellite observational systems are briefly discussed. PMID:25501039
Numerical simulation of vertical transport and oxidation of methane in Arctic Ocean
NASA Astrophysics Data System (ADS)
Stepanenko, Victor; Iakovlev, Nikolai
2013-04-01
The high abundance of methane in shelf of East Siberian Arctic Seas (ESAS) has been a subject of a number of field studies (e.g. Shakhova et al., 2010). This experimental evidence provoked discussions on probable origins of that methane and possible feedbacks to modern climate change. For instance, the hypothesis of methane hydrates degradation under current ocean warming was tested recently in several modeling studies none of which supported this degradation to be significant feedback for climate change. Regardless the origin of methane the knowledge of its budget in the water column is important to link its bottom flux with emission to the atmosphere (and vice versa). It is frequently assumed that all methane released from a seabed of ESAS shelf reaches the atmosphere. When using ocean circulation models (Biastoch et al., 2011) this simplification is cancelled out but the vertical resolution of 3D models at the shelf (that is several tens meters deep) is not enough to accurately resolve turbulent transport of methane and other gases. Moreover, up the knowledge of authors none of the ocean models includes explicitly bubble transport of gases. These constrains motivate this study. In this study a high-resolution 1D single column ocean model is constructed to explicitly simulate the methane transport, oxidation and emission to the atmosphere. The model accounts for both vertical turbulent transport (using k-ɛ closure) and bubble transport of gases. The ground under the seabed is represented by multilayer heat and moisture transfer model, including methane hydrate evolution. It is forced by time series of atmospheric variables from NCEP reanalysis and horizontal advection terms taken from FEMAO-1 3D ocean model. The baseline simulation is performed for the period 1948-2011. The model is validated using temperature profiles measured at research vessels in ESAS. The annual cycle and multiyear variability of methane profiles in water are studied and compared to available in situ measurements. The components of methane budget in water column are calculated, and the ratio of bubble flux to turbulent one inter alia. A number of additional experiments are performed to assess the sensitivity of methane budget components to variation of uncertain parameters of the model (such as initial bubble radius). References 1) Shakhova, N., I.Semiletov, A.Salyuk, V.Yusupov, D.Kosmach, and Ö.Gustafsson. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science 5 March 2010: Vol. 327 no. 5970 pp. 1246-1250 DOI: 10.1126/science.1182221. 2) Biastoch, A., T. Treude, L. H. Rüpke, U. Riebesell, C. Roth, E. B. Burwicz, W. Park, M. Latif, C. W. Büning, G. Madec, and K. Wallmann. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, Vol. 38, L08602, doi:10.1029/2011GL047222,2011.
Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics
NASA Astrophysics Data System (ADS)
Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.
2018-01-01
Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.
Research activities of the Geodynamics Branch
NASA Technical Reports Server (NTRS)
Kahn, W. D. (Editor); Cohen, S. C. (Editor)
1984-01-01
A broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography are discussed. The NASA programs, include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX), and the Geopotential Research Mission (GRM). The papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.
Oceanic island biogeography through the lens of the general dynamic model: assessment and prospect.
Borregaard, Michael K; Amorim, Isabel R; Borges, Paulo A V; Cabral, Juliano S; Fernández-Palacios, José M; Field, Richard; Heaney, Lawrence R; Kreft, Holger; Matthews, Thomas J; Olesen, Jens M; Price, Jonathan; Rigal, Francois; Steinbauer, Manuel J; Triantis, Konstantinos A; Valente, Luis; Weigelt, Patrick; Whittaker, Robert J
2017-05-01
The general dynamic model of oceanic island biogeography (GDM) has added a new dimension to theoretical island biogeography in recognizing that geological processes are key drivers of the evolutionary processes of diversification and extinction within remote islands. It provides a dynamic and essentially non-equilibrium framework generating novel predictions for emergent diversity properties of oceanic islands and archipelagos. Its publication in 2008 coincided with, and spurred on, renewed attention to the dynamics of remote islands. We review progress, both in testing the GDM's predictions and in developing and enhancing ecological-evolutionary understanding of oceanic island systems through the lens of the GDM. In particular, we focus on four main themes: (i) macroecological tests using a space-for-time rationale; (ii) extensions of theory to islands following different patterns of ontogeny; (iii) the implications of GDM dynamics for lineage diversification and trait evolution; and (iv) the potential for downscaling GDM dynamics to local-scale ecological patterns and processes within islands. We also consider the implications of the GDM for understanding patterns of non-native species diversity. We demonstrate the vitality of the field of island biogeography by identifying a range of potentially productive lines for future research. © 2016 Cambridge Philosophical Society.
Relaxation spectra of binary blends: Extension of the Doi-Edwards theory
NASA Astrophysics Data System (ADS)
Tchesnokov, M. A.; Molenaar, J.; Slot, J. J. M.; Stepanyan, R.
2007-10-01
A molecular model is presented which allows the calculation of the stress relaxation function G for binary blends consisting of two monodisperse samples with arbitrary molecular weights. It extends the Doi-Edwards reptation theory (Doi M. and Edwards S. F., The Theory of Polymer Dynamics (Oxford Press, New York) 1986) to highly polydisperse melts by including constraint release (CR) and thermal fluctuations (CLF), yet making use of the same input parameters. The model reveals an explicit nonlinear dependence of CR frequency in the blend on the blend's molecular weight distribution (MWD). It provides an alternative way to quantify polydisperse systems compared to the widely used "double-reptation" theories. The results of the present model are in a good agreement with the experimental data given in Rubinstein M. and Colby R. H., J. Chem. Phys., 89 (1988) 5291.
Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies
NASA Astrophysics Data System (ADS)
Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj
2017-04-01
In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10.1175/JCLI-D-15-0746.1
NASA Astrophysics Data System (ADS)
Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey
2018-05-01
General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.
NASA Astrophysics Data System (ADS)
Lucas, A.; Sengupta, D.; D'Asaro, E. A.; Nash, J. D.; Shroyer, E.; Mahadevan, A.; Tandon, A.; MacKinnon, J. A.; Pinkel, R.
2016-02-01
The exchange of heat between the atmosphere and ocean depends sensitively on the structure and extent of the oceanic boundary layer. Heat fluxes into and out of the ocean in turn influence atmospheric processes, and, in the northern Indian Ocean, impact the dominant regional weather pattern (the southwest Monsoon). In late 2015, measurements of the physical structure of the oceanic boundary layer were collected from a pair of research vessels and an array of autonomous assets in the Bay of Bengal as part of an India-U.S. scientific collaboration. Repeated CTD casts by a specialized shipboard system to 200m with a repeat rate of <3 min and a lateral spacing of < 200m, as well as near-surface sampling acoustic current profilers, showed how on the edge of an oceanic mesoscale eddy, the interaction of the mesoscale strain field, Ekman dynamics, and nonlinear submesoscale processes acted to subduct relative saline water under a very thin layer of fresher water derived from riverine sources. Our detailed surveys of the front between the overriding thin, fresh layer, and subducting adjacent more saline water demonstrated the important of small-scale physical dynamics to frontal slumping and the resulting re-stratification processes. These processes were strongly 3-dimensional and time-dependent. Such dynamics ultimately influence air-sea interactions by creating strongly stratified and very thin oceanic boundary layers in the Bay of Bengal, and allow the development of strong, persistent subsurface temperature maxima.
Crustal control of dissipative ocean tides in Enceladus and other icy moons
NASA Astrophysics Data System (ADS)
Beuthe, Mikael
2016-12-01
Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.
Subsurface Ocean Tides in Enceladus and Other Icy Moons
NASA Astrophysics Data System (ADS)
Beuthe, M.
2016-12-01
Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.
Towards an estimation of water masses formation areas from SMOS-based TS diagrams
NASA Astrophysics Data System (ADS)
Klockmann, Marlene; Sabia, Roberto; Fernandez-Prieto, Diego; Donlon, Craig; Font, Jordi
2014-05-01
Temperature-Salinity (TS) diagrams emphasize the mutual variability of ocean temperature and salinity values, relating them to the corresponding density. Canonically used in oceanography, they provide a means to characterize and trace ocean water masses. In [1], a first attempt to estimate surface-layer TS diagrams based on satellite measurements has been performed, profiting from the recent availability of spaceborne salinity data. In fact, the Soil Moisture and Ocean Salinity (SMOS, [2]) and the Aquarius/SAC-D [3] satellite missions allow to study the dynamical patterns of Sea Surface Salinity (SSS) for the first time on a global scale. In [4], given SMOS and Aquarius salinity estimates, and by also using Sea Surface Temperature (SST) from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA, [5]) effort, experimental satellite-based TS diagrams have been routinely derived for the year 2011. They have been compared with those computed from ARGO-buoys interpolated fields, referring to a customised partition of the global ocean into seven regions, according to the water masses classification of [6]. In [7], moreover, besides using TS diagrams as a diagnostic tool to evaluate the temporal variation of SST and SSS (and their corresponding density) as estimated by satellite measurements, the emphasis was on the interpretation of the geographical deviations with respect to the ARGO baseline (aiming at distinguishing between the SSS retrieval errors and the additional information contained in the satellite data with respect to ARGO). In order to relate these mismatches to identifiable oceanographic structures and processes, additional satellite datasets of ocean currents, evaporation/precipitation fluxes, and wind speed have been super-imposed. Currently, the main focus of the study deals with the exploitation of these TS diagrams as a prognostic tool to derive water masses formation areas. Firstly, following the approach described in [8], the surface density flux (i.e., the change in density induced by surface heat and freshwater fluxes) is computed, characterizing how the buoyancy of a water parcel is being transformed, by increasing or decreasing its density. Afterwards, integrating over a certain time/space and deriving with respect to density, the formation (in Sv) of water masses themselves can be computed, pinpointing the range of SST and SSS in the TS diagrams where a specific water mass is formed. A geographical representation of these points, ultimately, allows to provide a relevant temporal series of the spatial extent of the water masses formation areas (in the specific test zones chosen). This can be then extended over challenging ocean regions, also evaluating the sensitivity of the performances to the datasets used. With this approach, known water masses can be identified and their formation traced in time and space. Longer time series will give further insights by helping to identify inter-annual water mass formation variability and trends in the TS/geographical domains. Future work aims at exploring additional datasets and at connecting the surface information to the vertical structure and to buoyancy-driven ocean circulation processes. References [1] Sabia, R., J. Ballabrera, G. Lagerloef, E. Bayler, M. Talone, Y. Chao, C. Donlon, D. Fernández-Prieto, J. Font, "Derivation of an Experimental Satellite-based T-S Diagram", In Proceedings of IGARSS '12 , Munich, Germany, pp. 5760-5763, 2012. [2] Font, J., A. Camps, A. Borges, M. Martín-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, and S. Mecklenburg, "SMOS: The challenging sea surface salinity measurement from space," Proceedings of the IEEE, vol. 98, pp. 649-665, 2010. [3] Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E.; "Aquarius and Remote Sensing of Sea Surface Salinity from Space," Proceedings of the IEEE , vol.98, no.5, pp.688-703, May 2010, doi: 10.1109/JPROC.2010.2040550. [4] Sabia, R., M. Klockmann, D. Fernández-Prieto, C. Donlon, E. Bayler, J. Font, G. Lagerloef, "Satellite-based T/S Diagrams and Surface Ocean Water Masses", SMOS-Aquarius Science Workshop, Brest, France, April 2013. [5] Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer, "The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA)", Remote Sensing of the Environment. doi: 10.1016/j.rse.2010.10.017 2011. [6] Emery, W. J., "Water Types and Water Masses", Ocean Circulation, Elsevier science, pp 1556-1567, 2003. [7] Sabia, R., M. Klockmann, C. Donlon, D. Fernández-Prieto, M. Talone, J. Ballabrera, "Satellite-based T-S Diagrams: a prospective diagnostic tool to trace ocean water masses", Living Planet Symposium 2013, Edinburgh, UK, September 2013. [8] Speer, K., E. Tzipermann, "Rates of Water Mass Transformation in the North Atlantic", Journal of Physical Oceanography, 22, 93 - 104, 1992.
The self-consistent dynamic pole tide in global oceans
NASA Technical Reports Server (NTRS)
Dickman, S. R.
1985-01-01
The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.
NASA Astrophysics Data System (ADS)
Carpi, Laura; Masoller, Cristina; Díaz-Guilera, Albert; Ravetti, Martín G.
2015-04-01
During the period between the mid-1990s and late 2000s Australia had suffered one of the worst droughts on record. Severe rainfall deficits affected great part of southeast Australia, causing widespread drought conditions and catastrophic bushfires. The "Millennium Drought", as it was called, was unusual in terms of its severity, duration and extent, leaving important environmental and financial damages. One of the most important drivers of Australia climate variability is the Indian Ocean dipole (IOD), that is a coupled ocean and atmosphere phenomenon in the equatorial Indian Ocean. The IOD is measured by an index (DMI) that is the difference between sea surface temperature (SST) anomalies in the western and eastern equatorial Indian Ocean. Its positive phase is characterized by lower than normal sea surface temperatures in the tropical eastern coast, and higher than normal in the tropical western Indian Ocean. Extreme positive IOD (pIOD) events are associated to severe droughts in countries located over the eastern Indian Ocean, and to severe floods in the western tropical ones. Recent research works projected that the frequency of extreme pIOD events will increase significantly over the twenty-first century and consequently, the frequency of extreme climate conditions in the zones affected by it. In this work we study the dynamics of the Indian Ocean for the period of 1979-2014, by using climate networks of skin temperature and humidity (reanalysis data). Annual networks are constructed by creating links when the Pearson correlation coefficient between two nodes is greater than a specific value. The distance distribution Pd(k), that indicates the fraction of pairs of nodes at distance k, is computed to characterize the dynamics of the network by using Information Theory quantifiers. We found a clear change in the Indian Ocean dynamics and an increment in the network's similarities quantified by the Jensen-Shannon divergence in the late 1990s. We speculate that these findings are capturing mean state changes within the Indian Ocean that result in the increase of extreme positive IOD frequency, among other unknown consequences. We show that the unusual characteristics of the Australian Millennium Drought is strongly associated with this new Indian Ocean dynamics showing its relevance in the Australia climate variability.
Inference of physical/biological dynamics from synthetic ocean colour images
NASA Technical Reports Server (NTRS)
Eert, J.; Holloway, G.; Gower, J. F. R.; Denman, K.; Abbott, M.
1987-01-01
High resolution numerical experiments with well resolved eddies are performed including advection of a biologically active plankton field. Shelf wave propagation and bottom topographic features are included. The resulting synthetic ocean color fields are examined for sensitivity to the (known) underlying physical dynamics.
NASA Astrophysics Data System (ADS)
Bondzio, J. H.; Morlighem, M.; Seroussi, H. L.
2017-12-01
Oceanic forcing is likely to have triggered the breakup of Jakobshavn Isbræ's floating ice tongue in the late 1990s, which led to ongoing dynamic changes such as widespread flow acceleration and mass loss. Our understanding of the link between ice dynamics, oceanic forcing, and calving is limited, yet crucial for prognostic simulations of Jakobshavn Isbræ. Here, we first reconstruct Jakobshavn's calving dynamics from 1985 to 2017, by relying on the model from Bondzio et al. 2017, but with a freely evolving ice front. We test different calving rate parameterizations implemented in the Ice Sheet System Model (ISSM) and determine the best law by comparing the modeled retreat to observations. We then identify the controls on calving rate and ice front retreat by varying the submarine melting rate and frontal melt rates as a function of subglacial water discharge and ocean thermal forcing. This sensitivity analysis is an important step toward performing prognostic simulations of JI and provides pathways for future data acquisition.
Persistent Identifiers for Field Deployments: A Missing Link in the Provenance Chain
NASA Astrophysics Data System (ADS)
Arko, R. A.; Ji, P.; Fils, D.; Shepherd, A.; Chandler, C. L.; Lehnert, K.
2016-12-01
Research in the geosciences is characterized by a wide range of complex and costly field deployments including oceanographic cruises, submersible dives, drilling expeditions, seismic networks, geodetic campaigns, moored arrays, aircraft flights, and satellite missions. Each deployment typically produces a mix of sensor and sample data, spanning a period from hours to decades, that ultimately yields a long tail of post-field products and publications. Publishing persistent, citable identifiers for field deployments will facilitate 1) preservation and reuse of the original field data, 2) reproducibility of the resulting publications, and 3) recognition for both the facilities that operate the platforms and the investigators who secure funding for the experiments. In the ocean domain, sharing unique identifiers for field deployments is a familiar practice. For example, the Biological and Chemical Oceanography Data Management Office (BCO-DMO) routinely links datasets to cruise identifiers published by the Rolling Deck to Repository (R2R) program. In recent years, facilities have started to publish formal/persistent identifiers, typically Digital Object Identifiers (DOIs), for field deployments including seismic networks, oceanographic cruises, and moored arrays. For example, the EarthChem Library (ECL) publishes a DOI for each dataset which, if it derived from an oceanographic research cruise on a US vessel, is linked to a DOI for the cruise published by R2R. Work is underway to create similar links for the IODP JOIDES Resolution Science Operator (JRSO) and the Continental Scientific Drilling Coordination Office (CSDCO). We present results and lessons learned including a draft schema for publishing field deployments as DataCite DOI records; current practice for linking these DOIs with related identifiers such as Open Researcher and Contributor IDs (ORCIDs), Open Funder Registry (OFR) codes, and International Geo Sample Numbers (IGSNs); and consideration of other identifier types for field deployments such as UUIDs and Handles.
A continuum model of transcriptional bursting
Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R
2016-01-01
Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676
Cascade of neural processing orchestrates cognitive control in human frontal cortex
Tang, Hanlin; Yu, Hsiang-Yu; Chou, Chien-Chen; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel
2016-01-01
Rapid and flexible interpretation of conflicting sensory inputs in the context of current goals is a critical component of cognitive control that is orchestrated by frontal cortex. The relative roles of distinct subregions within frontal cortex are poorly understood. To examine the dynamics underlying cognitive control across frontal regions, we took advantage of the spatiotemporal resolution of intracranial recordings in epilepsy patients while subjects resolved color-word conflict. We observed differential activity preceding the behavioral responses to conflict trials throughout frontal cortex; this activity was correlated with behavioral reaction times. These signals emerged first in anterior cingulate cortex (ACC) before dorsolateral prefrontal cortex (dlPFC), followed by medial frontal cortex (mFC) and then by orbitofrontal cortex (OFC). These results disassociate the frontal subregions based on their dynamics, and suggest a temporal hierarchy for cognitive control in human cortex. DOI: http://dx.doi.org/10.7554/eLife.12352.001 PMID:26888070
Kuzmanic, Antonija; Sutto, Ludovico; Saladino, Giorgio; Nebreda, Angel R; Gervasio, Francesco L; Orozco, Modesto
2017-01-01
p38α is a Ser/Thr protein kinase involved in a variety of cellular processes and pathological conditions, which makes it a promising pharmacological target. Although the activity of the enzyme is highly regulated, its molecular mechanism of activation remains largely unexplained, even after decades of research. By using state-of-the-art molecular dynamics simulations, we decipher the key elements of the complex molecular mechanism refined by evolution to allow for a fine tuning of p38α kinase activity. Our study describes for the first time the molecular effects of different regulators of the enzymatic activity, and provides an integrative picture of the activation mechanism that explains the seemingly contradictory X-ray and NMR data. DOI: http://dx.doi.org/10.7554/eLife.22175.001 PMID:28445123
The biological function of an insect antifreeze protein simulated by molecular dynamics
Kuiper, Michael J; Morton, Craig J; Abraham, Sneha E; Gray-Weale, Angus
2015-01-01
Antifreeze proteins (AFPs) protect certain cold-adapted organisms from freezing to death by selectively adsorbing to internal ice crystals and inhibiting ice propagation. The molecular details of AFP adsorption-inhibition is uncertain but is proposed to involve the Gibbs–Thomson effect. Here we show by using unbiased molecular dynamics simulations a protein structure-function mechanism for the spruce budworm Choristoneura fumiferana AFP, including stereo-specific binding and consequential melting and freezing inhibition. The protein binds indirectly to the prism ice face through a linear array of ordered water molecules that are structurally distinct from the ice. Mutation of the ice binding surface disrupts water-ordering and abolishes activity. The adsorption is virtually irreversible, and we confirm the ice growth inhibition is consistent with the Gibbs–Thomson law. DOI: http://dx.doi.org/10.7554/eLife.05142.001 PMID:25951514
Dyamical Systems Theory and Lagrangian Data Assimilation in 4D Geophysical Fluid Dynamics
The long-term goal of our project (known as OCEAN 3D +1) was to better understand and predict ocean circulation features that are fundamentally three...dimensional in space and that vary in time. In particular, we sought to quantify the dynamical processes that govern the formation , evolution, and...predictability of 3D +1 transport pathways in the ocean. Our approach was to develop algorithms to thoroughly analyze a hierarchy of model and
A theory for El Nino and the Southern Oscillation
NASA Technical Reports Server (NTRS)
Cane, M. A.; Zebiak, S. E.
1985-01-01
A coupled atmosphere-ocean model is presented for El Nino and the Southern Oscillation that reproduces its major features, including its recurrence at irregular intervals. The interannual El Nino-Southern Oscillation cycle is maintained by deterministic interactions in the tropical Pacific region. Ocean dynamics alter sea-surface temperature, changing the atmospheric heating; the resulting changes in surface wind alter the ocean dynamics. Annually varying mean conditions largely determine the spatial pattern and temporal evolution of El Nino events.
Effects of dynamic long-period ocean tides on changes in Earth's rotation rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Y.S.; Dickman, S.R.
1990-05-10
As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the authors define the zonal response function k of the solid earth-ocean system as the ratio, in the frequency domain, of the tidal change in Earth's rotation rate to the tide-generating potential. Amplitudes and phases of k for the monthly, fortnightly, and 9-day lunar tides are estimated from 2 1/2 years of very long baseline interferometry UTI observations (both 5-day and daily time series), corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988a,more » 1989a), the authors predict amplitudes and phases of k for an elastic earth-ocean system. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of k by about 1%. However, agreement with the observed k is best achieved for all three tides if the predicted tide amplitudes are combined with the much larger satellite-observed ocean tide phases; in these cases the dynamic tidal effects reduce k by up to 8%. Finally, comparison between the observed and predicted amplitudes of k implies that anelastic effects on Earth's rotation at periods less than fortnightly cannot exceed 2%.« less
A global reconstruction of climate-driven subdecadal water storage variability
NASA Astrophysics Data System (ADS)
Humphrey, V.; Gudmundsson, L.; Seneviratne, S. I.
2017-03-01
Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided unprecedented observations of global mass redistribution caused by hydrological processes. However, there are still few sources on pre-2002 global terrestrial water storage (TWS). Classical approaches to retrieve past TWS rely on either land surface models (LSMs) or basin-scale water balance calculations. Here we propose a new approach which statistically relates anomalies in atmospheric drivers to monthly GRACE anomalies. Gridded subdecadal TWS changes and time-dependent uncertainty intervals are reconstructed for the period 1985-2015. Comparisons with model results demonstrate the performance and robustness of the derived data set, which represents a new and valuable source for studying subdecadal TWS variability, closing the ocean/land water budgets and assessing GRACE uncertainties. At midpoint between GRACE observations and LSM simulations, the statistical approach provides TWS estimates (doi:
Extinction risk and conservation of the world’s sharks and rays
Dulvy, Nicholas K; Fowler, Sarah L; Musick, John A; Cavanagh, Rachel D; Kyne, Peter M; Harrison, Lucy R; Carlson, John K; Davidson, Lindsay NK; Fordham, Sonja V; Francis, Malcolm P; Pollock, Caroline M; Simpfendorfer, Colin A; Burgess, George H; Carpenter, Kent E; Compagno, Leonard JV; Ebert, David A; Gibson, Claudine; Heupel, Michelle R; Livingstone, Suzanne R; Sanciangco, Jonnell C; Stevens, John D; Valenti, Sarah; White, William T
2014-01-01
The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes—sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world’s ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery. DOI: http://dx.doi.org/10.7554/eLife.00590.001 PMID:24448405
Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish
Sørhus, Elin; Incardona, John P; Furmanek, Tomasz; Goetz, Giles W; Scholz, Nathaniel L; Meier, Sonnich; Edvardsen, Rolf B; Jentoft, Sissel
2017-01-01
Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes. DOI: http://dx.doi.org/10.7554/eLife.20707.001 PMID:28117666
Mazor, Yuval; Nataf, Daniel; Toporik, Hila; Nelson, Nathan
2014-01-01
Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems—photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSIPsaJF. PSIPsaJF is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSIPsaJF and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI: http://dx.doi.org/10.7554/eLife.01496.001 PMID:24473073
Mazor, Yuval; Nataf, Daniel; Toporik, Hila; Nelson, Nathan
2013-01-01
Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems-photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSI(PsaJF). PSI(PsaJF) is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSI(PsaJF) and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI: http://dx.doi.org/10.7554/eLife.01496.001.
Extinction risk and conservation of the world's sharks and rays.
Dulvy, Nicholas K; Fowler, Sarah L; Musick, John A; Cavanagh, Rachel D; Kyne, Peter M; Harrison, Lucy R; Carlson, John K; Davidson, Lindsay Nk; Fordham, Sonja V; Francis, Malcolm P; Pollock, Caroline M; Simpfendorfer, Colin A; Burgess, George H; Carpenter, Kent E; Compagno, Leonard Jv; Ebert, David A; Gibson, Claudine; Heupel, Michelle R; Livingstone, Suzanne R; Sanciangco, Jonnell C; Stevens, John D; Valenti, Sarah; White, William T
2014-01-01
The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes-sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world's ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery. DOI: http://dx.doi.org/10.7554/eLife.00590.001.
Dynamic constraints on CO2 uptake by an iron-fertilized Antarctic
NASA Technical Reports Server (NTRS)
Peng, Tsung-Hung; Broecker, Wallace S.; Oestlund, H. G.
1992-01-01
The topics covered include the following: tracer distribution and dynamics in the Antarctic Ocean; a model of Antarctic and Non-Antarctic Oceans; effects on an anthropogenically affected atmosphere; effects of seasonal iron fertilization; and implications of the South Atlantic Ventilation Experiment C-14 results.
Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Arnone, Robert; Jones, Brooke
2017-05-01
The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.
Exogenic and endogenic Europa minerals
NASA Astrophysics Data System (ADS)
Maynard-Casely, H. E.; Brand, H. E. A.; Wilson, S. A.
2016-12-01
The Galileo Near Infrared Mapping Spectrometer (NIMS) identified a significant `non-ice' component upon the surface of Jupiter's moon Europa. Current explanations invoke both endogenic and exogenic origins for this material. It has long been suggested that magnesium and sodium sulfate minerals could have leached from the rock below a putative ocean (endogenic) 1 and that sulfuric acid hydrate minerals could have been radiologically produced from ionised sulfur originally from Io's volcanoes (exogenic) 2. However, a more recent theory proposes that the `non-ice' component could be radiation damaged NaCl leached from Europa's speculative ocean 3. What if the minerals are actually from combination of both endogenic and exogenic sources? To investigate this possibility we have focused on discovering new minerals that might form in the combination of the latter two cases, that is a mixture of leached sulfates hydrates with radiologically produced sulfuric acid. To this end we have explored a number of solutions in the MgSO4-H2SO4-H2O and Na2SO4-H2SO4-H2O systems, between 80 and 280 K with synchrotron x-ray powder diffraction. We report a number of new materials formed in this these ternary systems. This suggests that it should be considered that the `non-ice' component of the Europa's surface could be a material derived from endogenic and exogenic components. 1 Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368-390 (1991). 2 Carlson, R. W., Anderson, M. S., Mehlman, R. & Johnson, R. E. Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus 177, 461-471, doi:10.1016/j.icarus.2005.03.026 (2005). 3 Hand, K. P. & Carlson, R. W. Europa's surface color suggests an ocean rich with sodium chloride. Geophysical Research Letters, 2015GL063559, doi:10.1002/2015gl063559 (2015).
NASA Astrophysics Data System (ADS)
Gorgas, Thomas; Conze, Ronald; Lorenz, Henning; Elger, Kirsten; Ulbricht, Damian; Wilkens, Roy; Lyle, Mitchell; Westerhold, Thomas; Drury, Anna Joy; Tian, Jun; Hahn, Annette
2017-04-01
Scientific ocean drilling over the past >40 years and corresponding efforts on land (by now for more than >20 years) has led to the accumulation of an enormous amount of valuable petrophysical, geochemical, biological and geophysical data obtained through laboratory and field experiments across a multitude of scale-and time dimensions. Such data can be utilized comprehensively in a holistic fashion, and thereby provide base toward an enhanced "Core-Log-Integration", modeling small-scale basin processes to large-scale Earth phenomena, while also storing and managing all relevant information in an "Open Access" fashion. Since the early 1990's members of our team have acquired and measured a large dataset of physical and geochemical properties representing both terrestrial and marine geological environments. This dataset cover a variety of both macro-to-microscale dimensions, and thereby allowing this type of interdisciplinary data examination. Over time, data management and processing tools have been developed and were recently merged with modern data publishing methods, which allow identifying and tracking data and associated publications in a trackable and concise manner. Our current presentation summarizes an important part of the value chain in geosciences, comprising: 1) The state-of-the-art in data management for continental and lake drilling projects performed with and through ICDP's Drilling Information System (DIS). 2) The CODD (Code for Ocean Drilling Data) as numerical-based, programmable data processing toolbox and applicable for both continental and marine drilling projects. 3) The implementation of Persistent Identifiers, such as the International Geo Sample Number (IGSN) to identify and track sample material as part of Digital-Object-Identifier (DOI)-tagged operation reports and research publications. 4) A list of contacts provided for scientists with an interest in learning and applying methods and techniques we offer in form of basic and advanced training courses at our respective research institutions and facilities around the world.
NASA Astrophysics Data System (ADS)
Verrier, Fanny; Leprêtre, Angélique; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; De Clarens, Philippe; Afonso Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline
2017-04-01
The study of South Mozambique passive margin is essential to understand its rifting evolution and better constrain kinematic reconstructions model of the Indian Ocean. MOZ3-5 oceanographic cruises (2016) is part of the PAMELA project (PAssive Margin Exploration LAboratory), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN. These campaigns allowed the acquisition of wide-angle and multichannel seismic data as well as high resolution bathymetric data, dredges, magnetic and gravimetric data. This work focuses on the deep structure of the northern segment of the Natal Valley which was investigated along a 300 km long E-W seismic transect cross-cutting the Almirante Leite volcanic ridge (MZ2 profile). The wide-angle data set is composed of 23 OBS (Ocean Bottom Seismometers) and 19 LSS (Land Seismic Station) spaced by about 12 km and 4-5 km respectively. Forward modelling of the wide-angle data led to a preliminary 2D P-waves velocity model revealing the sedimentary architecture, crustal and lithospherical structures and shallow high velocity material at the volcanic ridge. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along the profile MZ2, in order to discuss the sedimentary sequences, the geometry and nature of the crust (oceanic or continental) as well as structures associated with volcanism, and to better understand the margin's evolution. The post-doc of Fanny Verrier is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. Moulin, M., Aslanian, D., 2016. PAMELA-MOZ03 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16001600 Moulin, M., Evain, M., 2016. PAMELA-MOZ05 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16009500
NASA Astrophysics Data System (ADS)
O'Regan, M. A.; Jakobsson, M.; Kirchner, N.; Dowdeswell, J. A.; Hogan, K.
2010-12-01
The recent collection and analysis of multi-beam bathymetry data has revealed Mega-Scale Glacial Lineations (MSGL) in up to 600 m present water depth on the Yermak Plateau (Dowdeswell et al., 2010; Jakobsson et al., 2010). This evidence for large-scale ice grounding in the region supports previous interpretations from side-scan sonar, high-resolution subbottom and multi-channel seismic data. Detailed integration with regional subbottom data illustrates that the formation of the MSGL occurred in the late Quaternary, around MIS6. This event is distinct from a middle Quaternary ice grounding in the same region, that was first recognized by the transition into heavily overconsolidated sediments at ~20 mbsf at Ocean Drilling Program Site 910. While the middle Quaternary ice grounding left an easily recognizable imprint on the geotechnical properties of the sediments, the imprint from the late Quaternary event is far subtler, and not formerly recognized by analysis of sediments from Site 910. Furthermore, stratigraphic information indicates that neither event was associated with significant erosion, implying that the observed stress state of the sediments arose from ice-loading. Coupled with the orientation of the late Quaternary MSGL, the available evidence argues against an active ice-stream being responsible for their formation, and that they were more likely formed by a very large tabular iceberg traversing the ridge. This lends considerable support to the argument that MSGL-like features are not exclusively associated with fast flowing ice-streams. References Jakobsson, M., et al., An Arctic Ocean iceshelf during MIS 6 constrained by new geophysical and geological data. Quaternary Science Reviews (2010), doi:10.1016/j.quascirev.2010.03.015. Dowdeswell, J. A., et al., High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin: implications for ice-sheet grounding and deep-keeled icebergs. Quaternary Science Reviews (2010), doi:10.1016/j.quascirev.2010.06.002
State estimation improves prospects for ocean research
NASA Astrophysics Data System (ADS)
Stammer, Detlef; Wunsch, C.; Fukumori, I.; Marshall, J.
Rigorous global ocean state estimation methods can now be used to produce dynamically consistent time-varying model/data syntheses, the results of which are being used to study a variety of important scientific problems. Figure 1 shows a schematic of a complete ocean observing and synthesis system that includes global observations and state-of-the-art ocean general circulation models (OGCM) run on modern computer platforms. A global observing system is described in detail in Smith and Koblinsky [2001],and the present status of ocean modeling and anticipated improvements are addressed by Griffies et al. [2001]. Here, the focus is on the third component of state estimation: the synthesis of the observations and a model into a unified, dynamically consistent estimate.
Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L
2016-01-01
The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na+/K+ pump current to such bursting activity has not been well studied. We used monensin, a Na+/H+ antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs+. The decreased period could also occur if the pump was inhibited with strophanthidin or K+-free saline. Our monensin results were reproduced in model, which explains the pump’s contributions to bursting activity based on Na+ dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks. DOI: http://dx.doi.org/10.7554/eLife.19322.001 PMID:27588351
George, Joju; Soares, Cary; Montersino, Audrey; Beique, Jean-Claude; Thomas, Gareth M
2015-01-01
Precise regulation of the dendritic spine actin cytoskeleton is critical for neurodevelopment and neuronal plasticity, but how neurons spatially control actin dynamics is not well defined. Here, we identify direct palmitoylation of the actin regulator LIM kinase-1 (LIMK1) as a novel mechanism to control spine-specific actin dynamics. A conserved palmitoyl-motif is necessary and sufficient to target LIMK1 to spines and to anchor LIMK1 in spines. ShRNA knockdown/rescue experiments reveal that LIMK1 palmitoylation is essential for normal spine actin polymerization, for spine-specific structural plasticity and for long-term spine stability. Palmitoylation is critical for LIMK1 function because this modification not only controls LIMK1 targeting, but is also essential for LIMK1 activation by its membrane-localized upstream activator PAK. These novel roles for palmitoylation in the spatial control of actin dynamics and kinase signaling provide new insights into structural plasticity mechanisms and strengthen links between dendritic spine impairments and neuropathological conditions. DOI: http://dx.doi.org/10.7554/eLife.06327.001 PMID:25884247
Jang, Sumin; Choubey, Sandeep; Furchtgott, Leon; Zou, Ling-Nan; Doyle, Adele; Menon, Vilas; Loew, Ethan B; Krostag, Anne-Rachel; Martinez, Refugio A; Madisen, Linda; Levi, Boaz P; Ramanathan, Sharad
2017-01-01
The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development. DOI: http://dx.doi.org/10.7554/eLife.20487.001 PMID:28296635
Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering
Šmít, Daniel; Fouquet, Coralie; Pincet, Frédéric; Zapotocky, Martin; Trembleau, Alain
2017-01-01
While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation. DOI: http://dx.doi.org/10.7554/eLife.19907.001 PMID:28422009
ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology
De Col, Valentina; Fuchs, Philippe; Nietzel, Thomas; Elsässer, Marlene; Voon, Chia Pao; Candeo, Alessia; Seeliger, Ingo; Fricker, Mark D; Grefen, Christopher; Møller, Ian Max; Bassi, Andrea; Lim, Boon Leong; Zancani, Marco; Meyer, Andreas J; Costa, Alex; Wagner, Stephan; Schwarzländer, Markus
2017-01-01
Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA. We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria, and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be monitored in the living plant. DOI: http://dx.doi.org/10.7554/eLife.26770.001 PMID:28716182
Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François
2017-01-01
Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision. DOI: http://dx.doi.org/10.7554/eLife.25690.001 PMID:28749338
Lee, Wei-Hua; Higuchi, Hitoshi; Ikeda, Sakae; Macke, Erica L; Takimoto, Tetsuya; Pattnaik, Bikash R; Liu, Che; Chu, Li-Fang; Siepka, Sandra M; Krentz, Kathleen J; Rubinstein, C Dustin; Kalejta, Robert F; Thomson, James A; Mullins, Robert F; Takahashi, Joseph S; Pinto, Lawrence H; Ikeda, Akihiro
2016-01-01
While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases. DOI: http://dx.doi.org/10.7554/eLife.19264.001 PMID:27863209
Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps
Singharoy, Abhishek; Teo, Ivan; McGreevy, Ryan; Stone, John E; Zhao, Jianhua; Schulten, Klaus
2016-01-01
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services. DOI: http://dx.doi.org/10.7554/eLife.16105.001 PMID:27383269
Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M
2014-01-01
The M2-1 protein of human metapneumovirus (HMPV) is a zinc-binding transcription antiterminator which is highly conserved among pneumoviruses. We report the structure of tetrameric HMPV M2-1. Each protomer features a N-terminal zinc finger domain and an α-helical tetramerization motif forming a rigid unit, followed by a flexible linker and an α-helical core domain. The tetramer is asymmetric, three of the protomers exhibiting a closed conformation, and one an open conformation. Molecular dynamics simulations and SAXS demonstrate a dynamic equilibrium between open and closed conformations in solution. Structures of adenosine monophosphate- and DNA- bound M2-1 establish the role of the zinc finger domain in base-specific recognition of RNA. Binding to ‘gene end’ RNA sequences stabilized the closed conformation of M2-1 leading to a drastic shift in the conformational landscape of M2-1. We propose a model for recognition of gene end signals and discuss the implications of these findings for transcriptional regulation in pneumoviruses. DOI: http://dx.doi.org/10.7554/eLife.02674.001 PMID:24842877
Ankers, John M; Awais, Raheela; Jones, Nicholas A; Boyd, James; Ryan, Sheila; Adamson, Antony D; Harper, Claire V; Bridge, Lloyd; Spiller, David G; Jackson, Dean A; Paszek, Pawel; Sée, Violaine; White, Michael RH
2016-01-01
Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.10473.001 PMID:27185527
Dynamics of mTORC1 activation in response to amino acids
Manifava, Maria; Smith, Matthew; Rotondo, Sergio; Walker, Simon; Niewczas, Izabella; Zoncu, Roberto; Clark, Jonathan; Ktistakis, Nicholas T
2016-01-01
Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere. DOI: http://dx.doi.org/10.7554/eLife.19960.001 PMID:27725083
Doi-Peliti path integral methods for stochastic systems with partial exclusion
NASA Astrophysics Data System (ADS)
Greenman, Chris D.
2018-09-01
Doi-Peliti methods are developed for stochastic models with finite maximum occupation numbers per site. We provide a generalized framework for the different Fock spaces reported in the literature. Paragrassmannian techniques are then utilized to construct path integral formulations of factorial moments. We show that for many models of interest, a Magnus expansion is required to construct a suitable action, meaning actions containing a finite number of terms are not always feasible. However, for such systems, perturbative techniques are still viable, and for some examples, including carrying capacity population dynamics, and diffusion with partial exclusion, the expansions are exactly summable.
NASA Astrophysics Data System (ADS)
Cabot, Vincent; Vizcaino, Miren; Mikolajewicz, Uwe
2016-04-01
Long-term ice sheet and climate coupled simulations are of great interest since they assess how the Greenland Ice Sheet (GrIS) will respond to global warming and how GrIS changes will impact on the climate system. We have run the Max-Plank-Institute Earth System Model coupled with an Ice Sheet Model (SICOPOLIS) over a time period of 10500 years under two times CO2 forcing. This is a coupled atmosphere (ECHAM5T31), ocean (MPI-OM), dynamic vegetation (LPJ), and ice sheet (SICOPOLIS, 10 km horizontal resolution) model. Given the multi-millennia simulation, the horizontal spatial resolution of the atmospheric component is relatively coarse (3.75°). A time-saving technique (asynchronous coupling) is used once the global climate reaches quasi-equilibrium. In our doubling-CO2 simulation, the GrIS is expected to break up into two pieces (one ice cap in the far north on one ice sheet in the south and east) after 3000 years. During the first 500 simulation years, the GrIS climate and surface mass balance (SMB) are mainly affected by the greenhouse effect-forced climate change. After the simulated year 500, the global climate reaches quasi-equilibrium. Henceforth Greenland climate change is mainly due to ice sheet decay. GrIS albedo reduction enhances melt and acts as a powerful feedback for deglaciation. Due to increased cloudiness in the Arctic region as a result of global climate change, summer incoming shortwave radiation is substantially reduced over Greenland, reducing deglaciation rates. At the end of the simulation, Greenland becomes green with forest growing over the newly deglaciated regions. References: Helsen, M. M., van de Berg, W. J., van de Wal, R. S. W., van den Broeke, M. R., and Oerlemans, J. (2013), Coupled regional climate-ice-sheet simulation shows limited Greenland ice loss during the Eemian, Climate of the Past, 9, 1773-1788, doi: 10.5194/cp-9-1773-2013 Helsen, M. M., van de Wal, R. S. W., van den Broeke, M. R., van de Berg, W. J., and Oerlemans, J. (2015), Coupling of climate models and ice sheet models by the surface mass balance gradients: application to the Greenland Ice Sheet, The Cryosphere, 6, 255-272, doi: 10.5194/tc-6-255-2012 Robinson, A., Calov, R., and Ganopolski, A. (2011), Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial, Climate of the Past, 7, 381-396, doi: 10.5194/cp-7-381-2011 Vizcaino, M., Mikolajewicz, U., Ziemen, F., Rodehacke, C. B., Greve, R., and van den Broeke, M. R. (2015), Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300, Geophysical Research Letters, 42, doi: 10.1002/2014GL061142
North Atlantic explosive cyclones and large scale atmospheric variability modes
NASA Astrophysics Data System (ADS)
Liberato, Margarida L. R.
2015-04-01
Extreme windstorms are one of the major natural catastrophes in the extratropics, one of the most costly natural hazards in Europe and are responsible for substantial economic damages and even fatalities. During the last decades Europe witnessed major damage from winter storms such as Lothar (December 1999), Kyrill (January 2007), Klaus (January 2009), Xynthia (February 2010), Gong (January 2013) and Stephanie (February 2014) which exhibited uncommon characteristics. In fact, most of these storms crossed the Atlantic in direction of Europe experiencing an explosive development at unusual lower latitudes along the edge of the dominant North Atlantic storm track and reaching Iberia with an uncommon intensity (Liberato et al., 2011; 2013; Liberato 2014). Results show that the explosive cyclogenesis process of most of these storms at such low latitudes is driven by: (i) the southerly displacement of a very strong polar jet stream; and (ii) the presence of an atmospheric river (AR), that is, by a (sub)tropical moisture export over the western and central (sub)tropical Atlantic which converges into the cyclogenesis region and then moves along with the storm towards Iberia. Previous studies have pointed to a link between the North Atlantic Oscillation (NAO) and intense European windstorms. On the other hand, the NAO exerts a decisive control on the average latitudinal location of the jet stream over the North Atlantic basin (Woollings et al. 2010). In this work the link between North Atlantic explosive cyclogenesis, atmospheric rivers and large scale atmospheric variability modes is reviewed and discussed. Liberato MLR (2014) The 19 January 2013 windstorm over the north Atlantic: Large-scale dynamics and impacts on Iberia. Weather and Climate Extremes, 5-6, 16-28. doi: 10.1016/j.wace.2014.06.002 Liberato MRL, Pinto JG, Trigo IF, Trigo RM. (2011) Klaus - an exceptional winter storm over Northern Iberia and Southern France. Weather 66:330-334. doi:10.1002/wea.755 Liberato MLR, Pinto JG, Trigo RM, Ludwig P, Ordóñez P, Yuen D, Trigo IF (2013) Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat Hazards Earth Syst Sci 13:2239-2251. doi:10.5194/nhess-13-2239-2013 Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856-868, doi:10.1002/qj.625 Acknowledgements: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).
NASA Astrophysics Data System (ADS)
Moresi, Louis
2015-04-01
Dynamic Topography Revisited Dynamic topography is usually considered to be one of the trinity of contributing causes to the Earth's non-hydrostatic topography along with the long-term elastic strength of the lithosphere and isostatic responses to density anomalies within the lithosphere. Dynamic topography, thought of this way, is what is left over when other sources of support have been eliminated. An alternate and explicit definition of dynamic topography is that deflection of the surface which is attributable to creeping viscous flow. The problem with the first definition of dynamic topography is 1) that the lithosphere is almost certainly a visco-elastic / brittle layer with no absolute boundary between flowing and static regions, and 2) the lithosphere is, a thermal / compositional boundary layer in which some buoyancy is attributable to immutable, intrinsic density variations and some is due to thermal anomalies which are coupled to the flow. In each case, it is difficult to draw a sharp line between each contribution to the overall topography. The second definition of dynamic topography does seem cleaner / more precise but it suffers from the problem that it is not measurable in practice. On the other hand, this approach has resulted in a rich literature concerning the analysis of large scale geoid and topography and the relation to buoyancy and mechanical properties of the Earth [e.g. refs 1,2,3] In convection models with viscous, elastic, brittle rheology and compositional buoyancy, however, it is possible to examine how the surface topography (and geoid) are supported and how different ways of interpreting the "observable" fields introduce different biases. This is what we will do. References (a.k.a. homework) [1] Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313(6003), 541-545, doi:10.1038/313541a0. [2] Parsons, B., and S. Daly (1983), The relationship between surface topography, gravity anomalies, and temperature structure of convection, Journal of Geophysical Research: Solid Earth (1978-2012), 88(B2), 1129-1144, doi:10.1029/JB088iB02p01129. [3] Robinson, E. M., B. Parsons, and S. F. Daly (1987), The effect of a shallow low viscosity zone on the apparent compensation of mid-plate swells, Earth and Planetary Science Letters, 82(3-4), 335-348, doi:10.1016/0012-821X(87)90207-X.
Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change
NASA Astrophysics Data System (ADS)
Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.
2014-12-01
Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181
Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy
2016-08-25
life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an... quantum computer . DOI: 10.1103/PhysRevX.6.021028 Subject Areas: Condensed Matter Physics, Quantum Physics, Quantum Information I. INTRODUCTION Quantum ... computing hardware is affected by a substantial level of intrinsic noise and therefore naturally realizes dis- sipative quantum dynamics [1,2
2015-01-01
Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed. PMID:25945497
Cooley, Sarah R; Rheuban, Jennie E; Hart, Deborah R; Luu, Victoria; Glover, David M; Hare, Jonathan A; Doney, Scott C
2015-01-01
Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed.
Dynamics of a Snowball Earth ocean.
Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli
2013-03-07
Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.
2013-11-12
Dr. Paramsothy Jayakumar (586) 282-4896 Computational Dynamics Inc. 0 Name of Contractor Computational Dynamics Inc. (CDI) 1809...Dr. Paramsothy Jayakumar TARDEC Computational Dynamics Inc. 1 Project Summary This project aims at addressing and remedying the serious...Shabana, A.A., Jayakumar , P., and Letherwood, M., “Soil Models and Vehicle System Dynamics”, Applied Mechanics Reviews, Vol. 65(4), 2013, doi
Enceladus's ice shell thickness and ocean depth from gravity, topography, and libration measurements
NASA Astrophysics Data System (ADS)
Trinh, A.; Rivoldini, A.; Beuthe, M.; Rekier, J.; Baland, R. M.; Van Hoolst, T.
2017-12-01
One of Cassini's major achievements is the discovery of a global ocean a few kilometres beneath Enceladus's south polar terrain. Here we infer the thickness of Enceladus's ice shell and ocean from Cassini's observations using our latest models of isostatic compensation, shell libration, and ocean dynamics.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
The global distribution and dynamics of chromophoric dissolved organic matter.
Nelson, Norman B; Siegel, David A
2013-01-01
Chromophoric dissolved organic matter (CDOM) is a ubiquitous component of the open ocean dissolved matter pool, and is important owing to its influence on the optical properties of the water column, its role in photochemistry and photobiology, and its utility as a tracer of deep ocean biogeochemical processes and circulation. In this review, we discuss the global distribution and dynamics of CDOM in the ocean, concentrating on developments in the past 10 years and restricting our discussion to open ocean and deep ocean (below the main thermocline) environments. CDOM has been demonstrated to exert primary control on ocean color by its absorption of light energy, which matches or exceeds that of phytoplankton pigments in most cases. This has important implications for assessing the ocean biosphere via ocean color-based remote sensing and the evaluation of ocean photochemical and photobiological processes. The general distribution of CDOM in the global ocean is controlled by a balance between production (primarily microbial remineralization of organic matter) and photolysis, with vertical ventilation circulation playing an important role in transporting CDOM to and from intermediate water masses. Significant decadal-scale fluctuations in the abundance of global surface ocean CDOM have been observed using remote sensing, indicating a potentially important role for CDOM in ocean-climate connections through its impact on photochemistry and photobiology.
2010-05-01
F. J. Lermusiaux, “Adaptive modeling, adaptive data assimilation and adaptive sampling,” Physica D, vol. 230, pp. 172–196, 2007 . [9] T. P. Sapsis and...DOI: 10.1016/j.physd.2009.09.017. [10] P. F. J. Lermusiaux, P. Malanotte-Rizzoli, D. Stammer , J. Carton, J. Cummings, and A. M. Moore, “Progress and...Oceanography, vol. 20, pp. 156–167, 2007 . [12] C. Wunsch, The Ocean Circulation Inverse Problem. Cambridge, U.K.: Cambridge Univ. Press, 1996, ch. 3. [13] H
2012-02-01
et al. (2002), U-Th dating of marine isotope stage 7 in Bahamas slope sediments, Earth and Planetary Science Letters, 196(3-4), Pii S0012- 821x(01...and radioisotope studies, Earth Planet. Sci. Lett., 32(2), 420–429, doi:10.1016/ 0012-821X(76)90082-0. Krishnaswami, S., M. M. Sarin, and B. L. K...degree of Doctor of Philosophy ABSTRACT Radioactive isotopes can be used in paleoceanography both for dating samples and as tracers of ocean
2009-02-01
Evensen, G., 2003: The ensemble Kalman filter : Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–357, doi:10.1007/s10236-003...0036-9. ——, 2006: Data Assimilation: The Ensemble Kalman Filter . Springer, 288 pp. Fang, F., C. C. Pain, I. M. Navon, G. J. Gorman, M. D. Piggott, P. A...E. J. Kostelich, M. Corazza, E. Kalnay, and D. J. Patil, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428
2015-01-01
ventricular fibrillation and cardiopulmonary resuscitation . The second presentation will be summarized below. doi:10.1016/j.jcrc.2010.05.013 Neural dynamics...hemorrhagic shock, resuscitation , trauma, inhalation injury, apnea, and other critical states. This research serves as a test bed for discovery
The Occurrence of Tidal Hybrid Kelvin-Edge Waves in the Global Ocean
NASA Astrophysics Data System (ADS)
Kaur, H.; Buijsman, M. C.; Yankovsky, A. E.; Zhang, T.; Jeon, C. H.
2017-12-01
This study presents the analysis of hybrid Kelvin-edge waves on the continental shelves in a global ocean model. Our objective is to find areas where the transition occurs from Kelvin waves to hybrid Kelvin-edge waves. The change in continental shelf width may convert a Kelvin wave into a hybrid Kelvin-edge wave. In this process the group velocity reaches a minimum and tidal energy is radiated on and/or offshore [Zhang 2016]. We extract M2 SSH (Sea Surface Height) and velocity from the Hybrid Coordinate Ocean Model (HYCOM) and calculate barotropic energy fluxes. We analyze these three areas: the Bay of Biscay, the Amazon Shelf and North West Africa. In these three regions, the continental shelf widens in the propagation direction and the alongshore flux changes its direction towards the coast. A transect is taken at different points in these areas to compute the dispersion relations of the waves on the continental shelf. In model simulations, we change the bathymetry of the Bay of Biscay to study the behavior of the hybrid Kelvin-edge waves. BibliographyZhang, T., and A. E Yankovsky. (2016), On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves, J. Geophys. Res. Oceans, 121, 3058-3074, doi:10.1002/2015JC011617.
Classroom Demonstrations Of Atmosphere-ocean Dynamics: Baroclinic Instability
NASA Astrophysics Data System (ADS)
Aurnou, Jonathan; Nadiga, B. T.
2008-09-01
Here we will present simple hands-on experimental demonstrations that show how baroclinic instabilities develop in rotating fluid dynamical systems. Such instabilities are found in the Earth's oceans and atmosphere as well as in the atmospheres and oceans of planetary bodies throughout the solar system and beyond. Our inexpensive experimental apparatus consists of a vinyl-record player, a wide shallow pan, and a weighted, dyed block of ice. Most directly, these demonstrations can be used to explain winter-time atmospheric weather patterns observed in Earth's mid-latitudes.
NASA Astrophysics Data System (ADS)
Fredj, Erick; Kohut, Josh; Roarty, Hugh; Lai, Jian-Wu
2017-04-01
The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as over continental shelves and the adjacent deep ocean. A skill score described in detail by (Lui et.al. 2011) was applied to estimate the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. In contrast, the Lagrangian separation distance alone gives a misleading result. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian based probability density function may be estimated. The skill score assesses The Taiwan Ocean Radar Observing System (TOROS) performance. TOROS consists of 17 SeaSonde type radars around the Taiwan Island. The currents off Taiwan are significantly influenced by the nearby Kuroshio current. The main stream of the Kuroshio flows along the east coast of Taiwan to the north throughout the year. Sometimes its branch current also bypasses the south end of Taiwan and goes north along the west coast of Taiwan. The Kuroshio is also prone to seasonal change in its speed of flow, current capacity, distribution width, and depth. The evaluations of HF-Radar National Taiwanese network performance using Lagrangian drifter records demonstrated the high quality and robustness of TOROS HF-Radar data using a purely trajectory-based non-dimensional index. Yonggang Liu and Robert H. Weisberg, "Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation", Journal of Geophysical Research, Vol. 116, C09013, doi:10.1029/2010JC006837, 2011
NASA Astrophysics Data System (ADS)
Nick, F. M.; Vieli, A.; Pattyn, F.; Van de Wal, R.
2011-12-01
Oceanic forcing has been suggested as a major trigger for dynamic changes of Greenland outlet glaciers. Significant melting near their calving front or beneath the floating tongue and reduced support from sea ice or ice melange in front of their calving front can result in retreat of the terminus or the grounding line, and an increase in calving activities. Depending on the geometry and basal topography of the glacier, these oceanic forcing can affect the glacier dynamic differently. Here, we carry out a comparison study between three major outlet glaciers in Greenland and investigate the impact of a warmer ocean on glacier dynamics and ice discharge. We present results from a numerical ice-flow model applied to Petermann Glacier in the north, Jakobshavn Glacier in the west, and Helheim Glacier in the southeast of Greenland.
Seeing the oceans in the shadow of Bergen values.
Hamblin, Jacob Darwin
2014-06-01
Although oceanographers such as Roger Revelle are typically associated with key indicators of anthropogenic change, he and other scientists at midcentury had very different scientific priorities and ways of seeing the oceans. How can we join the narrative of the triumph of mathematical, dynamic oceanography with the environmental narrative? Dynamic methods entailed a broad set of values that touched the professional lives of marine scientists in a variety of disciplines all over the world, for better or for worse. The present essay highlights three aspects of "Bergen values" in need of greater exploration by scholars. First, how did the dominance of Scandinavian outlooks influence scientific questions across the broad spectrum of oceanography? Second, did oceanographers' particular means of making the oceans legible through instrumentation challenge their ability to perceive the oceans differently? Third, given the immense quantity of data, was the historical legacy of the dynamic oceanographers more descriptive than they imagined?
Oil Spill Hydrodynamics, from Droplets to Oil Slicks
NASA Astrophysics Data System (ADS)
Moghimi, S.; Restrepo, J. M.; Venkataramani, S.
2016-02-01
A fundamental challenge in proposing a model for the fate of oil in oceans relates to the extreme spatio-temporal scales required by hazard/abatement studies. We formulate a multiscale model that takes into account droplet dynamics and its effects on submerged and surface oil. The upscaling of the microphysics, within a mass conserving model, allows us to resolve oil mass exchanges between the oil found on the turbulent ocean surface and the ocean interior. In addition to presenting the model and the mutl-scale methodology we apply this upscaling to the evolution of oil on shelves and show how nearshore oil spills demonstrate dynamics that are not easily captured by oil models based on idealized tracer dynamics. In particular we demonstrate how oil can slow down and even park itself under certain oceanic conditions. An explanation for this phenomenon is proposed as well.
Mean Dynamic Topography of the Arctic Ocean
NASA Technical Reports Server (NTRS)
Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine
2012-01-01
ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.
NASA Technical Reports Server (NTRS)
Dickman, S. R.
1990-01-01
The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.
Seasonal Atmospheric and Oceanic Predictions
NASA Technical Reports Server (NTRS)
Roads, John; Rienecker, Michele (Technical Monitor)
2003-01-01
Several projects associated with dynamical, statistical, single column, and ocean models are presented. The projects include: 1) Regional Climate Modeling; 2) Statistical Downscaling; 3) Evaluation of SCM and NSIPP AGCM Results at the ARM Program Sites; and 4) Ocean Forecasts.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Clayson, C. A.
2012-01-01
Residual forcing necessary to close the MLTB on seasonal time scales are largest in regions of strongest surface heat flux forcing. Identifying the dominant source of error - surface heat flux error, mixed layer depth estimation, ocean dynamical forcing - remains a challenge in the eastern tropical oceans where ocean processes are very active. Improved sub-surface observations are necessary to better constrain errors. 1. Mixed layer depth evolution is critical to the seasonal evolution of mixed layer temperatures. It determines the inertia of the mixed layer, and scales the sensitivity of the MLTB to errors in surface heat flux and ocean dynamical forcing. This role produces timing impacts for errors in SST prediction. 2. Errors in the MLTB are larger than the historical 10Wm-2 target accuracy. In some regions, a larger accuracy can be tolerated if the goal is to resolve the seasonal SST cycle.
Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation
Zhang, Shaowei; Yu, Jiancheng; Zhang, Aiqun; Yang, Lei; Shu, Yeqiang
2012-01-01
The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results. PMID:22368475
USGS: Science to understand and forecast change in coastal ecosystems
Myers, M.
2007-01-01
The multidisciplinary approach of the US Geological Survey (USGS), a principal science agency of the US Department of the Interior (DOI), to address the complex and cumulative impacts of human activities and natural events on the US coastal ecosystems has been considered remarkable for understanding and forecasting the changes. The USGS helps explain geologic, hydrologic, and biologic systems and their connectivity across landscapes and seascapes along the coastline. The USGS coastal science programs effectively address science and information to other scientists, managers, policy makers, and the public. The USGS provides scientific expertise, capabilities, and services to collaborative federal, regional, and state-led efforts, which are in line with the goals of Ocean Action Plan (OAP) and Ocean Research Priorities Plan (ORPP). The organization is a leader in understanding terrestrial and marine environmental hazards such as earthquakes, tsunamis, floods, and landslides and assessing and forecasting coastal impacts using various specialized visualization techniques.
Coupled ocean-shelf ecosystem modelling of northern North Atlantic
NASA Astrophysics Data System (ADS)
Harle, J.; Holt, J. T.; Butenschön, M.; Allen, J. I.
2016-02-01
The biogeochemistry and ecosystems of the open-ocean and shelf seas are intimately connected. For example Northwest European continental shelf receives a substantial fraction of its nutrients from the wider North Atlantic and exports carbon at depth, sequestering it from atmospheric exchange. In the EC FP7 EuroBasin project (Holt et al 2014) we have developed a 1/12 degree basin-scale NEMO-ERSEM model with specific features relevant to shelf seas (e.g. tides and advanced vertical mixing schemes). This model is eddy resolving in the open-ocean, and resolves barotropic scales on-shelf. We use this model to explore the interaction between finely resolved physical processes and the ecosystem. Here we focus on shelf-sea processes and the connection between the shelf seas and open-ocean, and compare results with a 1/4 degree (eddy permitting) model that does not include shelf sea processes. We find tidal mixing fronts and river plume are well represented in the 1/12 degree model. Using approaches developed for the NW Shelf (Holt et al 2012), we provide estimates of across-shelf break nutrient fluxes to the seas surrounding this basin, and relate these fluxes and their interannual variability to the physical processes driving ocean-shelf exchange. Holt, J., et al, 2012. Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario. Biogeosciences 9, 97-117. Holt, J., et al, 2014. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to Fish and Coasts to Ocean. Progress in Oceanography doi:10.1016/j.pocean.2014.04.024.
NASA Technical Reports Server (NTRS)
Nese, Jon M.; Dutton, John A.
1993-01-01
The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model were determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (>1000 km) model chlorophyll seasonal distributions were statistically positively correlated with CZCS chlorophyll in 10 of 12 major oceanographic regions, and with SeaWiFS in all 12. Notable disparities in magnitudes occurred, however, in the tropical Pacific, the spring/summer bloom in the Antarctic, autumn in the northern high latitudes, and during the southwest monsoon in the North Indian Ocean. Synoptic scale (100-1000 km) comparisons of satellite and in situ data exhibited broad agreement, although occasional departures were apparent. Model nitrate distributions agreed with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicated that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on basin and synoptic scales.
Co-located ionospheric and geomagnetic disturbances caused by great earthquakes
NASA Astrophysics Data System (ADS)
Hao, Yongqiang; Zhang, Donghe; Xiao, Zuo
2016-07-01
Despite primary energy disturbances from the Sun, oscillations of the Earth surface due to a large earthquake will couple with the atmosphere and therefore the ionosphere, to generate so-called coseismic ionospheric disturbances (CIDs). In the cases of 2008 Wenchuan and 2011 Tohoku earthquakes, infrasonic waves accompanying the propagation of seismic Rayleigh waves were observed in the ionosphere by a combination of techniques, total electron content, HF Doppler, and ground magnetometer. This is the very first report to present CIDs recorded by different techniques at co-located sites and profiled with regard to changes of both ionospheric plasma and current (geomagnetic field) simultaneously. Comparison between the oceanic (2011 Tohoku) and inland (2008 Wenchuan) earthquakes revealed that the main directional lobe of latter case is more distinct which is perpendicular to the direction of the fault rupture. We argue that the different fault slip (inland or submarine) may affect the way of couplings of lithosphere with atmosphere. Zhao, B., and Y. Hao (2015), Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: A revisit, J. Geophys. Res., doi:10.1002/2015JA021035. Hao, Y. Q., et al. (2013), Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake, J. Geophys. Res., doi:10.1002/jgra.50326. Hao, Y. Q., et al. (2012), Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake, J. Geophys. Res., doi:10.1029/2011JA017036.
Steering of Upper Ocean Currents and Fronts by the Topographically Constrained Abyssal Circulation
2008-07-06
a) Mean surface dynamic height relative to 1000 m from version 2.5 of the Generalized Digital Environmental Model ( GDEM ) oceanic climatology, an...NLOM simulations in comparison to the mean surface dynamic height with respect to 1000 m from the Generalized Digital Environmental Model ( GDEM ...the Kuroshio pathway east of Japan, giving much better agreement with the pathway in the GDEM climatology. Dynamics of the topographic impact on
Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model
2012-06-01
atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and precipitation at the ocean...surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by temperature and salinity, the...days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning oceanic dynamical
NASA Astrophysics Data System (ADS)
Dygert, N. J.; Lin, J. F.; Marshall, E. W., IV; Kono, Y.; Gardner, J. E.
2016-12-01
The current paradigm argues the Moon formed after a giant impact that produced a deep lunar magma ocean (LMO). After a period of turbulent convection, the LMO experienced fractional crystallization, causing the initially peridotitic liquid to evolve to a plagioclase-saturated ferrobasalt. The lunar crust, much of which comprises 93-98% pure anorthosite [1,2], formed by flotation of positively buoyant plagioclase on the residual liquid. A flotation crust would contain some trapped melt; compaction of the melt out of the crust before solidification may be necessary to generate a very pure anorthitic crust. The efficiency of this process depends on the previously unmeasured viscosity of the residual liquid [3]. To characterize the viscosity and thermal equation of state of a late LMO liquid, we conducted experiments at the Advanced Photon Source, Beamline 16-BM-B, Argonne National Laboratory on a nominally anhydrous Ti-rich ferrobasalt [4]. X-ray radiography and diffuse scattering experiments were conducted in a Paris-Edinburgh apparatus in graphite-lined BN capsules, allowing in-situ observation of viscosity and derivation of thermal EoS at P-T conditions relevant to the Moon (1300-1600°C, 0.1-4.4GPa). We calculated viscosities of 0.23-1.45 Pa·s for the melt; based on 11 observations, we find that viscosity is pressure insensitive under the conditions explored. Viscosity can be modeled by an Arrhenius relation with an activation enthalpy of 66 kJ/mol. Composition-dependent predictive models [5] overestimate our observations by roughly a factor of 2. Preliminary analysis suggests no pressure-dependent structural transition over the conditions explored. Late LMO liquids brought to the lunar core-mantle boundary by cumulate mantle overturn may be positively buoyant, implying the seismically attenuating layer around the lunar core contains a denser, higher-Ti melt. Our results suggest that efficient phase segregation in the lunar magma ocean and compaction in the anorthositic flotation crust can produce a high-purity crust under physically reasonable conditions. [1] Warren (1990), AmMin 75, 46-58. [2] Ohtake et al. (2009), Nature 461, 236-240. [3] Piskorz, & Stevenson (2014), Icarus 239, 238-243. [4] Longhi (2003), JGR 108, doi:10.1029/2002JE001941. [5] Giordano et al. (2008), EPSL 271, 123-134.
Reducing uncertainty in Climate Response Time Scale by Bayesian Analysis of the 8.2 ka event
NASA Astrophysics Data System (ADS)
Lorenz, A.; Held, H.; Bauer, E.; Schneider von Deimling, T.
2009-04-01
We analyze the possibility of uncertainty reduction in Climate Response Time Scale by utilizing Greenland ice-core data that contain the 8.2 ka event within a Bayesian model-data intercomparison with the Earth system model of intermediate complexity, CLIMBER-2.3. Within a stochastic version of the model it has been possible to mimic the 8.2 ka event within a plausible experimental setting and with relatively good accuracy considering the timing of the event in comparison to other modeling exercises [1]. The simulation of the centennial cold event is effectively determined by the oceanic cooling rate which depends largely on the ocean diffusivity described by diffusion coefficients of relatively wide uncertainty ranges. The idea now is to discriminate between the different values of diffusivities according to their likelihood to rightly represent the duration of the 8.2 ka event and thus to exploit the paleo data to constrain uncertainty in model parameters in analogue to [2]. Implementing this inverse Bayesian Analysis with this model the technical difficulty arises to establish the related likelihood numerically in addition to the uncertain model parameters: While mainstream uncertainty analyses can assume a quasi-Gaussian shape of likelihood, with weather fluctuating around a long term mean, the 8.2 ka event as a highly nonlinear effect precludes such an a priori assumption. As a result of this study [3] the Bayesian Analysis showed a reduction of uncertainty in vertical ocean diffusivity parameters of factor 2 compared to prior knowledge. This learning effect on the model parameters is propagated to other model outputs of interest; e.g. the inverse ocean heat capacity, which is important for the dominant time scale of climate response to anthropogenic forcing which, in combination with climate sensitivity, strongly influences the climate systems reaction for the near- and medium-term future. 1 References [1] E. Bauer, A. Ganopolski, M. Montoya: Simulation of the cold climate event 8200 years ago by meltwater outburst from lake Agassiz. Paleoceanography 19:PA3014, (2004) [2] T. Schneider von Deimling, H. Held, A. Ganopolski, S. Rahmstorf, Climate sensitivity estimated from ensemble simulations of glacial climates, Climate Dynamics 27, 149-163, DOI 10.1007/s00382-006-0126-8 (2006). [3] A. Lorenz, Diploma Thesis, U Potsdam (2007).
Air-sea fluxes and satellite-based estimation of water masses formation
NASA Astrophysics Data System (ADS)
Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig
2015-04-01
Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal and monthly water mass formation rates for different SST and SSS ranges are presented. The formation peaks are remapped geographically, to analyze the extent of the formation area. Water mass formation derived from SMOS and OSTIA compares well with the results obtained from in-situ data, although slight differences in magnitude and peak location occur. Known water masses can then be identified. Ongoing/future work aims at extending this study along different avenues by: 1) expand systematically the spatial and temporal domain of the study to additional ocean basins and to the entire time period of available SSS observations from SMOS/Aquarius; 2) perform a thorough error propagation to assess how errors in satellite SSS and SST translate into errors in water masses formation rates and geographical areas extent; and 3) explore the different options to connect the surface information to the vertical buoyancy structure to assess potential density instability (e.g., Turner angle). References [1] Sabia, R., M. Klockmann, D. Fernández-Prieto, and C. Donlon (2014), A first estimation of SMOS-based ocean surface T-S diagrams, J. Geophys. Res. Oceans, 119, 7357-7371, doi:10.1002/2014JC010120. [2] Klockmann, M., R. Sabia, D. Fernández-Prieto, C. Donlon, J. Font; Towards an estimation of water masses formation areas from SMOS-based T-S diagrams; EGU general assembly 2014, April 27-May 2, 2014. [3] Klockmann, M., R. Sabia, D. Fernández-Prieto, C. Donlon, Linking satellite SSS and SST to water mass formation; Ocean salinity science and salinity remote sensing workshop, Exeter, UK, November 26-28, 2014. [4] Font, J., A. Camps, A. Borges, M. Martín-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, and S. Mecklenburg, "SMOS: The challenging sea surface salinity measurement from space," Proceedings of the IEEE, vol. 98, pp. 649-665, 2010. [5] Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E.; "Aquarius and Remote Sensing of Sea Surface Salinity from Space," Proceedings of the IEEE , vol.98, no.5, pp.688-703, May 2010, doi: 10.1109/JPROC.2010.2040550.
Anticipated Improvements to Net Surface Freshwater Fluxes from GPM
NASA Technical Reports Server (NTRS)
Smith, Eric A.
2005-01-01
Evaporation and precipitation over the oceans play very important roles in the global water cycle, upper-ocean heat budget, ocean dynamics, and coupled ocean-atmosphere dynamics. In the conventional representation of the terrestrial water cycle, the assumed role of the oceans is to act as near-infinite reservoirs of water with the main drivers of the water cycle being land- atmosphere interactions in which excess precipitation (P) over evaporation (E) is returned to the oceans as surface runoff and baseflow. Whereas this perspective is valid for short space and time scales -- fundamental principles, available observed estimates, and results from models indicate that the oceans play a far more important role in the large-scale water cycle at seasonal and longer timescales. Approximately 70-80% of the total global evaporation and precipitation occurs over oceans. Moreover, latent heat release into the atmosphere over the oceans is the major heat source driving global atmospheric circulations, with the moisture transported by circulations from oceans to continents being the major source of water precipitating over land. Notably, the major impediment in understanding and modeling the oceans role in the global water cycle is the lack of reliable net surface freshwater flux estimates (E - P fluxes) at the salient spatial and temporal resolutions, i.e., consistent coupled weekly to monthly E - P gridded datasets.
NASA Astrophysics Data System (ADS)
Pilet, S.; Buchs, D.; Cosca, M. A.; Baumgartner, P.
2011-12-01
Petrological studies play a significant role in the debate regarding the origin of intraplate magmas by providing unequivocal constraints about the source(s) composition and melting processes related to basalt formation. Two major hypotheses are currently in debate: first, intraplate magmas are produced at depth (i.e. within the asthenosphere) by low-degrees melting of an enriched peridotitic source in the presence of CO2 [1]; second, alkaline magmas are produced by the melting of metasomatic hydrous veins present within the lithospheric mantle [2]. If the existence of metasomatic veins in the continental lithospheric mantle is well documented, their existence and the mechanism of their formation in an oceanic setting are still mostly unconstrained. Here we report new petrological data demonstrating that metasomatic veins can be produced within the oceanic lithosphere by percolation and differentiation of low-degree melts initially located in the low velocity zone [3]. The existence of metasomatic veins in the oceanic lithosphere is documented by cpx xenocrysts in accreted basaltic sills from northern Costa Rica. New field observations, 40Ar-39Ar radiometric dating, biostratigraphic ages and geochemical analyses indicate that the sills represent a possible, ancient analogue of petit-spot volcanoes produced off Japan by oceanic plate flexure [4]. The cpx xenocrysts are interpreted as a relic of metasomatic veins based on their composition, which is similar to that of cpx from metasomatic veins observed in mantle outcrops and xenoliths. The major and trace element contents of the studied cpx xenocrysts indicate that they crystallized at high pressure in a differentiated liquid. This liquid represents the last stage of a fractional crystallization process that produced early anhydrous cumulates followed by later hydrous cumulates, a mechanism similar to that proposed by Harte et al. [5] for the formation of metasomatic veins in the continental lithosphere. Monte Carlo simulation of this process indicates that the differentiation of low degree melts can produce metasomatic cumulates with a mineralogical and chemical composition suitable to be a source for alkaline rocks observed in an oceanic setting [6]. The presence of low degree melts at the base of the lithosphere has been recently suggested to explain the occurrence of the ubiquitous low seismic velocity zone at the base of the oceanic lithosphere [3]. We propose that tectonic processes such as plate flexure [4] or/and small scale mantle convection [7] can allow these melts to percolate and differentiate across the lithosphere to form metasomatic cumulates (i.e. veins). Such cumulates are likely to represent a potential source of alkaline rocks observed in intraplate ocean volcanoes, especially those produced by low volumes of magma. [1] Dasgupta et al. (2007) J. of Petrol. 48, 2093; [2] Pilet et al. (2008) Science 320, 916; [3] Kawakatsu et al. (2009) Science 324, 499; [4] Hirano et al. (2006) Science 313, 1426 ; [5] Harte et al. (1993) Phil. Trans. Royal Soc. of London, Series A 342, 1; [6] Pilet et al. (2011) J. of Petrol. doi:10.1093/petrology/egr007; [7] Ballmer et al. (2009) G3 doi:10.1029/2009GC002386.
Swales, Henry; Banko, Richard; Coakley, David
2015-06-03
Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Test Rig Drawings and Bill of Materials. This submission contains information on the equipment for the scaled model tow tank testing. The information includes hardware, test protocols, and plans.
Models for ecological models: Ocean primary productivity
Wikle, Christopher K.; Leeds, William B.; Hooten, Mevin B.
2016-01-01
The ocean accounts for more than 70% of planet Earth's surface, and it processes are critically important to marine and terrestrial life. Ocean ecosystems are strongly dependent on the physical state of the ocean (e.g., transports, mixing, upwelling, runoff, and ice dynamics(. As an example, consider the Coastal Gulf of Alaska (CGOA) region.
Proceedings of the Geodesy/Solid Earth and Ocean Physics (GEOP) Research Conferences
NASA Technical Reports Server (NTRS)
Mueller, I. I. (Editor)
1975-01-01
Papers are presented dealing with interdisciplinary research in the fields of geodesy, solid earth and ocean physics. Topics discussed include: solid earth and ocean tides; the rotation of the earth and polar motion; vertical crustal motions; the geoid and ocean surface; earthquake mechanism; sea level changes; and lunar dynamics.
Search strategy in a complex and dynamic environment (the Indian Ocean case)
NASA Astrophysics Data System (ADS)
Loire, Sophie; Arbabi, Hassan; Clary, Patrick; Ivic, Stefan; Crnjaric-Zic, Nelida; Macesic, Senka; Crnkovic, Bojan; Mezic, Igor; UCSB Team; Rijeka Team
2014-11-01
The disappearance of Malaysia Airlines Flight 370 (MH370) in the early morning hours of 8 March 2014 has exposed the disconcerting lack of efficient methods for identifying where to look and how to look for missing objects in a complex and dynamic environment. The search area for plane debris is a remote part of the Indian Ocean. Searches, of the lawnmower type, have been unsuccessful so far. Lagrangian kinematics of mesoscale features are visible in hypergraph maps of the Indian Ocean surface currents. Without a precise knowledge of the crash site, these maps give an estimate of the time evolution of any initial distribution of plane debris and permits the design of a search strategy. The Dynamic Spectral Multiscale Coverage search algorithm is modified to search a spatial distribution of targets that is evolving with time following the dynamic of ocean surface currents. Trajectories are generated for multiple search agents such that their spatial coverage converges to the target distribution. Central to this DSMC algorithm is a metric for the ergodicity.
Oceanographic results from analysis of ERS-1 altimetry
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Shum, C. K.; Chambers, D. P.; Peterson, G. E.; Ries, J. C.
1994-01-01
Large scale dynamic ocean topography and its variations were observed using ERS-1 radar altimeter measurements. The altimeter measurements analyzed are primarily from the ESA ocean product (OPR02) and from the Interim Geophysical Data Records (IGDR) generated by NOAA from the fast delivery (FD) data during the ERS-1 35 day repeat orbit phase. The precise orbits used for the dynamic topography solution are computed using dual satellite crossover measurements from ERS-1 and TOPEX (Topology Ocean Experiment)/Poseidon (T/P) as additional tracking data, and using improved models and constants which are consistent with T/P. Analysis of the ERS-1 dynamic topography solution indicates agreement with the T/P solution at the 5 cm root mean square level, with regional differences as large as 15 cm tide gauges at the 8 to 9 cm level. There are differences between the ERS-1 OPR02 and IGDR determined dynamic topography solutions on the order of 5 cm root mean square. Mesoscale oceanic variability time series obtained using collinear analysis of the ERS-1 altimeter data show good qualitative agreement when compared with the T/P results.
NASA Astrophysics Data System (ADS)
Müller, Wolfgang
2017-04-01
During the last century, substantial climate variations in the North Atlantic have occurred, such as the warmings in the 1920s and 1990s. Such variations are considered to be part of the variability known as the Atlantic Multidecadal Variations (AMV) and have a strong impact on local climates such as European summers. Here a synthesis of previous works is presented which describe the occurrence of the warming in the 1920s in the North Atlantic and its impact on the European summer climate (Müller et al. 2014, 2015). For this the 20th century reanalysis (20CR) and 20CR forced ocean experiments are evaluated. It can be shown that the North Atlantic Current and Sub-Polar Gyre are strengthened as a result of an increased pressure gradient over the North Atlantic. Concurrently, Labrador Sea convection and Atlantic meridional overturning circulation (AMOC) increase. The intensified NAC, SPG, and AMOC redistribute sub-tropical water into the North Atlantic and Nordic Seas, thereby increasing observed and modelled temperature and salinity during the 1920s. Further a mechanism is proposed by which North Atlantic heat fluxes associated with the AMV modulate European decadal summer climate (Ghosh et al. 2016). By using 20CR, it can be shown that multi-decadal variations in the European summer temperature are associated to a linear baroclinic atmospheric response to the AMV-related surface heat flux. This response induce a sea level pressure structure modulating meridional temperature advection over north-western Europe and Blocking statistics over central Europe. This structure is shown to be the leading mode of variability and is independent of the summer North Atlantic Oscillation. Ghosh, R., W.A. Müller, J. Bader, and J. Baehr, 2016: Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating. Clim. Dyn. doi:10.10007/s00382-016-3283-4 Müller W. A., D. Matei, M. Bersch, J. H. Jungclaus, H. Haak, K. Lohmann,G. P. Compo, and J. Marotzke, 2015: A 20th-century reanalysis forced ocean model to reconstruct North Atlantic climate variation during the 1920s, Climate Dynamics. doi:10.1007/s00382-014-2267-5 Müller, W. A., H. Pohlmann, F. Sienz, and D. Smith, 2014: Decadal climate prediction for the period 1901-2010 with a coupled climate model. Geophys. Res. Lett., 41, pp 2100-2107.
The impact of wind energy turbine piles on ocean dynamics
NASA Astrophysics Data System (ADS)
Grashorn, Sebastian; Stanev, Emil V.
2016-04-01
The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.
Google Earth-Based Grand Tours of the World's Ocean Basins and Marine Sediments
NASA Astrophysics Data System (ADS)
St John, K. K.; De Paor, D. G.; Suranovic, B.; Robinson, C.; Firth, J. V.; Rand, C.
2016-12-01
The GEODE project has produced a collection of Google Earth-based marine geology teaching resources that offer grand tours of the world's ocean basins and marine sediments. We use a map of oceanic crustal ages from Müller et al (2008; doi:10.1029/2007GC001743), and a set of emergent COLLADA models of IODP drill core data as a basis for a Google Earth tour introducing students to the world's ocean basins. Most students are familiar with basic seafloor spreading patterns but teaching experience suggests that few students have an appreciation of the number of abandoned ocean basins on Earth. Students also lack a valid visualization of the west Pacific where the oldest crust forms an isolated triangular patch and the ocean floor becomes younger towards the subduction zones. Our tour links geographic locations to mechanical models of rifting, seafloor spreading, subduction, and transform faulting. Google Earth's built-in earthquake and volcano data are related to ocean floor patterns. Marine sediments are explored in a Google Earth tour that draws on exemplary IODP core samples of a range of sediment types (e.g., turbidites, diatom ooze). Information and links are used to connect location to sediment type. This tour compliments a physical core kit of core catcher sections that can be employed for classroom instruction (geode.net/marine-core-kit/). At a larger scale, we use data from IMLGS to explore the distribution of the marine sediments types in the modern global ocean. More than 2,500 sites are plotted with access to original data. Students are guided to compare modern "type sections" of primary marine sediment lithologies, as well as examine site transects to address questions of bathymetric setting, ocean circulation, chemistry (e.g., CCD), and bioproductivity as influences on modern seafloor sedimentation. KMZ files, student exercises, and tips for instructors are available at geode.net/exploring-marine-sediments-using-google-earth.
Oceanography in the formal and informal classroom
NASA Technical Reports Server (NTRS)
Richardson, A.; Jasnow, M.; Srinivasan, M.; Rosmorduc, V.; Blanc, F.
2002-01-01
The TOPEX/Poseidon and Jason-1 ocean altimeter missions offer the educator in the middle school or informal education venue a unique opportunity for reinforcing ocean science studies. An educational poster from NASA's Jet Propulsion Laboratory and France's Centre National d'Etudes Spatiales provide teachers and students a tool to examine topics such as the dynamics of ocean circulation, ocean research, and the oceans' role in climate.
SST Control by Subsurface Mixing During Indian Ocean Monsoons
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SST Control by Subsurface Mixing during Indian Ocean ...quantify the variability in upper ocean mixing associated with changes in barrier layer thickness and strength across the BoB and under different...These objectives directly target the fundamental role that upper ocean dynamics play in the complex air-sea interactions of the northern Indian Ocean
NASA Astrophysics Data System (ADS)
Tyler, Robert
2012-04-01
The tidal flow response and associated dissipative heat generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing strong tidal flow and appreciable dissipative heat. Of primary interest in this study are the ocean parameters that can be expected to evolve (notably, the ocean depth in an ocean attempting to freeze, and the stratification in an ocean attempting to cool) because this evolution can cause an ocean to be pushed into a resonant configuration where the increased dissipative heat of the resonant response halts further evolution and a liquid ocean can be maintained by ocean tidal heat. In this case the resonant ocean tidal response is not only allowed but may be inevitable. Previous work on this topic is extended to describe the resonant configurations in both unstratified and stratified cases for an assumed global ocean on Titan subject to both obliquity and eccentricity tidal forces. Results indicate first that the assumption of an equilibrium tidal response is not justified and the correct dynamical response must be considered. Second, the ocean tidal dissipation will be appreciable if the ocean configuration is near that producing a resonant state. The parameters values required for this resonance are provided in this study, and examples/movies of calculated ocean tidal flow are also presented.
Dynamical ocean-atmospheric drivers of floods and droughts
NASA Astrophysics Data System (ADS)
Perdigão, Rui A. P.; Hall, Julia
2014-05-01
The present study contributes to a better depiction and understanding of the "facial expression" of the Earth in terms of dynamical ocean-atmospheric processes associated to both floods and droughts. For this purpose, the study focuses on nonlinear dynamical and statistical analysis of ocean-atmospheric mechanisms contributing to hydrological extremes, broadening the analytical hydro-meteorological perspective of floods and hydrological droughts to driving mechanisms and feedbacks at the global scale. In doing so, the analysis of the climate-related causality of hydrological extremes is not limited to the synoptic situation in the region where the events take place. Rather, it goes further in the train of causality, peering into dynamical interactions between planetary-scale ocean and atmospheric processes that drive weather regimes and influence the antecedent and event conditions associated to hydrological extremes. In order to illustrate the approach, dynamical ocean-atmospheric drivers are investigated for a selection of floods and droughts. Despite occurring in different regions with different timings, common underlying mechanisms are identified for both kinds of hydrological extremes. For instance, several analysed events are seen to have resulted from a large-scale atmospheric situation consisting on standing planetary waves encircling the northern hemisphere. These correspond to wider vortices locked in phase, resulting in wider and more persistent synoptic weather patterns, i.e. with larger spatial and temporal coherence. A standing train of anticyclones and depressions thus encircled the mid and upper latitudes of the northern hemisphere. The stationary regime of planetary waves occurs when the mean eastward zonal flow decreases up to a point in which it no longer exceeds the westward phase propagation of the Rossby waves produced by the latitude-varying Coriolis effect. The ocean-atmospheric causes for this behaviour and consequences on hydrological extremes are investigated and the findings supported with spatiotemporal geostatistical analysis and nonlinear geophysical models. Overall, the study provides a three-fold contribution to the research on hydrological extremes: Firstly, it improves their physical attribution by better understanding the dynamical reasons behind the meteorological drivers. Secondly, it brings out fundamental early warning signs for potential hydrological extremes, by bringing out global ocean-atmospheric features that manifest themselves much earlier than the regional weather patterns. Thirdly, it provides tools for addressing and understanding hydrological regime changes at wider spatiotemporal scales, by providing links to planetary-scale dynamical processes that play a crucial role in multi-decadal global climate variability.
Model Intercomparison of CCN-Limited Arctic Clouds During ASCOS
NASA Astrophysics Data System (ADS)
Stevens, Robin; Dearden, Chris; Dimetrelos, Antonios; Eirund, Gesa; Possner, Anna; Raatikainen, Tomi; Loewe, Katharina; Hill, Adrian; Shipway, Ben; Connolly, Paul; Ekman, Annica; Hoose, Corinna; Laaksonen, Ari; de Leeuw, Gerrit; Kolmonen, Pekka; Saponaro, Giulia; Field, Paul; Carlsaw, Ken
2017-04-01
Future decreases in Arctic sea ice are expected to increase fluxes of aerosol and precursor gases from the open ocean surface within the Arctic. The resulting increase in cloud condensation nuclei (CCN) concentrations would be expected to result in increased cloud albedo (Struthers et al, 2011), leading to potentially large changes in radiative forcings. However, Browse et al. (2014) have shown that these increases in condensable material could also result in the growth of existing particles to sizes where they are more efficiently removed by wet deposition in drizzling stratocumulus clouds, ultimately decreasing CCN concentrations in the high Arctic. Their study was limited in that it did not simulate alterations of dynamics or cloud properties due to either changes in heat and moisture fluxes following sea-ice loss or changing aerosol concentrations. Taken together, these results show that significant uncertainties remain in trying to quantify aerosol-cloud processes in the Arctic system. The current representation of these processes in global climate models is most likely insufficient to realistically simulate long-term changes. In order to better understand the microphysical processes currently governing Arctic clouds, we perform a model intercomparison of summertime high Arctic (>80N) clouds observed during the 2008 ASCOS campaign. The intercomparison includes results from three large eddy simulation models (UCLALES-SALSA, COSMO-LES, and MIMICA) and three numerical weather prediction models (COSMO-NWP, WRF, and UM-CASIM). The results of these experiments will be used as a basis for sensitivity studies on the impact of sea-ice loss on Arctic clouds through changes in aerosol and precursor emissions as well as changes in latent and sensible heat fluxes. Browse, J., et al., Atmos. Chem. Phys., 14(14), 7543-7557, doi:10.5194/acp-14-7543-2014, 2014. Struthers, H., et al., Atmos. Chem. Phys., 11(7), 3459-3477, doi:10.5194/acp-11-3459-2011, 2011.
The space shuttle payload planning working groups. Volume 8: Earth and ocean physics
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Earth and Ocean Physics working group of the space shuttle payload planning activity are presented. The requirements for the space shuttle mission are defined as: (1) precision measurement for earth and ocean physics experiments, (2) development and demonstration of new and improved sensors and analytical techniques, (3) acquisition of surface truth data for evaluation of new measurement techniques, (4) conduct of critical experiments to validate geophysical phenomena and instrumental results, and (5) development and validation of analytical/experimental models for global ocean dynamics and solid earth dynamics/earthquake prediction. Tables of data are presented to show the flight schedule estimated costs, and the mission model.
Exploring image data assimilation in the prospect of high-resolution satellite data
NASA Astrophysics Data System (ADS)
Verron, J. A.; Duran, M.; Gaultier, L.; Brankart, J. M.; Brasseur, P.
2016-02-01
Many recent works show the key importance of studying the ocean at fine scales including the meso- and submesoscales. Satellite observations such as ocean color data provide informations on a wide range of scales but do not directly provide information on ocean dynamics. Satellite altimetry provide informations on the ocean dynamic topography (SSH) but so far with a limited resolution in space and even more, in time. However, in the near future, high-resolution SSH data (e.g. SWOT) will give a vision of the dynamic topography at such fine space resolution. This raises some challenging issues for data assimilation in physical oceanography: develop reliable methodology to assimilate high resolution data, make integrated use of various data sets including biogeochemical data, and even more simply, solve the challenge of handling large amont of data and huge state vectors. In this work, we propose to consider structured information rather than pointwise data. First, we take an image data assimilation approach in studying the feasibility of inverting tracer observations from Sea Surface Temperature and/or Ocean Color datasets, to improve the description of mesoscale dynamics provided by altimetric observations. Finite Size Lyapunov Exponents are used as an image proxy. The inverse problem is formulated in a Bayesian framework and expressed in terms of a cost function measuring the misfits between the two images. Second, we explore the inversion of SWOT-like high resolution SSH data and more especially the various possible proxies of the actual SSH that could be used to control the ocean circulation at various scales. One focus is made on controlling the subsurface ocean from surface only data. A key point lies in the errors and uncertainties that are associated to SWOT data.
Cumulate Mantle Dynamics Response to Magma Ocean Cooling Rate
NASA Astrophysics Data System (ADS)
Boukare, C.-E.; Parmentier, E. M.; Parman, S. W.
2018-05-01
We investigate the issue of the cumulate compaction during magma ocean solidification. We show that the cooling rate of the magma ocean affects the amount and distribution of retained melt in the cumulate layers and the timing of cumulate overturn.
New developments in the global ocean observing system Argo and its European component EuroArgo
NASA Astrophysics Data System (ADS)
Klein, Birgit
2017-04-01
Since about 2005 Argo is the largest source of in situ ocean data, with the number of Argo-profiles exceeding that of all ship-born profiles ever made. Having a dense and near-homogeneous global and temporal coverage, Argo data are essential to derive ocean-state estimates to initialize seasonal and decadal climate model forecasts and to validate climate model output. For instance, Argo data made it possible to accurately determine ocean heat content and show that it kept increasing during the so-called hiatus period (2000-2014), during which atmospheric near-surface temperature stayed almost constant. Climate models ought to be able to reproduce such events. Currently Argo is entering new realms. New floats types are capable of measuring down to 4 km (instead of 2 km until now), and new sensors have been developed that can measure a variety of biogeochemical variables like oxygen, nitrate, or chlorophyll. These new data will be very important to validate and improve Earth System Models. First, about 40% of the ocean volume is in the depth-range 2-4 km, but observations are currently limited to a few sections in space and time. Deep Argo data will make a thorough validation of ocean models in this depth range possible for the first time. Secondly, the large amount of new biogeochemical data becoming available will allow process studies that will lead to improved parameterizations of biogenic and chemical processes in the ocean, improvements that can be implemented in the models to increase their realism. Third, the data form the first-ever set of biogeochemical data that is consistent and homogeneous over a large spatial and temporal extent will make it possible to validate the models to a degree that was hitherto impossible, simply because of the lack of data. The Argo data system is composed of national Data Assembly Centers (DAC) that supply data to two mirrored Global Data Assembly Centers (GDAC). GDAC data exchanges are based on File Transfer Protocol (FTP) and made freely available to all users within 24 hours. On a schedule of 6 month the data undergo a thorough quality to correct for possible sensor drift and provide the scientific users with homogenous and high-quality data sets. A significant recent data system development is the assignment of a single dynamic DOI to GDAC holdings enabling time dependent unambiguous data citation at a monthly granularity. Argo data have been traditionally delivered via FTP protocol with developments are on-going to facilitate new users and emerging expectations on data delivery mechanisms. These experimental developments include access via Application Programming Interfaces such as ERDDAP, integration with other components of GOOS within the AtlantOS project, and a prototype 'Big Data' solution is being developed within the EU ENVRIplus project.
Global calibration/validation of 2 years of SARAL/AltiKa data
NASA Astrophysics Data System (ADS)
Scharroo, Remko; Lillibridge, John; Leuliette, Eric; Bonekamp, Hans
2015-04-01
The AltiKa altimeter flying onboard the French/Indian SARAL satellite provides the first opportunity to examine Ka-band measurements of sea surface height, significant wave height and ocean surface wind speed. In this presentation we provide the results from our global calibration/validation analysis of the AltiKa measurements, with an emphasis on near real-time applications of interest to both EUMETSAT and NOAA. Traditional along-track SSHA, and single as well as dual-satellite crossover assessments of the AltiKa performance are be provided. Unique aspects of the AltiKa mission such as improved along-track resolution, reduced ionospheric path delay corrections, mission-specific wind speed and sea state bias corrections, and sensitivity to liquid moisture and rain are also explored. In February 2014, a major update to the ground processing was introduced. "Patch-2" improved the way wind speed was derived from altimeter backscatter, as suggested by Lillibridge et al. (1). The backscatter attenuation is now derived from the radiometer measurements via neural network algorithms, which also determine the wet tropospheric correction. We emphasize these improvements in our analysis. After 2 years in flight, SARAL/AltiKa is already providing a significant contribution to the constellation of operational radar altimetry missions, demonstrating the large benefits of high-rate Ka-band altimetry. (1) Lillibridge, John, Remko Scharroo, Saleh Abdalla, Doug Vandemark, 2014: One- and Two-Dimensional Wind Speed Models for Ka-Band Altimetry. J. Atmos. Oceanic Technol., 31, 630-638. doi: http://dx.doi.org/10.1175/JTECH-D-13-00167.1
An Alternate Method for Estimating Dynamic Height from XBT Profiles Using Empirical Vertical Modes
NASA Technical Reports Server (NTRS)
Lagerloef, Gary S. E.
1994-01-01
A technique is presented that applies modal decomposition to estimate dynamic height (0-450 db) from Expendable BathyThermograph (XBT) temperature profiles. Salinity-Temperature-Depth (STD) data are used to establish empirical relationships between vertically integrated temperature profiles and empirical dynamic height modes. These are then applied to XBT data to estimate dynamic height. A standard error of 0.028 dynamic meters is obtained for the waters of the Gulf of Alaska- an ocean region subject to substantial freshwater buoyancy forcing and with a T-S relationship that has considerable scatter. The residual error is a substantial improvement relative to the conventional T-S correlation technique when applied to this region. Systematic errors between estimated and true dynamic height were evaluated. The 20-year-long time series at Ocean Station P (50 deg N, 145 deg W) indicated weak variations in the error interannually, but not seasonally. There were no evident systematic alongshore variations in the error in the ocean boundary current regime near the perimeter of the Alaska gyre. The results prove satisfactory for the purpose of this work, which is to generate dynamic height from XBT data for coanalysis with satellite altimeter data, given that the altimeter height precision is likewise on the order of 2-3 cm. While the technique has not been applied to other ocean regions where the T-S relation has less scatter, it is suggested that it could provide some improvement over previously applied methods, as well.
Geodynamics Branch research report, 1982
NASA Technical Reports Server (NTRS)
Kahn, W. D. (Editor); Cohen, S. C. (Editor)
1983-01-01
The research program of the Geodynamics Branch is summarized. The research activities cover a broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography. The NASA programs which are supported by the work described include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX) and Geopotential Research Mission. The individual papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.
NASA Technical Reports Server (NTRS)
Abbott, M. R.; Zion, P. M.
1984-01-01
As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.
Dynamic relationship between ocean bottom pressure and bathymetry around northern part of Hikurangi
NASA Astrophysics Data System (ADS)
Muramoto, T.; Inazu, D.; Ito, Y.; Hino, R.; Suzuki, S.
2017-12-01
In recent years, observation using ocean bottom pressure recorders for the purpose of the evaluation of sea floor crustal deformation is in great vogue. The observation network set up for the observation of sea floor is densely spaced compared with the instrument network for the observation of ocean. Therefore, it has the characteristic that it can observe phenomena on a local scale. In this study, by using these in situ data, we discuss ocean phenomena on a local scale. In this study, we use a high-resolution ocean model (Inazu Ocean Model) driven by surface air pressure and surface wind vector published by the Japan Meteorological Agency. We perform a hindcast experiment for ocean bottom pressure anomaly from April 2013 to June 2017. Then, we compare these results with in situ data. In this study, we use observed pressure records which were recorded by autonomous type instrument spanning a period from April 2013 to June 2017 off the coast of North Island in New Zealand. Consequently, we found this model can simulate not only the amplitude but also phase of non-tidal oceanic variation of East Cape Current (ECC) off the coast of North Island of New Zealand. Then, we calculate cross-correlation coefficient between the data at the OBP sites. We revealed that the ocean bottom pressure shows different behavior on the west side from the east side of edge of the continental shelf. This result implies that the submarine slope induces a dynamic effect and contributes to the seasonal variation of ocean bottom pressure. In addition, we calculate the velocity of the surface current in this area using our model, and consider the relationship between it and ocean bottom pressure variation. Taken together, we can say that the barotropic flow in the direction of south-west extends to the bottom of the sea in this area. Therefore, the existence of local cross-isobath currents is suggested. Our result indicates bathymetry has dynamic effect to ocean circulation on local scale and at the same time the surface ocean circulation contributes to ocean bottom pressure considerably.
2013-09-30
population dynamics (growth rate, production, mortality) of copepod nauplii in the field or captured water columns (mesocosms). Since biology...36-45, doi:10.1016/j.dsr.2012.03.001, 2012. PUBLICATIONS Banse, K., Naqvi, S.W.A., Narvekar, P.V., Postel, J.R., Jayakumar , D.A. Oxygen minimum
NASA Astrophysics Data System (ADS)
Martinez-Sanchez, Marta; Flores, José-Abel; Palumbo, Eliana; Alonso-García, Montserrat; Sierro, Francisco-Javier; Ornella Amore, Filomena
2014-05-01
This study focuses on the reconstruction of global changes in the North Atlantic Current (NAC) and its ramifications, the Irminger Current (IC) and the Portugal Current (PC). For this aim, coccolithophore assemblages have been studied at IODP Site U1314 (57ºN) and integrated with published and unpublished data from MD03-2699 (39ºN) core (Amore et al., 2012; Palumbo et al., 2013). The sampling resolution used in this study is about 1-2 ka and ranging MIS 14 to MIS11 (~540-400 ka). At both regions, the coccolithophore assemblage is characterized by high abundance of small Gephyrocapsa. Since these species proliferate under eutrophic conditions, their abundance variations have been discussed as indicative of paleoproductivity changes and linked to the IC in IODP Site U1314, whereas in the MD03-2699 is related to the PC. Statistical analyses have been applied to numerical data concerning abundance of different taxonomic groups of coccolithophores and planktonic foraminifers. Particularly, in order to evaluate phase relationships between time series, cross correlation analysis has been applied. Through the application of REDFIT package implemented in PAST software, the main periodicities of the studied time series have been investigated. In order to better appreciate the contribution of spectral signals, main periodic components have been extrapolated applying filtering functions, implemented in Matlab statistic toolbox, and the sinusoidal regression tool, implemented in PAST software. The main orbital forcing acting on the distribution of small and medium sized Gephyrocapsa, Coccolithus pelagicus sub. pelagicus and Neogloboquadrina pachyderma (sin), is related to eccentricity. Overprinted, precession cycles have been observed provoking fluctuations of this time-entity in the IC and PC, demonstrating a close behaviour as result of a general fluctuation of the NAC and thermohaline dynamics (Alonso-García, 2011). REFERENCES: Montserrat Alonso-Garcia, Francisco J. Sierro, José A. Flores, Arctic front shifts in the subpolar North Atlantic during the Mid-Pleistocene (800-400ka) and their implications for ocean circulation, Palaeogeography, Palaeoclimatology, Palaeoecology,Volume 311, Issues 3-4, 15 November 2011, Pages 268-280, http://dx.doi.org/10.1016/j.palaeo.2011.09.004. F.O. Amore, J.A. Flores, A.H.L. Voelker, S.M. Lebreiro, E. Palumbo, F.J. Sierro, A Middle Pleistocene Northeast Atlantic coccolithophore record: Paleoclimatology and paleoproductivity aspects, Marine Micropaleontology, Volumes 90-91, June 2012, Pages 44-59, , http://dx.doi.org/10.1016/j.marmicro.2012.03.006. E. Palumbo, J.A. Flores, C. Perugia, Z. Petrillo, A.H.L. Voelker, F.O. Amore, Millennial scale coccolithophore paleoproductivity and surface water changes between 445 and 360ka (Marine Isotope Stages 12/11) in the Northeast Atlantic, Palaeogeography, Palaeoclimatology, Palaeoecology, Volumes 383-384, August 2013, Pages 27-41, http://dx.doi.org/10.1016/j.palaeo.2013.04.024.
Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Lindstrom, Eric (Technical Monitor)
2002-01-01
This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.
NASA Technical Reports Server (NTRS)
Knezovich, F. M.
1976-01-01
A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.
Oceanic residual depth measurements, the plate cooling model, and global dynamic topography
NASA Astrophysics Data System (ADS)
Hoggard, Mark J.; Winterbourne, Jeff; Czarnota, Karol; White, Nicky
2017-03-01
Convective circulation of the mantle causes deflections of the Earth's surface that vary as a function of space and time. Accurate measurements of this dynamic topography are complicated by the need to isolate and remove other sources of elevation, arising from flexure and lithospheric isostasy. The complex architecture of continental lithosphere means that measurement of present-day dynamic topography is more straightforward in the oceanic realm. Here we present an updated methodology for calculating oceanic residual bathymetry, which is a proxy for dynamic topography. Corrections are applied that account for the effects of sedimentary loading and compaction, for anomalous crustal thickness variations, for subsidence of oceanic lithosphere as a function of age and for non-hydrostatic geoid height variations. Errors are formally propagated to estimate measurement uncertainties. We apply this methodology to a global database of 1936 seismic surveys located on oceanic crust and generate 2297 spot measurements of residual topography, including 1161 with crustal corrections. The resultant anomalies have amplitudes of ±1 km and wavelengths of ˜1000 km. Spectral analysis of our database using cross-validation demonstrates that spherical harmonics up to and including degree 30 (i.e., wavelengths down to 1300 km) are required to accurately represent these observations. Truncation of the expansion at a lower maximum degree erroneously increases the amplitude of inferred long-wavelength dynamic topography. There is a strong correlation between our observations and free-air gravity anomalies, magmatism, ridge seismicity, vertical motions of adjacent rifted margins, and global tomographic models. We infer that shorter wavelength components of the observed pattern of dynamic topography may be attributable to the presence of thermal anomalies within the shallow asthenospheric mantle.
NASA Astrophysics Data System (ADS)
Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Bogusz, Janusz
2017-04-01
Seasonal oscillations in the GPS position time series can arise from real geophysical effects and numerical artefacts. According to Dong et al. (2002) environmental loading effects can account for approximately 40% of the total variance of the annual signals in GPS time series, however using generally acknowledged methods (e.g. Least Squares Estimation, Wavelet Decomposition, Singular Spectrum Analysis) to model seasonal signals we are not able to separate real from spurious signals (effects of mismodelling aliased into annual period as well as draconitic). Therefore, we propose to use Multichannel Singular Spectrum Analysis (MSSA) to determine seasonal oscillations (with annual and semi-annual periods) from GPS position time series and environmental loading displacement models. The MSSA approach is an extension of the classical Karhunen-Loève method and it is a special case of SSA for multivariate time series. The main advantage of MSSA is the possibility to extract common seasonal signals for stations from selected area and to investigate the causality between a set of time series as well. In this research, we explored the ability of MSSA application to separate real geophysical effects from spurious effects in GPS time series. For this purpose, we used GPS position changes and environmental loading models. We analysed the topocentric time series from 250 selected stations located worldwide, delivered from Network Solution obtained by the International GNSS Service (IGS) as a contribution to the latest realization of the International Terrestrial Reference System (namely ITRF2014, Rebishung et al., 2016). We also researched atmospheric, hydrological and non-tidal oceanic loading models provided by the EOST/IPGS Loading Service in the Centre-of-Figure (CF) reference frame. The analysed displacements were estimated from ERA-Interim (surface pressure), MERRA-land (soil moisture and snow) as well as ECCO2 ocean bottom pressure. We used Multichannel Singular Spectrum Analysis to determine common seasonal signals in two case studies with adopted a 3-years lag-window as the optimal window size. We also inferred the statistical significance of oscillations through the Monte Carlo MSSA method (Allen and Robertson, 1996). In the first case study, we investigated the common spatio-temporal seasonal signals for all stations. For this purpose, we divided selected stations with respect to the continents. For instance, for stations located in Europe, seasonal oscillations accounts for approximately 45% of the GPS-derived data variance. Much higher variance of seasonal signals is explained by hydrological loadings of about 92%, while the non-tidal oceanic loading accounted for 31% of total variance. In the second case study, we analysed the capability of the MSSA method to establish a causality between several time series. Each of estimated Principal Component represents pattern of the common signal for all analysed data. For ZIMM station (Zimmerwald, Switzerland), the 1st, 2nd and 9th, 10th Principal Components, which accounts for 35% of the variance, corresponds to the annual and semi-annual signals. In this part, we applied the non-parametric MSSA approach to extract the common seasonal signals for GPS time series and environmental loadings for each of the 250 stations with clear statement, that some part of seasonal signal reflects the real geophysical effects. REFERENCES: 1. Allen, M. and Robertson, A.: 1996, Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dynamics, 12, No. 11, 775-784. DOI: 10.1007/s003820050142. 2. Dong, D., Fang, P., Bock, Y., Cheng, M.K. and Miyazaki, S.: 2002, Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research, 107, No. B4, 2075. DOI: 10.1029/2001JB000573. 3. Rebischung, P., Altamimi, Z., Ray, J. and Garayt, B.: 2016, The IGS contribution to ITRF2014. Journal of Geodesy, 90, No. 7, 611-630. DOI:10.1007/s00190-016-0897-6.
The Equations of Oceanic Motions
NASA Astrophysics Data System (ADS)
Müller, Peter
2006-10-01
Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.
Modeling landslide runout dynamics and hazards: crucial effects of initial conditions
NASA Astrophysics Data System (ADS)
Iverson, R. M.; George, D. L.
2016-12-01
Physically based numerical models can provide useful tools for forecasting landslide runout and associated hazards, but only if the models employ initial conditions and parameter values that faithfully represent the states of geological materials on slopes. Many models assume that a landslide begins from a heap of granular material poised on a slope and held in check by an imaginary dam. A computer instruction instantaneously removes the dam, unleashing a modeled landslide that accelerates under the influence of a large force imbalance. Thus, an unrealistically large initial acceleration influences all subsequent modeled motion. By contrast, most natural landslides are triggered by small perturbations of statically balanced effective stress states, which are commonly caused by rainfall, snowmelt, or earthquakes. Landslide motion begins with an infinitesimal force imbalance and commensurately small acceleration. However, a small initial force imbalance can evolve into a much larger imbalance if feedback causes a reduction in resisting forces. A well-documented source of such feedback involves dilatancy coupled to pore-pressure evolution, which may either increase or decrease effective Coulomb friction—contingent on initial conditions. Landslide dynamics models that account for this feedback include our D-Claw model (Proc. Roy. Soc. Lon., Ser. A, 2014, doi: 10.1098/rspa.2013.0819 and doi:10.1098/rspa.2013.0820) and a similar model presented by Bouchut et al. (J. Fluid Mech., 2016, doi:10.1017/jfm.2016.417). We illustrate the crucial effects of initial conditions and dilatancy coupled to pore-pressure feedback by using D-Claw to perform simple test calculations and also by computing alternative behaviors of the well-documented Oso, Washington, and West Salt Creek, Colorado, landslides of 2014. We conclude that realistic initial conditions and feedbacks are essential elements in numerical models used to forecast landslide runout dynamics and hazards.
NASA Astrophysics Data System (ADS)
Wekerle, C.; Wang, Q.; Danilov, S.; Jung, T.; Schourup-Kristensen, V.
2016-02-01
Atlantic Water (AW) passes through the Nordic Seas and enters the Arctic Ocean through the shallow Barents Sea and the deep Fram Strait. Since the 1990's, observations indicate a series of anomalously warm pulses of Atlantic Water that entered the Arctic Ocean. In fact, poleward oceanic heat transport may even increase in the future, which might have implications for the heat uptake in the Arctic Ocean as well as for the sea ice cover. The ability of models to faithfully simulate the pathway of the AW and accompanying dynamics is thus of high climate relevance. In this study, we explore the potential of a global multi-resolution sea ice-ocean model with a locally eddy-permitting resolution (around 4.5 km) in the Nordic seas region and Arctic Ocean in improving the representation of Atlantic Water inflow, and more broadly, the dynamics of the circulation in the Northern North Atlantic and Arctic. The simulation covers the time period 1969-2009. We find that locally increased resolution improves the localization and thickness of the Atlantic Water layer in the Nordic seas, compared with a 20 km resolution reference simulation. In particular, the inflow of Atlantic Waters through the Greenland Scotland Ridge and the narrow branches of the Norwegian Atlantic Current can be realistically represented. Lateral spreading due to simulated eddies essentially reduces the bias in the surface temperature. In addition, a qualitatively good agreement of the simulated eddy kinetic energy field with observations can be achieved. This study indicates that a substantial improvement in representing local ocean dynamics can be reached through the local refinement, which requires a rather moderate computational effort. The successful model assessment allows us to further investigate the variability and mechanisms behind Atlantic Water transport into the Arctic Ocean.
A conceptual model of oceanic heat transport in the Snowball Earth scenario
NASA Astrophysics Data System (ADS)
Comeau, Darin; Kurtze, Douglas A.; Restrepo, Juan M.
2016-12-01
Geologic evidence suggests that the Earth may have been completely covered in ice in the distant past, a state known as Snowball Earth. This is still the subject of controversy, and has been the focus of modeling work from low-dimensional models up to state-of-the-art general circulation models. In our present global climate, the ocean plays a large role in redistributing heat from the equatorial regions to high latitudes, and as an important part of the global heat budget, its role in the initiation a Snowball Earth, and the subsequent climate, is of great interest. To better understand the role of oceanic heat transport in the initiation of Snowball Earth, and the resulting global ice covered climate state, the goal of this inquiry is twofold: we wish to propose the least complex model that can capture the Snowball Earth scenario as well as the present-day climate with partial ice cover, and we want to determine the relative importance of oceanic heat transport. To do this, we develop a simple model, incorporating thermohaline dynamics from traditional box ocean models, a radiative balance from energy balance models, and the more contemporary "sea glacier" model to account for viscous flow effects of extremely thick sea ice. The resulting model, consisting of dynamic ocean and ice components, is able to reproduce both Snowball Earth and present-day conditions through reasonable changes in forcing parameters. We find that including or neglecting oceanic heat transport may lead to vastly different global climate states, and also that the parameterization of under-ice heat transfer in the ice-ocean coupling plays a key role in the resulting global climate state, demonstrating the regulatory effect of dynamic ocean heat transport.
Sea surface height and dynamic topography of the ice-covered oceans from CryoSat-2: 2011-2014
NASA Astrophysics Data System (ADS)
Kwok, Ron; Morison, James
2016-01-01
We examine 4 years (2011-2014) of sea surface heights (SSH) from CryoSat-2 (CS-2) over the ice-covered Arctic and Southern Oceans. Results are from a procedure that identifies and determines the heights of sea surface returns. Along 25 km segments of satellite ground tracks, variability in the retrieved SSHs is between ˜2 and 3 cm (standard deviation) in the Arctic and is slightly higher (˜3 cm) in the summer and the Southern Ocean. Average sea surface tilts (along these 25 km segments) are 0.01 ± 3.8 cm/10 km in the Arctic, and slightly lower (0.01 ± 2.0 cm/10 km) in the Southern Ocean. Intra-seasonal variability of CS-2 dynamic ocean topography (DOT) in the ice-covered Arctic is nearly twice as high as that of the Southern Ocean. In the Arctic, we find a correlation of 0.92 between 3 years of DOT and dynamic heights (DH) from hydrographic stations. Further, correlation of 4 years of area-averaged CS-2 DOT near the North Pole with time-variable ocean-bottom pressure from a pressure gauge and from GRACE, yields coefficients of 0.83 and 0.77, with corresponding differences of <3 cm (RMS). These comparisons contrast the length scale of baroclinic and barotropic features and reveal the smaller amplitude barotropic signals in the Arctic Ocean. Broadly, the mean DOT from CS-2 for both poles compares well with those from the ICESat campaigns and the DOT2008A and DTU13MDT fields. Short length scale topographic variations, due to oceanographic signals and geoid residuals, are especially prominent in the Arctic Basin but less so in the Southern Ocean.
Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate
NASA Astrophysics Data System (ADS)
Liang, Xinfeng; Spall, Michael; Wunsch, Carl
2017-10-01
Estimates of the global ocean vertical velocities (Eulerian, eddy-induced, and residual) from a dynamically consistent and data-constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large-scale topographic features and are generally canceled out in the conventional zonally averaged results. These "elevators" at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy-induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large-scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.
NASA Astrophysics Data System (ADS)
Ferrini, V. L.; Morton, J. J.; Carbotte, S. M.
2016-02-01
The Marine Geoscience Data System (MGDS: www.marine-geo.org) provides a suite of tools and services for free public access to data acquired throughout the global oceans including maps, grids, near-bottom photos, and geologic interpretations that are essential for habitat characterization and marine spatial planning. Users can explore, discover, and download data through a combination of APIs and front-end interfaces that include dynamic service-driven maps, a geospatially enabled search engine, and an easy to navigate user interface for browsing and discovering related data. MGDS offers domain-specific data curation with a team of scientists and data specialists who utilize a suite of back-end tools for introspection of data files and metadata assembly to verify data quality and ensure that data are well-documented for long-term preservation and re-use. Funded by the NSF as part of the multi-disciplinary IEDA Data Facility, MGDS also offers Data DOI registration and links between data and scientific publications. MGDS produces and curates the Global Multi-Resolution Topography Synthesis (GMRT: gmrt.marine-geo.org), a continuously updated Digital Elevation Model that seamlessly integrates multi-resolutional elevation data from a variety of sources including the GEBCO 2014 ( 1 km resolution) and International Bathymetric Chart of the Southern Ocean ( 500 m) compilations. A significant component of GMRT includes ship-based multibeam sonar data, publicly available through NOAA's National Centers for Environmental Information, that are cleaned and quality controlled by the MGDS Team and gridded at their full spatial resolution (typically 100 m resolution in the deep sea). Additional components include gridded bathymetry products contributed by individual scientists (up to meter scale resolution in places), publicly accessible regional bathymetry, and high-resolution terrestrial elevation data. New data are added to GMRT on an ongoing basis, with two scheduled releases per year. GMRT is available as both gridded data and images that can be viewed and downloaded directly through the Java application GeoMapApp (www.geomapapp.org) and the web-based GMRT MapTool. In addition, the GMRT GridServer API provides programmatic access to grids, imagery, profiles, and single point elevation values.
Mapping seismic azimuthal anisotropy of the Japan subduction zone
NASA Astrophysics Data System (ADS)
Zhao, D.; Liu, X.
2016-12-01
We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi:10.1002/2016JB013116. Zhao, D., S. Yu, X. Liu (2016) Seismic anisotropy tomography: New insight into subduction dynamics. Gondwana Res. 33, 24-43.
NASA Astrophysics Data System (ADS)
Chandler, C. L.; Groman, R. C.; Shepherd, A.; Allison, M. D.; Kinkade, D.; Rauch, S.; Wiebe, P. H.; Glover, D. M.
2014-12-01
The ability to reproduce scientific results is a cornerstone of the scientific method, and access to the data upon which the results are based is essential to reproducibility. Access to the data alone is not enough though, and research communities have recognized the importance of metadata (data documentation) to enable discovery and data access, and facilitate interpretation and accurate reuse. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) was first funded in late 2006 by the National Science Foundation (NSF) Division of Ocean Sciences (OCE) Biology and Chemistry Sections to help ensure that data generated during NSF OCE funded research would be preserved and available for future use. The BCO-DMO was formed by combining the formerly independent data management offices of two marine research programs: the United States Joint Global Ocean Flux Study (US JGOFS) and the US GLOBal Ocean ECosystems Dynamics (US GLOBEC) program. Since the US JGOFS and US GLOBEC programs were both active (1990s) there have been significant changes in all aspects of the research data life cycle, and the staff at BCO-DMO has modified the way in which we manage data contributed to the office. The supporting documentation that describes each dataset was originally displayed as a human-readable text file retrievable via a Web browser. BCO-DMO still offers that form because our primary audience is marine researchers using Web browser clients; however we are seeing an increased demand to support machine client access. Metadata records from the BCO-DMO data system are now extracted and published out in a variety of formats. The system supports ISO 19115, FGDC, GCMD DIF, schema.org Dataset extension, formal publication with a DOI, and RDF with semantic markup including PROV-O, FOAF and more. In the 1990s, data documentation helped researchers locate data of interest and understand the provenance sufficiently to determine fitness for purpose. Today, providing data documentation in a machine interpretable form enables researchers to make more effective use of machine clients to discover and access data. This presentation will describe the challenges associated with and benefits realized from layering modern Semantic Web technologies on top of a legacy data system. http://bco-dmo.org/
NASA Astrophysics Data System (ADS)
Garrido, C. J.; Machetel, P.
2005-12-01
We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual flow lines. The distribution of ICR of gabbros along each flow line is then computed at their final off-axis emplacement as it is now observed in ophiolites. The main result of our model is that the variation of ICR with depth strongly constrains the accretion mode of the oceanic crust. The bimodal distribution of ICR with depth inferred from the crystal size distribution studies of gabbros from the Oman ophiolite (Garrido et al., 2001) can be only reproduced by accretion models with at least two melt lenses. The location of the jump in the bimodal distribution of ICR with depth observed at ca. 4 km above the MTZ in the Oman ophiolite implies that ca. 50% of the oceanic crust is accreted in an upper magma lens, while the 50% lower half is either accreted in one lens located at the MTZ or in several melt lenses with alike melt supply and evenly distributed along the lower half of the plutonic oceanic crust. Garrido, C. J., Kelemen, P. B. & Hirth, G.. G-cubed. 2, doi: 10.1029/2000GC000136 (2001).
NASA Astrophysics Data System (ADS)
Shevyrnogov, A.; Vysotskaya, G.
To preserve biosphere and make its utilization expedient makes imperative to comprehend in depth long-standing dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. However, hard access and large size of the water surface make its investigation labor-consuming. Besides, the dependence of primary production on high variability of hydrophysical phenomena in the ocean (fluctuations of currents, frontal zones, etc.) makes the location of points for measuring the chlorophyll concentration dynamics significant. In this work the long-standing changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years and the SeaWiFS data from 1997 to 2003. It was shown that the average chlorophyll concentration calculated at all investigated area is varied moderately. However when analyzing spatially local trends, it was detected that areas exist with stable rise and fall of chlorophyll concentration. Some interesting features of the long-standing dynamics of chlorophyll concentration several interesting features were found. There are the various directions of long-term trends (constant increase or decrease) that cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings etc.). The next feature is a difference between the trends revealed by using the CZCS data and the trends based on the SeaWiFS data. Thus, the obtained results allow the possibility of identification of the ocean biota role in the global biospheric gas exchange.
NASA Astrophysics Data System (ADS)
Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.
2015-05-01
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), EFF was 8.9 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 2.9 ± 0.8 GtC yr-1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr-1, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr-1, GATM was 5.4 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1, and SLAND was 2.5 ± 0.9 GtC yr-1. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3-3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr-1), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870-2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).
Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets
NASA Astrophysics Data System (ADS)
Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.
2018-04-01
Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
On the Use of Ocean Dynamic Temperature for Hurricane Intensity Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby
Sea surface temperature (SST) and the Tropical Cyclone Heat Potential (TCHP) are metrics used to incorporate the ocean's influence on hurricane intensification in the National Hurricane Center's Statistical Hurricane Intensity Prediction Scheme (SHIPS). While both SST and TCHP serve as useful measures of the upper-ocean heat content, they do not accurately represent ocean stratification effects. Here we show that replacing SST in the SHIPS framework with a dynamic temperature (Tdy), which accounts for the oceanic negative feedback to the hurricane's intensity arising from storm-induced vertical mixing and sea-surface cooling, improves the model performance. While the model with SST and TCHPmore » explains nearly 41% of the variance in 36-hr intensity changes, replacing SST with Tdy increases the variance explained to nearly 44%. Our results suggest that representation of the oceanic feedback, even through relatively simple formulations such as Tdy, may improve the performance of statistical hurricane intensity prediction models such as SHIPS.« less
Travelling-wave amplitudes as solutions of the phase-field crystal equation
NASA Astrophysics Data System (ADS)
Nizovtseva, I. G.; Galenko, P. K.
2018-01-01
The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the
The integrated water balance and soil data set of the Rollesbroich hydrological observatory
NASA Astrophysics Data System (ADS)
Qu, Wei; Bogena, Heye R.; Huisman, Johan A.; Schmidt, Marius; Kunkel, Ralf; Weuthen, Ansgar; Schiedung, Henning; Schilling, Bernd; Sorg, Jürgen; Vereecken, Harry
2016-10-01
The Rollesbroich headwater catchment located in western Germany is a densely instrumented hydrological observatory and part of the TERENO (Terrestrial Environmental Observatories) initiative. The measurements acquired in this observatory present a comprehensive data set that contains key hydrological fluxes in addition to important hydrological states and properties. Meteorological data (i.e., precipitation, air temperature, air humidity, radiation components, and wind speed) are continuously recorded and actual evapotranspiration is measured using the eddy covariance technique. Runoff is measured at the catchment outlet with a gauging station. In addition, spatiotemporal variations in soil water content and temperature are measured at high resolution with a wireless sensor network (SoilNet). Soil physical properties were determined using standard laboratory procedures from samples taken at a large number of locations in the catchment. This comprehensive data set can be used to validate remote sensing retrievals and hydrological models, to improve the understanding of spatial temporal dynamics of soil water content, to optimize data assimilation and inverse techniques for hydrological models, and to develop upscaling and downscaling procedures of soil water content information. The complete data set is freely available online (http://www.tereno.net, doi:10.5880/TERENO.2016.001, doi:10.5880/TERENO.2016.004, doi:10.5880/TERENO.2016.003) and additionally referenced by three persistent identifiers securing the long-term data and metadata availability.
Monitoring ATP dynamics in electrically active white matter tracts
Trevisiol, Andrea; Saab, Aiman S; Winkler, Ulrike; Marx, Grit; Imamura, Hiromi; Möbius, Wiebke; Kusch, Kathrin; Nave, Klaus-Armin; Hirrlinger, Johannes
2017-01-01
In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. DOI: http://dx.doi.org/10.7554/eLife.24241.001 PMID:28414271
Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing
Etournay, Raphaël; Popović, Marko; Merkel, Matthias; Nandi, Amitabha; Blasse, Corinna; Aigouy, Benoît; Brandl, Holger; Myers, Gene; Salbreux, Guillaume; Jülicher, Frank; Eaton, Suzanne
2015-01-01
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing. DOI: http://dx.doi.org/10.7554/eLife.07090.001 PMID:26102528
Patterns of call communication between group-housed zebra finches change during the breeding cycle
Gill, Lisa F; Goymann, Wolfgang; Ter Maat, Andries; Gahr, Manfred
2015-01-01
Vocal signals such as calls play a crucial role for survival and successful reproduction, especially in group-living animals. However, call interactions and call dynamics within groups remain largely unexplored because their relation to relevant contexts or life-history stages could not be studied with individual-level resolution. Using on-bird microphone transmitters, we recorded the vocalisations of individual zebra finches (Taeniopygia guttata) behaving freely in social groups, while females and males previously unknown to each other passed through different stages of the breeding cycle. As birds formed pairs and shifted their reproductive status, their call repertoire composition changed. The recordings revealed that calls occurred non-randomly in fine-tuned vocal interactions and decreased within groups while pair-specific patterns emerged. Call-type combinations of vocal interactions changed within pairs and were associated with successful egg-laying, highlighting a potential fitness relevance of calling dynamics in communication systems. DOI: http://dx.doi.org/10.7554/eLife.07770.001 PMID:26441403
Interplay between population firing stability and single neuron dynamics in hippocampal networks
Slomowitz, Edden; Styr, Boaz; Vertkin, Irena; Milshtein-Parush, Hila; Nelken, Israel; Slutsky, Michael; Slutsky, Inna
2015-01-01
Neuronal circuits' ability to maintain the delicate balance between stability and flexibility in changing environments is critical for normal neuronal functioning. However, to what extent individual neurons and neuronal populations maintain internal firing properties remains largely unknown. In this study, we show that distributions of spontaneous population firing rates and synchrony are subject to accurate homeostatic control following increase of synaptic inhibition in cultured hippocampal networks. Reduction in firing rate triggered synaptic and intrinsic adaptive responses operating as global homeostatic mechanisms to maintain firing macro-stability, without achieving local homeostasis at the single-neuron level. Adaptive mechanisms, while stabilizing population firing properties, reduced short-term facilitation essential for synaptic discrimination of input patterns. Thus, invariant ongoing population dynamics emerge from intrinsically unstable activity patterns of individual neurons and synapses. The observed differences in the precision of homeostatic control at different spatial scales challenge cell-autonomous theory of network homeostasis and suggest the existence of network-wide regulation rules. DOI: http://dx.doi.org/10.7554/eLife.04378.001 PMID:25556699
Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus
2017-01-01
Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.24119.001 PMID:28322189
Integrating influenza antigenic dynamics with molecular evolution
Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew
2014-01-01
Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547
Bacterial flagella grow through an injection-diffusion mechanism
Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc
2017-01-01
The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell. DOI: http://dx.doi.org/10.7554/eLife.23136.001 PMID:28262091
Sequence-dependent base pair stepping dynamics in XPD helicase unwinding
Qi, Zhi; Pugh, Robert A; Spies, Maria; Chemla, Yann R
2013-01-01
Helicases couple the chemical energy of ATP hydrolysis to directional translocation along nucleic acids and transient duplex separation. Understanding helicase mechanism requires that the basic physicochemical process of base pair separation be understood. This necessitates monitoring helicase activity directly, at high spatio-temporal resolution. Using optical tweezers with single base pair (bp) resolution, we analyzed DNA unwinding by XPD helicase, a Superfamily 2 (SF2) DNA helicase involved in DNA repair and transcription initiation. We show that monomeric XPD unwinds duplex DNA in 1-bp steps, yet exhibits frequent backsteps and undergoes conformational transitions manifested in 5-bp backward and forward steps. Quantifying the sequence dependence of XPD stepping dynamics with near base pair resolution, we provide the strongest and most direct evidence thus far that forward, single-base pair stepping of a helicase utilizes the spontaneous opening of the duplex. The proposed unwinding mechanism may be a universal feature of DNA helicases that move along DNA phosphodiester backbones. DOI: http://dx.doi.org/10.7554/eLife.00334.001 PMID:23741615
A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells.
Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I
2014-01-01
Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001.
Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells
Freire-Pritchett, Paula; Schoenfelder, Stefan; Várnai, Csilla; Wingett, Steven W; Cairns, Jonathan; Collier, Amanda J; García-Vílchez, Raquel; Furlan-Magaril, Mayra; Osborne, Cameron S; Fraser, Peter; Rugg-Gunn, Peter J; Spivakov, Mikhail
2017-01-01
Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells. DOI: http://dx.doi.org/10.7554/eLife.21926.001 PMID:28332981
Rhythmic coordination of hippocampal neurons during associative memory processing
Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard
2016-01-01
Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus. DOI: http://dx.doi.org/10.7554/eLife.09849.001 PMID:26751780
The dynamic three-dimensional organization of the diploid yeast genome
Kim, Seungsoo; Liachko, Ivan; Brickner, Donna G; Cook, Kate; Noble, William S; Brickner, Jason H; Shendure, Jay; Dunham, Maitreya J
2017-01-01
The budding yeast Saccharomyces cerevisiae is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged Saccharomyces hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the HAS1-TDA1 alleles specifically under galactose induction and saturated growth. This pairing is accompanied by relocalization to the nuclear periphery and requires Nup2, suggesting a role for nuclear pore complexes. Together, these results reveal that the diploid yeast genome has a dynamic and complex 3D organization. DOI: http://dx.doi.org/10.7554/eLife.23623.001 PMID:28537556
Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar
2015-01-01
Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity. DOI: http://dx.doi.org/10.7554/eLife.07224.001 PMID:26151674
Franklin, Nicholas T; Frank, Michael J
2015-01-01
Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments. DOI: http://dx.doi.org/10.7554/eLife.12029.001 PMID:26705698
Devlin, Rebecca; Marques, Catarina A; Paape, Daniel; Prorocic, Marko; Zurita-Leal, Andrea C; Campbell, Samantha J; Lapsley, Craig; Dickens, Nicholas; McCulloch, Richard
2016-01-01
Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating – a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility. DOI: http://dx.doi.org/10.7554/eLife.12765.001 PMID:27228154
Spatially coordinated dynamic gene transcription in living pituitary tissue
Featherstone, Karen; Hey, Kirsty; Momiji, Hiroshi; McNamara, Anne V; Patist, Amanda L; Woodburn, Joanna; Spiller, David G; Christian, Helen C; McNeilly, Alan S; Mullins, John J; Finkenstädt, Bärbel F; Rand, David A; White, Michael RH; Davis, Julian RE
2016-01-01
Transcription at individual genes in single cells is often pulsatile and stochastic. A key question emerges regarding how this behaviour contributes to tissue phenotype, but it has been a challenge to quantitatively analyse this in living cells over time, as opposed to studying snap-shots of gene expression state. We have used imaging of reporter gene expression to track transcription in living pituitary tissue. We integrated live-cell imaging data with statistical modelling for quantitative real-time estimation of the timing of switching between transcriptional states across a whole tissue. Multiple levels of transcription rate were identified, indicating that gene expression is not a simple binary ‘on-off’ process. Immature tissue displayed shorter durations of high-expressing states than the adult. In adult pituitary tissue, direct cell contacts involving gap junctions allowed local spatial coordination of prolactin gene expression. Our findings identify how heterogeneous transcriptional dynamics of single cells may contribute to overall tissue behaviour. DOI: http://dx.doi.org/10.7554/eLife.08494.001 PMID:26828110
A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells
Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I
2014-01-01
Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151
Live imaging reveals the progenitors and cell dynamics of limb regeneration
Alwes, Frederike; Enjolras, Camille; Averof, Michalis
2016-01-01
Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean Parhyale hawaiensis. By live recordings encompassing the first 4-5 days after amputation, we capture the cellular events that contribute to wound closure and morphogenesis of regenerating legs with unprecedented resolution and temporal detail. Using these recordings we are able to track cell lineages, to generate fate maps of the blastema and to identify the progenitors of regenerated epidermis. We find that there are no specialized stem cells for the epidermis. Most epidermal cells in the distal part of the leg stump proliferate, acquire new positional values and contribute to new segments in the regenerating leg. DOI: http://dx.doi.org/10.7554/eLife.19766.001 PMID:27776632
Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela
2016-01-01
To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development. DOI: http://dx.doi.org/10.7554/eLife.14770.001 PMID:27288545
Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J
2017-01-01
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization. DOI: http://dx.doi.org/10.7554/eLife.22001.001 PMID:28288700
Liepe, Juliane; Holzhütter, Hermann-Georg; Bellavista, Elena; Kloetzel, Peter M; Stumpf, Michael PH; Mishto, Michele
2015-01-01
Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage. DOI: http://dx.doi.org/10.7554/eLife.07545.001 PMID:26393687
Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions
Werner, Benjamin; Beier, Fabian; Hummel, Sebastian; Balabanov, Stefan; Lassay, Lisa; Orlikowsky, Thorsten; Dingli, David; Brümmendorf, Tim H; Traulsen, Arne
2015-01-01
We investigate the in vivo patterns of stem cell divisions in the human hematopoietic system throughout life. In particular, we analyze the shape of telomere length distributions underlying stem cell behavior within individuals. Our mathematical model shows that these distributions contain a fingerprint of the progressive telomere loss and the fraction of symmetric cell proliferations. Our predictions are tested against measured telomere length distributions in humans across all ages, collected from lymphocyte and granulocyte sorted telomere length data of 356 healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an increasing stem cell pool during childhood and adolescence and an approximately maintained stem cell population in adults. Furthermore, our method is able to detect individual differences from a single tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell proliferation between individuals and identify abnormal stem cell dynamics, which affects the risk of stem cell related diseases. DOI: http://dx.doi.org/10.7554/eLife.08687.001 PMID:26468615
Dynamics of genomic innovation in the unicellular ancestry of animals
Grau-Bové, Xavier; Torruella, Guifré; Donachie, Stuart; Suga, Hiroshi; Leonard, Guy; Richards, Thomas A; Ruiz-Trillo, Iñaki
2017-01-01
Which genomic innovations underpinned the origin of multicellular animals is still an open debate. Here, we investigate this question by reconstructing the genome architecture and gene family diversity of ancestral premetazoans, aiming to date the emergence of animal-like traits. Our comparative analysis involves genomes from animals and their closest unicellular relatives (the Holozoa), including four new genomes: three Ichthyosporea and Corallochytrium limacisporum. Here, we show that the earliest animals were shaped by dynamic changes in genome architecture before the emergence of multicellularity: an early burst of gene diversity in the ancestor of Holozoa, enriched in transcription factors and cell adhesion machinery, was followed by multiple and differently-timed episodes of synteny disruption, intron gain and genome expansions. Thus, the foundations of animal genome architecture were laid before the origin of complex multicellularity – highlighting the necessity of a unicellular perspective to understand early animal evolution. DOI: http://dx.doi.org/10.7554/eLife.26036.001 PMID:28726632
NASA Technical Reports Server (NTRS)
Rapp, Richard H.
1998-01-01
This paper documents the development of a degree 360 expansion of the dynamic ocean topography (DOT) of the POCM_4B ocean circulation model. The principles and software used that led to the final model are described. A key principle was the development of interpolated DOT values into land areas to avoid discontinuities at or near the land/ocean interface. The power spectrum of the POCM_4B is also presented with comparisons made between orthonormal (ON) and spherical harmonic magnitudes to degree 24. A merged file of ON and SH computed degree variances is proposed for applications where the DOT power spectrum from low to high (360) degrees is needed.
NASA Astrophysics Data System (ADS)
McCoy, D.; Burrows, S. M.; Elliott, S.; Frossard, A. A.; Russell, L. M.; Liu, X.; Ogunro, O. O.; Easter, R. C.; Rasch, P. J.
2014-12-01
Remote marine clouds, such as those over the Southern Ocean, are particularly sensitive to variations in the concentration and chemical composition of aerosols that serve as cloud condensation nuclei (CCN). Observational evidence indicates that the organic content of fine marine aerosol is greatly increased during the biologically active season near strong phytoplankton blooms in certain locations, while being nearly constant in other locations. We have recently developed a novel modeling framework that mechanistically links the organic fraction of submicron sea spray to ocean biogeochemistry (Burrows et al., in discussion, ACPD, 2014; Elliott et al., ERL, 2014). Because of its combination of large phytoplankton blooms and high wind speeds, the Southern Ocean is an ideal location for testing our understanding of the processes driving the enrichment of organics in sea spray aerosol. Comparison of the simulated OM fraction with satellite observations shows that OM fraction is a statistically significant predictor of cloud droplet number concentration over the Southern Ocean. This presentation will focus on predictions from our modeling framework for the Southern Ocean, specifically, the predicted geographic gradients and seasonal cycles in the aerosol organic matter and its functional group composition. The timing and location of a Southern Ocean field campaign will determine its utility in observing the effects of highly localized and seasonal phytoplankton blooms on aerosol composition and clouds. Reference cited: Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S.: A physically-based framework for modelling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys. Discuss., 14, 5375-5443, doi:10.5194/acpd-14-5375-2014, 2014. Elliott, S., Burrows, S. M., Deal, C., Liu, X., Long, M., Ogunro, O., Russell, L. M., and Wingenter O.. "Prospects for simulating macromolecular surfactant chemistry at the ocean-atmosphere boundary." Environmental Research Letters 9, no. 6 (2014): 064012.
A review of the tectonic evolution of the Northern Pacific and adjacent Cordilleran Orogen
NASA Astrophysics Data System (ADS)
Jakob, Johannes; Gaina, Carmen; Johnston, Stephen T.
2014-05-01
Numerous plate kinematic models for the North Pacific realm have been developed since the advent of plate tectonics in the early seventies (e.g Atwater (1970), Mammerickx and Sharman (1988)). Although published kinematic models are consistent with the broad scale features of the North Pacific, the link between plate motions and the evolution of the North American Cordillera remains poorly understood. Part of the problem lies in conflicting interpretations of geological versus paleomagnetic data sets, with the result being a lack of consensus regarding: the paleolocation of key geological units; the paleogeography of terrane formation and amalgamation; the motion, boundaries and even existence of oceanic plates; and the character (e.g. trend of subduction) and position of plate boundaries within the northern Pacific basin. Remnants of the Farallon and Kula plates, and some short-lived microplates, demonstrate the complicated tectonic evolution of the oceanic realm west of the North American margin (e.g. Rea and Dixon (1983); McCrory and Wilson (2013); Shephard et al. (2013)). The creation and destruction of major tectonic plates and microplates has presumably left a record in the Cordilleran orogen of western North America. However, working backward from the geological relationships to plate reconstructions remains difficult. Here we investigate the relationship between the plate motions of the Pacific Ocean and the terrane movements in the North American Cordillera by revising the marine magnetic and gravity anomalies of the northern Pacific. In particular, we reevaluate plate boundaries at times of major changes in plate geometry of the Pacific, Kula, Chinook and Farallon plates from C34n onward. Our focus is also on the plate geometries of the Resurrection, Eshamy and Siletz-Crescent plates during the time between anomaly C26 and C12, and the links between plate interactions and on-shore tectonic events recorded in the geological record of Vancouver Island, including the accretion of the Pacific Rim and Crescent terranes to Wrangellia between C25 and C18. References: Atwater, T. (1970). Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513-3536. McCrory, P. a., & Wilson, D. S. (2013). A kinematic model for the formation of the Siletz-Crescent forearc terrane by capture of coherent fragments of the Farallon and Resurrection plates. Tectonics, 32, 1-19. doi:10.1002/tect.20045 Rea, D. K., & Dixon, J. M. (1983). Late Cretaceous and Paleogene tectonic evolution of the North Pacific Ocean. Earth and Planetary Science Letters, 65, 145-166. Shephard, G. E., Müller, R. D., & Seton, M. (2013). The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Science Reviews, 124, 148-183. doi:10.1016/j.earscirev.2013.05.012 Mammerickx, J., & Sharman, G. F. (1988). Tectonic evolution of the North Pacific during the Cretaceous quiet period. Journal of Geophysical Research, 93(B4), 3009-3024. doi:10.1029/JB093iB04p03009
Lagrangian analysis of multi-satellite data in support of open ocean Marine Protected Area design
NASA Astrophysics Data System (ADS)
Della Penna, Alice; Koubbi, Philippe; Cotté, Cedric; Bon, Cécile; Bost, Charles-André; d'Ovidio, Francesco
2017-06-01
Compared to ecosystem conservation in territorial seas, protecting the open ocean has peculiar geopolitical, economic and scientific challenges. One of the major obstacle is defining the boundary of an open ocean Marine Protected Area (MPA). In contrast to coastal ecosystems, which are mostly constrained by topographic structures fixed in time, the life of marine organisms in the open ocean is entrained by fluid dynamical structures like eddies and fronts, whose lifetime occurs on ecologically-relevant timescales. The position of these highly dynamical structures can vary interannually by hundreds of km, and so too will regions identified as ecologically relevant such as the foraging areas of marine predators. Thus, the expected foraging locations suggested from tracking data cannot be directly extrapolated beyond the year in which the data were collected. Here we explore the potential of Lagrangian methods applied to multisatellite data as a support tool for a MPA proposal by focusing on the Crozet archipelago oceanic area (Indian Sector of the Southern Ocean). By combining remote sensing with biologging information from a key marine top predator (Eudyptes chrysolophus, or Macaroni penguin) of the Southern Ocean foodweb, we identify a highly dynamic branch of the Subantarctic front as a foraging hotspot. By tracking this feature in historical satellite data (1993-2012) we are able to extrapolate the position of this foraging ground beyond the years in which tracking data are available and study its spatial variability.
Wootton, J Timothy; Pfister, Catherine A; Forester, James D
2008-12-02
Increasing global concentrations of atmospheric CO(2) are predicted to decrease ocean pH, with potentially severe impacts on marine food webs, but empirical data documenting ocean pH over time are limited. In a high-resolution dataset spanning 8 years, pH at a north-temperate coastal site declined with increasing atmospheric CO(2) levels and varied substantially in response to biological processes and physical conditions that fluctuate over multiple time scales. Applying a method to link environmental change to species dynamics via multispecies Markov chain models reveals strong links between in situ benthic species dynamics and variation in ocean pH, with calcareous species generally performing more poorly than noncalcareous species in years with low pH. The models project the long-term consequences of these dynamic changes, which predict substantial shifts in the species dominating the habitat as a consequence of both direct effects of reduced calcification and indirect effects arising from the web of species interactions. Our results indicate that pH decline is proceeding at a more rapid rate than previously predicted in some areas, and that this decline has ecological consequences for near shore benthic ecosystems.
Salisbury, Joseph; Vandemark, Douglas; Jonsson, Bror; Balch, William; Chakraborty, Sumit; Lohrenz, Steven; Chapron, Bertrand; Hales, Burke; Mannino, Antonio; Mathis, Jeremy T.; Reul, Nicolas; Signorini, Sergio; Wanninkhof, Rik; Yates, Kimberly K.
2016-01-01
Space-based observations offer unique capabilities for studying spatial and temporal dynamics of the upper ocean inorganic carbon cycle and, in turn, supporting research tied to ocean acidification (OA). Satellite sensors measuring sea surface temperature, color, salinity, wind, waves, currents, and sea level enable a fuller understanding of a range of physical, chemical, and biological phenomena that drive regional OA dynamics as well as the potentially varied impacts of carbon cycle change on a broad range of ecosystems. Here, we update and expand on previous work that addresses the benefits of space-based assets for OA and carbonate system studies. Carbonate chemistry and the key processes controlling surface ocean OA variability are reviewed. Synthesis of present satellite data streams and their utility in this arena are discussed, as are opportunities on the horizon for using new satellite sensors with increased spectral, temporal, and/or spatial resolution. We outline applications that include the ability to track the biochemically dynamic nature of water masses, to map coral reefs at higher resolution, to discern functional phytoplankton groups and their relationships to acid perturbations, and to track processes that contribute to acid variation near the land-ocean interface.
NASA Astrophysics Data System (ADS)
Galy, A.; Carder, E.; Elderfield, H.
2006-12-01
It has been long recognised that the input of Mg in the ocean by river is removed by precipitation of Mg-rich bearing phases, either directly from the ocean such as dolomite or through hydrothermal circulation in the oceanic crust. The sampling of hydrothermal fluids demonstrated the efficiency of Mg consumption by the alteration of the oceanic crust, even at temperatures as low as 15°. For high-temperature fluids vented through black or white smokers in the vicinity of the ridge, the Mg concentration is up to 50 time lower than in seawater, and the close relationship between chlorine and Mg led to the idea that seawater was feeding the hydrothermal system and that Mg is quantitatively removed from it during high-T° alteration, the so called zero Mg hypothesis. Despite some hint for a non zero Mg hydrothermal end-member for a handful sites, the low concentration of Mg in oceanic hydrothermal fluids (around 1 mmol/l) has been mainly attributed to contamination by seawater during the sampling. Here we present Mg isotopic composition of 14 seawater samples from the Atlantic, Pacific and Indian Oceans and the Mediterranean and Red Seas and covering a range of depth of almost 5km and 26 hydrothermal fluids from 7 sites in the Atlantic and Pacific Oceans with temperature from 15° to 380°C. We find the magnesium isotope composition of seawater to be constant, with a δ^{26}Mg = -0.82±0.10 ‰ relative to the DSM3 standard. This value is consistent with a long residence time for Mg in seawater. In addition, out of the 26 hydrothermal fluids studied, more than 58% differ from seawater for their Mg isotopic composition by more than 2σ. This number rises up to 88% at 2σmean level and the shift is systematic with the fluids being either indistinguishable from seawater or enriched in light isotopes by up to 2.4‰ in δ^{26}Mg. This clearly demonstrates that fluids having low Mg concentrations are not solely bearing Mg added by contamination during sampling. The isotopic and concentration data are consistent with the preferential incorporation of heavy isotopes of Mg during the weathering and already similar to the mechanisms found in soil (Tipper et al., 2006a, doi:10.1016/j.epsl.2006.04.033). The fractionation factor (α) is around 1.001 for the high-T° fluids, while the low temperature fluids, samples off axis during the ODP Leg 168 (Est of Juan de Fuca Ridge), requires a more variable and higher α of 1.001 to 1.003. At low temperature, the α is somehow greater that the estimate made from the soil formation but the T-α relationship is consistent with the expected behaviour for an equilibrium isotopic fractionation. However, such a large α implies that the significant flux of the low-T component of the hydrothermal circulation required to fulfil the heat budget of the oceanic lithosphere would buffer any isotopic mass balance calculation of the oceanic Mg to an unsustainable value (e.g. Tipper et al., 2006b, doi:10.1016/j.epsl.2006.07.037). Therefore, either the low-T hydrothermal circulation leaves the Mg unaffected, or the off axis fluids from the ODP Leg 168 are not representative of the global low-T hydrothermal circulation. Given that Mg gets significantly re-incorporated in soil processes, we favour the later hypothesis and propose that a significant part of the low-T hydrothermal circulation is occurring around relief of the oceanic floor, including seamounts, with a different residence-time and chemistry than what have been described in the ODP Leg 168 setting.
Research Spotlight: New method to assess coral reef health
NASA Astrophysics Data System (ADS)
Tretkoff, Ernie
2011-03-01
Coral reefs around the world are becoming stressed due to rising temperatures, ocean acidification, overfishing, and other factors. Measuring community level rates of photosynthesis, respiration, and biogenic calcification is essential to assessing the health of coral reef ecosystems because the balance between these processes determines the potential for reef growth and the export of carbon. Measurements of biological productivity have typically been made by tracing changes in dissolved oxygen in seawater as it passes over a reef. However, this is a labor-intensive and difficult method, requiring repeated measurements. (Geophysical Research Letters, doi:10.1029/2010GL046179, 2011)
Munday, Philip L
2017-09-01
Ocean acidification, caused by the uptake of additional carbon dioxide (CO 2 ) from the atmosphere, will have far-reaching impacts on marine ecosystems (Gattuso & Hansson 2011 Ocean acidification Oxford University Press). The predicted changes in ocean chemistry will affect whole biological communities and will occur within the context of global warming and other anthropogenic stressors; yet much of the biological research conducted to date has tested the short-term responses of single species to ocean acidification conditions alone. While an important starting point, these studies may have limited predictive power because they do not account for possible interactive effects of multiple climate change drivers or for ecological interactions with other species. Furthermore, few studies have considered variation in responses among populations or the evolutionary potential within populations. Therefore, our knowledge about the potential for marine organisms to adapt to ocean acidification is extremely limited. In 2015, two of the pioneers in the field, Ulf Riebesell and Jean-Pierre Gattuso, noted that to move forward as a field of study, future research needed to address critical knowledge gaps in three major areas: (i) multiple environmental drivers, (ii) ecological interactions and (iii) acclimation and adaptation (Riebesell and Gattuso 2015 Nat. Clim. Change 5 , 12-14 (doi:10.1038/nclimate2456)). In May 2016, more than 350 researchers, students and stakeholders met at the 4th International Symposium on the Ocean in a High-CO 2 World in Hobart, Tasmania, to discuss the latest advances in understanding ocean acidification and its biological consequences. Many of the papers presented at the symposium reflected this shift in focus from short-term, single species and single stressor experiments towards multi-stressor and multispecies experiments that address knowledge gaps about the ecological impacts of ocean acidification on marine communities. The nine papers in this Special Feature are from authors who attended the symposium and address cutting-edge questions and emerging topics in ocean acidification research, across the taxonomic spectrum from plankton to top predators. They cover the three streams of research identified as crucial to understanding the biological impacts of ocean acidification: (i) the relationship with other environmental drivers, (ii) the effects on ecological process and species interactions, and (iii) the role that individual variation, phenotypic plasticity and adaptation will have in shaping the impacts of ocean acidification and warming on marine ecosystems. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Berx, Barbara; Payne, Mark R.
2017-04-01
Scientific interest in the sub-polar gyre of the North Atlantic Ocean has increased in recent years. The sub-polar gyre has contracted and weakened, and changes in circulation pathways have been linked to changes in marine ecosystem productivity. To aid fisheries and environmental scientists, we present here a time series of the Sub-Polar Gyre Index (SPG-I) based on monthly mean maps of sea surface height. The established definition of the SPG-I is applied, and the first EOF (empirical orthogonal function) and PC (principal component) are presented. Sensitivity to the spatial domain and time series length are explored but found not to be important factors in terms of the SPG-I's interpretation. Our time series compares well with indices presented previously. The SPG-I time series is freely available online (http://dx.doi.org/10.7489/1806-1), and we invite the community to access, apply, and publish studies using this index time series.
Clouds not important for control of short-term surface temperatures
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-01-01
In two recent papers, R. W. Spencer and W. D. Braswell (Remote Sens., 3(8), 1603- 1613, doi:10.3390/rs3081603, 2011) (SB) and R. S. Lindzen and Y.-S. Choi (Asia Pac. J. Atmos. Sci., 47(4), 377-390, doi:10.1007/s13143-011-0023-x, 2011) (LC) argue that clouds act as a primary initiator of surface temperature changes in Earth's climate system. The two sets of authors reached this conclusion by developing a method that tries to determine the Earth's surface temperature by calculating how much energy is stored in the ocean's upper layers, how much of this heat is transferred to the rest of the climate system, how clouds affect the rate at which energy escapes Earth's atmosphere, and how the surface's energy flux changes with temperature. Both studies spurred substantial debate within the media and the public, with the research by SB causing the editor of the journal in which it was published to resign, claiming it should not have been accepted by the journal. Assessing the two studies, Dessler found what he suggests are a number of methodological errors.
Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland
NASA Astrophysics Data System (ADS)
Kjellerup Kjeldsen, Kristian; Weinrebe, Reimer Wilhelm; Bendtsen, Jørgen; Anker Bjørk, Anders; Kjær, Kurt Henrik
2017-08-01
We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1-2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater. Data are available through the PANGAEA website at https://doi.pangaea.de/10.1594/PANGAEA.860627.
Charney's Influence on Modern Oceanography
NASA Astrophysics Data System (ADS)
Cane, M. A.
2017-12-01
In this talk I will review some of Jule Charney's impacts on current oceanographic research. He was of course a major seminal figure in geophysical fluid dynamics, an approach to understanding the atmosphere and oceans that has been thoroughly absorbed in contemporary thinking. In oceanography, his publications make vorticity dynamics the centerpiece of his analysis. Here I pursue two other aspects of his work. The first is to note that his 1955 paper "The Gulf Stream as an inertial boundary layer" appears to be the earliest numerical model in oceanography. The second is that his work on the equatorial undercurrent leads to a simplification of equatorial ocean structure that was exploited by Zebiak and Cane in their model for ENSO, and thus structures later views of how equatorial ocean dynamics influence sea surface temperature.
Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid
NASA Astrophysics Data System (ADS)
Gao, Tong; Betterton, Meredith D.; Jhang, An-Sheng; Shelley, Michael J.
2017-09-01
We analyze one of the simplest active suspensions with complex dynamics: a suspension of immotile "extensor" particles that exert active extensile dipolar stresses on the fluid in which they are immersed. This is relevant to several experimental systems, such as recently studied tripartite rods that create extensile flows by consuming a chemical fuel. We first describe the system through a Doi-Onsager kinetic theory based on microscopic modeling. This theory captures the active stresses produced by the particles that can drive hydrodynamic instabilities, as well as the steric interactions of rodlike particles that lead to nematic alignment. This active nematic system yields complex flows and disclination defect dynamics very similar to phenomenological Landau-deGennes Q -tensor theories for active nematic fluids, as well as by more complex Doi-Onsager theories for polar microtubule-motor-protein systems. We apply the quasiequilibrium Bingham closure, used to study suspensions of passive microscopic rods, to develop a nonstandard Q -tensor theory. We demonstrate through simulation that this B Q -tensor theory gives an excellent analytical and statistical accounting of the suspension's complex dynamics, at a far reduced computational cost. Finally, we apply the B Q -tensor model to study the dynamics of extensor suspensions in circular and biconcave domains. In circular domains, we reproduce previous results for systems with weak nematic alignment, but for strong alignment we find unusual dynamics with activity-controlled defect production and absorption at the boundaries of the domain. In biconcave domains, a Fredericks-like transition occurs as the width of the neck connecting the two disks is varied.
NASA Astrophysics Data System (ADS)
Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas
2016-04-01
In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake-level time series from Lagos Argentino and Viedma yields the amplitudes and phases of the lake tides for the four major tidal constituents M2, S2, O1 and K1. The maximum amplitude, corresponding to the semi-diurnal moon tide M2 in Lago Argentino, amounts to 3 mm. For the four lakes under investigation the theoretical amplitudes and phases of seven constituents (Q1, O1, P1, K1, N2, M2 and S2) are modelled accounting for the contributions of both the solid earth's body tides and the ocean tidal loading (Marderwald 2014). Both contributions involve a deformation of the earth surface and of the equipotential surfaces of the gravity field. For the load tide computation the global ocean tide model EOT11a (Savcenko and Bosch, 2012) and the Gutenberg-Bullen A earth model (Farrell, 1972) was applied and the conservation of water volume is taken into account. The comparison of the tidal signal extracted from the lake-level observations in Lagos Argentino and Viedma with the lake tide models indicates a phase shift which is most likely explained by an 1 hour phase lag of the employed global ocean tide model in the region of the highly fragmented Pacific coast. REFERENCES: Farrell, W. E., (1972). Deformation of the Earth by Surface Loads. Rev. Geophy. Space Phy., 10(3):761-797. Ivins, E., James, T., 2004. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 31 (L24613). Doi:10.1029/2004GL021500. Klemann, V., E. R. Ivins, Z. Martinec, and D. Wolf (2007), Models of active glacial isostasy roofing warm subduction: Case of the South Patagonian Ice Field, J. Geophys. Res., 112, B09405, doi: 10.1029/2006JB004818. Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., Dietrich, R., (2014). Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophysical Research Letters, DOI: 10.1002/2013GL058419. Marderwald ER, 2014. Modelado de las mareas de grandes lagos patagónicos. Licenciatura thesis, Universidad Nacional de La Plata, Argentina. Richter, A., Marderwald, E., Hormaechea, J.L., Mendoza, L., Perdomo, R., Connon, G., Scheinert, M., Horwath, M., Dietrich, R. (2015): Lake-level variations and tides in Lago Argentino, Patagonia: insights from pressure tide gauge records. Journal of Limnology (accepted), doi:10.4081/jlimnol.2015.1189. Richter A, Hormaechea JL, Dietrich R, Perdomo R, Fritsche M, Del Cogliano D, Liebsch G, Mendoza L, 2009. Anomalous ocean load tide signal observed in lake-level variations in Tierra del Fuego. Geophys. Res. Lett. 36:L05305. Savcenko, R., and W. Bosch (2012), EOT11a - Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry. Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Report Number 89.
NASA Technical Reports Server (NTRS)
Drinkwater, Mark R.
1999-01-01
Strong seasonal and interannual signals in Antarctic bottom-water outflow remain unexplained yet are highly correlated with anomalies in net sea-ice growth in coastal polynyas. The mechanisms responsible for driving salination and replenishment and rejuvenation of the dense shelf "source" waters likely also generate pulses of bottom water outflow. The objective of this research is to investigate time-scales of variability in the dynamics of sea-ice in the Southern Ocean in order to determine the primary sites for production of dense shelf waters. We are using a merged satellite/buoy sea-ice motion data set for the period 1978-present day to compute the dynamics of opening and closing of coastal polynyas over the continental shelf. The Ocean Circulation and Climate Advanced Model (OCCAM) ocean general circulation model with coupled sea-ice dynamics is presently forced using National Center for Environmental Prediction (NCEP) data to simulate fluxes and the salination impact of the ocean shelf regions. This work is relevant in the context of measuring the influence of polar sea-ice dynamics upon polar ocean characteristics, and thereby upon global thermohaline ocean circulation. Interannual variability in simulated net freezing rate in the Southern Weddell Sea is shown for the period 1986-1993. There is a pronounced maximum of ice production in 1988 and minimum in 1991 in response to anomalies in equatorward meridional wind velocity. This follows a similar approximate 8-year interannual cycle in Sea Surface Temperature (SST) and satellite-derived ice-edge anomalies reported elsewhere as the "Antarctic Circumpolar Wave." The amplitude of interannual fluctuations in annual net ice production are about 40% of the mean value, implying significant interannual variance in brine rejection and upper ocean heat loss. Southward anomalies in wind stress induce negative anomalies in open water production, which are observed in passive microwave satellite images. Thus, cycles of enhanced poleward wind stress reduce ice growth by compacting the ice along the coastline and closing open water in leads and polynyas. Model simulations confirm that years of low ice production, such as 1991, coincide with years of lower than normal bottom water outflow. Future plans include the assimilation of satellite ice concentrations and ice drift dynamics to more accurately constrain boundary conditions in the model.
Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation
NASA Astrophysics Data System (ADS)
Brasseur, L. H.; Banahan, S.; Cowles, T.
2009-05-01
The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.
NASA Astrophysics Data System (ADS)
Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.
2015-12-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.
Coupled ice-ocean dynamics in the marginal ice zones Upwelling/downwelling and eddy generation
NASA Technical Reports Server (NTRS)
Hakkinen, S.
1986-01-01
This study is aimed at modeling mesoscale processes such as upwelling/downwelling and ice edge eddies in the marginal ice zones. A two-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model through interfacial stresses. The parameters of the ocean model were chosen so that the dynamics would be nonlinear. The model was tested by studying the dynamics of upwelling. Wings parallel to the ice edge with the ice on the right produce upwelling because the air-ice momentum flux is much greater than air-ocean momentum flux; thus the Ekman transport is greater than the ice than in the open water. The stability of the upwelling and downwelling jets is discussed. The downwelling jet is found to be far more unstable than the upwelling jet because the upwelling jet is stabilized by the divergence. The constant wind field exerted on a varying ice cover will generate vorticity leading to enhanced upwelling/downwelling regions, i.e., wind-forced vortices. Steepening and strengthening of vortices are provided by the nonlinear terms. When forcing is time-varying, the advection terms will also redistribute the vorticity. The wind reversals will separate the vortices from the ice edge, so that the upwelling enhancements are pushed to the open ocean and the downwelling enhancements are pushed underneath the ice.
Spacebased Observation of Global Ocean Surface Wind Fields
NASA Technical Reports Server (NTRS)
Polito, P. S.; Liu, W. T.
1997-01-01
The ocean and the atmosphere are dynamically coupled by the transport of momentum which is driven by the wind shear at the sea surface. However, in situ wind measurements are relatively sparse over most of the world's ocean and are largely limited to the locations of shipping routes.
Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaqu...
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Observations of how the solar wind interacts with earth's magnetosphere, and its dynamical response, are increasingly becoming a data analytics challenge. Constellations of satellites observe the solar corona, the upstream solar wind and throughout earth's magnetosphere. These data are multipoint in space and extended in time, so in principle are ideal for study using dynamical networks to characterize the full time evolving spatial pattern. We focus here on analysis of data from the full set of 100+ auroral ground based magnetometer stations that have been collated by SuperMAG. Spatio-temporal patterns of correlation between the magnetometer time series can be used to form a dynamical network [1]. The properties of the network can then be captured by (time dependent) network parameters. This offers the possibility of characterizing detailed spatio-temporal pattern by a few parameters, so that many events can then be compared [2] with each other. Whilst networks are in widespread use in the data analytics of societal and commercial data, there are additional challenges in their application to physical timeseries. Determining whether two nodes (here, ground based magnetometer stations) are connected in a network (seeing the same dynamics) requires normalization w.r.t. the detailed sensitivities and dynamical responses of specific observing stations and seasonal conductivity variations and we have developed methods to achieve this dynamical normalization. The detailed properties of the network capture time dependent spatial correlation in the magnetometer responses and we will show how this can be used to infer a transient current system response to magnetospheric activity. [l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).
Probing of Fast Chemical Dynamics at High Pressures and Temperatures using Pulsed Laser Techniques
2014-12-17
Alexander F. Goncharov, N . Subramanian, T. R. Ravindran, Maddury Somayazulu, Vitali B. Prakapenka, Russell J. Hemley. Polymorphism of dense, hot oxygen...2011): 0. doi: 10.1021/jp204642b Alexander F. Goncharov, N . Subramanian, T. R. Ravindran, Maddury Somayazulu, Vitali B. Prakapenka, Russell J...study the evolution and dynamics of planets and stars. (a) Papers published in peer-reviewed journals ( N /A for none) Enter List of papers submitted or
Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions
2016-08-19
New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser ...Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser -plasma,mass-limited, fast electrons, sheath...field Abstract Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron
A process-level attribution of the annual cycle of surface temperature over the Maritime Continent
NASA Astrophysics Data System (ADS)
Li, Yana; Yang, Song; Deng, Yi; Hu, Xiaoming; Cai, Ming
2017-12-01
The annual cycle of the surface temperature over the Maritime Continent (MC) is characterized by two periods of rapid warming in March-April and September-October, respectively, and a period of rapid cooling in June-July. Based upon an analysis of energy balance within individual atmosphere-surface columns, the seasonal variations of surface temperature in the MC are partitioned into partial temperature changes associated with various radiative and non-radiative (dynamical) processes. The seasonal variations in direct solar forcing and surface latent heat flux show the largest positive contributions to the annual cycle of MC surface temperature while the changes in oceanic dynamics (including ocean heat content change) work against the temperature changes related to the annual cycle. The rapid warming in March-April is mainly a result of the changes in atmospheric quick processes and ocean-atmosphere coupling such as water vapor, surface latent heat flux, clouds, and atmospheric dynamics while the contributions from direct solar forcing and oceanic dynamics are negative. This feature is in contrast to that associated with the warming in September-October, which is driven mainly by the changes in solar forcing with a certain amount of contributions from water vapor and latent heat flux change. More contribution from atmospheric quick processes and ocean-atmosphere coupling in March-April coincides with the sudden northward movement of deep convection belt, while less contribution from these quick processes and coupling is accompanied with the convection belt slowly moving southward. The main contributors to the rapid cooling in June-July are the same as those to the rapid warming in March-April, and the cooling is also negatively contributed by direct solar forcing and oceanic dynamics. The changes in water vapor in all three periods contribute positively to the change in total temperature and they are associated with the change in the location of the center of large-scale moisture convergence during the onset and demise stages of the East Asian summer monsoon.
Integrated bio-magnetostratigraphy of ODP Site 709 (equatorial Indian Ocean).
NASA Astrophysics Data System (ADS)
Villa, Giuliana; Fioroni, Chiara; Florindo, Fabio
2015-04-01
Over the last decade, calcareous nannofossil biostratigraphy of the lower Eocene-Oligocene sediments has shown great potential, through identification of several new nannofossil species and bioevents (e.g. Fornaciari et al., 2010; Bown and Dunkley Jones, 2012; Toffanin et al., 2013). These studies formed the basis for higher biostratigraphic resolution leading to definition of a new nannofossil biozonation (Agnini et al., 2014). In this study, we investigate the middle Eocene-lower Oligocene sediments from ODP Hole 709C (ODP Leg 115) by means of calcareous nannofossils and magnetostratigraphy. Ocean Drilling Program (ODP) Site 709 was located in the equatorial Indian Ocean and biostratigraphy has been investigated in the nineties (Okada, 1990; Fornaciari et al., 1990) while paleomagnetic data from the Initial Report provided only a poorly constrained magnetostratigraphic interpretation, thus the cored succession was dated only by means of biostratigraphy. Our goal is to test the reliability in the Indian Ocean of the biohorizons recently identified at Site 711 (Fioroni et al., in press), by means of high resolution sampling, new taxonomic updates, quantitative analyses on calcareous nannofossils allowed to increase the number of useful bioevents and to compare their reliability and synchroneity. The new magnetostratigraphic analyses and integrated stratigraphy allow also to achieve an accurate biochronology of the time interval spanning Chrons C20 (middle Eocene) and C12 (early Oligocene). In addition, this equatorial site represents an opportunity to study the carbonate accumulation history and the large fluctuations of the carbonate compensation depth (CCD) during the Eocene (e.g. Pälike et al., 2012). The investigated interval encompasses the Middle Eocene Climatic Optimum (MECO), and the long cooling trend that leads to the Oligocene glacial state. By means of our new bio-magnetostratigraphic data and paleoecological results we provide further insights on nannofossil assemblage response to the paleoclimatic changes that led to the Oligocene glacial state. References Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., Rio, D., 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, doi:10.1127/0078-0421/2014/0042. Bown, P. R., Dunkley Jones, T., 2012. Calcareous nannofossils from the Paleogene equatorial Pacific (IODP Expedition 320 Sites U1331-1334). Journal of Nannoplankton Research 32(2), 3-51. Fioroni, C., Villa, G., Persico, D., Jovane L. (in press). Middle Eocene-lower Oligocene Calcareous Nannofossil biostratigraphy and paleoceanographic implications from Site 711(equatorial Indian Ocean). Mar. Micropal. Fornaciari, E., Raffi, I., Rio, D., Villa, G., Backman, J., Olaffson, G., 1990. Quantitative distribution patterns of Oligocene and Miocene calcareous nannofossils from the western equatorial Indian Ocean. In: Duncan, R. A., Backman, J., Peterson, L. C., Proceedings of the Ocean Drilling Program, Scientific Resuls, 115, 237-254. Fornaciari, E., Agnini, C., Catanzariti, R., Rio, D., Bolla, E.M. , Valvasoni, E. 2010. Mid-latitude calcareous nannofossil biostratigraphy, biochronology and evolution across the middle to late Eocene transition. Stratigraphy 7, 229-264. Okada, H., 1990. Quaternary and Paleogene calcareous nannofossils, Leg 115. In Duncan, R.A., Backman, J., Peterson, L.C., et al., (Eds), Proceedings ODP, Scientific Results 115, 129-174. College Station, TX: Ocean Drilling Program. Pälike, H. et al., 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609-615, doi:10.1038/nature11360. Toffanin, F., Agnini, C., Rio, D., Acton, G., Westerhold, T., 2013. Middle Eocene to early Oligocene calcareous nannofossil biostratigraphy at IODP Site U1333(equatorial Pacific). Micropaleontology 59(1), 69-82.
NASA Astrophysics Data System (ADS)
Khachatryan, A. G.; van Goor, F. A.; Boller, K.-J.; Reitsma, A. J.; Jaroszynski, D. A.
2004-12-01
Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick
2014-05-01
Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.
Effect of Global Warming and Increased Freshwater Flux on Northern Hemispheric Cooling
NASA Astrophysics Data System (ADS)
Girihagama, L. N.; Nof, D.
2016-02-01
We wish to answer the, fairly complicated, question of whether global warming and an increased freshwater flux can cause Northern Hemispheric warming or cooling. Starting from the assumption that the ocean is the primary source of variability in the Northern hemispheric ocean-atmosphere coupled system, we employed a simple non-linear one-dimensional coupled ocean-atmosphere model. The simplicity of the model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean-atmosphere heat fluxes. The model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep-water formation region. Cooling in both the ocean and atmosphere can cause reduction of the ocean-atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.08 Sv. For a constant atmospheric zonal flow, there is minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.
Vertical resolution of baroclinic modes in global ocean models
NASA Astrophysics Data System (ADS)
Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.
2017-05-01
Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
1999-01-01
A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
NASA Astrophysics Data System (ADS)
Han, W.; Li, Y.; Shinoda, T.; Wang, C.; Ravichandran, M.; Wang, J. W.
2014-12-01
Intraseasonal sea surface temperature (SST) variability over the Seychelles-Chagos thermocline ridge (SCTR) induced by boreal wintertime Madden-Julian oscillations (MJOs) is investigated by performing a series of OGCM experiments with improved model configuration and the recently available high quality satellite forcing fields. The impact of the ocean interannual variation of the thermocline depth -represented by the depth of 20C isotherm (D20) - in the SCTR is also assessed. The OGCM main run solution agrees well with the observations. The results show that for the 2001-2011 period, surface shortwave radiation (SWR), turbulent heat fluxes associated with wind speed, and wind stress-driven ocean dynamical processes are all important in causing the MJO-related intraseasonal SST variability in the SCTR region. Overall, forcing by SWR contributes ~31%, and forcing by winds (via both surface turbulent heat flux and ocean dynamics) contributes ~62%. The contribution of turbulent heat flux associated with wind speed is ~39% and that of wind-stress driven ocean dynamics is ~23%. The contribution of ocean dynamics, however, is considerably larger during strong ("prime") MJO events under "strong" thermocline condition. The overall effect of interannual variability of D20 on intraseasonal SST during 2001-2011 is significant in the eastern part of the SCTR (70E-85E), where the intraseasonal SST amplitudes are strengthened by about 20%. In general, a shallower/deeper SCTR favors larger/smaller SST responses to the MJO forcing. In the eastern SCTR, both the heat flux forcing and entrainment are greatly amplified under the strong SCTR condition, but only slightly suppressed under the weak SCTR condition, leading to an overall strengthening effect on intraseasonal SST variability.
Flow networks for Ocean currents
NASA Astrophysics Data System (ADS)
Tupikina, Liubov; Molkenthin, Nora; Marwan, Norbert; Kurths, Jürgen
2014-05-01
Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e., by its high computational complexity, we here introduce a new, discrete construction of flow-networks, which is then applied to static and dynamic velocity fields. Analyzing the flow-networks of prototypical flows we find that our approach can highlight the zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. We also apply the method to time series data of the Equatorial Pacific Ocean Current and the Gulf Stream ocean current for the changing velocity fields, which could not been done before, and analyse the properties of the dynamical system. Flow-networks can be powerful tools to theoretically understand the step from system's dynamics to network's topology that can be analyzed using network measures and is used for shading light on different climatic phenomena.
Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.
2009-01-01
The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.
A Compilation of Global Bio-Optical in Situ Data for Ocean-Colour Satellite Applications
NASA Technical Reports Server (NTRS)
Valente, Andre; Sathyendranath, Shubha; Brotus, Vanda; Groom, Steve; Grant, Michael; Taberner, Malcolm; Antoine, David; Arnone, Robert; Balch, William M.; Barker, Kathryn;
2016-01-01
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GePCO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594PANGAEA.854832 (Valente et al., 2015).
Long-term dynamics of chlorophyll concentration in the ocean surface layer (by space data)
NASA Astrophysics Data System (ADS)
Shevyrnogov, A.; Vysotskaya, G.
To preserve the biosphere and to use it efficiently, it is necessary to gain a deep insight into the dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. These investigations are, however, very labor-consuming, because of the difficulties related to the accessibility of the water surface and its large size. In this work long-term changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years from 1979 to 1986 and the SeaWiFS data from 1997 to 2004. It has been shown that the average chlorophyll concentration calculated in all investigated areas varies moderately. However, when analyzing spatially local trends, the areas have been detected that have significant rise and fall of chlorophyll concentrations. Some interesting features of the long-term dynamics of chlorophyll concentration have been found. The opposite directions of long-term trends (essential increase or decrease) cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings, etc.). The measured chlorophyll concentration results from the balance between production and destruction processes. Which process dominates is determined by various hydrophysical, hydrobiological, and climatic processes, leading to sharp rises or falls of the concentration. It is important to estimate the scale of the areas in which this or that process dominates. Therefore, the study addresses not only the dynamics of the mean value but also the dynamics of the areas in which the dominance of certain factors has led to a sharp fall or rise in chlorophyll concentration. Thus, the obtained results can be used to estimate long-term changes in the ocean biota.
Statistical and dynamical assessment of land-ocean-atmosphere interactions across North Africa
NASA Astrophysics Data System (ADS)
Yu, Yan
North Africa is highly vulnerable to hydrologic variability and extremes, including impacts of climate change. The current understanding of oceanic versus terrestrial drivers of North African droughts and pluvials is largely model-based, with vast disagreement among models in terms of the simulated oceanic impacts and vegetation feedbacks. Regarding oceanic impacts, the relative importance of the tropical Pacific, tropical Indian, and tropical Atlantic Oceans in regulating the North African rainfall variability, as well as the underlying mechanism, remains debated among different modeling studies. Classic theory of land-atmosphere interactions across the Sahel ecotone, largely based on climate modeling experiments, has promoted positive vegetation-rainfall feedbacks associated with a dominant surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback with its underlying albedo mechanism, nor its relative importance compared with oceanic drivers, has been convincingly demonstrated up to now using observational data. Here, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied in order to identify the observed oceanic and terrestrial drivers of North African climate and quantify their impacts. The reliability of the statistical GEFA method is first evaluated against dynamical experiments within the Community Earth System Model (CESM). In order to reduce the sampling error caused by short data records, the traditional GEFA approach is refined through stepwise GEFA, in which unimportant forcings are dropped through stepwise selection. In order to evaluate GEFA's reliability in capturing oceanic impacts, the atmospheric response to a sea-surface temperature (SST) forcing across the tropical Pacific, tropical Indian, and tropical Atlantic Ocean is estimated independently through ensembles of dynamical experiments and compared with GEFA-based assessments. Furthermore, GEFA's performance in capturing terrestrial impacts is evaluated through ensembles of fully coupled CESM dynamical experiments, with modified leaf area index (LAI) and soil moisture across the Sahel or West African Monsoon (WAM) region. The atmospheric responses to oceanic and terrestrial forcings are generally consistent between the dynamical experiments and statistical GEFA, confirming GEFA's capability of isolating the individual impacts of oceanic and terrestrial forcings on North African climate. Furthermore, with the incorporation of stepwise selection, GEFA can now provide reliable estimates of the oceanic and terrestrial impacts on the North African climate with the typical length of observational datasets, thereby enhancing the method's applicability. After the successful validation of GEFA, the key observed oceanic and terrestrial drivers of North African climate are identified through the application of GEFA to gridded observations, remote sensing products, and reanalyses. According to GEFA, oceanic drivers dominate over terrestrial drivers in terms of their observed impacts on North African climate in most seasons. Terrestrial impacts are comparable to, or more important than, oceanic impacts on rainfall during the post-monsoon across the Sahel and WAM region, and after the short rain across the Horn of Africa (HOA). The key ocean basins that regulate North African rainfall are typically located in the tropics. While the observed impacts of SST variability across the tropical Pacific and tropical Atlantic Oceans on the Sahel rainfall are largely consistent with previous model-based findings, minimal impacts from tropical Indian Ocean variability on Sahel rainfall are identified in observations, in contrast to previous modeling studies. The current observational analysis verifies model-hypothesized positive vegetation-rainfall feedback across the Sahel and HOA, which is confined to the post-monsoon and post-short rains season, respectively. However, the observed positive vegetation feedback to rainfall in the semi-arid Sahel and HOA is largely due to moisture recycling, rather than the classic albedo mechanism. Future projections of Sahel rainfall remain highly uncertain in terms of both sign and magnitude within phases three and five of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). The GEFA-based observational analyses will provide a benchmark for evaluating climate models, which will facilitate effective process-based model weighting for more reliable projections of regional climate, as well as model development.
NASA Astrophysics Data System (ADS)
Morono, Y.; Hauer, V. B.; Inagaki, F.; Kubo, Y.; Maeda, L.; Scientists, E.
2017-12-01
Expedition 370 of the International Ocean Discovery Program (IODP) aimed to explore the limits of life in the deep subseafloor biosphere at a location where elevated heat flow lets temperature increase with sediment depth beyond the known maximum of microbial life ( 120°C) at 1.2 km below the seafloor. Such conditions are met in the protothrust zone of the Nankai Trough off Cape Muroto, Japan, where Site C0023 was established in the vicinity of ODP Sites 808 and 1174 at a water depth of 4776 m using the drilling vessel DV Chikyu. Hole C0023A was cored down to a total depth of 1180 meters below seafloor, offshore sampling and research was combined with simultaneous shore-based investigations at the Kochi Core Center (KCC), and long-term temperature observations were started (Heuer et al., 2017). The primary scientific objectives of Expedition 370 are (a) to detect and investigate the presence or absence of life and biological processes at the biotic-abiotic transition of the deep subseafloor with unprecedented analytical sensitivity and precision; (b) to comprehensively study the factors that control biomass, activity, and diversity of microbial communities; and (c) to elucidate if continuous or episodic flow of fluids containing thermogenic and/or geogenic nutrients and energy substrates support subseafloor microbial communities in the Nankai Trough accretionary complex (Hinrichs et al., 2016). This contribution will highlight the scientific approach of our field-work and preliminary expedition results by shipboard and shorebased activities. Hinrichs K-U, Inagaki F, Heuer VB, Kinoshita M, Morono Y, Kubo Y (2016) Expedition 370 Scientific Prospectus: T-Limit of the Deep Biosphere off Muroto (T-Limit). International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.sp.370.2016 Heuer VB, Inagaki F, Morono Y, Kubo Y, Maeda L, the Expedition 370 Scientists (2017) Expedition 370 Preliminary Report: Temperature Limit of the Deep Biosphere off Muroto. International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.pr.370.2017
NASA Astrophysics Data System (ADS)
Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Albuquerque, J.
2016-12-01
Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) climate-based statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from large-scale may-to-november averaged monthly anomalies of SST and thermocline depth fields in Tropical Pacific (predictor X) and the associated historical tropical cyclones in Eastern North Pacific basin (predictand Y). As data for the historical occurrence and paths of tropical cyclones are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain the interannual variability of the frequency and intensity of TCs in Southern California, which is clearly related to post El Niño Eastern Pacific and El Niño Central Pacific. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis, Journal of Applied Meteorology and Climatology, DOI: 10.1175/JAMC-D-13-08.1
NASA Astrophysics Data System (ADS)
Humphreys, Matthew P.; Greatrix, Florence M.; Tynan, Eithne; Achterberg, Eric P.; Griffiths, Alex M.; Fry, Claudia H.; Garley, Rebecca; McDonald, Alison; Boyce, Adrian J.
2016-06-01
The stable carbon isotope composition of dissolved inorganic carbon (δ13CDIC) in seawater was measured in samples collected during June-July 2014 in the subpolar North Atlantic. Sample collection was carried out on the RRS James Clark Ross cruise JR302, part of the "Radiatively Active Gases from the North Atlantic Region and Climate Change" (RAGNARoCC) research programme. The observed δ13CDIC values for cruise JR302 fall in a range from -0.07 to +1.95 ‰, relative to the Vienna Pee Dee Belemnite standard. From duplicate samples collected during the cruise, the 1σ precision for the 341 results is 0.08 ‰, which is similar to our previous work and other studies of this kind. We also performed a cross-over analysis using nearby historical δ13CDIC data, which indicated that there were no significant systematic offsets between our measurements and previously published results. We also included seawater reference material (RM) produced by A. G. Dickson (Scripps Institution of Oceanography, USA) in every batch of analysis, enabling us to improve upon the calibration and quality-control procedures from a previous study. The δ13CDIC is consistent within each RM batch, although its value is not certified. We report δ13CDIC values of 1.15 ± 0.03 ‰ and 1.27 ± 0.05 ‰ for batches 141 and 144 respectively. Our JR302 δ13CDIC data can be used - along with measurements of other biogeochemical variables - to constrain the processes that control DIC in the interior ocean, in particular the oceanic uptake of anthropogenic carbon dioxide and the biological carbon pump. Our δ13CDIC results are available from the British Oceanographic Data Centre - doi:10.5285/22235f1a-b7f3-687f-e053-6c86abc0c8a6.
NASA Astrophysics Data System (ADS)
Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Espejo, A.; del Jesus, M.; Diez Sierra, J.; Cofino, A. S.; Camus, P.
2016-02-01
Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from a potential TC index derived from large-scale SST fields in Eastern Central Pacific (predictor X) and the associated tropical cyclone ocurrence (predictand Y). SST data comes from NOAA Extended Reconstructed SST V3b providing information from 1854 to 2013 on a 2.0 degree x 2.0 degree global grid. As data for the historical occurrence and paths of tropical cycloneas are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain seasonal-to-interannual variability of the predictor X, which is clearly related to El Niño Southern Oscillation. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis, Journal of Applied Meteorology and Climatology, DOI: 10.1175/JAMC-D-13-08.1
GOW2.0: A global wave hindcast of high resolution
NASA Astrophysics Data System (ADS)
Menendez, Melisa; Perez, Jorge; Losada, Inigo
2016-04-01
The information provided by reconstructions of historical wind generated waves is of paramount importance for a variety of coastal and offshore purposes (e.g. risk assessment, design of costal structures and coastal management). Here, a new global wave hindcast (GOW2.0) is presented. This hindcast is an update of GOW1.0 (Reguero et al. 2012) motivated by the emergence of new settings and atmospheric information from reanalysis during recent years. GOW2.0 is based on version 4.18 of WaveWatch III numerical model (Tolman, 2014). Main features of the model set-up are the analysis and selection of recent source terms concerning wave generation and dissipation (Ardhuin et al. 2010, Zieger et al., 2015) and the implementation of obstruction grids to improve the modeling of wave shadowing effects in line with the approach described in Chawla and Tolman (2007). This has been complemented by a multigrid system and the use of the hourly wind and ice coverage from the Climate Forecast System Reanalysis, CFSR (30km spatial resolution approximately). The multigrid scheme consists of a series of "two-way" nested domains covering the whole ocean basins at a 0.5° spatial resolution and continental shelfs worldwide at a 0.25° spatial resolution. In addition, a technique to reconstruct wave 3D spectra for any grid-point is implemented from spectral partitioning information. A validation analysis of GOW2.0 outcomes has been undertaken considering wave spectral information from surface buoy stations and multi-mission satellite data for a spatial validation. GOW2.0 shows a substantial improvement over its predecessor for all the analyzed variables. In summary, GOW2.0 reconstructs historical wave spectral data and climate information from 1979 to present at hourly resolution providing higher spatial resolution over regions where local generated wind seas, bimodal-spectral behaviour and relevant swell transformations across the continental shelf are important. Ardhuin F, Rogers E, Babanin AV, et al (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J Phys Oceanogr. 2010;40(9):1917-1941. doi:10.1175/2010JPO4324.1. Chawla A, Tolman HL. Obstruction grids for spectral wave models. Ocean Model. 2008;22(1-2):12-25. doi:10.1016/j.ocemod.2008.01.003. Reguero BG, Menendez M, Mendez FJ, Minguez R, Losada IJ (2012). A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Engineering, 65, 38-55. Tolman HL (2014). User manual and system documentation of WAVEWATCH III version 4.18. NOAA / NWS / NCEP / MMAB Tech Note. Zieger S, Babanin AV, Rogers WE, Young IR (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96, 2-25.
The dynamics of oceanic fronts. I - The Gulf Stream
NASA Technical Reports Server (NTRS)
Kao, T. W.
1980-01-01
The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.
Outlet Glacier-Ice Shelf-Ocean Interactions: Is the Tail Wagging the Dog?
NASA Astrophysics Data System (ADS)
Parizek, B. R.; Walker, R. T.; Rinehart, S. K.
2009-12-01
While the massive interior regions of the Antarctic and Greenland Ice Sheets are presently ``resting quietly", the lower elevations of many outlet glaciers are experiencing dramatic adjustments due to changes in ice dynamics and/or surface mass balance. Oceanic and/or atmospheric forcing in these marginal regions often leads to mass deficits for entire outlet basins. Therefore, coupling the wagging tail of ice-ocean interactions with the vast ice-sheet reservoirs is imperative for accurate assessments of future sea-level rise. To study ice-ocean dynamic processes, we couple an ocean-plume model that simulates ice-shelf basal melting rates based on temperature and salinity profiles combined with plume dynamics associated with the geometry of the ice-shelf cavity (following Jenkins, 1991 and Holland and Jenkins, 1999) with a two-dimensional, isothermal model of outlet glacier-ice shelf flow (as used in Alley et al., 2007; Walker et al., 2008; Parizek et al., in review). Depending on the assigned temperature and salinity profiles, the ocean model can simulate both water-mass end-members: either cold High Salinity Shelf Water (HSSW) or relatively warm Circumpolar Deep Water (CDW), as well as between-member conditions. Notably, the coupled system exhibits sensitivity to the initial conditions. In particular, melting concentrated near the grounding line has the greatest effect in forcing grounding-line retreat. Retreat is further enhanced by a positive feedback between the ocean and ice, as the focused melt near the grounding line leads to an increase in the local slope of the basal ice, thereby enhancing buoyancy-driven plume flow and subsequent melt rates.
IPY 2007-2008 data legacy - a ong story cut short
NASA Astrophysics Data System (ADS)
Driemel, A.; Grobe, H.; Diepenbroek, M.; Grüttemeier, H.; Schumacher, S.; Sieger, R.
2015-06-01
The International Polar Year 2007-2008 was a synchronized effort to simultaneously collect data from polar regions. Being the fourth in a row of IPYs, the demand for interdisciplinarity and new data products was high. However, despite of all the research done on land, people, ocean, ice and atmosphere and the large amount of data collected, no central archive or portal was created for IPY data. In order to address these issues, a concerted effort between PANGAEA - Data Publisher for Earth and Environmental Science, the ICSU World Data System (WDS), and the International Council for Scientific and Technical Information (ICSTI) was undertaken to extract data resulting from IPY publications for long-term preservation. 1380 IPY-related references were collected. Out of these, only 450 contained accessible data. All data was extracted, quality checked, annotated with metadata and uploaded to PANGAEA. The 450 articles dealt with a multitude of IPY topics - plankton biomass, water chemistry, ice thickness, whale sightings, Inuit health, alien species introductions by travelers or tundra biomass change - to mention just a few. Both, the Arctic and the Antarctic were investigated in the articles, and all realms (land, people, ocean, ice and atmosphere) and a wide range of countries were covered. The data compilation can now be found with the identifier doi:10.1594/PANGAEA.150150 and individually searched for using the PANGAEA search engine (www.pangaea.de) and adding "+project:ipy". With this effort, we hope to improve the visibility, accessibility and long-term storage of IPY data for future research and new data products.
NASA Astrophysics Data System (ADS)
Löptien, U.; Dietze, H.
2014-06-01
The Baltic Sea is a seasonally ice-covered, marginal sea, situated in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by sea ice, the local weather services have been monitoring sea ice conditions for decades. In the present study we revisit a historical monitoring data set, covering the winters 1960/1961. This data set, dubbed Data Bank for Baltic Sea Ice and Sea Surface Temperatures (BASIS) ice, is based on hand-drawn maps that were collected and then digitised 1981 in a joint project of the Finnish Institute of Marine Research (today Finish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS ice was designed for storage on punch cards and all ice information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard ice quantities (including information on ice types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical ice models and provide easy-to-access unique historical reference material for sea ice in the Baltic Sea. In addition we provide statistics showcasing the data quality. The website www.baltic-ocean.org hosts the post-prossed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science PANGEA (doi:10.1594/PANGEA.832353).
Modeling Europa's Ice-Ocean Interface
NASA Astrophysics Data System (ADS)
Elsenousy, A.; Vance, S.; Bills, B. G.
2014-12-01
This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.
The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean
Emerson, David
2016-01-01
Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157
Design and analysis of a global sub-mesoscale and tidal dynamics admitting virtual ocean.
NASA Astrophysics Data System (ADS)
Menemenlis, D.; Hill, C. N.
2016-02-01
We will describe the techniques used to realize a global kilometerscale ocean model configuration that includes representation of sea-ice and tidal excitation, and spans scales from planetary gyres to internal tides. A simulation using this model configuration provides a virtual ocean that admits some sub-mesoscale dynamics and tidal energetics not normally represented in global calculations. This extends simulated ocean behavior beyond broadly quasi-geostrophic flows and provides a preliminary example of a next generation computational approach to explicitly probing the interactions between instabilities that are usually parameterized and dominant energetic scales in the ocean. From previous process studies we have ascertained that this can lead to a qualitative improvement in the realism of many significant processes including geostrophic eddy dynamics, shelf-break exchange and topographic mixing. Computationally we exploit high-degrees of parallelism in both numerical evaluation and in recording model state to persistent disk storage. Together this allows us to compute and record a full three-dimensional model trajectory at hourly frequency for a timeperiod of 5 months with less than 9 million core hours of parallel computer time, using the present generation NASA Ames Research Center facilities. We have used this capability to create a 5 month trajectory archive, sampled at high spatial and temporal frequency for an ocean configuration that is initialized from a realistic data-assimilated state and driven with reanalysis surface forcing from ECMWF. The resulting database of model state provides a novel virtual laboratory for exploring coupling across scales in the ocean, and for testing ideas on the relationship between small scale fluxes and large scale state. The computation is complemented by counterpart computations that are coarsened two and four times respectively. In this presentation we will review the computational and numerical technologies employed and show how the high spatio-temporal frequency archive of model state can provide a new and promising tool for researching richer ocean dynamics at scale. We will also outline how computations of this nature could be combined with next generation computer hardware plans to help inform important climate process questions.
Trends in continental temperature and humidity directly linked to ocean warming.
Byrne, Michael P; O'Gorman, Paul A
2018-05-08
In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.
Nonlinear waves in earth crust faults: application to regular and slow earthquakes
NASA Astrophysics Data System (ADS)
Gershenzon, Naum; Bambakidis, Gust
2015-04-01
The genesis, development and cessation of regular earthquakes continue to be major problems of modern geophysics. How are earthquakes initiated? What factors determine the rapture velocity, slip velocity, rise time and geometry of rupture? How do accumulated stresses relax after the main shock? These and other questions still need to be answered. In addition, slow slip events have attracted much attention as an additional source for monitoring fault dynamics. Recently discovered phenomena such as deep non-volcanic tremor (NVT), low frequency earthquakes (LFE), very low frequency earthquakes (VLF), and episodic tremor and slip (ETS) have enhanced and complemented our knowledge of fault dynamic. At the same time, these phenomena give rise to new questions about their genesis, properties and relation to regular earthquakes. We have developed a model of macroscopic dry friction which efficiently describes laboratory frictional experiments [1], basic properties of regular earthquakes including post-seismic stress relaxation [3], the occurrence of ambient and triggered NVT [4], and ETS events [5, 6]. Here we will discuss the basics of the model and its geophysical applications. References [1] Gershenzon N.I. & G. Bambakidis (2013) Tribology International, 61, 11-18, http://dx.doi.org/10.1016/j.triboint.2012.11.025 [2] Gershenzon, N.I., G. Bambakidis and T. Skinner (2014) Lubricants 2014, 2, 1-x manuscripts; doi:10.3390/lubricants20x000x; arXiv:1411.1030v2 [3] Gershenzon N.I., Bykov V. G. and Bambakidis G., (2009) Physical Review E 79, 056601 [4] Gershenzon, N. I, G. Bambakidis, (2014a), Bull. Seismol. Soc. Am., 104, 4, doi: 10.1785/0120130234 [5] Gershenzon, N. I.,G. Bambakidis, E. Hauser, A. Ghosh, and K. C. Creager (2011), Geophys. Res. Lett., 38, L01309, doi:10.1029/2010GL045225. [6] Gershenzon, N.I. and G. Bambakidis (2014) Bull. Seismol. Soc. Am., (in press); arXiv:1411.1020
On the Effect of Offshore Wind Parks on Ocean Dynamics
NASA Astrophysics Data System (ADS)
Ludewig, E.; Pohlmann, T.
2012-12-01
Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area being hundred times bigger than the wind park itself. The emerged vertical structure is generated due to a newly created geostrophic balance resulting in a redistribution of the ocean mass field. A number of additional upwelling and downwelling cells around the wind park support an intensified vertical dispersion through all layers and incline the thermocline which also influences the lower levels. The disturbances of mass show a dipole structure across the main wind direction with a maximum change in thermocline depth of some meters close to the OWP. Diffusion, mostly driven by direct wind induced surface shear is also modified by the wind turbines and supports a further modification of the vertical patterns. Considering that wind turbines operate only in a special window of wind speed, i.e. wind turbines will stop in case of too weak or too strong wind speeds as well as in case of technical issues, the averaged dimension and intensity of occurring vertical cells depend on the number of rotors and expected wind speeds. Finally we will focus on scenario runs for the North Sea under fully realistic conditions to estimate possible changes in ocean dynamics due to OWPs in future and these results will be further used for process analyzes of the ecosystem. If we assume a continuous operation of North Sea's OWPs in future we expect a fundamental constant change in ocean dynamics and moreover in the ecosystem in its vicinity.
2014-09-30
floor. OBJECTIVES To identify the phenomena involved in the cascade of energy from mesoscales to turbulent scales. In particular, we wish to quantify the...data from the profiler to the surface buoy. The WW Iridium telemetry system was tested on the WW moored over the continental shelf. Telemetry...2580 email: ajlucas@ucsd.edu Award: N00014-12-1-0635 LONG-TERM GOALS To gain a more complete understanding of ocean dynamical processes
Application of TOPEX/Poseidon altimetry to ocean dynamics and geophysics
NASA Technical Reports Server (NTRS)
Douglas, Bruce; Cheney, R.; Miller, L.; Mcadoo, D.; Leetmaa, A.; Schopf, P.; Schwiderski, E. W.
1991-01-01
We will analyze the TOPEX/POSEIDON data using techniques developed for Geosat, although the more accurate TOPEX/POSEIDON data will enable a wider range of problems to be addressed. Our proposed investigations will have five distinct areas: (1) a description of global sea level variability; (2) tropical ocean dynamics; (3) coupled models for El Nino prediction; (4) structure of the lithosphere; and (5) global tide model improvement.
Process Study of Oceanic Responses to Typhoons Using Arrays of EM-APEX Floats and Moorings
2012-09-30
maximum potential intensity, structure , energy, trajectory, and dynamic evolution. The most energetic oceanic responses to tropical cyclone forcing are...during tropical cyclone passage will aid understanding of storm dynamics and structure . The ocean’s recovery after tropical cyclone passage depends...days). The wake was advected hundreds of kilometers from the storm track by a pre- existing mesoscale eddy. Its thermal structure could not be
Geophysical Fluid Dynamics Outreach Films
NASA Astrophysics Data System (ADS)
Aurnou, J. M.; Schwarz, J. W.; Noguez, G.
2012-12-01
Here we will present high definition films of laboratory experiments demonstrating basic fluid motions similar to those occurring in atmospheres and oceans. In these experiments, we use water to simulate the fluid dynamics of both the liquid (oceans) and gaseous (atmospheric) envelopes. To simulate the spinning of the earth, we carry out the experiments on a rotating table. For each experiment, we begin by looking at our system first without the effects of rotation. Then, we include rotation to see how the behavior of the fluid changes due to the Coriolis accelerations. Our hope is that by viewing these experiments one will develop a sense for how fluids behave both in rotating and non-rotating systems. By noting the differences between the experiments, it should then be possible to establish a basis to think about large-scale fluid motions that exist in Earth's oceans and atmospheres as well as on planets other than Earth.Plan view image of vortices in a rotating tank of fluid. Movies of such flows make accessible the often difficult to comprehend fluid dynamical processes that occur in planetary atmospheres and oceans.
An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications
NASA Astrophysics Data System (ADS)
Goodwin, Philip
2012-07-01
To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.
2015-12-07
doi: Ran Lin, Fujian Wang, Markus Wohlgenannt, Chunyong He, Xiaofang Zhai, Yuri Suzuki. Organic spin- valves based on fullerene C60, Synthetic Metals...is likely incorrect, given that other groups have been able to dynamically tune LAO/STO samples along this anticorrelation curve. These dynamic...For jBj. Bp, the energy difference between the split peaks increases linearly (Zeeman- like ) with magnetic field –0.4 0 0.4 V 2 3 (m V) 100 50 0 dI
2015-12-07
doi: Ran Lin, Fujian Wang, Markus Wohlgenannt, Chunyong He, Xiaofang Zhai, Yuri Suzuki. Organic spin- valves based on fullerene C60, Synthetic Metals...is likely incorrect, given that other groups have been able to dynamically tune LAO/STO samples along this anticorrelation curve. These dynamic...For jBj. Bp, the energy difference between the split peaks increases linearly (Zeeman- like ) with magnetic field –0.4 0 0.4 V 2 3 (m V) 100 50 0 dI
Gerecht, Karola; Figueiredo, Angelo Miguel
2017-01-01
Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised. PMID:28840203
Liu, Haoliang; Feng, Juan; Chen, Liuping
2015-01-01
A novel dynamic covalent gel strategy is reported to immobilize an asymmetric catalyst within the channels of a microfluidic flow reactor. A layer of a catalytically active Mn–salen dynamic covalent imine gel matrix was coated onto a functionalized capillary. Mn–salen active moiety was incorporated into dynamic covalent imine gel matrix via the reaction of a chiral Mn–salen dialdehyde unit with a tetraamine linker. The catalytic activity of the capillary reactor has been demonstrated in enantioselective kinetic resolution of secondary alcohols. PMID:28706652
Supporting Dynamic Quantization for High-Dimensional Data Analytics.
Guzun, Gheorghi; Canahuate, Guadalupe
2017-05-01
Similarity searches are at the heart of exploratory data analysis tasks. Distance metrics are typically used to characterize the similarity between data objects represented as feature vectors. However, when the dimensionality of the data increases and the number of features is large, traditional distance metrics fail to distinguish between the closest and furthest data points. Localized distance functions have been proposed as an alternative to traditional distance metrics. These functions only consider dimensions close to query to compute the distance/similarity. Furthermore, in order to enable interactive explorations of high-dimensional data, indexing support for ad-hoc queries is needed. In this work we set up to investigate whether bit-sliced indices can be used for exploratory analytics such as similarity searches and data clustering for high-dimensional big-data. We also propose a novel dynamic quantization called Query dependent Equi-Depth (QED) quantization and show its effectiveness on characterizing high-dimensional similarity. When applying QED we observe improvements in kNN classification accuracy over traditional distance functions. Gheorghi Guzun and Guadalupe Canahuate. 2017. Supporting Dynamic Quantization for High-Dimensional Data Analytics. In Proceedings of Ex-ploreDB'17, Chicago, IL, USA, May 14-19, 2017, 6 pages. https://doi.org/http://dx.doi.org/10.1145/3077331.3077336.
Ocean Modeling in an Eddying Regime
NASA Astrophysics Data System (ADS)
Hecht, Matthew W.; Hasumi, Hiroyasu
This monograph is the first to survey progress in realistic simulation in a strongly eddying regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts, • Oceanographic Processes and Regimes: Fundamental Questions • Ocean Dynamics and State: From Regional to Global Scale, and • Modeling at the Mesoscale: State of the Art and Future Directions the volume details important advances in physical oceanography based on eddy resolving ocean modeling. It captures the state of the art and discusses issues that ocean modelers must consider in order to effectively contribute to advancing current knowledge, from subtleties of the underlying fluid dynamical equations to meaningful comparison with oceanographic observations and leading-edge model development. It summarizes many of the important results which have emerged from ocean modeling in an eddying regime, for those interested broadly in the physical science. More technical topics are intended to address the concerns of those actively working in the field.
NASA Astrophysics Data System (ADS)
Zhai, P.; He, R.
2016-02-01
Mode waters are upper-ocean water masses with nearly uniform water properties over a thickness of a few hundred meters. Subduction of mode waters plays an important role in changing atmospheric and oceanic long-term variability because they store "memory" of wintertime air-sea interaction. In this study, we investigated dynamic processes associated with subduction of the Eighteen Degree Water (EDW, the principal mode water) in the subtropical Northwest Atlantic during January to June 2007. Numerical simulations of the temporal and spatial evolutions of EDW were performed using both uncoupled (ocean only) and air-sea coupled configurations and results were contrasted. We find the coupled simulation produced deeper mixed layer depth, stronger eddy kinetic energy, and larger subduction areas than their counterparts in the uncoupled ocean simulation. In both configurations, mesoscale eddies enhance the total subduction and eddy-induced subduction has the same order as the mean component. Resolving strong air-sea coupling and mesoscale eddies is therefore important for understanding EDW dynamics.
Sensitivity studies with a coupled ice-ocean model of the marginal ice zone
NASA Technical Reports Server (NTRS)
Roed, L. P.
1983-01-01
An analytical coupled ice-ocean model is considered which is forced by a specified wind stress acting on the open ocean as well as the ice. The analysis supports the conjecture that the upwelling dynamics at ice edges can be understood by means of a simple analytical model. In similarity with coastal problems it is shown that the ice edge upwelling is determined by the net mass flux at the boundaries of the considered region. The model is used to study the sensitivity of the upwelling dynamics in the marginal ice zone to variation in the controlling parameters. These parameters consist of combinations of the drag coefficients used in the parameterization of the stresses on the three interfaces atmosphere-ice, atmosphere-ocean, and ice-ocean. The response is shown to be sensitive to variations in these parameters in that one set of parameters may give upwelling while a slightly different set of parameters may give downwelling.
NOAA tools to support CSC and LCC regional climate science priorities in the western Gulf of Mexico
NASA Astrophysics Data System (ADS)
Brown, D. P.; Marcy, D.; Robbins, K.; Shafer, M.; Stiller, H.
2012-12-01
The National Oceanic and Atmospheric Administration (NOAA) is an active regional partner with the Department of Interior (DOI) in supplying and supporting the delivery of climate science and services. A primary mechanism for NOAA-DOI coordination at the regional scale is the Landscape Conservation Cooperative (LCC) network, which is supported in part by DOI Climate Science Centers (CSC). Together, the CSCs and LCCs provide a framework to identify landscape-scale science and services priorities for conservation and management. As a key partner of the CSCs and an active member of many LCCs, NOAA is working to ensure its own regional product and service delivery efforts will help address these conservation and management challenges. Two examples of NOAA's regional efforts are highlighted here, with a focus on the coastal and interior geographies of the western Gulf of Mexico where NOAA partners with the South Central CSC and participates as a member of the Gulf Coast Prairie LCC. Along the Texas coastline, a sea level rise and coastal flooding impacts viewer, produced by NOAA's Coastal Services Center and available via its Digital Coast interface, allows constituents to visualize estimates of sea level rise, measures of uncertainty, flood frequencies, and environmental (e.g., marsh migration) and socioeconomic (e.g., tidal flooding of built environments) impacts. In the interior of Texas and Louisiana, NOAA's Southern Regional Climate Center is leading a consortium of partners in the development of a unified source of regional water reservoir information, including current conditions, a historical database, and web-based visualization tools to illustrate spatio-temporal variations in water availability to a broad array of hydrological, agricultural, and other customers. These two examples of NOAA products can, in their existing forms, support regional conservation and management priorities for CSCs and LCCs by informing vulnerability assessments and adaptation planning. Enhancements to these and other efforts can be achieved through a robust collaboration between NOAA and DOI that links regional science priorities to regional service delivery.
An Application of Reassigned Time-Frequency Representations for Seismic Noise/Signal Decomposition
NASA Astrophysics Data System (ADS)
Mousavi, S. M.; Langston, C. A.
2016-12-01
Seismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. An automatic method for seismic noise/signal decomposition is presented based upon an enhanced time-frequency representation. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and suppressed more easily in this reassigned domain. The threshold level is estimated using a general cross validation approach that does not rely on any prior knowledge about the noise level. Efficiency of thresholding has been improved by adding a pre-processing step based on higher order statistics and a post-processing step based on adaptive hard-thresholding. In doing so, both accuracy and speed of the denoising have been improved compared to our previous algorithms (Mousavi and Langston, 2016a, 2016b; Mousavi et al., 2016). The proposed algorithm can either kill the noise (either white or colored) and keep the signal or kill the signal and keep the noise. Hence, It can be used in either normal denoising applications or in ambient noise studies. Application of the proposed method on synthetic and real seismic data shows the effectiveness of the method for denoising/designaling of local microseismic, and ocean bottom seismic data. References: Mousavi, S.M., C. A. Langston., and S. P. Horton (2016), Automatic Microseismic Denoising and Onset Detection Using the Synchrosqueezed-Continuous Wavelet Transform. Geophysics. 81, V341-V355, doi: 10.1190/GEO2015-0598.1. Mousavi, S.M., and C. A. Langston (2016a), Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am., 106, doi: 10.1785/0120150345. Mousavi, S.M., and C.A. Langston (2016b), Adaptive noise estimation and suppression for improving microseismic event detection, Journal of Applied Geophysics., doi: http://dx.doi.org/10.1016/j.jappgeo.2016.06.008.
NASA Astrophysics Data System (ADS)
Pinnegar, J. K.; Goñi, N.; Trenkel, V. M.; Arrizabalaga, H.; Melle, W.; Keating, J.; Óskarsson, G.
2014-04-01
There is increasing demand for information on predator-prey interactions in the ocean as a result of legislative commitments aimed at achieving sustainable exploitation. However, comprehensive datasets are lacking for many fish species and this has hampered development of multispecies fisheries models and the formulation of effective food-web indicators. This work describes a new compilation of stomach content data for five pelagic fish species (herring, blue whiting, mackerel, albacore and bluefin tuna) sampled across the northeast Atlantic and submitted to the PANGAEA open-access data portal (www.pangaea.de). We provide detailed descriptions of sample origin and of the corresponding database structures. We describe the main results in terms of diet composition and predator-prey relationships. The feeding preferences of small pelagic fish (herring, blue whiting, mackerel) were sampled over a very broad geographic area within the North Atlantic basin, from Greenland in the west, to the Lofoten Islands in the east and from the Bay of Biscay northwards to the Arctic. This analysis revealed significant differences in the prey items selected in different parts of the region at different times of year. Tunas (albacore and bluefin) were sampled in the Bay of Biscay and Celtic Sea. Dominant prey items for these species varied by location, year and season. This data compilation exercise represents one of the largest and most wide-ranging ever attempted for pelagic fish in the north Atlantic. The earliest data included in the database were collected in 1864, whereas the most recent were collected in 2012.Datasets are available at doi:10.1594/PANGAEA.820041 and doi:10.1594/PANGAEA.826992.
NASA Astrophysics Data System (ADS)
Pinnegar, J. K.; Goñi, N.; Trenkel, V. M.; Arrizabalaga, H.; Melle, W.; Keating, J.; Óskarsson, G.
2015-02-01
There is increasing demand for information on predator-prey interactions in the ocean as a result of legislative commitments aimed at achieving sustainable exploitation. However, comprehensive data sets are lacking for many fish species and this has hampered development of multispecies fisheries models and the formulation of effective food-web indicators. This work describes a new compilation of stomach content data for five pelagic fish species (herring, blue whiting, mackerel, albacore and bluefin tuna) sampled across the northeast Atlantic and submitted to the PANGAEA open-access data portal (www.pangaea.de). We provide detailed descriptions of sample origin and of the corresponding database structures. We describe the main results in terms of diet composition and predator-prey relationships. The feeding preferences of small pelagic fish (herring, blue whiting, mackerel) were sampled over a very broad geographic area within the North Atlantic basin, from Greenland in the west, to the Lofoten Islands in the east and from the Bay of Biscay northwards to the Arctic. This analysis revealed significant differences in the prey items selected in different parts of the region at different times of year. Tunas (albacore and bluefin) were sampled in the Bay of Biscay and Celtic Sea. Dominant prey items for these species varied by location, year and season. This data compilation exercise represents one of the largest and most wide-ranging ever attempted for pelagic fish in the North Atlantic. The earliest data included in the database were collected in 1864, whereas the most recent were collected in 2012. Data sets are available at doi:10.1594/PANGAEA.820041 and doi:10.1594/PANGAEA.826992.
High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography
NASA Astrophysics Data System (ADS)
Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.
2012-12-01
Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.
Initial tsunami signals in the lithosphere-ocean-atmosphere medium
NASA Astrophysics Data System (ADS)
Novik, O.; Ershov, S.; Mikhaylovskaya, I.
Satellite and ground based instrumentations for monitoring of dynamical processes under the Ocean floor 3 4 of the Earth surface and resulting catastrophic events should be adapted to unknown physical nature of transformation of the oceanic lithosphere s energy of seismogenic deformations into measurable acoustic electromagnetic EM temperature and hydrodynamic tsunami waves To describe the initial up to a tsunami wave far from a shore stage of this transformation and to understand mechanism of EM signals arising above the Ocean during seismic activation we formulate a nonlinear mathematical model of seismo-hydro-EM geophysical field interaction in the lithosphere-Ocean-atmosphere medium from the upper mantle under the Ocean up to the ionosphere domain D The model is based on the theory of elasticity electrodynamics fluid dynamics thermodynamics and geophysical data On the basis of this model and its mathematical investigation we calculate generation and propagation of different see above waves in the basin of a model marginal sea the data on the central part of the Sea of Japan were used At the moment t 0 the dynamic interaction process is supposed to be caused by weak may be precursory sub-vertical elastic displacements with the amplitude duration and main frequency of the order of a few cm sec and tenth of Hz respectively at the depth of 37 km under the sea level i e in the upper mantle Other seismic excitations may be considered as well The lithosphere EM signal is generated in the upper mantle conductive
Coyle, Scott M; Lim, Wendell A
2016-01-01
The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565
Constraining 20th Century Pacific Trade-Wind Variability Using Coral Mn/Ca
NASA Astrophysics Data System (ADS)
Sayani, H. R.; Thompson, D. M.; Carilli, J.; Ireland, T. J.; Cobb, K. M.; Atwood, A. R.; Grothe, P. R.; Miller, S. J.; Hitt, N. T.; O'Connor, G.
2017-12-01
Global mean surface temperatures during the 20th century are characterized by multidecadal periods of either accelerated or reduced rates of warming that cannot be explained by external forcings alone. Both observations and modeling studies suggest that the reduced rate of global surface warming during the early-2000s can be largely explained by decadal climate variability in the tropical Pacific, specifically changes in trade-wind strength [e.g. Meehl et al., 2016]. However, the relationship between Pacific trade-wind strength and global surface warming is poorly constrained due to the lack of instrumental wind observations prior to the 1970s. Surface corals are now routinely used to generate records of past sea-surface temperature (SST) change, and have dramatically improved our understanding of oceanic variability in the tropical Pacific. Yet, there are few direct measurements of the atmospheric response to this SST variability. Skeletal Mn/Ca ratios in corals from Tarawa Atoll (1.3˚N, 173˚E) have been shown to track El Niño-related westerly wind events on interannual timescales [Shen et al., 1992], and the strength of Pacific trade winds on decadal timescales [Thompson et al., 2015]. Here, we investigate the utility of this novel wind proxy at Kiritimati Atoll (Christmas Island; 2˚N, 157.5˚W), a site that is hydrographically similar to Tarawa. We use a series of seawater samples collected across the 2015/16 El Niño to characterize and quantify the relationship between westerly wind events and seawater Mn variability around Kiritimati. Anchored by this modern-day calibration, we present a new reconstruction of westerly winds across the late-20thcentury from Kiritimati Atoll. We also assess the reproducibility of coral Mn/Ca across cores collected at varying distances from the lagoon, which represents the primary source of seawater Mn to the reef at our site. Lastly, we discuss the strengths and limitations of this novel proxy, as well as the potential for its application to corals from other sites across the tropical Pacific. ReferencesMeehl, et al., (2016), Nature Climate change, doi:10.1038/nclimate3107. Shen, et al., (1992), J. Geophys. Res. Oceans, doi:10.1029/92JC00951. Thompson, et al., (2015), Nature Geoscience, doi:10.1038/ngeo2321.
76 FR 26254 - NOAA's Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-06
... the life and health of our planet, and will result in improved societal understanding and management..., marine life and other natural resources or habitats, understanding the dynamics of complex ecosystems... ocean data in new ways to describe the ocean's marine life and features, living and non-living resources...
A Summary of the Naval Postgraduate School Research Program.
1979-09-30
Research (M. G. Sovereign) 116 Review of COMWTH II Model (M. G. Sovereign and J. K. Arima ) 117 Optimization of Combat Dynamics (J. G. Taylor) 118...Studies (R. L. Elsberry) 291 4 Numerical Models of Ocean Circulation and Climate Interaction--A Review (R. L. Haney) 292 Numerical Studies of the Dynamics... climatic numerical models to investigate the various mechan- isms pertinent to the large-scale interaction between tropi- cal atmosphere and oceans. Among
Effects of Dynamic Topography on the Cenozoic Carbonate Compensation Depth
NASA Astrophysics Data System (ADS)
Campbell, Siobhan M.; Moucha, Robert; Derry, Louis A.; Raymo, Maureen E.
2018-04-01
Reconstructions of the carbonate compensation depth (CCD) in the past have been used to inform hypotheses about the nature of weathering, tectonics, climate change, and the major ion content of the world's oceans over the Cenozoic. These reconstructions are sensitive to uncertainties in the input data, in particular, the paleodepth estimates of sediment cores. Here we propose that a significant, previously unconsidered contributor to uncertainties in paleodepth estimates is from dynamic topography produced by radial stresses exerted on the Earth's surface by the convecting mantle; these stresses can warp the ocean floor by hundreds of meters over broad regions and also vary significantly over millions of years. We present new reconstructions of the equatorial Pacific and Indian Ocean CCDs over the last 30 and 23 Myr, respectively, which demonstrate an overall deepening trend since the Miocene, and illustrate the possible effect of long-term changes in dynamic topography on these reconstructions.
Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing
Golledge, Nicholas R.; Fogwill, Christopher J.; Mackintosh, Andrew N.; Buckley, Kevin M.
2012-01-01
Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments—a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. PMID:22988078
Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing.
Golledge, Nicholas R; Fogwill, Christopher J; Mackintosh, Andrew N; Buckley, Kevin M
2012-10-02
Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.
Endothelial Ca2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo
Yokota, Yasuhiro; Nakajima, Hiroyuki; Wakayama, Yuki; Muto, Akira; Kawakami, Koichi; Fukuhara, Shigetomo; Mochizuki, Naoki
2015-01-01
Sprouting angiogenesis is a well-coordinated process controlled by multiple extracellular inputs, including vascular endothelial growth factor (VEGF). However, little is known about when and how individual endothelial cell (EC) responds to angiogenic inputs in vivo. Here, we visualized endothelial Ca2+ dynamics in zebrafish and found that intracellular Ca2+ oscillations occurred in ECs exhibiting angiogenic behavior. Ca2+ oscillations depended upon VEGF receptor-2 (Vegfr2) and Vegfr3 in ECs budding from the dorsal aorta (DA) and posterior cardinal vein, respectively. Thus, visualizing Ca2+ oscillations allowed us to monitor EC responses to angiogenic cues. Vegfr-dependent Ca2+ oscillations occurred in migrating tip cells as well as stalk cells budding from the DA. We investigated how Dll4/Notch signaling regulates endothelial Ca2+ oscillations and found that it was required for the selection of single stalk cell as well as tip cell. Thus, we captured spatio-temporal Ca2+ dynamics during sprouting angiogenesis, as a result of cellular responses to angiogenic inputs. DOI: http://dx.doi.org/10.7554/eLife.08817.001 PMID:26588168
Williams, Shawniqua T; Conte, Mary M; Goldfine, Andrew M; Noirhomme, Quentin; Gosseries, Olivia; Thonnard, Marie; Beattie, Bradley; Hersh, Jennifer; Katz, Douglas I; Victor, Jonathan D; Laureys, Steven; Schiff, Nicholas D
2013-01-01
Zolpidem produces paradoxical recovery of speech, cognitive and motor functions in select subjects with severe brain injury but underlying mechanisms remain unknown. In three diverse patients with known zolpidem responses we identify a distinctive pattern of EEG dynamics that suggests a mechanistic model. In the absence of zolpidem, all subjects show a strong low frequency oscillatory peak ∼6–10 Hz in the EEG power spectrum most prominent over frontocentral regions and with high coherence (∼0.7–0.8) within and between hemispheres. Zolpidem administration sharply reduces EEG power and coherence at these low frequencies. The ∼6–10 Hz activity is proposed to arise from intrinsic membrane properties of pyramidal neurons that are passively entrained across the cortex by locally-generated spontaneous activity. Activation by zolpidem is proposed to arise from a combination of initial direct drug effects on cortical, striatal, and thalamic populations and further activation of underactive brain regions induced by restoration of cognitively-mediated behaviors. DOI: http://dx.doi.org/10.7554/eLife.01157.001 PMID:24252875
Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression
Andergassen, Daniel; Dotter, Christoph P; Wenzel, Daniel; Sigl, Verena; Bammer, Philipp C; Muckenhuber, Markus; Mayer, Daniela; Kulinski, Tomasz M; Theussl, Hans-Christian; Penninger, Josef M; Bock, Christoph; Barlow, Denise P; Pauler, Florian M; Hudson, Quanah J
2017-01-01
To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta. DOI: http://dx.doi.org/10.7554/eLife.25125.001 PMID:28806168
Tropical atmospheric circulations with humidity effects.
Hsia, Chun-Hsiung; Lin, Chang-Shou; Ma, Tian; Wang, Shouhong
2015-01-08
The main objective of this article is to study the effect of the moisture on the planetary scale atmospheric circulation over the tropics. The modelling we adopt is the Boussinesq equations coupled with a diffusive equation of humidity, and the humidity-dependent heat source is modelled by a linear approximation of the humidity. The rigorous mathematical analysis is carried out using the dynamic transition theory. In particular, we obtain mixed transitions, also known as random transitions, as described in Ma & Wang (2010 Discrete Contin. Dyn. Syst. 26 , 1399-1417. (doi:10.3934/dcds.2010.26.1399); 2011 Adv. Atmos. Sci. 28 , 612-622. (doi:10.1007/s00376-010-9089-0)). The analysis also indicates the need to include turbulent friction terms in the model to obtain correct convection scales for the large-scale tropical atmospheric circulations, leading in particular to the right critical temperature gradient and the length scale for the Walker circulation. In short, the analysis shows that the effect of moisture lowers the magnitude of the critical thermal Rayleigh number and does not change the essential characteristics of dynamical behaviour of the system.
NF-κB oscillations translate into functionally related patterns of gene expression
Zambrano, Samuel; De Toma, Ilario; Piffer, Arianna; Bianchi, Marco E; Agresti, Alessandra
2016-01-01
Several transcription factors (TFs) oscillate, periodically relocating between the cytoplasm and the nucleus. NF-κB, which plays key roles in inflammation and cancer, displays oscillations whose biological advantage remains unclear. Recent work indicated that NF-κB displays sustained oscillations that can be entrained, that is, reach a persistent synchronized state through small periodic perturbations. We show here that for our GFP-p65 knock-in cells NF-κB behaves as a damped oscillator able to synchronize to a variety of periodic external perturbations with no memory. We imposed synchronous dynamics to prove that transcription of NF-κB-controlled genes also oscillates, but mature transcript levels follow three distinct patterns. Two sets of transcripts accumulate fast or slowly, respectively. Another set, comprising chemokine and chemokine receptor mRNAs, oscillates and resets at each new stimulus, with no memory of the past. We propose that TF oscillatory dynamics is a means of segmenting time to provide renewing opportunity windows for decision. DOI: http://dx.doi.org/10.7554/eLife.09100.001 PMID:26765569
Lissencephaly-1 is a context-dependent regulator of the human dynein complex
Baumbach, Janina; Murthy, Andal; McClintock, Mark A; Dix, Carly I; Zalyte, Ruta; Hoang, Ha Thi; Bullock, Simon L
2017-01-01
The cytoplasmic dynein-1 (dynein) motor plays a central role in microtubule organisation and cargo transport. These functions are spatially regulated by association of dynein and its accessory complex dynactin with dynamic microtubule plus ends. Here, we elucidate in vitro the roles of dynactin, end-binding protein-1 (EB1) and Lissencephaly-1 (LIS1) in the interaction of end tracking and minus end-directed human dynein complexes with these sites. LIS1 promotes dynactin-dependent tracking of dynein on both growing and shrinking plus ends. LIS1 also increases the frequency and velocity of processive dynein movements that are activated by complex formation with dynactin and a cargo adaptor. This stimulatory effect of LIS1 contrasts sharply with its documented ability to inhibit the activity of isolated dyneins. Collectively, our findings shed light on how mammalian dynein complexes associate with dynamic microtubules and help clarify how LIS1 promotes the plus-end localisation and cargo transport functions of dynein in vivo. DOI: http://dx.doi.org/10.7554/eLife.21768.001 PMID:28406398
Qi, Shuhong; Li, Hui; Lu, Lisen; Qi, Zhongyang; Liu, Lei; Chen, Lu; Shen, Guanxin; Fu, Ling; Luo, Qingming; Zhang, Zhihong
2016-01-01
The combined-immunotherapy of adoptive cell therapy (ACT) and cyclophosphamide (CTX) is one of the most efficient treatments for melanoma patients. However, no synergistic effects of CTX and ACT on the spatio-temporal dynamics of immunocytes in vivo have been described. Here, we visualized key cell events in immunotherapy-elicited immunoreactions in a multicolor-coded tumor microenvironment, and then established an optimal strategy of metronomic combined-immunotherapy to enhance anti-tumor efficacy. Intravital imaging data indicated that regulatory T cells formed an 'immunosuppressive ring' around a solid tumor. The CTX-ACT combined-treatment elicited synergistic immunoreactions in tumor areas, which included relieving the immune suppression, triggering the transient activation of endogenous tumor-infiltrating immunocytes, increasing the accumulation of adoptive cytotoxic T lymphocytes, and accelerating the infiltration of dendritic cells. These insights into the spatio-temporal dynamics of immunocytes are beneficial for optimizing immunotherapy and provide new approaches for elucidating the mechanisms underlying the involvement of immunocytes in cancer immunotherapy. DOI: http://dx.doi.org/10.7554/eLife.14756.001 PMID:27855783
Resolving coiled shapes reveals new reorientation behaviors in C. elegans
Broekmans, Onno D; Rodgers, Jarlath B; Ryu, William S; Stephens, Greg J
2016-01-01
We exploit the reduced space of C. elegans postures to develop a novel tracking algorithm which captures both simple shapes and also self-occluding coils, an important, yet unexplored, component of 2D worm behavior. We apply our algorithm to show that visually complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics and a head-curvature pulse. We demonstrate the precise Ω-turn dynamics of an escape response and uncover a surprising new dichotomy in spontaneous, large-amplitude coils; deep reorientations occur not only through classical Ω-shaped postures but also through larger postural excitations which we label here as δ-turns. We find that omega and delta turns occur independently, suggesting a distinct triggering mechanism, and are the serpentine analog of a random left-right step. Finally, we show that omega and delta turns occur with approximately equal rates and adapt to food-free conditions on a similar timescale, a simple strategy to avoid navigational bias. DOI: http://dx.doi.org/10.7554/eLife.17227.001 PMID:27644113
Gronnier, Julien; Crowet, Jean-Marc; Habenstein, Birgit; Nasir, Mehmet Nail; Bayle, Vincent; Hosy, Eric; Platre, Matthieu Pierre; Gouguet, Paul; Raffaele, Sylvain; Martinez, Denis; Grelard, Axelle; Loquet, Antoine; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia; Der, Christophe; Bayer, Emmanuelle M; Jaillais, Yvon; Deleu, Magali; Germain, Véronique; Lins, Laurence; Mongrand, Sébastien
2017-01-01
Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORIN is independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyses of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function. DOI: http://dx.doi.org/10.7554/eLife.26404.001 PMID:28758890
Monitoring Subsurface Ice-Ocean Processes Using Underwater Acoustics in the Ross Sea
NASA Astrophysics Data System (ADS)
Haxel, J. H.; Dziak, R. P.; Matsumoto, H.; Lee, W. S.; Yun, S.
2016-12-01
The Ross Sea is a dynamic area of ice-ocean interaction, where a large component of the Southern Ocean's sea ice formation occurs within regional polynyas in addition to the destructive processes happening at the seaward boundary of the Ross Ice Shelf. Recent studies show the sea-ice season has been lengthening and the sea ice extent has been growing with more persistent and larger regional polynyas. These trends have important implications for the Ross Sea ecosystem with polynyas supporting high rates of primary productivity in the area. Monitoring trends in sea ice and ice shelf dynamics in the Southern Ocean has relied heavily on satellite imagery and remote sensing methods despite a significant portion of these physical processes occurring beneath the ocean surface. In January 2014, an ocean bottom hydrophone (OBH) was moored on the seafloor in the polynya area of Terra Nova Bay in the northwest region of the Ross Sea, north of the Drygalski Ice Tongue. The OBH recorded a year long record of the underwater low frequency acoustic spectrum up to 500 Hz from January 29 until it was recovered the following December 17, 2014. The acoustic records reveal a complex annual history of ice generated signals with over 50,000 detected events. These ice generated events related to collisions and cracking provide important insight for the timing and intensity of the ice-ocean dynamics happening below the sea surface as the polynya grows and expands and the nearby Drygalski ice tongue flows into Terra Nova Bay. Additionally, high concentrations of baleen whale vocalizations in frequencies ranging from 200-400 Hz from September - December suggest a strong seasonal presence of whales in this ecologically important polynya region.
Bayesian Inference of High-Dimensional Dynamical Ocean Models
NASA Astrophysics Data System (ADS)
Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.
2015-12-01
This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.
NASA Astrophysics Data System (ADS)
Kavanaugh, M.; Muller-Karger, F. E.; Montes, E.; Santora, J. A.; Chavez, F.; Messié, M.; Doney, S. C.
2016-02-01
The pelagic ocean is a complex system in which physical, chemical and biological processes interact to shape patterns on multiple spatial and temporal scales and levels of ecological organization. Monitoring and management of marine seascapes must consider a hierarchical and dynamic mosaic, where the boundaries, extent, and location of features change with time. As part of a Marine Biodiversity Observing Network demonstration project, we conducted a multiscale classification of dynamic coastal seascapes in the northeastern Pacific and Gulf of Mexico using multivariate satellite and modeled data. Synoptic patterns were validated using mooring and ship-based observations that spanned multiple trophic levels and were collected as part of several long-term monitoring programs, including the Monterey Bay and Florida Keys National Marine Sanctuaries. Seascape extent and habitat diversity varied as a function of both seasonal and interannual forcing. We discuss the patterns of in situ observations in the context of seascape dynamics and the effect on rarefaction, spatial patchiness, and tracking and comparing ecosystems through time. A seascape framework presents an effective means to translate local biodiversity measurements to broader spatiotemporal scales, scales relevant for modeling the effects of global change and enabling whole-ecosystem management in the dynamic ocean.
Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean
NASA Astrophysics Data System (ADS)
Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.
2011-12-01
Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.
NASA Astrophysics Data System (ADS)
Hochmuth, K.; Gohl, K.; Leitchenkov, G. L.; Sauermilch, I.; Whittaker, J. M.; De Santis, L.; Olivo, E.; Uenzelmann-Neben, G.; Davy, B. W.
2017-12-01
Although the Southern Ocean plays a fundamental role in the global climate and ocean current system, paleo-ocean circulation models of the Southern Ocean suffer from missing boundary conditions. A more accurate representation of the geometry of the seafloor and their dynamics over long time-scales are key for enabling more precise reconstructions of the development of the paleo-currents, the paleo-environment and the Antarctic ice sheets. The accurate parameterisation of these models controls the meaning and implications of regional and global paleo-climate models. The dynamics of ocean currents in proximity of the continental margins is also controlled by the development of the regional seafloor morphology of the conjugate continental shelves, slopes and rises. The reassessment of all available reflection seismic and borehole data from Antarctica as well as its conjugate margins of Australia, New Zealand, South Africa and South America, allows us to create paleobathymetric grids for various time slices during the Cenozoic. Those grids inform us about sediment distribution and volume as well a local sedimentation rates. The earliest targeted time slice of the Eocene/Oligocene Boundary marks a significant turning point towards an icehouse climate. From latest Eocene to earliest Oligocene the Southern Ocean changes fundamentally from a post greenhouse to an icehouse environment with the establishment of a vast continental ice sheet on the Antarctic continent. With the calculated sediment distribution maps, we can evaluate the dynamics of the sedimentary cover as well as the development of structural obstacles such as oceanic plateaus and ridges. The ultimate aim of this project is - as a community based effort - to create paleobathymetric grids at various time slices such as the Mid-Miocene Climatic Optimum and the Pliocene/Pleistocene, and eventually mimic the time steps used within the modelling community. The observation of sediment distribution and local sediment volumes open the door towards more sophisticated paleo-topograpy studies of the Antarctic continent and more detailed studies of the paleo-circulation. Local paleo - water depths at the oceanic gateways or the position of paleo-shelf edges highly influence the regional circulation patterns supporting more elaborated climate models.